summaryrefslogtreecommitdiff
path: root/srp/jsbn2.js
diff options
context:
space:
mode:
authorAzul <azul@leap.se>2012-07-20 11:18:47 +0200
committerAzul <azul@leap.se>2012-07-20 11:18:47 +0200
commitfcb9e65af31569db33c198217df816971f2f20cd (patch)
tree273f604e9f81280aa0686db74cb4a7dfa65e5c86 /srp/jsbn2.js
parent621c73c593b38a514d573c9128df62d3a17b5ed9 (diff)
moved src to lib and use relative path in require_tree
Diffstat (limited to 'srp/jsbn2.js')
-rw-r--r--srp/jsbn2.js672
1 files changed, 0 insertions, 672 deletions
diff --git a/srp/jsbn2.js b/srp/jsbn2.js
deleted file mode 100644
index b135844..0000000
--- a/srp/jsbn2.js
+++ /dev/null
@@ -1,672 +0,0 @@
-/*
- * Copyright (c) 2003-2005 Tom Wu
- * All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
- * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- *
- * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
- * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
- * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
- * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
- * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- * In addition, the following condition applies:
- *
- * All redistributions must retain an intact copy of this copyright notice
- * and disclaimer.
- */
-
-// Extended JavaScript BN functions, required for RSA private ops.
-
-// (public)
-function bnClone() { var r = nbi(); this.copyTo(r); return r; }
-
-// (public) return value as integer
-function bnIntValue() {
- if(this.s < 0) {
- if(this.t == 1) return this[0]-this.DV;
- else if(this.t == 0) return -1;
- }
- else if(this.t == 1) return this[0];
- else if(this.t == 0) return 0;
- // assumes 16 < DB < 32
- return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
-}
-
-// (public) return value as byte
-function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
-
-// (public) return value as short (assumes DB>=16)
-function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
-
-// (protected) return x s.t. r^x < DV
-function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
-
-// (public) 0 if this == 0, 1 if this > 0
-function bnSigNum() {
- if(this.s < 0) return -1;
- else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
- else return 1;
-}
-
-// (protected) convert to radix string
-function bnpToRadix(b) {
- if(b == null) b = 10;
- if(this.signum() == 0 || b < 2 || b > 36) return "0";
- var cs = this.chunkSize(b);
- var a = Math.pow(b,cs);
- var d = nbv(a), y = nbi(), z = nbi(), r = "";
- this.divRemTo(d,y,z);
- while(y.signum() > 0) {
- r = (a+z.intValue()).toString(b).substr(1) + r;
- y.divRemTo(d,y,z);
- }
- return z.intValue().toString(b) + r;
-}
-
-// (protected) convert from radix string
-function bnpFromRadix(s,b) {
- this.fromInt(0);
- if(b == null) b = 10;
- var cs = this.chunkSize(b);
- var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
- for(var i = 0; i < s.length; ++i) {
- var x = intAt(s,i);
- if(x < 0) {
- if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
- continue;
- }
- w = b*w+x;
- if(++j >= cs) {
- this.dMultiply(d);
- this.dAddOffset(w,0);
- j = 0;
- w = 0;
- }
- }
- if(j > 0) {
- this.dMultiply(Math.pow(b,j));
- this.dAddOffset(w,0);
- }
- if(mi) BigInteger.ZERO.subTo(this,this);
-}
-
-// (protected) alternate constructor
-function bnpFromNumber(a,b,c) {
- if("number" == typeof b) {
- // new BigInteger(int,int,RNG)
- if(a < 2) this.fromInt(1);
- else {
- this.fromNumber(a,c);
- if(!this.testBit(a-1)) // force MSB set
- this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
- if(this.isEven()) this.dAddOffset(1,0); // force odd
- while(!this.isProbablePrime(b)) {
- this.dAddOffset(2,0);
- if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
