summaryrefslogtreecommitdiff
path: root/ext/rtree/rtree.c
blob: 16a316f400c1c28ac6934a4a10c855e2443936be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code for implementations of the r-tree and r*-tree
** algorithms packaged as an SQLite virtual table module.
*/

/*
** Database Format of R-Tree Tables
** --------------------------------
**
** The data structure for a single virtual r-tree table is stored in three 
** native SQLite tables declared as follows. In each case, the '%' character
** in the table name is replaced with the user-supplied name of the r-tree
** table.
**
**   CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
**   CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
**   CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
**
** The data for each node of the r-tree structure is stored in the %_node
** table. For each node that is not the root node of the r-tree, there is
** an entry in the %_parent table associating the node with its parent.
** And for each row of data in the table, there is an entry in the %_rowid
** table that maps from the entries rowid to the id of the node that it
** is stored on.
**
** The root node of an r-tree always exists, even if the r-tree table is
** empty. The nodeno of the root node is always 1. All other nodes in the
** table must be the same size as the root node. The content of each node
** is formatted as follows:
**
**   1. If the node is the root node (node 1), then the first 2 bytes
**      of the node contain the tree depth as a big-endian integer.
**      For non-root nodes, the first 2 bytes are left unused.
**
**   2. The next 2 bytes contain the number of entries currently 
**      stored in the node.
**
**   3. The remainder of the node contains the node entries. Each entry
**      consists of a single 8-byte integer followed by an even number
**      of 4-byte coordinates. For leaf nodes the integer is the rowid
**      of a record. For internal nodes it is the node number of a
**      child page.
*/

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)

/*
** This file contains an implementation of a couple of different variants
** of the r-tree algorithm. See the README file for further details. The 
** same data-structure is used for all, but the algorithms for insert and
** delete operations vary. The variants used are selected at compile time 
** by defining the following symbols:
*/

/* Either, both or none of the following may be set to activate 
** r*tree variant algorithms.
*/
#define VARIANT_RSTARTREE_CHOOSESUBTREE 0
#define VARIANT_RSTARTREE_REINSERT      1

/* 
** Exactly one of the following must be set to 1.
*/
#define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0
#define VARIANT_GUTTMAN_LINEAR_SPLIT    0
#define VARIANT_RSTARTREE_SPLIT         1

#define VARIANT_GUTTMAN_SPLIT \
        (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT)

#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
  #define PickNext QuadraticPickNext
  #define PickSeeds QuadraticPickSeeds
  #define AssignCells splitNodeGuttman
#endif
#if VARIANT_GUTTMAN_LINEAR_SPLIT
  #define PickNext LinearPickNext
  #define PickSeeds LinearPickSeeds
  #define AssignCells splitNodeGuttman
#endif
#if VARIANT_RSTARTREE_SPLIT
  #define AssignCells splitNodeStartree
#endif

#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 
# define NDEBUG 1
#endif

#ifndef SQLITE_CORE
  #include "sqlite3ext.h"
  SQLITE_EXTENSION_INIT1
#else
  #include "sqlite3.h"
#endif

#include <string.h>
#include <assert.h>

#ifndef SQLITE_AMALGAMATION
#include "sqlite3rtree.h"
typedef sqlite3_int64 i64;
typedef unsigned char u8;
typedef unsigned int u32;
#endif

/*  The following macro is used to suppress compiler warnings.
*/
#ifndef UNUSED_PARAMETER
# define UNUSED_PARAMETER(x) (void)(x)
#endif

typedef struct Rtree Rtree;
typedef struct RtreeCursor RtreeCursor;
typedef struct RtreeNode RtreeNode;
typedef struct RtreeCell RtreeCell;
typedef struct RtreeConstraint RtreeConstraint;
typedef struct RtreeMatchArg RtreeMatchArg;
typedef struct RtreeGeomCallback RtreeGeomCallback;
typedef union RtreeCoord RtreeCoord;

/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
#define RTREE_MAX_DIMENSIONS 5

/* Size of hash table Rtree.aHash. This hash table is not expected to
** ever contain very many entries, so a fixed number of buckets is 
** used.
*/
#define HASHSIZE 128

/* 
** An rtree virtual-table object.
*/
struct Rtree {
  sqlite3_vtab base;
  sqlite3 *db;                /* Host database connection */
  int iNodeSize;              /* Size in bytes of each node in the node table */
  int nDim;                   /* Number of dimensions */
  int nBytesPerCell;          /* Bytes consumed per cell */
  int iDepth;                 /* Current depth of the r-tree structure */
  char *zDb;                  /* Name of database containing r-tree table */
  char *zName;                /* Name of r-tree table */ 
  RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 
  int nBusy;                  /* Current number of users of this structure */

  /* List of nodes removed during a CondenseTree operation. List is
  ** linked together via the pointer normally used for hash chains -
  ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
  ** headed by the node (leaf nodes have RtreeNode.iNode==0).
  */
  RtreeNode *pDeleted;
  int iReinsertHeight;        /* Height of sub-trees Reinsert() has run on */

  /* Statements to read/write/delete a record from xxx_node */
  sqlite3_stmt *pReadNode;
  sqlite3_stmt *pWriteNode;
  sqlite3_stmt *pDeleteNode;

  /* Statements to read/write/delete a record from xxx_rowid */
  sqlite3_stmt *pReadRowid;
  sqlite3_stmt *pWriteRowid;
  sqlite3_stmt *pDeleteRowid;

  /* Statements to read/write/delete a record from xxx_parent */
  sqlite3_stmt *pReadParent;
  sqlite3_stmt *pWriteParent;
  sqlite3_stmt *pDeleteParent;

  int eCoordType;
};

/* Possible values for eCoordType: */
#define RTREE_COORD_REAL32 0
#define RTREE_COORD_INT32  1

/*
** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
** only deal with integer coordinates.  No floating point operations
** will be done.
*/
#ifdef SQLITE_RTREE_INT_ONLY
  typedef sqlite3_int64 RtreeDValue;       /* High accuracy coordinate */
  typedef int RtreeValue;                  /* Low accuracy coordinate */
#else
  typedef double RtreeDValue;              /* High accuracy coordinate */
  typedef float RtreeValue;                /* Low accuracy coordinate */
#endif

/*
** The minimum number of cells allowed for a node is a third of the 
** maximum. In Gutman's notation:
**
**     m = M/3
**
** If an R*-tree "Reinsert" operation is required, the same number of
** cells are removed from the overfull node and reinserted into the tree.
*/
#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
#define RTREE_MAXCELLS 51

/*
** The smallest possible node-size is (512-64)==448 bytes. And the largest
** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
** Therefore all non-root nodes must contain at least 3 entries. Since 
** 2^40 is greater than 2^64, an r-tree structure always has a depth of
** 40 or less.
*/
#define RTREE_MAX_DEPTH 40

/* 
** An rtree cursor object.
*/
struct RtreeCursor {
  sqlite3_vtab_cursor base;
  RtreeNode *pNode;                 /* Node cursor is currently pointing at */
  int iCell;                        /* Index of current cell in pNode */
  int iStrategy;                    /* Copy of idxNum search parameter */
  int nConstraint;                  /* Number of entries in aConstraint */
  RtreeConstraint *aConstraint;     /* Search constraints. */
};

union RtreeCoord {
  RtreeValue f;
  int i;
};

/*
** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
** formatted as a RtreeDValue (double or int64). This macro assumes that local
** variable pRtree points to the Rtree structure associated with the
** RtreeCoord.
*/
#ifdef SQLITE_RTREE_INT_ONLY
# define DCOORD(coord) ((RtreeDValue)coord.i)
#else
# define DCOORD(coord) (                           \
    (pRtree->eCoordType==RTREE_COORD_REAL32) ?      \
      ((double)coord.f) :                           \
      ((double)coord.i)                             \
  )
#endif

/*
** A search constraint.
*/
struct RtreeConstraint {
  int iCoord;                     /* Index of constrained coordinate */
  int op;                         /* Constraining operation */
  RtreeDValue rValue;             /* Constraint value. */
  int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
  sqlite3_rtree_geometry *pGeom;  /* Constraint callback argument for a MATCH */
};

/* Possible values for RtreeConstraint.op */
#define RTREE_EQ    0x41
#define RTREE_LE    0x42
#define RTREE_LT    0x43
#define RTREE_GE    0x44
#define RTREE_GT    0x45
#define RTREE_MATCH 0x46

/* 
** An rtree structure node.
*/
struct RtreeNode {
  RtreeNode *pParent;               /* Parent node */
  i64 iNode;
  int nRef;
  int isDirty;
  u8 *zData;
  RtreeNode *pNext;                 /* Next node in this hash chain */
};
#define NCELL(pNode) readInt16(&(pNode)->zData[2])

/* 
** Structure to store a deserialized rtree record.
*/
struct RtreeCell {
  i64 iRowid;
  RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];
};


/*
** Value for the first field of every RtreeMatchArg object. The MATCH
** operator tests that the first field of a blob operand matches this
** value to avoid operating on invalid blobs (which could cause a segfault).
*/
#define RTREE_GEOMETRY_MAGIC 0x891245AB

/*
** An instance of this structure must be supplied as a blob argument to
** the right-hand-side of an SQL MATCH operator used to constrain an
** r-tree query.
*/
struct RtreeMatchArg {
  u32 magic;                      /* Always RTREE_GEOMETRY_MAGIC */
  int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue*, int *);
  void *pContext;
  int nParam;
  RtreeDValue aParam[1];
};

/*
** When a geometry callback is created (see sqlite3_rtree_geometry_callback),
** a single instance of the following structure is allocated. It is used
** as the context for the user-function created by by s_r_g_c(). The object
** is eventually deleted by the destructor mechanism provided by
** sqlite3_create_function_v2() (which is called by s_r_g_c() to create
** the geometry callback function).
*/
struct RtreeGeomCallback {
  int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
  void *pContext;
};

#ifndef MAX
# define MAX(x,y) ((x) < (y) ? (y) : (x))
#endif
#ifndef MIN
# define MIN(x,y) ((x) > (y) ? (y) : (x))
#endif

/*
** Functions to deserialize a 16 bit integer, 32 bit real number and
** 64 bit integer. The deserialized value is returned.
*/
static int readInt16(u8 *p){
  return (p[0]<<8) + p[1];
}
static void readCoord(u8 *p, RtreeCoord *pCoord){
  u32 i = (
    (((u32)p[0]) << 24) + 
    (((u32)p[1]) << 16) + 
    (((u32)p[2]) <<  8) + 
    (((u32)p[3]) <<  0)
  );
  *(u32 *)pCoord = i;
}
static i64 readInt64(u8 *p){
  return (
    (((i64)p[0]) << 56) + 
    (((i64)p[1]) << 48) + 
    (((i64)p[2]) << 40) + 
    (((i64)p[3]) << 32) + 
    (((i64)p[4]) << 24) + 
    (((i64)p[5]) << 16) + 
    (((i64)p[6]) <<  8) + 
    (((i64)p[7]) <<  0)
  );
}

