summaryrefslogtreecommitdiff
path: root/src/crypto_impl.c
blob: f35144d8c0a8aac6892c2077b43258e51b1813a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
/* 
** SQLCipher
** crypto_impl.c developed by Stephen Lombardo (Zetetic LLC) 
** sjlombardo at zetetic dot net
** http://zetetic.net
** 
** Copyright (c) 2011, ZETETIC LLC
** All rights reserved.
** 
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
**     * Redistributions of source code must retain the above copyright
**       notice, this list of conditions and the following disclaimer.
**     * Redistributions in binary form must reproduce the above copyright
**       notice, this list of conditions and the following disclaimer in the
**       documentation and/or other materials provided with the distribution.
**     * Neither the name of the ZETETIC LLC nor the
**       names of its contributors may be used to endorse or promote products
**       derived from this software without specific prior written permission.
** 
** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**  
*/
/* BEGIN CRYPTO */
#ifdef SQLITE_HAS_CODEC

#include <openssl/rand.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include "sqliteInt.h"
#include "btreeInt.h"
#include "crypto.h"
#ifndef OMIT_MEMLOCK
#if defined(__unix__) || defined(__APPLE__) 
#include <sys/mman.h>
#elif defined(_WIN32)
# include <windows.h>
#endif
#endif

/* the default implementation of SQLCipher uses a cipher_ctx
   to keep track of read / write state separately. The following
   struct and associated functions are defined here */
typedef struct {
  int derive_key;
  EVP_CIPHER *evp_cipher;
  EVP_CIPHER_CTX ectx;
  HMAC_CTX hctx;
  int kdf_iter;
  int fast_kdf_iter;
  int key_sz;
  int iv_sz;
  int block_sz;
  int pass_sz;
  int reserve_sz;
  int hmac_sz;
  unsigned int flags;
  unsigned char *key;
  unsigned char *hmac_key;
  char *pass;
} cipher_ctx;

void sqlcipher_cipher_ctx_free(cipher_ctx **);
int sqlcipher_cipher_ctx_cmp(cipher_ctx *, cipher_ctx *);
int sqlcipher_cipher_ctx_copy(cipher_ctx *, cipher_ctx *);
int sqlcipher_cipher_ctx_init(cipher_ctx **);
int sqlcipher_cipher_ctx_set_pass(cipher_ctx *, const void *, int);
int sqlcipher_cipher_ctx_key_derive(codec_ctx *, cipher_ctx *);

/* prototype for pager HMAC function */
int sqlcipher_page_hmac(cipher_ctx *, Pgno, unsigned char *, int, unsigned char *);

static unsigned int default_flags = DEFAULT_CIPHER_FLAGS;
static unsigned char hmac_salt_mask = HMAC_SALT_MASK;

static unsigned int openssl_external_init = 0;
static unsigned int openssl_init_count = 0;

struct codec_ctx {
  int kdf_salt_sz;
  int page_sz;
  unsigned char *kdf_salt;
  unsigned char *hmac_kdf_salt;
  unsigned char *buffer;
  Btree *pBt;
  cipher_ctx *read_ctx;
  cipher_ctx *write_ctx;
};

/* activate and initialize sqlcipher. Most importantly, this will automatically
   intialize OpenSSL's EVP system if it hasn't already be externally. Note that 
   this function may be called multiple times as new codecs are intiialized. 
   Thus it performs some basic counting to ensure that only the last and final
   sqlcipher_deactivate() will free the EVP structures. 
*/
void sqlcipher_activate() {
  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));

  /* we'll initialize openssl and increment the internal init counter
     but only if it hasn't been initalized outside of SQLCipher by this program 
     e.g. on startup */
  if(openssl_init_count == 0 && EVP_get_cipherbyname(CIPHER) != NULL) {
    openssl_external_init = 1;
  }

  if(openssl_external_init == 0) {
    if(openssl_init_count == 0)  {
      OpenSSL_add_all_algorithms();
    }
    openssl_init_count++; 
  } 
  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}

/* deactivate SQLCipher, most imporantly decremeting the activation count and
   freeing the EVP structures on the final deactivation to ensure that 
   OpenSSL memory is cleaned up */
void sqlcipher_deactivate() {
  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
  /* If it is initialized externally, then the init counter should never be greater than zero.
     This should prevent SQLCipher from "cleaning up" openssl 
     when something else in the program might be using it. */
  if(openssl_external_init == 0) {
    openssl_init_count--;
    /* if the counter reaches zero after it's decremented release EVP memory
       Note: this code will only be reached if OpensSSL_add_all_algorithms()
       is called by SQLCipher internally. */
    if(openssl_init_count == 0) {
      EVP_cleanup();
    }
  }
  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}

