summaryrefslogtreecommitdiff
path: root/ext/fts3/fts3_write.c
blob: 2904a9acaab1f82308bba756a3577b780a39b331 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
/*
** 2009 Oct 23
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file is part of the SQLite FTS3 extension module. Specifically,
** this file contains code to insert, update and delete rows from FTS3
** tables. It also contains code to merge FTS3 b-tree segments. Some
** of the sub-routines used to merge segments are also used by the query 
** code in fts3.c.
*/

#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <string.h>
#include <assert.h>
#include <stdlib.h>

/*
** When full-text index nodes are loaded from disk, the buffer that they
** are loaded into has the following number of bytes of padding at the end 
** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
** of 920 bytes is allocated for it.
**
** This means that if we have a pointer into a buffer containing node data,
** it is always safe to read up to two varints from it without risking an
** overread, even if the node data is corrupted.
*/
#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)

/*
** Under certain circumstances, b-tree nodes (doclists) can be loaded into
** memory incrementally instead of all at once. This can be a big performance
** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
** method before retrieving all query results (as may happen, for example,
** if a query has a LIMIT clause).
**
** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD 
** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
** The code is written so that the hard lower-limit for each of these values 
** is 1. Clearly such small values would be inefficient, but can be useful 
** for testing purposes.
**
** If this module is built with SQLITE_TEST defined, these constants may
** be overridden at runtime for testing purposes. File fts3_test.c contains
** a Tcl interface to read and write the values.
*/
#ifdef SQLITE_TEST
int test_fts3_node_chunksize = (4*1024);
int test_fts3_node_chunk_threshold = (4*1024)*4;
# define FTS3_NODE_CHUNKSIZE       test_fts3_node_chunksize
# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
#else
# define FTS3_NODE_CHUNKSIZE (4*1024) 
# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
#endif

typedef struct PendingList PendingList;
typedef struct SegmentNode SegmentNode;
typedef struct SegmentWriter SegmentWriter;

/*
** An instance of the following data structure is used to build doclists
** incrementally. See function fts3PendingListAppend() for details.
*/
struct PendingList {
  int nData;
  char *aData;
  int nSpace;
  sqlite3_int64 iLastDocid;
  sqlite3_int64 iLastCol;
  sqlite3_int64 iLastPos;
};


/*
** Each cursor has a (possibly empty) linked list of the following objects.
*/
struct Fts3DeferredToken {
  Fts3PhraseToken *pToken;        /* Pointer to corresponding expr token */
  int iCol;                       /* Column token must occur in */
  Fts3DeferredToken *pNext;       /* Next in list of deferred tokens */
  PendingList *pList;             /* Doclist is assembled here */
};

/*
** An instance of this structure is used to iterate through the terms on
** a contiguous set of segment b-tree leaf nodes. Although the details of
** this structure are only manipulated by code in this file, opaque handles
** of type Fts3SegReader* are also used by code in fts3.c to iterate through
** terms when querying the full-text index. See functions:
**
**   sqlite3Fts3SegReaderNew()
**   sqlite3Fts3SegReaderFree()
**   sqlite3Fts3SegReaderIterate()
**
** Methods used to manipulate Fts3SegReader structures:
**
**   fts3SegReaderNext()
**   fts3SegReaderFirstDocid()
**   fts3SegReaderNextDocid()
*/
struct Fts3SegReader {
  int iIdx;                       /* Index within level, or 0x7FFFFFFF for PT */

  sqlite3_int64 iStartBlock;      /* Rowid of first leaf block to traverse */
  sqlite3_int64 iLeafEndBlock;    /* Rowid of final leaf block to traverse */
  sqlite3_int64 iEndBlock;        /* Rowid of final block in segment (or 0) */
  sqlite3_int64 iCurrentBlock;    /* Current leaf block (or 0) */

  char *aNode;                    /* Pointer to node data (or NULL) */
  int nNode;                      /* Size of buffer at aNode (or 0) */
  int nPopulate;                  /* If >0, bytes of buffer aNode[] loaded */
  sqlite3_blob *pBlob;            /* If not NULL, blob handle to read node */

  Fts3HashElem **ppNextElem;

  /* Variables set by fts3SegReaderNext(). These may be read directly
  ** by the caller. They are valid from the time SegmentReaderNew() returns
  ** until SegmentReaderNext() returns something other than SQLITE_OK
  ** (i.e. SQLITE_DONE).
  */
  int nTerm;                      /* Number of bytes in current term */
  char *zTerm;                    /* Pointer to current term */
  int nTermAlloc;                 /* Allocated size of zTerm buffer */
  char *aDoclist;                 /* Pointer to doclist of current entry */
  int nDoclist;                   /* Size of doclist in current entry */

  /* The following variables are used by fts3SegReaderNextDocid() to iterate 
  ** through the current doclist (aDoclist/nDoclist).
  */
  char *pOffsetList;
  int nOffsetList;                /* For descending pending seg-readers only */
  sqlite3_int64 iDocid;
};

#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
#define fts3SegReaderIsRootOnly(p) ((p)->aNode==(char *)&(p)[1])

/*
** An instance of this structure is used to create a segment b-tree in the
** database. The internal details of this type are only accessed by the
** following functions:
**
**   fts3SegWriterAdd()
**   fts3SegWriterFlush()
**   fts3SegWriterFree()
*/
struct SegmentWriter {
  SegmentNode *pTree;             /* Pointer to interior tree structure */
  sqlite3_int64 iFirst;           /* First slot in %_segments written */
  sqlite3_int64 iFree;            /* Next free slot in %_segments */
  char *zTerm;                    /* Pointer to previous term buffer */
  int nTerm;                      /* Number of bytes in zTerm */
  int nMalloc;                    /* Size of malloc'd buffer at zMalloc */
  char *zMalloc;                  /* Malloc'd space (possibly) used for zTerm */
  int nSize;                      /* Size of allocation at aData */
  int nData;                      /* Bytes of data in aData */
  char *aData;                    /* Pointer to block from malloc() */
};

/*
** Type SegmentNode is used by the following three functions to create
** the interior part of the segment b+-tree structures (everything except
** the leaf nodes). These functions and type are only ever used by code
** within the fts3SegWriterXXX() family of functions described above.
**
**   fts3NodeAddTerm()
**   fts3NodeWrite()
**   fts3NodeFree()
**
** When a b+tree is written to the database (either as a result of a merge
** or the pending-terms table being flushed), leaves are written into the 
** database file as soon as they are completely populated. The interior of
** the tree is assembled in memory and written out only once all leaves have
** been populated and stored. This is Ok, as the b+-tree fanout is usually
** very large, meaning that the interior of the tree consumes relatively 
** little memory.
*/
struct SegmentNode {
  SegmentNode *pParent;           /* Parent node (or NULL for root node) */
  SegmentNode *pRight;            /* Pointer to right-sibling */
  SegmentNode *pLeftmost;         /* Pointer to left-most node of this depth */
  int nEntry;                     /* Number of terms written to node so far */
  char *zTerm;                    /* Pointer to previous term buffer */
  int nTerm;                      /* Number of bytes in zTerm */
  int nMalloc;                    /* Size of malloc'd buffer at zMalloc */
  char *zMalloc;                  /* Malloc'd space (possibly) used for zTerm */
  int nData;                      /* Bytes of valid data so far */
  char *aData;                    /* Node data */
};

/*
** Valid values for the second argument to fts3SqlStmt().
*/
#define SQL_DELETE_CONTENT             0
#define SQL_IS_EMPTY                   1
#define SQL_DELETE_ALL_CONTENT         2 
#define SQL_DELETE_ALL_SEGMENTS        3
#define SQL_DELETE_ALL_SEGDIR          4
#define SQL_DELETE_ALL_DOCSIZE         5
#define SQL_DELETE_ALL_STAT            6
#define SQL_SELECT_CONTENT_BY_ROWID    7
#define SQL_NEXT_SEGMENT_INDEX         8
#define SQL_INSERT_SEGMENTS            9
#define SQL_NEXT_SEGMENTS_ID          10
#define SQL_INSERT_SEGDIR             11
#define SQL_SELECT_LEVEL              12
#define SQL_SELECT_LEVEL_RANGE        13
#define SQL_SELECT_LEVEL_COUNT        14
#define SQL_SELECT_SEGDIR_MAX_LEVEL   15
#define SQL_DELETE_SEGDIR_LEVEL       16
#define SQL_DELETE_SEGMENTS_RANGE     17
#define SQL_CONTENT_INSERT            18
#define SQL_DELETE_DOCSIZE            19
#define SQL_REPLACE_DOCSIZE           20
#define SQL_SELECT_DOCSIZE            21
#define SQL_SELECT_DOCTOTAL           22
#define SQL_REPLACE_DOCTOTAL          23

#define SQL_SELECT_ALL_PREFIX_LEVEL   24
#define SQL_DELETE_ALL_TERMS_SEGDIR   25

#define SQL_DELETE_SEGDIR_RANGE       26

/*
** This function is used to obtain an SQLite prepared statement handle
** for the statement identified by the second argument. If successful,
** *pp is set to the requested statement handle and SQLITE_OK returned.
** Otherwise, an SQLite error code is returned and *pp is set to 0.
**
** If argument apVal is not NULL, then it must point to an array with
** at least as many entries as the requested statement has bound 
** parameters. The values are bound to the statements parameters before
** returning.
*/
static int fts3SqlStmt(
  Fts3Table *p,                   /* Virtual table handle */
  int eStmt,                      /* One of the SQL_XXX constants above */
  sqlite3_stmt **pp,              /* OUT: Statement handle */
  sqlite3_value **apVal           /* Values to bind to statement */
){
  const char *azSql[] = {
/* 0  */  "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
/* 1  */  "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
/* 2  */  "DELETE FROM %Q.'%q_content'",
/* 3  */  "DELETE FROM %Q.'%q_segments'",
/* 4  */  "DELETE FROM %Q.'%q_segdir'",
/* 5  */  "DELETE FROM %Q.'%q_docsize'",
/* 6  */  "DELETE FROM %Q.'%q_stat'",
/* 7  */  "SELECT %s WHERE rowid=?",
/* 8  */  "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
/* 9  */  "INSERT INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
/* 10 */  "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
/* 11 */  "INSERT INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",

          /* Return segments in order from oldest to newest.*/ 
/* 12 */  "SELECT idx, start_block, leaves_end_block, end_block, root "
            "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
/* 13 */  "SELECT idx, start_block, leaves_end_block, end_block, root "
            "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
            "ORDER BY level DESC, idx ASC",

/* 14 */  "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
/* 15 */  "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",

/* 16 */  "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
/* 17 */  "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
/* 18 */  "INSERT INTO %Q.'%q_content' VALUES(%s)",
/* 19 */  "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
/* 20 */  "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
/* 21 */  "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
/* 22 */  "SELECT value FROM %Q.'%q_stat' WHERE id=0",
/* 23 */  "REPLACE INTO %Q.'%q_stat' VALUES(0,?)",
/* 24 */  "",
/* 25 */  "",

/* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",

  };
  int rc = SQLITE_OK;
  sqlite3_stmt *pStmt;

  assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
  assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
  
  pStmt = p->aStmt[eStmt];
  if( !pStmt ){
    char *zSql;
    if( eStmt==SQL_CONTENT_INSERT ){
      zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
    }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
      zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist);
    }else{
      zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
    }
    if( !zSql ){
      rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL);
      sqlite3_free(zSql);
      assert( rc==SQLITE_OK || pStmt==0 );
      p->aStmt[eStmt] = pStmt;
    }
  }
  if( apVal ){
    int i;
    int nParam = sqlite3_bind_parameter_count(pStmt);
    for(i=0; rc==SQLITE_OK && i<nParam; i++){
      rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
    }
  }
  *pp = pStmt;
  return rc;
}

static int fts3SelectDocsize(
  Fts3Table *pTab,                /* FTS3 table handle */
  int eStmt,                      /* Either SQL_SELECT_DOCSIZE or DOCTOTAL */
  sqlite3_int64 iDocid,           /* Docid to bind for SQL_SELECT_DOCSIZE */
  sqlite3_stmt **ppStmt           /* OUT: Statement handle */
){
  sqlite3_stmt *pStmt = 0;        /* Statement requested from fts3SqlStmt() */
  int rc;                         /* Return code */

  assert( eStmt==SQL_SELECT_DOCSIZE || eStmt==SQL_SELECT_DOCTOTAL );

  rc = fts3SqlStmt(pTab, eStmt, &pStmt, 0);
  if( rc==SQLITE_OK ){
    if( eStmt==SQL_SELECT_DOCSIZE ){
      sqlite3_bind_int64(pStmt, 1, iDocid);
    }
    rc = sqlite3_step(pStmt);
    if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
      rc = sqlite3_reset(pStmt);
      if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
      pStmt = 0;
    }else{
      rc = SQLITE_OK;
    }
  }

