summaryrefslogtreecommitdiff
path: root/ext/misc/regexp.c
blob: 16fa7d0b968593d5df52610fc93e65283437417c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
/*
** 2012-11-13
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** The code in this file implements a compact but reasonably
** efficient regular-expression matcher for posix extended regular
** expressions against UTF8 text.
**
** This file is an SQLite extension.  It registers a single function
** named "regexp(A,B)" where A is the regular expression and B is the
** string to be matched.  By registering this function, SQLite will also
** then implement the "B regexp A" operator.  Note that with the function
** the regular expression comes first, but with the operator it comes
** second.
**
**  The following regular expression syntax is supported:
**
**     X*      zero or more occurrences of X
**     X+      one or more occurrences of X
**     X?      zero or one occurrences of X
**     X{p,q}  between p and q occurrences of X
**     (X)     match X
**     X|Y     X or Y
**     ^X      X occurring at the beginning of the string
**     X$      X occurring at the end of the string
**     .       Match any single character
**     \c      Character c where c is one of \{}()[]|*+?.
**     \c      C-language escapes for c in afnrtv.  ex: \t or \n
**     \uXXXX  Where XXXX is exactly 4 hex digits, unicode value XXXX
**     \xXX    Where XX is exactly 2 hex digits, unicode value XX
**     [abc]   Any single character from the set abc
**     [^abc]  Any single character not in the set abc
**     [a-z]   Any single character in the range a-z
**     [^a-z]  Any single character not in the range a-z
**     \b      Word boundary
**     \w      Word character.  [A-Za-z0-9_]
**     \W      Non-word character
**     \d      Digit
**     \D      Non-digit
**     \s      Whitespace character
**     \S      Non-whitespace character
**
** A nondeterministic finite automaton (NFA) is used for matching, so the
** performance is bounded by O(N*M) where N is the size of the regular
** expression and M is the size of the input string.  The matcher never
** exhibits exponential behavior.  Note that the X{p,q} operator expands
** to p copies of X following by q-p copies of X? and that the size of the
** regular expression in the O(N*M) performance bound is computed after
** this expansion.
*/
#include <string.h>
#include <stdlib.h>
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1

/*
** The following #defines change the names of some functions implemented in
** this file to prevent name collisions with C-library functions of the
** same name.
*/
#define re_match   sqlite3re_match
#define re_compile sqlite3re_compile
#define re_free    sqlite3re_free

/* The end-of-input character */
#define RE_EOF            0    /* End of input */

/* The NFA is implemented as sequence of opcodes taken from the following
** set.  Each opcode has a single integer argument.
*/
#define RE_OP_MATCH       1    /* Match the one character in the argument */
#define RE_OP_ANY         2    /* Match any one character.  (Implements ".") */
#define RE_OP_ANYSTAR     3    /* Special optimized version of .* */
#define RE_OP_FORK        4    /* Continue to both next and opcode at iArg */
#define RE_OP_GOTO        5    /* Jump to opcode at iArg */
#define RE_OP_ACCEPT      6    /* Halt and indicate a successful match */
#define RE_OP_CC_INC      7    /* Beginning of a [...] character class */
#define RE_OP_CC_EXC      8    /* Beginning of a [^...] character class */
#define RE_OP_CC_VALUE    9    /* Single value in a character class */
#define RE_OP_CC_RANGE   10    /* Range of values in a character class */
#define RE_OP_WORD       11    /* Perl word character [A-Za-z0-9_] */
#define RE_OP_NOTWORD    12    /* Not a perl word character */
#define RE_OP_DIGIT      13    /* digit:  [0-9] */
#define RE_OP_NOTDIGIT   14    /* Not a digit */
#define RE_OP_SPACE      15    /* space:  [ \t\n\r\v\f] */
#define RE_OP_NOTSPACE   16    /* Not a digit */
#define RE_OP_BOUNDARY   17    /* Boundary between word and non-word */