- }
- }
- }
- else {
- // new BigInteger(int,RNG)
- var x = new Array(), t = a&7;
- x.length = (a>>3)+1;
- b.nextBytes(x);
- if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
- this.fromString(x,256);
- }
-}
-
-// (public) convert to bigendian byte array
-function bnToByteArray() {
- var i = this.t, r = new Array();
- r[0] = this.s;
- var p = this.DB-(i*this.DB)%8, d, k = 0;
- if(i-- > 0) {
- if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
- r[k++] = d|(this.s<<(this.DB-p));
- while(i >= 0) {
- if(p < 8) {
- d = (this[i]&((1<<p)-1))<<(8-p);
- d |= this[--i]>>(p+=this.DB-8);
- }
- else {
- d = (this[i]>>(p-=8))&0xff;
- if(p <= 0) { p += this.DB; --i; }
- }
- if((d&0x80) != 0) d |= -256;
- if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
- if(k > 0 || d != this.s) r[k++] = d;
- }
- }
- return r;
-}
-
-function bnEquals(a) { return(this.compareTo(a)==0); }
-function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
-function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
-
-// (protected) r = this op a (bitwise)
-function bnpBitwiseTo(a,op,r) {
- var i, f, m = Math.min(a.t,this.t);
- for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
- if(a.t < this.t) {
- f = a.s&this.DM;
- for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
- r.t = this.t;
- }
- else {
- f = this.s&this.DM;
- for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
- r.t = a.t;
- }
- r.s = op(this.s,a.s);
- r.clamp();
-}
-
-// (public) this & a
-function op_and(x,y) { return x&y; }
-function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
-
-// (public) this | a
-function op_or(x,y) { return x|y; }
-function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
-
-// (public) this ^ a
-function op_xor(x,y) { return x^y; }
-function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
-
-// (public) this & ~a
-function op_andnot(x,y) { return x&~y; }
-function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
-
-// (public) ~this
-function bnNot() {
- var r = nbi();
- for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
- r.t = this.t;
- r.s = ~this.s;
- return r;
-}
-
-// (public) this << n
-function bnShiftLeft(n) {
- var r = nbi();
- if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
- return r;
-}
-
-// (public) this >> n
-function bnShiftRight(n) {
- var r = nbi();
- if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
- return r;
-}
-
-// return index of lowest 1-bit in x, x < 2^31
-function lbit(x) {
- if(x == 0) return -1;
- var r = 0;
- if((x&0xffff) == 0) { x >>= 16; r += 16; }
- if((x&0xff) == 0) { x >>= 8; r += 8; }
- if((x&0xf) == 0) { x >>= 4; r += 4; }
- if((x&3) == 0) { x >>= 2; r += 2; }
- if((x&1) == 0) ++r;
- return r;
-}
-
-// (public) returns index of lowest 1-bit (or -1 if none)
-function bnGetLowestSetBit() {
- for(var i = 0; i < this.t; ++i)
- if(this[i] != 0) return i*this.DB+lbit(this[i]);
- if(this.s < 0) return this.t*this.DB;
- return -1;
-}
-
-// return number of 1 bits in x
-function cbit(x) {
- var r = 0;
- while(x != 0) { x &= x-1; ++r; }
- return r;
-}
-
-// (public) return number of set bits
-function bnBitCount() {
- var r = 0, x = this.s&this.DM;
- for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
- return r;
-}
-
-// (public) true iff nth bit is set
-function bnTestBit(n) {
- var j = Math.floor(n/this.DB);
- if(j >= this.t) return(this.s!=0);
- return((this[j]&(1<<(n%this.DB)))!=0);
-}
-
-// (protected) this op (1<<n)
-function bnpChangeBit(n,op) {
- var r = BigInteger.ONE.shiftLeft(n);
- this.bitwiseTo(r,op,r);
- return r;
-}
-
-// (public) this | (1<<n)
-function bnSetBit(n) { return this.changeBit(n,op_or); }