  *ppStmt = pStmt;
  return rc;
}

int sqlite3Fts3SelectDoctotal(
  Fts3Table *pTab,                /* Fts3 table handle */
  sqlite3_stmt **ppStmt           /* OUT: Statement handle */
){
  return fts3SelectDocsize(pTab, SQL_SELECT_DOCTOTAL, 0, ppStmt);
}

int sqlite3Fts3SelectDocsize(
  Fts3Table *pTab,                /* Fts3 table handle */
  sqlite3_int64 iDocid,           /* Docid to read size data for */
  sqlite3_stmt **ppStmt           /* OUT: Statement handle */
){
  return fts3SelectDocsize(pTab, SQL_SELECT_DOCSIZE, iDocid, ppStmt);
}

/*
** Similar to fts3SqlStmt(). Except, after binding the parameters in
** array apVal[] to the SQL statement identified by eStmt, the statement
** is executed.
**
** Returns SQLITE_OK if the statement is successfully executed, or an
** SQLite error code otherwise.
*/
static void fts3SqlExec(
  int *pRC,                /* Result code */
  Fts3Table *p,            /* The FTS3 table */
  int eStmt,               /* Index of statement to evaluate */
  sqlite3_value **apVal    /* Parameters to bind */
){
  sqlite3_stmt *pStmt;
  int rc;
  if( *pRC ) return;
  rc = fts3SqlStmt(p, eStmt, &pStmt, apVal); 
  if( rc==SQLITE_OK ){
    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);
  }
  *pRC = rc;
}


/*
** This function ensures that the caller has obtained a shared-cache
** table-lock on the %_content table. This is required before reading
** data from the fts3 table. If this lock is not acquired first, then
** the caller may end up holding read-locks on the %_segments and %_segdir
** tables, but no read-lock on the %_content table. If this happens 
** a second connection will be able to write to the fts3 table, but
** attempting to commit those writes might return SQLITE_LOCKED or
** SQLITE_LOCKED_SHAREDCACHE (because the commit attempts to obtain 
** write-locks on the %_segments and %_segdir ** tables). 
**
** We try to avoid this because if FTS3 returns any error when committing
** a transaction, the whole transaction will be rolled back. And this is
** not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. It can
** still happen if the user reads data directly from the %_segments or
** %_segdir tables instead of going through FTS3 though.
**
** This reasoning does not apply to a content=xxx table.
*/
int sqlite3Fts3ReadLock(Fts3Table *p){
  int rc;                         /* Return code */
  sqlite3_stmt *pStmt;            /* Statement used to obtain lock */

  if( p->zContentTbl==0 ){
    rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pStmt, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_null(pStmt, 1);
      sqlite3_step(pStmt);
      rc = sqlite3_reset(pStmt);
    }
  }else{
    rc = SQLITE_OK;
  }

  return rc;
}

/*
** Set *ppStmt to a statement handle that may be used to iterate through
** all rows in the %_segdir table, from oldest to newest. If successful,
** return SQLITE_OK. If an error occurs while preparing the statement, 
** return an SQLite error code.
**
** There is only ever one instance of this SQL statement compiled for
** each FTS3 table.
**
** The statement returns the following columns from the %_segdir table:
**
**   0: idx
**   1: start_block
**   2: leaves_end_block
**   3: end_block
**   4: root
*/
int sqlite3Fts3AllSegdirs(
  Fts3Table *p,                   /* FTS3 table */
  int iIndex,                     /* Index for p->aIndex[] */
  int iLevel,                     /* Level to select */
  sqlite3_stmt **ppStmt           /* OUT: Compiled statement */
){
  int rc;
  sqlite3_stmt *pStmt = 0;

  assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
  assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
  assert( iIndex>=0 && iIndex<p->nIndex );

  if( iLevel<0 ){
    /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
    rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
    if( rc==SQLITE_OK ){ 
      sqlite3_bind_int(pStmt, 1, iIndex*FTS3_SEGDIR_MAXLEVEL);
      sqlite3_bind_int(pStmt, 2, (iIndex+1)*FTS3_SEGDIR_MAXLEVEL-1);
    }
  }else{
    /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
    rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
    if( rc==SQLITE_OK ){ 
      sqlite3_bind_int(pStmt, 1, iLevel+iIndex*FTS3_SEGDIR_MAXLEVEL);
    }
  }
  *ppStmt = pStmt;
  return rc;
}


/*
** Append a single varint to a PendingList buffer. SQLITE_OK is returned
** if successful, or an SQLite error code otherwise.
**
** This function also serves to allocate the PendingList structure itself.
** For example, to create a new PendingList structure containing two
** varints:
**
**   PendingList *p = 0;
**   fts3PendingListAppendVarint(&p, 1);
**   fts3PendingListAppendVarint(&p, 2);
*/
static int fts3PendingListAppendVarint(
  PendingList **pp,               /* IN/OUT: Pointer to PendingList struct */
  sqlite3_int64 i                 /* Value to append to data */
){
  PendingList *p = *pp;

  /* Allocate or grow the PendingList as required. */
  if( !p ){
    p = sqlite3_malloc(sizeof(*p) + 100);
    if( !p ){
      return SQLITE_NOMEM;
    }
    p->nSpace = 100;
    p->aData = (char *)&p[1];
    p->nData = 0;
  }
  else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
    int nNew = p->nSpace * 2;
    p = sqlite3_realloc(p, sizeof(*p) + nNew);
    if( !p ){
      sqlite3_free(*pp);
      *pp = 0;
      return SQLITE_NOMEM;
    }
    p->nSpace = nNew;
    p->aData = (char *)&p[1];
  }

  /* Append the new serialized varint to the end of the list. */
  p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
  p->aData[p->nData] = '\0';
  *pp = p;
  return SQLITE_OK;
}

/*
** Add a docid/column/position entry to a PendingList structure. Non-zero
** is returned if the structure is sqlite3_realloced as part of adding
** the entry. Otherwise, zero.
**
** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
** Zero is always returned in this case. Otherwise, if no OOM error occurs,
** it is set to SQLITE_OK.
*/
static int fts3PendingListAppend(
  PendingList **pp,               /* IN/OUT: PendingList structure */
  sqlite3_int64 iDocid,           /* Docid for entry to add */
  sqlite3_int64 iCol,             /* Column for entry to add */
  sqlite3_int64 iPos,             /* Position of term for entry to add */
  int *pRc                        /* OUT: Return code */
){
  PendingList *p = *pp;
  int rc = SQLITE_OK;

  assert( !p || p->iLastDocid<=iDocid );

  if( !p || p->iLastDocid!=iDocid ){
    sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0);
    if( p ){
      assert( p->nData<p->nSpace );
      assert( p->aData[p->nData]==0 );
      p->nData++;
    }
    if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
      goto pendinglistappend_out;
    }
    p->iLastCol = -1;
    p->iLastPos = 0;
    p->iLastDocid = iDocid;
  }
  if( iCol>0 && p->iLastCol!=iCol ){
    if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
     || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
    ){
      goto pendinglistappend_out;
    }
    p->iLastCol = iCol;
    p->iLastPos = 0;
  }
  if( iCol>=0 ){
    assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
    rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
    if( rc==SQLITE_OK ){
      p->iLastPos = iPos;
    }
  }

 pendinglistappend_out:
  *pRc = rc;
  if( p!=*pp ){
    *pp = p;
    return 1;
  }
  return 0;
}

/*
** Free a PendingList object allocated by fts3PendingListAppend().
*/
static void fts3PendingListDelete(PendingList *pList){
  sqlite3_free(pList);
}

/*
** Add an entry to one of the pending-terms hash tables.
*/
static int fts3PendingTermsAddOne(
  Fts3Table *p,
  int iCol,
  int iPos,
  Fts3Hash *pHash,                /* Pending terms hash table to add entry to */
  const char *zToken,
  int nToken
){
  PendingList *pList;
  int rc = SQLITE_OK;

  pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
  if( pList ){
    p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
  }
  if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
    if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
      /* Malloc failed while inserting the new entry. This can only 
      ** happen if there was no previous entry for this token.
      */
      assert( 0==fts3HashFind(pHash, zToken, nToken) );
      sqlite3_free(pList);
      rc = SQLITE_NOMEM;
    }
  }
  if( rc==SQLITE_OK ){
    p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
  }
  return rc;
}

/*
** Tokenize the nul-terminated string zText and add all tokens to the
** pending-terms hash-table. The docid used is that currently stored in
** p->iPrevDocid, and the column is specified by argument iCol.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
*/
static int fts3PendingTermsAdd(
  Fts3Table *p,                   /* Table into which text will be inserted */
  const char *zText,              /* Text of document to be inserted */
  int iCol,                       /* Column into which text is being inserted */
  u32 *pnWord                     /* OUT: Number of tokens inserted */
){
  int rc;
  int iStart;
  int iEnd;
  int iPos;
  int nWord = 0;

  char const *zToken;
  int nToken;

  sqlite3_tokenizer *pTokenizer = p->pTokenizer;
  sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
  sqlite3_tokenizer_cursor *pCsr;
  int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
      const char**,int*,int*,int*,int*);

  assert( pTokenizer && pModule );

  /* If the user has inserted a NULL value, this function may be called with
  ** zText==0. In this case, add zero token entries to the hash table and 
  ** return early. */
  if( zText==0 ){
    *pnWord = 0;
    return SQLITE_OK;
  }

  rc = pModule->xOpen(pTokenizer, zText, -1, &pCsr);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  pCsr->pTokenizer = pTokenizer;

  xNext = pModule->xNext;
  while( SQLITE_OK==rc
      && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
  ){
    int i;
    if( iPos>=nWord ) nWord = iPos+1;

    /* Positions cannot be negative; we use -1 as a terminator internally.
    ** Tokens must have a non-zero length.
    */
    if( iPos<0 || !zToken || nToken<=0 ){
      rc = SQLITE_ERROR;
      break;
    }

    /* Add the term to the terms index */
    rc = fts3PendingTermsAddOne(
        p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
    );
    
    /* Add the term to each of the prefix indexes that it is not too 
    ** short for. */
    for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
      struct Fts3Index *pIndex = &p->aIndex[i];
      if( nToken<pIndex->nPrefix ) continue;
      rc = fts3PendingTermsAddOne(
          p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
      );
    }
  }

  pModule->xClose(pCsr);
  *pnWord = nWord;
  return (rc==SQLITE_DONE ? SQLITE_OK : rc);
}

/* 
** Calling this function indicates that subsequent calls to 
** fts3PendingTermsAdd() are to add term/position-list pairs for the
** contents of the document with docid iDocid.
*/
static int fts3PendingTermsDocid(Fts3Table *p, sqlite_int64 iDocid){
  /* TODO(shess) Explore whether partially flushing the buffer on
  ** forced-flush would provide better performance.  I suspect that if
  ** we ordered the doclists by size and flushed the largest until the
  ** buffer was half empty, that would let the less frequent terms
  ** generate longer doclists.
  */
  if( iDocid<=p->iPrevDocid || p->nPendingData>p->nMaxPendingData ){
    int rc = sqlite3Fts3PendingTermsFlush(p);
    if( rc!=SQLITE_OK ) return rc;
  }
  p->iPrevDocid = iDocid;
  return SQLITE_OK;
}

/*
** Discard the contents of the pending-terms hash tables. 
*/
void sqlite3Fts3PendingTermsClear(Fts3Table *p){
  int i;
  for(i=0; i<p->nIndex; i++){
    Fts3HashElem *pElem;
    Fts3Hash *pHash = &p->aIndex[i].hPending;
    for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
      PendingList *pList = (PendingList *)fts3HashData(pElem);
      fts3PendingListDelete(pList);
    }
    fts3HashClear(pHash);
  }
  p->nPendingData = 0;
}

/*
** This function is called by the xUpdate() method as part of an INSERT
** operation. It adds entries for each term in the new record to the
** pendingTerms hash table.
**
** Argument apVal is the same as the similarly named argument passed to
** fts3InsertData(). Parameter iDocid is the docid of the new row.
*/
static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal, u32 *aSz){
  int i;                          /* Iterator variable */
  for(i=2; i<p->nColumn+2; i++){
    const char *zText = (const char *)sqlite3_value_text(apVal[i]);
    int rc = fts3PendingTermsAdd(p, zText, i-2, &aSz[i-2]);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
  }
  return SQLITE_OK;
}

/*
** This function is called by the xUpdate() method for an INSERT operation.
** The apVal parameter is passed a copy of the apVal argument passed by
** SQLite to the xUpdate() method. i.e:
**
**   apVal[0]                Not used for INSERT.
**   apVal[1]                rowid
**   apVal[2]                Left-most user-defined column
**   ...
**   apVal[p->nColumn+1]     Right-most user-defined column
**   apVal[p->nColumn+2]     Hidden column with same name as table
**   apVal[p->nColumn+3]     Hidden "docid" column (alias for rowid)
*/
static int fts3InsertData(
  Fts3Table *p,                   /* Full-text table */
  sqlite3_value **apVal,          /* Array of values to insert */
  sqlite3_int64 *piDocid          /* OUT: Docid for row just inserted */
){
  int rc;                         /* Return code */
  sqlite3_stmt *pContentInsert;   /* INSERT INTO %_content VALUES(...) */

  if( p->zContentTbl ){
    sqlite3_value *pRowid = apVal[p->nColumn+3];
    if( sqlite3_value_type(pRowid)==SQLITE_NULL ){
      pRowid = apVal[1];
    }
    if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){
      return SQLITE_CONSTRAINT;
    }
    *piDocid = sqlite3_value_int64(pRowid);
    return SQLITE_OK;
  }

