diff options
Diffstat (limited to 'srp/jsbn2.js')
-rw-r--r-- | srp/jsbn2.js | 672 |
1 files changed, 0 insertions, 672 deletions
diff --git a/srp/jsbn2.js b/srp/jsbn2.js deleted file mode 100644 index b135844..0000000 --- a/srp/jsbn2.js +++ /dev/null @@ -1,672 +0,0 @@ -/* - * Copyright (c) 2003-2005 Tom Wu - * All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining - * a copy of this software and associated documentation files (the - * "Software"), to deal in the Software without restriction, including - * without limitation the rights to use, copy, modify, merge, publish, - * distribute, sublicense, and/or sell copies of the Software, and to - * permit persons to whom the Software is furnished to do so, subject to - * the following conditions: - * - * The above copyright notice and this permission notice shall be - * included in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, - * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY - * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. - * - * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, - * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER - * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF - * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT - * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - * - * In addition, the following condition applies: - * - * All redistributions must retain an intact copy of this copyright notice - * and disclaimer. - */ - -// Extended JavaScript BN functions, required for RSA private ops. - -// (public) -function bnClone() { var r = nbi(); this.copyTo(r); return r; } - -// (public) return value as integer -function bnIntValue() { - if(this.s < 0) { - if(this.t == 1) return this[0]-this.DV; - else if(this.t == 0) return -1; - } - else if(this.t == 1) return this[0]; - else if(this.t == 0) return 0; - // assumes 16 < DB < 32 - return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0]; -} - -// (public) return value as byte -function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; } - -// (public) return value as short (assumes DB>=16) -function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } - -// (protected) return x s.t. r^x < DV -function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } - -// (public) 0 if this == 0, 1 if this > 0 -function bnSigNum() { - if(this.s < 0) return -1; - else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; - else return 1; -} - -// (protected) convert to radix string -function bnpToRadix(b) { - if(b == null) b = 10; - if(this.signum() == 0 || b < 2 || b > 36) return "0"; - var cs = this.chunkSize(b); - var a = Math.pow(b,cs); - var d = nbv(a), y = nbi(), z = nbi(), r = ""; - this.divRemTo(d,y,z); - while(y.signum() > 0) { - r = (a+z.intValue()).toString(b).substr(1) + r; - y.divRemTo(d,y,z); - } - return z.intValue().toString(b) + r; -} - -// (protected) convert from radix string -function bnpFromRadix(s,b) { - this.fromInt(0); - if(b == null) b = 10; - var cs = this.chunkSize(b); - var d = Math.pow(b,cs), mi = false, j = 0, w = 0; - for(var i = 0; i < s.length; ++i) { - var x = intAt(s,i); - if(x < 0) { - if(s.charAt(i) == "-" && this.signum() == 0) mi = true; - continue; - } - w = b*w+x; - if(++j >= cs) { - this.dMultiply(d); - this.dAddOffset(w,0); - j = 0; - w = 0; - } - } - if(j > 0) { - this.dMultiply(Math.pow(b,j)); - this.dAddOffset(w,0); - } - if(mi) BigInteger.ZERO.subTo(this,this); -} - -// (protected) alternate constructor -function bnpFromNumber(a,b,c) { - if("number" == typeof b) { - // new BigInteger(int,int,RNG) - if(a < 2) this.fromInt(1); - else { - this.fromNumber(a,c); - if(!this.testBit(a-1)) // force MSB set - this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); - if(this.isEven()) this.dAddOffset(1,0); // force odd - while(!this.isProbablePrime(b)) { - this.dAddOffset(2,0); - if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); - } - } - } - else { - // new BigInteger(int,RNG) - var x = new Array(), t = a&7; - x.length = (a>>3)+1; - b.nextBytes(x); - if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; - this.fromString(x,256); - } -} - -// (public) convert to bigendian byte array -function bnToByteArray() { - var i = this.t, r = new Array(); - r[0] = this.s; - var p = this.DB-(i*this.DB)%8, d, k = 0; - if(i-- > 0) { - if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) - r[k++] = d|(this.s<<(this.DB-p)); - while(i >= 0) { - if(p < 8) { - d = (this[i]&((1<<p)-1))<<(8-p); - d |= this[--i]>>(p+=this.DB-8); - } - else { - d = (this[i]>>(p-=8))&0xff; - if(p <= 0) { p += this.DB; --i; } - } - if((d&0x80) != 0) d |= -256; - if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; - if(k > 0 || d != this.s) r[k++] = d; - } - } - return r; -} - -function bnEquals(a) { return(this.compareTo(a)==0); } -function bnMin(a) { return(this.compareTo(a)<0)?this:a; } -function bnMax(a) { return(this.compareTo(a)>0)?this:a; } - -// (protected) r = this op a (bitwise) -function bnpBitwiseTo(a,op,r) { - var i, f, m = Math.min(a.t,this.t); - for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); - if(a.t < this.t) { - f = a.s&this.DM; - for(i = m; i < this.t; ++i) r[i] = op(this[i],f); - r.t = this.t; - } - else { - f = this.s&this.DM; - for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); - r.t = a.t; - } - r.s = op(this.s,a.s); - r.clamp(); -} - -// (public) this & a -function op_and(x,y) { return x&y; } -function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } - -// (public) this | a -function op_or(x,y) { return x|y; } -function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } - -// (public) this ^ a -function op_xor(x,y) { return x^y; } -function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } - -// (public) this & ~a -function op_andnot(x,y) { return x&~y; } -function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } - -// (public) ~this -function bnNot() { - var r = nbi(); - for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; - r.t = this.t; - r.s = ~this.s; - return r; -} - -// (public) this << n -function bnShiftLeft(n) { - var r = nbi(); - if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); - return r; -} - -// (public) this >> n -function bnShiftRight(n) { - var r = nbi(); - if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); - return r; -} - -// return index of lowest 1-bit in x, x < 2^31 -function lbit(x) { - if(x == 0) return -1; - var r = 0; - if((x&0xffff) == 0) { x >>= 16; r += 16; } - if((x&0xff) == 0) { x >>= 8; r += 8; } - if((x&0xf) == 0) { x >>= 4; r += 4; } - if((x&3) == 0) { x >>= 2; r += 2; } - if((x&1) == 0) ++r; - return r; -} - -// (public) returns index of lowest 1-bit (or -1 if none) -function bnGetLowestSetBit() { - for(var i = 0; i < this.t; ++i) - if(this[i] != 0) return i*this.DB+lbit(this[i]); - if(this.s < 0) return this.t*this.DB; - return -1; -} - -// return number of 1 bits in x -function cbit(x) { - var r = 0; - while(x != 0) { x &= x-1; ++r; } - return r; -} - -// (public) return number of set bits -function bnBitCount() { - var r = 0, x = this.s&this.DM; - for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); - return r; -} - -// (public) true iff nth bit is set -function bnTestBit(n) { - var j = Math.floor(n/this.DB); - if(j >= this.t) return(this.s!=0); - return((this[j]&(1<<(n%this.DB)))!