/* Each opcode is a "state" in the NFA */
typedef unsigned short ReStateNumber;

/* Because this is an NFA and not a DFA, multiple states can be active at
** once.  An instance of the following object records all active states in
** the NFA.  The implementation is optimized for the common case where the
** number of actives states is small.
*/
typedef struct ReStateSet {
  unsigned nState;            /* Number of current states */
  ReStateNumber *aState;      /* Current states */
} ReStateSet;

/* An input string read one character at a time.
*/
typedef struct ReInput ReInput;
struct ReInput {
  const unsigned char *z;  /* All text */
  int i;                   /* Next byte to read */
  int mx;                  /* EOF when i>=mx */
};

/* A compiled NFA (or an NFA that is in the process of being compiled) is
** an instance of the following object.
*/
typedef struct ReCompiled ReCompiled;
struct ReCompiled {
  ReInput sIn;                /* Regular expression text */
  const char *zErr;           /* Error message to return */
  char *aOp;                  /* Operators for the virtual machine */
  int *aArg;                  /* Arguments to each operator */
  unsigned (*xNextChar)(ReInput*);  /* Next character function */
  unsigned char zInit[12];    /* Initial text to match */
  int nInit;                  /* Number of characters in zInit */
  unsigned nState;            /* Number of entries in aOp[] and aArg[] */
  unsigned nAlloc;            /* Slots allocated for aOp[] and aArg[] */
};

/* Add a state to the given state set if it is not already there */
static void re_add_state(ReStateSet *pSet, int newState){
  unsigned i;
  for(i=0; i<pSet->nState; i++) if( pSet->aState[i]==newState ) return;
  pSet->aState[pSet->nState++] = newState;
}

/* Extract the next unicode character from *pzIn and return it.  Advance
** *pzIn to the first byte past the end of the character returned.  To
** be clear:  this routine converts utf8 to unicode.  This routine is 
** optimized for the common case where the next character is a single byte.
*/
static unsigned re_next_char(ReInput *p){
  unsigned c;
  if( p->i>=p->mx ) return 0;
  c = p->z[p->i++];
  if( c>=0x80 ){
    if( (c&0xe0)==0xc0 && p->i<p->mx && (p->z[p->i]&0xc0)==0x80 ){
      c = (c&0x1f)<<6 | (p->z[p->i++]&0x3f);
      if( c<0x80 ) c = 0xfffd;
    }else if( (c&0xf0)==0xe0 && p->i+1<p->mx && (p->z[p->i]&0xc0)==0x80
           && (p->z[p->i+1]&0xc0)==0x80 ){
      c = (c&0x0f)<<12 | ((p->z[p->i]&0x3f)<<6) | (p->z[p->i+1]&0x3f);
      p->i += 2;
      if( c<=0x3ff || (c>=0xd800 && c<=0xdfff) ) c = 0xfffd;
    }else if( (c&0xf8)==0xf0 && p->i+3<p->mx && (p->z[p->i]&0xc0)==0x80
           && (p->z[p->i+1]&0xc0)==0x80 && (p->z[p->i+2]&0xc0)==0x80 ){
      c = (c&0x07)<<18 | ((p->z[p->i]&0x3f)<<12) | ((p->z[p->i+1]&0x3f)<<6)
                       | (p->z[p->i+2]&0x3f);
      p->i += 3;
      if( c<=0xffff || c>0x10ffff ) c = 0xfffd;
    }else{
      c = 0xfffd;
    }
  }
  return c;
}
static unsigned re_next_char_nocase(ReInput *p){
  unsigned c = re_next_char(p);
  if( c>='A' && c<='Z' ) c += 'a' - 'A';
  return c;
}

/* Return true if c is a perl "word" character:  [A-Za-z0-9_] */
static int re_word_char(int c){
  return (c>='0' && c<='9') || (c>='a' && c<='z')
      || (c>='A' && c<='Z') || c=='_';
}

