1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
|
/*
** 2013-03-14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code for a demonstration virtual table that finds
** "approximate matches" - strings from a finite set that are nearly the
** same as a single input string. The virtual table is called "amatch".
**
** A amatch virtual table is created like this:
**
** CREATE VIRTUAL TABLE f USING approximate_match(
** vocabulary_table=<tablename>, -- V
** vocabulary_word=<columnname>, -- W
** vocabulary_language=<columnname>, -- L
** edit_distances=<edit-cost-table>
** );
**
** When it is created, the new amatch table must be supplied with the
** the name of a table V and columns V.W and V.L such that
**
** SELECT W FROM V WHERE L=$language
**
** returns the allowed vocabulary for the match. If the "vocabulary_language"
** or L columnname is left unspecified or is an empty string, then no
** filtering of the vocabulary by language is performed.
**
** For efficiency, it is essential that the vocabulary table be indexed:
**
** CREATE vocab_index ON V(W)
**
** A separate edit-cost-table provides scoring information that defines
** what it means for one string to be "close" to another.
**
** The edit-cost-table must contain exactly four columns (more precisely,
** the statement "SELECT * FROM <edit-cost-table>" must return records
** that consist of four columns). It does not matter what the columns are
** named.
**
** Each row in the edit-cost-table represents a single character
** transformation going from user input to the vocabulary. The leftmost
** column of the row (column 0) contains an integer identifier of the
** language to which the transformation rule belongs (see "MULTIPLE LANGUAGES"
** below). The second column of the row (column 1) contains the input
** character or characters - the characters of user input. The third
** column contains characters as they appear in the vocabulary table.
** And the fourth column contains the integer cost of making the
** transformation. For example:
**
** CREATE TABLE f_data(iLang, cFrom, cTo, Cost);
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '', 'a', 100);
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'b', '', 87);
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38);
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40);
**
** The first row inserted into the edit-cost-table by the SQL script
** above indicates that the cost of having an extra 'a' in the vocabulary
** table that is missing in the user input 100. (All costs are integers.
** Overall cost must not exceed 16777216.) The second INSERT statement
** creates a rule saying that the cost of having a single letter 'b' in
** user input which is missing in the vocabulary table is 87. The third
** INSERT statement mean that the cost of matching an 'o' in user input
** against an 'oe' in the vocabulary table is 38. And so forth.
**
** The following rules are special:
**
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '?', '', 97);
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '', '?', 98);
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '?', '?', 99);
**
** The '?' to '' rule is the cost of having any single character in the input
** that is not found in the vocabular. The '' to '?' rule is the cost of
** having a character in the vocabulary table that is missing from input.
** And the '?' to '?' rule is the cost of doing an arbitrary character
** substitution. These three generic rules apply across all languages.
** In other words, the iLang field is ignored for the generic substitution
** rules. If more than one cost is given for a generic substitution rule,
** then the lowest cost is used.
**
** Once it has been created, the amatch virtual table can be queried
** as follows:
**
** SELECT word, distance FROM f
** WHERE word MATCH 'abcdefg'
** AND distance<200;
**
** This query outputs the strings contained in the T(F) field that
** are close to "abcdefg" and in order of increasing distance. No string
** is output more than once. If there are multiple ways to transform the
** target string ("abcdefg") into a string in the vocabulary table then
** the lowest cost transform is the one that is returned. In this example,
** the search is limited to strings with a total distance of less than 200.
**
** For efficiency, it is important to put tight bounds on the distance.
** The time and memory space needed to perform this query is exponential
** in the maximum distance. A good rule of thumb is to limit the distance
** to no more than 1.5 or 2 times the maximum cost of any rule in the
** edit-cost-table.
**
** The amatch is a read-only table. Any attempt to DELETE, INSERT, or
** UPDATE on a amatch table will throw an error.
**
** It is important to put some kind of a limit on the amatch output. This
** can be either in the form of a LIMIT clause at the end of the query,
** or better, a "distance<NNN" constraint where NNN is some number. The
** running time and memory requirement is exponential in the value of NNN
** so you want to make sure that NNN is not too big. A value of NNN that
** is about twice the average transformation cost seems to give good results.
**
** The amatch table can be useful for tasks such as spelling correction.
** Suppose all allowed words are in table vocabulary(w). Then one would create
** an amatch virtual table like this:
**
** CREATE VIRTUAL TABLE ex1 USING amatch(
** vocabtable=vocabulary,
** vocabcolumn=w,
** edit_distances=ec1
** );
**
** Then given an input word $word, look up close spellings this way:
**
** SELECT word, distance FROM ex1
** WHERE word MATCH $word AND distance<200;
**
** MULTIPLE LANGUAGES
**
** Normally, the "iLang" value associated with all character transformations
** in the edit-cost-table is zero. However, if required, the amatch
** virtual table allows multiple languages to be defined. Each query uses
** only a single iLang value. This allows, for example, a single
** amatch table to support multiple languages.
**
** By default, only the rules with iLang=0 are used. To specify an
** alternative language, a "language = ?" expression must be added to the
** WHERE clause of a SELECT, where ? is the integer identifier of the desired
** language. For example:
**
** SELECT word, distance FROM ex1
** WHERE word MATCH $word
** AND distance<=200
** AND language=1 -- Specify use language 1 instead of 0
**
** If no "language = ?" constraint is specified in the WHERE clause, language
** 0 is used.
**
** LIMITS
**
** The maximum language number is 2147483647. The maximum length of either
** of the strings in the second or third column of the amatch data table
** is 50 bytes. The maximum cost on a rule is 1000.
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <ctype.h>
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Forward declaration of objects used by this implementation
*/
typedef struct amatch_vtab amatch_vtab;
typedef struct amatch_cursor amatch_cursor;
typedef struct amatch_rule amatch_rule;
typedef struct amatch_word amatch_word;
typedef struct amatch_avl amatch_avl;
/*****************************************************************************
** AVL Tree implementation
*/
/*
** Objects that want to be members of the AVL tree should embedded an
** instance of this structure.
*/
struct amatch_avl {
amatch_word *pWord; /* Points to the object being stored in the tree */
char *zKey; /* Key. zero-terminated string. Must be unique */
amatch_avl *pBefore; /* Other elements less than zKey */
amatch_avl *pAfter; /* Other elements greater than zKey */
amatch_avl *pUp; /* Parent element */
short int height; /* Height of this node. Leaf==1 */
short int imbalance; /* Height difference between pBefore and pAfter */
};
/* Recompute the amatch_avl.height and amatch_avl.imbalance fields for p.