=0); -} - -// (protected) this op (1<<n) -function bnpChangeBit(n,op) { - var r = BigInteger.ONE.shiftLeft(n); - this.bitwiseTo(r,op,r); - return r; -} - -// (public) this | (1<<n) -function bnSetBit(n) { return this.changeBit(n,op_or); } - -// (public) this & ~(1<<n) -function bnClearBit(n) { return this.changeBit(n,op_andnot); } - -// (public) this ^ (1<<n) -function bnFlipBit(n) { return this.changeBit(n,op_xor); } - -// (protected) r = this + a -function bnpAddTo(a,r) { - var i = 0, c = 0, m = Math.min(a.t,this.t); - while(i < m) { - c += this[i]+a[i]; - r[i++] = c&this.DM; - c >>= this.DB; - } - if(a.t < this.t) { - c += a.s; - while(i < this.t) { - c += this[i]; - r[i++] = c&this.DM; - c >>= this.DB; - } - c += this.s; - } - else { - c += this.s; - while(i < a.t) { - c += a[i]; - r[i++] = c&this.DM; - c >>= this.DB; - } - c += a.s; - } - r.s = (c<0)?-1:0; - if(c > 0) r[i++] = c; - else if(c < -1) r[i++] = this.DV+c; - r.t = i; - r.clamp(); -} - -// (public) this + a -function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } - -// (public) this - a -function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } - -// (public) this * a -function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } - -// (public) this / a -function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } - -// (public) this % a -function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } - -// (public) [this/a,this%a] -function bnDivideAndRemainder(a) { - var q = nbi(), r = nbi(); - this.divRemTo(a,q,r); - return new Array(q,r); -} - -// (protected) this *= n, this >= 0, 1 < n < DV -function bnpDMultiply(n) { - this[this.t] = this.am(0,n-1,this,0,0,this.t); - ++this.t; - this.clamp(); -} - -// (protected) this += n << w words, this >= 0 -function bnpDAddOffset(n,w) { - while(this.t <= w) this[this.t++] = 0; - this[w] += n; - while(this[w] >= this.DV) { - this[w] -= this.DV; - if(++w >= this.t) this[this.t++] = 0; - ++this[w]; - } -} - -// A "null" reducer -function NullExp() {} -function nNop(x) { return x; } -function nMulTo(x,y,r) { x.multiplyTo(y,r); } -function nSqrTo(x,r) { x.squareTo(r); } - -NullExp.prototype.convert = nNop; -NullExp.prototype.revert = nNop; -NullExp.prototype.mulTo = nMulTo; -NullExp.prototype.sqrTo = nSqrTo; - -// (public) this^e -function bnPow(e) { return this.exp(e,new NullExp()); } - -// (protected) r = lower n words of "this * a", a.t <= n -// "this" should be the larger one if appropriate. -function bnpMultiplyLowerTo(a,n,r) { - var i = Math.min(this.t+a.t,n); - r.s = 0; // assumes a,this >= 0 - r.t = i; - while(i > 0) r[--i] = 0; - var j; - for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); - for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); - r.clamp(); -} - -// (protected) r = "this * a" without lower n words, n > 0 -// "this" should be the larger one if appropriate. -function bnpMultiplyUpperTo(a,n,r) { - --n; - var i = r.t = this.t+a.t-n; - r.s = 0; // assumes a,this >= 0 - while(--i >= 0) r[i] = 0; - for(i = Math.max(n-this.t,0); i < a.t; ++i) - r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); - r.clamp(); - r.drShiftTo(1,r); -} - -// Barrett modular reduction -function Barrett(m) { - // setup Barrett - this.r2 = nbi(); - this.q3 = nbi(); - BigInteger.ONE.dlShiftTo(2*m.t,this.r2); - this.mu = this.r2.divide(m); - this.m = m; -} - -function barrettConvert(x) { - if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); - else if(x.compareTo(this.m) < 0) return x; - else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } -} - -function barrettRevert(x) { return x; } - -// x = x mod m (HAC 14.42) -function barrettReduce(x) { - x.drShiftTo(this.m.t-1,this.r2); - if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } - this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); - this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); - while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); - x.subTo(this.r2,x); - while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); -} - -// r = x^2 mod m; x != r -function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - -// r = x*y mod m; x,y != r -function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } - -Barrett.prototype.convert = barrettConvert; -Barrett.prototype.revert = barrettRevert; -Barrett.prototype.reduce = barrettReduce; -Barrett.prototype.mulTo = barrettMulTo; -Barrett.prototype.sqrTo = barrettSqrTo; - -// (public) this^e % m (HAC 14.85) -function bnModPow(e,m) { - var i = e.bitLength(), k, r = nbv(1), z; - if(i <= 0) return r; - else if(i < 18) k = 1; - else if(i < 48) k = 3; - else if(i < 144) k = 4; - else if(i < 768) k = 5; - else k = 6; - if(i < 8) - z = new Classic(m); - else if(m.isEven()) - z = new Barrett(m); - else - z = new Montgomery(m); - - // precomputation - var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; - g[1] = z.convert(this); - if(k > 1) { - var g2 = nbi(); - z.sqrTo(g[1],g2); - while(n <= km) { - g[n] = nbi(); - z.mulTo(g2,g[n-2],g[n]); - n += 2; - } - } - - var j = e.t-1, w, is1 = true, r2 = nbi(), t; - i = nbits(e[j])-1; - while(j >= 0) { - if(i >= k1) w = (e[j]>>(i-k1))&km; - else { - w = (e[j]&((1<<(i+1))-1))<<(k1-i); - if(j > 0) w |= e[j-1]>>(this.DB+i-k1); - } - - n = k; - while((w&1) == 0) { w >>= 1; --n; } - if((i -= n) < 0) { i += this.DB; --j; } - if(is1) { // ret == 1, don't bother squaring or multiplying it - g[w].copyTo(r); - is1 = false; - } - else { - while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } - if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } - z.mulTo(r2,g[w],r); - } - - while(j >= 0 && (e[j]&(1<<i)) == 0) { - z.sqrTo(r,r2); t = r; r = r2; r2 = t; - if(--i < 0) { i = this.DB-1; --j; } - } - } - return z.revert(r); -} - -// (public) gcd(this,a) (HAC 14.54) -function bnGCD(a) { - var x = (this.s<0)?this.negate():this.clone(); - var y = (a.s<0)?a.negate():a.clone(); - if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } - var i = x.getLowestSetBit(), g = y.getLowestSetBit(); - if(g < 0) return x; - if(i < g) g = i; - if(g > 0) { - x.rShiftTo(g,x); - y.rShiftTo(g,y); - } - while(x.signum() > 0) { - if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); - if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); - if(x.compareTo(y) >= 0) { - x.subTo(y,x); - x.rShiftTo(1,x); - } - else { - y.subTo(x,y); - y.rShiftTo(1,y); - } - } - if(g > 0) y.lShiftTo(g,y); - return y; -} - -// (protected) this % n, n < 2^26 -function bnpModInt(n) { - if(n <= 0) return 0; - var d = this.DV%n, r = (this.s<0)?n-1:0; - if(this.t > 0) - if(d == 0) r = this[0]%n; - else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; - return r; -} - -// (public) 1/this % m (HAC 14.61) -function bnModInverse(m) { - var ac = m.isEven(); - if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; - var u = m.clone(), v = this.clone(); - var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); - while(u.signum() != 0) { - while(u.isEven()) { - u.rShiftTo(1,u); - if(ac) { - if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } - a.rShiftTo(1,a); - } - else if(!b.isEven()) b.subTo(m,b); - b.rShiftTo(1,b); - } - while(v.isEven()) { - v.rShiftTo(1,v); - if(ac) { - if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } - c.rShiftTo(1,c); - } - else if(!d.isEven()) d.subTo(m,d); - d.rShiftTo(1,d); - } - if(u.compareTo(v) >= 0) { - u.subTo(v,u); - if(ac) a.subTo(c,a); - b.subTo(d,b); - } - else { - v.subTo(u,v); - if(ac) c.subTo(a,c); - d.subTo(b,d); - } - } - if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; - if(d.compareTo(m) >= 0) return d.subtract(m); - if(d.signum() < 