/*
** Functions to serialize a 16 bit integer, 32 bit real number and
** 64 bit integer. The value returned is the number of bytes written
** to the argument buffer (always 2, 4 and 8 respectively).
*/
static int writeInt16(u8 *p, int i){
  p[0] = (i>> 8)&0xFF;
  p[1] = (i>> 0)&0xFF;
  return 2;
}
static int writeCoord(u8 *p, RtreeCoord *pCoord){
  u32 i;
  assert( sizeof(RtreeCoord)==4 );
  assert( sizeof(u32)==4 );
  i = *(u32 *)pCoord;
  p[0] = (i>>24)&0xFF;
  p[1] = (i>>16)&0xFF;
  p[2] = (i>> 8)&0xFF;
  p[3] = (i>> 0)&0xFF;
  return 4;
}
static int writeInt64(u8 *p, i64 i){
  p[0] = (i>>56)&0xFF;
  p[1] = (i>>48)&0xFF;
  p[2] = (i>>40)&0xFF;
  p[3] = (i>>32)&0xFF;
  p[4] = (i>>24)&0xFF;
  p[5] = (i>>16)&0xFF;
  p[6] = (i>> 8)&0xFF;
  p[7] = (i>> 0)&0xFF;
  return 8;
}

/*
** Increment the reference count of node p.
*/
static void nodeReference(RtreeNode *p){
  if( p ){
    p->nRef++;
  }
}

/*
** Clear the content of node p (set all bytes to 0x00).
*/
static void nodeZero(Rtree *pRtree, RtreeNode *p){
  memset(&p->zData[2], 0, pRtree->iNodeSize-2);
  p->isDirty = 1;
}

/*
** Given a node number iNode, return the corresponding key to use
** in the Rtree.aHash table.
*/
static int nodeHash(i64 iNode){
  return (
    (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ 
    (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0)
  ) % HASHSIZE;
}

/*
** Search the node hash table for node iNode. If found, return a pointer
** to it. Otherwise, return 0.
*/
static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
  RtreeNode *p;
  for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
  return p;
}

/*
** Add node pNode to the node hash table.
*/
static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
  int iHash;
  assert( pNode->pNext==0 );
  iHash = nodeHash(pNode->iNode);
  pNode->pNext = pRtree->aHash[iHash];
  pRtree->aHash[iHash] = pNode;
}

/*
** Remove node pNode from the node hash table.
*/
static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
  RtreeNode **pp;
  if( pNode->iNode!=0 ){
    pp = &pRtree->aHash[nodeHash(pNode->iNode)];
    for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
    *pp = pNode->pNext;
    pNode->pNext = 0;
  }
}

/*
** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
** indicating that node has not yet been assigned a node number. It is
** assigned a node number when nodeWrite() is called to write the
** node contents out to the database.
*/
static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
  RtreeNode *pNode;
  pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
  if( pNode ){
    memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
    pNode->zData = (u8 *)&pNode[1];
    pNode->nRef = 1;
    pNode->pParent = pParent;
    pNode->isDirty = 1;
    nodeReference(pParent);
  }
  return pNode;
}

/*
** Obtain a reference to an r-tree node.
*/
static int
nodeAcquire(
  Rtree *pRtree,             /* R-tree structure */
  i64 iNode,                 /* Node number to load */
  RtreeNode *pParent,        /* Either the parent node or NULL */
  RtreeNode **ppNode         /* OUT: Acquired node */
){
  int rc;
  int rc2 = SQLITE_OK;
  RtreeNode *pNode;

  /* Check if the requested node is already in the hash table. If so,
  ** increase its reference count and return it.
  */
  if( (pNode = nodeHashLookup(pRtree, iNode)) ){
    assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
    if( pParent && !pNode->pParent ){
      nodeReference(pParent);
      pNode->pParent = pParent;
    }
    pNode->nRef++;
    *ppNode = pNode;
    return SQLITE_OK;
  }

  sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
  rc = sqlite3_step(pRtree->pReadNode);
  if( rc==SQLITE_ROW ){
    const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
    if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
      pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
      if( !pNode ){
        rc2 = SQLITE_NOMEM;
      }else{
        pNode->pParent = pParent;
        pNode->zData = (u8 *)&pNode[1];
        pNode->nRef = 1;
        pNode->iNode = iNode;
        pNode->isDirty = 0;
        pNode->pNext = 0;
        memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
        nodeReference(pParent);
      }
    }
  }
  rc = sqlite3_reset(pRtree->pReadNode);
  if( rc==SQLITE_OK ) rc = rc2;

  /* If the root node was just loaded, set pRtree->iDepth to the height
  ** of the r-tree structure. A height of zero means all data is stored on
  ** the root node. A height of one means the children of the root node
  ** are the leaves, and so on. If the depth as specified on the root node
  ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
  */
  if( pNode && iNode==1 ){
    pRtree->iDepth = readInt16(pNode->zData);
    if( pRtree->iDepth>RTREE_MAX_DEPTH ){
      rc = SQLITE_CORRUPT_VTAB;
    }
  }

  /* If no error has occurred so far, check if the "number of entries"
  ** field on the node is too large. If so, set the return code to 
  ** SQLITE_CORRUPT_VTAB.
  */
  if( pNode && rc==SQLITE_OK ){
    if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
      rc = SQLITE_CORRUPT_VTAB;
    }
  }

  if( rc==SQLITE_OK ){
    if( pNode!=0 ){
      nodeHashInsert(pRtree, pNode);
    }else{
      rc = SQLITE_CORRUPT_VTAB;
    }
    *ppNode = pNode;
  }else{
    sqlite3_free(pNode);
    *ppNode = 0;
  }

  return rc;
}

/*
** Overwrite cell iCell of node pNode with the contents of pCell.
*/
static void nodeOverwriteCell(
  Rtree *pRtree, 
  RtreeNode *pNode,  
  RtreeCell *pCell, 
  int iCell
){
  int ii;
  u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
  p += writeInt64(p, pCell->iRowid);
  for(ii=0; ii<(pRtree->nDim*2); ii++){
    p += writeCoord(p, &pCell->aCoord[ii]);
  }
  pNode->isDirty = 1;
}

/*
** Remove cell the cell with index iCell from node pNode.
*/
static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
  u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
  u8 *pSrc = &pDst[pRtree->nBytesPerCell];
  int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
  memmove(pDst, pSrc, nByte);
  writeInt16(&pNode->zData[2], NCELL(pNode)-1);
  pNode->isDirty = 1;
}

/*
** Insert the contents of cell pCell into node pNode. If the insert
** is successful, return SQLITE_OK.
**
** If there is not enough free space in pNode, return SQLITE_FULL.
*/
static int
nodeInsertCell(
  Rtree *pRtree, 
  RtreeNode *pNode, 
  RtreeCell *pCell 
){
  int nCell;                    /* Current number of cells in pNode */
  int nMaxCell;                 /* Maximum number of cells for pNode */

  nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
  nCell = NCELL(pNode);

  assert( nCell<=nMaxCell );
  if( nCell<nMaxCell ){
    nodeOverwriteCell(pRtree, pNode, pCell, nCell);
    writeInt16(&pNode->zData[2], nCell+1);
    pNode->isDirty = 1;
  }

  return (nCell==nMaxCell);
}

/*
** If the node is dirty, write it out to the database.
*/
static int
nodeWrite(Rtree *pRtree, RtreeNode *pNode){
  int rc = SQLITE_OK;
  if( pNode->isDirty ){
    sqlite3_stmt *p = pRtree->pWriteNode;
    if( pNode->iNode ){
      sqlite3_bind_int64(p, 1, pNode->iNode);
    }else{
      sqlite3_bind_null(p, 1);
    }
    sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
    sqlite3_step(p);
    pNode->isDirty = 0;
    rc = sqlite3_reset(p);
    if( pNode->iNode==0 && rc==SQLITE_OK ){
      pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
      nodeHashInsert(pRtree, pNode);
    }
  }
  return rc;
}

/*
** Release a reference to a node. If the node is dirty and the reference
** count drops to zero, the node data is written to the database.
*/
static int
nodeRelease(Rtree *pRtree, RtreeNode *pNode){
  int rc = SQLITE_OK;
  if( pNode ){
    assert( pNode->nRef>0 );
    pNode->nRef--;
    if( pNode->nRef==0 ){
      if( pNode->iNode==1 ){
        pRtree->iDepth = -1;
      }
      if( pNode->pParent ){
        rc = nodeRelease(pRtree, pNode->pParent);
      }
      if( rc==SQLITE_OK ){
        rc = nodeWrite(pRtree, pNode);
      }
      nodeHashDelete(pRtree, pNode);
      sqlite3_free(pNode);
    }
  }
  return rc;
}

/*
** Return the 64-bit integer value associated with cell iCell of
** node pNode. If pNode is a leaf node, this is a rowid. If it is
** an internal node, then the 64-bit integer is a child page number.
*/
static i64 nodeGetRowid(
  Rtree *pRtree, 
  RtreeNode *pNode, 
  int iCell
){
  assert( iCell<NCELL(pNode) );
  return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
}

/*
** Return coordinate iCoord from cell iCell in node pNode.
*/
static void nodeGetCoord(
  Rtree *pRtree, 
  RtreeNode *pNode, 
  int iCell,
  int iCoord,
  RtreeCoord *pCoord           /* Space to write result to */
){
  readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
}

/*
** Deserialize cell iCell of node pNode. Populate the structure pointed
** to by pCell with the results.
*/
static void nodeGetCell(
  Rtree *pRtree, 
  RtreeNode *pNode, 
  int iCell,
  RtreeCell *pCell
){
  int ii;
  pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
  for(ii=0; ii<pRtree->nDim*2; ii++){
    nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]);
  }
}


/* Forward declaration for the function that does the work of
** the virtual table module xCreate() and xConnect() methods.
*/
static int rtreeInit(
  sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
);

/* 
** Rtree virtual table module xCreate method.
*/
static int rtreeCreate(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
}

/* 
** Rtree virtual table module xConnect method.
*/
static int rtreeConnect(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
}

/*
** Increment the r-tree reference count.
*/
static void rtreeReference(Rtree *pRtree){
  pRtree->nBusy++;
}

/*
** Decrement the r-tree reference count. When the reference count reaches
** zero the structure is deleted.
*/
static void rtreeRelease(Rtree *pRtree){
  pRtree->nBusy--;
  if( pRtree->nBusy==0 ){
    sqlite3_finalize(pRtree->pReadNode);
    sqlite3_finalize(pRtree->pWriteNode);
    sqlite3_finalize(pRtree->pDeleteNode);
    sqlite3_finalize(pRtree->pReadRowid);
    sqlite3_finalize(pRtree->pWriteRowid);
    sqlite3_finalize(pRtree->pDeleteRowid);
    sqlite3_finalize(pRtree->pReadParent);
    sqlite3_finalize(pRtree->pWriteParent);
    sqlite3_finalize(pRtree->pDeleteParent);
    sqlite3_free(pRtree);
  }
}

/* 
** Rtree virtual table module xDisconnect method.
*/
static int rtreeDisconnect(sqlite3_vtab *pVtab){
  rtreeRelease((Rtree *)pVtab);
  return SQLITE_OK;
}

