summaryrefslogtreecommitdiff
path: root/test/e_fkey.test
diff options
context:
space:
mode:
Diffstat (limited to 'test/e_fkey.test')
-rw-r--r--test/e_fkey.test3014
1 files changed, 3014 insertions, 0 deletions
diff --git a/test/e_fkey.test b/test/e_fkey.test
new file mode 100644
index 0000000..ae789d5
--- /dev/null
+++ b/test/e_fkey.test
@@ -0,0 +1,3014 @@
+# 2009 October 7
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+# This file implements tests to verify the "testable statements" in the
+# foreignkeys.in document.
+#
+# The tests in this file are arranged to mirror the structure of
+# foreignkey.in, with one exception: The statements in section 2, which
+# deals with enabling/disabling foreign key support, is tested first,
+# before section 1. This is because some statements in section 2 deal
+# with builds that do not include complete foreign key support (because
+# either SQLITE_OMIT_TRIGGER or SQLITE_OMIT_FOREIGN_KEY was defined
+# at build time).
+#
+
+set testdir [file dirname $argv0]
+source $testdir/tester.tcl
+
+proc eqp {sql {db db}} { uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db }
+
+###########################################################################
+### SECTION 2: Enabling Foreign Key Support
+###########################################################################
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-33710-56344 In order to use foreign key constraints in
+# SQLite, the library must be compiled with neither
+# SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER defined.
+#
+ifcapable trigger&&foreignkey {
+ do_test e_fkey-1 {
+ execsql {
+ PRAGMA foreign_keys = ON;
+ CREATE TABLE p(i PRIMARY KEY);
+ CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE);
+ INSERT INTO p VALUES('hello');
+ INSERT INTO c VALUES('hello');
+ UPDATE p SET i = 'world';
+ SELECT * FROM c;
+ }
+ } {world}
+}
+
+#-------------------------------------------------------------------------
+# Test the effects of defining OMIT_TRIGGER but not OMIT_FOREIGN_KEY.
+#
+# EVIDENCE-OF: R-44697-61543 If SQLITE_OMIT_TRIGGER is defined but
+# SQLITE_OMIT_FOREIGN_KEY is not, then SQLite behaves as it did prior to
+# version 3.6.19 - foreign key definitions are parsed and may be queried
+# using PRAGMA foreign_key_list, but foreign key constraints are not
+# enforced.
+#
+# Specifically, test that "PRAGMA foreign_keys" is a no-op in this case.
+# When using the pragma to query the current setting, 0 rows are returned.
+#
+# EVIDENCE-OF: R-22567-44039 The PRAGMA foreign_keys command is a no-op
+# in this configuration.
+#
+# EVIDENCE-OF: R-41784-13339 Tip: If the command "PRAGMA foreign_keys"
+# returns no data instead of a single row containing "0" or "1", then
+# the version of SQLite you are using does not support foreign keys
+# (either because it is older than 3.6.19 or because it was compiled
+# with SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER defined).
+#
+reset_db
+ifcapable !trigger&&foreignkey {
+ do_test e_fkey-2.1 {
+ execsql {
+ PRAGMA foreign_keys = ON;
+ CREATE TABLE p(i PRIMARY KEY);
+ CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE);
+ INSERT INTO p VALUES('hello');
+ INSERT INTO c VALUES('hello');
+ UPDATE p SET i = 'world';
+ SELECT * FROM c;
+ }
+ } {hello}
+ do_test e_fkey-2.2 {
+ execsql { PRAGMA foreign_key_list(c) }
+ } {0 0 p j {} CASCADE {NO ACTION} NONE}
+ do_test e_fkey-2.3 {
+ execsql { PRAGMA foreign_keys }
+ } {}
+}
+
+
+#-------------------------------------------------------------------------
+# Test the effects of defining OMIT_FOREIGN_KEY.
+#
+# EVIDENCE-OF: R-58428-36660 If OMIT_FOREIGN_KEY is defined, then
+# foreign key definitions cannot even be parsed (attempting to specify a
+# foreign key definition is a syntax error).
+#
+# Specifically, test that foreign key constraints cannot even be parsed
+# in such a build.
+#
+reset_db
+ifcapable !foreignkey {
+ do_test e_fkey-3.1 {
+ execsql { CREATE TABLE p(i PRIMARY KEY) }
+ catchsql { CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE) }
+ } {1 {near "ON": syntax error}}
+ do_test e_fkey-3.2 {
+ # This is allowed, as in this build, "REFERENCES" is not a keyword.
+ # The declared datatype of column j is "REFERENCES p".
+ execsql { CREATE TABLE c(j REFERENCES p) }
+ } {}
+ do_test e_fkey-3.3 {
+ execsql { PRAGMA table_info(c) }
+ } {0 j {REFERENCES p} 0 {} 0}
+ do_test e_fkey-3.4 {
+ execsql { PRAGMA foreign_key_list(c) }
+ } {}
+ do_test e_fkey-3.5 {
+ execsql { PRAGMA foreign_keys }
+ } {}
+}
+
+ifcapable !foreignkey||!trigger { finish_test ; return }
+reset_db
+
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-07280-60510 Assuming the library is compiled with
+# foreign key constraints enabled, it must still be enabled by the
+# application at runtime, using the PRAGMA foreign_keys command.
+#
+# This also tests that foreign key constraints are disabled by default.
+#
+# EVIDENCE-OF: R-59578-04990 Foreign key constraints are disabled by
+# default (for backwards compatibility), so must be enabled separately
+# for each database connection separately.
+#
+drop_all_tables
+do_test e_fkey-4.1 {
+ execsql {
+ CREATE TABLE p(i PRIMARY KEY);
+ CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE);
+ INSERT INTO p VALUES('hello');
+ INSERT INTO c VALUES('hello');
+ UPDATE p SET i = 'world';
+ SELECT * FROM c;
+ }
+} {hello}
+do_test e_fkey-4.2 {
+ execsql {
+ DELETE FROM c;
+ DELETE FROM p;
+ PRAGMA foreign_keys = ON;
+ INSERT INTO p VALUES('hello');
+ INSERT INTO c VALUES('hello');
+ UPDATE p SET i = 'world';
+ SELECT * FROM c;
+ }
+} {world}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-15278-54456 The application can can also use a PRAGMA
+# foreign_keys statement to determine if foreign keys are currently
+# enabled.
+#
+# This also tests the example code in section 2 of foreignkeys.in.
+#
+# EVIDENCE-OF: R-11255-19907
+#
+reset_db
+do_test e_fkey-5.1 {
+ execsql { PRAGMA foreign_keys }
+} {0}
+do_test e_fkey-5.2 {
+ execsql {
+ PRAGMA foreign_keys = ON;
+ PRAGMA foreign_keys;
+ }
+} {1}
+do_test e_fkey-5.3 {
+ execsql {
+ PRAGMA foreign_keys = OFF;
+ PRAGMA foreign_keys;
+ }
+} {0}
+
+#-------------------------------------------------------------------------
+# Test that it is not possible to enable or disable foreign key support
+# while not in auto-commit mode.
+#
+# EVIDENCE-OF: R-46649-58537 It is not possible to enable or disable
+# foreign key constraints in the middle of a multi-statement transaction
+# (when SQLite is not in autocommit mode). Attempting to do so does not
+# return an error; it simply has no effect.
+#
+reset_db
+do_test e_fkey-6.1 {
+ execsql {
+ PRAGMA foreign_keys = ON;
+ CREATE TABLE t1(a UNIQUE, b);
+ CREATE TABLE t2(c, d REFERENCES t1(a));
+ INSERT INTO t1 VALUES(1, 2);
+ INSERT INTO t2 VALUES(2, 1);
+ BEGIN;
+ PRAGMA foreign_keys = OFF;
+ }
+ catchsql {
+ DELETE FROM t1
+ }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-6.2 {
+ execsql { PRAGMA foreign_keys }
+} {1}
+do_test e_fkey-6.3 {
+ execsql {
+ COMMIT;
+ PRAGMA foreign_keys = OFF;
+ BEGIN;
+ PRAGMA foreign_keys = ON;
+ DELETE FROM t1;
+ PRAGMA foreign_keys;
+ }
+} {0}
+do_test e_fkey-6.4 {
+ execsql COMMIT
+} {}
+
+###########################################################################
+### SECTION 1: Introduction to Foreign Key Constraints
+###########################################################################
+execsql "PRAGMA foreign_keys = ON"
+
+#-------------------------------------------------------------------------
+# Verify that the syntax in the first example in section 1 is valid.
+#
+# EVIDENCE-OF: R-04042-24825 To do so, a foreign key definition may be
+# added by modifying the declaration of the track table to the
+# following: CREATE TABLE track( trackid INTEGER, trackname TEXT,
+# trackartist INTEGER, FOREIGN KEY(trackartist) REFERENCES
+# artist(artistid) );
+#
+do_test e_fkey-7.1 {
+ execsql {
+ CREATE TABLE artist(
+ artistid INTEGER PRIMARY KEY,
+ artistname TEXT
+ );
+ CREATE TABLE track(
+ trackid INTEGER,
+ trackname TEXT,
+ trackartist INTEGER,
+ FOREIGN KEY(trackartist) REFERENCES artist(artistid)
+ );
+ }
+} {}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-61362-32087 Attempting to insert a row into the track
+# table that does not correspond to any row in the artist table will
+# fail,
+#
+do_test e_fkey-8.1 {
+ catchsql { INSERT INTO track VALUES(1, 'track 1', 1) }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-8.2 {
+ execsql { INSERT INTO artist VALUES(2, 'artist 1') }
+ catchsql { INSERT INTO track VALUES(1, 'track 1', 1) }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-8.2 {
+ execsql { INSERT INTO track VALUES(1, 'track 1', 2) }
+} {}
+
+#-------------------------------------------------------------------------
+# Attempting to delete a row from the 'artist' table while there are
+# dependent rows in the track table also fails.
+#
+# EVIDENCE-OF: R-24401-52400 as will attempting to delete a row from the
+# artist table when there exist dependent rows in the track table
+#
+do_test e_fkey-9.1 {
+ catchsql { DELETE FROM artist WHERE artistid = 2 }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-9.2 {
+ execsql {
+ DELETE FROM track WHERE trackartist = 2;
+ DELETE FROM artist WHERE artistid = 2;
+ }
+} {}
+
+#-------------------------------------------------------------------------
+# If the foreign key column (trackartist) in table 'track' is set to NULL,
+# there is no requirement for a matching row in the 'artist' table.
+#
+# EVIDENCE-OF: R-23980-48859 There is one exception: if the foreign key
+# column in the track table is NULL, then no corresponding entry in the
+# artist table is required.
+#
+do_test e_fkey-10.1 {
+ execsql {
+ INSERT INTO track VALUES(1, 'track 1', NULL);
+ INSERT INTO track VALUES(2, 'track 2', NULL);
+ }
+} {}
+do_test e_fkey-10.2 {
+ execsql { SELECT * FROM artist }
+} {}
+do_test e_fkey-10.3 {
+ # Setting the trackid to a non-NULL value fails, of course.
+ catchsql { UPDATE track SET trackartist = 5 WHERE trackid = 1 }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-10.4 {
+ execsql {
+ INSERT INTO artist VALUES(5, 'artist 5');
+ UPDATE track SET trackartist = 5 WHERE trackid = 1;
+ }
+ catchsql { DELETE FROM artist WHERE artistid = 5}
+} {1 {foreign key constraint failed}}
+do_test e_fkey-10.5 {
+ execsql {
+ UPDATE track SET trackartist = NULL WHERE trackid = 1;
+ DELETE FROM artist WHERE artistid = 5;
+ }
+} {}
+
+#-------------------------------------------------------------------------
+# Test that the following is true fo all rows in the track table:
+#
+# trackartist IS NULL OR
+# EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist)
+#
+# EVIDENCE-OF: R-52486-21352 Expressed in SQL, this means that for every
+# row in the track table, the following expression evaluates to true:
+# trackartist IS NULL OR EXISTS(SELECT 1 FROM artist WHERE
+# artistid=trackartist)
+
+# This procedure executes a test case to check that statement
+# R-52486-21352 is true after executing the SQL statement passed.
+# as the second argument.
+proc test_r52486_21352 {tn sql} {
+ set res [catchsql $sql]
+ set results {
+ {0 {}}
+ {1 {PRIMARY KEY must be unique}}
+ {1 {foreign key constraint failed}}
+ }
+ if {[lsearch $results $res]<0} {
+ error $res
+ }
+
+ do_test e_fkey-11.$tn {
+ execsql {
+ SELECT count(*) FROM track WHERE NOT (
+ trackartist IS NULL OR
+ EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist)
+ )
+ }
+ } {0}
+}
+
+# Execute a series of random INSERT, UPDATE and DELETE operations
+# (some of which may fail due to FK or PK constraint violations) on
+# the two tables in the example schema. Test that R-52486-21352
+# is true after executing each operation.
+#
+set Template {
+ {INSERT INTO track VALUES($t, 'track $t', $a)}
+ {DELETE FROM track WHERE trackid = $t}
+ {UPDATE track SET trackartist = $a WHERE trackid = $t}
+ {INSERT INTO artist VALUES($a, 'artist $a')}
+ {DELETE FROM artist WHERE artistid = $a}
+ {UPDATE artist SET artistid = $a2 WHERE artistid = $a}
+}
+for {set i 0} {$i < 500} {incr i} {
+ set a [expr int(rand()*10)]
+ set a2 [expr int(rand()*10)]
+ set t [expr int(rand()*50)]
+ set sql [subst [lindex $Template [expr int(rand()*6)]]]
+
+ test_r52486_21352 $i $sql
+}
+
+#-------------------------------------------------------------------------
+# Check that a NOT NULL constraint can be added to the example schema
+# to prohibit NULL child keys from being inserted.
+#
+# EVIDENCE-OF: R-42412-59321 Tip: If the application requires a stricter
+# relationship between artist and track, where NULL values are not
+# permitted in the trackartist column, simply add the appropriate "NOT
+# NULL" constraint to the schema.
+#
+drop_all_tables
+do_test e_fkey-12.1 {
+ execsql {
+ CREATE TABLE artist(
+ artistid INTEGER PRIMARY KEY,
+ artistname TEXT
+ );
+ CREATE TABLE track(
+ trackid INTEGER,
+ trackname TEXT,
+ trackartist INTEGER NOT NULL,
+ FOREIGN KEY(trackartist) REFERENCES artist(artistid)
+ );
+ }
+} {}
+do_test e_fkey-12.2 {
+ catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) }
+} {1 {track.trackartist may not be NULL}}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-16127-35442
+#
+# Test an example from foreignkeys.html.