/* Return true if c is a "digit" character:  [0-9] */
static int re_digit_char(int c){
  return (c>='0' && c<='9');
}

/* Return true if c is a perl "space" character:  [ \t\r\n\v\f] */
static int re_space_char(int c){
  return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
}

/* Run a compiled regular expression on the zero-terminated input
** string zIn[].  Return true on a match and false if there is no match.
*/
static int re_match(ReCompiled *pRe, const unsigned char *zIn, int nIn){
  ReStateSet aStateSet[2], *pThis, *pNext;
  ReStateNumber aSpace[100];
  ReStateNumber *pToFree;
  unsigned int i = 0;
  unsigned int iSwap = 0;
  int c = RE_EOF+1;
  int cPrev = 0;
  int rc = 0;
  ReInput in;

  in.z = zIn;
  in.i = 0;
  in.mx = nIn>=0 ? nIn : (int)strlen((char const*)zIn);

  /* Look for the initial prefix match, if there is one. */
  if( pRe->nInit ){
    unsigned char x = pRe->zInit[0];
    while( in.i+pRe->nInit<=in.mx 
     && (zIn[in.i]!=x ||
         strncmp((const char*)zIn+in.i, (const char*)pRe->zInit, pRe->nInit)!=0)
    ){
      in.i++;
    }
    if( in.i+pRe->nInit>in.mx ) return 0;
  }

  if( pRe->nState<=(sizeof(aSpace)/(sizeof(aSpace[0])*2)) ){
    pToFree = 0;
    aStateSet[0].aState = aSpace;
  }else{
    pToFree = sqlite3_malloc( sizeof(ReStateNumber)*2*pRe->nState );
    if( pToFree==0 ) return -1;
    aStateSet[0].aState = pToFree;
  }
  aStateSet[1].aState = &aStateSet[0].aState[pRe->nState];
  pNext = &aStateSet[1];
  pNext->nState = 0;
  re_add_state(pNext, 0);
  while( c!=RE_EOF && pNext->nState>0 ){
    cPrev = c;
    c = pRe->xNextChar(&in);
    pThis = pNext;
    pNext = &aStateSet[iSwap];
    iSwap = 1 - iSwap;
    pNext->nState = 0;
    for(i=0; i<pThis->nState; i++){
      int x = pThis->aState[i];
      switch( pRe->aOp[x] ){
        case RE_OP_MATCH: {
          if( pRe->aArg[x]==c ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_ANY: {
          re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_WORD: {
          if( re_word_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_NOTWORD: {
          if( !re_word_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_DIGIT: {
          if( re_digit_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_NOTDIGIT: {
          if( !re_digit_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_SPACE: {
          if( re_space_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_NOTSPACE: {
          if( !re_space_char(c) ) re_add_state(pNext, x+1);
          break;
        }
        case RE_OP_BOUNDARY: {
          if( re_word_char(c)!=re_word_char(cPrev) ) re_add_state(pThis, x+1);
          break;
        }
        case RE_OP_ANYSTAR: {
          re_add_state(pNext, x);
          re_add_state(pThis, x+1);
          break;
        }
        case RE_OP_FORK: {
          re_add_state(pThis, x+pRe->aArg[x]);
          re_add_state(pThis, x+1);
          break;
        }
        case RE_OP_GOTO: {
          re_add_state(pThis, x+pRe->aArg[x]);
          break;
        }
        case RE_OP_ACCEPT: {
          rc = 1;
          goto re_match_end;
        }
        case RE_OP_CC_INC:
        case RE_OP_CC_EXC: {
          int j = 1;
          int n = pRe->aArg[x];
          int hit = 0;
          for(j=1; j>0 && j<n; j++){
            if( pRe->aOp[x+j]==RE_OP_CC_VALUE ){
              if( pRe->aArg[x+j]==c ){
                hit = 1;
                j = -1;
              }
            }else{
              if( pRe->aArg[x+j]<=c && pRe->aArg[x+j+1]>=c ){
                hit = 1;
                j = -1;
              }else{
                j++;
              }
            }
          }
          if( pRe->aOp[x]==RE_OP_CC_EXC ) hit = !hit;
          if( hit ) re_add_state(pNext, x+n);
          break;            
        }
      }
    }
  }
  for(i=0; i<pNext->nState; i++){
    if( pRe->aOp[pNext->aState[i]]==RE_OP_ACCEPT ){ rc = 1; break; }
  }
re_match_end:
  sqlite3_free(pToFree);
  return rc;
}

