summaryrefslogtreecommitdiff
path: root/src/vdbe.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/vdbe.c')
-rw-r--r--src/vdbe.c2767
1 files changed, 1532 insertions, 1235 deletions
diff --git a/src/vdbe.c b/src/vdbe.c
index f343e13..61adb9c 100644
--- a/src/vdbe.c
+++ b/src/vdbe.c
@@ -9,33 +9,8 @@
** May you share freely, never taking more than you give.
**
*************************************************************************
-** The code in this file implements execution method of the
-** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
-** handles housekeeping details such as creating and deleting
-** VDBE instances. This file is solely interested in executing
-** the VDBE program.
-**
-** In the external interface, an "sqlite3_stmt*" is an opaque pointer
-** to a VDBE.
-**
-** The SQL parser generates a program which is then executed by
-** the VDBE to do the work of the SQL statement. VDBE programs are
-** similar in form to assembly language. The program consists of
-** a linear sequence of operations. Each operation has an opcode
-** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
-** is a null-terminated string. Operand P5 is an unsigned character.
-** Few opcodes use all 5 operands.
-**
-** Computation results are stored on a set of registers numbered beginning
-** with 1 and going up to Vdbe.nMem. Each register can store
-** either an integer, a null-terminated string, a floating point
-** number, or the SQL "NULL" value. An implicit conversion from one
-** type to the other occurs as necessary.
-**
-** Most of the code in this file is taken up by the sqlite3VdbeExec()
-** function which does the work of interpreting a VDBE program.
-** But other routines are also provided to help in building up
-** a program instruction by instruction.
+** The code in this file implements the function that runs the
+** bytecode of a prepared statement.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files. The formatting
@@ -49,7 +24,11 @@
/*
** Invoke this macro on memory cells just prior to changing the
** value of the cell. This macro verifies that shallow copies are
-** not misused.
+** not misused. A shallow copy of a string or blob just copies a
+** pointer to the string or blob, not the content. If the original
+** is changed while the copy is still in use, the string or blob might
+** be changed out from under the copy. This macro verifies that nothing
+** like that ever happens.
*/
#ifdef SQLITE_DEBUG
# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
@@ -108,7 +87,7 @@ static void updateMaxBlobsize(Mem *p){
#endif
/*
-** The next global variable is incremented each type the OP_Found opcode
+** The next global variable is incremented each time the OP_Found opcode
** is executed. This is used to test whether or not the foreign key
** operation implemented using OP_FkIsZero is working. This variable
** has no function other than to help verify the correct operation of the
@@ -129,6 +108,40 @@ int sqlite3_found_count = 0;
#endif
/*
+** Invoke the VDBE coverage callback, if that callback is defined. This
+** feature is used for test suite validation only and does not appear an
+** production builds.
+**
+** M is an integer, 2 or 3, that indices how many different ways the
+** branch can go. It is usually 2. "I" is the direction the branch
+** goes. 0 means falls through. 1 means branch is taken. 2 means the
+** second alternative branch is taken.
+**
+** iSrcLine is the source code line (from the __LINE__ macro) that
+** generated the VDBE instruction. This instrumentation assumes that all
+** source code is in a single file (the amalgamation). Special values 1
+** and 2 for the iSrcLine parameter mean that this particular branch is
+** always taken or never taken, respectively.
+*/
+#if !defined(SQLITE_VDBE_COVERAGE)
+# define VdbeBranchTaken(I,M)
+#else
+# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
+ static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
+ if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
+ M = iSrcLine;
+ /* Assert the truth of VdbeCoverageAlwaysTaken() and
+ ** VdbeCoverageNeverTaken() */
+ assert( (M & I)==I );
+ }else{
+ if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
+ sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
+ iSrcLine,I,M);
+ }
+ }
+#endif
+
+/*
** Convert the given register into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
@@ -145,38 +158,14 @@ int sqlite3_found_count = 0;
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the register itself controls. In other words, it
-** converts an MEM_Ephem string into an MEM_Dyn string.
+** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
*/
#define Deephemeralize(P) \
if( ((P)->flags&MEM_Ephem)!=0 \
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
-# define isSorter(x) ((x)->pSorter!=0)
-
-/*
-** Argument pMem points at a register that will be passed to a
-** user-defined function or returned to the user as the result of a query.
-** This routine sets the pMem->type variable used by the sqlite3_value_*()
-** routines.
-*/
-void sqlite3VdbeMemStoreType(Mem *pMem){
- int flags = pMem->flags;
- if( flags & MEM_Null ){
- pMem->type = SQLITE_NULL;
- }
- else if( flags & MEM_Int ){
- pMem->type = SQLITE_INTEGER;
- }
- else if( flags & MEM_Real ){
- pMem->type = SQLITE_FLOAT;
- }
- else if( flags & MEM_Str ){
- pMem->type = SQLITE_TEXT;
- }else{
- pMem->type = SQLITE_BLOB;
- }
-}
+#define isSorter(x) ((x)->pSorter!=0)
/*
** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
@@ -212,9 +201,8 @@ static VdbeCursor *allocateCursor(
int nByte;
VdbeCursor *pCx = 0;
nByte =
- ROUND8(sizeof(VdbeCursor)) +
- (isBtreeCursor?sqlite3BtreeCursorSize():0) +
- 2*nField*sizeof(u32);
+ ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
+ (isBtreeCursor?sqlite3BtreeCursorSize():0);
assert( iCur<p->nCursor );
if( p->apCsr[iCur] ){
@@ -226,12 +214,9 @@ static VdbeCursor *allocateCursor(
memset(pCx, 0, sizeof(VdbeCursor));
pCx->iDb = iDb;
pCx->nField = nField;
- if( nField ){
- pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
- }
if( isBtreeCursor ){
pCx->pCursor = (BtCursor*)
- &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
+ &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
sqlite3BtreeCursorZero(pCx->pCursor);