+#
+drop_all_tables
+do_test e_fkey-13.1 {
+ execsql {
+ CREATE TABLE artist(
+ artistid INTEGER PRIMARY KEY,
+ artistname TEXT
+ );
+ CREATE TABLE track(
+ trackid INTEGER,
+ trackname TEXT,
+ trackartist INTEGER,
+ FOREIGN KEY(trackartist) REFERENCES artist(artistid)
+ );
+ INSERT INTO artist VALUES(1, 'Dean Martin');
+ INSERT INTO artist VALUES(2, 'Frank Sinatra');
+ INSERT INTO track VALUES(11, 'That''s Amore', 1);
+ INSERT INTO track VALUES(12, 'Christmas Blues', 1);
+ INSERT INTO track VALUES(13, 'My Way', 2);
+ }
+} {}
+do_test e_fkey-13.2 {
+ catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', 3) }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-13.3 {
+ execsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) }
+} {}
+do_test e_fkey-13.4 {
+ catchsql {
+ UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles';
+ }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-13.5 {
+ execsql {
+ INSERT INTO artist VALUES(3, 'Sammy Davis Jr.');
+ UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles';
+ INSERT INTO track VALUES(15, 'Boogie Woogie', 3);
+ }
+} {}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-15958-50233
+#
+# Test the second example from the first section of foreignkeys.html.
+#
+do_test e_fkey-14.1 {
+ catchsql {
+ DELETE FROM artist WHERE artistname = 'Frank Sinatra';
+ }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-14.2 {
+ execsql {
+ DELETE FROM track WHERE trackname = 'My Way';
+ DELETE FROM artist WHERE artistname = 'Frank Sinatra';
+ }
+} {}
+do_test e_fkey-14.3 {
+ catchsql {
+ UPDATE artist SET artistid=4 WHERE artistname = 'Dean Martin';
+ }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-14.4 {
+ execsql {
+ DELETE FROM track WHERE trackname IN('That''s Amore', 'Christmas Blues');
+ UPDATE artist SET artistid=4 WHERE artistname = 'Dean Martin';
+ }
+} {}
+
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-56032-24923 The foreign key constraint is satisfied if
+# for each row in the child table either one or more of the child key
+# columns are NULL, or there exists a row in the parent table for which
+# each parent key column contains a value equal to the value in its
+# associated child key column.
+#
+# Test also that the usual comparison rules are used when testing if there
+# is a matching row in the parent table of a foreign key constraint.
+#
+# EVIDENCE-OF: R-57765-12380 In the above paragraph, the term "equal"
+# means equal when values are compared using the rules specified here.
+#
+drop_all_tables
+do_test e_fkey-15.1 {
+ execsql {
+ CREATE TABLE par(p PRIMARY KEY);
+ CREATE TABLE chi(c REFERENCES par);
+
+ INSERT INTO par VALUES(1);
+ INSERT INTO par VALUES('1');
+ INSERT INTO par VALUES(X'31');
+ SELECT typeof(p) FROM par;
+ }
+} {integer text blob}
+
+proc test_efkey_45 {tn isError sql} {
+ do_test e_fkey-15.$tn.1 "
+ catchsql {$sql}
+ " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError]
+
+ do_test e_fkey-15.$tn.2 {
+ execsql {
+ SELECT * FROM chi WHERE c IS NOT NULL AND c NOT IN (SELECT p FROM par)
+ }
+ } {}
+}
+
+test_efkey_45 1 0 "INSERT INTO chi VALUES(1)"
+test_efkey_45 2 1 "INSERT INTO chi VALUES('1.0')"
+test_efkey_45 3 0 "INSERT INTO chi VALUES('1')"
+test_efkey_45 4 1 "DELETE FROM par WHERE p = '1'"
+test_efkey_45 5 0 "DELETE FROM chi WHERE c = '1'"
+test_efkey_45 6 0 "DELETE FROM par WHERE p = '1'"
+test_efkey_45 7 1 "INSERT INTO chi VALUES('1')"
+test_efkey_45 8 0 "INSERT INTO chi VALUES(X'31')"
+test_efkey_45 9 1 "INSERT INTO chi VALUES(X'32')"
+
+#-------------------------------------------------------------------------
+# Specifically, test that when comparing child and parent key values the
+# default collation sequence of the parent key column is used.
+#
+# EVIDENCE-OF: R-15796-47513 When comparing text values, the collating
+# sequence associated with the parent key column is always used.
+#
+drop_all_tables
+do_test e_fkey-16.1 {
+ execsql {
+ CREATE TABLE t1(a COLLATE nocase PRIMARY KEY);
+ CREATE TABLE t2(b REFERENCES t1);
+ }
+} {}
+do_test e_fkey-16.2 {
+ execsql {
+ INSERT INTO t1 VALUES('oNe');
+ INSERT INTO t2 VALUES('one');
+ INSERT INTO t2 VALUES('ONE');
+ UPDATE t2 SET b = 'OnE';
+ UPDATE t1 SET a = 'ONE';
+ }
+} {}
+do_test e_fkey-16.3 {
+ catchsql { UPDATE t2 SET b = 'two' WHERE rowid = 1 }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-16.4 {
+ catchsql { DELETE FROM t1 WHERE rowid = 1 }
+} {1 {foreign key constraint failed}}
+
+#-------------------------------------------------------------------------
+# Specifically, test that when comparing child and parent key values the
+# affinity of the parent key column is applied to the child key value
+# before the comparison takes place.
+#
+# EVIDENCE-OF: R-04240-13860 When comparing values, if the parent key
+# column has an affinity, then that affinity is applied to the child key
+# value before the comparison is performed.
+#
+drop_all_tables
+do_test e_fkey-17.1 {
+ execsql {
+ CREATE TABLE t1(a NUMERIC PRIMARY KEY);
+ CREATE TABLE t2(b TEXT REFERENCES t1);
+ }
+} {}
+do_test e_fkey-17.2 {
+ execsql {
+ INSERT INTO t1 VALUES(1);
+ INSERT INTO t1 VALUES(2);
+ INSERT INTO t1 VALUES('three');
+ INSERT INTO t2 VALUES('2.0');
+ SELECT b, typeof(b) FROM t2;
+ }
+} {2.0 text}
+do_test e_fkey-17.3 {
+ execsql { SELECT typeof(a) FROM t1 }
+} {integer integer text}
+do_test e_fkey-17.4 {
+ catchsql { DELETE FROM t1 WHERE rowid = 2 }
+} {1 {foreign key constraint failed}}
+
+###########################################################################
+### SECTION 3: Required and Suggested Database Indexes
+###########################################################################
+
+#-------------------------------------------------------------------------
+# A parent key must be either a PRIMARY KEY, subject to a UNIQUE
+# constraint, or have a UNIQUE index created on it.
+#
+# EVIDENCE-OF: R-13435-26311 Usually, the parent key of a foreign key
+# constraint is the primary key of the parent table. If they are not the
+# primary key, then the parent key columns must be collectively subject
+# to a UNIQUE constraint or have a UNIQUE index.
+#
+# Also test that if a parent key is not subject to a PRIMARY KEY or UNIQUE
+# constraint, but does have a UNIQUE index created on it, then the UNIQUE index
+# must use the default collation sequences associated with the parent key
+# columns.
+#
+# EVIDENCE-OF: R-00376-39212 If the parent key columns have a UNIQUE
+# index, then that index must use the collation sequences that are
+# specified in the CREATE TABLE statement for the parent table.
+#
+drop_all_tables
+do_test e_fkey-18.1 {
+ execsql {
+ CREATE TABLE t2(a REFERENCES t1(x));
+ }
+} {}
+proc test_efkey_57 {tn isError sql} {
+ catchsql { DROP TABLE t1 }
+ execsql $sql
+ do_test e_fkey-18.$tn {
+ catchsql { INSERT INTO t2 VALUES(NULL) }
+ } [lindex {{0 {}} {1 {foreign key mismatch}}} $isError]
+}
+test_efkey_57 2 0 { CREATE TABLE t1(x PRIMARY KEY) }
+test_efkey_57 3 0 { CREATE TABLE t1(x UNIQUE) }
+test_efkey_57 4 0 { CREATE TABLE t1(x); CREATE UNIQUE INDEX t1i ON t1(x) }
+test_efkey_57 5 1 {
+ CREATE TABLE t1(x);
+ CREATE UNIQUE INDEX t1i ON t1(x COLLATE nocase);
+}
+test_efkey_57 6 1 { CREATE TABLE t1(x) }
+test_efkey_57 7 1 { CREATE TABLE t1(x, y, PRIMARY KEY(x, y)) }
+test_efkey_57 8 1 { CREATE TABLE t1(x, y, UNIQUE(x, y)) }
+test_efkey_57 9 1 {
+ CREATE TABLE t1(x, y);
+ CREATE UNIQUE INDEX t1i ON t1(x, y);
+}
+
+
+#-------------------------------------------------------------------------
+# This block tests an example in foreignkeys.html. Several testable
+# statements refer to this example, as follows
+#
+# EVIDENCE-OF: R-27484-01467
+#
+# FK Constraints on child1, child2 and child3 are Ok.
+#
+# Problem with FK on child4:
+#
+# EVIDENCE-OF: R-51039-44840 The foreign key declared as part of table
+# child4 is an error because even though the parent key column is
+# indexed, the index is not UNIQUE.
+#
+# Problem with FK on child5:
+#
+# EVIDENCE-OF: R-01060-48788 The foreign key for table child5 is an
+# error because even though the parent key column has a unique index,
+# the index uses a different collating sequence.
+#
+# Problem with FK on child6 and child7:
+#
+# EVIDENCE-OF: R-63088-37469 Tables child6 and child7 are incorrect
+# because while both have UNIQUE indices on their parent keys, the keys
+# are not an exact match to the columns of a single UNIQUE index.
+#
+drop_all_tables
+do_test e_fkey-19.1 {
+ execsql {
+ CREATE TABLE parent(a PRIMARY KEY, b UNIQUE, c, d, e, f);
+ CREATE UNIQUE INDEX i1 ON parent(c, d);
+ CREATE INDEX i2 ON parent(e);
+ CREATE UNIQUE INDEX i3 ON parent(f COLLATE nocase);
+
+ CREATE TABLE child1(f, g REFERENCES parent(a)); -- Ok
+ CREATE TABLE child2(h, i REFERENCES parent(b)); -- Ok
+ CREATE TABLE child3(j, k, FOREIGN KEY(j, k) REFERENCES parent(c, d)); -- Ok
+ CREATE TABLE child4(l, m REFERENCES parent(e)); -- Err
+ CREATE TABLE child5(n, o REFERENCES parent(f)); -- Err
+ CREATE TABLE child6(p, q, FOREIGN KEY(p,q) REFERENCES parent(b, c)); -- Err
+ CREATE TABLE child7(r REFERENCES parent(c)); -- Err
+ }
+} {}
+do_test e_fkey-19.2 {
+ execsql {
+ INSERT INTO parent VALUES(1, 2, 3, 4, 5, 6);
+ INSERT INTO child1 VALUES('xxx', 1);
+ INSERT INTO child2 VALUES('xxx', 2);
+ INSERT INTO child3 VALUES(3, 4);
+ }
+} {}
+do_test e_fkey-19.2 {
+ catchsql { INSERT INTO child4 VALUES('xxx', 5) }
+} {1 {foreign key mismatch}}
+do_test e_fkey-19.3 {
+ catchsql { INSERT INTO child5 VALUES('xxx', 6) }
+} {1 {foreign key mismatch}}
+do_test e_fkey-19.4 {
+ catchsql { INSERT INTO child6 VALUES(2, 3) }
+} {1 {foreign key mismatch}}
+do_test e_fkey-19.5 {
+ catchsql { INSERT INTO child7 VALUES(3) }
+} {1 {foreign key mismatch}}
+
+#-------------------------------------------------------------------------
+# Test errors in the database schema that are detected while preparing
+# DML statements. The error text for these messages always matches
+# either "foreign key mismatch" or "no such table*" (using [string match]).
+#
+# EVIDENCE-OF: R-45488-08504 If the database schema contains foreign key
+# errors that require looking at more than one table definition to
+# identify, then those errors are not detected when the tables are
+# created.
+#
+# EVIDENCE-OF: R-48391-38472 Instead, such errors prevent the
+# application from preparing SQL statements that modify the content of
+# the child or parent tables in ways that use the foreign keys.
+#
+# EVIDENCE-OF: R-03108-63659 The English language error message for
+# foreign key DML errors is usually "foreign key mismatch" but can also
+# be "no such table" if the parent table does not exist.
+#
+# EVIDENCE-OF: R-60781-26576 Foreign key DML errors are may be reported
+# if: The parent table does not exist, or The parent key columns named
+# in the foreign key constraint do not exist, or The parent key columns
+# named in the foreign key constraint are not the primary key of the
+# parent table and are not subject to a unique constraint using
+# collating sequence specified in the CREATE TABLE, or The child table
+# references the primary key of the parent without specifying the
+# primary key columns and the number of primary key columns in the
+# parent do not match the number of child key columns.
+#
+do_test e_fkey-20.1 {
+ execsql {
+ CREATE TABLE c1(c REFERENCES nosuchtable, d);
+
+ CREATE TABLE p2(a, b, UNIQUE(a, b));
+ CREATE TABLE c2(c, d, FOREIGN KEY(c, d) REFERENCES p2(a, x));
+
+ CREATE TABLE p3(a PRIMARY KEY, b);
+ CREATE TABLE c3(c REFERENCES p3(b), d);
+
+ CREATE TABLE p4(a PRIMARY KEY, b);
+ CREATE UNIQUE INDEX p4i ON p4(b COLLATE nocase);
+ CREATE TABLE c4(c REFERENCES p4(b), d);
+
+ CREATE TABLE p5(a PRIMARY KEY, b COLLATE nocase);
+ CREATE UNIQUE INDEX p5i ON p5(b COLLATE binary);
+ CREATE TABLE c5(c REFERENCES p5(b), d);
+
+ CREATE TABLE p6(a PRIMARY KEY, b);
+ CREATE TABLE c6(c, d, FOREIGN KEY(c, d) REFERENCES p6);
+
+ CREATE TABLE p7(a, b, PRIMARY KEY(a, b));
+ CREATE TABLE c7(c, d REFERENCES p7);
+ }
+} {}
+
+foreach {tn tbl ptbl err} {
+ 2 c1 {} "no such table: main.nosuchtable"
+ 3 c2 p2 "foreign key mismatch"
+ 4 c3 p3 "foreign key mismatch"
+ 5 c4 p4 "foreign key mismatch"
+ 6 c5 p5 "foreign key mismatch"
+ 7 c6 p6 "foreign key mismatch"
+ 8 c7 p7 "foreign key mismatch"
+} {
+ do_test e_fkey-20.$tn.1 {
+ catchsql "INSERT INTO $tbl VALUES('a', 'b')"
+ } [list 1 $err]
+ do_test e_fkey-20.$tn.2 {
+ catchsql "UPDATE $tbl SET c = ?, d = ?"