/* Resize the opcode and argument arrays for an RE under construction.
*/
static int re_resize(ReCompiled *p, int N){
  char *aOp;
  int *aArg;
  aOp = sqlite3_realloc(p->aOp, N*sizeof(p->aOp[0]));
  if( aOp==0 ) return 1;
  p->aOp = aOp;
  aArg = sqlite3_realloc(p->aArg, N*sizeof(p->aArg[0]));
  if( aArg==0 ) return 1;
  p->aArg = aArg;
  p->nAlloc = N;
  return 0;
}

/* Insert a new opcode and argument into an RE under construction.  The
** insertion point is just prior to existing opcode iBefore.
*/
static int re_insert(ReCompiled *p, int iBefore, int op, int arg){
  int i;
  if( p->nAlloc<=p->nState && re_resize(p, p->nAlloc*2) ) return 0;
  for(i=p->nState; i>iBefore; i--){
    p->aOp[i] = p->aOp[i-1];
    p->aArg[i] = p->aArg[i-1];
  }
  p->nState++;
  p->aOp[iBefore] = op;
  p->aArg[iBefore] = arg;
  return iBefore;
}

/* Append a new opcode and argument to the end of the RE under construction.
*/
static int re_append(ReCompiled *p, int op, int arg){
  return re_insert(p, p->nState, op, arg);
}

/* Make a copy of N opcodes starting at iStart onto the end of the RE
** under construction.
*/
static void re_copy(ReCompiled *p, int iStart, int N){
  if( p->nState+N>=p->nAlloc && re_resize(p, p->nAlloc*2+N) ) return;
  memcpy(&p->aOp[p->nState], &p->aOp[iStart], N*sizeof(p->aOp[0]));
  memcpy(&p->aArg[p->nState], &p->aArg[iStart], N*sizeof(p->aArg[0]));
  p->nState += N;
}

/* Return true if c is a hexadecimal digit character:  [0-9a-fA-F]
** If c is a hex digit, also set *pV = (*pV)*16 + valueof(c).  If
** c is not a hex digit *pV is unchanged.
*/
static int re_hex(int c, int *pV){
  if( c>='0' && c<='9' ){
    c -= '0';
  }else if( c>='a' && c<='f' ){
    c -= 'a' - 10;
  }else if( c>='A' && c<='F' ){
    c -= 'A' - 10;
  }else{
    return 0;
  }
  *pV = (*pV)*16 + (c & 0xff);
  return 1;
}

/* A backslash character has been seen, read the next character and
** return its interpretation.
*/
static unsigned re_esc_char(ReCompiled *p){
  static const char zEsc[] = "afnrtv\\()*.+?[$^{|}]";
  static const char zTrans[] = "\a\f\n\r\t\v";
  int i, v = 0;
  char c;
  if( p->sIn.i>=p->sIn.mx ) return 0;
  c = p->sIn.z[p->sIn.i];
  if( c=='u' && p->sIn.i+4<p->sIn.mx ){
    const unsigned char *zIn = p->sIn.z + p->sIn.i;
    if( re_hex(zIn[1],&v)
     && re_hex(zIn[2],&v)
     && re_hex(zIn[3],&v)
     && re_hex(zIn[4],&v)
    ){
      p->sIn.i += 5;
      return v;
    }
  }
  if( c=='x' && p->sIn.i+2<p->sIn.mx ){
    const unsigned char *zIn = p->sIn.z + p->sIn.i;
    if( re_hex(zIn[1],&v)
     && re_hex(zIn[2],&v)
    ){
      p->sIn.i += 3;
      return v;
    }
  }
  for(i=0; zEsc[i] && zEsc[i]!=c; i++){}
  if( zEsc[i] ){
    if( i<6 ) c = zTrans[i];
    p->sIn.i++;
  }else{
    p->zErr = "unknown \\ escape";
  }
  return c;
}