-
-// (public) this & ~(1<<n)
-function bnClearBit(n) { return this.changeBit(n,op_andnot); }
-
-// (public) this ^ (1<<n)
-function bnFlipBit(n) { return this.changeBit(n,op_xor); }
-
-// (protected) r = this + a
-function bnpAddTo(a,r) {
- var i = 0, c = 0, m = Math.min(a.t,this.t);
- while(i < m) {
- c += this[i]+a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- if(a.t < this.t) {
- c += a.s;
- while(i < this.t) {
- c += this[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while(i < a.t) {
- c += a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c += a.s;
- }
- r.s = (c<0)?-1:0;
- if(c > 0) r[i++] = c;
- else if(c < -1) r[i++] = this.DV+c;
- r.t = i;
- r.clamp();
-}
-
-// (public) this + a
-function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
-
-// (public) this - a
-function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
-
-// (public) this * a
-function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
-
-// (public) this / a
-function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
-
-// (public) this % a
-function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
-
-// (public) [this/a,this%a]
-function bnDivideAndRemainder(a) {
- var q = nbi(), r = nbi();
- this.divRemTo(a,q,r);
- return new Array(q,r);
-}
-
-// (protected) this *= n, this >= 0, 1 < n < DV
-function bnpDMultiply(n) {
- this[this.t] = this.am(0,n-1,this,0,0,this.t);
- ++this.t;
- this.clamp();
-}
-
-// (protected) this += n << w words, this >= 0
-function bnpDAddOffset(n,w) {
- while(this.t <= w) this[this.t++] = 0;
- this[w] += n;
- while(this[w] >= this.DV) {
- this[w] -= this.DV;
- if(++w >= this.t) this[this.t++] = 0;
- ++this[w];
- }
-}
-
-// A "null" reducer
-function NullExp() {}
-function nNop(x) { return x; }
-function nMulTo(x,y,r) { x.multiplyTo(y,r); }
-function nSqrTo(x,r) { x.squareTo(r); }
-
-NullExp.prototype.convert = nNop;
-NullExp.prototype.revert = nNop;
-NullExp.prototype.mulTo = nMulTo;
-NullExp.prototype.sqrTo = nSqrTo;
-
-// (public) this^e
-function bnPow(e) { return this.exp(e,new NullExp()); }
-
-// (protected) r = lower n words of "this * a", a.t <= n
-// "this" should be the larger one if appropriate.
-function bnpMultiplyLowerTo(a,n,r) {
- var i = Math.min(this.t+a.t,n);
- r.s = 0; // assumes a,this >= 0
- r.t = i;
- while(i > 0) r[--i] = 0;
- var j;
- for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
- for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
- r.clamp();
-}
-
-// (protected) r = "this * a" without lower n words, n > 0
-// "this" should be the larger one if appropriate.
-function bnpMultiplyUpperTo(a,n,r) {
- --n;
- var i = r.t = this.t+a.t-n;
- r.s = 0; // assumes a,this >= 0
- while(--i >= 0) r[i] = 0;
- for(i = Math.max(n-this.t,0); i < a.t; ++i)
- r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
- r.clamp();
- r.drShiftTo(1,r);
-}
-
-// Barrett modular reduction
-function Barrett(m) {
- // setup Barrett
- this.r2 = nbi();
- this.q3 = nbi();
- BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
- this.mu = this.r2.divide(m);
- this.m = m;
-}
-
-function barrettConvert(x) {
- if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
- else if(x.compareTo(this.m) < 0) return x;
- else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
-}
-
-function barrettRevert(x) { return x; }
-
-// x = x mod m (HAC 14.42)
-function barrettReduce(x) {
- x.drShiftTo(this.m.t-1,this.r2);
- if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
- this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
- this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
- while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
- x.subTo(this.r2,x);