/* constant time memset using volitile to avoid having the memset
   optimized out by the compiler. 
   Note: As suggested by Joachim Schipper (joachim.schipper@fox-it.com)
*/
void* sqlcipher_memset(void *v, unsigned char value, int len) {
  int i = 0;
  volatile unsigned char *a = v;

  if (v == NULL) return v;

  for(i = 0; i < len; i++) {
    a[i] = value;
  }

  return v;
}

/* constant time memory check tests every position of a memory segement
   matches a single value (i.e. the memory is all zeros)
   returns 0 if match, 1 of no match */
int sqlcipher_ismemset(const void *v, unsigned char value, int len) {
  const unsigned char *a = v;
  int i = 0, result = 0;

  for(i = 0; i < len; i++) {
    result |= a[i] ^ value;
  }

  return (result != 0);
}

/* constant time memory comparison routine. 
   returns 0 if match, 1 if no match */
int sqlcipher_memcmp(const void *v0, const void *v1, int len) {
  const unsigned char *a0 = v0, *a1 = v1;
  int i = 0, result = 0;

  for(i = 0; i < len; i++) {
    result |= a0[i] ^ a1[i];
  }
  
  return (result != 0);
}

/* generate a defined number of pseudorandom bytes */
int sqlcipher_random (void *buffer, int length) {
  return RAND_bytes((unsigned char *)buffer, length);
}

/**
  * Free and wipe memory. Uses SQLites internal sqlite3_free so that memory
  * can be countend and memory leak detection works in the test suite. 
  * If ptr is not null memory will be freed. 
  * If sz is greater than zero, the memory will be overwritten with zero before it is freed
  * If sz is > 0, and not compiled with OMIT_MEMLOCK, system will attempt to unlock the
  * memory segment so it can be paged
  */
void sqlcipher_free(void *ptr, int sz) {
  if(ptr) {
    if(sz > 0) {
      sqlcipher_memset(ptr, 0, sz);
#ifndef OMIT_MEMLOCK
#if defined(__unix__) || defined(__APPLE__) 
      munlock(ptr, sz);
#elif defined(_WIN32)
      VirtualUnlock(ptr, sz);
#endif
#endif
    }
    sqlite3_free(ptr);
  }
}

/**
  * allocate memory. Uses sqlite's internall malloc wrapper so memory can be 
  * reference counted and leak detection works. Unless compiled with OMIT_MEMLOCK
  * attempts to lock the memory pages so sensitive information won't be swapped
  */
void* sqlcipher_malloc(int sz) {
  void *ptr = sqlite3Malloc(sz);
  sqlcipher_memset(ptr, 0, sz);
#ifndef OMIT_MEMLOCK
  if(ptr) {
#if defined(__unix__) || defined(__APPLE__) 
    mlock(ptr, sz);
#elif defined(_WIN32)
    VirtualLock(ptr, sz);
#endif
  }
#endif
  return ptr;
}


/**
  * Initialize new cipher_ctx struct. This function will allocate memory
  * for the cipher context and for the key
  * 
  * returns SQLITE_OK if initialization was successful
  * returns SQLITE_NOMEM if an error occured allocating memory
  */
int sqlcipher_cipher_ctx_init(cipher_ctx **iCtx) {
  cipher_ctx *ctx;
  *iCtx = (cipher_ctx *) sqlcipher_malloc(sizeof(cipher_ctx));
  ctx = *iCtx;
  if(ctx == NULL) return SQLITE_NOMEM;

  ctx->key = (unsigned char *) sqlcipher_malloc(EVP_MAX_KEY_LENGTH);
  ctx->hmac_key = (unsigned char *) sqlcipher_malloc(EVP_MAX_KEY_LENGTH);
  if(ctx->key == NULL) return SQLITE_NOMEM;
  if(ctx->hmac_key == NULL) return SQLITE_NOMEM;

  /* setup default flags */
  ctx->flags = default_flags;

  return SQLITE_OK;
}

/**
  * Free and wipe memory associated with a cipher_ctx
  */
void sqlcipher_cipher_ctx_free(cipher_ctx **iCtx) {
  cipher_ctx *ctx = *iCtx;
  CODEC_TRACE(("cipher_ctx_free: entered iCtx=%p\n", iCtx));
  sqlcipher_free(ctx->key, ctx->key_sz);
  sqlcipher_free(ctx->hmac_key, ctx->key_sz);
  sqlcipher_free(ctx->pass, ctx->pass_sz);
  sqlcipher_free(ctx, sizeof(cipher_ctx)); 
}

/**
  * Compare one cipher_ctx to another.
  *
  * returns 0 if all the parameters (except the derived key data) are the same
  * returns 1 otherwise
  */
int sqlcipher_cipher_ctx_cmp(cipher_ctx *c1, cipher_ctx *c2) {
  CODEC_TRACE(("sqlcipher_cipher_ctx_cmp: entered c1=%p c2=%p\n", c1, c2));

  if(
    c1->evp_cipher == c2->evp_cipher
    && c1->iv_sz == c2->iv_sz
    && c1->kdf_iter == c2->kdf_iter
    && c1->fast_kdf_iter == c2->fast_kdf_iter
    && c1->key_sz == c2->key_sz
    && c1->pass_sz == c2->pass_sz
    && c1->flags == c2->flags
    && c1->hmac_sz == c2->hmac_sz
    && (
      c1->pass == c2->pass
      || !sqlcipher_memcmp((const unsigned char*)c1->pass,
                           (const unsigned char*)c2->pass,
                           c1->pass_sz)
    ) 
  ) return 0;
  return 1;
}

/**
  * Copy one cipher_ctx to another. For instance, assuming that read_ctx is a 
  * fully initialized context, you could copy it to write_ctx and all yet data
  * and pass information across
  *
  * returns SQLITE_OK if initialization was successful
  * returns SQLITE_NOMEM if an error occured allocating memory
  */
int sqlcipher_cipher_ctx_copy(cipher_ctx *target, cipher_ctx *source) {
  void *key = target->key; 
  void *hmac_key = target->hmac_key; 