+ } [list 1 $err]
+ do_test e_fkey-20.$tn.3 {
+ catchsql "INSERT INTO $tbl SELECT ?, ?"
+ } [list 1 $err]
+
+ if {$ptbl ne ""} {
+ do_test e_fkey-20.$tn.4 {
+ catchsql "DELETE FROM $ptbl"
+ } [list 1 $err]
+ do_test e_fkey-20.$tn.5 {
+ catchsql "UPDATE $ptbl SET a = ?, b = ?"
+ } [list 1 $err]
+ do_test e_fkey-20.$tn.6 {
+ catchsql "INSERT INTO $ptbl SELECT ?, ?"
+ } [list 1 $err]
+ }
+}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-19353-43643
+#
+# Test the example of foreign key mismatch errors caused by implicitly
+# mapping a child key to the primary key of the parent table when the
+# child key consists of a different number of columns to that primary key.
+#
+drop_all_tables
+do_test e_fkey-21.1 {
+ execsql {
+ CREATE TABLE parent2(a, b, PRIMARY KEY(a,b));
+
+ CREATE TABLE child8(x, y, FOREIGN KEY(x,y) REFERENCES parent2); -- Ok
+ CREATE TABLE child9(x REFERENCES parent2); -- Err
+ CREATE TABLE child10(x,y,z, FOREIGN KEY(x,y,z) REFERENCES parent2); -- Err
+ }
+} {}
+do_test e_fkey-21.2 {
+ execsql {
+ INSERT INTO parent2 VALUES('I', 'II');
+ INSERT INTO child8 VALUES('I', 'II');
+ }
+} {}
+do_test e_fkey-21.3 {
+ catchsql { INSERT INTO child9 VALUES('I') }
+} {1 {foreign key mismatch}}
+do_test e_fkey-21.4 {
+ catchsql { INSERT INTO child9 VALUES('II') }
+} {1 {foreign key mismatch}}
+do_test e_fkey-21.5 {
+ catchsql { INSERT INTO child9 VALUES(NULL) }
+} {1 {foreign key mismatch}}
+do_test e_fkey-21.6 {
+ catchsql { INSERT INTO child10 VALUES('I', 'II', 'III') }
+} {1 {foreign key mismatch}}
+do_test e_fkey-21.7 {
+ catchsql { INSERT INTO child10 VALUES(1, 2, 3) }
+} {1 {foreign key mismatch}}
+do_test e_fkey-21.8 {
+ catchsql { INSERT INTO child10 VALUES(NULL, NULL, NULL) }
+} {1 {foreign key mismatch}}
+
+#-------------------------------------------------------------------------
+# Test errors that are reported when creating the child table.
+# Specifically:
+#
+# * different number of child and parent key columns, and
+# * child columns that do not exist.
+#
+# EVIDENCE-OF: R-23682-59820 By contrast, if foreign key errors can be
+# recognized simply by looking at the definition of the child table and
+# without having to consult the parent table definition, then the CREATE
+# TABLE statement for the child table fails.
+#
+# These errors are reported whether or not FK support is enabled.
+#
+# EVIDENCE-OF: R-33883-28833 Foreign key DDL errors are reported
+# regardless of whether or not foreign key constraints are enabled when
+# the table is created.
+#
+drop_all_tables
+foreach fk [list OFF ON] {
+ execsql "PRAGMA foreign_keys = $fk"
+ set i 0
+ foreach {sql error} {
+ "CREATE TABLE child1(a, b, FOREIGN KEY(a, b) REFERENCES p(c))"
+ {number of columns in foreign key does not match the number of columns in the referenced table}
+ "CREATE TABLE child2(a, b, FOREIGN KEY(a, b) REFERENCES p(c, d, e))"
+ {number of columns in foreign key does not match the number of columns in the referenced table}
+ "CREATE TABLE child2(a, b, FOREIGN KEY(a, c) REFERENCES p(c, d))"
+ {unknown column "c" in foreign key definition}
+ "CREATE TABLE child2(a, b, FOREIGN KEY(c, b) REFERENCES p(c, d))"
+ {unknown column "c" in foreign key definition}
+ } {
+ do_test e_fkey-22.$fk.[incr i] {
+ catchsql $sql
+ } [list 1 $error]
+ }
+}
+
+#-------------------------------------------------------------------------
+# Test that a REFERENCING clause that does not specify parent key columns
+# implicitly maps to the primary key of the parent table.
+#
+# EVIDENCE-OF: R-43879-08025 Attaching a "REFERENCES <parent-table>"
+# clause to a column definition creates a foreign
+# key constraint that maps the column to the primary key of
+# <parent-table>.
+#
+do_test e_fkey-23.1 {
+ execsql {
+ CREATE TABLE p1(a, b, PRIMARY KEY(a, b));
+ CREATE TABLE p2(a, b PRIMARY KEY);
+ CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES p1);
+ CREATE TABLE c2(a, b REFERENCES p2);
+ }
+} {}
+proc test_efkey_60 {tn isError sql} {
+ do_test e_fkey-23.$tn "
+ catchsql {$sql}
+ " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError]
+}
+
+test_efkey_60 2 1 "INSERT INTO c1 VALUES(239, 231)"
+test_efkey_60 3 0 "INSERT INTO p1 VALUES(239, 231)"
+test_efkey_60 4 0 "INSERT INTO c1 VALUES(239, 231)"
+test_efkey_60 5 1 "INSERT INTO c2 VALUES(239, 231)"
+test_efkey_60 6 0 "INSERT INTO p2 VALUES(239, 231)"
+test_efkey_60 7 0 "INSERT INTO c2 VALUES(239, 231)"
+
+#-------------------------------------------------------------------------
+# Test that an index on on the child key columns of an FK constraint
+# is optional.
+#
+# EVIDENCE-OF: R-15417-28014 Indices are not required for child key
+# columns
+#
+# Also test that if an index is created on the child key columns, it does
+# not make a difference whether or not it is a UNIQUE index.
+#
+# EVIDENCE-OF: R-15741-50893 The child key index does not have to be
+# (and usually will not be) a UNIQUE index.
+#
+drop_all_tables
+do_test e_fkey-24.1 {
+ execsql {
+ CREATE TABLE parent(x, y, UNIQUE(y, x));
+ CREATE TABLE c1(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y));
+ CREATE TABLE c2(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y));
+ CREATE TABLE c3(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y));
+ CREATE INDEX c2i ON c2(a, b);
+ CREATE UNIQUE INDEX c3i ON c2(b, a);
+ }
+} {}
+proc test_efkey_61 {tn isError sql} {
+ do_test e_fkey-24.$tn "
+ catchsql {$sql}
+ " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError]
+}
+foreach {tn c} [list 2 c1 3 c2 4 c3] {
+ test_efkey_61 $tn.1 1 "INSERT INTO $c VALUES(1, 2)"
+ test_efkey_61 $tn.2 0 "INSERT INTO parent VALUES(1, 2)"
+ test_efkey_61 $tn.3 0 "INSERT INTO $c VALUES(1, 2)"
+
+ execsql "DELETE FROM $c ; DELETE FROM parent"
+}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-00279-52283
+#
+# Test an example showing that when a row is deleted from the parent
+# table, the child table is queried for orphaned rows as follows:
+#
+# SELECT rowid FROM track WHERE trackartist = ?
+#
+# EVIDENCE-OF: R-23302-30956 If this SELECT returns any rows at all,
+# then SQLite concludes that deleting the row from the parent table
+# would violate the foreign key constraint and returns an error.
+#
+do_test e_fkey-25.1 {
+ execsql {
+ CREATE TABLE artist(
+ artistid INTEGER PRIMARY KEY,
+ artistname TEXT
+ );
+ CREATE TABLE track(
+ trackid INTEGER,
+ trackname TEXT,
+ trackartist INTEGER,
+ FOREIGN KEY(trackartist) REFERENCES artist(artistid)
+ );
+ }
+} {}
+do_execsql_test e_fkey-25.2 {
+ PRAGMA foreign_keys = OFF;
+ EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
+ EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?;
+} {
+ 0 0 0 {SCAN TABLE artist (~1000000 rows)}
+ 0 0 0 {SCAN TABLE track (~100000 rows)}
+}
+do_execsql_test e_fkey-25.3 {
+ PRAGMA foreign_keys = ON;
+ EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
+} {
+ 0 0 0 {SCAN TABLE artist (~1000000 rows)}
+ 0 0 0 {SCAN TABLE track (~100000 rows)}
+}
+do_test e_fkey-25.4 {
+ execsql {
+ INSERT INTO artist VALUES(5, 'artist 5');
+ INSERT INTO artist VALUES(6, 'artist 6');
+ INSERT INTO artist VALUES(7, 'artist 7');
+ INSERT INTO track VALUES(1, 'track 1', 5);
+ INSERT INTO track VALUES(2, 'track 2', 6);
+ }
+} {}
+
+do_test e_fkey-25.5 {
+ concat \
+ [execsql { SELECT rowid FROM track WHERE trackartist = 5 }] \
+ [catchsql { DELETE FROM artist WHERE artistid = 5 }]
+} {1 1 {foreign key constraint failed}}
+
+do_test e_fkey-25.6 {
+ concat \
+ [execsql { SELECT rowid FROM track WHERE trackartist = 7 }] \
+ [catchsql { DELETE FROM artist WHERE artistid = 7 }]
+} {0 {}}
+
+do_test e_fkey-25.7 {
+ concat \
+ [execsql { SELECT rowid FROM track WHERE trackartist = 6 }] \
+ [catchsql { DELETE FROM artist WHERE artistid = 6 }]
+} {2 1 {foreign key constraint failed}}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-47936-10044 Or, more generally:
+# SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value
+#
+# Test that when a row is deleted from the parent table of an FK
+# constraint, the child table is queried for orphaned rows. The
+# query is equivalent to:
+#
+# SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value
+#
+# Also test that when a row is inserted into the parent table, or when the
+# parent key values of an existing row are modified, a query equivalent
+# to the following is planned. In some cases it is not executed, but it
+# is always planned.
+#
+# SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value
+#
+# EVIDENCE-OF: R-61616-46700 Similar queries may be run if the content
+# of the parent key is modified or a new row is inserted into the parent
+# table.
+#
+#
+drop_all_tables
+do_test e_fkey-26.1 {
+ execsql { CREATE TABLE parent(x, y, UNIQUE(y, x)) }
+} {}
+foreach {tn sql} {
+ 2 {
+ CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y))
+ }
+ 3 {
+ CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y));
+ CREATE INDEX childi ON child(a, b);
+ }
+ 4 {
+ CREATE TABLE child(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y));
+ CREATE UNIQUE INDEX childi ON child(b, a);
+ }
+} {
+ execsql $sql
+
+ execsql {PRAGMA foreign_keys = OFF}
+ set delete [concat \
+ [eqp "DELETE FROM parent WHERE 1"] \
+ [eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"]
+ ]
+ set update [concat \
+ [eqp "UPDATE parent SET x=?, y=?"] \
+ [eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"] \
+ [eqp "SELECT rowid FROM child WHERE a = ? AND b = ?"]
+ ]
+ execsql {PRAGMA foreign_keys = ON}
+
+ do_test e_fkey-26.$tn.1 { eqp "DELETE FROM parent WHERE 1" } $delete
+ do_test e_fkey-26.$tn.2 { eqp "UPDATE parent set x=?, y=?" } $update
+
+ execsql {DROP TABLE child}
+}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-14553-34013
+#
+# Test the example schema at the end of section 3. Also test that is
+# is "efficient". In this case "efficient" means that foreign key
+# related operations on the parent table do not provoke linear scans.
+#
+drop_all_tables
+do_test e_fkey-27.1 {
+ execsql {
+ CREATE TABLE artist(
+ artistid INTEGER PRIMARY KEY,
+ artistname TEXT
+ );
+ CREATE TABLE track(
+ trackid INTEGER,
+ trackname TEXT,
+ trackartist INTEGER REFERENCES artist
+ );
+ CREATE INDEX trackindex ON track(trackartist);
+ }
+} {}
+do_test e_fkey-27.2 {
+ eqp { INSERT INTO artist VALUES(?, ?) }
+} {}
+do_execsql_test e_fkey-27.3 {
+ EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ?
+} {
+ 0 0 0 {SCAN TABLE artist (~1000000 rows)}
+ 0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)}
+ 0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)}
+}
+do_execsql_test e_fkey-27.4 {
+ EXPLAIN QUERY PLAN DELETE FROM artist
+} {
+ 0 0 0 {SCAN TABLE artist (~1000000 rows)}
+ 0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)}
+}
+
+
+###########################################################################
+### SECTION 4.1: Composite Foreign Key Constraints
+###########################################################################
+
+#-------------------------------------------------------------------------
+# Check that parent and child keys must have the same number of columns.
+#
+# EVIDENCE-OF: R-41062-34431 Parent and child keys must have the same
+# cardinality.
+#
+foreach {tn sql err} {
+ 1 "CREATE TABLE c(jj REFERENCES p(x, y))"
+ {foreign key on jj should reference only one column of table p}
+
+ 2 "CREATE TABLE c(jj REFERENCES p())" {near ")": syntax error}
+
+ 3 "CREATE TABLE c(jj, FOREIGN KEY(jj) REFERENCES p(x, y))"
+ {number of columns in foreign key does not match the number of columns in the referenced table}
+
+ 4 "CREATE TABLE c(jj, FOREIGN KEY(jj) REFERENCES p())"
+ {near ")": syntax error}
+
+ 5 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p())"
+ {near ")": syntax error}
+
+ 6 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p(x))"
+ {number of columns in foreign key does not match the number of columns in the referenced table}
+
+ 7 "CREATE TABLE c(ii, jj, FOREIGN KEY(jj, ii) REFERENCES p(x,y,z))"
+ {number of columns in foreign key does not match the number of columns in the referenced table}
+} {
+ drop_all_tables
+ do_test e_fkey-28.$tn [list catchsql $sql] [list 1 $err]
+}
+do_test e_fkey-28.8 {
+ drop_all_tables
+ execsql {
+ CREATE TABLE p(x PRIMARY KEY);
+ CREATE TABLE c(a, b, FOREIGN KEY(a,b) REFERENCES p);
+ }
+ catchsql {DELETE FROM p}
+} {1 {foreign key mismatch}}
+do_test e_fkey-28.9 {
+ drop_all_tables
+ execsql {
+ CREATE TABLE p(x, y, PRIMARY KEY(x,y));
+ CREATE TABLE c(a REFERENCES p);
+ }
+ catchsql {DELETE FROM p}
+} {1 {foreign key mismatch}}
+
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-24676-09859
+#
+# Test the example schema in the "Composite Foreign Key Constraints"
+# section.