** Assume that the children of p have correct heights.
*/
static void amatchAvlRecomputeHeight(amatch_avl *p){
short int hBefore = p->pBefore ? p->pBefore->height : 0;
short int hAfter = p->pAfter ? p->pAfter->height : 0;
p->imbalance = hBefore - hAfter; /* -: pAfter higher. +: pBefore higher */
p->height = (hBefore>hAfter ? hBefore : hAfter)+1;
}
/*
** P B
** / \ / \
** B Z ==> X P
** / \ / \
** X Y Y Z
**
*/
static amatch_avl *amatchAvlRotateBefore(amatch_avl *pP){
amatch_avl *pB = pP->pBefore;
amatch_avl *pY = pB->pAfter;
pB->pUp = pP->pUp;
pB->pAfter = pP;
pP->pUp = pB;
pP->pBefore = pY;
if( pY ) pY->pUp = pP;
amatchAvlRecomputeHeight(pP);
amatchAvlRecomputeHeight(pB);
return pB;
}
/*
** P A
** / \ / \
** X A ==> P Z
** / \ / \
** Y Z X Y
**
*/
static amatch_avl *amatchAvlRotateAfter(amatch_avl *pP){
amatch_avl *pA = pP->pAfter;
amatch_avl *pY = pA->pBefore;
pA->pUp = pP->pUp;
pA->pBefore = pP;
pP->pUp = pA;
pP->pAfter = pY;
if( pY ) pY->pUp = pP;
amatchAvlRecomputeHeight(pP);
amatchAvlRecomputeHeight(pA);
return pA;
}
/*
** Return a pointer to the pBefore or pAfter pointer in the parent
** of p that points to p. Or if p is the root node, return pp.
*/
static amatch_avl **amatchAvlFromPtr(amatch_avl *p, amatch_avl **pp){
amatch_avl *pUp = p->pUp;
if( pUp==0 ) return pp;
if( pUp->pAfter==p ) return &pUp->pAfter;
return &pUp->pBefore;
}
/*
** Rebalance all nodes starting with p and working up to the root.
** Return the new root.
*/
static amatch_avl *amatchAvlBalance(amatch_avl *p){
amatch_avl *pTop = p;
amatch_avl **pp;
while( p ){
amatchAvlRecomputeHeight(p);
if( p->imbalance>=2 ){
amatch_avl *pB = p->pBefore;
if( pB->imbalance<0 ) p->pBefore = amatchAvlRotateAfter(pB);
pp = amatchAvlFromPtr(p,&p);
p = *pp = amatchAvlRotateBefore(p);
}else if( p->imbalance<=(-2) ){
amatch_avl *pA = p->pAfter;
if( pA->imbalance>0 ) p->pAfter = amatchAvlRotateBefore(pA);
pp = amatchAvlFromPtr(p,&p);
p = *pp = amatchAvlRotateAfter(p);
}
pTop = p;
p = p->pUp;
}
return pTop;
}
/* Search the tree rooted at p for an entry with zKey. Return a pointer
** to the entry or return NULL.
*/
static amatch_avl *amatchAvlSearch(amatch_avl *p, const char *zKey){
int c;
while( p && (c = strcmp(zKey, p->zKey))!=0 ){
p = (c<0) ? p->pBefore : p->pAfter;
}
return p;
}
/* Find the first node (the one with the smallest key).
*/
static amatch_avl *amatchAvlFirst(amatch_avl *p){
if( p ) while( p->pBefore ) p = p->pBefore;
return p;
}
#if 0 /* NOT USED */
/* Return the node with the next larger key after p.
*/
static amatch_avl *amatchAvlNext(amatch_avl *p){
amatch_avl *pPrev = 0;
while( p && p->pAfter==pPrev ){
pPrev = p;
p = p->pUp;
}
if( p && pPrev==0 ){
p = amatchAvlFirst(p->pAfter);
}
return p;
}
#endif
#if 0 /* NOT USED */
/* Verify AVL tree integrity
*/
static int amatchAvlIntegrity(amatch_avl *pHead){
amatch_avl *p;
if( pHead==0 ) return 1;
if( (p = pHead->pBefore)!=0 ){
assert( p->pUp==pHead );
assert( amatchAvlIntegrity(p) );
assert( strcmp(p->zKey, pHead->zKey)<0 );
while( p->pAfter ) p = p->pAfter;
assert( strcmp(p->zKey, pHead->zKey)<0 );
}
if( (p = pHead->pAfter)!=0 ){
assert( p->pUp==pHead );
assert( amatchAvlIntegrity(p) );
assert( strcmp(p->zKey, pHead->zKey)>0 );
p = amatchAvlFirst(p);
assert( strcmp(p->zKey, pHead->zKey)>0 );
}
return 1;
}
static int amatchAvlIntegrity2(amatch_avl *pHead){
amatch_avl *p, *pNext;
for(p=amatchAvlFirst(pHead); p; p=pNext){
pNext = amatchAvlNext(p);
if( pNext==0 ) break;
assert( strcmp(p->zKey, pNext->zKey)<0 );
}
return 1;