  CODEC_TRACE(("sqlcipher_cipher_ctx_copy: entered target=%p, source=%p\n", target, source));
  sqlcipher_free(target->pass, target->pass_sz); 
  memcpy(target, source, sizeof(cipher_ctx));
  
  target->key = key; //restore pointer to previously allocated key data
  memcpy(target->key, source->key, EVP_MAX_KEY_LENGTH);

  target->hmac_key = hmac_key; //restore pointer to previously allocated hmac key data
  memcpy(target->hmac_key, source->hmac_key, EVP_MAX_KEY_LENGTH);

  target->pass = sqlcipher_malloc(source->pass_sz);
  if(target->pass == NULL) return SQLITE_NOMEM;
  memcpy(target->pass, source->pass, source->pass_sz);

  return SQLITE_OK;
}


/**
  * Set the raw password / key data for a cipher context
  * 
  * returns SQLITE_OK if assignment was successfull
  * returns SQLITE_NOMEM if an error occured allocating memory
  * returns SQLITE_ERROR if the key couldn't be set because the pass was null or size was zero
  */
int sqlcipher_cipher_ctx_set_pass(cipher_ctx *ctx, const void *zKey, int nKey) {
  sqlcipher_free(ctx->pass, ctx->pass_sz);
  ctx->pass_sz = nKey;
  if(zKey && nKey) {
    ctx->pass = sqlcipher_malloc(nKey);
    if(ctx->pass == NULL) return SQLITE_NOMEM;
    memcpy(ctx->pass, zKey, nKey);
    return SQLITE_OK;
  }
  return SQLITE_ERROR;
}

int sqlcipher_codec_ctx_set_pass(codec_ctx *ctx, const void *zKey, int nKey, int for_ctx) {
  cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
  int rc;

  if((rc = sqlcipher_cipher_ctx_set_pass(c_ctx, zKey, nKey)) != SQLITE_OK) return rc; 
  c_ctx->derive_key = 1;

  if(for_ctx == 2)
    if((rc = sqlcipher_cipher_ctx_copy( for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK) 
      return rc; 

  return SQLITE_OK;
} 

int sqlcipher_codec_ctx_set_cipher(codec_ctx *ctx, const char *cipher_name, int for_ctx) {
  cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
  int rc;

  c_ctx->evp_cipher = (EVP_CIPHER *) EVP_get_cipherbyname(cipher_name);
  c_ctx->key_sz = EVP_CIPHER_key_length(c_ctx->evp_cipher);
  c_ctx->iv_sz = EVP_CIPHER_iv_length(c_ctx->evp_cipher);
  c_ctx->block_sz = EVP_CIPHER_block_size(c_ctx->evp_cipher);
  c_ctx->hmac_sz = EVP_MD_size(EVP_sha1());
  c_ctx->derive_key = 1;

  if(for_ctx == 2)
    if((rc = sqlcipher_cipher_ctx_copy( for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK)
      return rc; 

  return SQLITE_OK;
}

const char* sqlcipher_codec_ctx_get_cipher(codec_ctx *ctx, int for_ctx) {
  cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
  EVP_CIPHER *evp_cipher = c_ctx->evp_cipher;
  return EVP_CIPHER_name(evp_cipher);
}

int sqlcipher_codec_ctx_set_kdf_iter(codec_ctx *ctx, int kdf_iter, int for_ctx) {
  cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
  int rc;

  c_ctx->kdf_iter = kdf_iter;
  c_ctx->derive_key = 1;

  if(for_ctx == 2)
    if((rc = sqlcipher_cipher_ctx_copy( for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK)
      return rc; 

  return SQLITE_OK;
}

int sqlcipher_codec_ctx_get_kdf_iter(codec_ctx *ctx, int for_ctx) {
  cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
  return c_ctx->kdf_iter;
}

int sqlcipher_codec_ctx_set_fast_kdf_iter(codec_ctx *ctx, int fast_kdf_iter, int for_ctx) {
  cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
  int rc;

  c_ctx->fast_kdf_iter = fast_kdf_iter;
  c_ctx->derive_key = 1;

  if(for_ctx == 2)
    if((rc = sqlcipher_cipher_ctx_copy( for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK)
      return rc; 

  return SQLITE_OK;
}

int sqlcipher_codec_ctx_get_fast_kdf_iter(codec_ctx *ctx, int for_ctx) {
  cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
  return c_ctx->fast_kdf_iter;
}

/* set the global default flag for HMAC */
void sqlcipher_set_default_use_hmac(int use) {
  if(use) default_flags |= CIPHER_FLAG_HMAC; 
  else default_flags &= ~CIPHER_FLAG_HMAC; 
}

int sqlcipher_get_default_use_hmac() {
  return (default_flags & CIPHER_FLAG_HMAC) != 0;
}

void sqlcipher_set_hmac_salt_mask(unsigned char mask) {
  hmac_salt_mask = mask;
}

unsigned char sqlcipher_get_hmac_salt_mask() {
  return hmac_salt_mask;
}

/* set the codec flag for whether this individual database should be using hmac */
int sqlcipher_codec_ctx_set_use_hmac(codec_ctx *ctx, int use) {
  int reserve = EVP_MAX_IV_LENGTH; /* base reserve size will be IV only */ 

  if(use) reserve += ctx->read_ctx->hmac_sz; /* if reserve will include hmac, update that size */