}
}
@@ -245,21 +230,21 @@ static VdbeCursor *allocateCursor(
** look like a number, leave it alone.
*/
static void applyNumericAffinity(Mem *pRec){
- if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
- double rValue;
- i64 iValue;
- u8 enc = pRec->enc;
- if( (pRec->flags&MEM_Str)==0 ) return;
- if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
- if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
- pRec->u.i = iValue;
- pRec->flags |= MEM_Int;
- }else{
- pRec->r = rValue;
- pRec->flags |= MEM_Real;
- }
+ double rValue;
+ i64 iValue;
+ u8 enc = pRec->enc;
+ if( (pRec->flags&MEM_Str)==0 ) return;
+ if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
+ if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
+ pRec->u.i = iValue;
+ pRec->flags |= MEM_Int;
+ }else{
+ pRec->r = rValue;
+ pRec->flags |= MEM_Real;
}
}
+#define ApplyNumericAffinity(X) \
+ if(((X)->flags&(MEM_Real|MEM_Int))==0){applyNumericAffinity(X);}
/*
** Processing is determine by the affinity parameter:
@@ -296,7 +281,7 @@ static void applyAffinity(
}else if( affinity!=SQLITE_AFF_NONE ){
assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
|| affinity==SQLITE_AFF_NUMERIC );
- applyNumericAffinity(pRec);
+ ApplyNumericAffinity(pRec);
if( pRec->flags & MEM_Real ){
sqlite3VdbeIntegerAffinity(pRec);
}
@@ -310,12 +295,13 @@ static void applyAffinity(
** loss of information and return the revised type of the argument.
*/
int sqlite3_value_numeric_type(sqlite3_value *pVal){
- Mem *pMem = (Mem*)pVal;
- if( pMem->type==SQLITE_TEXT ){
+ int eType = sqlite3_value_type(pVal);
+ if( eType==SQLITE_TEXT ){
+ Mem *pMem = (Mem*)pVal;
applyNumericAffinity(pMem);
- sqlite3VdbeMemStoreType(pMem);
+ eType = sqlite3_value_type(pVal);
}
- return pMem->type;
+ return eType;
}
/*
@@ -330,6 +316,29 @@ void sqlite3ValueApplyAffinity(
applyAffinity((Mem *)pVal, affinity, enc);
}
+/*
+** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
+** none.
+**
+** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
+** But it does set pMem->r and pMem->u.i appropriately.
+*/
+static u16 numericType(Mem *pMem){
+ if( pMem->flags & (MEM_Int|MEM_Real) ){
+ return pMem->flags & (MEM_Int|MEM_Real);
+ }
+ if( pMem->flags & (MEM_Str|MEM_Blob) ){
+ if( sqlite3AtoF(pMem->z, &pMem->r, pMem->n, pMem->enc)==0 ){
+ return 0;
+ }
+ if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
+ return MEM_Int;
+ }
+ return MEM_Real;
+ }
+ return 0;
+}
+
#ifdef SQLITE_DEBUG
/*
** Write a nice string representation of the contents of cell pMem
@@ -417,37 +426,36 @@ void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
/*
** Print the value of a register for tracing purposes:
*/
-static void memTracePrint(FILE *out, Mem *p){
- if( p->flags & MEM_Invalid ){
- fprintf(out, " undefined");
+static void memTracePrint(Mem *p){
+ if( p->flags & MEM_Undefined ){
+ printf(" undefined");
}else if( p->flags & MEM_Null ){
- fprintf(out, " NULL");
+ printf(" NULL");
}else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
- fprintf(out, " si:%lld", p->u.i);
+ printf(" si:%lld", p->u.i);
}else if( p->flags & MEM_Int ){
- fprintf(out, " i:%lld", p->u.i);
+ printf(" i:%lld", p->u.i);
#ifndef SQLITE_OMIT_FLOATING_POINT
}else if( p->flags & MEM_Real ){
- fprintf(out, " r:%g", p->r);
+ printf(" r:%g", p->r);
#endif
}else if( p->flags & MEM_RowSet ){
- fprintf(out, " (rowset)");
+ printf(" (rowset)");
}else{
char zBuf[200];
sqlite3VdbeMemPrettyPrint(p, zBuf);
- fprintf(out, " ");
- fprintf(out, "%s", zBuf);
+ printf(" %s", zBuf);
}
}
-static void registerTrace(FILE *out, int iReg, Mem *p){
- fprintf(out, "REG[%d] = ", iReg);
- memTracePrint(out, p);
- fprintf(out, "\n");
+static void registerTrace(int iReg, Mem *p){
+ printf("REG[%d] = ", iReg);
+ memTracePrint(p);
+ printf("\n");
}
#endif
#ifdef SQLITE_DEBUG
-# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
+# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
#else
# define REGISTER_TRACE(R,M)
#endif
@@ -463,20 +471,6 @@ static void registerTrace(FILE *out, int iReg, Mem *p){
#endif
-/*
-** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
-** sqlite3_interrupt() routine has been called. If it has been, then
-** processing of the VDBE program is interrupted.
-**
-** This macro added to every instruction that does a jump in order to
-** implement a loop. This test used to be on every single instruction,
-** but that meant we more testing than we needed. By only testing the
-** flag on jump instructions, we get a (small) speed improvement.