0) d.addTo(m,d); else return d; - if(d.signum() < 0) return d.add(m); else return d; -} - -var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; -var lplim = (1<<26)/lowprimes[lowprimes.length-1]; - -// (public) test primality with certainty >= 1-.5^t -function bnIsProbablePrime(t) { - var i, x = this.abs(); - if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { - for(i = 0; i < lowprimes.length; ++i) - if(x[0] == lowprimes[i]) return true; - return false; - } - if(x.isEven()) return false; - i = 1; - while(i < lowprimes.length) { - var m = lowprimes[i], j = i+1; - while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; - m = x.modInt(m); - while(i < j) if(m%lowprimes[i++] == 0) return false; - } - return x.millerRabin(t); -} - -// (protected) true if probably prime (HAC 4.24, Miller-Rabin) -function bnpMillerRabin(t) { - var n1 = this.subtract(BigInteger.ONE); - var k = n1.getLowestSetBit(); - if(k <= 0) return false; - var r = n1.shiftRight(k); - t = (t+1)>>1; - if(t > lowprimes.length) t = lowprimes.length; - var a = nbi(); - for(var i = 0; i < t; ++i) { - a.fromInt(lowprimes[i]); - var y = a.modPow(r,this); - if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { - var j = 1; - while(j++ < k && y.compareTo(n1) != 0) { - y = y.modPowInt(2,this); - if(y.compareTo(BigInteger.ONE) == 0) return false; - } - if(y.compareTo(n1) != 0) return false; - } - } - return true; -} - -// protected -BigInteger.prototype.chunkSize = bnpChunkSize; -BigInteger.prototype.toRadix = bnpToRadix; -BigInteger.prototype.fromRadix = bnpFromRadix; -BigInteger.prototype.fromNumber = bnpFromNumber; -BigInteger.prototype.bitwiseTo = bnpBitwiseTo; -BigInteger.prototype.changeBit = bnpChangeBit; -BigInteger.prototype.addTo = bnpAddTo; -BigInteger.prototype.dMultiply = bnpDMultiply; -BigInteger.prototype.dAddOffset = bnpDAddOffset; -BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; -BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; -BigInteger.prototype.modInt = bnpModInt; -BigInteger.prototype.millerRabin = bnpMillerRabin; - -// public -BigInteger.prototype.clone = bnClone; -BigInteger.prototype.intValue = bnIntValue; -BigInteger.prototype.byteValue = bnByteValue; -BigInteger.prototype.shortValue = bnShortValue; -BigInteger.prototype.signum = bnSigNum; -BigInteger.prototype.toByteArray = bnToByteArray; -BigInteger.prototype.equals = bnEquals; -BigInteger.prototype.min = bnMin; -BigInteger.prototype.max = bnMax; -BigInteger.prototype.and = bnAnd; -BigInteger.prototype.or = bnOr; -BigInteger.prototype.xor = bnXor; -BigInteger.prototype.andNot = bnAndNot; -BigInteger.prototype.not = bnNot; -BigInteger.prototype.shiftLeft = bnShiftLeft; -BigInteger.prototype.shiftRight = bnShiftRight; -BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; -BigInteger.prototype.bitCount = bnBitCount; -BigInteger.prototype.testBit = bnTestBit; -BigInteger.prototype.setBit = bnSetBit; -BigInteger.prototype.clearBit = bnClearBit; -BigInteger.prototype.flipBit = bnFlipBit; -BigInteger.prototype.add = bnAdd; -BigInteger.prototype.subtract = bnSubtract; -BigInteger.prototype.multiply = bnMultiply; -BigInteger.prototype.divide = bnDivide; -BigInteger.prototype.remainder = bnRemainder; -BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; -BigInteger.prototype.modPow = bnModPow; -BigInteger.prototype.modInverse = bnModInverse; -BigInteger.prototype.pow = bnPow; -BigInteger.prototype.gcd = bnGCD; -BigInteger.prototype.isProbablePrime = bnIsProbablePrime; - -// BigInteger interfaces not implemented in jsbn: - -// BigInteger(int signum, byte[] magnitude) -// double doubleValue() -// float floatValue() -// int hashCode() -// long longValue() -// static BigInteger valueOf(long val) |