  /* calculate the amount of reserve needed in even increments of the cipher block size */

  reserve = ((reserve % ctx->read_ctx->block_sz) == 0) ? reserve :
               ((reserve / ctx->read_ctx->block_sz) + 1) * ctx->read_ctx->block_sz;  

  CODEC_TRACE(("sqlcipher_codec_ctx_set_use_hmac: use=%d block_sz=%d md_size=%d reserve=%d\n", 
                use, ctx->read_ctx->block_sz, ctx->read_ctx->hmac_sz, reserve)); 

  
  if(use) {
    sqlcipher_codec_ctx_set_flag(ctx, CIPHER_FLAG_HMAC);
  } else {
    sqlcipher_codec_ctx_unset_flag(ctx, CIPHER_FLAG_HMAC);
  } 
  
  ctx->write_ctx->reserve_sz = ctx->read_ctx->reserve_sz = reserve;

  return SQLITE_OK;
}

int sqlcipher_codec_ctx_get_use_hmac(codec_ctx *ctx, int for_ctx) {
  cipher_ctx * c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
  return (c_ctx->flags & CIPHER_FLAG_HMAC) != 0;
}

int sqlcipher_codec_ctx_set_flag(codec_ctx *ctx, unsigned int flag) {
  ctx->write_ctx->flags |= flag;
  ctx->read_ctx->flags |= flag;
  return SQLITE_OK;
}

int sqlcipher_codec_ctx_unset_flag(codec_ctx *ctx, unsigned int flag) {
  ctx->write_ctx->flags &= ~flag;
  ctx->read_ctx->flags &= ~flag;
  return SQLITE_OK;
}

int sqlcipher_codec_ctx_get_flag(codec_ctx *ctx, unsigned int flag, int for_ctx) {
  cipher_ctx * c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
  return (c_ctx->flags & flag) != 0;
}

void sqlcipher_codec_ctx_set_error(codec_ctx *ctx, int error) {
  CODEC_TRACE(("sqlcipher_codec_ctx_set_error: ctx=%p, error=%d\n", ctx, error));
  sqlite3pager_sqlite3PagerSetError(ctx->pBt->pBt->pPager, error);
  ctx->pBt->pBt->db->errCode = error;
}

int sqlcipher_codec_ctx_get_reservesize(codec_ctx *ctx) {
  return ctx->read_ctx->reserve_sz;
}

void* sqlcipher_codec_ctx_get_data(codec_ctx *ctx) {
  return ctx->buffer;
}

void* sqlcipher_codec_ctx_get_kdf_salt(codec_ctx *ctx) {
  return ctx->kdf_salt;
}

void sqlcipher_codec_get_pass(codec_ctx *ctx, void **zKey, int *nKey) {
  *zKey = ctx->read_ctx->pass;
  *nKey = ctx->read_ctx->pass_sz;
}

int sqlcipher_codec_ctx_set_pagesize(codec_ctx *ctx, int size) {
  /* attempt to free the existing page buffer */
  sqlcipher_free(ctx->buffer,ctx->page_sz);
  ctx->page_sz = size;

  /* pre-allocate a page buffer of PageSize bytes. This will
     be used as a persistent buffer for encryption and decryption 
     operations to avoid overhead of multiple memory allocations*/
  ctx->buffer = sqlcipher_malloc(size);
  if(ctx->buffer == NULL) return SQLITE_NOMEM;

  return SQLITE_OK;
}

int sqlcipher_codec_ctx_get_pagesize(codec_ctx *ctx) {
  return ctx->page_sz;
}

int sqlcipher_codec_ctx_init(codec_ctx **iCtx, Db *pDb, Pager *pPager, sqlite3_file *fd, const void *zKey, int nKey) {
  int rc;
  codec_ctx *ctx;
  *iCtx = sqlcipher_malloc(sizeof(codec_ctx));
  ctx = *iCtx;

  if(ctx == NULL) return SQLITE_NOMEM;

  ctx->pBt = pDb->pBt; /* assign pointer to database btree structure */

  /* allocate space for salt data. Then read the first 16 bytes 
       directly off the database file. This is the salt for the
       key derivation function. If we get a short read allocate
       a new random salt value */
  ctx->kdf_salt_sz = FILE_HEADER_SZ;
  ctx->kdf_salt = sqlcipher_malloc(ctx->kdf_salt_sz);
  if(ctx->kdf_salt == NULL) return SQLITE_NOMEM;

  /* allocate space for separate hmac salt data. We want the
     HMAC derivation salt to be different than the encryption
     key derivation salt */
  ctx->hmac_kdf_salt = sqlcipher_malloc(ctx->kdf_salt_sz);
  if(ctx->hmac_kdf_salt == NULL) return SQLITE_NOMEM;