-*/
-#define CHECK_FOR_INTERRUPT \
- if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
-
-
#ifndef NDEBUG
/*
** This function is only called from within an assert() expression. It
@@ -497,50 +491,10 @@ static int checkSavepointCount(sqlite3 *db){
}
#endif
-/*
-** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
-** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
-** in memory obtained from sqlite3DbMalloc).
-*/
-static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
- sqlite3 *db = p->db;
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
- sqlite3_free(pVtab->zErrMsg);
- pVtab->zErrMsg = 0;
-}
-
/*
-** Execute as much of a VDBE program as we can then return.
-**
-** sqlite3VdbeMakeReady() must be called before this routine in order to
-** close the program with a final OP_Halt and to set up the callbacks
-** and the error message pointer.
-**
-** Whenever a row or result data is available, this routine will either
-** invoke the result callback (if there is one) or return with
-** SQLITE_ROW.
-**
-** If an attempt is made to open a locked database, then this routine
-** will either invoke the busy callback (if there is one) or it will
-** return SQLITE_BUSY.
-**
-** If an error occurs, an error message is written to memory obtained
-** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
-** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
-**
-** If the callback ever returns non-zero, then the program exits
-** immediately. There will be no error message but the p->rc field is
-** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
-**
-** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
-** routine to return SQLITE_ERROR.
-**
-** Other fatal errors return SQLITE_ERROR.
-**
-** After this routine has finished, sqlite3VdbeFinalize() should be
-** used to clean up the mess that was left behind.
+** Execute as much of a VDBE program as we can.
+** This is the core of sqlite3_step().
*/
int sqlite3VdbeExec(
Vdbe *p /* The VDBE */
@@ -552,21 +506,20 @@ int sqlite3VdbeExec(
sqlite3 *db = p->db; /* The database */
u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
u8 encoding = ENC(db); /* The database encoding */
+ int iCompare = 0; /* Result of last OP_Compare operation */
+ unsigned nVmStep = 0; /* Number of virtual machine steps */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- int checkProgress; /* True if progress callbacks are enabled */
- int nProgressOps = 0; /* Opcodes executed since progress callback. */
+ unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
#endif
Mem *aMem = p->aMem; /* Copy of p->aMem */
Mem *pIn1 = 0; /* 1st input operand */
Mem *pIn2 = 0; /* 2nd input operand */
Mem *pIn3 = 0; /* 3rd input operand */
Mem *pOut = 0; /* Output operand */
- int iCompare = 0; /* Result of last OP_Compare operation */
int *aPermute = 0; /* Permutation of columns for OP_Compare */
i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
#ifdef VDBE_PROFILE
u64 start; /* CPU clock count at start of opcode */
- int origPc; /* Program counter at start of opcode */
#endif
/*** INSERT STACK UNION HERE ***/
@@ -578,24 +531,49 @@ int sqlite3VdbeExec(
goto no_mem;
}
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+ assert( p->bIsReader || p->readOnly!=0 );
p->rc = SQLITE_OK;
+ p->iCurrentTime = 0;
assert( p->explain==0 );
p->pResultSet = 0;
db->busyHandler.nBusy = 0;
- CHECK_FOR_INTERRUPT;
+ if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
sqlite3VdbeIOTraceSql(p);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- checkProgress = db->xProgress!=0;
+ if( db->xProgress ){
+ assert( 0 < db->nProgressOps );
+ nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
+ if( nProgressLimit==0 ){
+ nProgressLimit = db->nProgressOps;
+ }else{
+ nProgressLimit %= (unsigned)db->nProgressOps;
+ }
+ }
#endif
#ifdef SQLITE_DEBUG
sqlite3BeginBenignMalloc();
- if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
+ if( p->pc==0
+ && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
+ ){
int i;
- printf("VDBE Program Listing:\n");
+ int once = 1;
sqlite3VdbePrintSql(p);
- for(i=0; i<p->nOp; i++){
- sqlite3VdbePrintOp(stdout, i, &aOp[i]);
+ if( p->db->flags & SQLITE_VdbeListing ){
+ printf("VDBE Program Listing:\n");
+ for(i=0; i<p->nOp; i++){
+ sqlite3VdbePrintOp(stdout, i, &aOp[i]);
+ }
+ }
+ if( p->db->flags & SQLITE_VdbeEQP ){
+ for(i=0; i<p->nOp; i++){
+ if( aOp[i].opcode==OP_Explain ){
+ if( once ) printf("VDBE Query Plan:\n");
+ printf("%s\n", aOp[i].p4.z);
+ once = 0;
+ }
+ }
}
+ if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
}
sqlite3EndBenignMalloc();
#endif
@@ -603,20 +581,16 @@ int sqlite3VdbeExec(
assert( pc>=0 && pc<p->nOp );
if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
- origPc = pc;
start = sqlite3Hwtime();
#endif
+ nVmStep++;
pOp = &aOp[pc];
/* Only allow tracing if SQLITE_DEBUG is defined.
*/
#ifdef SQLITE_DEBUG
- if( p->trace ){
- if( pc==0 ){
- printf("VDBE Execution Trace:\n");
- sqlite3VdbePrintSql(p);
- }
- sqlite3VdbePrintOp(p->trace, pc, pOp);
+ if( db->flags & SQLITE_VdbeTrace ){
+ sqlite3VdbePrintOp(stdout, pc, pOp);
}
#endif
@@ -633,27 +607,6 @@ int sqlite3VdbeExec(
}
#endif
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- /* Call the progress callback if it is configured and the required number
- ** of VDBE ops have been executed (either since this invocation of
- ** sqlite3VdbeExec() or since last time the progress callback was called).
- ** If the progress callback returns non-zero, exit the virtual machine with
- ** a return code SQLITE_ABORT.