+#
+do_test e_fkey-29.1 {
+ execsql {
+ CREATE TABLE album(
+ albumartist TEXT,
+ albumname TEXT,
+ albumcover BINARY,
+ PRIMARY KEY(albumartist, albumname)
+ );
+ CREATE TABLE song(
+ songid INTEGER,
+ songartist TEXT,
+ songalbum TEXT,
+ songname TEXT,
+ FOREIGN KEY(songartist, songalbum) REFERENCES album(albumartist,albumname)
+ );
+ }
+} {}
+
+do_test e_fkey-29.2 {
+ execsql {
+ INSERT INTO album VALUES('Elvis Presley', 'Elvis'' Christmas Album', NULL);
+ INSERT INTO song VALUES(
+ 1, 'Elvis Presley', 'Elvis'' Christmas Album', 'Here Comes Santa Clause'
+ );
+ }
+} {}
+do_test e_fkey-29.3 {
+ catchsql {
+ INSERT INTO song VALUES(2, 'Elvis Presley', 'Elvis Is Back!', 'Fever');
+ }
+} {1 {foreign key constraint failed}}
+
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-33626-48418 In SQLite, if any of the child key columns
+# (in this case songartist and songalbum) are NULL, then there is no
+# requirement for a corresponding row in the parent table.
+#
+do_test e_fkey-30.1 {
+ execsql {
+ INSERT INTO song VALUES(2, 'Elvis Presley', NULL, 'Fever');
+ INSERT INTO song VALUES(3, NULL, 'Elvis Is Back', 'Soldier Boy');
+ }
+} {}
+
+###########################################################################
+### SECTION 4.2: Deferred Foreign Key Constraints
+###########################################################################
+
+#-------------------------------------------------------------------------
+# Test that if a statement violates an immediate FK constraint, and the
+# database does not satisfy the FK constraint once all effects of the
+# statement have been applied, an error is reported and the effects of
+# the statement rolled back.
+#
+# EVIDENCE-OF: R-09323-30470 If a statement modifies the contents of the
+# database so that an immediate foreign key constraint is in violation
+# at the conclusion the statement, an exception is thrown and the
+# effects of the statement are reverted.
+#
+drop_all_tables
+do_test e_fkey-31.1 {
+ execsql {
+ CREATE TABLE king(a, b, PRIMARY KEY(a));
+ CREATE TABLE prince(c REFERENCES king, d);
+ }
+} {}
+
+do_test e_fkey-31.2 {
+ # Execute a statement that violates the immediate FK constraint.
+ catchsql { INSERT INTO prince VALUES(1, 2) }
+} {1 {foreign key constraint failed}}
+
+do_test e_fkey-31.3 {
+ # This time, use a trigger to fix the constraint violation before the
+ # statement has finished executing. Then execute the same statement as
+ # in the previous test case. This time, no error.
+ execsql {
+ CREATE TRIGGER kt AFTER INSERT ON prince WHEN
+ NOT EXISTS (SELECT a FROM king WHERE a = new.c)
+ BEGIN
+ INSERT INTO king VALUES(new.c, NULL);
+ END
+ }
+ execsql { INSERT INTO prince VALUES(1, 2) }
+} {}
+
+# Test that operating inside a transaction makes no difference to
+# immediate constraint violation handling.
+do_test e_fkey-31.4 {
+ execsql {
+ BEGIN;
+ INSERT INTO prince VALUES(2, 3);
+ DROP TRIGGER kt;
+ }
+ catchsql { INSERT INTO prince VALUES(3, 4) }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-31.5 {
+ execsql {
+ COMMIT;
+ SELECT * FROM king;
+ }
+} {1 {} 2 {}}
+
+#-------------------------------------------------------------------------
+# Test that if a deferred constraint is violated within a transaction,
+# nothing happens immediately and the database is allowed to persist
+# in a state that does not satisfy the FK constraint. However attempts
+# to COMMIT the transaction fail until the FK constraint is satisfied.
+#
+# EVIDENCE-OF: R-49178-21358 By contrast, if a statement modifies the
+# contents of the database such that a deferred foreign key constraint
+# is violated, the violation is not reported immediately.
+#
+# EVIDENCE-OF: R-39692-12488 Deferred foreign key constraints are not
+# checked until the transaction tries to COMMIT.
+#
+# EVIDENCE-OF: R-55147-47664 For as long as the user has an open
+# transaction, the database is allowed to exist in a state that violates
+# any number of deferred foreign key constraints.
+#
+# EVIDENCE-OF: R-29604-30395 However, COMMIT will fail as long as
+# foreign key constraints remain in violation.
+#
+proc test_efkey_34 {tn isError sql} {
+ do_test e_fkey-32.$tn "
+ catchsql {$sql}
+ " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError]
+}
+drop_all_tables
+
+test_efkey_34 1 0 {
+ CREATE TABLE ll(k PRIMARY KEY);
+ CREATE TABLE kk(c REFERENCES ll DEFERRABLE INITIALLY DEFERRED);
+}
+test_efkey_34 2 0 "BEGIN"
+test_efkey_34 3 0 "INSERT INTO kk VALUES(5)"
+test_efkey_34 4 0 "INSERT INTO kk VALUES(10)"
+test_efkey_34 5 1 "COMMIT"
+test_efkey_34 6 0 "INSERT INTO ll VALUES(10)"
+test_efkey_34 7 1 "COMMIT"
+test_efkey_34 8 0 "INSERT INTO ll VALUES(5)"
+test_efkey_34 9 0 "COMMIT"
+
+#-------------------------------------------------------------------------
+# When not running inside a transaction, a deferred constraint is similar
+# to an immediate constraint (violations are reported immediately).
+#
+# EVIDENCE-OF: R-56844-61705 If the current statement is not inside an
+# explicit transaction (a BEGIN/COMMIT/ROLLBACK block), then an implicit
+# transaction is committed as soon as the statement has finished
+# executing. In this case deferred constraints behave the same as
+# immediate constraints.
+#
+drop_all_tables
+proc test_efkey_35 {tn isError sql} {
+ do_test e_fkey-33.$tn "
+ catchsql {$sql}
+ " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError]
+}
+do_test e_fkey-33.1 {
+ execsql {
+ CREATE TABLE parent(x, y);
+ CREATE UNIQUE INDEX pi ON parent(x, y);
+ CREATE TABLE child(a, b,
+ FOREIGN KEY(a, b) REFERENCES parent(x, y) DEFERRABLE INITIALLY DEFERRED
+ );
+ }
+} {}
+test_efkey_35 2 1 "INSERT INTO child VALUES('x', 'y')"
+test_efkey_35 3 0 "INSERT INTO parent VALUES('x', 'y')"
+test_efkey_35 4 0 "INSERT INTO child VALUES('x', 'y')"
+
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-12782-61841
+#
+# Test that an FK constraint is made deferred by adding the following
+# to the definition:
+#
+# DEFERRABLE INITIALLY DEFERRED
+#
+# EVIDENCE-OF: R-09005-28791
+#
+# Also test that adding any of the following to a foreign key definition
+# makes the constraint IMMEDIATE:
+#
+# NOT DEFERRABLE INITIALLY DEFERRED
+# NOT DEFERRABLE INITIALLY IMMEDIATE
+# NOT DEFERRABLE
+# DEFERRABLE INITIALLY IMMEDIATE
+# DEFERRABLE
+#
+# Foreign keys are IMMEDIATE by default (if there is no DEFERRABLE or NOT
+# DEFERRABLE clause).
+#
+# EVIDENCE-OF: R-35290-16460 Foreign key constraints are immediate by
+# default.
+#
+# EVIDENCE-OF: R-30323-21917 Each foreign key constraint in SQLite is
+# classified as either immediate or deferred.
+#
+drop_all_tables
+do_test e_fkey-34.1 {
+ execsql {
+ CREATE TABLE parent(x, y, z, PRIMARY KEY(x,y,z));
+ CREATE TABLE c1(a, b, c,
+ FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE INITIALLY DEFERRED
+ );
+ CREATE TABLE c2(a, b, c,
+ FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE INITIALLY IMMEDIATE
+ );
+ CREATE TABLE c3(a, b, c,
+ FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE
+ );
+ CREATE TABLE c4(a, b, c,
+ FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE INITIALLY IMMEDIATE
+ );
+ CREATE TABLE c5(a, b, c,
+ FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE
+ );
+ CREATE TABLE c6(a, b, c, FOREIGN KEY(a, b, c) REFERENCES parent);
+
+ -- This FK constraint is the only deferrable one.
+ CREATE TABLE c7(a, b, c,
+ FOREIGN KEY(a, b, c) REFERENCES parent DEFERRABLE INITIALLY DEFERRED
+ );
+
+ INSERT INTO parent VALUES('a', 'b', 'c');
+ INSERT INTO parent VALUES('d', 'e', 'f');
+ INSERT INTO parent VALUES('g', 'h', 'i');
+ INSERT INTO parent VALUES('j', 'k', 'l');
+ INSERT INTO parent VALUES('m', 'n', 'o');
+ INSERT INTO parent VALUES('p', 'q', 'r');
+ INSERT INTO parent VALUES('s', 't', 'u');
+
+ INSERT INTO c1 VALUES('a', 'b', 'c');
+ INSERT INTO c2 VALUES('d', 'e', 'f');
+ INSERT INTO c3 VALUES('g', 'h', 'i');
+ INSERT INTO c4 VALUES('j', 'k', 'l');
+ INSERT INTO c5 VALUES('m', 'n', 'o');
+ INSERT INTO c6 VALUES('p', 'q', 'r');
+ INSERT INTO c7 VALUES('s', 't', 'u');
+ }
+} {}
+
+proc test_efkey_29 {tn sql isError} {
+ do_test e_fkey-34.$tn "catchsql {$sql}" [
+ lindex {{0 {}} {1 {foreign key constraint failed}}} $isError
+ ]
+}
+test_efkey_29 2 "BEGIN" 0
+test_efkey_29 3 "DELETE FROM parent WHERE x = 'a'" 1
+test_efkey_29 4 "DELETE FROM parent WHERE x = 'd'" 1
+test_efkey_29 5 "DELETE FROM parent WHERE x = 'g'" 1
+test_efkey_29 6 "DELETE FROM parent WHERE x = 'j'" 1
+test_efkey_29 7 "DELETE FROM parent WHERE x = 'm'" 1
+test_efkey_29 8 "DELETE FROM parent WHERE x = 'p'" 1
+test_efkey_29 9 "DELETE FROM parent WHERE x = 's'" 0
+test_efkey_29 10 "COMMIT" 1
+test_efkey_29 11 "ROLLBACK" 0
+
+test_efkey_29 9 "BEGIN" 0
+test_efkey_29 10 "UPDATE parent SET z = 'z' WHERE z = 'c'" 1
+test_efkey_29 11 "UPDATE parent SET z = 'z' WHERE z = 'f'" 1
+test_efkey_29 12 "UPDATE parent SET z = 'z' WHERE z = 'i'" 1
+test_efkey_29 13 "UPDATE parent SET z = 'z' WHERE z = 'l'" 1
+test_efkey_29 14 "UPDATE parent SET z = 'z' WHERE z = 'o'" 1
+test_efkey_29 15 "UPDATE parent SET z = 'z' WHERE z = 'r'" 1
+test_efkey_29 16 "UPDATE parent SET z = 'z' WHERE z = 'u'" 0
+test_efkey_29 17 "COMMIT" 1
+test_efkey_29 18 "ROLLBACK" 0
+
+test_efkey_29 17 "BEGIN" 0
+test_efkey_29 18 "INSERT INTO c1 VALUES(1, 2, 3)" 1
+test_efkey_29 19 "INSERT INTO c2 VALUES(1, 2, 3)" 1
+test_efkey_29 20 "INSERT INTO c3 VALUES(1, 2, 3)" 1
+test_efkey_29 21 "INSERT INTO c4 VALUES(1, 2, 3)" 1
+test_efkey_29 22 "INSERT INTO c5 VALUES(1, 2, 3)" 1
+test_efkey_29 22 "INSERT INTO c6 VALUES(1, 2, 3)" 1
+test_efkey_29 22 "INSERT INTO c7 VALUES(1, 2, 3)" 0
+test_efkey_29 23 "COMMIT" 1
+test_efkey_29 24 "INSERT INTO parent VALUES(1, 2, 3)" 0
+test_efkey_29 25 "COMMIT" 0
+
+test_efkey_29 26 "BEGIN" 0
+test_efkey_29 27 "UPDATE c1 SET a = 10" 1
+test_efkey_29 28 "UPDATE c2 SET a = 10" 1
+test_efkey_29 29 "UPDATE c3 SET a = 10" 1
+test_efkey_29 30 "UPDATE c4 SET a = 10" 1
+test_efkey_29 31 "UPDATE c5 SET a = 10" 1
+test_efkey_29 31 "UPDATE c6 SET a = 10" 1
+test_efkey_29 31 "UPDATE c7 SET a = 10" 0
+test_efkey_29 32 "COMMIT" 1
+test_efkey_29 33 "ROLLBACK" 0
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-24499-57071
+#
+# Test an example from foreignkeys.html dealing with a deferred foreign
+# key constraint.
+#
+do_test e_fkey-35.1 {
+ drop_all_tables
+ execsql {
+ CREATE TABLE artist(
+ artistid INTEGER PRIMARY KEY,
+ artistname TEXT
+ );
+ CREATE TABLE track(
+ trackid INTEGER,
+ trackname TEXT,
+ trackartist INTEGER REFERENCES artist(artistid) DEFERRABLE INITIALLY DEFERRED
+ );
+ }
+} {}
+do_test e_fkey-35.2 {
+ execsql {
+ BEGIN;
+ INSERT INTO track VALUES(1, 'White Christmas', 5);
+ }
+ catchsql COMMIT
+} {1 {foreign key constraint failed}}
+do_test e_fkey-35.3 {
+ execsql {
+ INSERT INTO artist VALUES(5, 'Bing Crosby');
+ COMMIT;
+ }
+} {}
+
+#-------------------------------------------------------------------------
+# Verify that a nested savepoint may be released without satisfying
+# deferred foreign key constraints.
+#
+# EVIDENCE-OF: R-07223-48323 A nested savepoint transaction may be
+# RELEASEd while the database is in a state that does not satisfy a
+# deferred foreign key constraint.