  /*
     Always overwrite page size and set to the default because the first page of the database
     in encrypted and thus sqlite can't effectively determine the pagesize. this causes an issue in 
     cases where bytes 16 & 17 of the page header are a power of 2 as reported by John Lehman
  */
  if((rc = sqlcipher_codec_ctx_set_pagesize(ctx, SQLITE_DEFAULT_PAGE_SIZE)) != SQLITE_OK) return rc;

  if((rc = sqlcipher_cipher_ctx_init(&ctx->read_ctx)) != SQLITE_OK) return rc; 
  if((rc = sqlcipher_cipher_ctx_init(&ctx->write_ctx)) != SQLITE_OK) return rc; 

  if(fd == NULL || sqlite3OsRead(fd, ctx->kdf_salt, FILE_HEADER_SZ, 0) != SQLITE_OK) {
    /* if unable to read the bytes, generate random salt */
    if(sqlcipher_random(ctx->kdf_salt, FILE_HEADER_SZ) != 1) return SQLITE_ERROR;
  }

  if((rc = sqlcipher_codec_ctx_set_cipher(ctx, CIPHER, 0)) != SQLITE_OK) return rc;
  if((rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, PBKDF2_ITER, 0)) != SQLITE_OK) return rc;
  if((rc = sqlcipher_codec_ctx_set_fast_kdf_iter(ctx, FAST_PBKDF2_ITER, 0)) != SQLITE_OK) return rc;
  if((rc = sqlcipher_codec_ctx_set_pass(ctx, zKey, nKey, 0)) != SQLITE_OK) return rc;

  /* Note that use_hmac is a special case that requires recalculation of page size
     so we call set_use_hmac to perform setup */
  if((rc = sqlcipher_codec_ctx_set_use_hmac(ctx, default_flags & CIPHER_FLAG_HMAC)) != SQLITE_OK) return rc;

  if((rc = sqlcipher_cipher_ctx_copy(ctx->write_ctx, ctx->read_ctx)) != SQLITE_OK) return rc;

  return SQLITE_OK;
}

/**
  * Free and wipe memory associated with a cipher_ctx, including the allocated
  * read_ctx and write_ctx.
  */
void sqlcipher_codec_ctx_free(codec_ctx **iCtx) {
  codec_ctx *ctx = *iCtx;
  CODEC_TRACE(("codec_ctx_free: entered iCtx=%p\n", iCtx));
  sqlcipher_free(ctx->kdf_salt, ctx->kdf_salt_sz);
  sqlcipher_free(ctx->hmac_kdf_salt, ctx->kdf_salt_sz);
  sqlcipher_free(ctx->buffer, 0);
  sqlcipher_cipher_ctx_free(&ctx->read_ctx);
  sqlcipher_cipher_ctx_free(&ctx->write_ctx);
  sqlcipher_free(ctx, sizeof(codec_ctx)); 
}

/** convert a 32bit unsigned integer to little endian byte ordering */
static void sqlcipher_put4byte_le(unsigned char *p, u32 v) { 
  p[0] = (u8)v;
  p[1] = (u8)(v>>8);
  p[2] = (u8)(v>>16);
  p[3] = (u8)(v>>24);
}

int sqlcipher_page_hmac(cipher_ctx *ctx, Pgno pgno, unsigned char *in, int in_sz, unsigned char *out) {
  unsigned char pgno_raw[sizeof(pgno)];
  /* we may convert page number to consistent representation before calculating MAC for
     compatibility across big-endian and little-endian platforms. 

     Note: The public release of sqlcipher 2.0.0 to 2.0.6 had a bug where the bytes of pgno 
     were used directly in the MAC. SQLCipher convert's to little endian by default to preserve
     backwards compatibility on the most popular platforms, but can optionally be configured
     to use either big endian or native byte ordering via pragma. */

  if(ctx->flags & CIPHER_FLAG_LE_PGNO) { /* compute hmac using little endian pgno*/
    sqlcipher_put4byte_le(pgno_raw, pgno);
  } else if(ctx->flags & CIPHER_FLAG_BE_PGNO) { /* compute hmac using big endian pgno */
    sqlite3Put4byte(pgno_raw, pgno); /* sqlite3Put4byte converts 32bit uint to big endian  */
  } else { /* use native byte ordering */
    memcpy(pgno_raw, &pgno, sizeof(pgno));
  }

  HMAC_CTX_init(&ctx->hctx);
  HMAC_Init_ex(&ctx->hctx, ctx->hmac_key, ctx->key_sz, EVP_sha1(), NULL);

  /* include the encrypted page data,  initialization vector, and page number in HMAC. This will 
     prevent both tampering with the ciphertext, manipulation of the IV, or resequencing otherwise
     valid pages out of order in a database */ 
  HMAC_Update(&ctx->hctx, in, in_sz);
  HMAC_Update(&ctx->hctx, (const unsigned char*) pgno_raw, sizeof(pgno)); 
  HMAC_Final(&ctx->hctx, out, NULL);
  HMAC_CTX_cleanup(&ctx->hctx);
  return SQLITE_OK; 
}

/*
 * ctx - codec context
 * pgno - page number in database
 * size - size in bytes of input and output buffers
 * mode - 1 to encrypt, 0 to decrypt
 * in - pointer to input bytes
 * out - pouter to output bytes
 */
int sqlcipher_page_cipher(codec_ctx *ctx, int for_ctx, Pgno pgno, int mode, int page_sz, unsigned char *in, unsigned char *out) {
  cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
  unsigned char *iv_in, *iv_out, *hmac_in, *hmac_out, *out_start;
  int tmp_csz, csz, size;

  /* calculate some required positions into various buffers */
  size = page_sz - c_ctx->reserve_sz; /* adjust size to useable size and memset reserve at end of page */
  iv_out = out + size;
  iv_in = in + size;