- */
- if( checkProgress ){
- if( db->nProgressOps==nProgressOps ){
- int prc;
- prc = db->xProgress(db->pProgressArg);
- if( prc!=0 ){
- rc = SQLITE_INTERRUPT;
- goto vdbe_error_halt;
- }
- nProgressOps = 0;
- }
- nProgressOps++;
- }
-#endif
-
/* On any opcode with the "out2-prerelease" tag, free any
** external allocations out of mem[p2] and set mem[p2] to be
** an undefined integer. Opcodes will either fill in the integer
@@ -662,7 +615,7 @@ int sqlite3VdbeExec(
assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
assert( pOp->p2>0 );
- assert( pOp->p2<=p->nMem );
+ assert( pOp->p2<=(p->nMem-p->nCursor) );
pOut = &aMem[pOp->p2];
memAboutToChange(p, pOut);
VdbeMemRelease(pOut);
@@ -673,30 +626,33 @@ int sqlite3VdbeExec(
#ifdef SQLITE_DEBUG
if( (pOp->opflags & OPFLG_IN1)!=0 ){
assert( pOp->p1>0 );
- assert( pOp->p1<=p->nMem );
+ assert( pOp->p1<=(p->nMem-p->nCursor) );
assert( memIsValid(&aMem[pOp->p1]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
}
if( (pOp->opflags & OPFLG_IN2)!=0 ){
assert( pOp->p2>0 );
- assert( pOp->p2<=p->nMem );
+ assert( pOp->p2<=(p->nMem-p->nCursor) );
assert( memIsValid(&aMem[pOp->p2]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
}
if( (pOp->opflags & OPFLG_IN3)!=0 ){
assert( pOp->p3>0 );
- assert( pOp->p3<=p->nMem );
+ assert( pOp->p3<=(p->nMem-p->nCursor) );
assert( memIsValid(&aMem[pOp->p3]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
}
if( (pOp->opflags & OPFLG_OUT2)!=0 ){
assert( pOp->p2>0 );
- assert( pOp->p2<=p->nMem );
+ assert( pOp->p2<=(p->nMem-p->nCursor) );
memAboutToChange(p, &aMem[pOp->p2]);
}
if( (pOp->opflags & OPFLG_OUT3)!=0 ){
assert( pOp->p3>0 );
- assert( pOp->p3<=p->nMem );
+ assert( pOp->p3<=(p->nMem-p->nCursor) );
memAboutToChange(p, &aMem[pOp->p3]);
}
#endif
@@ -744,10 +700,44 @@ int sqlite3VdbeExec(
** The next instruction executed will be
** the one at index P2 from the beginning of
** the program.
+**
+** The P1 parameter is not actually used by this opcode. However, it
+** is sometimes set to 1 instead of 0 as a hint to the command-line shell
+** that this Goto is the bottom of a loop and that the lines from P2 down
+** to the current line should be indented for EXPLAIN output.
*/
case OP_Goto: { /* jump */
- CHECK_FOR_INTERRUPT;
pc = pOp->p2 - 1;
+
+ /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
+ ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
+ ** completion. Check to see if sqlite3_interrupt() has been called
+ ** or if the progress callback needs to be invoked.
+ **
+ ** This code uses unstructured "goto" statements and does not look clean.
+ ** But that is not due to sloppy coding habits. The code is written this
+ ** way for performance, to avoid having to run the interrupt and progress
+ ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
+ ** faster according to "valgrind --tool=cachegrind" */
+check_for_interrupt:
+ if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ /* Call the progress callback if it is configured and the required number
+ ** of VDBE ops have been executed (either since this invocation of
+ ** sqlite3VdbeExec() or since last time the progress callback was called).
+ ** If the progress callback returns non-zero, exit the virtual machine with
+ ** a return code SQLITE_ABORT.
+ */
+ if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
+ assert( db->nProgressOps!=0 );
+ nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
+ if( db->xProgress(db->pProgressArg) ){
+ rc = SQLITE_INTERRUPT;
+ goto vdbe_error_halt;
+ }
+ }
+#endif
+
break;
}
@@ -757,9 +747,9 @@ case OP_Goto: { /* jump */
** and then jump to address P2.
*/
case OP_Gosub: { /* jump */
- assert( pOp->p1>0 && pOp->p1<=p->nMem );
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
pIn1 = &aMem[pOp->p1];
- assert( (pIn1->flags & MEM_Dyn)==0 );
+ assert( VdbeMemDynamic(pIn1)==0 );
memAboutToChange(p, pIn1);
pIn1->flags = MEM_Int;
pIn1->u.i = pc;
@@ -770,23 +760,78 @@ case OP_Gosub: { /* jump */
/* Opcode: Return P1 * * * *
**
-** Jump to the next instruction after the address in register P1.
+** Jump to the next instruction after the address in register P1. After
+** the jump, register P1 becomes undefined.
*/
case OP_Return: { /* in1 */
pIn1 = &aMem[pOp->p1];
- assert( pIn1->flags & MEM_Int );
+ assert( pIn1->flags==MEM_Int );
pc = (int)pIn1->u.i;
+ pIn1->flags = MEM_Undefined;
+ break;
+}
+
+/* Opcode: InitCoroutine P1 P2 P3 * *
+**
+** Set up register P1 so that it will Yield to the coroutine
+** located at address P3.
+**
+** If P2!=0 then the coroutine implementation immediately follows
+** this opcode. So jump over the coroutine implementation to
+** address P2.