}
#endif
/* Insert a new node pNew. Return NULL on success. If the key is not
** unique, then do not perform the insert but instead leave pNew unchanged
** and return a pointer to an existing node with the same key.
*/
static amatch_avl *amatchAvlInsert(amatch_avl **ppHead, amatch_avl *pNew){
int c;
amatch_avl *p = *ppHead;
if( p==0 ){
p = pNew;
pNew->pUp = 0;
}else{
while( p ){
c = strcmp(pNew->zKey, p->zKey);
if( c<0 ){
if( p->pBefore ){
p = p->pBefore;
}else{
p->pBefore = pNew;
pNew->pUp = p;
break;
}
}else if( c>0 ){
if( p->pAfter ){
p = p->pAfter;
}else{
p->pAfter = pNew;
pNew->pUp = p;
break;
}
}else{
return p;
}
}
}
pNew->pBefore = 0;
pNew->pAfter = 0;
pNew->height = 1;
pNew->imbalance = 0;
*ppHead = amatchAvlBalance(p);
/* assert( amatchAvlIntegrity(*ppHead) ); */
/* assert( amatchAvlIntegrity2(*ppHead) ); */
return 0;
}
/* Remove node pOld from the tree. pOld must be an element of the tree or
** the AVL tree will become corrupt.
*/
static void amatchAvlRemove(amatch_avl **ppHead, amatch_avl *pOld){
amatch_avl **ppParent;
amatch_avl *pBalance;
/* assert( amatchAvlSearch(*ppHead, pOld->zKey)==pOld ); */
ppParent = amatchAvlFromPtr(pOld, ppHead);
if( pOld->pBefore==0 && pOld->pAfter==0 ){
*ppParent = 0;
pBalance = pOld->pUp;
}else if( pOld->pBefore && pOld->pAfter ){
amatch_avl *pX, *pY;
pX = amatchAvlFirst(pOld->pAfter);
*amatchAvlFromPtr(pX, 0) = pX->pAfter;
if( pX->pAfter ) pX->pAfter->pUp = pX->pUp;
pBalance = pX->pUp;
pX->pAfter = pOld->pAfter;
if( pX->pAfter ){
pX->pAfter->pUp = pX;
}else{
assert( pBalance==pOld );
pBalance = pX;
}
pX->pBefore = pY = pOld->pBefore;
if( pY ) pY->pUp = pX;
pX->pUp = pOld->pUp;
*ppParent = pX;
}else if( pOld->pBefore==0 ){
*ppParent = pBalance = pOld->pAfter;
pBalance->pUp = pOld->pUp;
}else if( pOld->pAfter==0 ){
*ppParent = pBalance = pOld->pBefore;
pBalance->pUp = pOld->pUp;
}
*ppHead = amatchAvlBalance(pBalance);
pOld->pUp = 0;
pOld->pBefore = 0;
pOld->pAfter = 0;
/* assert( amatchAvlIntegrity(*ppHead) ); */
/* assert( amatchAvlIntegrity2(*ppHead) ); */
}
/*
** End of the AVL Tree implementation
******************************************************************************/
/*
** Various types.
**
** amatch_cost is the "cost" of an edit operation.
**
** amatch_len is the length of a matching string.
**
** amatch_langid is an ruleset identifier.
*/
typedef int amatch_cost;
typedef signed char amatch_len;
typedef int amatch_langid;
/*
** Limits
*/
#define AMATCH_MX_LENGTH 50 /* Maximum length of a rule string */
#define AMATCH_MX_LANGID 2147483647 /* Maximum rule ID */
#define AMATCH_MX_COST 1000 /* Maximum single-rule cost */
/*
** A match or partial match
*/
struct amatch_word {
amatch_word *pNext; /* Next on a list of all amatch_words */
amatch_avl sCost; /* Linkage of this node into the cost tree */
amatch_avl sWord; /* Linkage of this node into the word tree */
amatch_cost rCost; /* Cost of the match so far */
int iSeq; /* Sequence number */
char zCost[10]; /* Cost key (text rendering of rCost) */
short int nMatch; /* Input characters matched */
char zWord[4]; /* Text of the word. Extra space appended as needed */
};
/*
** Each transformation rule is stored as an instance of this object.
** All rules are kept on a linked list sorted by rCost.
*/
struct amatch_rule {
amatch_rule *pNext; /* Next rule in order of increasing rCost */
char *zFrom; /* Transform from (a string from user input) */
amatch_cost rCost; /* Cost of this transformation */
amatch_langid iLang; /* The langauge to which this rule belongs */
amatch_len nFrom, nTo; /* Length of the zFrom and zTo strings */
char zTo[4]; /* Tranform to V.W value (extra space appended) */
};
/*
** A amatch virtual-table object
*/
struct amatch_vtab {
sqlite3_vtab base; /* Base class - must be first */
char *zClassName; /* Name of this class. Default: "amatch" */
char *zDb; /* Name of database. (ex: "main") */
char *zSelf; /* Name of this virtual table */
char *zCostTab; /* Name of edit-cost-table */
char *zVocabTab; /* Name of vocabulary table */
char *zVocabWord; /* Name of vocabulary table word column */
char *zVocabLang; /* Name of vocabulary table language column */
amatch_rule *pRule; /* All active rules in this amatch */
amatch_cost rIns; /* Generic insertion cost '' -> ? */
amatch_cost rDel; /* Generic deletion cost ? -> '' */
amatch_cost rSub; /* Generic substitution cost ? -> ? */
sqlite3 *db; /* The database connection */
sqlite3_stmt *pVCheck; /* Query to check zVocabTab */
int nCursor; /* Number of active cursors */
};
/* A amatch cursor object */
struct amatch_cursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
sqlite3_int64 iRowid; /* The rowid of the current word */
amatch_langid iLang; /* Use this language ID */
amatch_cost rLimit; /* Maximum cost of any term */
int nBuf; /* Space allocated for zBuf */
int oomErr; /* True following an OOM error */
int nWord; /* Number of amatch_word objects */
char *zBuf; /* Temp-use buffer space */
char *zInput; /* Input word to match against */
amatch_vtab *pVtab; /* The virtual table this cursor belongs to */
amatch_word *pAllWords; /* List of all amatch_word objects */
amatch_word *pCurrent; /* Most recent solution */
amatch_avl *pCost; /* amatch_word objects keyed by iCost */
amatch_avl *pWord; /* amatch_word objects keyed by zWord */
};