+#
+drop_all_tables
+do_test e_fkey-36.1 {
+ execsql {
+ CREATE TABLE t1(a PRIMARY KEY,
+ b REFERENCES t1 DEFERRABLE INITIALLY DEFERRED
+ );
+ INSERT INTO t1 VALUES(1, 1);
+ INSERT INTO t1 VALUES(2, 2);
+ INSERT INTO t1 VALUES(3, 3);
+ }
+} {}
+do_test e_fkey-36.2 {
+ execsql {
+ BEGIN;
+ SAVEPOINT one;
+ INSERT INTO t1 VALUES(4, 5);
+ RELEASE one;
+ }
+} {}
+do_test e_fkey-36.3 {
+ catchsql COMMIT
+} {1 {foreign key constraint failed}}
+do_test e_fkey-36.4 {
+ execsql {
+ UPDATE t1 SET a = 5 WHERE a = 4;
+ COMMIT;
+ }
+} {}
+
+
+#-------------------------------------------------------------------------
+# Check that a transaction savepoint (an outermost savepoint opened when
+# the database was in auto-commit mode) cannot be released without
+# satisfying deferred foreign key constraints. It may be rolled back.
+#
+# EVIDENCE-OF: R-44295-13823 A transaction savepoint (a non-nested
+# savepoint that was opened while there was not currently an open
+# transaction), on the other hand, is subject to the same restrictions
+# as a COMMIT - attempting to RELEASE it while the database is in such a
+# state will fail.
+#
+do_test e_fkey-37.1 {
+ execsql {
+ SAVEPOINT one;
+ SAVEPOINT two;
+ INSERT INTO t1 VALUES(6, 7);
+ RELEASE two;
+ }
+} {}
+do_test e_fkey-37.2 {
+ catchsql {RELEASE one}
+} {1 {foreign key constraint failed}}
+do_test e_fkey-37.3 {
+ execsql {
+ UPDATE t1 SET a = 7 WHERE a = 6;
+ RELEASE one;
+ }
+} {}
+do_test e_fkey-37.4 {
+ execsql {
+ SAVEPOINT one;
+ SAVEPOINT two;
+ INSERT INTO t1 VALUES(9, 10);
+ RELEASE two;
+ }
+} {}
+do_test e_fkey-37.5 {
+ catchsql {RELEASE one}
+} {1 {foreign key constraint failed}}
+do_test e_fkey-37.6 {
+ execsql {ROLLBACK TO one ; RELEASE one}
+} {}
+
+#-------------------------------------------------------------------------
+# Test that if a COMMIT operation fails due to deferred foreign key
+# constraints, any nested savepoints remain open.
+#
+# EVIDENCE-OF: R-37736-42616 If a COMMIT statement (or the RELEASE of a
+# transaction SAVEPOINT) fails because the database is currently in a
+# state that violates a deferred foreign key constraint and there are
+# currently nested savepoints, the nested savepoints remain open.
+#
+do_test e_fkey-38.1 {
+ execsql {
+ DELETE FROM t1 WHERE a>3;
+ SELECT * FROM t1;
+ }
+} {1 1 2 2 3 3}
+do_test e_fkey-38.2 {
+ execsql {
+ BEGIN;
+ INSERT INTO t1 VALUES(4, 4);
+ SAVEPOINT one;
+ INSERT INTO t1 VALUES(5, 6);
+ SELECT * FROM t1;
+ }
+} {1 1 2 2 3 3 4 4 5 6}
+do_test e_fkey-38.3 {
+ catchsql COMMIT
+} {1 {foreign key constraint failed}}
+do_test e_fkey-38.4 {
+ execsql {
+ ROLLBACK TO one;
+ COMMIT;
+ SELECT * FROM t1;
+ }
+} {1 1 2 2 3 3 4 4}
+
+do_test e_fkey-38.5 {
+ execsql {
+ SAVEPOINT a;
+ INSERT INTO t1 VALUES(5, 5);
+ SAVEPOINT b;
+ INSERT INTO t1 VALUES(6, 7);
+ SAVEPOINT c;
+ INSERT INTO t1 VALUES(7, 8);
+ }
+} {}
+do_test e_fkey-38.6 {
+ catchsql {RELEASE a}
+} {1 {foreign key constraint failed}}
+do_test e_fkey-38.7 {
+ execsql {ROLLBACK TO c}
+ catchsql {RELEASE a}
+} {1 {foreign key constraint failed}}
+do_test e_fkey-38.8 {
+ execsql {
+ ROLLBACK TO b;
+ RELEASE a;
+ SELECT * FROM t1;
+ }
+} {1 1 2 2 3 3 4 4 5 5}
+
+###########################################################################
+### SECTION 4.3: ON DELETE and ON UPDATE Actions
+###########################################################################
+
+#-------------------------------------------------------------------------
+# Test that configured ON DELETE and ON UPDATE actions take place when
+# deleting or modifying rows of the parent table, respectively.
+#
+# EVIDENCE-OF: R-48270-44282 Foreign key ON DELETE and ON UPDATE clauses
+# are used to configure actions that take place when deleting rows from
+# the parent table (ON DELETE), or modifying the parent key values of
+# existing rows (ON UPDATE).
+#
+# Test that a single FK constraint may have different actions configured
+# for ON DELETE and ON UPDATE.
+#
+# EVIDENCE-OF: R-48124-63225 A single foreign key constraint may have
+# different actions configured for ON DELETE and ON UPDATE.
+#
+do_test e_fkey-39.1 {
+ execsql {
+ CREATE TABLE p(a, b PRIMARY KEY, c);
+ CREATE TABLE c1(d, e, f DEFAULT 'k0' REFERENCES p
+ ON UPDATE SET DEFAULT
+ ON DELETE SET NULL
+ );
+
+ INSERT INTO p VALUES(0, 'k0', '');
+ INSERT INTO p VALUES(1, 'k1', 'I');
+ INSERT INTO p VALUES(2, 'k2', 'II');
+ INSERT INTO p VALUES(3, 'k3', 'III');
+
+ INSERT INTO c1 VALUES(1, 'xx', 'k1');
+ INSERT INTO c1 VALUES(2, 'xx', 'k2');
+ INSERT INTO c1 VALUES(3, 'xx', 'k3');
+ }
+} {}
+do_test e_fkey-39.2 {
+ execsql {
+ UPDATE p SET b = 'k4' WHERE a = 1;
+ SELECT * FROM c1;
+ }
+} {1 xx k0 2 xx k2 3 xx k3}
+do_test e_fkey-39.3 {
+ execsql {
+ DELETE FROM p WHERE a = 2;
+ SELECT * FROM c1;
+ }
+} {1 xx k0 2 xx {} 3 xx k3}
+do_test e_fkey-39.4 {
+ execsql {
+ CREATE UNIQUE INDEX pi ON p(c);
+ REPLACE INTO p VALUES(5, 'k5', 'III');
+ SELECT * FROM c1;
+ }
+} {1 xx k0 2 xx {} 3 xx {}}
+
+#-------------------------------------------------------------------------
+# Each foreign key in the system has an ON UPDATE and ON DELETE action,
+# either "NO ACTION", "RESTRICT", "SET NULL", "SET DEFAULT" or "CASCADE".
+#
+# EVIDENCE-OF: R-33326-45252 The ON DELETE and ON UPDATE action
+# associated with each foreign key in an SQLite database is one of "NO
+# ACTION", "RESTRICT", "SET NULL", "SET DEFAULT" or "CASCADE".
+#
+# If none is specified explicitly, "NO ACTION" is the default.
+#
+# EVIDENCE-OF: R-19803-45884 If an action is not explicitly specified,
+# it defaults to "NO ACTION".
+#
+drop_all_tables
+do_test e_fkey-40.1 {
+ execsql {
+ CREATE TABLE parent(x PRIMARY KEY, y);
+ CREATE TABLE child1(a,
+ b REFERENCES parent ON UPDATE NO ACTION ON DELETE RESTRICT
+ );
+ CREATE TABLE child2(a,
+ b REFERENCES parent ON UPDATE RESTRICT ON DELETE SET NULL
+ );
+ CREATE TABLE child3(a,
+ b REFERENCES parent ON UPDATE SET NULL ON DELETE SET DEFAULT
+ );
+ CREATE TABLE child4(a,
+ b REFERENCES parent ON UPDATE SET DEFAULT ON DELETE CASCADE
+ );
+
+ -- Create some foreign keys that use the default action - "NO ACTION"
+ CREATE TABLE child5(a, b REFERENCES parent ON UPDATE CASCADE);
+ CREATE TABLE child6(a, b REFERENCES parent ON DELETE RESTRICT);
+ CREATE TABLE child7(a, b REFERENCES parent ON DELETE NO ACTION);
+ CREATE TABLE child8(a, b REFERENCES parent ON UPDATE NO ACTION);
+ }
+} {}
+
+foreach {tn zTab lRes} {
+ 2 child1 {0 0 parent b {} {NO ACTION} RESTRICT NONE}
+ 3 child2 {0 0 parent b {} RESTRICT {SET NULL} NONE}
+ 4 child3 {0 0 parent b {} {SET NULL} {SET DEFAULT} NONE}
+ 5 child4 {0 0 parent b {} {SET DEFAULT} CASCADE NONE}
+ 6 child5 {0 0 parent b {} CASCADE {NO ACTION} NONE}
+ 7 child6 {0 0 parent b {} {NO ACTION} RESTRICT NONE}
+ 8 child7 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE}
+ 9 child8 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE}
+} {
+ do_test e_fkey-40.$tn { execsql "PRAGMA foreign_key_list($zTab)" } $lRes
+}
+
+#-------------------------------------------------------------------------
+# Test that "NO ACTION" means that nothing happens to a child row when
+# it's parent row is updated or deleted.
+#
+# EVIDENCE-OF: R-19971-54976 Configuring "NO ACTION" means just that:
+# when a parent key is modified or deleted from the database, no special
+# action is taken.
+#
+drop_all_tables
+do_test e_fkey-41.1 {
+ execsql {
+ CREATE TABLE parent(p1, p2, PRIMARY KEY(p1, p2));
+ CREATE TABLE child(c1, c2,
+ FOREIGN KEY(c1, c2) REFERENCES parent
+ ON UPDATE NO ACTION
+ ON DELETE NO ACTION
+ DEFERRABLE INITIALLY DEFERRED
+ );
+ INSERT INTO parent VALUES('j', 'k');
+ INSERT INTO parent VALUES('l', 'm');
+ INSERT INTO child VALUES('j', 'k');
+ INSERT INTO child VALUES('l', 'm');
+ }
+} {}
+do_test e_fkey-41.2 {
+ execsql {
+ BEGIN;
+ UPDATE parent SET p1='k' WHERE p1='j';
+ DELETE FROM parent WHERE p1='l';
+ SELECT * FROM child;
+ }
+} {j k l m}
+do_test e_fkey-41.3 {
+ catchsql COMMIT
+} {1 {foreign key constraint failed}}
+do_test e_fkey-41.4 {
+ execsql ROLLBACK
+} {}
+
+#-------------------------------------------------------------------------
+# Test that "RESTRICT" means the application is prohibited from deleting
+# or updating a parent table row when there exists one or more child keys
+# mapped to it.
+#
+# EVIDENCE-OF: R-04272-38653 The "RESTRICT" action means that the
+# application is prohibited from deleting (for ON DELETE RESTRICT) or
+# modifying (for ON UPDATE RESTRICT) a parent key when there exists one
+# or more child keys mapped to it.
+#
+drop_all_tables
+do_test e_fkey-41.1 {
+ execsql {
+ CREATE TABLE parent(p1, p2);
+ CREATE UNIQUE INDEX parent_i ON parent(p1, p2);
+ CREATE TABLE child1(c1, c2,
+ FOREIGN KEY(c2, c1) REFERENCES parent(p1, p2) ON DELETE RESTRICT
+ );
+ CREATE TABLE child2(c1, c2,
+ FOREIGN KEY(c2, c1) REFERENCES parent(p1, p2) ON UPDATE RESTRICT
+ );
+ }
+} {}
+do_test e_fkey-41.2 {
+ execsql {
+ INSERT INTO parent VALUES('a', 'b');
+ INSERT INTO parent VALUES('c', 'd');
+ INSERT INTO child1 VALUES('b', 'a');
+ INSERT INTO child2 VALUES('d', 'c');
+ }
+} {}
+do_test e_fkey-41.3 {
+ catchsql { DELETE FROM parent WHERE p1 = 'a' }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-41.4 {
+ catchsql { UPDATE parent SET p2 = 'e' WHERE p1 = 'c' }
+} {1 {foreign key constraint failed}}
+
+#-------------------------------------------------------------------------
+# Test that RESTRICT is slightly different from NO ACTION for IMMEDIATE
+# constraints, in that it is enforced immediately, not at the end of the
+# statement.
+#
+# EVIDENCE-OF: R-37997-42187 The difference between the effect of a
+# RESTRICT action and normal foreign key constraint enforcement is that
+# the RESTRICT action processing happens as soon as the field is updated
+# - not at the end of the current statement as it would with an
+# immediate constraint, or at the end of the current transaction as it
+# would with a deferred constraint.
+#
+drop_all_tables
+do_test e_fkey-42.1 {
+ execsql {
+ CREATE TABLE parent(x PRIMARY KEY);
+ CREATE TABLE child1(c REFERENCES parent ON UPDATE RESTRICT);
+ CREATE TABLE child2(c REFERENCES parent ON UPDATE NO ACTION);
+
+ INSERT INTO parent VALUES('key1');
+ INSERT INTO parent VALUES('key2');
+ INSERT INTO child1 VALUES('key1');
+ INSERT INTO child2 VALUES('key2');
+
+ CREATE TRIGGER parent_t AFTER UPDATE ON parent BEGIN
+ UPDATE child1 set c = new.x WHERE c = old.x;
+ UPDATE child2 set c = new.x WHERE c = old.x;
+ END;
+ }
+} {}
+do_test e_fkey-42.2 {
+ catchsql { UPDATE parent SET x = 'key one' WHERE x = 'key1' }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-42.3 {
+ execsql {
+ UPDATE parent SET x = 'key two' WHERE x = 'key2';
+ SELECT * FROM child2;
+ }
+} {{key two}}
+
+drop_all_tables
+do_test e_fkey-42.4 {
+ execsql {
+ CREATE TABLE parent(x PRIMARY KEY);
+ CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT);
+ CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION);
+
+ INSERT INTO parent VALUES('key1');
+ INSERT INTO parent VALUES('key2');
+ INSERT INTO child1 VALUES('key1');
+ INSERT INTO child2 VALUES('key2');
+
+ CREATE TRIGGER parent_t AFTER DELETE ON parent BEGIN
+ UPDATE child1 SET c = NULL WHERE c = old.x;
+ UPDATE child2 SET c = NULL WHERE c = old.x;
+ END;
+ }
+} {}
+do_test e_fkey-42.5 {
+ catchsql { DELETE FROM parent WHERE x = 'key1' }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-42.6 {
+ execsql {
+ DELETE FROM parent WHERE x = 'key2';
+ SELECT * FROM child2;
+ }
+} {{}}
+
+drop_all_tables
+do_test e_fkey-42.7 {
+ execsql {
+ CREATE TABLE parent(x PRIMARY KEY);
+ CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT);
+ CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION);
+
+ INSERT INTO parent VALUES('key1');
+ INSERT INTO parent VALUES('key2');
+ INSERT INTO child1 VALUES('key1');
+ INSERT INTO child2 VALUES('key2');
+ }
+} {}
+do_test e_fkey-42.8 {
+ catchsql { REPLACE INTO parent VALUES('key1') }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-42.9 {
+ execsql {
+ REPLACE INTO parent VALUES('key2');
+ SELECT * FROM child2;
+ }
+} {key2}
+
+#-------------------------------------------------------------------------
+# Test that RESTRICT is enforced immediately, even for a DEFERRED constraint.