+**
+** See also: EndCoroutine
+*/
+case OP_InitCoroutine: { /* jump */
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
+ assert( pOp->p2>=0 && pOp->p2<p->nOp );
+ assert( pOp->p3>=0 && pOp->p3<p->nOp );
+ pOut = &aMem[pOp->p1];
+ assert( !VdbeMemDynamic(pOut) );
+ pOut->u.i = pOp->p3 - 1;
+ pOut->flags = MEM_Int;
+ if( pOp->p2 ) pc = pOp->p2 - 1;
break;
}
-/* Opcode: Yield P1 * * * *
+/* Opcode: EndCoroutine P1 * * * *
**
-** Swap the program counter with the value in register P1.
+** The instruction at the address in register P1 is a Yield.
+** Jump to the P2 parameter of that Yield.
+** After the jump, register P1 becomes undefined.
+**
+** See also: InitCoroutine
*/
-case OP_Yield: { /* in1 */
+case OP_EndCoroutine: { /* in1 */
+ VdbeOp *pCaller;
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags==MEM_Int );
+ assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
+ pCaller = &aOp[pIn1->u.i];
+ assert( pCaller->opcode==OP_Yield );
+ assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
+ pc = pCaller->p2 - 1;
+ pIn1->flags = MEM_Undefined;
+ break;
+}
+
+/* Opcode: Yield P1 P2 * * *
+**
+** Swap the program counter with the value in register P1. This
+** has the effect of yielding to a coroutine.
+**
+** If the coroutine that is launched by this instruction ends with
+** Yield or Return then continue to the next instruction. But if
+** the coroutine launched by this instruction ends with
+** EndCoroutine, then jump to P2 rather than continuing with the
+** next instruction.
+**
+** See also: InitCoroutine
+*/
+case OP_Yield: { /* in1, jump */
int pcDest;
pIn1 = &aMem[pOp->p1];
- assert( (pIn1->flags & MEM_Dyn)==0 );
+ assert( VdbeMemDynamic(pIn1)==0 );
pIn1->flags = MEM_Int;
pcDest = (int)pIn1->u.i;
pIn1->u.i = pc;
@@ -795,11 +840,13 @@ case OP_Yield: { /* in1 */
break;
}
-/* Opcode: HaltIfNull P1 P2 P3 P4 *
+/* Opcode: HaltIfNull P1 P2 P3 P4 P5
+** Synopsis: if r[P3]=null halt
**
** Check the value in register P3. If it is NULL then Halt using
** parameter P1, P2, and P4 as if this were a Halt instruction. If the
** value in register P3 is not NULL, then this routine is a no-op.
+** The P5 parameter should be 1.
*/
case OP_HaltIfNull: { /* in3 */
pIn3 = &aMem[pOp->p3];
@@ -807,7 +854,7 @@ case OP_HaltIfNull: { /* in3 */
/* Fall through into OP_Halt */
}
-/* Opcode: Halt P1 P2 * P4 *
+/* Opcode: Halt P1 P2 * P4 P5
**
** Exit immediately. All open cursors, etc are closed
** automatically.
@@ -822,11 +869,25 @@ case OP_HaltIfNull: { /* in3 */
**
** If P4 is not null then it is an error message string.
**
+** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
+**
+** 0: (no change)
+** 1: NOT NULL contraint failed: P4
+** 2: UNIQUE constraint failed: P4
+** 3: CHECK constraint failed: P4
+** 4: FOREIGN KEY constraint failed: P4
+**
+** If P5 is not zero and P4 is NULL, then everything after the ":" is
+** omitted.
+**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program. So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
+ const char *zType;
+ const char *zLogFmt;
+
if( pOp->p1==SQLITE_OK && p->pFrame ){
/* Halt the sub-program. Return control to the parent frame. */
VdbeFrame *pFrame = p->pFrame;
@@ -847,18 +908,33 @@ case OP_Halt: {
aMem = p->aMem;
break;
}
-
p->rc = pOp->p1;
p->errorAction = (u8)pOp->p2;
p->pc = pc;
- if( pOp->p4.z ){
- assert( p->rc!=SQLITE_OK );
- sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
- testcase( sqlite3GlobalConfig.xLog!=0 );
- sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
- }else if( p->rc ){
- testcase( sqlite3GlobalConfig.xLog!=0 );
- sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
+ if( p->rc ){
+ if( pOp->p5 ){
+ static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
+ "FOREIGN KEY" };
+ assert( pOp->p5>=1 && pOp->p5<=4 );
+ testcase( pOp->p5==1 );
+ testcase( pOp->p5==2 );
+ testcase( pOp->p5==3 );
+ testcase( pOp->p5==4 );
+ zType = azType[pOp->p5-1];
+ }else{
+ zType = 0;
+ }
+ assert( zType!=0 || pOp->p4.z!=0 );
+ zLogFmt = "abort at %d in [%s]: %s";
+ if( zType && pOp->p4.z ){
+ sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s",
+ zType, pOp->p4.z);
+ }else if( pOp->p4.z ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
+ }else{
+ sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType);
+ }
+ sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg);
}
rc = sqlite3VdbeHalt(p);
assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
@@ -866,13 +942,14 @@ case OP_Halt: {
p->rc = rc = SQLITE_BUSY;
}else{
assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
- assert( rc==SQLITE_OK || db->nDeferredCons>0 );
+ assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
}
goto vdbe_return;
}
/* Opcode: Integer P1 P2 * * *
+** Synopsis: r[P2]=P1
**
** The 32-bit integer value P1 is written into register P2.
*/
@@ -882,6 +959,7 @@ case OP_Integer: { /* out2-prerelease */
}
/* Opcode: Int64 * P2 * P4 *
+** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit integer value.