  /* hmac will be written immediately after the initialization vector. the remainder of the page reserve will contain
     random bytes. note, these pointers are only valid when using hmac */
  hmac_in = in + size + c_ctx->iv_sz; 
  hmac_out = out + size + c_ctx->iv_sz;
  out_start = out; /* note the original position of the output buffer pointer, as out will be rewritten during encryption */

  CODEC_TRACE(("codec_cipher:entered pgno=%d, mode=%d, size=%d\n", pgno, mode, size));
  CODEC_HEXDUMP("codec_cipher: input page data", in, page_sz);

  /* the key size should never be zero. If it is, error out. */
  if(c_ctx->key_sz == 0) {
    CODEC_TRACE(("codec_cipher: error possible context corruption, key_sz is zero for pgno=%d\n", pgno));
    sqlcipher_memset(out, 0, page_sz); 
    return SQLITE_ERROR;
  } 

  if(mode == CIPHER_ENCRYPT) {
    /* start at front of the reserve block, write random data to the end */
    if(sqlcipher_random(iv_out, c_ctx->reserve_sz) != 1) return SQLITE_ERROR; 
  } else { /* CIPHER_DECRYPT */
    memcpy(iv_out, iv_in, c_ctx->iv_sz); /* copy the iv from the input to output buffer */
  } 

  if((c_ctx->flags & CIPHER_FLAG_HMAC) && (mode == CIPHER_DECRYPT)) {
    if(sqlcipher_page_hmac(c_ctx, pgno, in, size + c_ctx->iv_sz, hmac_out) != SQLITE_OK) {
      sqlcipher_memset(out, 0, page_sz); 
      CODEC_TRACE(("codec_cipher: hmac operations failed for pgno=%d\n", pgno));
      return SQLITE_ERROR;
    }

    CODEC_TRACE(("codec_cipher: comparing hmac on in=%p out=%p hmac_sz=%d\n", hmac_in, hmac_out, c_ctx->hmac_sz));
    if(sqlcipher_memcmp(hmac_in, hmac_out, c_ctx->hmac_sz) != 0) { /* the hmac check failed */ 
      if(sqlcipher_ismemset(in, 0, page_sz) == 0) {
        /* first check if the entire contents of the page is zeros. If so, this page 
           resulted from a short read (i.e. sqlite attempted to pull a page after the end of the file. these 
           short read failures must be ignored for autovaccum mode to work so wipe the output buffer 
           and return SQLITE_OK to skip the decryption step. */
        CODEC_TRACE(("codec_cipher: zeroed page (short read) for pgno %d, encryption but returning SQLITE_OK\n", pgno));
        sqlcipher_memset(out, 0, page_sz); 
  	return SQLITE_OK;
      } else {
	/* if the page memory is not all zeros, it means the there was data and a hmac on the page. 
           since the check failed, the page was either tampered with or corrupted. wipe the output buffer,
           and return SQLITE_ERROR to the caller */
      	CODEC_TRACE(("codec_cipher: hmac check failed for pgno=%d returning SQLITE_ERROR\n", pgno));
        sqlcipher_memset(out, 0, page_sz); 
      	return SQLITE_ERROR;
      }
    }
  } 

  EVP_CipherInit(&c_ctx->ectx, c_ctx->evp_cipher, NULL, NULL, mode);
  EVP_CIPHER_CTX_set_padding(&c_ctx->ectx, 0);
  EVP_CipherInit(&c_ctx->ectx, NULL, c_ctx->key, iv_out, mode);
  EVP_CipherUpdate(&c_ctx->ectx, out, &tmp_csz, in, size);
  csz = tmp_csz;  
  out += tmp_csz;
  EVP_CipherFinal(&c_ctx->ectx, out, &tmp_csz);
  csz += tmp_csz;
  EVP_CIPHER_CTX_cleanup(&c_ctx->ectx);
  assert(size == csz);

  if((c_ctx->flags & CIPHER_FLAG_HMAC) && (mode == CIPHER_ENCRYPT)) {
    sqlcipher_page_hmac(c_ctx, pgno, out_start, size + c_ctx->iv_sz, hmac_out); 
  }

  CODEC_HEXDUMP("codec_cipher: output page data", out_start, page_sz);

  return SQLITE_OK;
}

/**
  * Derive an encryption key for a cipher contex key based on the raw password.
  *
  * If the raw key data is formated as x'hex' and there are exactly enough hex chars to fill
  * the key space (i.e 64 hex chars for a 256 bit key) then the key data will be used directly. 
  * 
  * Otherwise, a key data will be derived using PBKDF2
  * 
  * returns SQLITE_OK if initialization was successful
  * returns SQLITE_ERROR if the key could't be derived (for instance if pass is NULL or pass_sz is 0)
  */
int sqlcipher_cipher_ctx_key_derive(codec_ctx *ctx, cipher_ctx *c_ctx) {
  CODEC_TRACE(("codec_key_derive: entered c_ctx->pass=%s, c_ctx->pass_sz=%d \
                ctx->kdf_salt=%p ctx->kdf_salt_sz=%d c_ctx->kdf_iter=%d \
                ctx->hmac_kdf_salt=%p, c_ctx->fast_kdf_iter=%d c_ctx->key_sz=%d\n", 
                c_ctx->pass, c_ctx->pass_sz, ctx->kdf_salt, ctx->kdf_salt_sz, c_ctx->kdf_iter, 
                ctx->hmac_kdf_salt, c_ctx->fast_kdf_iter, c_ctx->key_sz)); 
                