/* 
** Rtree virtual table module xDestroy method.
*/
static int rtreeDestroy(sqlite3_vtab *pVtab){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc;
  char *zCreate = sqlite3_mprintf(
    "DROP TABLE '%q'.'%q_node';"
    "DROP TABLE '%q'.'%q_rowid';"
    "DROP TABLE '%q'.'%q_parent';",
    pRtree->zDb, pRtree->zName, 
    pRtree->zDb, pRtree->zName,
    pRtree->zDb, pRtree->zName
  );
  if( !zCreate ){
    rc = SQLITE_NOMEM;
  }else{
    rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
    sqlite3_free(zCreate);
  }
  if( rc==SQLITE_OK ){
    rtreeRelease(pRtree);
  }

  return rc;
}

/* 
** Rtree virtual table module xOpen method.
*/
static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  int rc = SQLITE_NOMEM;
  RtreeCursor *pCsr;

  pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
  if( pCsr ){
    memset(pCsr, 0, sizeof(RtreeCursor));
    pCsr->base.pVtab = pVTab;
    rc = SQLITE_OK;
  }
  *ppCursor = (sqlite3_vtab_cursor *)pCsr;

  return rc;
}


/*
** Free the RtreeCursor.aConstraint[] array and its contents.
*/
static void freeCursorConstraints(RtreeCursor *pCsr){
  if( pCsr->aConstraint ){
    int i;                        /* Used to iterate through constraint array */
    for(i=0; i<pCsr->nConstraint; i++){
      sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom;
      if( pGeom ){
        if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser);
        sqlite3_free(pGeom);
      }
    }
    sqlite3_free(pCsr->aConstraint);
    pCsr->aConstraint = 0;
  }
}

/* 
** Rtree virtual table module xClose method.
*/
static int rtreeClose(sqlite3_vtab_cursor *cur){
  Rtree *pRtree = (Rtree *)(cur->pVtab);
  int rc;
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  freeCursorConstraints(pCsr);
  rc = nodeRelease(pRtree, pCsr->pNode);
  sqlite3_free(pCsr);
  return rc;
}

/*
** Rtree virtual table module xEof method.
**
** Return non-zero if the cursor does not currently point to a valid 
** record (i.e if the scan has finished), or zero otherwise.
*/
static int rtreeEof(sqlite3_vtab_cursor *cur){
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  return (pCsr->pNode==0);
}

/*
** The r-tree constraint passed as the second argument to this function is
** guaranteed to be a MATCH constraint.
*/
static int testRtreeGeom(
  Rtree *pRtree,                  /* R-Tree object */
  RtreeConstraint *pConstraint,   /* MATCH constraint to test */
  RtreeCell *pCell,               /* Cell to test */
  int *pbRes                      /* OUT: Test result */
){
  int i;
  RtreeDValue aCoord[RTREE_MAX_DIMENSIONS*2];
  int nCoord = pRtree->nDim*2;

  assert( pConstraint->op==RTREE_MATCH );
  assert( pConstraint->pGeom );

  for(i=0; i<nCoord; i++){
    aCoord[i] = DCOORD(pCell->aCoord[i]);
  }
  return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes);
}

/* 
** Cursor pCursor currently points to a cell in a non-leaf page.
** Set *pbEof to true if the sub-tree headed by the cell is filtered
** (excluded) by the constraints in the pCursor->aConstraint[] 
** array, or false otherwise.
**
** Return SQLITE_OK if successful or an SQLite error code if an error
** occurs within a geometry callback.
*/
static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
  RtreeCell cell;
  int ii;
  int bRes = 0;
  int rc = SQLITE_OK;

  nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
  for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
    RtreeConstraint *p = &pCursor->aConstraint[ii];
    RtreeDValue cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
    RtreeDValue cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);

    assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
        || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
    );

    switch( p->op ){
      case RTREE_LE: case RTREE_LT: 
        bRes = p->rValue<cell_min; 
        break;

      case RTREE_GE: case RTREE_GT: 
        bRes = p->rValue>cell_max; 
        break;

      case RTREE_EQ:
        bRes = (p->rValue>cell_max || p->rValue<cell_min);
        break;

      default: {
        assert( p->op==RTREE_MATCH );
        rc = testRtreeGeom(pRtree, p, &cell, &bRes);
        bRes = !bRes;
        break;
      }
    }
  }

  *pbEof = bRes;
  return rc;
}

/* 
** Test if the cell that cursor pCursor currently points to
** would be filtered (excluded) by the constraints in the 
** pCursor->aConstraint[] array. If so, set *pbEof to true before
** returning. If the cell is not filtered (excluded) by the constraints,
** set pbEof to zero.
**
** Return SQLITE_OK if successful or an SQLite error code if an error
** occurs within a geometry callback.
**
** This function assumes that the cell is part of a leaf node.
*/
static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
  RtreeCell cell;
  int ii;
  *pbEof = 0;

  nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
  for(ii=0; ii<pCursor->nConstraint; ii++){
    RtreeConstraint *p = &pCursor->aConstraint[ii];
    RtreeDValue coord = DCOORD(cell.aCoord[p->iCoord]);
    int res;
    assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
        || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
    );
    switch( p->op ){
      case RTREE_LE: res = (coord<=p->rValue); break;
      case RTREE_LT: res = (coord<p->rValue);  break;
      case RTREE_GE: res = (coord>=p->rValue); break;
      case RTREE_GT: res = (coord>p->rValue);  break;
      case RTREE_EQ: res = (coord==p->rValue); break;
      default: {
        int rc;
        assert( p->op==RTREE_MATCH );
        rc = testRtreeGeom(pRtree, p, &cell, &res);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        break;
      }
    }

    if( !res ){
      *pbEof = 1;
      return SQLITE_OK;
    }
  }

  return SQLITE_OK;
}

/*
** Cursor pCursor currently points at a node that heads a sub-tree of
** height iHeight (if iHeight==0, then the node is a leaf). Descend
** to point to the left-most cell of the sub-tree that matches the 
** configured constraints.
*/
static int descendToCell(
  Rtree *pRtree, 
  RtreeCursor *pCursor, 
  int iHeight,
  int *pEof                 /* OUT: Set to true if cannot descend */
){
  int isEof;
  int rc;
  int ii;
  RtreeNode *pChild;
  sqlite3_int64 iRowid;

  RtreeNode *pSavedNode = pCursor->pNode;
  int iSavedCell = pCursor->iCell;

  assert( iHeight>=0 );

  if( iHeight==0 ){
    rc = testRtreeEntry(pRtree, pCursor, &isEof);
  }else{
    rc = testRtreeCell(pRtree, pCursor, &isEof);
  }
  if( rc!=SQLITE_OK || isEof || iHeight==0 ){
    goto descend_to_cell_out;
  }

  iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell);
  rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild);
  if( rc!=SQLITE_OK ){
    goto descend_to_cell_out;
  }

  nodeRelease(pRtree, pCursor->pNode);
  pCursor->pNode = pChild;
  isEof = 1;
  for(ii=0; isEof && ii<NCELL(pChild); ii++){
    pCursor->iCell = ii;
    rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof);
    if( rc!=SQLITE_OK ){
      goto descend_to_cell_out;
    }
  }

  if( isEof ){
    assert( pCursor->pNode==pChild );
    nodeReference(pSavedNode);
    nodeRelease(pRtree, pChild);
    pCursor->pNode = pSavedNode;
    pCursor->iCell = iSavedCell;
  }

descend_to_cell_out:
  *pEof = isEof;
  return rc;
}

/*
** One of the cells in node pNode is guaranteed to have a 64-bit 
** integer value equal to iRowid. Return the index of this cell.
*/
static int nodeRowidIndex(
  Rtree *pRtree, 
  RtreeNode *pNode, 
  i64 iRowid,
  int *piIndex
){
  int ii;
  int nCell = NCELL(pNode);
  for(ii=0; ii<nCell; ii++){
    if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
      *piIndex = ii;
      return SQLITE_OK;
    }
  }
  return SQLITE_CORRUPT_VTAB;
}

/*
** Return the index of the cell containing a pointer to node pNode
** in its parent. If pNode is the root node, return -1.
*/
static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
  RtreeNode *pParent = pNode->pParent;
  if( pParent ){
    return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
  }
  *piIndex = -1;
  return SQLITE_OK;
}

/* 
** Rtree virtual table module xNext method.
*/
static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
  Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab);
  RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
  int rc = SQLITE_OK;

  /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is
  ** already at EOF. It is against the rules to call the xNext() method of
  ** a cursor that has already reached EOF.
  */
  assert( pCsr->pNode );

  if( pCsr->iStrategy==1 ){
    /* This "scan" is a direct lookup by rowid. There is no next entry. */
    nodeRelease(pRtree, pCsr->pNode);
    pCsr->pNode = 0;
  }else{
    /* Move to the next entry that matches the configured constraints. */
    int iHeight = 0;
    while( pCsr->pNode ){
      RtreeNode *pNode = pCsr->pNode;
      int nCell = NCELL(pNode);
      for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){
        int isEof;
        rc = descendToCell(pRtree, pCsr, iHeight, &isEof);
        if( rc!=SQLITE_OK || !isEof ){
          return rc;
        }
      }
      pCsr->pNode = pNode->pParent;
      rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      nodeReference(pCsr->pNode);
      nodeRelease(pRtree, pNode);
      iHeight++;
    }
  }

  return rc;
}

/* 
** Rtree virtual table module xRowid method.
*/
static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
  Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
  RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;

  assert(pCsr->pNode);
  *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);

  return SQLITE_OK;
}

/* 
** Rtree virtual table module xColumn method.
*/
static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
  Rtree *pRtree = (Rtree *)cur->pVtab;
  RtreeCursor *pCsr = (RtreeCursor *)cur;

  if( i==0 ){
    i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
    sqlite3_result_int64(ctx, iRowid);
  }else{
    RtreeCoord c;
    nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);
    }else
#endif
    {
      assert( pRtree->eCoordType==RTREE_COORD_INT32 );
      sqlite3_result_int(ctx, c.i);
    }
  }

  return SQLITE_OK;
}

/* 
** Use nodeAcquire() to obtain the leaf node containing the record with 
** rowid iRowid. If successful, set *ppLeaf to point to the node and
** return SQLITE_OK. If there is no such record in the table, set
** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
** to zero and return an SQLite error code.
*/
static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){
  int rc;
  *ppLeaf = 0;
  sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
  if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
    i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
    rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
    sqlite3_reset(pRtree->pReadRowid);
  }else{
    rc = sqlite3_reset(pRtree->pReadRowid);
  }
  return rc;
}

/*
** This function is called to configure the RtreeConstraint object passed
** as the second argument for a MATCH constraint. The value passed as the
** first argument to this function is the right-hand operand to the MATCH
** operator.
*/
static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
  RtreeMatchArg *p;
  sqlite3_rtree_geometry *pGeom;
  int nBlob;

  /* Check that value is actually a blob. */
  if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR;

  /* Check that the blob is roughly the right size. */
  nBlob = sqlite3_value_bytes(pValue);
  if( nBlob<(int)sizeof(RtreeMatchArg) 
   || ((nBlob-sizeof(RtreeMatchArg))%sizeof(RtreeDValue))!=0
  ){
    return SQLITE_ERROR;
  }

  pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc(
      sizeof(sqlite3_rtree_geometry) + nBlob
  );
  if( !pGeom ) return SQLITE_NOMEM;
  memset(pGeom, 0, sizeof(sqlite3_rtree_geometry));
  p = (RtreeMatchArg *)&pGeom[1];

  memcpy(p, sqlite3_value_blob(pValue), nBlob);
  if( p->magic!=RTREE_GEOMETRY_MAGIC 
   || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(RtreeDValue))
  ){
    sqlite3_free(pGeom);
    return SQLITE_ERROR;
  }

  pGeom->pContext = p->pContext;
  pGeom->nParam = p->nParam;
  pGeom->aParam = p->aParam;

  pCons->xGeom = p->xGeom;
  pCons->pGeom = pGeom;
  return SQLITE_OK;
}

/* 
** Rtree virtual table module xFilter method.
*/
static int rtreeFilter(
  sqlite3_vtab_cursor *pVtabCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
  RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;