** Write that value into register P2.
@@ -894,6 +972,7 @@ case OP_Int64: { /* out2-prerelease */
#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: Real * P2 * P4 *
+** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
@@ -907,9 +986,12 @@ case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
#endif
/* Opcode: String8 * P2 * P4 *
+** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
-** into an OP_String before it is executed for the first time.
+** into a String before it is executed for the first time. During
+** this transformation, the length of string P4 is computed and stored
+** as the P1 parameter.
*/
case OP_String8: { /* same as TK_STRING, out2-prerelease */
assert( pOp->p4.z!=0 );
@@ -922,10 +1004,9 @@ case OP_String8: { /* same as TK_STRING, out2-prerelease */
if( rc==SQLITE_TOOBIG ) goto too_big;
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
assert( pOut->zMalloc==pOut->z );
- assert( pOut->flags & MEM_Dyn );
+ assert( VdbeMemDynamic(pOut)==0 );
pOut->zMalloc = 0;
pOut->flags |= MEM_Static;
- pOut->flags &= ~MEM_Dyn;
if( pOp->p4type==P4_DYNAMIC ){
sqlite3DbFree(db, pOp->p4.z);
}
@@ -941,6 +1022,7 @@ case OP_String8: { /* same as TK_STRING, out2-prerelease */
}
/* Opcode: String P1 P2 * P4 *
+** Synopsis: r[P2]='P4' (len=P1)
**
** The string value P4 of length P1 (bytes) is stored in register P2.
*/
@@ -955,6 +1037,7 @@ case OP_String: { /* out2-prerelease */
}
/* Opcode: Null P1 P2 P3 * *
+** Synopsis: r[P2..P3]=NULL
**
** Write a NULL into registers P2. If P3 greater than P2, then also write
** NULL into register P3 and every register in between P2 and P3. If P3
@@ -969,7 +1052,7 @@ case OP_Null: { /* out2-prerelease */
int cnt;
u16 nullFlag;
cnt = pOp->p3-pOp->p2;
- assert( pOp->p3<=p->nMem );
+ assert( pOp->p3<=(p->nMem-p->nCursor) );
pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
while( cnt>0 ){
pOut++;
@@ -981,8 +1064,23 @@ case OP_Null: { /* out2-prerelease */
break;
}
+/* Opcode: SoftNull P1 * * * *
+** Synopsis: r[P1]=NULL
+**
+** Set register P1 to have the value NULL as seen by the OP_MakeRecord
+** instruction, but do not free any string or blob memory associated with
+** the register, so that if the value was a string or blob that was
+** previously copied using OP_SCopy, the copies will continue to be valid.
+*/
+case OP_SoftNull: {
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
+ pOut = &aMem[pOp->p1];
+ pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
+ break;
+}
-/* Opcode: Blob P1 P2 * P4
+/* Opcode: Blob P1 P2 * P4 *
+** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long. Store this
** blob in register P2.
@@ -996,10 +1094,11 @@ case OP_Blob: { /* out2-prerelease */
}
/* Opcode: Variable P1 P2 * P4 *
+** Synopsis: r[P2]=parameter(P1,P4)
**
** Transfer the values of bound parameter P1 into register P2
**
-** If the parameter is named, then its name appears in P4 and P3==1.
+** If the parameter is named, then its name appears in P4.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: { /* out2-prerelease */
@@ -1017,11 +1116,13 @@ case OP_Variable: { /* out2-prerelease */
}
/* Opcode: Move P1 P2 P3 * *
+** Synopsis: r[P2@P3]=r[P1@P3]
**
-** Move the values in register P1..P1+P3 over into
-** registers P2..P2+P3. Registers P1..P1+P3 are
+** Move the P3 values in register P1..P1+P3-1 over into
+** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
** left holding a NULL. It is an error for register ranges
-** P1..P1+P3 and P2..P2+P3 to overlap.
+** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
+** for P3 to be less than 1.
*/
case OP_Move: {
char *zMalloc; /* Holding variable for allocated memory */
@@ -1029,7 +1130,7 @@ case OP_Move: {
int p1; /* Register to copy from */
int p2; /* Register to copy to */
- n = pOp->p3 + 1;
+ n = pOp->p3;
p1 = pOp->p1;
p2 = pOp->p2;
assert( n>0 && p1>0 && p2>0 );
@@ -1037,28 +1138,31 @@ case OP_Move: {
pIn1 = &aMem[p1];
pOut = &aMem[p2];
- while( n-- ){
- assert( pOut<=&aMem[p->nMem] );
- assert( pIn1<=&aMem[p->nMem] );
+ do{
+ assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
+ assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
assert( memIsValid(pIn1) );
memAboutToChange(p, pOut);
+ VdbeMemRelease(pOut);
zMalloc = pOut->zMalloc;
- pOut->zMalloc = 0;
- sqlite3VdbeMemMove(pOut, pIn1);
+ memcpy(pOut, pIn1, sizeof(Mem));
#ifdef SQLITE_DEBUG
if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
pOut->pScopyFrom += p1 - pOp->p2;
}
#endif
+ pIn1->flags = MEM_Undefined;
+ pIn1->xDel = 0;
pIn1->zMalloc = zMalloc;
REGISTER_TRACE(p2++, pOut);
pIn1++;
pOut++;
- }
+ }while( --n );
break;
}
/* Opcode: Copy P1 P2 P3 * *
+** Synopsis: r[P2@P3+1]=r[P1@P3+1]
**
** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
**
@@ -1087,6 +1191,7 @@ case OP_Copy: {
}
/* Opcode: SCopy P1 P2 * * *
+** Synopsis: r[P2]=r[P1]
**
** Make a shallow copy of register P1 into register P2.
**
@@ -1098,7 +1203,7 @@ case OP_Copy: {
** during the lifetime of the copy. Use OP_Copy to make a complete
** copy.
*/
-case OP_SCopy: { /* in1, out2 */
+case OP_SCopy: { /* out2 */
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
assert( pOut!=pIn1 );
@@ -1106,24 +1211,36 @@ case OP_SCopy: { /* in1, out2 */
#ifdef SQLITE_DEBUG
if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
#endif
- REGISTER_TRACE(pOp->p2, pOut);
break;
}
/* Opcode: ResultRow P1 P2 * * *
+** Synopsis: output=r[P1@P2]
**
** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
-** structure to provide access to the top P1 values as the result
-** row.