+#
+# EVIDENCE-OF: R-24179-60523 Even if the foreign key constraint it is
+# attached to is deferred, configuring a RESTRICT action causes SQLite
+# to return an error immediately if a parent key with dependent child
+# keys is deleted or modified.
+#
+drop_all_tables
+do_test e_fkey-43.1 {
+ execsql {
+ CREATE TABLE parent(x PRIMARY KEY);
+ CREATE TABLE child1(c REFERENCES parent ON UPDATE RESTRICT
+ DEFERRABLE INITIALLY DEFERRED
+ );
+ CREATE TABLE child2(c REFERENCES parent ON UPDATE NO ACTION
+ DEFERRABLE INITIALLY DEFERRED
+ );
+
+ INSERT INTO parent VALUES('key1');
+ INSERT INTO parent VALUES('key2');
+ INSERT INTO child1 VALUES('key1');
+ INSERT INTO child2 VALUES('key2');
+ BEGIN;
+ }
+} {}
+do_test e_fkey-43.2 {
+ catchsql { UPDATE parent SET x = 'key one' WHERE x = 'key1' }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-43.3 {
+ execsql { UPDATE parent SET x = 'key two' WHERE x = 'key2' }
+} {}
+do_test e_fkey-43.4 {
+ catchsql COMMIT
+} {1 {foreign key constraint failed}}
+do_test e_fkey-43.5 {
+ execsql {
+ UPDATE child2 SET c = 'key two';
+ COMMIT;
+ }
+} {}
+
+drop_all_tables
+do_test e_fkey-43.6 {
+ execsql {
+ CREATE TABLE parent(x PRIMARY KEY);
+ CREATE TABLE child1(c REFERENCES parent ON DELETE RESTRICT
+ DEFERRABLE INITIALLY DEFERRED
+ );
+ CREATE TABLE child2(c REFERENCES parent ON DELETE NO ACTION
+ DEFERRABLE INITIALLY DEFERRED
+ );
+
+ INSERT INTO parent VALUES('key1');
+ INSERT INTO parent VALUES('key2');
+ INSERT INTO child1 VALUES('key1');
+ INSERT INTO child2 VALUES('key2');
+ BEGIN;
+ }
+} {}
+do_test e_fkey-43.7 {
+ catchsql { DELETE FROM parent WHERE x = 'key1' }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-43.8 {
+ execsql { DELETE FROM parent WHERE x = 'key2' }
+} {}
+do_test e_fkey-43.9 {
+ catchsql COMMIT
+} {1 {foreign key constraint failed}}
+do_test e_fkey-43.10 {
+ execsql {
+ UPDATE child2 SET c = NULL;
+ COMMIT;
+ }
+} {}
+
+#-------------------------------------------------------------------------
+# Test SET NULL actions.
+#
+# EVIDENCE-OF: R-03353-05327 If the configured action is "SET NULL",
+# then when a parent key is deleted (for ON DELETE SET NULL) or modified
+# (for ON UPDATE SET NULL), the child key columns of all rows in the
+# child table that mapped to the parent key are set to contain SQL NULL
+# values.
+#
+drop_all_tables
+do_test e_fkey-44.1 {
+ execsql {
+ CREATE TABLE pA(x PRIMARY KEY);
+ CREATE TABLE cA(c REFERENCES pA ON DELETE SET NULL);
+ CREATE TABLE cB(c REFERENCES pA ON UPDATE SET NULL);
+
+ INSERT INTO pA VALUES(X'ABCD');
+ INSERT INTO pA VALUES(X'1234');
+ INSERT INTO cA VALUES(X'ABCD');
+ INSERT INTO cB VALUES(X'1234');
+ }
+} {}
+do_test e_fkey-44.2 {
+ execsql {
+ DELETE FROM pA WHERE rowid = 1;
+ SELECT quote(x) FROM pA;
+ }
+} {X'1234'}
+do_test e_fkey-44.3 {
+ execsql {
+ SELECT quote(c) FROM cA;
+ }
+} {NULL}
+do_test e_fkey-44.4 {
+ execsql {
+ UPDATE pA SET x = X'8765' WHERE rowid = 2;
+ SELECT quote(x) FROM pA;
+ }
+} {X'8765'}
+do_test e_fkey-44.5 {
+ execsql { SELECT quote(c) FROM cB }
+} {NULL}
+
+#-------------------------------------------------------------------------
+# Test SET DEFAULT actions.
+#
+# EVIDENCE-OF: R-43054-54832 The "SET DEFAULT" actions are similar to
+# "SET NULL", except that each of the child key columns is set to
+# contain the columns default value instead of NULL.
+#
+drop_all_tables
+do_test e_fkey-45.1 {
+ execsql {
+ CREATE TABLE pA(x PRIMARY KEY);
+ CREATE TABLE cA(c DEFAULT X'0000' REFERENCES pA ON DELETE SET DEFAULT);
+ CREATE TABLE cB(c DEFAULT X'9999' REFERENCES pA ON UPDATE SET DEFAULT);
+
+ INSERT INTO pA(rowid, x) VALUES(1, X'0000');
+ INSERT INTO pA(rowid, x) VALUES(2, X'9999');
+ INSERT INTO pA(rowid, x) VALUES(3, X'ABCD');
+ INSERT INTO pA(rowid, x) VALUES(4, X'1234');
+
+ INSERT INTO cA VALUES(X'ABCD');
+ INSERT INTO cB VALUES(X'1234');
+ }
+} {}
+do_test e_fkey-45.2 {
+ execsql {
+ DELETE FROM pA WHERE rowid = 3;
+ SELECT quote(x) FROM pA;
+ }
+} {X'0000' X'9999' X'1234'}
+do_test e_fkey-45.3 {
+ execsql { SELECT quote(c) FROM cA }
+} {X'0000'}
+do_test e_fkey-45.4 {
+ execsql {
+ UPDATE pA SET x = X'8765' WHERE rowid = 4;
+ SELECT quote(x) FROM pA;
+ }
+} {X'0000' X'9999' X'8765'}
+do_test e_fkey-45.5 {
+ execsql { SELECT quote(c) FROM cB }
+} {X'9999'}
+
+#-------------------------------------------------------------------------
+# Test ON DELETE CASCADE actions.
+#
+# EVIDENCE-OF: R-61376-57267 A "CASCADE" action propagates the delete or
+# update operation on the parent key to each dependent child key.
+#
+# EVIDENCE-OF: R-61809-62207 For an "ON DELETE CASCADE" action, this
+# means that each row in the child table that was associated with the
+# deleted parent row is also deleted.
+#
+drop_all_tables
+do_test e_fkey-46.1 {
+ execsql {
+ CREATE TABLE p1(a, b UNIQUE);
+ CREATE TABLE c1(c REFERENCES p1(b) ON DELETE CASCADE, d);
+ INSERT INTO p1 VALUES(NULL, NULL);
+ INSERT INTO p1 VALUES(4, 4);
+ INSERT INTO p1 VALUES(5, 5);
+ INSERT INTO c1 VALUES(NULL, NULL);
+ INSERT INTO c1 VALUES(4, 4);
+ INSERT INTO c1 VALUES(5, 5);
+ SELECT count(*) FROM c1;
+ }
+} {3}
+do_test e_fkey-46.2 {
+ execsql {
+ DELETE FROM p1 WHERE a = 4;
+ SELECT d, c FROM c1;
+ }
+} {{} {} 5 5}
+do_test e_fkey-46.3 {
+ execsql {
+ DELETE FROM p1;
+ SELECT d, c FROM c1;
+ }
+} {{} {}}
+do_test e_fkey-46.4 {
+ execsql { SELECT * FROM p1 }
+} {}
+
+
+#-------------------------------------------------------------------------
+# Test ON UPDATE CASCADE actions.
+#
+# EVIDENCE-OF: R-13877-64542 For an "ON UPDATE CASCADE" action, it means
+# that the values stored in each dependent child key are modified to
+# match the new parent key values.
+#
+# EVIDENCE-OF: R-61376-57267 A "CASCADE" action propagates the delete or
+# update operation on the parent key to each dependent child key.
+#
+drop_all_tables
+do_test e_fkey-47.1 {
+ execsql {
+ CREATE TABLE p1(a, b UNIQUE);
+ CREATE TABLE c1(c REFERENCES p1(b) ON UPDATE CASCADE, d);
+ INSERT INTO p1 VALUES(NULL, NULL);
+ INSERT INTO p1 VALUES(4, 4);
+ INSERT INTO p1 VALUES(5, 5);
+ INSERT INTO c1 VALUES(NULL, NULL);
+ INSERT INTO c1 VALUES(4, 4);
+ INSERT INTO c1 VALUES(5, 5);
+ SELECT count(*) FROM c1;
+ }
+} {3}
+do_test e_fkey-47.2 {
+ execsql {
+ UPDATE p1 SET b = 10 WHERE b = 5;
+ SELECT d, c FROM c1;
+ }
+} {{} {} 4 4 5 10}
+do_test e_fkey-47.3 {
+ execsql {
+ UPDATE p1 SET b = 11 WHERE b = 4;
+ SELECT d, c FROM c1;
+ }
+} {{} {} 4 11 5 10}
+do_test e_fkey-47.4 {
+ execsql {
+ UPDATE p1 SET b = 6 WHERE b IS NULL;
+ SELECT d, c FROM c1;
+ }
+} {{} {} 4 11 5 10}
+do_test e_fkey-46.5 {
+ execsql { SELECT * FROM p1 }
+} {{} 6 4 11 5 10}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-65058-57158
+#
+# Test an example from the "ON DELETE and ON UPDATE Actions" section
+# of foreignkeys.html.
+#
+drop_all_tables
+do_test e_fkey-48.1 {
+ execsql {
+ CREATE TABLE artist(
+ artistid INTEGER PRIMARY KEY,
+ artistname TEXT
+ );
+ CREATE TABLE track(
+ trackid INTEGER,
+ trackname TEXT,
+ trackartist INTEGER REFERENCES artist(artistid) ON UPDATE CASCADE
+ );
+
+ INSERT INTO artist VALUES(1, 'Dean Martin');
+ INSERT INTO artist VALUES(2, 'Frank Sinatra');
+ INSERT INTO track VALUES(11, 'That''s Amore', 1);
+ INSERT INTO track VALUES(12, 'Christmas Blues', 1);
+ INSERT INTO track VALUES(13, 'My Way', 2);
+ }
+} {}
+do_test e_fkey-48.2 {
+ execsql {
+ UPDATE artist SET artistid = 100 WHERE artistname = 'Dean Martin';
+ }
+} {}
+do_test e_fkey-48.3 {
+ execsql { SELECT * FROM artist }
+} {2 {Frank Sinatra} 100 {Dean Martin}}
+do_test e_fkey-48.4 {
+ execsql { SELECT * FROM track }
+} {11 {That's Amore} 100 12 {Christmas Blues} 100 13 {My Way} 2}
+
+
+#-------------------------------------------------------------------------
+# Verify that adding an FK action does not absolve the user of the
+# requirement not to violate the foreign key constraint.
+#
+# EVIDENCE-OF: R-53968-51642 Configuring an ON UPDATE or ON DELETE
+# action does not mean that the foreign key constraint does not need to
+# be satisfied.
+#
+drop_all_tables
+do_test e_fkey-49.1 {
+ execsql {
+ CREATE TABLE parent(a COLLATE nocase, b, c, PRIMARY KEY(c, a));
+ CREATE TABLE child(d DEFAULT 'a', e, f DEFAULT 'c',
+ FOREIGN KEY(f, d) REFERENCES parent ON UPDATE SET DEFAULT
+ );
+
+ INSERT INTO parent VALUES('A', 'b', 'c');
+ INSERT INTO parent VALUES('ONE', 'two', 'three');
+ INSERT INTO child VALUES('one', 'two', 'three');
+ }
+} {}
+do_test e_fkey-49.2 {
+ execsql {
+ BEGIN;
+ UPDATE parent SET a = '' WHERE a = 'oNe';
+ SELECT * FROM child;
+ }
+} {a two c}
+do_test e_fkey-49.3 {
+ execsql {
+ ROLLBACK;
+ DELETE FROM parent WHERE a = 'A';
+ SELECT * FROM parent;
+ }
+} {ONE two three}
+do_test e_fkey-49.4 {
+ catchsql { UPDATE parent SET a = '' WHERE a = 'oNe' }
+} {1 {foreign key constraint failed}}
+
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-11856-19836
+#
+# Test an example from the "ON DELETE and ON UPDATE Actions" section
+# of foreignkeys.html. This example shows that adding an "ON DELETE DEFAULT"
+# clause does not abrogate the need to satisfy the foreign key constraint
+# (R-28220-46694).
+#
+# EVIDENCE-OF: R-28220-46694 For example, if an "ON DELETE SET DEFAULT"
+# action is configured, but there is no row in the parent table that
+# corresponds to the default values of the child key columns, deleting a
+# parent key while dependent child keys exist still causes a foreign key
+# violation.
+#
+drop_all_tables
+do_test e_fkey-50.1 {
+ execsql {
+ CREATE TABLE artist(
+ artistid INTEGER PRIMARY KEY,
+ artistname TEXT
+ );
+ CREATE TABLE track(
+ trackid INTEGER,
+ trackname TEXT,
+ trackartist INTEGER DEFAULT 0 REFERENCES artist(artistid) ON DELETE SET DEFAULT
+ );
+ INSERT INTO artist VALUES(3, 'Sammy Davis Jr.');
+ INSERT INTO track VALUES(14, 'Mr. Bojangles', 3);
+ }
+} {}
+do_test e_fkey-50.2 {
+ catchsql { DELETE FROM artist WHERE artistname = 'Sammy Davis Jr.' }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-50.3 {
+ execsql {
+ INSERT INTO artist VALUES(0, 'Unknown Artist');
+ DELETE FROM artist WHERE artistname = 'Sammy Davis Jr.';
+ }
+} {}
+do_test e_fkey-50.4 {
+ execsql { SELECT * FROM artist }
+} {0 {Unknown Artist}}
+do_test e_fkey-50.5 {
+ execsql { SELECT * FROM track }
+} {14 {Mr. Bojangles} 0}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-09564-22170
+#
+# Check that the order of steps in an UPDATE or DELETE on a parent
+# table is as follows:
+#
+# 1. Execute applicable BEFORE trigger programs,
+# 2. Check local (non foreign key) constraints,
+# 3. Update or delete the row in the parent table,
+# 4. Perform any required foreign key actions,
+# 5. Execute applicable AFTER trigger programs.