  /* Locate the statement handle used to insert data into the %_content
  ** table. The SQL for this statement is:
  **
  **   INSERT INTO %_content VALUES(?, ?, ?, ...)
  **
  ** The statement features N '?' variables, where N is the number of user
  ** defined columns in the FTS3 table, plus one for the docid field.
  */
  rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  /* There is a quirk here. The users INSERT statement may have specified
  ** a value for the "rowid" field, for the "docid" field, or for both.
  ** Which is a problem, since "rowid" and "docid" are aliases for the
  ** same value. For example:
  **
  **   INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
  **
  ** In FTS3, this is an error. It is an error to specify non-NULL values
  ** for both docid and some other rowid alias.
  */
  if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
    if( SQLITE_NULL==sqlite3_value_type(apVal[0])
     && SQLITE_NULL!=sqlite3_value_type(apVal[1])
    ){
      /* A rowid/docid conflict. */
      return SQLITE_ERROR;
    }
    rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
    if( rc!=SQLITE_OK ) return rc;
  }

  /* Execute the statement to insert the record. Set *piDocid to the 
  ** new docid value. 
  */
  sqlite3_step(pContentInsert);
  rc = sqlite3_reset(pContentInsert);

  *piDocid = sqlite3_last_insert_rowid(p->db);
  return rc;
}



/*
** Remove all data from the FTS3 table. Clear the hash table containing
** pending terms.
*/
static int fts3DeleteAll(Fts3Table *p, int bContent){
  int rc = SQLITE_OK;             /* Return code */

  /* Discard the contents of the pending-terms hash table. */
  sqlite3Fts3PendingTermsClear(p);

  /* Delete everything from the shadow tables. Except, leave %_content as
  ** is if bContent is false.  */
  assert( p->zContentTbl==0 || bContent==0 );
  if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
  fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
  fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
  if( p->bHasDocsize ){
    fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
  }
  if( p->bHasStat ){
    fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
  }
  return rc;
}

/*
** The first element in the apVal[] array is assumed to contain the docid
** (an integer) of a row about to be deleted. Remove all terms from the
** full-text index.
*/
static void fts3DeleteTerms( 
  int *pRC,               /* Result code */
  Fts3Table *p,           /* The FTS table to delete from */
  sqlite3_value *pRowid,  /* The docid to be deleted */
  u32 *aSz                /* Sizes of deleted document written here */
){
  int rc;
  sqlite3_stmt *pSelect;

  if( *pRC ) return;
  rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
  if( rc==SQLITE_OK ){
    if( SQLITE_ROW==sqlite3_step(pSelect) ){
      int i;
      for(i=1; i<=p->nColumn; i++){
        const char *zText = (const char *)sqlite3_column_text(pSelect, i);
        rc = fts3PendingTermsAdd(p, zText, -1, &aSz[i-1]);
        if( rc!=SQLITE_OK ){
          sqlite3_reset(pSelect);
          *pRC = rc;
          return;
        }
        aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
      }
    }
    rc = sqlite3_reset(pSelect);
  }else{
    sqlite3_reset(pSelect);
  }
  *pRC = rc;
}

/*
** Forward declaration to account for the circular dependency between
** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
*/
static int fts3SegmentMerge(Fts3Table *, int, int);

/* 
** This function allocates a new level iLevel index in the segdir table.
** Usually, indexes are allocated within a level sequentially starting
** with 0, so the allocated index is one greater than the value returned
** by:
**
**   SELECT max(idx) FROM %_segdir WHERE level = :iLevel
**
** However, if there are already FTS3_MERGE_COUNT indexes at the requested
** level, they are merged into a single level (iLevel+1) segment and the 
** allocated index is 0.
**
** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
** returned. Otherwise, an SQLite error code is returned.
*/
static int fts3AllocateSegdirIdx(
  Fts3Table *p, 
  int iIndex,                     /* Index for p->aIndex */
  int iLevel, 
  int *piIdx
){
  int rc;                         /* Return Code */
  sqlite3_stmt *pNextIdx;         /* Query for next idx at level iLevel */
  int iNext = 0;                  /* Result of query pNextIdx */

  /* Set variable iNext to the next available segdir index at level iLevel. */
  rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int(pNextIdx, 1, iIndex*FTS3_SEGDIR_MAXLEVEL + iLevel);
    if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
      iNext = sqlite3_column_int(pNextIdx, 0);
    }
    rc = sqlite3_reset(pNextIdx);
  }

  if( rc==SQLITE_OK ){
    /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
    ** full, merge all segments in level iLevel into a single iLevel+1
    ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
    ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
    */
    if( iNext>=FTS3_MERGE_COUNT ){
      rc = fts3SegmentMerge(p, iIndex, iLevel);
      *piIdx = 0;
    }else{
      *piIdx = iNext;
    }
  }

  return rc;
}

/*
** The %_segments table is declared as follows:
**
**   CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
**
** This function reads data from a single row of the %_segments table. The
** specific row is identified by the iBlockid parameter. If paBlob is not
** NULL, then a buffer is allocated using sqlite3_malloc() and populated
** with the contents of the blob stored in the "block" column of the 
** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
** to the size of the blob in bytes before returning.
**
** If an error occurs, or the table does not contain the specified row,
** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
** paBlob is non-NULL, then it is the responsibility of the caller to
** eventually free the returned buffer.
**
** This function may leave an open sqlite3_blob* handle in the
** Fts3Table.pSegments variable. This handle is reused by subsequent calls
** to this function. The handle may be closed by calling the
** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
** performance improvement, but the blob handle should always be closed
** before control is returned to the user (to prevent a lock being held
** on the database file for longer than necessary). Thus, any virtual table
** method (xFilter etc.) that may directly or indirectly call this function
** must call sqlite3Fts3SegmentsClose() before returning.
*/
int sqlite3Fts3ReadBlock(
  Fts3Table *p,                   /* FTS3 table handle */
  sqlite3_int64 iBlockid,         /* Access the row with blockid=$iBlockid */
  char **paBlob,                  /* OUT: Blob data in malloc'd buffer */
  int *pnBlob,                    /* OUT: Size of blob data */
  int *pnLoad                     /* OUT: Bytes actually loaded */
){
  int rc;                         /* Return code */

  /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
  assert( pnBlob);

  if( p->pSegments ){
    rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
  }else{
    if( 0==p->zSegmentsTbl ){
      p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
      if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
    }
    rc = sqlite3_blob_open(
       p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
    );
  }

  if( rc==SQLITE_OK ){
    int nByte = sqlite3_blob_bytes(p->pSegments);
    *pnBlob = nByte;
    if( paBlob ){
      char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
      if( !aByte ){
        rc = SQLITE_NOMEM;
      }else{
        if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
          nByte = FTS3_NODE_CHUNKSIZE;
          *pnLoad = nByte;
        }
        rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
        memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
        if( rc!=SQLITE_OK ){
          sqlite3_free(aByte);
          aByte = 0;
        }
      }
      *paBlob = aByte;
    }
  }

  return rc;
}

/*
** Close the blob handle at p->pSegments, if it is open. See comments above
** the sqlite3Fts3ReadBlock() function for details.
*/
void sqlite3Fts3SegmentsClose(Fts3Table *p){
  sqlite3_blob_close(p->pSegments);
  p->pSegments = 0;
}
    
static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
  int nRead;                      /* Number of bytes to read */
  int rc;                         /* Return code */

  nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
  rc = sqlite3_blob_read(
      pReader->pBlob, 
      &pReader->aNode[pReader->nPopulate],
      nRead,
      pReader->nPopulate
  );

  if( rc==SQLITE_OK ){
    pReader->nPopulate += nRead;
    memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
    if( pReader->nPopulate==pReader->nNode ){
      sqlite3_blob_close(pReader->pBlob);
      pReader->pBlob = 0;
      pReader->nPopulate = 0;
    }
  }
  return rc;
}

static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
  int rc = SQLITE_OK;
  assert( !pReader->pBlob 
       || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
  );
  while( pReader->pBlob && rc==SQLITE_OK 
     &&  (pFrom - pReader->aNode + nByte)>pReader->nPopulate
  ){
    rc = fts3SegReaderIncrRead(pReader);
  }
  return rc;
}

/*
** Move the iterator passed as the first argument to the next term in the
** segment. If successful, SQLITE_OK is returned. If there is no next term,
** SQLITE_DONE. Otherwise, an SQLite error code.
*/
static int fts3SegReaderNext(
  Fts3Table *p, 
  Fts3SegReader *pReader,
  int bIncr
){
  int rc;                         /* Return code of various sub-routines */
  char *pNext;                    /* Cursor variable */
  int nPrefix;                    /* Number of bytes in term prefix */
  int nSuffix;                    /* Number of bytes in term suffix */

  if( !pReader->aDoclist ){
    pNext = pReader->aNode;
  }else{
    pNext = &pReader->aDoclist[pReader->nDoclist];
  }

  if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){

    if( fts3SegReaderIsPending(pReader) ){
      Fts3HashElem *pElem = *(pReader->ppNextElem);
      if( pElem==0 ){
        pReader->aNode = 0;
      }else{
        PendingList *pList = (PendingList *)fts3HashData(pElem);
        pReader->zTerm = (char *)fts3HashKey(pElem);
        pReader->nTerm = fts3HashKeysize(pElem);
        pReader->nNode = pReader->nDoclist = pList->nData + 1;
        pReader->aNode = pReader->aDoclist = pList->aData;
        pReader->ppNextElem++;
        assert( pReader->aNode );
      }
      return SQLITE_OK;
    }

    if( !fts3SegReaderIsRootOnly(pReader) ){
      sqlite3_free(pReader->aNode);
      sqlite3_blob_close(pReader->pBlob);
      pReader->pBlob = 0;
    }
    pReader->aNode = 0;

    /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 
    ** blocks have already been traversed.  */
    assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
    if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
      return SQLITE_OK;
    }

    rc = sqlite3Fts3ReadBlock(
        p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, 
        (bIncr ? &pReader->nPopulate : 0)
    );
    if( rc!=SQLITE_OK ) return rc;
    assert( pReader->pBlob==0 );
    if( bIncr && pReader->nPopulate<pReader->nNode ){
      pReader->pBlob = p->pSegments;
      p->pSegments = 0;
    }
    pNext = pReader->aNode;
  }

  assert( !fts3SegReaderIsPending(pReader) );

  rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
  if( rc!=SQLITE_OK ) return rc;
  
  /* Because of the FTS3_NODE_PADDING bytes of padding, the following is 
  ** safe (no risk of overread) even if the node data is corrupted. */
  pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix);
  pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix);
  if( nPrefix<0 || nSuffix<=0 
   || &pNext[nSuffix]>&pReader->aNode[pReader->nNode] 
  ){
    return FTS_CORRUPT_VTAB;
  }

  if( nPrefix+nSuffix>pReader->nTermAlloc ){
    int nNew = (nPrefix+nSuffix)*2;
    char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
    if( !zNew ){
      return SQLITE_NOMEM;
    }
    pReader->zTerm = zNew;
    pReader->nTermAlloc = nNew;
  }

  rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
  if( rc!=SQLITE_OK ) return rc;

  memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
  pReader->nTerm = nPrefix+nSuffix;
  pNext += nSuffix;
  pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist);
  pReader->aDoclist = pNext;
  pReader->pOffsetList = 0;

  /* Check that the doclist does not appear to extend past the end of the
  ** b-tree node. And that the final byte of the doclist is 0x00. If either 
  ** of these statements is untrue, then the data structure is corrupt.
  */
  if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] 
   || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
  ){
    return FTS_CORRUPT_VTAB;
  }
  return SQLITE_OK;
}

/*
** Set the SegReader to point to the first docid in the doclist associated
** with the current term.
*/
static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
  int rc = SQLITE_OK;
  assert( pReader->aDoclist );
  assert( !pReader->pOffsetList );
  if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
    u8 bEof = 0;
    pReader->iDocid = 0;
    pReader->nOffsetList = 0;
    sqlite3Fts3DoclistPrev(0,
        pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, 
        &pReader->iDocid, &pReader->nOffsetList, &bEof
    );
  }else{
    rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
    if( rc==SQLITE_OK ){
      int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
      pReader->pOffsetList = &pReader->aDoclist[n];
    }
  }
  return rc;
}

/*
** Advance the SegReader to point to the next docid in the doclist
** associated with the current term.
** 
** If arguments ppOffsetList and pnOffsetList are not NULL, then 
** *ppOffsetList is set to point to the first column-offset list
** in the doclist entry (i.e. immediately past the docid varint).
** *pnOffsetList is set to the length of the set of column-offset
** lists, not including the nul-terminator byte. For example:
*/
static int fts3SegReaderNextDocid(
  Fts3Table *pTab,
  Fts3SegReader *pReader,         /* Reader to advance to next docid */
  char **ppOffsetList,            /* OUT: Pointer to current position-list */
  int *pnOffsetList               /* OUT: Length of *ppOffsetList in bytes */
){
  int rc = SQLITE_OK;
  char *p = pReader->pOffsetList;
  char c = 0;

  assert( p );

  if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
    /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
    ** Pending-terms doclists are always built up in ascending order, so
    ** we have to iterate through them backwards here. */
    u8 bEof = 0;
    if( ppOffsetList ){
      *ppOffsetList = pReader->pOffsetList;
      *pnOffsetList = pReader->nOffsetList - 1;
    }
    sqlite3Fts3DoclistPrev(0,
        pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
        &pReader->nOffsetList, &bEof
    );
    if( bEof ){
      pReader->pOffsetList = 0;
    }else{
      pReader->pOffsetList = p;
    }
  }else{
    char *pEnd = &pReader->aDoclist[pReader->nDoclist];