+** structure to provide access to the r(P1)..r(P1+P2-1) values as
+** the result row.
*/
case OP_ResultRow: {
Mem *pMem;
int i;
assert( p->nResColumn==pOp->p2 );
assert( pOp->p1>0 );
- assert( pOp->p1+pOp->p2<=p->nMem+1 );
+ assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ /* Run the progress counter just before returning.
+ */
+ if( db->xProgress!=0
+ && nVmStep>=nProgressLimit
+ && db->xProgress(db->pProgressArg)!=0
+ ){
+ rc = SQLITE_INTERRUPT;
+ goto vdbe_error_halt;
+ }
+#endif
/* If this statement has violated immediate foreign key constraints, do
** not return the number of rows modified. And do not RELEASE the statement
@@ -1169,7 +1286,6 @@ case OP_ResultRow: {
assert( (pMem[i].flags & MEM_Ephem)==0
|| (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
sqlite3VdbeMemNulTerminate(&pMem[i]);
- sqlite3VdbeMemStoreType(&pMem[i]);
REGISTER_TRACE(pOp->p1+i, &pMem[i]);
}
if( db->mallocFailed ) goto no_mem;
@@ -1182,6 +1298,7 @@ case OP_ResultRow: {
}
/* Opcode: Concat P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]+r[P1]
**
** Add the text in register P1 onto the end of the text in
** register P2 and store the result in register P3.
@@ -1211,15 +1328,15 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
- MemSetTypeFlag(pOut, MEM_Str);
if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
goto no_mem;
}
+ MemSetTypeFlag(pOut, MEM_Str);
if( pOut!=pIn2 ){
memcpy(pOut->z, pIn2->z, pIn2->n);
}
memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
- pOut->z[nByte] = 0;
+ pOut->z[nByte]=0;
pOut->z[nByte+1] = 0;
pOut->flags |= MEM_Term;
pOut->n = (int)nByte;
@@ -1229,12 +1346,14 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
}
/* Opcode: Add P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]+r[P2]
**
** Add the value in register P1 to the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Multiply P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]*r[P2]
**
**
** Multiply the value in register P1 by the value in register P2
@@ -1242,12 +1361,14 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
** If either input is NULL, the result is NULL.
*/
/* Opcode: Subtract P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]-r[P1]
**
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]/r[P1]
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3 (P3=P2/P1). If the value in
@@ -1255,10 +1376,11 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
** NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]%r[P1]
**
-** Compute the remainder after integer division of the value in
-** register P1 by the value in register P2 and store the result in P3.
-** If the value in register P2 is zero the result is NULL.
+** Compute the remainder after integer register P2 is divided by
+** register P1 and store the result in register P3.
+** If the value in register P1 is zero the result is NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
@@ -1267,20 +1389,22 @@ case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
char bIntint; /* Started out as two integer operands */
- int flags; /* Combined MEM_* flags from both inputs */
+ u16 flags; /* Combined MEM_* flags from both inputs */
+ u16 type1; /* Numeric type of left operand */
+ u16 type2; /* Numeric type of right operand */
i64 iA; /* Integer value of left operand */
i64 iB; /* Integer value of right operand */
double rA; /* Real value of left operand */
double rB; /* Real value of right operand */
pIn1 = &aMem[pOp->p1];
- applyNumericAffinity(pIn1);
+ type1 = numericType(pIn1);
pIn2 = &aMem[pOp->p2];
- applyNumericAffinity(pIn2);
+ type2 = numericType(pIn2);
pOut = &aMem[pOp->p3];
flags = pIn1->flags | pIn2->flags;
if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
- if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
+ if( (type1 & type2 & MEM_Int)!=0 ){
iA = pIn1->u.i;
iB = pIn2->u.i;
bIntint = 1;
@@ -1336,7 +1460,7 @@ fp_math:
}
pOut->r = rB;
MemSetTypeFlag(pOut, MEM_Real);
- if( (flags & MEM_Real)==0 && !bIntint ){
+ if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
sqlite3VdbeIntegerAffinity(pOut);
}
#endif
@@ -1372,6 +1496,7 @@ case OP_CollSeq: {
}
/* Opcode: Function P1 P2 P3 P4 P5
+** Synopsis: r[P3]=func(r[P2@P5])
**
** Invoke a user function (P4 is a pointer to a Function structure that
** defines the function) with P5 arguments taken from register P2 and
@@ -1397,44 +1522,37 @@ case OP_Function: {
n = pOp->p5;
apVal = p->apArg;
assert( apVal || n==0 );
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
pOut = &aMem[pOp->p3];
memAboutToChange(p, pOut);
- assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
+ assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
pArg = &aMem[pOp->p2];
for(i=0; i<n; i++, pArg++){
assert( memIsValid(pArg) );
apVal[i] = pArg;
Deephemeralize(pArg);
- sqlite3VdbeMemStoreType(pArg);
REGISTER_TRACE(pOp->p2+i, pArg);
}
- assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
- if( pOp->p4type==P4_FUNCDEF ){
- ctx.pFunc = pOp->p4.pFunc;
- ctx.pVdbeFunc = 0;
- }else{
- ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
- ctx.pFunc = ctx.pVdbeFunc->pFunc;
- }
-
- ctx.s.flags = MEM_Null;
- ctx.s.db = db;
- ctx.s.xDel = 0;
- ctx.s.zMalloc = 0;
+ assert( pOp->p4type==P4_FUNCDEF );
+ ctx.pFunc = pOp->p4.pFunc;
+ ctx.iOp = pc;
+ ctx.pVdbe = p;