/*
** The two input rule lists are both sorted in order of increasing
** cost. Merge them together into a single list, sorted by cost, and
** return a pointer to the head of that list.
*/
static amatch_rule *amatchMergeRules(amatch_rule *pA, amatch_rule *pB){
amatch_rule head;
amatch_rule *pTail;
pTail = &head;
while( pA && pB ){
if( pA->rCost<=pB->rCost ){
pTail->pNext = pA;
pTail = pA;
pA = pA->pNext;
}else{
pTail->pNext = pB;
pTail = pB;
pB = pB->pNext;
}
}
if( pA==0 ){
pTail->pNext = pB;
}else{
pTail->pNext = pA;
}
return head.pNext;
}
/*
** Statement pStmt currently points to a row in the amatch data table. This
** function allocates and populates a amatch_rule structure according to
** the content of the row.
**
** If successful, *ppRule is set to point to the new object and SQLITE_OK
** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point
** to an error message and an SQLite error code returned.
*/
static int amatchLoadOneRule(
amatch_vtab *p, /* Fuzzer virtual table handle */
sqlite3_stmt *pStmt, /* Base rule on statements current row */
amatch_rule **ppRule, /* OUT: New rule object */
char **pzErr /* OUT: Error message */
){
sqlite3_int64 iLang = sqlite3_column_int64(pStmt, 0);
const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1);
const char *zTo = (const char *)sqlite3_column_text(pStmt, 2);
amatch_cost rCost = sqlite3_column_int(pStmt, 3);
int rc = SQLITE_OK; /* Return code */
int nFrom; /* Size of string zFrom, in bytes */
int nTo; /* Size of string zTo, in bytes */
amatch_rule *pRule = 0; /* New rule object to return */
if( zFrom==0 ) zFrom = "";
if( zTo==0 ) zTo = "";
nFrom = (int)strlen(zFrom);
nTo = (int)strlen(zTo);
/* Silently ignore null transformations */
if( strcmp(zFrom, zTo)==0 ){
if( zFrom[0]=='?' && zFrom[1]==0 ){
if( p->rSub==0 || p->rSub>rCost ) p->rSub = rCost;
}
*ppRule = 0;
return SQLITE_OK;
}
if( rCost<=0 || rCost>AMATCH_MX_COST ){
*pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d",
p->zClassName, AMATCH_MX_COST
);
rc = SQLITE_ERROR;
}else
if( nFrom>AMATCH_MX_LENGTH || nTo>AMATCH_MX_LENGTH ){
*pzErr = sqlite3_mprintf("%s: maximum string length is %d",
p->zClassName, AMATCH_MX_LENGTH
);
rc = SQLITE_ERROR;
}else
if( iLang<0 || iLang>AMATCH_MX_LANGID ){
*pzErr = sqlite3_mprintf("%s: iLang must be between 0 and %d",
p->zClassName, AMATCH_MX_LANGID
);
rc = SQLITE_ERROR;
}else
if( strcmp(zFrom,"")==0 && strcmp(zTo,"?")==0 ){
if( p->rIns==0 || p->rIns>rCost ) p->rIns = rCost;
}else
if( strcmp(zFrom,"?")==0 && strcmp(zTo,"")==0 ){
if( p->rDel==0 || p->rDel>rCost ) p->rDel = rCost;
}else
{
pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
if( pRule==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pRule, 0, sizeof(*pRule));
pRule->zFrom = &pRule->zTo[nTo+1];
pRule->nFrom = nFrom;
memcpy(pRule->zFrom, zFrom, nFrom+1);
memcpy(pRule->zTo, zTo, nTo+1);
pRule->nTo = nTo;
pRule->rCost = rCost;
pRule->iLang = (int)iLang;
}
}
*ppRule = pRule;
return rc;
}
/*
** Free all the content in the edit-cost-table
*/
static void amatchFreeRules(amatch_vtab *p){
while( p->pRule ){
amatch_rule *pRule = p->pRule;
p->pRule = pRule->pNext;
sqlite3_free(pRule);
}
p->pRule = 0;
}
/*
** Load the content of the amatch data table into memory.
*/
static int amatchLoadRules(
sqlite3 *db, /* Database handle */
amatch_vtab *p, /* Virtual amatch table to configure */
char **pzErr /* OUT: Error message */
){
int rc = SQLITE_OK; /* Return code */
char *zSql; /* SELECT used to read from rules table */
amatch_rule *pHead = 0;
zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", p->zDb, p->zCostTab);
if( zSql==0 ){
rc = SQLITE_NOMEM;
}else{
int rc2; /* finalize() return code */
sqlite3_stmt *pStmt = 0;
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
if( rc!=SQLITE_OK ){
*pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db));
}else if( sqlite3_column_count(pStmt)!=4 ){
*pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4",
p->zClassName, p->zCostTab, sqlite3_column_count(pStmt)
);
rc = SQLITE_ERROR;
}else{
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
amatch_rule *pRule = 0;
rc = amatchLoadOneRule(p, pStmt, &pRule, pzErr);
if( pRule ){
pRule->pNext = pHead;
pHead = pRule;
}
}
}
rc2 = sqlite3_finalize(pStmt);
if( rc==SQLITE_OK ) rc = rc2;
}
sqlite3_free(zSql);
/* All rules are now in a singly linked list starting at pHead. This
** block sorts them by cost and then sets amatch_vtab.pRule to point to
** point to the head of the sorted list.
*/
if( rc==SQLITE_OK ){
unsigned int i;
amatch_rule *pX;
amatch_rule *a[15];
for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
while( (pX = pHead)!=0 ){
pHead = pX->pNext;
pX->pNext = 0;
for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
pX = amatchMergeRules(a[i], pX);
a[i] = 0;
}
a[i] = amatchMergeRules(a[i], pX);
}
for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
pX = amatchMergeRules(a[i], pX);
}
p->pRule = amatchMergeRules(p->pRule, pX);
}else{
/* An error has occurred. Setting p->pRule to point to the head of the
** allocated list ensures that the list will be cleaned up in this case.
*/
assert( p->pRule==0 );
p->pRule = pHead;
}
return rc;