    /* Pointer p currently points at the first byte of an offset list. The
    ** following block advances it to point one byte past the end of
    ** the same offset list. */
    while( 1 ){
  
      /* The following line of code (and the "p++" below the while() loop) is
      ** normally all that is required to move pointer p to the desired 
      ** position. The exception is if this node is being loaded from disk
      ** incrementally and pointer "p" now points to the first byte passed
      ** the populated part of pReader->aNode[].
      */
      while( *p | c ) c = *p++ & 0x80;
      assert( *p==0 );
  
      if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
      rc = fts3SegReaderIncrRead(pReader);
      if( rc!=SQLITE_OK ) return rc;
    }
    p++;
  
    /* If required, populate the output variables with a pointer to and the
    ** size of the previous offset-list.
    */
    if( ppOffsetList ){
      *ppOffsetList = pReader->pOffsetList;
      *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
    }

    while( p<pEnd && *p==0 ) p++;
  
    /* If there are no more entries in the doclist, set pOffsetList to
    ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
    ** Fts3SegReader.pOffsetList to point to the next offset list before
    ** returning.
    */
    if( p>=pEnd ){
      pReader->pOffsetList = 0;
    }else{
      rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
      if( rc==SQLITE_OK ){
        sqlite3_int64 iDelta;
        pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
        if( pTab->bDescIdx ){
          pReader->iDocid -= iDelta;
        }else{
          pReader->iDocid += iDelta;
        }
      }
    }
  }

  return SQLITE_OK;
}


int sqlite3Fts3MsrOvfl(
  Fts3Cursor *pCsr, 
  Fts3MultiSegReader *pMsr,
  int *pnOvfl
){
  Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
  int nOvfl = 0;
  int ii;
  int rc = SQLITE_OK;
  int pgsz = p->nPgsz;

  assert( p->bHasStat );
  assert( pgsz>0 );

  for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
    Fts3SegReader *pReader = pMsr->apSegment[ii];
    if( !fts3SegReaderIsPending(pReader) 
     && !fts3SegReaderIsRootOnly(pReader) 
    ){
      sqlite3_int64 jj;
      for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){
        int nBlob;
        rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);
        if( rc!=SQLITE_OK ) break;
        if( (nBlob+35)>pgsz ){
          nOvfl += (nBlob + 34)/pgsz;
        }
      }
    }
  }
  *pnOvfl = nOvfl;
  return rc;
}

/*
** Free all allocations associated with the iterator passed as the 
** second argument.
*/
void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
  if( pReader && !fts3SegReaderIsPending(pReader) ){
    sqlite3_free(pReader->zTerm);
    if( !fts3SegReaderIsRootOnly(pReader) ){
      sqlite3_free(pReader->aNode);
      sqlite3_blob_close(pReader->pBlob);
    }
  }
  sqlite3_free(pReader);
}

/*
** Allocate a new SegReader object.
*/
int sqlite3Fts3SegReaderNew(
  int iAge,                       /* Segment "age". */
  sqlite3_int64 iStartLeaf,       /* First leaf to traverse */
  sqlite3_int64 iEndLeaf,         /* Final leaf to traverse */
  sqlite3_int64 iEndBlock,        /* Final block of segment */
  const char *zRoot,              /* Buffer containing root node */
  int nRoot,                      /* Size of buffer containing root node */
  Fts3SegReader **ppReader        /* OUT: Allocated Fts3SegReader */
){
  int rc = SQLITE_OK;             /* Return code */
  Fts3SegReader *pReader;         /* Newly allocated SegReader object */
  int nExtra = 0;                 /* Bytes to allocate segment root node */

  assert( iStartLeaf<=iEndLeaf );
  if( iStartLeaf==0 ){
    nExtra = nRoot + FTS3_NODE_PADDING;
  }

  pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
  if( !pReader ){
    return SQLITE_NOMEM;
  }
  memset(pReader, 0, sizeof(Fts3SegReader));
  pReader->iIdx = iAge;
  pReader->iStartBlock = iStartLeaf;
  pReader->iLeafEndBlock = iEndLeaf;
  pReader->iEndBlock = iEndBlock;

  if( nExtra ){
    /* The entire segment is stored in the root node. */
    pReader->aNode = (char *)&pReader[1];
    pReader->nNode = nRoot;
    memcpy(pReader->aNode, zRoot, nRoot);
    memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
  }else{
    pReader->iCurrentBlock = iStartLeaf-1;
  }

  if( rc==SQLITE_OK ){
    *ppReader = pReader;
  }else{
    sqlite3Fts3SegReaderFree(pReader);
  }
  return rc;
}

/*
** This is a comparison function used as a qsort() callback when sorting
** an array of pending terms by term. This occurs as part of flushing
** the contents of the pending-terms hash table to the database.
*/
static int fts3CompareElemByTerm(const void *lhs, const void *rhs){
  char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
  char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
  int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
  int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);

  int n = (n1<n2 ? n1 : n2);
  int c = memcmp(z1, z2, n);
  if( c==0 ){
    c = n1 - n2;
  }
  return c;
}

/*
** This function is used to allocate an Fts3SegReader that iterates through
** a subset of the terms stored in the Fts3Table.pendingTerms array.
**
** If the isPrefixIter parameter is zero, then the returned SegReader iterates
** through each term in the pending-terms table. Or, if isPrefixIter is
** non-zero, it iterates through each term and its prefixes. For example, if
** the pending terms hash table contains the terms "sqlite", "mysql" and
** "firebird", then the iterator visits the following 'terms' (in the order
** shown):
**
**   f fi fir fire fireb firebi firebir firebird
**   m my mys mysq mysql
**   s sq sql sqli sqlit sqlite
**
** Whereas if isPrefixIter is zero, the terms visited are:
**
**   firebird mysql sqlite
*/
int sqlite3Fts3SegReaderPending(
  Fts3Table *p,                   /* Virtual table handle */
  int iIndex,                     /* Index for p->aIndex */
  const char *zTerm,              /* Term to search for */
  int nTerm,                      /* Size of buffer zTerm */
  int bPrefix,                    /* True for a prefix iterator */
  Fts3SegReader **ppReader        /* OUT: SegReader for pending-terms */
){
  Fts3SegReader *pReader = 0;     /* Fts3SegReader object to return */
  Fts3HashElem **aElem = 0;       /* Array of term hash entries to scan */
  int nElem = 0;                  /* Size of array at aElem */
  int rc = SQLITE_OK;             /* Return Code */
  Fts3Hash *pHash;

  pHash = &p->aIndex[iIndex].hPending;
  if( bPrefix ){
    int nAlloc = 0;               /* Size of allocated array at aElem */
    Fts3HashElem *pE = 0;         /* Iterator variable */

    for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
      char *zKey = (char *)fts3HashKey(pE);
      int nKey = fts3HashKeysize(pE);
      if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
        if( nElem==nAlloc ){
          Fts3HashElem **aElem2;
          nAlloc += 16;
          aElem2 = (Fts3HashElem **)sqlite3_realloc(
              aElem, nAlloc*sizeof(Fts3HashElem *)
          );
          if( !aElem2 ){
            rc = SQLITE_NOMEM;
            nElem = 0;
            break;
          }
          aElem = aElem2;
        }

        aElem[nElem++] = pE;
      }
    }

    /* If more than one term matches the prefix, sort the Fts3HashElem
    ** objects in term order using qsort(). This uses the same comparison
    ** callback as is used when flushing terms to disk.
    */
    if( nElem>1 ){
      qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
    }

  }else{
    /* The query is a simple term lookup that matches at most one term in
    ** the index. All that is required is a straight hash-lookup. */
    Fts3HashElem *pE = fts3HashFindElem(pHash, zTerm, nTerm);
    if( pE ){
      aElem = &pE;
      nElem = 1;
    }
  }

  if( nElem>0 ){
    int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
    pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
    if( !pReader ){
      rc = SQLITE_NOMEM;
    }else{
      memset(pReader, 0, nByte);
      pReader->iIdx = 0x7FFFFFFF;
      pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
      memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
    }
  }

  if( bPrefix ){
    sqlite3_free(aElem);
  }
  *ppReader = pReader;
  return rc;
}

/*
** Compare the entries pointed to by two Fts3SegReader structures. 
** Comparison is as follows:
**
**   1) EOF is greater than not EOF.
**
**   2) The current terms (if any) are compared using memcmp(). If one
**      term is a prefix of another, the longer term is considered the
**      larger.
**
**   3) By segment age. An older segment is considered larger.
*/
static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
  int rc;
  if( pLhs->aNode && pRhs->aNode ){
    int rc2 = pLhs->nTerm - pRhs->nTerm;
    if( rc2<0 ){
      rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
    }else{
      rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
    }
    if( rc==0 ){
      rc = rc2;
    }
  }else{
    rc = (pLhs->aNode==0) - (pRhs->aNode==0);
  }
  if( rc==0 ){
    rc = pRhs->iIdx - pLhs->iIdx;
  }
  assert( rc!=0 );
  return rc;
}

/*
** A different comparison function for SegReader structures. In this
** version, it is assumed that each SegReader points to an entry in
** a doclist for identical terms. Comparison is made as follows:
**
**   1) EOF (end of doclist in this case) is greater than not EOF.
**
**   2) By current docid.
**
**   3) By segment age. An older segment is considered larger.
*/
static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
  int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
  if( rc==0 ){
    if( pLhs->iDocid==pRhs->iDocid ){
      rc = pRhs->iIdx - pLhs->iIdx;
    }else{
      rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
    }
  }
  assert( pLhs->aNode && pRhs->aNode );
  return rc;
}
static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
  int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
  if( rc==0 ){
    if( pLhs->iDocid==pRhs->iDocid ){
      rc = pRhs->iIdx - pLhs->iIdx;
    }else{
      rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
    }
  }
  assert( pLhs->aNode && pRhs->aNode );
  return rc;
}

/*
** Compare the term that the Fts3SegReader object passed as the first argument
** points to with the term specified by arguments zTerm and nTerm. 
**
** If the pSeg iterator is already at EOF, return 0. Otherwise, return
** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
*/
static int fts3SegReaderTermCmp(
  Fts3SegReader *pSeg,            /* Segment reader object */
  const char *zTerm,              /* Term to compare to */
  int nTerm                       /* Size of term zTerm in bytes */
){
  int res = 0;
  if( pSeg->aNode ){
    if( pSeg->nTerm>nTerm ){
      res = memcmp(pSeg->zTerm, zTerm, nTerm);
    }else{
      res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
    }
    if( res==0 ){
      res = pSeg->nTerm-nTerm;
    }
  }
  return res;
}

/*
** Argument apSegment is an array of nSegment elements. It is known that
** the final (nSegment-nSuspect) members are already in sorted order
** (according to the comparison function provided). This function shuffles
** the array around until all entries are in sorted order.
*/
static void fts3SegReaderSort(
  Fts3SegReader **apSegment,                     /* Array to sort entries of */
  int nSegment,                                  /* Size of apSegment array */
  int nSuspect,                                  /* Unsorted entry count */
  int (*xCmp)(Fts3SegReader *, Fts3SegReader *)  /* Comparison function */
){
  int i;                          /* Iterator variable */

  assert( nSuspect<=nSegment );

  if( nSuspect==nSegment ) nSuspect--;
  for(i=nSuspect-1; i>=0; i--){
    int j;
    for(j=i; j<(nSegment-1); j++){
      Fts3SegReader *pTmp;
      if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
      pTmp = apSegment[j+1];
      apSegment[j+1] = apSegment[j];
      apSegment[j] = pTmp;
    }
  }

#ifndef NDEBUG
  /* Check that the list really is sorted now. */
  for(i=0; i<(nSuspect-1); i++){
    assert( xCmp(apSegment[i], apSegment[i+1])<0 );
  }
#endif
}

/* 
** Insert a record into the %_segments table.
*/
static int fts3WriteSegment(
  Fts3Table *p,                   /* Virtual table handle */
  sqlite3_int64 iBlock,           /* Block id for new block */
  char *z,                        /* Pointer to buffer containing block data */
  int n                           /* Size of buffer z in bytes */
){
  sqlite3_stmt *pStmt;
  int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int64(pStmt, 1, iBlock);
    sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);
  }
  return rc;
}