+#
+drop_all_tables
+do_test e_fkey-51.1 {
+ proc maxparent {args} { db one {SELECT max(x) FROM parent} }
+ db func maxparent maxparent
+
+ execsql {
+ CREATE TABLE parent(x PRIMARY KEY);
+
+ CREATE TRIGGER bu BEFORE UPDATE ON parent BEGIN
+ INSERT INTO parent VALUES(new.x-old.x);
+ END;
+ CREATE TABLE child(
+ a DEFAULT (maxparent()) REFERENCES parent ON UPDATE SET DEFAULT
+ );
+ CREATE TRIGGER au AFTER UPDATE ON parent BEGIN
+ INSERT INTO parent VALUES(new.x+old.x);
+ END;
+
+ INSERT INTO parent VALUES(1);
+ INSERT INTO child VALUES(1);
+ }
+} {}
+do_test e_fkey-51.2 {
+ execsql {
+ UPDATE parent SET x = 22;
+ SELECT * FROM parent UNION ALL SELECT 'xxx' UNION ALL SELECT a FROM child;
+ }
+} {22 21 23 xxx 22}
+do_test e_fkey-51.3 {
+ execsql {
+ DELETE FROM child;
+ DELETE FROM parent;
+ INSERT INTO parent VALUES(-1);
+ INSERT INTO child VALUES(-1);
+ UPDATE parent SET x = 22;
+ SELECT * FROM parent UNION ALL SELECT 'xxx' UNION ALL SELECT a FROM child;
+ }
+} {22 23 21 xxx 23}
+
+
+#-------------------------------------------------------------------------
+# Verify that ON UPDATE actions only actually take place if the parent key
+# is set to a new value that is distinct from the old value. The default
+# collation sequence and affinity are used to determine if the new value
+# is 'distinct' from the old or not.
+#
+# EVIDENCE-OF: R-27383-10246 An ON UPDATE action is only taken if the
+# values of the parent key are modified so that the new parent key
+# values are not equal to the old.
+#
+drop_all_tables
+do_test e_fkey-52.1 {
+ execsql {
+ CREATE TABLE zeus(a INTEGER COLLATE NOCASE, b, PRIMARY KEY(a, b));
+ CREATE TABLE apollo(c, d,
+ FOREIGN KEY(c, d) REFERENCES zeus ON UPDATE CASCADE
+ );
+ INSERT INTO zeus VALUES('abc', 'xyz');
+ INSERT INTO apollo VALUES('ABC', 'xyz');
+ }
+ execsql {
+ UPDATE zeus SET a = 'aBc';
+ SELECT * FROM apollo;
+ }
+} {ABC xyz}
+do_test e_fkey-52.2 {
+ execsql {
+ UPDATE zeus SET a = 1, b = 1;
+ SELECT * FROM apollo;
+ }
+} {1 1}
+do_test e_fkey-52.3 {
+ execsql {
+ UPDATE zeus SET a = 1, b = 1;
+ SELECT typeof(c), c, typeof(d), d FROM apollo;
+ }
+} {integer 1 integer 1}
+do_test e_fkey-52.4 {
+ execsql {
+ UPDATE zeus SET a = '1';
+ SELECT typeof(c), c, typeof(d), d FROM apollo;
+ }
+} {integer 1 integer 1}
+do_test e_fkey-52.5 {
+ execsql {
+ UPDATE zeus SET b = '1';
+ SELECT typeof(c), c, typeof(d), d FROM apollo;
+ }
+} {integer 1 text 1}
+do_test e_fkey-52.6 {
+ execsql {
+ UPDATE zeus SET b = NULL;
+ SELECT typeof(c), c, typeof(d), d FROM apollo;
+ }
+} {integer 1 null {}}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-35129-58141
+#
+# Test an example from the "ON DELETE and ON UPDATE Actions" section
+# of foreignkeys.html. This example demonstrates that ON UPDATE actions
+# only take place if at least one parent key column is set to a value
+# that is distinct from its previous value.
+#
+drop_all_tables
+do_test e_fkey-53.1 {
+ execsql {
+ CREATE TABLE parent(x PRIMARY KEY);
+ CREATE TABLE child(y REFERENCES parent ON UPDATE SET NULL);
+ INSERT INTO parent VALUES('key');
+ INSERT INTO child VALUES('key');
+ }
+} {}
+do_test e_fkey-53.2 {
+ execsql {
+ UPDATE parent SET x = 'key';
+ SELECT IFNULL(y, 'null') FROM child;
+ }
+} {key}
+do_test e_fkey-53.3 {
+ execsql {
+ UPDATE parent SET x = 'key2';
+ SELECT IFNULL(y, 'null') FROM child;
+ }
+} {null}
+
+###########################################################################
+### SECTION 5: CREATE, ALTER and DROP TABLE commands
+###########################################################################
+
+#-------------------------------------------------------------------------
+# Test that parent keys are not checked when tables are created.
+#
+# EVIDENCE-OF: R-36018-21755 The parent key definitions of foreign key
+# constraints are not checked when a table is created.
+#
+# EVIDENCE-OF: R-25384-39337 There is nothing stopping the user from
+# creating a foreign key definition that refers to a parent table that
+# does not exist, or to parent key columns that do not exist or are not
+# collectively bound by a PRIMARY KEY or UNIQUE constraint.
+#
+# Child keys are checked to ensure all component columns exist. If parent
+# key columns are explicitly specified, SQLite checks to make sure there
+# are the same number of columns in the child and parent keys. (TODO: This
+# is tested but does not correspond to any testable statement.)
+#
+# Also test that the above statements are true regardless of whether or not
+# foreign keys are enabled: "A CREATE TABLE command operates the same whether
+# or not foreign key constraints are enabled."
+#
+# EVIDENCE-OF: R-08908-23439 A CREATE TABLE command operates the same
+# whether or not foreign key constraints are enabled.
+#
+foreach {tn zCreateTbl lRes} {
+ 1 "CREATE TABLE t1(a, b REFERENCES t1)" {0 {}}
+ 2 "CREATE TABLE t1(a, b REFERENCES t2)" {0 {}}
+ 3 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t1)" {0 {}}
+ 4 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2)" {0 {}}
+ 5 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2)" {0 {}}
+ 6 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2(n,d))" {0 {}}
+ 7 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t1(a,b))" {0 {}}
+
+ A "CREATE TABLE t1(a, b, FOREIGN KEY(c,b) REFERENCES t2)"
+ {1 {unknown column "c" in foreign key definition}}
+ B "CREATE TABLE t1(a, b, FOREIGN KEY(c,b) REFERENCES t2(d))"
+ {1 {number of columns in foreign key does not match the number of columns in the referenced table}}
+} {
+ do_test e_fkey-54.$tn.off {
+ drop_all_tables
+ execsql {PRAGMA foreign_keys = OFF}
+ catchsql $zCreateTbl
+ } $lRes
+ do_test e_fkey-54.$tn.on {
+ drop_all_tables
+ execsql {PRAGMA foreign_keys = ON}
+ catchsql $zCreateTbl
+ } $lRes
+}
+
+#-------------------------------------------------------------------------
+# EVIDENCE-OF: R-47952-62498 It is not possible to use the "ALTER TABLE
+# ... ADD COLUMN" syntax to add a column that includes a REFERENCES
+# clause, unless the default value of the new column is NULL. Attempting
+# to do so returns an error.
+#
+proc test_efkey_6 {tn zAlter isError} {
+ drop_all_tables
+
+ do_test e_fkey-56.$tn.1 "
+ execsql { CREATE TABLE tbl(a, b) }
+ [list catchsql $zAlter]
+ " [lindex {{0 {}} {1 {Cannot add a REFERENCES column with non-NULL default value}}} $isError]
+
+}
+
+test_efkey_6 1 "ALTER TABLE tbl ADD COLUMN c REFERENCES xx" 0
+test_efkey_6 2 "ALTER TABLE tbl ADD COLUMN c DEFAULT NULL REFERENCES xx" 0
+test_efkey_6 3 "ALTER TABLE tbl ADD COLUMN c DEFAULT 0 REFERENCES xx" 1
+
+#-------------------------------------------------------------------------
+# Test that ALTER TABLE adjusts REFERENCES clauses when the parent table
+# is RENAMED.
+#
+# EVIDENCE-OF: R-47080-02069 If an "ALTER TABLE ... RENAME TO" command
+# is used to rename a table that is the parent table of one or more
+# foreign key constraints, the definitions of the foreign key
+# constraints are modified to refer to the parent table by its new name
+#
+# Test that these adjustments are visible in the sqlite_master table.
+#
+# EVIDENCE-OF: R-63827-54774 The text of the child CREATE TABLE
+# statement or statements stored in the sqlite_master table are modified
+# to reflect the new parent table name.
+#
+do_test e_fkey-56.1 {
+ drop_all_tables
+ execsql {
+ CREATE TABLE 'p 1 "parent one"'(a REFERENCES 'p 1 "parent one"', b, PRIMARY KEY(b));
+
+ CREATE TABLE c1(c, d REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE);
+ CREATE TABLE c2(e, f, FOREIGN KEY(f) REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE);
+ CREATE TABLE c3(e, 'f col 2', FOREIGN KEY('f col 2') REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE);
+
+ INSERT INTO 'p 1 "parent one"' VALUES(1, 1);
+ INSERT INTO c1 VALUES(1, 1);
+ INSERT INTO c2 VALUES(1, 1);
+ INSERT INTO c3 VALUES(1, 1);
+
+ -- CREATE TABLE q(a, b, PRIMARY KEY(b));
+ }
+} {}
+do_test e_fkey-56.2 {
+ execsql { ALTER TABLE 'p 1 "parent one"' RENAME TO p }
+} {}
+do_test e_fkey-56.3 {
+ execsql {
+ UPDATE p SET a = 'xxx', b = 'xxx';
+ SELECT * FROM p;
+ SELECT * FROM c1;
+ SELECT * FROM c2;
+ SELECT * FROM c3;
+ }
+} {xxx xxx 1 xxx 1 xxx 1 xxx}
+do_test e_fkey-56.4 {
+ execsql { SELECT sql FROM sqlite_master WHERE type = 'table'}
+} [list \
+ {CREATE TABLE "p"(a REFERENCES "p", b, PRIMARY KEY(b))} \
+ {CREATE TABLE c1(c, d REFERENCES "p" ON UPDATE CASCADE)} \
+ {CREATE TABLE c2(e, f, FOREIGN KEY(f) REFERENCES "p" ON UPDATE CASCADE)} \
+ {CREATE TABLE c3(e, 'f col 2', FOREIGN KEY('f col 2') REFERENCES "p" ON UPDATE CASCADE)} \
+]
+
+#-------------------------------------------------------------------------
+# Check that a DROP TABLE does an implicit DELETE FROM. Which does not
+# cause any triggers to fire, but does fire foreign key actions.
+#
+# EVIDENCE-OF: R-14208-23986 If foreign key constraints are enabled when
+# it is prepared, the DROP TABLE command performs an implicit DELETE to
+# remove all rows from the table before dropping it.
+#
+# EVIDENCE-OF: R-11078-03945 The implicit DELETE does not cause any SQL
+# triggers to fire, but may invoke foreign key actions or constraint
+# violations.
+#
+do_test e_fkey-57.1 {
+ drop_all_tables
+ execsql {
+ CREATE TABLE p(a, b, PRIMARY KEY(a, b));
+
+ CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE SET NULL);
+ CREATE TABLE c2(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE SET DEFAULT);
+ CREATE TABLE c3(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE CASCADE);
+ CREATE TABLE c4(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE RESTRICT);
+ CREATE TABLE c5(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE NO ACTION);
+
+ CREATE TABLE c6(c, d,
+ FOREIGN KEY(c, d) REFERENCES p ON DELETE RESTRICT
+ DEFERRABLE INITIALLY DEFERRED
+ );
+ CREATE TABLE c7(c, d,
+ FOREIGN KEY(c, d) REFERENCES p ON DELETE NO ACTION
+ DEFERRABLE INITIALLY DEFERRED
+ );
+
+ CREATE TABLE log(msg);
+ CREATE TRIGGER tt AFTER DELETE ON p BEGIN
+ INSERT INTO log VALUES('delete ' || old.rowid);
+ END;
+ }
+} {}
+
+do_test e_fkey-57.2 {
+ execsql {
+ INSERT INTO p VALUES('a', 'b');
+ INSERT INTO c1 VALUES('a', 'b');
+ INSERT INTO c2 VALUES('a', 'b');
+ INSERT INTO c3 VALUES('a', 'b');
+ BEGIN;
+ DROP TABLE p;
+ SELECT * FROM c1;
+ }
+} {{} {}}
+do_test e_fkey-57.3 {
+ execsql { SELECT * FROM c2 }
+} {{} {}}
+do_test e_fkey-57.4 {
+ execsql { SELECT * FROM c3 }
+} {}
+do_test e_fkey-57.5 {
+ execsql { SELECT * FROM log }
+} {}
+do_test e_fkey-57.6 {
+ execsql ROLLBACK
+} {}
+do_test e_fkey-57.7 {
+ execsql {
+ BEGIN;
+ DELETE FROM p;
+ SELECT * FROM log;
+ ROLLBACK;
+ }
+} {{delete 1}}
+
+#-------------------------------------------------------------------------
+# If an IMMEDIATE foreign key fails as a result of a DROP TABLE, the
+# DROP TABLE command fails.
+#
+# EVIDENCE-OF: R-32768-47925 If an immediate foreign key constraint is
+# violated, the DROP TABLE statement fails and the table is not dropped.
+#
+do_test e_fkey-58.1 {
+ execsql {
+ DELETE FROM c1;
+ DELETE FROM c2;
+ DELETE FROM c3;
+ }
+ execsql { INSERT INTO c5 VALUES('a', 'b') }
+ catchsql { DROP TABLE p }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-58.2 {
+ execsql { SELECT * FROM p }
+} {a b}
+do_test e_fkey-58.3 {
+ catchsql {
+ BEGIN;
+ DROP TABLE p;
+ }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-58.4 {
+ execsql {
+ SELECT * FROM p;
+ SELECT * FROM c5;
+ ROLLBACK;
+ }
+} {a b a b}
+
+#-------------------------------------------------------------------------
+# If a DEFERRED foreign key fails as a result of a DROP TABLE, attempting
+# to commit the transaction fails unless the violation is fixed.