- while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
-}
-
-// r = x^2 mod m; x != r
-function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
-
-// r = x*y mod m; x,y != r
-function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
-
-Barrett.prototype.convert = barrettConvert;
-Barrett.prototype.revert = barrettRevert;
-Barrett.prototype.reduce = barrettReduce;
-Barrett.prototype.mulTo = barrettMulTo;
-Barrett.prototype.sqrTo = barrettSqrTo;
-
-// (public) this^e % m (HAC 14.85)
-function bnModPow(e,m) {
- var i = e.bitLength(), k, r = nbv(1), z;
- if(i <= 0) return r;
- else if(i < 18) k = 1;
- else if(i < 48) k = 3;
- else if(i < 144) k = 4;
- else if(i < 768) k = 5;
- else k = 6;
- if(i < 8)
- z = new Classic(m);
- else if(m.isEven())
- z = new Barrett(m);
- else
- z = new Montgomery(m);
-
- // precomputation
- var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
- g[1] = z.convert(this);
- if(k > 1) {
- var g2 = nbi();
- z.sqrTo(g[1],g2);
- while(n <= km) {
- g[n] = nbi();
- z.mulTo(g2,g[n-2],g[n]);
- n += 2;
- }
- }
-
- var j = e.t-1, w, is1 = true, r2 = nbi(), t;
- i = nbits(e[j])-1;
- while(j >= 0) {
- if(i >= k1) w = (e[j]>>(i-k1))&km;
- else {
- w = (e[j]&((1<<(i+1))-1))<<(k1-i);
- if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
- }
-
- n = k;
- while((w&1) == 0) { w >>= 1; --n; }
- if((i -= n) < 0) { i += this.DB; --j; }
- if(is1) { // ret == 1, don't bother squaring or multiplying it
- g[w].copyTo(r);
- is1 = false;
- }
- else {
- while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
- if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
- z.mulTo(r2,g[w],r);
- }
-
- while(j >= 0 && (e[j]&(1<<i)) == 0) {
- z.sqrTo(r,r2); t = r; r = r2; r2 = t;
- if(--i < 0) { i = this.DB-1; --j; }
- }
- }
- return z.revert(r);
-}
-
-// (public) gcd(this,a) (HAC 14.54)
-function bnGCD(a) {
- var x = (this.s<0)?this.negate():this.clone();
- var y = (a.s<0)?a.negate():a.clone();
- if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
- var i = x.getLowestSetBit(), g = y.getLowestSetBit();
- if(g < 0) return x;
- if(i < g) g = i;
- if(g > 0) {
- x.rShiftTo(g,x);
- y.rShiftTo(g,y);
- }
- while(x.signum() > 0) {
- if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
- if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
- if(x.compareTo(y) >= 0) {
- x.subTo(y,x);
- x.rShiftTo(1,x);
- }
- else {
- y.subTo(x,y);
- y.rShiftTo(1,y);
- }
- }
- if(g > 0) y.lShiftTo(g,y);
- return y;
-}
-
-// (protected) this % n, n < 2^26
-function bnpModInt(n) {
- if(n <= 0) return 0;
- var d = this.DV%n, r = (this.s<0)?n-1:0;
- if(this.t > 0)
- if(d == 0) r = this[0]%n;
- else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
- return r;
-}
-
-// (public) 1/this % m (HAC 14.61)
-function bnModInverse(m) {
- var ac = m.isEven();
- if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
- var u = m.clone(), v = this.clone();
- var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
- while(u.signum() != 0) {
- while(u.isEven()) {
- u.rShiftTo(1,u);
- if(ac) {
- if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
- a.rShiftTo(1,a);
- }
- else if(!b.isEven()) b.subTo(m,b);
- b.rShiftTo(1,b);
- }
- while(v.isEven()) {
- v.rShiftTo(1,v);
- if(ac) {
- if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
- c.rShiftTo(1,c);
- }
- else if(!d.isEven()) d.subTo(m,d);
- d.rShiftTo(1,d);
- }
- if(u.compareTo(v) >= 0) {
- u.subTo(v,u);
- if(ac) a.subTo(c,a);
- b.subTo(d,b);
- }
- else {
- v.subTo(u,v);
- if(ac) c.subTo(a,c);
- d.subTo(b,d);
- }
- }
- if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
- if(d.compareTo(m) >= 0) return d.subtract(m);
- if(d.signum() < 0) d.addTo(m,d); else return d;