/* 
** Insert a record into the %_segdir table.
*/
static int fts3WriteSegdir(
  Fts3Table *p,                   /* Virtual table handle */
  int iLevel,                     /* Value for "level" field */
  int iIdx,                       /* Value for "idx" field */
  sqlite3_int64 iStartBlock,      /* Value for "start_block" field */
  sqlite3_int64 iLeafEndBlock,    /* Value for "leaves_end_block" field */
  sqlite3_int64 iEndBlock,        /* Value for "end_block" field */
  char *zRoot,                    /* Blob value for "root" field */
  int nRoot                       /* Number of bytes in buffer zRoot */
){
  sqlite3_stmt *pStmt;
  int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int(pStmt, 1, iLevel);
    sqlite3_bind_int(pStmt, 2, iIdx);
    sqlite3_bind_int64(pStmt, 3, iStartBlock);
    sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
    sqlite3_bind_int64(pStmt, 5, iEndBlock);
    sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);
  }
  return rc;
}

/*
** Return the size of the common prefix (if any) shared by zPrev and
** zNext, in bytes. For example, 
**
**   fts3PrefixCompress("abc", 3, "abcdef", 6)   // returns 3
**   fts3PrefixCompress("abX", 3, "abcdef", 6)   // returns 2
**   fts3PrefixCompress("abX", 3, "Xbcdef", 6)   // returns 0
*/
static int fts3PrefixCompress(
  const char *zPrev,              /* Buffer containing previous term */
  int nPrev,                      /* Size of buffer zPrev in bytes */
  const char *zNext,              /* Buffer containing next term */
  int nNext                       /* Size of buffer zNext in bytes */
){
  int n;
  UNUSED_PARAMETER(nNext);
  for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++);
  return n;
}

/*
** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
** (according to memcmp) than the previous term.
*/
static int fts3NodeAddTerm(
  Fts3Table *p,                   /* Virtual table handle */
  SegmentNode **ppTree,           /* IN/OUT: SegmentNode handle */ 
  int isCopyTerm,                 /* True if zTerm/nTerm is transient */
  const char *zTerm,              /* Pointer to buffer containing term */
  int nTerm                       /* Size of term in bytes */
){
  SegmentNode *pTree = *ppTree;
  int rc;
  SegmentNode *pNew;

  /* First try to append the term to the current node. Return early if 
  ** this is possible.
  */
  if( pTree ){
    int nData = pTree->nData;     /* Current size of node in bytes */
    int nReq = nData;             /* Required space after adding zTerm */
    int nPrefix;                  /* Number of bytes of prefix compression */
    int nSuffix;                  /* Suffix length */

    nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
    nSuffix = nTerm-nPrefix;

    nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
    if( nReq<=p->nNodeSize || !pTree->zTerm ){

      if( nReq>p->nNodeSize ){
        /* An unusual case: this is the first term to be added to the node
        ** and the static node buffer (p->nNodeSize bytes) is not large
        ** enough. Use a separately malloced buffer instead This wastes
        ** p->nNodeSize bytes, but since this scenario only comes about when
        ** the database contain two terms that share a prefix of almost 2KB, 
        ** this is not expected to be a serious problem. 
        */
        assert( pTree->aData==(char *)&pTree[1] );
        pTree->aData = (char *)sqlite3_malloc(nReq);
        if( !pTree->aData ){
          return SQLITE_NOMEM;
        }
      }

      if( pTree->zTerm ){
        /* There is no prefix-length field for first term in a node */
        nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
      }

      nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
      memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
      pTree->nData = nData + nSuffix;
      pTree->nEntry++;

      if( isCopyTerm ){
        if( pTree->nMalloc<nTerm ){
          char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2);
          if( !zNew ){
            return SQLITE_NOMEM;
          }
          pTree->nMalloc = nTerm*2;
          pTree->zMalloc = zNew;
        }
        pTree->zTerm = pTree->zMalloc;
        memcpy(pTree->zTerm, zTerm, nTerm);
        pTree->nTerm = nTerm;
      }else{
        pTree->zTerm = (char *)zTerm;
        pTree->nTerm = nTerm;
      }
      return SQLITE_OK;
    }
  }

  /* If control flows to here, it was not possible to append zTerm to the
  ** current node. Create a new node (a right-sibling of the current node).
  ** If this is the first node in the tree, the term is added to it.
  **
  ** Otherwise, the term is not added to the new node, it is left empty for
  ** now. Instead, the term is inserted into the parent of pTree. If pTree 
  ** has no parent, one is created here.
  */
  pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize);
  if( !pNew ){
    return SQLITE_NOMEM;
  }
  memset(pNew, 0, sizeof(SegmentNode));
  pNew->nData = 1 + FTS3_VARINT_MAX;
  pNew->aData = (char *)&pNew[1];

  if( pTree ){
    SegmentNode *pParent = pTree->pParent;
    rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
    if( pTree->pParent==0 ){
      pTree->pParent = pParent;
    }
    pTree->pRight = pNew;
    pNew->pLeftmost = pTree->pLeftmost;
    pNew->pParent = pParent;
    pNew->zMalloc = pTree->zMalloc;
    pNew->nMalloc = pTree->nMalloc;
    pTree->zMalloc = 0;
  }else{
    pNew->pLeftmost = pNew;
    rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm); 
  }

  *ppTree = pNew;
  return rc;
}

/*
** Helper function for fts3NodeWrite().
*/
static int fts3TreeFinishNode(
  SegmentNode *pTree, 
  int iHeight, 
  sqlite3_int64 iLeftChild
){
  int nStart;
  assert( iHeight>=1 && iHeight<128 );
  nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
  pTree->aData[nStart] = (char)iHeight;
  sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
  return nStart;
}

/*
** Write the buffer for the segment node pTree and all of its peers to the
** database. Then call this function recursively to write the parent of 
** pTree and its peers to the database. 
**
** Except, if pTree is a root node, do not write it to the database. Instead,
** set output variables *paRoot and *pnRoot to contain the root node.
**
** If successful, SQLITE_OK is returned and output variable *piLast is
** set to the largest blockid written to the database (or zero if no
** blocks were written to the db). Otherwise, an SQLite error code is 
** returned.
*/
static int fts3NodeWrite(
  Fts3Table *p,                   /* Virtual table handle */
  SegmentNode *pTree,             /* SegmentNode handle */
  int iHeight,                    /* Height of this node in tree */
  sqlite3_int64 iLeaf,            /* Block id of first leaf node */
  sqlite3_int64 iFree,            /* Block id of next free slot in %_segments */
  sqlite3_int64 *piLast,          /* OUT: Block id of last entry written */
  char **paRoot,                  /* OUT: Data for root node */
  int *pnRoot                     /* OUT: Size of root node in bytes */
){
  int rc = SQLITE_OK;

  if( !pTree->pParent ){
    /* Root node of the tree. */
    int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
    *piLast = iFree-1;
    *pnRoot = pTree->nData - nStart;
    *paRoot = &pTree->aData[nStart];
  }else{
    SegmentNode *pIter;
    sqlite3_int64 iNextFree = iFree;
    sqlite3_int64 iNextLeaf = iLeaf;
    for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
      int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
      int nWrite = pIter->nData - nStart;
  
      rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
      iNextFree++;
      iNextLeaf += (pIter->nEntry+1);
    }
    if( rc==SQLITE_OK ){
      assert( iNextLeaf==iFree );
      rc = fts3NodeWrite(
          p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
      );
    }
  }

  return rc;
}

/*
** Free all memory allocations associated with the tree pTree.
*/
static void fts3NodeFree(SegmentNode *pTree){
  if( pTree ){
    SegmentNode *p = pTree->pLeftmost;
    fts3NodeFree(p->pParent);
    while( p ){
      SegmentNode *pRight = p->pRight;
      if( p->aData!=(char *)&p[1] ){
        sqlite3_free(p->aData);
      }
      assert( pRight==0 || p->zMalloc==0 );
      sqlite3_free(p->zMalloc);
      sqlite3_free(p);
      p = pRight;
    }
  }
}

/*
** Add a term to the segment being constructed by the SegmentWriter object
** *ppWriter. When adding the first term to a segment, *ppWriter should
** be passed NULL. This function will allocate a new SegmentWriter object
** and return it via the input/output variable *ppWriter in this case.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
*/
static int fts3SegWriterAdd(
  Fts3Table *p,                   /* Virtual table handle */
  SegmentWriter **ppWriter,       /* IN/OUT: SegmentWriter handle */ 
  int isCopyTerm,                 /* True if buffer zTerm must be copied */
  const char *zTerm,              /* Pointer to buffer containing term */
  int nTerm,                      /* Size of term in bytes */
  const char *aDoclist,           /* Pointer to buffer containing doclist */
  int nDoclist                    /* Size of doclist in bytes */
){
  int nPrefix;                    /* Size of term prefix in bytes */
  int nSuffix;                    /* Size of term suffix in bytes */
  int nReq;                       /* Number of bytes required on leaf page */
  int nData;
  SegmentWriter *pWriter = *ppWriter;

  if( !pWriter ){
    int rc;
    sqlite3_stmt *pStmt;

    /* Allocate the SegmentWriter structure */
    pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
    if( !pWriter ) return SQLITE_NOMEM;
    memset(pWriter, 0, sizeof(SegmentWriter));
    *ppWriter = pWriter;

    /* Allocate a buffer in which to accumulate data */
    pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize);
    if( !pWriter->aData ) return SQLITE_NOMEM;
    pWriter->nSize = p->nNodeSize;

    /* Find the next free blockid in the %_segments table */
    rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
    if( rc!=SQLITE_OK ) return rc;
    if( SQLITE_ROW==sqlite3_step(pStmt) ){
      pWriter->iFree = sqlite3_column_int64(pStmt, 0);
      pWriter->iFirst = pWriter->iFree;
    }
    rc = sqlite3_reset(pStmt);
    if( rc!=SQLITE_OK ) return rc;
  }
  nData = pWriter->nData;

  nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
  nSuffix = nTerm-nPrefix;

  /* Figure out how many bytes are required by this new entry */
  nReq = sqlite3Fts3VarintLen(nPrefix) +    /* varint containing prefix size */
    sqlite3Fts3VarintLen(nSuffix) +         /* varint containing suffix size */
    nSuffix +                               /* Term suffix */
    sqlite3Fts3VarintLen(nDoclist) +        /* Size of doclist */
    nDoclist;                               /* Doclist data */

  if( nData>0 && nData+nReq>p->nNodeSize ){
    int rc;

    /* The current leaf node is full. Write it out to the database. */
    rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
    if( rc!=SQLITE_OK ) return rc;

    /* Add the current term to the interior node tree. The term added to
    ** the interior tree must:
    **
    **   a) be greater than the largest term on the leaf node just written
    **      to the database (still available in pWriter->zTerm), and
    **
    **   b) be less than or equal to the term about to be added to the new
    **      leaf node (zTerm/nTerm).
    **
    ** In other words, it must be the prefix of zTerm 1 byte longer than
    ** the common prefix (if any) of zTerm and pWriter->zTerm.
    */
    assert( nPrefix<nTerm );
    rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
    if( rc!=SQLITE_OK ) return rc;

    nData = 0;
    pWriter->nTerm = 0;

    nPrefix = 0;
    nSuffix = nTerm;
    nReq = 1 +                              /* varint containing prefix size */
      sqlite3Fts3VarintLen(nTerm) +         /* varint containing suffix size */
      nTerm +                               /* Term suffix */
      sqlite3Fts3VarintLen(nDoclist) +      /* Size of doclist */
      nDoclist;                             /* Doclist data */
  }

  /* If the buffer currently allocated is too small for this entry, realloc
  ** the buffer to make it large enough.
  */
  if( nReq>pWriter->nSize ){
    char *aNew = sqlite3_realloc(pWriter->aData, nReq);
    if( !aNew ) return SQLITE_NOMEM;
    pWriter->aData = aNew;
    pWriter->nSize = nReq;
  }
  assert( nData+nReq<=pWriter->nSize );

  /* Append the prefix-compressed term and doclist to the buffer. */
  nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
  nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
  memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
  nData += nSuffix;
  nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
  memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
  pWriter->nData = nData + nDoclist;

  /* Save the current term so that it can be used to prefix-compress the next.
  ** If the isCopyTerm parameter is true, then the buffer pointed to by
  ** zTerm is transient, so take a copy of the term data. Otherwise, just
  ** store a copy of the pointer.
  */
  if( isCopyTerm ){
    if( nTerm>pWriter->nMalloc ){
      char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
      if( !zNew ){
        return SQLITE_NOMEM;
      }
      pWriter->nMalloc = nTerm*2;
      pWriter->zMalloc = zNew;
      pWriter->zTerm = zNew;
    }
    assert( pWriter->zTerm==pWriter->zMalloc );
    memcpy(pWriter->zTerm, zTerm, nTerm);
  }else{
    pWriter->zTerm = (char *)zTerm;
  }
  pWriter->nTerm = nTerm;

  return SQLITE_OK;
}

/*
** Flush all data associated with the SegmentWriter object pWriter to the
** database. This function must be called after all terms have been added
** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
** returned. Otherwise, an SQLite error code.
*/
static int fts3SegWriterFlush(
  Fts3Table *p,                   /* Virtual table handle */
  SegmentWriter *pWriter,         /* SegmentWriter to flush to the db */
  int iLevel,                     /* Value for 'level' column of %_segdir */
  int iIdx                        /* Value for 'idx' column of %_segdir */
){
  int rc;                         /* Return code */
  if( pWriter->pTree ){
    sqlite3_int64 iLast = 0;      /* Largest block id written to database */
    sqlite3_int64 iLastLeaf;      /* Largest leaf block id written to db */
    char *zRoot = NULL;           /* Pointer to buffer containing root node */
    int nRoot = 0;                /* Size of buffer zRoot */

    iLastLeaf = pWriter->iFree;
    rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
    if( rc==SQLITE_OK ){
      rc = fts3NodeWrite(p, pWriter->pTree, 1,
          pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
    }
    if( rc==SQLITE_OK ){
      rc = fts3WriteSegdir(
          p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, zRoot, nRoot);
    }
  }else{
    /* The entire tree fits on the root node. Write it to the segdir table. */
    rc = fts3WriteSegdir(
        p, iLevel, iIdx, 0, 0, 0, pWriter->aData, pWriter->nData);
  }
  return rc;
}