/* Forward declaration */
static const char *re_subcompile_string(ReCompiled*);

/* Peek at the next byte of input */
static unsigned char rePeek(ReCompiled *p){
  return p->sIn.i<p->sIn.mx ? p->sIn.z[p->sIn.i] : 0;
}

/* Compile RE text into a sequence of opcodes.  Continue up to the
** first unmatched ")" character, then return.  If an error is found,
** return a pointer to the error message string.
*/
static const char *re_subcompile_re(ReCompiled *p){
  const char *zErr;
  int iStart, iEnd, iGoto;
  iStart = p->nState;
  zErr = re_subcompile_string(p);
  if( zErr ) return zErr;
  while( rePeek(p)=='|' ){
    iEnd = p->nState;
    re_insert(p, iStart, RE_OP_FORK, iEnd + 2 - iStart);
    iGoto = re_append(p, RE_OP_GOTO, 0);
    p->sIn.i++;
    zErr = re_subcompile_string(p);
    if( zErr ) return zErr;
    p->aArg[iGoto] = p->nState - iGoto;
  }
  return 0;
}

/* Compile an element of regular expression text (anything that can be
** an operand to the "|" operator).  Return NULL on success or a pointer
** to the error message if there is a problem.
*/
static const char *re_subcompile_string(ReCompiled *p){
  int iPrev = -1;
  int iStart;
  unsigned c;
  const char *zErr;
  while( (c = p->xNextChar(&p->sIn))!=0 ){
    iStart = p->nState;
    switch( c ){
      case '|':
      case '$': 
      case ')': {
        p->sIn.i--;
        return 0;
      }
      case '(': {
        zErr = re_subcompile_re(p);
        if( zErr ) return zErr;
        if( rePeek(p)!=')' ) return "unmatched '('";
        p->sIn.i++;
        break;
      }
      case '.': {
        if( rePeek(p)=='*' ){
          re_append(p, RE_OP_ANYSTAR, 0);
          p->sIn.i++;
        }else{ 
          re_append(p, RE_OP_ANY, 0);
        }
        break;
      }
      case '*': {
        if( iPrev<0 ) return "'*' without operand";
        re_insert(p, iPrev, RE_OP_GOTO, p->nState - iPrev + 1);
        re_append(p, RE_OP_FORK, iPrev - p->nState + 1);
        break;
      }
      case '+': {
        if( iPrev<0 ) return "'+' without operand";
        re_append(p, RE_OP_FORK, iPrev - p->nState);
        break;
      }
      case '?': {
        if( iPrev<0 ) return "'?' without operand";
        re_insert(p, iPrev, RE_OP_FORK, p->nState - iPrev+1);
        break;
      }
      case '{': {
        int m = 0, n = 0;
        int sz, j;
        if( iPrev<0 ) return "'{m,n}' without operand";
        while( (c=rePeek(p))>='0' && c<='9' ){ m = m*10 + c - '0'; p->sIn.i++; }
        n = m;
        if( c==',' ){
          p->sIn.i++;
          n = 0;
          while( (c=rePeek(p))>='0' && c<='9' ){ n = n*10 + c-'0'; p->sIn.i++; }
        }
        if( c!='}' ) return "unmatched '{'";
        if( n>0 && n<m ) return "n less than m in '{m,n}'";
        p->sIn.i++;
        sz = p->nState - iPrev;
        if( m==0 ){