}
/*
** This function converts an SQL quoted string into an unquoted string
** and returns a pointer to a buffer allocated using sqlite3_malloc()
** containing the result. The caller should eventually free this buffer
** using sqlite3_free.
**
** Examples:
**
** "abc" becomes abc
** 'xyz' becomes xyz
** [pqr] becomes pqr
** `mno` becomes mno
*/
static char *amatchDequote(const char *zIn){
int nIn; /* Size of input string, in bytes */
char *zOut; /* Output (dequoted) string */
nIn = (int)strlen(zIn);
zOut = sqlite3_malloc(nIn+1);
if( zOut ){
char q = zIn[0]; /* Quote character (if any ) */
if( q!='[' && q!= '\'' && q!='"' && q!='`' ){
memcpy(zOut, zIn, nIn+1);
}else{
int iOut = 0; /* Index of next byte to write to output */
int iIn; /* Index of next byte to read from input */
if( q=='[' ) q = ']';
for(iIn=1; iIn<nIn; iIn++){
if( zIn[iIn]==q ) iIn++;
zOut[iOut++] = zIn[iIn];
}
}
assert( (int)strlen(zOut)<=nIn );
}
return zOut;
}
/*
** Deallocate the pVCheck prepared statement.
*/
static void amatchVCheckClear(amatch_vtab *p){
if( p->pVCheck ){
sqlite3_finalize(p->pVCheck);
p->pVCheck = 0;
}
}
/*
** Deallocate an amatch_vtab object
*/
static void amatchFree(amatch_vtab *p){
if( p ){
amatchFreeRules(p);
amatchVCheckClear(p);
sqlite3_free(p->zClassName);
sqlite3_free(p->zDb);
sqlite3_free(p->zCostTab);
sqlite3_free(p->zVocabTab);
sqlite3_free(p->zVocabWord);
sqlite3_free(p->zVocabLang);
memset(p, 0, sizeof(*p));
sqlite3_free(p);
}
}
/*
** xDisconnect/xDestroy method for the amatch module.
*/
static int amatchDisconnect(sqlite3_vtab *pVtab){
amatch_vtab *p = (amatch_vtab*)pVtab;
assert( p->nCursor==0 );
amatchFree(p);
return SQLITE_OK;
}
/*
** Check to see if the argument is of the form:
**
** KEY = VALUE
**
** If it is, return a pointer to the first character of VALUE.
** If not, return NULL. Spaces around the = are ignored.
*/
static const char *amatchValueOfKey(const char *zKey, const char *zStr){
int nKey = (int)strlen(zKey);
int nStr = (int)strlen(zStr);
int i;
if( nStr<nKey+1 ) return 0;
if( memcmp(zStr, zKey, nKey)!=0 ) return 0;
for(i=nKey; isspace(zStr[i]); i++){}
if( zStr[i]!='=' ) return 0;
i++;
while( isspace(zStr[i]) ){ i++; }
return zStr+i;
}
/*
** xConnect/xCreate method for the amatch module. Arguments are:
**
** argv[0] -> module name ("approximate_match")
** argv[1] -> database name
** argv[2] -> table name
** argv[3...] -> arguments
*/
static int amatchConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
int rc = SQLITE_OK; /* Return code */
amatch_vtab *pNew = 0; /* New virtual table */
const char *zModule = argv[0];
const char *zDb = argv[1];
const char *zVal;
int i;
(void)pAux;
*ppVtab = 0;
pNew = sqlite3_malloc( sizeof(*pNew) );
if( pNew==0 ) return SQLITE_NOMEM;
rc = SQLITE_NOMEM;
memset(pNew, 0, sizeof(*pNew));
pNew->db = db;
pNew->zClassName = sqlite3_mprintf("%s", zModule);
if( pNew->zClassName==0 ) goto amatchConnectError;
pNew->zDb = sqlite3_mprintf("%s", zDb);
if( pNew->zDb==0 ) goto amatchConnectError;
pNew->zSelf = sqlite3_mprintf("%s", argv[2]);
if( pNew->zSelf==0 ) goto amatchConnectError;
for(i=3; i<argc; i++){
zVal = amatchValueOfKey("vocabulary_table", argv[i]);
if( zVal ){
sqlite3_free(pNew->zVocabTab);
pNew->zVocabTab = amatchDequote(zVal);
if( pNew->zVocabTab==0 ) goto amatchConnectError;
continue;
}
zVal = amatchValueOfKey("vocabulary_word", argv[i]);
if( zVal ){
sqlite3_free(pNew->zVocabWord);
pNew->zVocabWord = amatchDequote(zVal);
if( pNew->zVocabWord==0 ) goto amatchConnectError;
continue;
}
zVal = amatchValueOfKey("vocabulary_language", argv[i]);
if( zVal ){
sqlite3_free(pNew->zVocabLang);
pNew->zVocabLang = amatchDequote(zVal);
if( pNew->zVocabLang==0 ) goto amatchConnectError;
continue;
}
zVal = amatchValueOfKey("edit_distances", argv[i]);
if( zVal ){
sqlite3_free(pNew->zCostTab);
pNew->zCostTab = amatchDequote(zVal);
if( pNew->zCostTab==0 ) goto amatchConnectError;
continue;
}
*pzErr = sqlite3_mprintf("unrecognized argument: [%s]\n", argv[i]);
amatchFree(pNew);
*ppVtab = 0;
return SQLITE_ERROR;
}
rc = SQLITE_OK;
if( pNew->zCostTab==0 ){
*pzErr = sqlite3_mprintf("no edit_distances table specified");
rc = SQLITE_ERROR;
}else{
rc = amatchLoadRules(db, pNew, pzErr);
}
if( rc==SQLITE_OK ){
rc = sqlite3_declare_vtab(db,
"CREATE TABLE x(word,distance,language,"
"command HIDDEN,nword HIDDEN)"
);
#define AMATCH_COL_WORD 0
#define AMATCH_COL_DISTANCE 1
#define AMATCH_COL_LANGUAGE 2
#define AMATCH_COL_COMMAND 3
#define AMATCH_COL_NWORD 4
}
if( rc!=SQLITE_OK ){
amatchFree(pNew);
}
*ppVtab = &pNew->base;
return rc;
amatchConnectError:
amatchFree(pNew);
return rc;