/*
** Release all memory held by the SegmentWriter object passed as the 
** first argument.
*/
static void fts3SegWriterFree(SegmentWriter *pWriter){
  if( pWriter ){
    sqlite3_free(pWriter->aData);
    sqlite3_free(pWriter->zMalloc);
    fts3NodeFree(pWriter->pTree);
    sqlite3_free(pWriter);
  }
}

/*
** The first value in the apVal[] array is assumed to contain an integer.
** This function tests if there exist any documents with docid values that
** are different from that integer. i.e. if deleting the document with docid
** pRowid would mean the FTS3 table were empty.
**
** If successful, *pisEmpty is set to true if the table is empty except for
** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
** error occurs, an SQLite error code is returned.
*/
static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
  sqlite3_stmt *pStmt;
  int rc;
  if( p->zContentTbl ){
    /* If using the content=xxx option, assume the table is never empty */
    *pisEmpty = 0;
    rc = SQLITE_OK;
  }else{
    rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
    if( rc==SQLITE_OK ){
      if( SQLITE_ROW==sqlite3_step(pStmt) ){
        *pisEmpty = sqlite3_column_int(pStmt, 0);
      }
      rc = sqlite3_reset(pStmt);
    }
  }
  return rc;
}

/*
** Set *pnMax to the largest segment level in the database for the index
** iIndex.
**
** Segment levels are stored in the 'level' column of the %_segdir table.
**
** Return SQLITE_OK if successful, or an SQLite error code if not.
*/
static int fts3SegmentMaxLevel(Fts3Table *p, int iIndex, int *pnMax){
  sqlite3_stmt *pStmt;
  int rc;
  assert( iIndex>=0 && iIndex<p->nIndex );

  /* Set pStmt to the compiled version of:
  **
  **   SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
  **
  ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
  */
  rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  sqlite3_bind_int(pStmt, 1, iIndex*FTS3_SEGDIR_MAXLEVEL);
  sqlite3_bind_int(pStmt, 2, (iIndex+1)*FTS3_SEGDIR_MAXLEVEL - 1);
  if( SQLITE_ROW==sqlite3_step(pStmt) ){
    *pnMax = sqlite3_column_int(pStmt, 0);
  }
  return sqlite3_reset(pStmt);
}

/*
** This function is used after merging multiple segments into a single large
** segment to delete the old, now redundant, segment b-trees. Specifically,
** it:
** 
**   1) Deletes all %_segments entries for the segments associated with 
**      each of the SegReader objects in the array passed as the third 
**      argument, and
**
**   2) deletes all %_segdir entries with level iLevel, or all %_segdir
**      entries regardless of level if (iLevel<0).
**
** SQLITE_OK is returned if successful, otherwise an SQLite error code.
*/
static int fts3DeleteSegdir(
  Fts3Table *p,                   /* Virtual table handle */
  int iIndex,                     /* Index for p->aIndex */
  int iLevel,                     /* Level of %_segdir entries to delete */
  Fts3SegReader **apSegment,      /* Array of SegReader objects */
  int nReader                     /* Size of array apSegment */
){
  int rc;                         /* Return Code */
  int i;                          /* Iterator variable */
  sqlite3_stmt *pDelete;          /* SQL statement to delete rows */

  rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
  for(i=0; rc==SQLITE_OK && i<nReader; i++){
    Fts3SegReader *pSegment = apSegment[i];
    if( pSegment->iStartBlock ){
      sqlite3_bind_int64(pDelete, 1, pSegment->iStartBlock);
      sqlite3_bind_int64(pDelete, 2, pSegment->iEndBlock);
      sqlite3_step(pDelete);
      rc = sqlite3_reset(pDelete);
    }
  }
  if( rc!=SQLITE_OK ){
    return rc;
  }

  assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
  if( iLevel==FTS3_SEGCURSOR_ALL ){
    rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int(pDelete, 1, iIndex*FTS3_SEGDIR_MAXLEVEL);
      sqlite3_bind_int(pDelete, 2, (iIndex+1) * FTS3_SEGDIR_MAXLEVEL - 1);
    }
  }else{
    rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int(pDelete, 1, iIndex*FTS3_SEGDIR_MAXLEVEL + iLevel);
    }
  }

  if( rc==SQLITE_OK ){
    sqlite3_step(pDelete);
    rc = sqlite3_reset(pDelete);
  }

  return rc;
}

/*
** When this function is called, buffer *ppList (size *pnList bytes) contains 
** a position list that may (or may not) feature multiple columns. This
** function adjusts the pointer *ppList and the length *pnList so that they
** identify the subset of the position list that corresponds to column iCol.
**
** If there are no entries in the input position list for column iCol, then
** *pnList is set to zero before returning.
*/
static void fts3ColumnFilter(
  int iCol,                       /* Column to filter on */
  char **ppList,                  /* IN/OUT: Pointer to position list */
  int *pnList                     /* IN/OUT: Size of buffer *ppList in bytes */
){
  char *pList = *ppList;
  int nList = *pnList;
  char *pEnd = &pList[nList];
  int iCurrent = 0;
  char *p = pList;

  assert( iCol>=0 );
  while( 1 ){
    char c = 0;
    while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
  
    if( iCol==iCurrent ){
      nList = (int)(p - pList);
      break;
    }

    nList -= (int)(p - pList);
    pList = p;
    if( nList==0 ){
      break;
    }
    p = &pList[1];
    p += sqlite3Fts3GetVarint32(p, &iCurrent);
  }

  *ppList = pList;
  *pnList = nList;
}

/*
** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
** existing data). Grow the buffer if required.
**
** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
** trying to resize the buffer, return SQLITE_NOMEM.
*/
static int fts3MsrBufferData(
  Fts3MultiSegReader *pMsr,       /* Multi-segment-reader handle */
  char *pList,
  int nList
){
  if( nList>pMsr->nBuffer ){
    char *pNew;
    pMsr->nBuffer = nList*2;
    pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer);
    if( !pNew ) return SQLITE_NOMEM;
    pMsr->aBuffer = pNew;
  }

  memcpy(pMsr->aBuffer, pList, nList);
  return SQLITE_OK;
}

int sqlite3Fts3MsrIncrNext(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pMsr,       /* Multi-segment-reader handle */
  sqlite3_int64 *piDocid,         /* OUT: Docid value */
  char **paPoslist,               /* OUT: Pointer to position list */
  int *pnPoslist                  /* OUT: Size of position list in bytes */
){
  int nMerge = pMsr->nAdvance;
  Fts3SegReader **apSegment = pMsr->apSegment;
  int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
    p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
  );

  if( nMerge==0 ){
    *paPoslist = 0;
    return SQLITE_OK;
  }

  while( 1 ){
    Fts3SegReader *pSeg;
    pSeg = pMsr->apSegment[0];

    if( pSeg->pOffsetList==0 ){
      *paPoslist = 0;
      break;
    }else{
      int rc;
      char *pList;
      int nList;
      int j;
      sqlite3_int64 iDocid = apSegment[0]->iDocid;

      rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
      j = 1;
      while( rc==SQLITE_OK 
        && j<nMerge
        && apSegment[j]->pOffsetList
        && apSegment[j]->iDocid==iDocid
      ){
        rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
        j++;
      }
      if( rc!=SQLITE_OK ) return rc;
      fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);

      if( pMsr->iColFilter>=0 ){
        fts3ColumnFilter(pMsr->iColFilter, &pList, &nList);
      }

      if( nList>0 ){
        if( fts3SegReaderIsPending(apSegment[0]) ){
          rc = fts3MsrBufferData(pMsr, pList, nList+1);
          if( rc!=SQLITE_OK ) return rc;
          *paPoslist = pMsr->aBuffer;
          assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
        }else{
          *paPoslist = pList;
        }
        *piDocid = iDocid;
        *pnPoslist = nList;
        break;
      }
    }
  }

  return SQLITE_OK;
}

static int fts3SegReaderStart(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pCsr,       /* Cursor object */
  const char *zTerm,              /* Term searched for (or NULL) */
  int nTerm                       /* Length of zTerm in bytes */
){
  int i;
  int nSeg = pCsr->nSegment;

  /* If the Fts3SegFilter defines a specific term (or term prefix) to search 
  ** for, then advance each segment iterator until it points to a term of
  ** equal or greater value than the specified term. This prevents many
  ** unnecessary merge/sort operations for the case where single segment
  ** b-tree leaf nodes contain more than one term.
  */
  for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){
    Fts3SegReader *pSeg = pCsr->apSegment[i];
    do {
      int rc = fts3SegReaderNext(p, pSeg, 0);
      if( rc!=SQLITE_OK ) return rc;
    }while( zTerm && fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 );
  }
  fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp);

  return SQLITE_OK;
}

int sqlite3Fts3SegReaderStart(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pCsr,       /* Cursor object */
  Fts3SegFilter *pFilter          /* Restrictions on range of iteration */
){
  pCsr->pFilter = pFilter;
  return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm);
}

int sqlite3Fts3MsrIncrStart(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pCsr,       /* Cursor object */
  int iCol,                       /* Column to match on. */
  const char *zTerm,              /* Term to iterate through a doclist for */
  int nTerm                       /* Number of bytes in zTerm */
){
  int i;
  int rc;
  int nSegment = pCsr->nSegment;
  int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
    p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
  );

  assert( pCsr->pFilter==0 );
  assert( zTerm && nTerm>0 );

  /* Advance each segment iterator until it points to the term zTerm/nTerm. */
  rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm);
  if( rc!=SQLITE_OK ) return rc;

  /* Determine how many of the segments actually point to zTerm/nTerm. */
  for(i=0; i<nSegment; i++){
    Fts3SegReader *pSeg = pCsr->apSegment[i];
    if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
      break;
    }
  }
  pCsr->nAdvance = i;

  /* Advance each of the segments to point to the first docid. */
  for(i=0; i<pCsr->nAdvance; i++){
    rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
    if( rc!=SQLITE_OK ) return rc;
  }
  fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);

  assert( iCol<0 || iCol<p->nColumn );
  pCsr->iColFilter = iCol;

  return SQLITE_OK;
}

/*
** This function is called on a MultiSegReader that has been started using
** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
** have been made. Calling this function puts the MultiSegReader in such
** a state that if the next two calls are:
**
**   sqlite3Fts3SegReaderStart()
**   sqlite3Fts3SegReaderStep()
**
** then the entire doclist for the term is available in 
** MultiSegReader.aDoclist/nDoclist.
*/
int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){
  int i;                          /* Used to iterate through segment-readers */

  assert( pCsr->zTerm==0 );
  assert( pCsr->nTerm==0 );
  assert( pCsr->aDoclist==0 );
  assert( pCsr->nDoclist==0 );

  pCsr->nAdvance = 0;
  pCsr->bRestart = 1;
  for(i=0; i<pCsr->nSegment; i++){
    pCsr->apSegment[i]->pOffsetList = 0;
    pCsr->apSegment[i]->nOffsetList = 0;
    pCsr->apSegment[i]->iDocid = 0;
  }

  return SQLITE_OK;
}


int sqlite3Fts3SegReaderStep(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pCsr        /* Cursor object */
){
  int rc = SQLITE_OK;

  int isIgnoreEmpty =  (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
  int isRequirePos =   (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
  int isColFilter =    (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
  int isPrefix =       (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
  int isScan =         (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
  int isFirst =        (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST);

  Fts3SegReader **apSegment = pCsr->apSegment;
  int nSegment = pCsr->nSegment;
  Fts3SegFilter *pFilter = pCsr->pFilter;
  int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
    p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
  );

  if( pCsr->nSegment==0 ) return SQLITE_OK;

  do {
    int nMerge;
    int i;
  
    /* Advance the first pCsr->nAdvance entries in the apSegment[] array
    ** forward. Then sort the list in order of current term again.  
    */
    for(i=0; i<pCsr->nAdvance; i++){
      rc = fts3SegReaderNext(p, apSegment[i], 0);
      if( rc!=SQLITE_OK ) return rc;
    }
    fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
    pCsr->nAdvance = 0;

    /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
    assert( rc==SQLITE_OK );
    if( apSegment[0]->aNode==0 ) break;

    pCsr->nTerm = apSegment[0]->nTerm;
    pCsr->zTerm = apSegment[0]->zTerm;