  RtreeNode *pRoot = 0;
  int ii;
  int rc = SQLITE_OK;

  rtreeReference(pRtree);

  freeCursorConstraints(pCsr);
  pCsr->iStrategy = idxNum;

  if( idxNum==1 ){
    /* Special case - lookup by rowid. */
    RtreeNode *pLeaf;        /* Leaf on which the required cell resides */
    i64 iRowid = sqlite3_value_int64(argv[0]);
    rc = findLeafNode(pRtree, iRowid, &pLeaf);
    pCsr->pNode = pLeaf; 
    if( pLeaf ){
      assert( rc==SQLITE_OK );
      rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell);
    }
  }else{
    /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array 
    ** with the configured constraints. 
    */
    if( argc>0 ){
      pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
      pCsr->nConstraint = argc;
      if( !pCsr->aConstraint ){
        rc = SQLITE_NOMEM;
      }else{
        memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
        assert( (idxStr==0 && argc==0)
                || (idxStr && (int)strlen(idxStr)==argc*2) );
        for(ii=0; ii<argc; ii++){
          RtreeConstraint *p = &pCsr->aConstraint[ii];
          p->op = idxStr[ii*2];
          p->iCoord = idxStr[ii*2+1]-'a';
          if( p->op==RTREE_MATCH ){
            /* A MATCH operator. The right-hand-side must be a blob that
            ** can be cast into an RtreeMatchArg object. One created using
            ** an sqlite3_rtree_geometry_callback() SQL user function.
            */
            rc = deserializeGeometry(argv[ii], p);
            if( rc!=SQLITE_OK ){
              break;
            }
          }else{
#ifdef SQLITE_RTREE_INT_ONLY
            p->rValue = sqlite3_value_int64(argv[ii]);
#else
            p->rValue = sqlite3_value_double(argv[ii]);
#endif
          }
        }
      }
    }
  
    if( rc==SQLITE_OK ){
      pCsr->pNode = 0;
      rc = nodeAcquire(pRtree, 1, 0, &pRoot);
    }
    if( rc==SQLITE_OK ){
      int isEof = 1;
      int nCell = NCELL(pRoot);
      pCsr->pNode = pRoot;
      for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){
        assert( pCsr->pNode==pRoot );
        rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof);
        if( !isEof ){
          break;
        }
      }
      if( rc==SQLITE_OK && isEof ){
        assert( pCsr->pNode==pRoot );
        nodeRelease(pRtree, pRoot);
        pCsr->pNode = 0;
      }
      assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) );
    }
  }

  rtreeRelease(pRtree);
  return rc;
}

/*
** Rtree virtual table module xBestIndex method. There are three
** table scan strategies to choose from (in order from most to 
** least desirable):
**
**   idxNum     idxStr        Strategy
**   ------------------------------------------------
**     1        Unused        Direct lookup by rowid.
**     2        See below     R-tree query or full-table scan.
**   ------------------------------------------------
**
** If strategy 1 is used, then idxStr is not meaningful. If strategy
** 2 is used, idxStr is formatted to contain 2 bytes for each 
** constraint used. The first two bytes of idxStr correspond to 
** the constraint in sqlite3_index_info.aConstraintUsage[] with
** (argvIndex==1) etc.
**
** The first of each pair of bytes in idxStr identifies the constraint
** operator as follows:
**
**   Operator    Byte Value
**   ----------------------
**      =        0x41 ('A')
**     <=        0x42 ('B')
**      <        0x43 ('C')
**     >=        0x44 ('D')
**      >        0x45 ('E')
**   MATCH       0x46 ('F')
**   ----------------------
**
** The second of each pair of bytes identifies the coordinate column
** to which the constraint applies. The leftmost coordinate column
** is 'a', the second from the left 'b' etc.
*/
static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int rc = SQLITE_OK;
  int ii;

  int iIdx = 0;
  char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
  memset(zIdxStr, 0, sizeof(zIdxStr));
  UNUSED_PARAMETER(tab);

  assert( pIdxInfo->idxStr==0 );
  for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
    struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];

    if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
      /* We have an equality constraint on the rowid. Use strategy 1. */
      int jj;
      for(jj=0; jj<ii; jj++){
        pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
        pIdxInfo->aConstraintUsage[jj].omit = 0;
      }
      pIdxInfo->idxNum = 1;
      pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
      pIdxInfo->aConstraintUsage[jj].omit = 1;

      /* This strategy involves a two rowid lookups on an B-Tree structures
      ** and then a linear search of an R-Tree node. This should be 
      ** considered almost as quick as a direct rowid lookup (for which 
      ** sqlite uses an internal cost of 0.0).
      */ 
      pIdxInfo->estimatedCost = 10.0;
      return SQLITE_OK;
    }

    if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
      u8 op;
      switch( p->op ){
        case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
        case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
        case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
        case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
        case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
        default:
          assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
          op = RTREE_MATCH; 
          break;
      }
      zIdxStr[iIdx++] = op;
      zIdxStr[iIdx++] = p->iColumn - 1 + 'a';
      pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
      pIdxInfo->aConstraintUsage[ii].omit = 1;
    }
  }

  pIdxInfo->idxNum = 2;
  pIdxInfo->needToFreeIdxStr = 1;
  if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
    return SQLITE_NOMEM;
  }
  assert( iIdx>=0 );
  pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1));
  return rc;
}

/*
** Return the N-dimensional volumn of the cell stored in *p.
*/
static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
  RtreeDValue area = (RtreeDValue)1;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])));
  }
  return area;
}

/*
** Return the margin length of cell p. The margin length is the sum
** of the objects size in each dimension.
*/
static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
  RtreeDValue margin = (RtreeDValue)0;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
  }
  return margin;
}

/*
** Store the union of cells p1 and p2 in p1.
*/
static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
  int ii;
  if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
    for(ii=0; ii<(pRtree->nDim*2); ii+=2){
      p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
      p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
    }
  }else{
    for(ii=0; ii<(pRtree->nDim*2); ii+=2){
      p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
      p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
    }
  }
}

/*
** Return true if the area covered by p2 is a subset of the area covered
** by p1. False otherwise.
*/
static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
  int ii;
  int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    RtreeCoord *a1 = &p1->aCoord[ii];
    RtreeCoord *a2 = &p2->aCoord[ii];
    if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) 
     || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) 
    ){
      return 0;
    }
  }
  return 1;
}

/*
** Return the amount cell p would grow by if it were unioned with pCell.
*/
static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
  RtreeDValue area;
  RtreeCell cell;
  memcpy(&cell, p, sizeof(RtreeCell));
  area = cellArea(pRtree, &cell);
  cellUnion(pRtree, &cell, pCell);
  return (cellArea(pRtree, &cell)-area);
}

#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
static RtreeDValue cellOverlap(
  Rtree *pRtree, 
  RtreeCell *p, 
  RtreeCell *aCell, 
  int nCell, 
  int iExclude
){
  int ii;
  RtreeDValue overlap = 0.0;
  for(ii=0; ii<nCell; ii++){
#if VARIANT_RSTARTREE_CHOOSESUBTREE
    if( ii!=iExclude )
#else
    assert( iExclude==-1 );
    UNUSED_PARAMETER(iExclude);
#endif
    {
      int jj;
      RtreeDValue o = (RtreeDValue)1;
      for(jj=0; jj<(pRtree->nDim*2); jj+=2){
        RtreeDValue x1, x2;

        x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
        x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));

        if( x2<x1 ){
          o = 0.0;
          break;
        }else{
          o = o * (x2-x1);
        }
      }
      overlap += o;
    }
  }
  return overlap;
}
#endif

#if VARIANT_RSTARTREE_CHOOSESUBTREE
static RtreeDValue cellOverlapEnlargement(
  Rtree *pRtree, 
  RtreeCell *p, 
  RtreeCell *pInsert, 
  RtreeCell *aCell, 
  int nCell, 
  int iExclude
){
  RtreeDValue before, after;
  before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
  cellUnion(pRtree, p, pInsert);
  after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
  return (after-before);
}
#endif


/*
** This function implements the ChooseLeaf algorithm from Gutman[84].
** ChooseSubTree in r*tree terminology.
*/
static int ChooseLeaf(
  Rtree *pRtree,               /* Rtree table */
  RtreeCell *pCell,            /* Cell to insert into rtree */
  int iHeight,                 /* Height of sub-tree rooted at pCell */
  RtreeNode **ppLeaf           /* OUT: Selected leaf page */
){
  int rc;
  int ii;
  RtreeNode *pNode;
  rc = nodeAcquire(pRtree, 1, 0, &pNode);

  for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
    int iCell;
    sqlite3_int64 iBest = 0;

    RtreeDValue fMinGrowth = 0.0;
    RtreeDValue fMinArea = 0.0;
#if VARIANT_RSTARTREE_CHOOSESUBTREE
    RtreeDValue fMinOverlap = 0.0;
    RtreeDValue overlap;
#endif

    int nCell = NCELL(pNode);
    RtreeCell cell;
    RtreeNode *pChild;

    RtreeCell *aCell = 0;

#if VARIANT_RSTARTREE_CHOOSESUBTREE
    if( ii==(pRtree->iDepth-1) ){
      int jj;
      aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell);
      if( !aCell ){
        rc = SQLITE_NOMEM;
        nodeRelease(pRtree, pNode);
        pNode = 0;
        continue;
      }
      for(jj=0; jj<nCell; jj++){
        nodeGetCell(pRtree, pNode, jj, &aCell[jj]);
      }
    }
#endif

    /* Select the child node which will be enlarged the least if pCell
    ** is inserted into it. Resolve ties by choosing the entry with
    ** the smallest area.
    */
    for(iCell=0; iCell<nCell; iCell++){
      int bBest = 0;
      RtreeDValue growth;
      RtreeDValue area;
      nodeGetCell(pRtree, pNode, iCell, &cell);
      growth = cellGrowth(pRtree, &cell, pCell);
      area = cellArea(pRtree, &cell);

#if VARIANT_RSTARTREE_CHOOSESUBTREE
      if( ii==(pRtree->iDepth-1) ){
        overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
      }else{
        overlap = 0.0;
      }
      if( (iCell==0) 
       || (overlap<fMinOverlap) 
       || (overlap==fMinOverlap && growth<fMinGrowth)
       || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea)
      ){
        bBest = 1;
        fMinOverlap = overlap;
      }
#else
      if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
        bBest = 1;
      }
#endif
      if( bBest ){
        fMinGrowth = growth;
        fMinArea = area;
        iBest = cell.iRowid;
      }
    }

    sqlite3_free(aCell);
    rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
    nodeRelease(pRtree, pNode);
    pNode = pChild;
  }