}
/*
** Open a new amatch cursor.
*/
static int amatchOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
amatch_vtab *p = (amatch_vtab*)pVTab;
amatch_cursor *pCur;
pCur = sqlite3_malloc( sizeof(*pCur) );
if( pCur==0 ) return SQLITE_NOMEM;
memset(pCur, 0, sizeof(*pCur));
pCur->pVtab = p;
*ppCursor = &pCur->base;
p->nCursor++;
return SQLITE_OK;
}
/*
** Free up all the memory allocated by a cursor. Set it rLimit to 0
** to indicate that it is at EOF.
*/
static void amatchClearCursor(amatch_cursor *pCur){
amatch_word *pWord, *pNextWord;
for(pWord=pCur->pAllWords; pWord; pWord=pNextWord){
pNextWord = pWord->pNext;
sqlite3_free(pWord);
}
pCur->pAllWords = 0;
sqlite3_free(pCur->zInput);
pCur->zInput = 0;
pCur->pCost = 0;
pCur->pWord = 0;
pCur->pCurrent = 0;
pCur->rLimit = 1000000;
pCur->iLang = 0;
pCur->nWord = 0;
}
/*
** Close a amatch cursor.
*/
static int amatchClose(sqlite3_vtab_cursor *cur){
amatch_cursor *pCur = (amatch_cursor *)cur;
amatchClearCursor(pCur);
pCur->pVtab->nCursor--;
sqlite3_free(pCur);
return SQLITE_OK;
}
/*
** Render a 24-bit unsigned integer as a 4-byte base-64 number.
*/
static void amatchEncodeInt(int x, char *z){
static const char a[] =
"0123456789"
"ABCDEFGHIJ"
"KLMNOPQRST"
"UVWXYZ^abc"
"defghijklm"
"nopqrstuvw"
"xyz~";
z[0] = a[(x>>18)&0x3f];
z[1] = a[(x>>12)&0x3f];
z[2] = a[(x>>6)&0x3f];
z[3] = a[x&0x3f];
}
/*
** Write the zCost[] field for a amatch_word object
*/
static void amatchWriteCost(amatch_word *pWord){
amatchEncodeInt(pWord->rCost, pWord->zCost);
amatchEncodeInt(pWord->iSeq, pWord->zCost+4);
pWord->zCost[8] = 0;
}
/*
** Add a new amatch_word object to the queue.
**
** If a prior amatch_word object with the same zWord, and nMatch
** already exists, update its rCost (if the new rCost is less) but
** otherwise leave it unchanged. Do not add a duplicate.
**
** Do nothing if the cost exceeds threshold.
*/
static void amatchAddWord(
amatch_cursor *pCur,
amatch_cost rCost,
int nMatch,
const char *zWordBase,
const char *zWordTail
){
amatch_word *pWord;
amatch_avl *pNode;
amatch_avl *pOther;
int nBase, nTail;
char zBuf[4];
if( rCost>pCur->rLimit ){
return;
}
nBase = (int)strlen(zWordBase);
nTail = (int)strlen(zWordTail);
if( nBase+nTail+3>pCur->nBuf ){
pCur->nBuf = nBase+nTail+100;
pCur->zBuf = sqlite3_realloc(pCur->zBuf, pCur->nBuf);
if( pCur->zBuf==0 ){
pCur->nBuf = 0;
return;
}
}
amatchEncodeInt(nMatch, zBuf);
memcpy(pCur->zBuf, zBuf+2, 2);
memcpy(pCur->zBuf+2, zWordBase, nBase);
memcpy(pCur->zBuf+2+nBase, zWordTail, nTail+1);
pNode = amatchAvlSearch(pCur->pWord, pCur->zBuf);
if( pNode ){
pWord = pNode->pWord;
if( pWord->rCost>rCost ){
#ifdef AMATCH_TRACE_1
printf("UPDATE [%s][%.*s^%s] %d (\"%s\" \"%s\")\n",
pWord->zWord+2, pWord->nMatch, pCur->zInput, pCur->zInput,
pWord->rCost, pWord->zWord, pWord->zCost);
#endif
amatchAvlRemove(&pCur->pCost, &pWord->sCost);
pWord->rCost = rCost;
amatchWriteCost(pWord);
#ifdef AMATCH_TRACE_1
printf(" ---> %d (\"%s\" \"%s\")\n",
pWord->rCost, pWord->zWord, pWord->zCost);
#endif
pOther = amatchAvlInsert(&pCur->pCost, &pWord->sCost);
assert( pOther==0 ); (void)pOther;
}
return;
}
pWord = sqlite3_malloc( sizeof(*pWord) + nBase + nTail - 1 );
if( pWord==0 ) return;
memset(pWord, 0, sizeof(*pWord));
pWord->rCost = rCost;
pWord->iSeq = pCur->nWord++;
amatchWriteCost(pWord);
pWord->nMatch = nMatch;
pWord->pNext = pCur->pAllWords;
pCur->pAllWords = pWord;
pWord->sCost.zKey = pWord->zCost;
pWord->sCost.pWord = pWord;
pOther = amatchAvlInsert(&pCur->pCost, &pWord->sCost);
assert( pOther==0 ); (void)pOther;
pWord->sWord.zKey = pWord->zWord;
pWord->sWord.pWord = pWord;
strcpy(pWord->zWord, pCur->zBuf);