- if(d.signum() < 0) return d.add(m); else return d;
-}
-
-var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
-var lplim = (1<<26)/lowprimes[lowprimes.length-1];
-
-// (public) test primality with certainty >= 1-.5^t
-function bnIsProbablePrime(t) {
- var i, x = this.abs();
- if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
- for(i = 0; i < lowprimes.length; ++i)
- if(x[0] == lowprimes[i]) return true;
- return false;
- }
- if(x.isEven()) return false;
- i = 1;
- while(i < lowprimes.length) {
- var m = lowprimes[i], j = i+1;
- while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
- m = x.modInt(m);
- while(i < j) if(m%lowprimes[i++] == 0) return false;
- }
- return x.millerRabin(t);
-}
-
-// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
-function bnpMillerRabin(t) {
- var n1 = this.subtract(BigInteger.ONE);
- var k = n1.getLowestSetBit();
- if(k <= 0) return false;
- var r = n1.shiftRight(k);
- t = (t+1)>>1;
- if(t > lowprimes.length) t = lowprimes.length;
- var a = nbi();
- for(var i = 0; i < t; ++i) {
- a.fromInt(lowprimes[i]);
- var y = a.modPow(r,this);
- if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
- var j = 1;
- while(j++ < k && y.compareTo(n1) != 0) {
- y = y.modPowInt(2,this);
- if(y.compareTo(BigInteger.ONE) == 0) return false;
- }
- if(y.compareTo(n1) != 0) return false;
- }
- }
- return true;
-}
-
-// protected
-BigInteger.prototype.chunkSize = bnpChunkSize;
-BigInteger.prototype.toRadix = bnpToRadix;
-BigInteger.prototype.fromRadix = bnpFromRadix;
-BigInteger.prototype.fromNumber = bnpFromNumber;
-BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
-BigInteger.prototype.changeBit = bnpChangeBit;
-BigInteger.prototype.addTo = bnpAddTo;
-BigInteger.prototype.dMultiply = bnpDMultiply;
-BigInteger.prototype.dAddOffset = bnpDAddOffset;
-BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
-BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
-BigInteger.prototype.modInt = bnpModInt;
-BigInteger.prototype.millerRabin = bnpMillerRabin;
-
-// public
-BigInteger.prototype.clone = bnClone;
-BigInteger.prototype.intValue = bnIntValue;
-BigInteger.prototype.byteValue = bnByteValue;
-BigInteger.prototype.shortValue = bnShortValue;
-BigInteger.prototype.signum = bnSigNum;
-BigInteger.prototype.toByteArray = bnToByteArray;
-BigInteger.prototype.equals = bnEquals;
-BigInteger.prototype.min = bnMin;
-BigInteger.prototype.max = bnMax;
-BigInteger.prototype.and = bnAnd;
-BigInteger.prototype.or = bnOr;
-BigInteger.prototype.xor = bnXor;
-BigInteger.prototype.andNot = bnAndNot;
-BigInteger.prototype.not = bnNot;
-BigInteger.prototype.shiftLeft = bnShiftLeft;
-BigInteger.prototype.shiftRight = bnShiftRight;
-BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
-BigInteger.prototype.bitCount = bnBitCount;
-BigInteger.prototype.testBit = bnTestBit;
-BigInteger.prototype.setBit = bnSetBit;
-BigInteger.prototype.clearBit = bnClearBit;
-BigInteger.prototype.flipBit = bnFlipBit;
-BigInteger.prototype.add = bnAdd;
-BigInteger.prototype.subtract = bnSubtract;
-BigInteger.prototype.multiply = bnMultiply;
-BigInteger.prototype.divide = bnDivide;
-BigInteger.prototype.remainder = bnRemainder;
-BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
-BigInteger.prototype.modPow = bnModPow;
-BigInteger.prototype.modInverse = bnModInverse;
-BigInteger.prototype.pow = bnPow;
-BigInteger.prototype.gcd = bnGCD;
-BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
-
-// BigInteger interfaces not implemented in jsbn:
-
-// BigInteger(int signum, byte[] magnitude)
-// double doubleValue()
-// float floatValue()
-// int hashCode()
-// long longValue()
-// static BigInteger valueOf(long val)