    /* If this is a prefix-search, and if the term that apSegment[0] points
    ** to does not share a suffix with pFilter->zTerm/nTerm, then all 
    ** required callbacks have been made. In this case exit early.
    **
    ** Similarly, if this is a search for an exact match, and the first term
    ** of segment apSegment[0] is not a match, exit early.
    */
    if( pFilter->zTerm && !isScan ){
      if( pCsr->nTerm<pFilter->nTerm 
       || (!isPrefix && pCsr->nTerm>pFilter->nTerm)
       || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) 
      ){
        break;
      }
    }

    nMerge = 1;
    while( nMerge<nSegment 
        && apSegment[nMerge]->aNode
        && apSegment[nMerge]->nTerm==pCsr->nTerm 
        && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
    ){
      nMerge++;
    }

    assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
    if( nMerge==1 
     && !isIgnoreEmpty 
     && !isFirst 
     && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
    ){
      pCsr->nDoclist = apSegment[0]->nDoclist;
      if( fts3SegReaderIsPending(apSegment[0]) ){
        rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist);
        pCsr->aDoclist = pCsr->aBuffer;
      }else{
        pCsr->aDoclist = apSegment[0]->aDoclist;
      }
      if( rc==SQLITE_OK ) rc = SQLITE_ROW;
    }else{
      int nDoclist = 0;           /* Size of doclist */
      sqlite3_int64 iPrev = 0;    /* Previous docid stored in doclist */

      /* The current term of the first nMerge entries in the array
      ** of Fts3SegReader objects is the same. The doclists must be merged
      ** and a single term returned with the merged doclist.
      */
      for(i=0; i<nMerge; i++){
        fts3SegReaderFirstDocid(p, apSegment[i]);
      }
      fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
      while( apSegment[0]->pOffsetList ){
        int j;                    /* Number of segments that share a docid */
        char *pList;
        int nList;
        int nByte;
        sqlite3_int64 iDocid = apSegment[0]->iDocid;
        fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
        j = 1;
        while( j<nMerge
            && apSegment[j]->pOffsetList
            && apSegment[j]->iDocid==iDocid
        ){
          fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
          j++;
        }

        if( isColFilter ){
          fts3ColumnFilter(pFilter->iCol, &pList, &nList);
        }

        if( !isIgnoreEmpty || nList>0 ){

          /* Calculate the 'docid' delta value to write into the merged 
          ** doclist. */
          sqlite3_int64 iDelta;
          if( p->bDescIdx && nDoclist>0 ){
            iDelta = iPrev - iDocid;
          }else{
            iDelta = iDocid - iPrev;
          }
          assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) );
          assert( nDoclist>0 || iDelta==iDocid );

          nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
          if( nDoclist+nByte>pCsr->nBuffer ){
            char *aNew;
            pCsr->nBuffer = (nDoclist+nByte)*2;
            aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
            if( !aNew ){
              return SQLITE_NOMEM;
            }
            pCsr->aBuffer = aNew;
          }

          if( isFirst ){
            char *a = &pCsr->aBuffer[nDoclist];
            int nWrite;
           
            nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);
            if( nWrite ){
              iPrev = iDocid;
              nDoclist += nWrite;
            }
          }else{
            nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);
            iPrev = iDocid;
            if( isRequirePos ){
              memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
              nDoclist += nList;
              pCsr->aBuffer[nDoclist++] = '\0';
            }
          }
        }

        fts3SegReaderSort(apSegment, nMerge, j, xCmp);
      }
      if( nDoclist>0 ){
        pCsr->aDoclist = pCsr->aBuffer;
        pCsr->nDoclist = nDoclist;
        rc = SQLITE_ROW;
      }
    }
    pCsr->nAdvance = nMerge;
  }while( rc==SQLITE_OK );

  return rc;
}


void sqlite3Fts3SegReaderFinish(
  Fts3MultiSegReader *pCsr       /* Cursor object */
){
  if( pCsr ){
    int i;
    for(i=0; i<pCsr->nSegment; i++){
      sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
    }
    sqlite3_free(pCsr->apSegment);
    sqlite3_free(pCsr->aBuffer);

    pCsr->nSegment = 0;
    pCsr->apSegment = 0;
    pCsr->aBuffer = 0;
  }
}

/*
** Merge all level iLevel segments in the database into a single 
** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
** single segment with a level equal to the numerically largest level 
** currently present in the database.
**
** If this function is called with iLevel<0, but there is only one
** segment in the database, SQLITE_DONE is returned immediately. 
** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, 
** an SQLite error code is returned.
*/
static int fts3SegmentMerge(Fts3Table *p, int iIndex, int iLevel){
  int rc;                         /* Return code */
  int iIdx = 0;                   /* Index of new segment */
  int iNewLevel = 0;              /* Level/index to create new segment at */
  SegmentWriter *pWriter = 0;     /* Used to write the new, merged, segment */
  Fts3SegFilter filter;           /* Segment term filter condition */
  Fts3MultiSegReader csr;        /* Cursor to iterate through level(s) */
  int bIgnoreEmpty = 0;           /* True to ignore empty segments */

  assert( iLevel==FTS3_SEGCURSOR_ALL
       || iLevel==FTS3_SEGCURSOR_PENDING
       || iLevel>=0
  );
  assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
  assert( iIndex>=0 && iIndex<p->nIndex );

  rc = sqlite3Fts3SegReaderCursor(p, iIndex, iLevel, 0, 0, 1, 0, &csr);
  if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;

  if( iLevel==FTS3_SEGCURSOR_ALL ){
    /* This call is to merge all segments in the database to a single
    ** segment. The level of the new segment is equal to the the numerically 
    ** greatest segment level currently present in the database for this
    ** index. The idx of the new segment is always 0.  */
    if( csr.nSegment==1 ){
      rc = SQLITE_DONE;
      goto finished;
    }
    rc = fts3SegmentMaxLevel(p, iIndex, &iNewLevel);
    bIgnoreEmpty = 1;

  }else if( iLevel==FTS3_SEGCURSOR_PENDING ){
    iNewLevel = iIndex * FTS3_SEGDIR_MAXLEVEL; 
    rc = fts3AllocateSegdirIdx(p, iIndex, 0, &iIdx);
  }else{
    /* This call is to merge all segments at level iLevel. find the next
    ** available segment index at level iLevel+1. The call to
    ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to 
    ** a single iLevel+2 segment if necessary.  */
    rc = fts3AllocateSegdirIdx(p, iIndex, iLevel+1, &iIdx);
    iNewLevel = iIndex * FTS3_SEGDIR_MAXLEVEL + iLevel+1;
  }
  if( rc!=SQLITE_OK ) goto finished;
  assert( csr.nSegment>0 );
  assert( iNewLevel>=(iIndex*FTS3_SEGDIR_MAXLEVEL) );
  assert( iNewLevel<((iIndex+1)*FTS3_SEGDIR_MAXLEVEL) );

  memset(&filter, 0, sizeof(Fts3SegFilter));
  filter.flags = FTS3_SEGMENT_REQUIRE_POS;
  filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);

  rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
  while( SQLITE_OK==rc ){
    rc = sqlite3Fts3SegReaderStep(p, &csr);
    if( rc!=SQLITE_ROW ) break;
    rc = fts3SegWriterAdd(p, &pWriter, 1, 
        csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
  }
  if( rc!=SQLITE_OK ) goto finished;
  assert( pWriter );

  if( iLevel!=FTS3_SEGCURSOR_PENDING ){
    rc = fts3DeleteSegdir(p, iIndex, iLevel, csr.apSegment, csr.nSegment);
    if( rc!=SQLITE_OK ) goto finished;
  }
  rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);

 finished:
  fts3SegWriterFree(pWriter);
  sqlite3Fts3SegReaderFinish(&csr);
  return rc;
}


/* 
** Flush the contents of pendingTerms to level 0 segments.
*/
int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
  int rc = SQLITE_OK;
  int i;
  for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
    rc = fts3SegmentMerge(p, i, FTS3_SEGCURSOR_PENDING);
    if( rc==SQLITE_DONE ) rc = SQLITE_OK;
  }
  sqlite3Fts3PendingTermsClear(p);
  return rc;
}

/*
** Encode N integers as varints into a blob.
*/
static void fts3EncodeIntArray(
  int N,             /* The number of integers to encode */
  u32 *a,            /* The integer values */
  char *zBuf,        /* Write the BLOB here */
  int *pNBuf         /* Write number of bytes if zBuf[] used here */
){
  int i, j;
  for(i=j=0; i<N; i++){
    j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
  }
  *pNBuf = j;
}

/*
** Decode a blob of varints into N integers
*/
static void fts3DecodeIntArray(
  int N,             /* The number of integers to decode */
  u32 *a,            /* Write the integer values */
  const char *zBuf,  /* The BLOB containing the varints */
  int nBuf           /* size of the BLOB */
){
  int i, j;
  UNUSED_PARAMETER(nBuf);
  for(i=j=0; i<N; i++){
    sqlite3_int64 x;
    j += sqlite3Fts3GetVarint(&zBuf[j], &x);
    assert(j<=nBuf);
    a[i] = (u32)(x & 0xffffffff);
  }
}

/*
** Insert the sizes (in tokens) for each column of the document
** with docid equal to p->iPrevDocid.  The sizes are encoded as
** a blob of varints.
*/
static void fts3InsertDocsize(
  int *pRC,                       /* Result code */
  Fts3Table *p,                   /* Table into which to insert */
  u32 *aSz                        /* Sizes of each column, in tokens */
){
  char *pBlob;             /* The BLOB encoding of the document size */
  int nBlob;               /* Number of bytes in the BLOB */
  sqlite3_stmt *pStmt;     /* Statement used to insert the encoding */
  int rc;                  /* Result code from subfunctions */

  if( *pRC ) return;
  pBlob = sqlite3_malloc( 10*p->nColumn );
  if( pBlob==0 ){
    *pRC = SQLITE_NOMEM;
    return;
  }
  fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
  rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
  if( rc ){
    sqlite3_free(pBlob);
    *pRC = rc;
    return;
  }
  sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
  sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
  sqlite3_step(pStmt);
  *pRC = sqlite3_reset(pStmt);
}

/*
** Record 0 of the %_stat table contains a blob consisting of N varints,
** where N is the number of user defined columns in the fts3 table plus
** two. If nCol is the number of user defined columns, then values of the 
** varints are set as follows:
**
**   Varint 0:       Total number of rows in the table.
**
**   Varint 1..nCol: For each column, the total number of tokens stored in
**                   the column for all rows of the table.
**
**   Varint 1+nCol:  The total size, in bytes, of all text values in all
**                   columns of all rows of the table.
**
*/
static void fts3UpdateDocTotals(
  int *pRC,                       /* The result code */
  Fts3Table *p,                   /* Table being updated */
  u32 *aSzIns,                    /* Size increases */
  u32 *aSzDel,                    /* Size decreases */
  int nChng                       /* Change in the number of documents */
){
  char *pBlob;             /* Storage for BLOB written into %_stat */
  int nBlob;               /* Size of BLOB written into %_stat */
  u32 *a;                  /* Array of integers that becomes the BLOB */
  sqlite3_stmt *pStmt;     /* Statement for reading and writing */
  int i;                   /* Loop counter */
  int rc;                  /* Result code from subfunctions */

  const int nStat = p->nColumn+2;

  if( *pRC ) return;
  a = sqlite3_malloc( (sizeof(u32)+10)*nStat );
  if( a==0 ){
    *pRC = SQLITE_NOMEM;
    return;
  }
  pBlob = (char*)&a[nStat];
  rc = fts3SqlStmt(p, SQL_SELECT_DOCTOTAL, &pStmt, 0);
  if( rc ){
    sqlite3_free(a);
    *pRC = rc;
    return;
  }
  if( sqlite3_step(pStmt)==SQLITE_ROW ){
    fts3DecodeIntArray(nStat, a,
         sqlite3_column_blob(pStmt, 0),
         sqlite3_column_bytes(pStmt, 0));
  }else{
    memset(a, 0, sizeof(u32)*(nStat) );
  }
  sqlite3_reset(pStmt);
  if( nChng<0 && a[0]<(u32)(-nChng) ){
    a[0] = 0;
  }else{
    a[0] += nChng;
  }
  for(i=0; i<p->nColumn+1; i++){
    u32 x = a[i+1];
    if( x+aSzIns[i] < aSzDel[i] ){
      x = 0;
    }else{
      x = x + aSzIns[i] - aSzDel[i];
    }
    a[i+1] = x;
  }
  fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
  rc = fts3SqlStmt(p, SQL_REPLACE_DOCTOTAL, &pStmt, 0);
  if( rc ){
    sqlite3_free(a);
    *pRC = rc;
    return;
  }
  sqlite3_bind_blob(pStmt, 1, pBlob, nBlob, SQLITE_STATIC);
  sqlite3_step(pStmt);
  *pRC = sqlite3_reset(pStmt);
  sqlite3_free(a);
}

static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
  int i;
  int bSeenDone = 0;
  int rc = SQLITE_OK;
  for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
    rc = fts3SegmentMerge(p, i, FTS3_SEGCURSOR_ALL);
    if( rc==SQLITE_DONE ){
      bSeenDone = 1;
      rc = SQLITE_OK;
    }
  }
  sqlite3Fts3SegmentsClose(p);
  sqlite3Fts3PendingTermsClear(p);

  return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
}

/*
** This function is called when the user executes the following statement:
**
**     INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
**
** The entire FTS index is discarded and rebuilt. If the table is one 
** created using the content=xxx option, then the new index is based on
** the current contents of the xxx table. Otherwise, it is rebuilt based
** on the contents of the %_content table.
*/
static int fts3DoRebuild(Fts3Table *p){
  int rc;                         /* Return Code */

  rc = fts3DeleteAll(p, 0);
  if( rc==SQLITE_OK ){
    u32 *aSz = 0;
    u32 *aSzIns = 0;
    u32 *aSzDel = 0;
    sqlite3_stmt *pStmt = 0;
    int nEntry = 0;