  if(c_ctx->pass && c_ctx->pass_sz) { // if pass is not null
    if (c_ctx->pass_sz == ((c_ctx->key_sz*2)+3) && sqlite3StrNICmp(c_ctx->pass ,"x'", 2) == 0) { 
      int n = c_ctx->pass_sz - 3; /* adjust for leading x' and tailing ' */
      const char *z = c_ctx->pass + 2; /* adjust lead offset of x' */
      CODEC_TRACE(("codec_key_derive: using raw key from hex\n")); 
      cipher_hex2bin(z, n, c_ctx->key);
    } else { 
      CODEC_TRACE(("codec_key_derive: deriving key using full PBKDF2 with %d iterations\n", c_ctx->kdf_iter)); 
      PKCS5_PBKDF2_HMAC_SHA1( c_ctx->pass, c_ctx->pass_sz, 
                              ctx->kdf_salt, ctx->kdf_salt_sz, 
                              c_ctx->kdf_iter, c_ctx->key_sz, c_ctx->key);
                              
    }

    /* if this context is setup to use hmac checks, generate a seperate and different 
       key for HMAC. In this case, we use the output of the previous KDF as the input to 
       this KDF run. This ensures a distinct but predictable HMAC key. */
    if(c_ctx->flags & CIPHER_FLAG_HMAC) {
      int i;

      /* start by copying the kdf key into the hmac salt slot
         then XOR it with the fixed hmac salt defined at compile time
         this ensures that the salt passed in to derive the hmac key, while 
         easy to derive and publically known, is not the same as the salt used 
         to generate the encryption key */ 
      memcpy(ctx->hmac_kdf_salt, ctx->kdf_salt, ctx->kdf_salt_sz);
      for(i = 0; i < ctx->kdf_salt_sz; i++) {
        ctx->hmac_kdf_salt[i] ^= hmac_salt_mask;
      } 

      CODEC_TRACE(("codec_key_derive: deriving hmac key from encryption key using PBKDF2 with %d iterations\n", 
        c_ctx->fast_kdf_iter)); 
      PKCS5_PBKDF2_HMAC_SHA1( (const char*)c_ctx->key, c_ctx->key_sz, 
                              ctx->hmac_kdf_salt, ctx->kdf_salt_sz, 
                              c_ctx->fast_kdf_iter, c_ctx->key_sz, c_ctx->hmac_key); 
    }

    c_ctx->derive_key = 0;
    return SQLITE_OK;
  };
  return SQLITE_ERROR;
}

int sqlcipher_codec_key_derive(codec_ctx *ctx) {
  /* derive key on first use if necessary */
  if(ctx->read_ctx->derive_key) {
    if(sqlcipher_cipher_ctx_key_derive(ctx, ctx->read_ctx) != SQLITE_OK) return SQLITE_ERROR;
  }

  if(ctx->write_ctx->derive_key) {
    if(sqlcipher_cipher_ctx_cmp(ctx->write_ctx, ctx->read_ctx) == 0) {
      // the relevant parameters are the same, just copy read key
      if(sqlcipher_cipher_ctx_copy(ctx->write_ctx, ctx->read_ctx) != SQLITE_OK) return SQLITE_ERROR;
    } else {
      if(sqlcipher_cipher_ctx_key_derive(ctx, ctx->write_ctx) != SQLITE_OK) return SQLITE_ERROR;
    }
  }
  return SQLITE_OK; 
}

int sqlcipher_codec_key_copy(codec_ctx *ctx, int source) {
  if(source == CIPHER_READ_CTX) { 
      return sqlcipher_cipher_ctx_copy(ctx->write_ctx, ctx->read_ctx); 
  } else {
      return sqlcipher_cipher_ctx_copy(ctx->read_ctx, ctx->write_ctx); 
  }
}


#ifndef OMIT_EXPORT

/*
 * Implementation of an "export" function that allows a caller
 * to duplicate the main database to an attached database. This is intended
 * as a conveneince for users who need to:
 * 
 *   1. migrate from an non-encrypted database to an encrypted database
 *   2. move from an encrypted database to a non-encrypted database
 *   3. convert beween the various flavors of encrypted databases.  
 *
 * This implementation is based heavily on the procedure and code used
 * in vacuum.c, but is exposed as a function that allows export to any
 * named attached database.
 */

/*
** Finalize a prepared statement.  If there was an error, store the
** text of the error message in *pzErrMsg.  Return the result code.
** 
** Based on vacuumFinalize from vacuum.c
*/
static int sqlcipher_finalize(sqlite3 *db, sqlite3_stmt *pStmt, char **pzErrMsg){
  int rc;
  rc = sqlite3VdbeFinalize((Vdbe*)pStmt);
  if( rc ){
    sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
  }
  return rc;
}

/*
** Execute zSql on database db. Return an error code.
** 
** Based on execSql from vacuum.c
*/
static int sqlcipher_execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
  sqlite3_stmt *pStmt;
  VVA_ONLY( int rc; )
  if( !zSql ){
    return SQLITE_NOMEM;
  }
  if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
    sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
    return sqlite3_errcode(db);
  }
  VVA_ONLY( rc = ) sqlite3_step(pStmt);
  assert( rc!=SQLITE_ROW );
  return sqlcipher_finalize(db, pStmt, pzErrMsg);
}