          if( n==0 ) return "both m and n are zero in '{m,n}'";
          re_insert(p, iPrev, RE_OP_FORK, sz+1);
          n--;
        }else{
          for(j=1; j<m; j++) re_copy(p, iPrev, sz);
        }
        for(j=m; j<n; j++){
          re_append(p, RE_OP_FORK, sz+1);
          re_copy(p, iPrev, sz);
        }
        if( n==0 && m>0 ){
          re_append(p, RE_OP_FORK, -sz);
        }
        break;
      }
      case '[': {
        int iFirst = p->nState;
        if( rePeek(p)=='^' ){
          re_append(p, RE_OP_CC_EXC, 0);
          p->sIn.i++;
        }else{
          re_append(p, RE_OP_CC_INC, 0);
        }
        while( (c = p->xNextChar(&p->sIn))!=0 ){
          if( c=='[' && rePeek(p)==':' ){
            return "POSIX character classes not supported";
          }
          if( c=='\\' ) c = re_esc_char(p);
          if( rePeek(p)=='-' ){
            re_append(p, RE_OP_CC_RANGE, c);
            p->sIn.i++;
            c = p->xNextChar(&p->sIn);
            if( c=='\\' ) c = re_esc_char(p);
            re_append(p, RE_OP_CC_RANGE, c);
          }else{
            re_append(p, RE_OP_CC_VALUE, c);
          }
          if( rePeek(p)==']' ){ p->sIn.i++; break; }
        }
        if( c==0 ) return "unclosed '['";
        p->aArg[iFirst] = p->nState - iFirst;
        break;
      }
      case '\\': {
        int specialOp = 0;
        switch( rePeek(p) ){
          case 'b': specialOp = RE_OP_BOUNDARY;   break;
          case 'd': specialOp = RE_OP_DIGIT;      break;
          case 'D': specialOp = RE_OP_NOTDIGIT;   break;
          case 's': specialOp = RE_OP_SPACE;      break;
          case 'S': specialOp = RE_OP_NOTSPACE;   break;
          case 'w': specialOp = RE_OP_WORD;       break;
          case 'W': specialOp = RE_OP_NOTWORD;    break;
        }
        if( specialOp ){
          p->sIn.i++;
          re_append(p, specialOp, 0);
        }else{
          c = re_esc_char(p);
          re_append(p, RE_OP_MATCH, c);
        }
        break;
      }
      default: {
        re_append(p, RE_OP_MATCH, c);
        break;
      }
    }
    iPrev = iStart;
  }
  return 0;
}

/* Free and reclaim all the memory used by a previously compiled
** regular expression.  Applications should invoke this routine once
** for every call to re_compile() to avoid memory leaks.
*/
void re_free(ReCompiled *pRe){
  if( pRe ){
    sqlite3_free(pRe->aOp);
    sqlite3_free(pRe->aArg);
    sqlite3_free(pRe);
  }
}

/*
** Compile a textual regular expression in zIn[] into a compiled regular
** expression suitable for us by re_match() and return a pointer to the
** compiled regular expression in *ppRe.  Return NULL on success or an
** error message if something goes wrong.
*/
const char *re_compile(ReCompiled **ppRe, const char *zIn, int noCase){
  ReCompiled *pRe;
  const char *zErr;
  int i, j;