  *ppLeaf = pNode;
  return rc;
}

/*
** A cell with the same content as pCell has just been inserted into
** the node pNode. This function updates the bounding box cells in
** all ancestor elements.
*/
static int AdjustTree(
  Rtree *pRtree,                    /* Rtree table */
  RtreeNode *pNode,                 /* Adjust ancestry of this node. */
  RtreeCell *pCell                  /* This cell was just inserted */
){
  RtreeNode *p = pNode;
  while( p->pParent ){
    RtreeNode *pParent = p->pParent;
    RtreeCell cell;
    int iCell;

    if( nodeParentIndex(pRtree, p, &iCell) ){
      return SQLITE_CORRUPT_VTAB;
    }

    nodeGetCell(pRtree, pParent, iCell, &cell);
    if( !cellContains(pRtree, &cell, pCell) ){
      cellUnion(pRtree, &cell, pCell);
      nodeOverwriteCell(pRtree, pParent, &cell, iCell);
    }
 
    p = pParent;
  }
  return SQLITE_OK;
}

/*
** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
*/
static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
  sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
  sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
  sqlite3_step(pRtree->pWriteRowid);
  return sqlite3_reset(pRtree->pWriteRowid);
}

/*
** Write mapping (iNode->iPar) to the <rtree>_parent table.
*/
static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
  sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
  sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
  sqlite3_step(pRtree->pWriteParent);
  return sqlite3_reset(pRtree->pWriteParent);
}

static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);

#if VARIANT_GUTTMAN_LINEAR_SPLIT
/*
** Implementation of the linear variant of the PickNext() function from
** Guttman[84].
*/
static RtreeCell *LinearPickNext(
  Rtree *pRtree,
  RtreeCell *aCell, 
  int nCell, 
  RtreeCell *pLeftBox, 
  RtreeCell *pRightBox,
  int *aiUsed
){
  int ii;
  for(ii=0; aiUsed[ii]; ii++);
  aiUsed[ii] = 1;
  return &aCell[ii];
}

/*
** Implementation of the linear variant of the PickSeeds() function from
** Guttman[84].
*/
static void LinearPickSeeds(
  Rtree *pRtree,
  RtreeCell *aCell, 
  int nCell, 
  int *piLeftSeed, 
  int *piRightSeed
){
  int i;
  int iLeftSeed = 0;
  int iRightSeed = 1;
  RtreeDValue maxNormalInnerWidth = (RtreeDValue)0;

  /* Pick two "seed" cells from the array of cells. The algorithm used
  ** here is the LinearPickSeeds algorithm from Gutman[1984]. The 
  ** indices of the two seed cells in the array are stored in local
  ** variables iLeftSeek and iRightSeed.
  */
  for(i=0; i<pRtree->nDim; i++){
    RtreeDValue x1 = DCOORD(aCell[0].aCoord[i*2]);
    RtreeDValue x2 = DCOORD(aCell[0].aCoord[i*2+1]);
    RtreeDValue x3 = x1;
    RtreeDValue x4 = x2;
    int jj;

    int iCellLeft = 0;
    int iCellRight = 0;

    for(jj=1; jj<nCell; jj++){
      RtreeDValue left = DCOORD(aCell[jj].aCoord[i*2]);
      RtreeDValue right = DCOORD(aCell[jj].aCoord[i*2+1]);

      if( left<x1 ) x1 = left;
      if( right>x4 ) x4 = right;
      if( left>x3 ){
        x3 = left;
        iCellRight = jj;
      }
      if( right<x2 ){
        x2 = right;
        iCellLeft = jj;
      }
    }

    if( x4!=x1 ){
      RtreeDValue normalwidth = (x3 - x2) / (x4 - x1);
      if( normalwidth>maxNormalInnerWidth ){
        iLeftSeed = iCellLeft;
        iRightSeed = iCellRight;
      }
    }
  }

  *piLeftSeed = iLeftSeed;
  *piRightSeed = iRightSeed;
}
#endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */

#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
/*
** Implementation of the quadratic variant of the PickNext() function from
** Guttman[84].
*/
static RtreeCell *QuadraticPickNext(
  Rtree *pRtree,
  RtreeCell *aCell, 
  int nCell, 
  RtreeCell *pLeftBox, 
  RtreeCell *pRightBox,
  int *aiUsed
){
  #define FABS(a) ((a)<0.0?-1.0*(a):(a))

  int iSelect = -1;
  RtreeDValue fDiff;
  int ii;
  for(ii=0; ii<nCell; ii++){
    if( aiUsed[ii]==0 ){
      RtreeDValue left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
      RtreeDValue right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
      RtreeDValue diff = FABS(right-left);
      if( iSelect<0 || diff>fDiff ){
        fDiff = diff;
        iSelect = ii;
      }
    }
  }
  aiUsed[iSelect] = 1;
  return &aCell[iSelect];
}

/*
** Implementation of the quadratic variant of the PickSeeds() function from
** Guttman[84].
*/
static void QuadraticPickSeeds(
  Rtree *pRtree,
  RtreeCell *aCell, 
  int nCell, 
  int *piLeftSeed, 
  int *piRightSeed
){
  int ii;
  int jj;

  int iLeftSeed = 0;
  int iRightSeed = 1;
  RtreeDValue fWaste = 0.0;

  for(ii=0; ii<nCell; ii++){
    for(jj=ii+1; jj<nCell; jj++){
      RtreeDValue right = cellArea(pRtree, &aCell[jj]);
      RtreeDValue growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
      RtreeDValue waste = growth - right;

      if( waste>fWaste ){
        iLeftSeed = ii;
        iRightSeed = jj;
        fWaste = waste;
      }
    }
  }

  *piLeftSeed = iLeftSeed;
  *piRightSeed = iRightSeed;
}
#endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */

/*
** Arguments aIdx, aDistance and aSpare all point to arrays of size
** nIdx. The aIdx array contains the set of integers from 0 to 
** (nIdx-1) in no particular order. This function sorts the values
** in aIdx according to the indexed values in aDistance. For
** example, assuming the inputs:
**
**   aIdx      = { 0,   1,   2,   3 }
**   aDistance = { 5.0, 2.0, 7.0, 6.0 }
**
** this function sets the aIdx array to contain:
**
**   aIdx      = { 0,   1,   2,   3 }
**
** The aSpare array is used as temporary working space by the
** sorting algorithm.
*/
static void SortByDistance(
  int *aIdx, 
  int nIdx, 
  RtreeDValue *aDistance, 
  int *aSpare
){
  if( nIdx>1 ){
    int iLeft = 0;
    int iRight = 0;

    int nLeft = nIdx/2;
    int nRight = nIdx-nLeft;
    int *aLeft = aIdx;
    int *aRight = &aIdx[nLeft];

    SortByDistance(aLeft, nLeft, aDistance, aSpare);
    SortByDistance(aRight, nRight, aDistance, aSpare);

    memcpy(aSpare, aLeft, sizeof(int)*nLeft);
    aLeft = aSpare;

    while( iLeft<nLeft || iRight<nRight ){
      if( iLeft==nLeft ){
        aIdx[iLeft+iRight] = aRight[iRight];
        iRight++;
      }else if( iRight==nRight ){
        aIdx[iLeft+iRight] = aLeft[iLeft];
        iLeft++;
      }else{
        RtreeDValue fLeft = aDistance[aLeft[iLeft]];
        RtreeDValue fRight = aDistance[aRight[iRight]];
        if( fLeft<fRight ){
          aIdx[iLeft+iRight] = aLeft[iLeft];
          iLeft++;
        }else{
          aIdx[iLeft+iRight] = aRight[iRight];
          iRight++;
        }
      }
    }

#if 0
    /* Check that the sort worked */
    {
      int jj;
      for(jj=1; jj<nIdx; jj++){
        RtreeDValue left = aDistance[aIdx[jj-1]];
        RtreeDValue right = aDistance[aIdx[jj]];
        assert( left<=right );
      }
    }
#endif
  }
}

/*
** Arguments aIdx, aCell and aSpare all point to arrays of size
** nIdx. The aIdx array contains the set of integers from 0 to 
** (nIdx-1) in no particular order. This function sorts the values
** in aIdx according to dimension iDim of the cells in aCell. The
** minimum value of dimension iDim is considered first, the
** maximum used to break ties.
**
** The aSpare array is used as temporary working space by the
** sorting algorithm.
*/
static void SortByDimension(
  Rtree *pRtree,
  int *aIdx, 
  int nIdx, 
  int iDim, 
  RtreeCell *aCell, 
  int *aSpare
){
  if( nIdx>1 ){

    int iLeft = 0;
    int iRight = 0;

    int nLeft = nIdx/2;
    int nRight = nIdx-nLeft;
    int *aLeft = aIdx;
    int *aRight = &aIdx[nLeft];

    SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
    SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);

    memcpy(aSpare, aLeft, sizeof(int)*nLeft);
    aLeft = aSpare;
    while( iLeft<nLeft || iRight<nRight ){
      RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
      RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
      RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
      RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
      if( (iLeft!=nLeft) && ((iRight==nRight)
       || (xleft1<xright1)
       || (xleft1==xright1 && xleft2<xright2)
      )){
        aIdx[iLeft+iRight] = aLeft[iLeft];
        iLeft++;
      }else{
        aIdx[iLeft+iRight] = aRight[iRight];
        iRight++;
      }
    }

#if 0
    /* Check that the sort worked */
    {
      int jj;
      for(jj=1; jj<nIdx; jj++){
        RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
        RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
        RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
        RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
        assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
      }
    }
#endif
  }
}

#if VARIANT_RSTARTREE_SPLIT
/*
** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
*/
static int splitNodeStartree(
  Rtree *pRtree,
  RtreeCell *aCell,
  int nCell,
  RtreeNode *pLeft,
  RtreeNode *pRight,
  RtreeCell *pBboxLeft,
  RtreeCell *pBboxRight
){
  int **aaSorted;
  int *aSpare;
  int ii;

  int iBestDim = 0;
  int iBestSplit = 0;
  RtreeDValue fBestMargin = 0.0;

  int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));

  aaSorted = (int **)sqlite3_malloc(nByte);
  if( !aaSorted ){
    return SQLITE_NOMEM;
  }

  aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
  memset(aaSorted, 0, nByte);
  for(ii=0; ii<pRtree->nDim; ii++){
    int jj;
    aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
    for(jj=0; jj<nCell; jj++){
      aaSorted[ii][jj] = jj;
    }
    SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
  }

  for(ii=0; ii<pRtree->nDim; ii++){
    RtreeDValue margin = 0.0;
    RtreeDValue fBestOverlap = 0.0;
    RtreeDValue fBestArea = 0.0;
    int iBestLeft = 0;
    int nLeft;

    for(
      nLeft=RTREE_MINCELLS(pRtree); 
      nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 
      nLeft++
    ){
      RtreeCell left;
      RtreeCell right;
      int kk;
      RtreeDValue overlap;
      RtreeDValue area;

      memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
      memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
      for(kk=1; kk<(nCell-1); kk++){
        if( kk<nLeft ){
          cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
        }else{
          cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
        }
      }
      margin += cellMargin(pRtree, &left);
      margin += cellMargin(pRtree, &right);
      overlap = cellOverlap(pRtree, &left, &right, 1, -1);
      area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
      if( (nLeft==RTREE_MINCELLS(pRtree))
       || (overlap<fBestOverlap)
       || (overlap==fBestOverlap && area<fBestArea)
      ){
        iBestLeft = nLeft;
        fBestOverlap = overlap;
        fBestArea = area;
      }
    }

    if( ii==0 || margin<fBestMargin ){
      iBestDim = ii;
      fBestMargin = margin;
      iBestSplit = iBestLeft;
    }
  }

  memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
  memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
  for(ii=0; ii<nCell; ii++){
    RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
    RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
    RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
    nodeInsertCell(pRtree, pTarget, pCell);
    cellUnion(pRtree, pBbox, pCell);
  }

  sqlite3_free(aaSorted);
  return SQLITE_OK;
}
#endif

#if VARIANT_GUTTMAN_SPLIT
/*
** Implementation of the regular R-tree SplitNode from Guttman[1984].
*/
static int splitNodeGuttman(
  Rtree *pRtree,
  RtreeCell *aCell,
  int nCell,
  RtreeNode *pLeft,
  RtreeNode *pRight,
  RtreeCell *pBboxLeft,
  RtreeCell *pBboxRight
){
  int iLeftSeed = 0;
  int iRightSeed = 1;
  int *aiUsed;
  int i;

  aiUsed = sqlite3_malloc(sizeof(int)*nCell);
  if( !aiUsed ){
    return SQLITE_NOMEM;
  }
  memset(aiUsed, 0, sizeof(int)*nCell);

  PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed);

  memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell));
  memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell));
  nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]);
  nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
  aiUsed[iLeftSeed] = 1;
  aiUsed[iRightSeed] = 1;

  for(i=nCell-2; i>0; i--){
    RtreeCell *pNext;
    pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
    RtreeDValue diff =  
      cellGrowth(pRtree, pBboxLeft, pNext) - 
      cellGrowth(pRtree, pBboxRight, pNext)
    ;
    if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
     || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
    ){
      nodeInsertCell(pRtree, pRight, pNext);
      cellUnion(pRtree, pBboxRight, pNext);
    }else{
      nodeInsertCell(pRtree, pLeft, pNext);
      cellUnion(pRtree, pBboxLeft, pNext);
    }
  }

  sqlite3_free(aiUsed);
  return SQLITE_OK;
}
#endif

static int updateMapping(
  Rtree *pRtree, 
  i64 iRowid, 
  RtreeNode *pNode, 
  int iHeight
){
  int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
  xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
  if( iHeight>0 ){
    RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
    if( pChild ){
      nodeRelease(pRtree, pChild->pParent);
      nodeReference(pNode);
      pChild->pParent = pNode;
    }
  }
  return xSetMapping(pRtree, iRowid, pNode->iNode);
}

static int SplitNode(
  Rtree *pRtree,
  RtreeNode *pNode,
  RtreeCell *pCell,
  int iHeight
){
  int i;
  int newCellIsRight = 0;

  int rc = SQLITE_OK;
  int nCell = NCELL(pNode);
  RtreeCell *aCell;
  int *aiUsed;

  RtreeNode *pLeft = 0;
  RtreeNode *pRight = 0;

  RtreeCell leftbbox;
  RtreeCell rightbbox;

  /* Allocate an array and populate it with a copy of pCell and 
  ** all cells from node pLeft. Then zero the original node.
  */
  aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
  if( !aCell ){
    rc = SQLITE_NOMEM;
    goto splitnode_out;
  }
  aiUsed = (int *)&aCell[nCell+1];
  memset(aiUsed, 0, sizeof(int)*(nCell+1));
  for(i=0; i<nCell; i++){
    nodeGetCell(pRtree, pNode, i, &aCell[i]);
  }
  nodeZero(pRtree, pNode);
  memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
  nCell++;

  if( pNode->iNode==1 ){
    pRight = nodeNew(pRtree, pNode);
    pLeft = nodeNew(pRtree, pNode);
    pRtree->iDepth++;
    pNode->isDirty = 1;
    writeInt16(pNode->zData, pRtree->iDepth);
  }else{
    pLeft = pNode;
    pRight = nodeNew(pRtree, pLeft->pParent);
    nodeReference(pLeft);
  }

  if( !pLeft || !pRight ){
    rc = SQLITE_NOMEM;
    goto splitnode_out;
  }

  memset(pLeft->zData, 0, pRtree->iNodeSize);
  memset(pRight->zData, 0, pRtree->iNodeSize);

  rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox);
  if( rc!=SQLITE_OK ){
    goto splitnode_out;
  }

  /* Ensure both child nodes have node numbers assigned to them by calling
  ** nodeWrite(). Node pRight always needs a node number, as it was created
  ** by nodeNew() above. But node pLeft sometimes already has a node number.
  ** In this case avoid the all to nodeWrite().
  */
  if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
   || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
  ){
    goto splitnode_out;
  }

  rightbbox.iRowid = pRight->iNode;
  leftbbox.iRowid = pLeft->iNode;

  if( pNode->iNode==1 ){
    rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
    if( rc!=SQLITE_OK ){
      goto splitnode_out;
    }
  }else{
    RtreeNode *pParent = pLeft->pParent;
    int iCell;
    rc = nodeParentIndex(pRtree, pLeft, &iCell);
    if( rc==SQLITE_OK ){
      nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
      rc = AdjustTree(pRtree, pParent, &leftbbox);
    }
    if( rc!=SQLITE_OK ){
      goto splitnode_out;
    }
  }
  if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
    goto splitnode_out;
  }

  for(i=0; i<NCELL(pRight); i++){
    i64 iRowid = nodeGetRowid(pRtree, pRight, i);
    rc = updateMapping(pRtree, iRowid, pRight, iHeight);
    if( iRowid==pCell->iRowid ){
      newCellIsRight = 1;
    }
    if( rc!=SQLITE_OK ){
      goto splitnode_out;
    }
  }
  if( pNode->iNode==1 ){
    for(i=0; i<NCELL(pLeft); i++){
      i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
      rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
      if( rc!=SQLITE_OK ){
        goto splitnode_out;
      }
    }
  }else if( newCellIsRight==0 ){
    rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
  }

  if( rc==SQLITE_OK ){
    rc = nodeRelease(pRtree, pRight);
    pRight = 0;
  }
  if( rc==SQLITE_OK ){
    rc = nodeRelease(pRtree, pLeft);
    pLeft = 0;
  }

splitnode_out:
  nodeRelease(pRtree, pRight);
  nodeRelease(pRtree, pLeft);
  sqlite3_free(aCell);
  return rc;
}

/*
** If node pLeaf is not the root of the r-tree and its pParent pointer is 
** still NULL, load all ancestor nodes of pLeaf into memory and populate
** the pLeaf->pParent chain all the way up to the root node.
**
** This operation is required when a row is deleted (or updated - an update
** is implemented as a delete followed by an insert). SQLite provides the
** rowid of the row to delete, which can be used to find the leaf on which
** the entry resides (argument pLeaf). Once the leaf is located, this 
** function is called to determine its ancestry.
*/
static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
  int rc = SQLITE_OK;
  RtreeNode *pChild = pLeaf;
  while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
    int rc2 = SQLITE_OK;          /* sqlite3_reset() return code */
    sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
    rc = sqlite3_step(pRtree->pReadParent);
    if( rc==SQLITE_ROW ){
      RtreeNode *pTest;           /* Used to test for reference loops */
      i64 iNode;                  /* Node number of parent node */

      /* Before setting pChild->pParent, test that we are not creating a
      ** loop of references (as we would if, say, pChild==pParent). We don't
      ** want to do this as it leads to a memory leak when trying to delete
      ** the referenced counted node structures.
      */
      iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
      for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
      if( !pTest ){
        rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
      }
    }
    rc = sqlite3_reset(pRtree->pReadParent);
    if( rc==SQLITE_OK ) rc = rc2;
    if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB;
    pChild = pChild->pParent;
  }
  return rc;
}

static int deleteCell(Rtree *, RtreeNode *, int, int);

static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
  int rc;
  int rc2;
  RtreeNode *pParent = 0;
  int iCell;

  assert( pNode->nRef==1 );

  /* Remove the entry in the parent cell. */
  rc = nodeParentIndex(pRtree, pNode, &iCell);
  if( rc==SQLITE_OK ){
    pParent = pNode->pParent;
    pNode->pParent = 0;
    rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
  }
  rc2 = nodeRelease(pRtree, pParent);
  if( rc==SQLITE_OK ){
    rc = rc2;
  }
  if( rc!=SQLITE_OK ){
    return rc;
  }

  /* Remove the xxx_node entry. */
  sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
  sqlite3_step(pRtree->pDeleteNode);
  if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
    return rc;
  }

  /* Remove the xxx_parent entry. */
  sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
  sqlite3_step(pRtree->pDeleteParent);
  if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
    return rc;
  }
  
  /* Remove the node from the in-memory hash table and link it into
  ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
  */
  nodeHashDelete(pRtree, pNode);
  pNode->iNode = iHeight;
  pNode->pNext = pRtree->pDeleted;
  pNode->nRef++;
  pRtree->pDeleted = pNode;

  return SQLITE_OK;
}

static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
  RtreeNode *pParent = pNode->pParent;
  int rc = SQLITE_OK; 
  if( pParent ){
    int ii; 
    int nCell = NCELL(pNode);
    RtreeCell box;                            /* Bounding box for pNode */
    nodeGetCell(pRtree, pNode, 0, &box);
    for(ii=1; ii<nCell; ii++){
      RtreeCell cell;
      nodeGetCell(pRtree, pNode, ii, &cell);
      cellUnion(pRtree, &box, &cell);
    }
    box.iRowid = pNode->iNode;
    rc = nodeParentIndex(pRtree, pNode, &ii);
    if( rc==SQLITE_OK ){
      nodeOverwriteCell(pRtree, pParent, &box, ii);
      rc = fixBoundingBox(pRtree, pParent);
    }
  }
  return rc;
}

/*
** Delete the cell at index iCell of node pNode. After removing the
** cell, adjust the r-tree data structure if required.
*/
static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
  RtreeNode *pParent;
  int rc;

  if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
    return rc;
  }

  /* Remove the cell from the node. This call just moves bytes around
  ** the in-memory node image, so it cannot fail.
  */
  nodeDeleteCell(pRtree, pNode, iCell);

  /* If the node is not the tree root and now has less than the minimum
  ** number of cells, remove it from the tree. Otherwise, update the
  ** cell in the parent node so that it tightly contains the updated
  ** node.
  */
  pParent = pNode->pParent;
  assert( pParent || pNode->iNode==1 );
  if( pParent ){
    if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
      rc = removeNode(pRtree, pNode, iHeight);
    }else{
      rc = fixBoundingBox(pRtree, pNode);
    }
  }

  return rc;
}

static int Reinsert(
  Rtree *pRtree, 
  RtreeNode *pNode, 
  RtreeCell *pCell, 
  int iHeight
){
  int *aOrder;
  int *aSpare;
  RtreeCell *aCell;
  RtreeDValue *aDistance;
  int nCell;
  RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS];
  int iDim;
  int ii;
  int rc = SQLITE_OK;
  int n;

  memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS);

  nCell = NCELL(pNode)+1;
  n = (nCell+1)&(~1);

  /* Allocate the buffers used by this operation. The allocation is
  ** relinquished before this function returns.
  */
  aCell = (RtreeCell *)sqlite3_malloc(n * (
    sizeof(RtreeCell)     +         /* aCell array */
    sizeof(int)           +         /* aOrder array */
    sizeof(int)           +         /* aSpare array */
    sizeof(RtreeDValue)             /* aDistance array */
  ));
  if( !aCell ){
    return SQLITE_NOMEM;
  }
  aOrder    = (int *)&aCell[n];
  aSpare    = (int *)&aOrder[n];
  aDistance = (RtreeDValue *)&aSpare[n];

  for(ii=0; ii<nCell; ii++){
    if( ii==(nCell-1) ){
      memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
    }else{
      nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
    }
    aOrder[ii] = ii;
    for(iDim=0; iDim<pRtree->nDim; iDim++){
      aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
      aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
    }
  }
  for(iDim=0; iDim<pRtree->nDim; iDim++){
    aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2));
  }

  for(ii=0; ii<nCell; ii++){
    aDistance[ii] = 0.0;
    for(iDim=0; iDim<pRtree->nDim; iDim++){
      RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - 
                               DCOORD(aCell[ii].aCoord[iDim*2]));
      aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
    }
  }