pOther = amatchAvlInsert(&pCur->pWord, &pWord->sWord);
assert( pOther==0 ); (void)pOther;
#ifdef AMATCH_TRACE_1
printf("INSERT [%s][%.*s^%s] %d (\"%s\" \"%s\")\n", pWord->zWord+2,
pWord->nMatch, pCur->zInput, pCur->zInput+pWord->nMatch, rCost,
pWord->zWord, pWord->zCost);
#endif
}
/*
** Advance a cursor to its next row of output
*/
static int amatchNext(sqlite3_vtab_cursor *cur){
amatch_cursor *pCur = (amatch_cursor*)cur;
amatch_word *pWord = 0;
amatch_avl *pNode;
int isMatch = 0;
amatch_vtab *p = pCur->pVtab;
int nWord;
int rc;
int i;
const char *zW;
amatch_rule *pRule;
char *zBuf = 0;
char nBuf = 0;
char zNext[8];
char zNextIn[8];
int nNextIn;
if( p->pVCheck==0 ){
char *zSql;
if( p->zVocabLang && p->zVocabLang[0] ){
zSql = sqlite3_mprintf(
"SELECT \"%s\" FROM \"%s\"",
" WHERE \"%w\">=?1 AND \"%w\"=?2"
" ORDER BY 1",
p->zVocabWord, p->zVocabTab,
p->zVocabWord, p->zVocabLang
);
}else{
zSql = sqlite3_mprintf(
"SELECT \"%s\" FROM \"%s\""
" WHERE \"%w\">=?1"
" ORDER BY 1",
p->zVocabWord, p->zVocabTab,
p->zVocabWord
);
}
rc = sqlite3_prepare_v2(p->db, zSql, -1, &p->pVCheck, 0);
sqlite3_free(zSql);
if( rc ) return rc;
}
sqlite3_bind_int(p->pVCheck, 2, pCur->iLang);
do{
pNode = amatchAvlFirst(pCur->pCost);
if( pNode==0 ){
pWord = 0;
break;
}
pWord = pNode->pWord;
amatchAvlRemove(&pCur->pCost, &pWord->sCost);
#ifdef AMATCH_TRACE_1
printf("PROCESS [%s][%.*s^%s] %d (\"%s\" \"%s\")\n",
pWord->zWord+2, pWord->nMatch, pCur->zInput, pCur->zInput+pWord->nMatch,
pWord->rCost, pWord->zWord, pWord->zCost);
#endif
nWord = (int)strlen(pWord->zWord+2);
if( nWord+20>nBuf ){
nBuf = nWord+100;
zBuf = sqlite3_realloc(zBuf, nBuf);
if( zBuf==0 ) return SQLITE_NOMEM;
}
strcpy(zBuf, pWord->zWord+2);
zNext[0] = 0;
zNextIn[0] = pCur->zInput[pWord->nMatch];
if( zNextIn[0] ){
for(i=1; i<=4 && (pCur->zInput[pWord->nMatch+i]&0xc0)==0x80; i++){
zNextIn[i] = pCur->zInput[pWord->nMatch+i];
}
zNextIn[i] = 0;
nNextIn = i;
}else{
nNextIn = 0;
}
if( zNextIn[0] && zNextIn[0]!='*' ){
sqlite3_reset(p->pVCheck);
strcat(zBuf, zNextIn);
sqlite3_bind_text(p->pVCheck, 1, zBuf, nWord+nNextIn, SQLITE_STATIC);
rc = sqlite3_step(p->pVCheck);
if( rc==SQLITE_ROW ){
zW = (const char*)sqlite3_column_text(p->pVCheck, 0);
if( strncmp(zBuf, zW, nWord+nNextIn)==0 ){
amatchAddWord(pCur, pWord->rCost, pWord->nMatch+nNextIn, zBuf, "");
}
}
zBuf[nWord] = 0;
}
while( 1 ){
strcpy(zBuf+nWord, zNext);
sqlite3_reset(p->pVCheck);
sqlite3_bind_text(p->pVCheck, 1, zBuf, -1, SQLITE_TRANSIENT);
rc = sqlite3_step(p->pVCheck);
if( rc!=SQLITE_ROW ) break;
zW = (const char*)sqlite3_column_text(p->pVCheck, 0);
strcpy(zBuf+nWord, zNext);
if( strncmp(zW, zBuf, nWord)!=0 ) break;
if( (zNextIn[0]=='*' && zNextIn[1]==0)
|| (zNextIn[0]==0 && zW[nWord]==0)
){
isMatch = 1;
zNextIn[0] = 0;
nNextIn = 0;
break;
}
zNext[0] = zW[nWord];
for(i=1; i<=4 && (zW[nWord+i]&0xc0)==0x80; i++){
zNext[i] = zW[nWord+i];
}
zNext[i] = 0;
zBuf[nWord] = 0;
if( p->rIns>0 ){
amatchAddWord(pCur, pWord->rCost+p->rIns, pWord->nMatch,
zBuf, zNext);
}
if( p->rSub>0 ){
amatchAddWord(pCur, pWord->rCost+p->rSub, pWord->nMatch+nNextIn,
zBuf, zNext);
}
if( p->rIns<0 && p->rSub<0 ) break;
zNext[i-1]++; /* FIX ME */
}
sqlite3_reset(p->pVCheck);
if( p->rDel>0 ){
zBuf[nWord] = 0;
amatchAddWord(pCur, pWord->rCost+p->rDel, pWord->nMatch+nNextIn,
zBuf, "");
}
for(pRule=p->pRule; pRule; pRule=pRule->pNext){
if( pRule->iLang!=pCur->iLang ) continue;
if( strncmp(pRule->zFrom, pCur->zInput+pWord->nMatch, pRule->nFrom)==0 ){
amatchAddWord(pCur, pWord->rCost+pRule->rCost,
pWord->nMatch+pRule->nFrom, pWord->zWord+2, pRule->zTo);
}
}
}while( !isMatch );
pCur->pCurrent = pWord;
sqlite3_free(zBuf);
return SQLITE_OK;