/*
** Execute zSql on database db. The statement returns exactly
** one column. Execute this as SQL on the same database.
** 
** Based on execExecSql from vacuum.c
*/
static int sqlcipher_execExecSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
  sqlite3_stmt *pStmt;
  int rc;

  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;

  while( SQLITE_ROW==sqlite3_step(pStmt) ){
    rc = sqlcipher_execSql(db, pzErrMsg, (char*)sqlite3_column_text(pStmt, 0));
    if( rc!=SQLITE_OK ){
      sqlcipher_finalize(db, pStmt, pzErrMsg);
      return rc;
    }
  }

  return sqlcipher_finalize(db, pStmt, pzErrMsg);
}

/*
 * copy database and schema from the main database to an attached database
 * 
 * Based on sqlite3RunVacuum from vacuum.c
*/
void sqlcipher_exportFunc(sqlite3_context *context, int argc, sqlite3_value **argv) {
  sqlite3 *db = sqlite3_context_db_handle(context);
  const char* attachedDb = (const char*) sqlite3_value_text(argv[0]);
  int saved_flags;        /* Saved value of the db->flags */
  int saved_nChange;      /* Saved value of db->nChange */
  int saved_nTotalChange; /* Saved value of db->nTotalChange */
  void (*saved_xTrace)(void*,const char*);  /* Saved db->xTrace */
  int rc = SQLITE_OK;     /* Return code from service routines */
  char *zSql = NULL;         /* SQL statements */
  char *pzErrMsg = NULL;
  
  saved_flags = db->flags;
  saved_nChange = db->nChange;
  saved_nTotalChange = db->nTotalChange;
  saved_xTrace = db->xTrace;
  db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks | SQLITE_PreferBuiltin;
  db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder);
  db->xTrace = 0;

  /* Query the schema of the main database. Create a mirror schema
  ** in the temporary database.
  */
  zSql = sqlite3_mprintf(
    "SELECT 'CREATE TABLE %s.' || substr(sql,14) "
    "  FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
    "   AND rootpage>0"
  , attachedDb);
  rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); 
  if( rc!=SQLITE_OK ) goto end_of_export;
  sqlite3_free(zSql);

  zSql = sqlite3_mprintf(
    "SELECT 'CREATE INDEX %s.' || substr(sql,14)"
    "  FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %%' "
  , attachedDb);
  rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); 
  if( rc!=SQLITE_OK ) goto end_of_export;
  sqlite3_free(zSql);

  zSql = sqlite3_mprintf(
    "SELECT 'CREATE UNIQUE INDEX %s.' || substr(sql,21) "
    "  FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %%'"
  , attachedDb);
  rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); 
  if( rc!=SQLITE_OK ) goto end_of_export;
  sqlite3_free(zSql);

  /* Loop through the tables in the main database. For each, do
  ** an "INSERT INTO rekey_db.xxx SELECT * FROM main.xxx;" to copy
  ** the contents to the temporary database.
  */
  zSql = sqlite3_mprintf(
    "SELECT 'INSERT INTO %s.' || quote(name) "
    "|| ' SELECT * FROM main.' || quote(name) || ';'"
    "FROM main.sqlite_master "
    "WHERE type = 'table' AND name!='sqlite_sequence' "
    "  AND rootpage>0"
  , attachedDb);
  rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); 
  if( rc!=SQLITE_OK ) goto end_of_export;
  sqlite3_free(zSql);

  /* Copy over the sequence table
  */
  zSql = sqlite3_mprintf(
    "SELECT 'DELETE FROM %s.' || quote(name) || ';' "
    "FROM %s.sqlite_master WHERE name='sqlite_sequence' "
  , attachedDb, attachedDb);
  rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); 
  if( rc!=SQLITE_OK ) goto end_of_export;
  sqlite3_free(zSql);

  zSql = sqlite3_mprintf(
    "SELECT 'INSERT INTO %s.' || quote(name) "
    "|| ' SELECT * FROM main.' || quote(name) || ';' "
    "FROM %s.sqlite_master WHERE name=='sqlite_sequence';"
  , attachedDb, attachedDb);
  rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); 
  if( rc!=SQLITE_OK ) goto end_of_export;
  sqlite3_free(zSql);

  /* Copy the triggers, views, and virtual tables from the main database
  ** over to the temporary database.  None of these objects has any
  ** associated storage, so all we have to do is copy their entries
  ** from the SQLITE_MASTER table.
  */
  zSql = sqlite3_mprintf(
    "INSERT INTO %s.sqlite_master "
    "  SELECT type, name, tbl_name, rootpage, sql"
    "    FROM main.sqlite_master"
    "   WHERE type='view' OR type='trigger'"
    "      OR (type='table' AND rootpage=0)"
  , attachedDb);
  rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execSql(db, &pzErrMsg, zSql); 
  if( rc!=SQLITE_OK ) goto end_of_export;
  sqlite3_free(zSql);

  zSql = NULL;
end_of_export:
  db->flags = saved_flags;
  db->nChange = saved_nChange;
  db->nTotalChange = saved_nTotalChange;
  db->xTrace = saved_xTrace;

  sqlite3_free(zSql);

  if(rc) {
    if(pzErrMsg != NULL) {
      sqlite3_result_error(context, pzErrMsg, -1);
      sqlite3DbFree(db, pzErrMsg);
    } else {
      sqlite3_result_error(context, sqlite3ErrStr(rc), -1);
    }
  }
}

#endif
#endif