  SortByDistance(aOrder, nCell, aDistance, aSpare);
  nodeZero(pRtree, pNode);

  for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
    RtreeCell *p = &aCell[aOrder[ii]];
    nodeInsertCell(pRtree, pNode, p);
    if( p->iRowid==pCell->iRowid ){
      if( iHeight==0 ){
        rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
      }else{
        rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
      }
    }
  }
  if( rc==SQLITE_OK ){
    rc = fixBoundingBox(pRtree, pNode);
  }
  for(; rc==SQLITE_OK && ii<nCell; ii++){
    /* Find a node to store this cell in. pNode->iNode currently contains
    ** the height of the sub-tree headed by the cell.
    */
    RtreeNode *pInsert;
    RtreeCell *p = &aCell[aOrder[ii]];
    rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
    if( rc==SQLITE_OK ){
      int rc2;
      rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
      rc2 = nodeRelease(pRtree, pInsert);
      if( rc==SQLITE_OK ){
        rc = rc2;
      }
    }
  }

  sqlite3_free(aCell);
  return rc;
}

/*
** Insert cell pCell into node pNode. Node pNode is the head of a 
** subtree iHeight high (leaf nodes have iHeight==0).
*/
static int rtreeInsertCell(
  Rtree *pRtree,
  RtreeNode *pNode,
  RtreeCell *pCell,
  int iHeight
){
  int rc = SQLITE_OK;
  if( iHeight>0 ){
    RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
    if( pChild ){
      nodeRelease(pRtree, pChild->pParent);
      nodeReference(pNode);
      pChild->pParent = pNode;
    }
  }
  if( nodeInsertCell(pRtree, pNode, pCell) ){
#if VARIANT_RSTARTREE_REINSERT
    if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
      rc = SplitNode(pRtree, pNode, pCell, iHeight);
    }else{
      pRtree->iReinsertHeight = iHeight;
      rc = Reinsert(pRtree, pNode, pCell, iHeight);
    }
#else
    rc = SplitNode(pRtree, pNode, pCell, iHeight);
#endif
  }else{
    rc = AdjustTree(pRtree, pNode, pCell);
    if( rc==SQLITE_OK ){
      if( iHeight==0 ){
        rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
      }else{
        rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
      }
    }
  }
  return rc;
}

static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
  int ii;
  int rc = SQLITE_OK;
  int nCell = NCELL(pNode);

  for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
    RtreeNode *pInsert;
    RtreeCell cell;
    nodeGetCell(pRtree, pNode, ii, &cell);

    /* Find a node to store this cell in. pNode->iNode currently contains
    ** the height of the sub-tree headed by the cell.
    */
    rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert);
    if( rc==SQLITE_OK ){
      int rc2;
      rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode);
      rc2 = nodeRelease(pRtree, pInsert);
      if( rc==SQLITE_OK ){
        rc = rc2;
      }
    }
  }
  return rc;
}

/*
** Select a currently unused rowid for a new r-tree record.
*/
static int newRowid(Rtree *pRtree, i64 *piRowid){
  int rc;
  sqlite3_bind_null(pRtree->pWriteRowid, 1);
  sqlite3_bind_null(pRtree->pWriteRowid, 2);
  sqlite3_step(pRtree->pWriteRowid);
  rc = sqlite3_reset(pRtree->pWriteRowid);
  *piRowid = sqlite3_last_insert_rowid(pRtree->db);
  return rc;
}

/*
** Remove the entry with rowid=iDelete from the r-tree structure.
*/
static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
  int rc;                         /* Return code */
  RtreeNode *pLeaf = 0;           /* Leaf node containing record iDelete */
  int iCell;                      /* Index of iDelete cell in pLeaf */
  RtreeNode *pRoot;               /* Root node of rtree structure */


  /* Obtain a reference to the root node to initialize Rtree.iDepth */
  rc = nodeAcquire(pRtree, 1, 0, &pRoot);

  /* Obtain a reference to the leaf node that contains the entry 
  ** about to be deleted. 
  */
  if( rc==SQLITE_OK ){
    rc = findLeafNode(pRtree, iDelete, &pLeaf);
  }

  /* Delete the cell in question from the leaf node. */
  if( rc==SQLITE_OK ){
    int rc2;
    rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
    if( rc==SQLITE_OK ){
      rc = deleteCell(pRtree, pLeaf, iCell, 0);
    }
    rc2 = nodeRelease(pRtree, pLeaf);
    if( rc==SQLITE_OK ){
      rc = rc2;
    }
  }

  /* Delete the corresponding entry in the <rtree>_rowid table. */
  if( rc==SQLITE_OK ){
    sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
    sqlite3_step(pRtree->pDeleteRowid);
    rc = sqlite3_reset(pRtree->pDeleteRowid);
  }

  /* Check if the root node now has exactly one child. If so, remove
  ** it, schedule the contents of the child for reinsertion and 
  ** reduce the tree height by one.
  **
  ** This is equivalent to copying the contents of the child into
  ** the root node (the operation that Gutman's paper says to perform 
  ** in this scenario).
  */
  if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
    int rc2;
    RtreeNode *pChild;
    i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
    rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
    if( rc==SQLITE_OK ){
      rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
    }
    rc2 = nodeRelease(pRtree, pChild);
    if( rc==SQLITE_OK ) rc = rc2;
    if( rc==SQLITE_OK ){
      pRtree->iDepth--;
      writeInt16(pRoot->zData, pRtree->iDepth);
      pRoot->isDirty = 1;
    }
  }

  /* Re-insert the contents of any underfull nodes removed from the tree. */
  for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
    if( rc==SQLITE_OK ){
      rc = reinsertNodeContent(pRtree, pLeaf);
    }
    pRtree->pDeleted = pLeaf->pNext;
    sqlite3_free(pLeaf);
  }

  /* Release the reference to the root node. */
  if( rc==SQLITE_OK ){
    rc = nodeRelease(pRtree, pRoot);
  }else{
    nodeRelease(pRtree, pRoot);
  }

  return rc;
}

/*
** Rounding constants for float->double conversion.
*/
#define RNDTOWARDS  (1.0 - 1.0/8388608.0)  /* Round towards zero */
#define RNDAWAY     (1.0 + 1.0/8388608.0)  /* Round away from zero */

#if !defined(SQLITE_RTREE_INT_ONLY)
/*
** Convert an sqlite3_value into an RtreeValue (presumably a float)
** while taking care to round toward negative or positive, respectively.
*/
static RtreeValue rtreeValueDown(sqlite3_value *v){
  double d = sqlite3_value_double(v);
  float f = (float)d;
  if( f>d ){
    f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS));
  }
  return f;
}
static RtreeValue rtreeValueUp(sqlite3_value *v){
  double d = sqlite3_value_double(v);
  float f = (float)d;
  if( f<d ){
    f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY));
  }
  return f;
}
#endif /* !defined(SQLITE_RTREE_INT_ONLY) */


/*
** The xUpdate method for rtree module virtual tables.
*/
static int rtreeUpdate(
  sqlite3_vtab *pVtab, 
  int nData, 
  sqlite3_value **azData, 
  sqlite_int64 *pRowid
){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_OK;
  RtreeCell cell;                 /* New cell to insert if nData>1 */
  int bHaveRowid = 0;             /* Set to 1 after new rowid is determined */

  rtreeReference(pRtree);
  assert(nData>=1);

  /* Constraint handling. A write operation on an r-tree table may return
  ** SQLITE_CONSTRAINT for two reasons:
  **
  **   1. A duplicate rowid value, or
  **   2. The supplied data violates the "x2>=x1" constraint.
  **
  ** In the first case, if the conflict-handling mode is REPLACE, then
  ** the conflicting row can be removed before proceeding. In the second
  ** case, SQLITE_CONSTRAINT must be returned regardless of the
  ** conflict-handling mode specified by the user.
  */
  if( nData>1 ){
    int ii;

    /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
    assert( nData==(pRtree->nDim*2 + 3) );
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]);
        cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]);
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }
      }
    }else
#endif
    {
      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
        cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }
      }
    }

    /* If a rowid value was supplied, check if it is already present in 
    ** the table. If so, the constraint has failed. */
    if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){
      cell.iRowid = sqlite3_value_int64(azData[2]);
      if( sqlite3_value_type(azData[0])==SQLITE_NULL
       || sqlite3_value_int64(azData[0])!=cell.iRowid
      ){
        int steprc;
        sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
        steprc = sqlite3_step(pRtree->pReadRowid);
        rc = sqlite3_reset(pRtree->pReadRowid);
        if( SQLITE_ROW==steprc ){
          if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
            rc = rtreeDeleteRowid(pRtree, cell.iRowid);
          }else{
            rc = SQLITE_CONSTRAINT;
            goto constraint;
          }
        }
      }
      bHaveRowid = 1;
    }
  }

  /* If azData[0] is not an SQL NULL value, it is the rowid of a
  ** record to delete from the r-tree table. The following block does
  ** just that.
  */
  if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
    rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0]));
  }

  /* If the azData[] array contains more than one element, elements
  ** (azData[2]..azData[argc-1]) contain a new record to insert into
  ** the r-tree structure.
  */
  if( rc==SQLITE_OK && nData>1 ){
    /* Insert the new record into the r-tree */
    RtreeNode *pLeaf = 0;

    /* Figure out the rowid of the new row. */
    if( bHaveRowid==0 ){
      rc = newRowid(pRtree, &cell.iRowid);
    }
    *pRowid = cell.iRowid;

    if( rc==SQLITE_OK ){
      rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
    }
    if( rc==SQLITE_OK ){
      int rc2;
      pRtree->iReinsertHeight = -1;
      rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
      rc2 = nodeRelease(pRtree, pLeaf);
      if( rc==SQLITE_OK ){
        rc = rc2;
      }
    }
  }

constraint:
  rtreeRelease(pRtree);
  return rc;
}

/*
** The xRename method for rtree module virtual tables.
*/
static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_NOMEM;
  char *zSql = sqlite3_mprintf(
    "ALTER TABLE %Q.'%q_node'   RENAME TO \"%w_node\";"
    "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
    "ALTER TABLE %Q.'%q_rowid'  RENAME TO \"%w_rowid\";"
    , pRtree->zDb, pRtree->zName, zNewName 
    , pRtree->zDb, pRtree->zName, zNewName 
    , pRtree->zDb, pRtree->zName, zNewName
  );
  if( zSql ){
    rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
    sqlite3_free(zSql);
  }
  return rc;
}

static sqlite3_module rtreeModule = {
  0,                          /* iVersion */
  rtreeCreate,                /* xCreate - create a table */
  rtreeConnect,               /* xConnect - connect to an existing table */
  rtreeBestIndex,             /* xBestIndex - Determine search strategy */
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
  rtreeDestroy,               /* xDestroy - Drop a table */
  rtreeOpen,                  /* xOpen - open a cursor */
  rtreeClose,                 /* xClose - close a cursor */
  rtreeFilter,                /* xFilter - configure scan constraints */
  rtreeNext,                  /* xNext - advance a cursor */
  rtreeEof,                   /* xEof */
  rtreeColumn,                /* xColumn - read data */
  rtreeRowid,                 /* xRowid - read data */
  rtreeUpdate,                /* xUpdate - write data */
  0,                          /* xBegin - begin transaction */
  0,                          /* xSync - sync transaction */
  0,                          /* xCommit - commit transaction */
  0,                          /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  0,                          /* xSavepoint */
  0,                          /* xRelease */
  0                           /* xRollbackTo */
};

static int rtreeSqlInit(
  Rtree *pRtree, 
  sqlite3 *db, 
  const char *zDb, 
  const char *zPrefix, 
  int isCreate
){
  int rc = SQLITE_OK;