}
/*
** Called to "rewind" a cursor back to the beginning so that
** it starts its output over again. Always called at least once
** prior to any amatchColumn, amatchRowid, or amatchEof call.
*/
static int amatchFilter(
sqlite3_vtab_cursor *pVtabCursor,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
amatch_cursor *pCur = (amatch_cursor *)pVtabCursor;
const char *zWord = "*";
int idx;
amatchClearCursor(pCur);
idx = 0;
if( idxNum & 1 ){
zWord = (const char*)sqlite3_value_text(argv[0]);
idx++;
}
if( idxNum & 2 ){
pCur->rLimit = (amatch_cost)sqlite3_value_int(argv[idx]);
idx++;
}
if( idxNum & 4 ){
pCur->iLang = (amatch_cost)sqlite3_value_int(argv[idx]);
idx++;
}
pCur->zInput = sqlite3_mprintf("%s", zWord);
if( pCur->zInput==0 ) return SQLITE_NOMEM;
amatchAddWord(pCur, 0, 0, "", "");
amatchNext(pVtabCursor);
return SQLITE_OK;
}
/*
** Only the word and distance columns have values. All other columns
** return NULL
*/
static int amatchColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
amatch_cursor *pCur = (amatch_cursor*)cur;
switch( i ){
case AMATCH_COL_WORD: {
sqlite3_result_text(ctx, pCur->pCurrent->zWord+2, -1, SQLITE_STATIC);
break;
}
case AMATCH_COL_DISTANCE: {
sqlite3_result_int(ctx, pCur->pCurrent->rCost);
break;
}
case AMATCH_COL_LANGUAGE: {
sqlite3_result_int(ctx, pCur->iLang);
break;
}
case AMATCH_COL_NWORD: {
sqlite3_result_int(ctx, pCur->nWord);
break;
}
default: {
sqlite3_result_null(ctx);
break;
}
}
return SQLITE_OK;
}
/*
** The rowid.
*/
static int amatchRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
amatch_cursor *pCur = (amatch_cursor*)cur;
*pRowid = pCur->iRowid;
return SQLITE_OK;
}
/*
** EOF indicator
*/
static int amatchEof(sqlite3_vtab_cursor *cur){
amatch_cursor *pCur = (amatch_cursor*)cur;
return pCur->pCurrent==0;
}
/*
** Search for terms of these forms:
**
** (A) word MATCH $str
** (B1) distance < $value
** (B2) distance <= $value
** (C) language == $language
**
** The distance< and distance<= are both treated as distance<=.
** The query plan number is a bit vector:
**
** bit 1: Term of the form (A) found
** bit 2: Term like (B1) or (B2) found
** bit 3: Term like (C) found
**
** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set
** then $value is in filter.argv[0] if bit-1 is clear and is in
** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is
** in filter.argv[0] if bit-1 and bit-2 are both zero, is in
** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in
** filter.argv[2] if both bit-1 and bit-2 are set.
*/
static int amatchBestIndex(
sqlite3_vtab *tab,
sqlite3_index_info *pIdxInfo
){
int iPlan = 0;
int iDistTerm = -1;
int iLangTerm = -1;
int i;
const struct sqlite3_index_constraint *pConstraint;
(void)tab;
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
if( pConstraint->usable==0 ) continue;
if( (iPlan & 1)==0
&& pConstraint->iColumn==0
&& pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
){
iPlan |= 1;
pIdxInfo->aConstraintUsage[i].argvIndex = 1;
pIdxInfo->aConstraintUsage[i].omit = 1;
}
if( (iPlan & 2)==0
&& pConstraint->iColumn==1
&& (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
|| pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
){
iPlan |= 2;
iDistTerm = i;
}
if( (iPlan & 4)==0
&& pConstraint->iColumn==2
&& pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
){
iPlan |= 4;
pIdxInfo->aConstraintUsage[i].omit = 1;
iLangTerm = i;
}
}
if( iPlan & 2 ){
pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
}
if( iPlan & 4 ){
int idx = 1;
if( iPlan & 1 ) idx++;
if( iPlan & 2 ) idx++;
pIdxInfo->aConstraintUsage[iLangTerm].argvIndex = idx;
}
pIdxInfo->idxNum = iPlan;
if( pIdxInfo->nOrderBy==1
&& pIdxInfo->aOrderBy[0].iColumn==1
&& pIdxInfo->aOrderBy[0].desc==0
){
pIdxInfo->orderByConsumed = 1;
}
pIdxInfo->estimatedCost = (double)10000;
return SQLITE_OK;
}
/*
** The xUpdate() method.
**
** This implementation disallows DELETE and UPDATE. The only thing
** allowed is INSERT into the "command" column.
*/
static int amatchUpdate(
sqlite3_vtab *pVTab,
int argc,
sqlite3_value **argv,
sqlite_int64 *pRowid
){
amatch_vtab *p = (amatch_vtab*)pVTab;
const unsigned char *zCmd;
(void)pRowid;
if( argc==1 ){
pVTab->zErrMsg = sqlite3_mprintf("DELETE from %s is not allowed",
p->zSelf);
return SQLITE_ERROR;
}
if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){
pVTab->zErrMsg = sqlite3_mprintf("UPDATE of %s is not allowed",
p->zSelf);
return SQLITE_ERROR;
}
if( sqlite3_value_type(argv[2+AMATCH_COL_WORD])!=SQLITE_NULL
|| sqlite3_value_type(argv[2+AMATCH_COL_DISTANCE])!=SQLITE_NULL
|| sqlite3_value_type(argv[2+AMATCH_COL_LANGUAGE])!=SQLITE_NULL
){
pVTab->zErrMsg = sqlite3_mprintf(
"INSERT INTO %s allowed for column [command] only", p->zSelf);
return SQLITE_ERROR;
}
zCmd = sqlite3_value_text(argv[2+AMATCH_COL_COMMAND]);
if( zCmd==0 ) return SQLITE_OK;
return SQLITE_OK;
}
/*
** A virtual table module that implements the "approximate_match".
*/
static sqlite3_module amatchModule = {
0, /* iVersion */
amatchConnect, /* xCreate */
amatchConnect, /* xConnect */
amatchBestIndex, /* xBestIndex */
amatchDisconnect, /* xDisconnect */
amatchDisconnect, /* xDestroy */
amatchOpen, /* xOpen - open a cursor */
amatchClose, /* xClose - close a cursor */
amatchFilter, /* xFilter - configure scan constraints */
amatchNext, /* xNext - advance a cursor */
amatchEof, /* xEof - check for end of scan */
amatchColumn, /* xColumn - read data */
amatchRowid, /* xRowid - read data */
amatchUpdate, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0 /* xRollbackTo */
};
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/*
** Register the amatch virtual table
*/
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_amatch_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Not used */
#ifndef SQLITE_OMIT_VIRTUALTABLE
rc = sqlite3_create_module(db, "approximate_match", &amatchModule, 0);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
return rc;
}
|