  *ppRe = 0;
  pRe = sqlite3_malloc( sizeof(*pRe) );
  if( pRe==0 ){
    return "out of memory";
  }
  memset(pRe, 0, sizeof(*pRe));
  pRe->xNextChar = noCase ? re_next_char_nocase : re_next_char;
  if( re_resize(pRe, 30) ){
    re_free(pRe);
    return "out of memory";
  }
  if( zIn[0]=='^' ){
    zIn++;
  }else{
    re_append(pRe, RE_OP_ANYSTAR, 0);
  }
  pRe->sIn.z = (unsigned char*)zIn;
  pRe->sIn.i = 0;
  pRe->sIn.mx = (int)strlen(zIn);
  zErr = re_subcompile_re(pRe);
  if( zErr ){
    re_free(pRe);
    return zErr;
  }
  if( rePeek(pRe)=='$' && pRe->sIn.i+1>=pRe->sIn.mx ){
    re_append(pRe, RE_OP_MATCH, RE_EOF);
    re_append(pRe, RE_OP_ACCEPT, 0);
    *ppRe = pRe;
  }else if( pRe->sIn.i>=pRe->sIn.mx ){
    re_append(pRe, RE_OP_ACCEPT, 0);
    *ppRe = pRe;
  }else{
    re_free(pRe);
    return "unrecognized character";
  }

  /* The following is a performance optimization.  If the regex begins with
  ** ".*" (if the input regex lacks an initial "^") and afterwards there are
  ** one or more matching characters, enter those matching characters into
  ** zInit[].  The re_match() routine can then search ahead in the input 
  ** string looking for the initial match without having to run the whole
  ** regex engine over the string.  Do not worry able trying to match
  ** unicode characters beyond plane 0 - those are very rare and this is
  ** just an optimization. */
  if( pRe->aOp[0]==RE_OP_ANYSTAR ){
    for(j=0, i=1; j<sizeof(pRe->zInit)-2 && pRe->aOp[i]==RE_OP_MATCH; i++){
      unsigned x = pRe->aArg[i];
      if( x<=127 ){
        pRe->zInit[j++] = x;
      }else if( x<=0xfff ){
        pRe->zInit[j++] = 0xc0 | (x>>6);
        pRe->zInit[j++] = 0x80 | (x&0x3f);
      }else if( x<=0xffff ){
        pRe->zInit[j++] = 0xd0 | (x>>12);
        pRe->zInit[j++] = 0x80 | ((x>>6)&0x3f);
        pRe->zInit[j++] = 0x80 | (x&0x3f);
      }else{
        break;
      }
    }
    if( j>0 && pRe->zInit[j-1]==0 ) j--;
    pRe->nInit = j;
  }
  return pRe->zErr;
}

/*
** Implementation of the regexp() SQL function.  This function implements
** the build-in REGEXP operator.  The first argument to the function is the
** pattern and the second argument is the string.  So, the SQL statements:
**
**       A REGEXP B
**
** is implemented as regexp(B,A).
*/
static void re_sql_func(
  sqlite3_context *context, 
  int argc, 
  sqlite3_value **argv
){
  ReCompiled *pRe;          /* Compiled regular expression */
  const char *zPattern;     /* The regular expression */
  const unsigned char *zStr;/* String being searched */
  const char *zErr;         /* Compile error message */

  pRe = sqlite3_get_auxdata(context, 0);
  if( pRe==0 ){
    zPattern = (const char*)sqlite3_value_text(argv[0]);
    if( zPattern==0 ) return;
    zErr = re_compile(&pRe, zPattern, 0);
    if( zErr ){
      re_free(pRe);
      sqlite3_result_error(context, zErr, -1);
      return;
    }
    if( pRe==0 ){
      sqlite3_result_error_nomem(context);
      return;
    }
    sqlite3_set_auxdata(context, 0, pRe, (void(*)(void*))re_free);
  }
  zStr = (const unsigned char*)sqlite3_value_text(argv[1]);
  if( zStr!=0 ){
    sqlite3_result_int(context, re_match(pRe, zStr, -1));
  }
}

/*
** Invoke this routine to register the regexp() function with the
** SQLite database connection.
*/
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_regexp_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  int rc = SQLITE_OK;
  SQLITE_EXTENSION_INIT2(pApi);
  rc = sqlite3_create_function(db, "regexp", 2, SQLITE_UTF8, 0,
                                 re_sql_func, 0, 0);
  return rc;
}