  #define N_STATEMENT 9
  static const char *azSql[N_STATEMENT] = {
    /* Read and write the xxx_node table */
    "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
    "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
    "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",

    /* Read and write the xxx_rowid table */
    "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
    "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
    "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",

    /* Read and write the xxx_parent table */
    "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
    "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
    "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
  };
  sqlite3_stmt **appStmt[N_STATEMENT];
  int i;

  pRtree->db = db;

  if( isCreate ){
    char *zCreate = sqlite3_mprintf(
"CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);"
"INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
      zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
    );
    if( !zCreate ){
      return SQLITE_NOMEM;
    }
    rc = sqlite3_exec(db, zCreate, 0, 0, 0);
    sqlite3_free(zCreate);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }

  appStmt[0] = &pRtree->pReadNode;
  appStmt[1] = &pRtree->pWriteNode;
  appStmt[2] = &pRtree->pDeleteNode;
  appStmt[3] = &pRtree->pReadRowid;
  appStmt[4] = &pRtree->pWriteRowid;
  appStmt[5] = &pRtree->pDeleteRowid;
  appStmt[6] = &pRtree->pReadParent;
  appStmt[7] = &pRtree->pWriteParent;
  appStmt[8] = &pRtree->pDeleteParent;

  for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
    char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
    if( zSql ){
      rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); 
    }else{
      rc = SQLITE_NOMEM;
    }
    sqlite3_free(zSql);
  }

  return rc;
}

/*
** The second argument to this function contains the text of an SQL statement
** that returns a single integer value. The statement is compiled and executed
** using database connection db. If successful, the integer value returned
** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
** code is returned and the value of *piVal after returning is not defined.
*/
static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
  int rc = SQLITE_NOMEM;
  if( zSql ){
    sqlite3_stmt *pStmt = 0;
    rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
    if( rc==SQLITE_OK ){
      if( SQLITE_ROW==sqlite3_step(pStmt) ){
        *piVal = sqlite3_column_int(pStmt, 0);
      }
      rc = sqlite3_finalize(pStmt);
    }
  }
  return rc;
}

/*
** This function is called from within the xConnect() or xCreate() method to
** determine the node-size used by the rtree table being created or connected
** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
** Otherwise, an SQLite error code is returned.
**
** If this function is being called as part of an xConnect(), then the rtree
** table already exists. In this case the node-size is determined by inspecting
** the root node of the tree.
**
** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. 
** This ensures that each node is stored on a single database page. If the 
** database page-size is so large that more than RTREE_MAXCELLS entries 
** would fit in a single node, use a smaller node-size.
*/
static int getNodeSize(
  sqlite3 *db,                    /* Database handle */
  Rtree *pRtree,                  /* Rtree handle */
  int isCreate,                   /* True for xCreate, false for xConnect */
  char **pzErr                    /* OUT: Error message, if any */
){
  int rc;
  char *zSql;
  if( isCreate ){
    int iPageSize = 0;
    zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
    rc = getIntFromStmt(db, zSql, &iPageSize);
    if( rc==SQLITE_OK ){
      pRtree->iNodeSize = iPageSize-64;
      if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
        pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
      }
    }else{
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }
  }else{
    zSql = sqlite3_mprintf(
        "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
        pRtree->zDb, pRtree->zName
    );
    rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
    if( rc!=SQLITE_OK ){
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }
  }

  sqlite3_free(zSql);
  return rc;
}

/* 
** This function is the implementation of both the xConnect and xCreate
** methods of the r-tree virtual table.
**
**   argv[0]   -> module name
**   argv[1]   -> database name
**   argv[2]   -> table name
**   argv[...] -> column names...
*/
static int rtreeInit(
  sqlite3 *db,                        /* Database connection */
  void *pAux,                         /* One of the RTREE_COORD_* constants */
  int argc, const char *const*argv,   /* Parameters to CREATE TABLE statement */
  sqlite3_vtab **ppVtab,              /* OUT: New virtual table */
  char **pzErr,                       /* OUT: Error message, if any */
  int isCreate                        /* True for xCreate, false for xConnect */
){
  int rc = SQLITE_OK;
  Rtree *pRtree;
  int nDb;              /* Length of string argv[1] */
  int nName;            /* Length of string argv[2] */
  int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);

  const char *aErrMsg[] = {
    0,                                                    /* 0 */
    "Wrong number of columns for an rtree table",         /* 1 */
    "Too few columns for an rtree table",                 /* 2 */
    "Too many columns for an rtree table"                 /* 3 */
  };

  int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
  if( aErrMsg[iErr] ){
    *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
    return SQLITE_ERROR;
  }

  sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);

  /* Allocate the sqlite3_vtab structure */
  nDb = (int)strlen(argv[1]);
  nName = (int)strlen(argv[2]);
  pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
  if( !pRtree ){
    return SQLITE_NOMEM;
  }
  memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
  pRtree->nBusy = 1;
  pRtree->base.pModule = &rtreeModule;
  pRtree->zDb = (char *)&pRtree[1];
  pRtree->zName = &pRtree->zDb[nDb+1];
  pRtree->nDim = (argc-4)/2;
  pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
  pRtree->eCoordType = eCoordType;
  memcpy(pRtree->zDb, argv[1], nDb);
  memcpy(pRtree->zName, argv[2], nName);

  /* Figure out the node size to use. */
  rc = getNodeSize(db, pRtree, isCreate, pzErr);

  /* Create/Connect to the underlying relational database schema. If
  ** that is successful, call sqlite3_declare_vtab() to configure
  ** the r-tree table schema.
  */
  if( rc==SQLITE_OK ){
    if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
      *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    }else{
      char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
      char *zTmp;
      int ii;
      for(ii=4; zSql && ii<argc; ii++){
        zTmp = zSql;
        zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
        sqlite3_free(zTmp);
      }
      if( zSql ){
        zTmp = zSql;
        zSql = sqlite3_mprintf("%s);", zTmp);
        sqlite3_free(zTmp);
      }
      if( !zSql ){
        rc = SQLITE_NOMEM;
      }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
        *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
      }
      sqlite3_free(zSql);
    }
  }

  if( rc==SQLITE_OK ){
    *ppVtab = (sqlite3_vtab *)pRtree;
  }else{
    rtreeRelease(pRtree);
  }
  return rc;
}


/*
** Implementation of a scalar function that decodes r-tree nodes to
** human readable strings. This can be used for debugging and analysis.
**
** The scalar function takes two arguments, a blob of data containing
** an r-tree node, and the number of dimensions the r-tree indexes.
** For a two-dimensional r-tree structure called "rt", to deserialize
** all nodes, a statement like:
**
**   SELECT rtreenode(2, data) FROM rt_node;
**
** The human readable string takes the form of a Tcl list with one
** entry for each cell in the r-tree node. Each entry is itself a
** list, containing the 8-byte rowid/pageno followed by the 
** <num-dimension>*2 coordinates.
*/
static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
  char *zText = 0;
  RtreeNode node;
  Rtree tree;
  int ii;

  UNUSED_PARAMETER(nArg);
  memset(&node, 0, sizeof(RtreeNode));
  memset(&tree, 0, sizeof(Rtree));
  tree.nDim = sqlite3_value_int(apArg[0]);
  tree.nBytesPerCell = 8 + 8 * tree.nDim;
  node.zData = (u8 *)sqlite3_value_blob(apArg[1]);

  for(ii=0; ii<NCELL(&node); ii++){
    char zCell[512];
    int nCell = 0;
    RtreeCell cell;
    int jj;

    nodeGetCell(&tree, &node, ii, &cell);
    sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
    nCell = (int)strlen(zCell);
    for(jj=0; jj<tree.nDim*2; jj++){
#ifndef SQLITE_RTREE_INT_ONLY
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %f",
                       (double)cell.aCoord[jj].f);
#else
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %d",
                       cell.aCoord[jj].i);
#endif
      nCell = (int)strlen(zCell);
    }

    if( zText ){
      char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
      sqlite3_free(zText);
      zText = zTextNew;
    }else{
      zText = sqlite3_mprintf("{%s}", zCell);
    }
  }
  
  sqlite3_result_text(ctx, zText, -1, sqlite3_free);
}

static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
  UNUSED_PARAMETER(nArg);
  if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB 
   || sqlite3_value_bytes(apArg[0])<2
  ){
    sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); 
  }else{
    u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
    sqlite3_result_int(ctx, readInt16(zBlob));
  }
}

/*
** Register the r-tree module with database handle db. This creates the
** virtual table module "rtree" and the debugging/analysis scalar 
** function "rtreenode".
*/
int sqlite3RtreeInit(sqlite3 *db){
  const int utf8 = SQLITE_UTF8;
  int rc;

  rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
  }
  if( rc==SQLITE_OK ){
#ifdef SQLITE_RTREE_INT_ONLY
    void *c = (void *)RTREE_COORD_INT32;
#else
    void *c = (void *)RTREE_COORD_REAL32;
#endif
    rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
  }
  if( rc==SQLITE_OK ){
    void *c = (void *)RTREE_COORD_INT32;
    rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
  }

  return rc;
}

/*
** A version of sqlite3_free() that can be used as a callback. This is used
** in two places - as the destructor for the blob value returned by the
** invocation of a geometry function, and as the destructor for the geometry
** functions themselves.
*/
static void doSqlite3Free(void *p){
  sqlite3_free(p);
}

/*
** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite
** scalar user function. This C function is the callback used for all such
** registered SQL functions.
**
** The scalar user functions return a blob that is interpreted by r-tree
** table MATCH operators.
*/
static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
  RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
  RtreeMatchArg *pBlob;
  int nBlob;

  nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue);
  pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
  if( !pBlob ){
    sqlite3_result_error_nomem(ctx);
  }else{
    int i;
    pBlob->magic = RTREE_GEOMETRY_MAGIC;
    pBlob->xGeom = pGeomCtx->xGeom;
    pBlob->pContext = pGeomCtx->pContext;
    pBlob->nParam = nArg;
    for(i=0; i<nArg; i++){
#ifdef SQLITE_RTREE_INT_ONLY
      pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
#else
      pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
#endif
    }
    sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free);
  }
}

/*
** Register a new geometry function for use with the r-tree MATCH operator.
*/
int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
  int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue *, int *),
  void *pContext
){
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */

  /* Allocate and populate the context object. */
  pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
  if( !pGeomCtx ) return SQLITE_NOMEM;
  pGeomCtx->xGeom = xGeom;
  pGeomCtx->pContext = pContext;

  /* Create the new user-function. Register a destructor function to delete
  ** the context object when it is no longer required.  */
  return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, 
      (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free
  );
}

#if !SQLITE_CORE
int sqlite3_extension_init(
  sqlite3 *db,
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3RtreeInit(db);
}
#endif

#endif