    /* Compose and prepare an SQL statement to loop through the content table */
    char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
    if( !zSql ){
      rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
      sqlite3_free(zSql);
    }

    if( rc==SQLITE_OK ){
      int nByte = sizeof(u32) * (p->nColumn+1)*3;
      aSz = (u32 *)sqlite3_malloc(nByte);
      if( aSz==0 ){
        rc = SQLITE_NOMEM;
      }else{
        memset(aSz, 0, nByte);
        aSzIns = &aSz[p->nColumn+1];
        aSzDel = &aSzIns[p->nColumn+1];
      }
    }

    while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
      int iCol;
      rc = fts3PendingTermsDocid(p, sqlite3_column_int64(pStmt, 0));
      aSz[p->nColumn] = 0;
      for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
        const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
        rc = fts3PendingTermsAdd(p, z, iCol, &aSz[iCol]);
        aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);
      }
      if( p->bHasDocsize ){
        fts3InsertDocsize(&rc, p, aSz);
      }
      if( rc!=SQLITE_OK ){
        sqlite3_finalize(pStmt);
        pStmt = 0;
      }else{
        nEntry++;
        for(iCol=0; iCol<=p->nColumn; iCol++){
          aSzIns[iCol] += aSz[iCol];
        }
      }
    }
    if( p->bHasStat ){
      fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry);
    }
    sqlite3_free(aSz);

    if( pStmt ){
      int rc2 = sqlite3_finalize(pStmt);
      if( rc==SQLITE_OK ){
        rc = rc2;
      }
    }
  }

  return rc;
}

/*
** Handle a 'special' INSERT of the form:
**
**   "INSERT INTO tbl(tbl) VALUES(<expr>)"
**
** Argument pVal contains the result of <expr>. Currently the only 
** meaningful value to insert is the text 'optimize'.
*/
static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
  int rc;                         /* Return Code */
  const char *zVal = (const char *)sqlite3_value_text(pVal);
  int nVal = sqlite3_value_bytes(pVal);

  if( !zVal ){
    return SQLITE_NOMEM;
  }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
    rc = fts3DoOptimize(p, 0);
  }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){
    rc = fts3DoRebuild(p);
#ifdef SQLITE_TEST
  }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
    p->nNodeSize = atoi(&zVal[9]);
    rc = SQLITE_OK;
  }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
    p->nMaxPendingData = atoi(&zVal[11]);
    rc = SQLITE_OK;
#endif
  }else{
    rc = SQLITE_ERROR;
  }

  return rc;
}

/*
** Delete all cached deferred doclists. Deferred doclists are cached
** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
*/
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
  Fts3DeferredToken *pDef;
  for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
    fts3PendingListDelete(pDef->pList);
    pDef->pList = 0;
  }
}

/*
** Free all entries in the pCsr->pDeffered list. Entries are added to 
** this list using sqlite3Fts3DeferToken().
*/
void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
  Fts3DeferredToken *pDef;
  Fts3DeferredToken *pNext;
  for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
    pNext = pDef->pNext;
    fts3PendingListDelete(pDef->pList);
    sqlite3_free(pDef);
  }
  pCsr->pDeferred = 0;
}

/*
** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
** based on the row that pCsr currently points to.
**
** A deferred-doclist is like any other doclist with position information
** included, except that it only contains entries for a single row of the
** table, not for all rows.
*/
int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
  int rc = SQLITE_OK;             /* Return code */
  if( pCsr->pDeferred ){
    int i;                        /* Used to iterate through table columns */
    sqlite3_int64 iDocid;         /* Docid of the row pCsr points to */
    Fts3DeferredToken *pDef;      /* Used to iterate through deferred tokens */
  
    Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
    sqlite3_tokenizer *pT = p->pTokenizer;
    sqlite3_tokenizer_module const *pModule = pT->pModule;
   
    assert( pCsr->isRequireSeek==0 );
    iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
  
    for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
      const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
      sqlite3_tokenizer_cursor *pTC = 0;
  
      rc = pModule->xOpen(pT, zText, -1, &pTC);
      while( rc==SQLITE_OK ){
        char const *zToken;       /* Buffer containing token */
        int nToken;               /* Number of bytes in token */
        int iDum1, iDum2;         /* Dummy variables */
        int iPos;                 /* Position of token in zText */
  
        pTC->pTokenizer = pT;
        rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
        for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
          Fts3PhraseToken *pPT = pDef->pToken;
          if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
           && (pPT->bFirst==0 || iPos==0)
           && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
           && (0==memcmp(zToken, pPT->z, pPT->n))
          ){
            fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
          }
        }
      }
      if( pTC ) pModule->xClose(pTC);
      if( rc==SQLITE_DONE ) rc = SQLITE_OK;
    }
  
    for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
      if( pDef->pList ){
        rc = fts3PendingListAppendVarint(&pDef->pList, 0);
      }
    }
  }

  return rc;
}

int sqlite3Fts3DeferredTokenList(
  Fts3DeferredToken *p, 
  char **ppData, 
  int *pnData
){
  char *pRet;
  int nSkip;
  sqlite3_int64 dummy;

  *ppData = 0;
  *pnData = 0;

  if( p->pList==0 ){
    return SQLITE_OK;
  }

  pRet = (char *)sqlite3_malloc(p->pList->nData);
  if( !pRet ) return SQLITE_NOMEM;

  nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
  *pnData = p->pList->nData - nSkip;
  *ppData = pRet;
  
  memcpy(pRet, &p->pList->aData[nSkip], *pnData);
  return SQLITE_OK;
}

/*
** Add an entry for token pToken to the pCsr->pDeferred list.
*/
int sqlite3Fts3DeferToken(
  Fts3Cursor *pCsr,               /* Fts3 table cursor */
  Fts3PhraseToken *pToken,        /* Token to defer */
  int iCol                        /* Column that token must appear in (or -1) */
){
  Fts3DeferredToken *pDeferred;
  pDeferred = sqlite3_malloc(sizeof(*pDeferred));
  if( !pDeferred ){
    return SQLITE_NOMEM;
  }
  memset(pDeferred, 0, sizeof(*pDeferred));
  pDeferred->pToken = pToken;
  pDeferred->pNext = pCsr->pDeferred; 
  pDeferred->iCol = iCol;
  pCsr->pDeferred = pDeferred;

  assert( pToken->pDeferred==0 );
  pToken->pDeferred = pDeferred;

  return SQLITE_OK;
}

/*
** SQLite value pRowid contains the rowid of a row that may or may not be
** present in the FTS3 table. If it is, delete it and adjust the contents
** of subsiduary data structures accordingly.
*/
static int fts3DeleteByRowid(
  Fts3Table *p, 
  sqlite3_value *pRowid, 
  int *pnDoc,
  u32 *aSzDel
){
  int isEmpty = 0;
  int rc = fts3IsEmpty(p, pRowid, &isEmpty);
  if( rc==SQLITE_OK ){
    if( isEmpty ){
      /* Deleting this row means the whole table is empty. In this case
      ** delete the contents of all three tables and throw away any
      ** data in the pendingTerms hash table.  */
      rc = fts3DeleteAll(p, 1);
      *pnDoc = *pnDoc - 1;
    }else{
      sqlite3_int64 iRemove = sqlite3_value_int64(pRowid);
      rc = fts3PendingTermsDocid(p, iRemove);
      fts3DeleteTerms(&rc, p, pRowid, aSzDel);
      if( p->zContentTbl==0 ){
        fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
        if( sqlite3_changes(p->db) ) *pnDoc = *pnDoc - 1;
      }else{
        *pnDoc = *pnDoc - 1;
      }
      if( p->bHasDocsize ){
        fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
      }
    }
  }

  return rc;
}

/*
** This function does the work for the xUpdate method of FTS3 virtual
** tables.
*/
int sqlite3Fts3UpdateMethod(
  sqlite3_vtab *pVtab,            /* FTS3 vtab object */
  int nArg,                       /* Size of argument array */
  sqlite3_value **apVal,          /* Array of arguments */
  sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
){
  Fts3Table *p = (Fts3Table *)pVtab;
  int rc = SQLITE_OK;             /* Return Code */
  int isRemove = 0;               /* True for an UPDATE or DELETE */
  u32 *aSzIns = 0;                /* Sizes of inserted documents */
  u32 *aSzDel;                    /* Sizes of deleted documents */
  int nChng = 0;                  /* Net change in number of documents */
  int bInsertDone = 0;

  assert( p->pSegments==0 );

  /* Check for a "special" INSERT operation. One of the form:
  **
  **   INSERT INTO xyz(xyz) VALUES('command');
  */
  if( nArg>1 
   && sqlite3_value_type(apVal[0])==SQLITE_NULL 
   && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL 
  ){
    rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
    goto update_out;
  }

  /* Allocate space to hold the change in document sizes */
  aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 );
  if( aSzIns==0 ){
    rc = SQLITE_NOMEM;
    goto update_out;
  }
  aSzDel = &aSzIns[p->nColumn+1];
  memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2);

  /* If this is an INSERT operation, or an UPDATE that modifies the rowid
  ** value, then this operation requires constraint handling.
  **
  ** If the on-conflict mode is REPLACE, this means that the existing row
  ** should be deleted from the database before inserting the new row. Or,
  ** if the on-conflict mode is other than REPLACE, then this method must
  ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
  ** modify the database file.
  */
  if( nArg>1 && p->zContentTbl==0 ){
    /* Find the value object that holds the new rowid value. */
    sqlite3_value *pNewRowid = apVal[3+p->nColumn];
    if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
      pNewRowid = apVal[1];
    }

    if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( 
        sqlite3_value_type(apVal[0])==SQLITE_NULL
     || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
    )){
      /* The new rowid is not NULL (in this case the rowid will be
      ** automatically assigned and there is no chance of a conflict), and 
      ** the statement is either an INSERT or an UPDATE that modifies the
      ** rowid column. So if the conflict mode is REPLACE, then delete any
      ** existing row with rowid=pNewRowid. 
      **
      ** Or, if the conflict mode is not REPLACE, insert the new record into 
      ** the %_content table. If we hit the duplicate rowid constraint (or any
      ** other error) while doing so, return immediately.
      **
      ** This branch may also run if pNewRowid contains a value that cannot
      ** be losslessly converted to an integer. In this case, the eventual 
      ** call to fts3InsertData() (either just below or further on in this
      ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is 
      ** invoked, it will delete zero rows (since no row will have
      ** docid=$pNewRowid if $pNewRowid is not an integer value).
      */
      if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
        rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
      }else{
        rc = fts3InsertData(p, apVal, pRowid);
        bInsertDone = 1;
      }
    }
  }
  if( rc!=SQLITE_OK ){
    goto update_out;
  }

  /* If this is a DELETE or UPDATE operation, remove the old record. */
  if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
    assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
    rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
    isRemove = 1;
  }
  
  /* If this is an INSERT or UPDATE operation, insert the new record. */
  if( nArg>1 && rc==SQLITE_OK ){
    if( bInsertDone==0 ){
      rc = fts3InsertData(p, apVal, pRowid);
      if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){
        rc = FTS_CORRUPT_VTAB;
      }
    }
    if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){
      rc = fts3PendingTermsDocid(p, *pRowid);
    }
    if( rc==SQLITE_OK ){
      assert( p->iPrevDocid==*pRowid );
      rc = fts3InsertTerms(p, apVal, aSzIns);
    }
    if( p->bHasDocsize ){
      fts3InsertDocsize(&rc, p, aSzIns);
    }
    nChng++;
  }

  if( p->bHasStat ){
    fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
  }

 update_out:
  sqlite3_free(aSzIns);
  sqlite3Fts3SegmentsClose(p);
  return rc;
}

/* 
** Flush any data in the pending-terms hash table to disk. If successful,
** merge all segments in the database (including the new segment, if 
** there was any data to flush) into a single segment. 
*/
int sqlite3Fts3Optimize(Fts3Table *p){
  int rc;
  rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
  if( rc==SQLITE_OK ){
    rc = fts3DoOptimize(p, 1);
    if( rc==SQLITE_OK || rc==SQLITE_DONE ){
      int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
      if( rc2!=SQLITE_OK ) rc = rc2;
    }else{
      sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
      sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
    }
  }
  sqlite3Fts3SegmentsClose(p);
  return rc;
}

#endif