+#
+# EVIDENCE-OF: R-05903-08460 If a deferred foreign key constraint is
+# violated, then an error is reported when the user attempts to commit
+# the transaction if the foreign key constraint violations still exist
+# at that point.
+#
+do_test e_fkey-59.1 {
+ execsql {
+ DELETE FROM c1 ; DELETE FROM c2 ; DELETE FROM c3 ;
+ DELETE FROM c4 ; DELETE FROM c5 ; DELETE FROM c6 ;
+ DELETE FROM c7
+ }
+} {}
+do_test e_fkey-59.2 {
+ execsql { INSERT INTO c7 VALUES('a', 'b') }
+ execsql {
+ BEGIN;
+ DROP TABLE p;
+ }
+} {}
+do_test e_fkey-59.3 {
+ catchsql COMMIT
+} {1 {foreign key constraint failed}}
+do_test e_fkey-59.4 {
+ execsql { CREATE TABLE p(a, b, PRIMARY KEY(a, b)) }
+ catchsql COMMIT
+} {1 {foreign key constraint failed}}
+do_test e_fkey-59.5 {
+ execsql { INSERT INTO p VALUES('a', 'b') }
+ execsql COMMIT
+} {}
+
+#-------------------------------------------------------------------------
+# Any "foreign key mismatch" errors encountered while running an implicit
+# "DELETE FROM tbl" are ignored.
+#
+# EVIDENCE-OF: R-57242-37005 Any "foreign key mismatch" errors
+# encountered as part of an implicit DELETE are ignored.
+#
+drop_all_tables
+do_test e_fkey-60.1 {
+ execsql {
+ PRAGMA foreign_keys = OFF;
+
+ CREATE TABLE p(a PRIMARY KEY, b REFERENCES nosuchtable);
+ CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES a);
+ CREATE TABLE c2(c REFERENCES p(b), d);
+ CREATE TABLE c3(c REFERENCES p ON DELETE SET NULL, d);
+
+ INSERT INTO p VALUES(1, 2);
+ INSERT INTO c1 VALUES(1, 2);
+ INSERT INTO c2 VALUES(1, 2);
+ INSERT INTO c3 VALUES(1, 2);
+ }
+} {}
+do_test e_fkey-60.2 {
+ execsql { PRAGMA foreign_keys = ON }
+ catchsql { DELETE FROM p }
+} {1 {no such table: main.nosuchtable}}
+do_test e_fkey-60.3 {
+ execsql {
+ BEGIN;
+ DROP TABLE p;
+ SELECT * FROM c3;
+ ROLLBACK;
+ }
+} {{} 2}
+do_test e_fkey-60.4 {
+ execsql { CREATE TABLE nosuchtable(x PRIMARY KEY) }
+ catchsql { DELETE FROM p }
+} {1 {foreign key mismatch}}
+do_test e_fkey-60.5 {
+ execsql { DROP TABLE c1 }
+ catchsql { DELETE FROM p }
+} {1 {foreign key mismatch}}
+do_test e_fkey-60.6 {
+ execsql { DROP TABLE c2 }
+ execsql { DELETE FROM p }
+} {}
+
+#-------------------------------------------------------------------------
+# Test that the special behaviours of ALTER and DROP TABLE are only
+# activated when foreign keys are enabled. Special behaviours are:
+#
+# 1. ADD COLUMN not allowing a REFERENCES clause with a non-NULL
+# default value.
+# 2. Modifying foreign key definitions when a parent table is RENAMEd.
+# 3. Running an implicit DELETE FROM command as part of DROP TABLE.
+#
+# EVIDENCE-OF: R-54142-41346 The properties of the DROP TABLE and ALTER
+# TABLE commands described above only apply if foreign keys are enabled.
+#
+do_test e_fkey-61.1.1 {
+ drop_all_tables
+ execsql { CREATE TABLE t1(a, b) }
+ catchsql { ALTER TABLE t1 ADD COLUMN c DEFAULT 'xxx' REFERENCES t2 }
+} {1 {Cannot add a REFERENCES column with non-NULL default value}}
+do_test e_fkey-61.1.2 {
+ execsql { PRAGMA foreign_keys = OFF }
+ execsql { ALTER TABLE t1 ADD COLUMN c DEFAULT 'xxx' REFERENCES t2 }
+ execsql { SELECT sql FROM sqlite_master WHERE name = 't1' }
+} {{CREATE TABLE t1(a, b, c DEFAULT 'xxx' REFERENCES t2)}}
+do_test e_fkey-61.1.3 {
+ execsql { PRAGMA foreign_keys = ON }
+} {}
+
+do_test e_fkey-61.2.1 {
+ drop_all_tables
+ execsql {
+ CREATE TABLE p(a UNIQUE);
+ CREATE TABLE c(b REFERENCES p(a));
+ BEGIN;
+ ALTER TABLE p RENAME TO parent;
+ SELECT sql FROM sqlite_master WHERE name = 'c';
+ ROLLBACK;
+ }
+} {{CREATE TABLE c(b REFERENCES "parent"(a))}}
+do_test e_fkey-61.2.2 {
+ execsql {
+ PRAGMA foreign_keys = OFF;
+ ALTER TABLE p RENAME TO parent;
+ SELECT sql FROM sqlite_master WHERE name = 'c';
+ }
+} {{CREATE TABLE c(b REFERENCES p(a))}}
+do_test e_fkey-61.2.3 {
+ execsql { PRAGMA foreign_keys = ON }
+} {}
+
+do_test e_fkey-61.3.1 {
+ drop_all_tables
+ execsql {
+ CREATE TABLE p(a UNIQUE);
+ CREATE TABLE c(b REFERENCES p(a) ON DELETE SET NULL);
+ INSERT INTO p VALUES('x');
+ INSERT INTO c VALUES('x');
+ BEGIN;
+ DROP TABLE p;
+ SELECT * FROM c;
+ ROLLBACK;
+ }
+} {{}}
+do_test e_fkey-61.3.2 {
+ execsql {
+ PRAGMA foreign_keys = OFF;
+ DROP TABLE p;
+ SELECT * FROM c;
+ }
+} {x}
+do_test e_fkey-61.3.3 {
+ execsql { PRAGMA foreign_keys = ON }
+} {}
+
+###########################################################################
+### SECTION 6: Limits and Unsupported Features
+###########################################################################
+
+#-------------------------------------------------------------------------
+# Test that MATCH clauses are parsed, but SQLite treats every foreign key
+# constraint as if it were "MATCH SIMPLE".
+#
+# EVIDENCE-OF: R-24728-13230 SQLite parses MATCH clauses (i.e. does not
+# report a syntax error if you specify one), but does not enforce them.
+#
+# EVIDENCE-OF: R-24450-46174 All foreign key constraints in SQLite are
+# handled as if MATCH SIMPLE were specified.
+#
+foreach zMatch [list SIMPLE PARTIAL FULL Simple parTIAL FuLL ] {
+ drop_all_tables
+ do_test e_fkey-62.$zMatch.1 {
+ execsql "
+ CREATE TABLE p(a, b, c, PRIMARY KEY(b, c));
+ CREATE TABLE c(d, e, f, FOREIGN KEY(e, f) REFERENCES p MATCH $zMatch);
+ "
+ } {}
+ do_test e_fkey-62.$zMatch.2 {
+ execsql { INSERT INTO p VALUES(1, 2, 3) }
+
+ # MATCH SIMPLE behaviour: Allow any child key that contains one or more
+ # NULL value to be inserted. Non-NULL values do not have to map to any
+ # parent key values, so long as at least one field of the child key is
+ # NULL.
+ execsql { INSERT INTO c VALUES('w', 2, 3) }
+ execsql { INSERT INTO c VALUES('x', 'x', NULL) }
+ execsql { INSERT INTO c VALUES('y', NULL, 'x') }
+ execsql { INSERT INTO c VALUES('z', NULL, NULL) }
+
+ # Check that the FK is enforced properly if there are no NULL values
+ # in the child key columns.
+ catchsql { INSERT INTO c VALUES('a', 2, 4) }
+ } {1 {foreign key constraint failed}}
+}
+
+#-------------------------------------------------------------------------
+# Test that SQLite does not support the SET CONSTRAINT statement. And
+# that it is possible to create both immediate and deferred constraints.
+#
+# EVIDENCE-OF: R-21599-16038 In SQLite, a foreign key constraint is
+# permanently marked as deferred or immediate when it is created.
+#
+drop_all_tables
+do_test e_fkey-62.1 {
+ catchsql { SET CONSTRAINTS ALL IMMEDIATE }
+} {1 {near "SET": syntax error}}
+do_test e_fkey-62.2 {
+ catchsql { SET CONSTRAINTS ALL DEFERRED }
+} {1 {near "SET": syntax error}}
+
+do_test e_fkey-62.3 {
+ execsql {
+ CREATE TABLE p(a, b, PRIMARY KEY(a, b));
+ CREATE TABLE cd(c, d,
+ FOREIGN KEY(c, d) REFERENCES p DEFERRABLE INITIALLY DEFERRED);
+ CREATE TABLE ci(c, d,
+ FOREIGN KEY(c, d) REFERENCES p DEFERRABLE INITIALLY IMMEDIATE);
+ BEGIN;
+ }
+} {}
+do_test e_fkey-62.4 {
+ catchsql { INSERT INTO ci VALUES('x', 'y') }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-62.5 {
+ catchsql { INSERT INTO cd VALUES('x', 'y') }
+} {0 {}}
+do_test e_fkey-62.6 {
+ catchsql { COMMIT }
+} {1 {foreign key constraint failed}}
+do_test e_fkey-62.7 {
+ execsql {
+ DELETE FROM cd;
+ COMMIT;
+ }
+} {}
+
+#-------------------------------------------------------------------------
+# Test that the maximum recursion depth of foreign key action programs is
+# governed by the SQLITE_MAX_TRIGGER_DEPTH and SQLITE_LIMIT_TRIGGER_DEPTH
+# settings.
+#
+# EVIDENCE-OF: R-42264-30503 The SQLITE_MAX_TRIGGER_DEPTH and
+# SQLITE_LIMIT_TRIGGER_DEPTH settings determine the maximum allowable
+# depth of trigger program recursion. For the purposes of these limits,
+# foreign key actions are considered trigger programs.
+#
+proc test_on_delete_recursion {limit} {
+ drop_all_tables
+ execsql {
+ BEGIN;
+ CREATE TABLE t0(a PRIMARY KEY, b);
+ INSERT INTO t0 VALUES('x0', NULL);
+ }
+ for {set i 1} {$i <= $limit} {incr i} {
+ execsql "
+ CREATE TABLE t$i (
+ a PRIMARY KEY, b REFERENCES t[expr $i-1] ON DELETE CASCADE
+ );
+ INSERT INTO t$i VALUES('x$i', 'x[expr $i-1]');
+ "
+ }
+ execsql COMMIT
+ catchsql "
+ DELETE FROM t0;
+ SELECT count(*) FROM t$limit;
+ "
+}
+proc test_on_update_recursion {limit} {
+ drop_all_tables
+ execsql {
+ BEGIN;
+ CREATE TABLE t0(a PRIMARY KEY);
+ INSERT INTO t0 VALUES('xxx');
+ }
+ for {set i 1} {$i <= $limit} {incr i} {
+ set j [expr $i-1]
+
+ execsql "
+ CREATE TABLE t$i (a PRIMARY KEY REFERENCES t$j ON UPDATE CASCADE);
+ INSERT INTO t$i VALUES('xxx');
+ "
+ }
+ execsql COMMIT
+ catchsql "
+ UPDATE t0 SET a = 'yyy';
+ SELECT NOT (a='yyy') FROM t$limit;
+ "
+}
+
+do_test e_fkey-63.1.1 {
+ test_on_delete_recursion $SQLITE_MAX_TRIGGER_DEPTH
+} {0 0}
+do_test e_fkey-63.1.2 {
+ test_on_delete_recursion [expr $SQLITE_MAX_TRIGGER_DEPTH+1]
+} {1 {too many levels of trigger recursion}}
+do_test e_fkey-63.1.3 {
+ sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 5
+ test_on_delete_recursion 5
+} {0 0}
+do_test e_fkey-63.1.4 {
+ test_on_delete_recursion 6
+} {1 {too many levels of trigger recursion}}
+do_test e_fkey-63.1.5 {
+ sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1000000
+} {5}
+do_test e_fkey-63.2.1 {
+ test_on_update_recursion $SQLITE_MAX_TRIGGER_DEPTH
+} {0 0}
+do_test e_fkey-63.2.2 {
+ test_on_update_recursion [expr $SQLITE_MAX_TRIGGER_DEPTH+1]
+} {1 {too many levels of trigger recursion}}
+do_test e_fkey-63.2.3 {
+ sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 5
+ test_on_update_recursion 5
+} {0 0}
+do_test e_fkey-63.2.4 {
+ test_on_update_recursion 6
+} {1 {too many levels of trigger recursion}}
+do_test e_fkey-63.2.5 {
+ sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1000000
+} {5}
+
+#-------------------------------------------------------------------------
+# The setting of the recursive_triggers pragma does not affect foreign
+# key actions.
+#
+# EVIDENCE-OF: R-51769-32730 The PRAGMA recursive_triggers setting does
+# not not affect the operation of foreign key actions.
+#
+foreach recursive_triggers_setting [list 0 1 ON OFF] {
+ drop_all_tables
+ execsql "PRAGMA recursive_triggers = $recursive_triggers_setting"
+
+ do_test e_fkey-64.$recursive_triggers_setting.1 {
+ execsql {
+ CREATE TABLE t1(a PRIMARY KEY, b REFERENCES t1 ON DELETE CASCADE);
+ INSERT INTO t1 VALUES(1, NULL);
+ INSERT INTO t1 VALUES(2, 1);
+ INSERT INTO t1 VALUES(3, 2);
+ INSERT INTO t1 VALUES(4, 3);
+ INSERT INTO t1 VALUES(5, 4);
+ SELECT count(*) FROM t1;
+ }
+ } {5}
+ do_test e_fkey-64.$recursive_triggers_setting.2 {
+ execsql { SELECT count(*) FROM t1 WHERE a = 1 }
+ } {1}
+ do_test e_fkey-64.$recursive_triggers_setting.3 {
+ execsql {
+ DELETE FROM t1 WHERE a = 1;
+ SELECT count(*) FROM t1;
+ }
+ } {0}
+}
+
+finish_test