/* The output cell may already have a buffer allocated. Move
** the pointer to ctx.s so in case the user-function can use
** the already allocated buffer instead of allocating a new one.
*/
- sqlite3VdbeMemMove(&ctx.s, pOut);
+ memcpy(&ctx.s, pOut, sizeof(Mem));
+ pOut->flags = MEM_Null;
+ pOut->xDel = 0;
+ pOut->zMalloc = 0;
MemSetTypeFlag(&ctx.s, MEM_Null);
- ctx.isError = 0;
- if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
+ ctx.fErrorOrAux = 0;
+ if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
assert( pOp>aOp );
assert( pOp[-1].p4type==P4_COLLSEQ );
assert( pOp[-1].opcode==OP_CollSeq );
@@ -1444,15 +1562,6 @@ case OP_Function: {
(*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
lastRowid = db->lastRowid;
- /* If any auxiliary data functions have been called by this user function,
- ** immediately call the destructor for any non-static values.
- */
- if( ctx.pVdbeFunc ){
- sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
- pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
- pOp->p4type = P4_VDBEFUNC;
- }
-
if( db->mallocFailed ){
/* Even though a malloc() has failed, the implementation of the
** user function may have called an sqlite3_result_XXX() function
@@ -1464,14 +1573,18 @@ case OP_Function: {
}
/* If the function returned an error, throw an exception */
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
- rc = ctx.isError;
+ if( ctx.fErrorOrAux ){
+ if( ctx.isError ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
+ rc = ctx.isError;
+ }
+ sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
}
/* Copy the result of the function into register P3 */
sqlite3VdbeChangeEncoding(&ctx.s, encoding);
- sqlite3VdbeMemMove(pOut, &ctx.s);
+ assert( pOut->flags==MEM_Null );
+ memcpy(pOut, &ctx.s, sizeof(Mem));
if( sqlite3VdbeMemTooBig(pOut) ){
goto too_big;
}
@@ -1490,18 +1603,21 @@ case OP_Function: {
}
/* Opcode: BitAnd P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]&r[P2]
**
** Take the bit-wise AND of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: BitOr P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]|r[P2]
**
** Take the bit-wise OR of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]<<r[P1]
**
** Shift the integer value in register P2 to the left by the
** number of bits specified by the integer in register P1.
@@ -1509,6 +1625,7 @@ case OP_Function: {
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftRight P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]>>r[P1]
**
** Shift the integer value in register P2 to the right by the
** number of bits specified by the integer in register P1.
@@ -1568,6 +1685,7 @@ case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
}
/* Opcode: AddImm P1 P2 * * *
+** Synopsis: r[P1]=r[P1]+P2
**
** Add the constant P2 to the value in register P1.
** The result is always an integer.
@@ -1591,17 +1709,20 @@ case OP_AddImm: { /* in1 */
*/
case OP_MustBeInt: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
- applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
if( (pIn1->flags & MEM_Int)==0 ){
- if( pOp->p2==0 ){
- rc = SQLITE_MISMATCH;
- goto abort_due_to_error;
- }else{
- pc = pOp->p2 - 1;
+ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
+ VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
+ if( (pIn1->flags & MEM_Int)==0 ){
+ if( pOp->p2==0 ){
+ rc = SQLITE_MISMATCH;
+ goto abort_due_to_error;
+ }else{
+ pc = pOp->p2 - 1;
+ break;
+ }
}
- }else{
- MemSetTypeFlag(pIn1, MEM_Int);
}
+ MemSetTypeFlag(pIn1, MEM_Int);
break;
}
@@ -1629,7 +1750,7 @@ case OP_RealAffinity: { /* in1 */
**
** Force the value in register P1 to be text.
** If the value is numeric, convert it to a string using the
-** equivalent of printf(). Blob values are unchanged and
+** equivalent of sprintf(). Blob values are unchanged and
** are afterwards simply interpreted as text.
**
** A NULL value is not changed by this routine. It remains NULL.
@@ -1726,6 +1847,7 @@ case OP_ToReal: { /* same as TK_TO_REAL, in1 */
#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
/* Opcode: Lt P1 P2 P3 P4 P5
+** Synopsis: if r[P1]<r[P3] goto P2
**
** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
** jump to address P2.
@@ -1760,6 +1882,7 @@ case OP_ToReal: { /* same as TK_TO_REAL, in1 */
** bit set.
*/
/* Opcode: Ne P1 P2 P3 P4 P5
+** Synopsis: if r[P1]!=r[P3] goto P2
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal. See the Lt opcode for
@@ -1772,6 +1895,7 @@ case OP_ToReal: { /* same as TK_TO_REAL, in1 */
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Eq P1 P2 P3 P4 P5
+** Synopsis: if r[P1]==r[P3] goto P2
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are equal.
@@ -1784,18 +1908,21 @@ case OP_ToReal: { /* same as TK_TO_REAL, in1 */
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Le P1 P2 P3 P4 P5
+** Synopsis: if r[P1]<=r[P3] goto P2
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1. See the Lt opcode for additional information.
*/
/* Opcode: Gt P1 P2 P3 P4 P5
+** Synopsis: if r[P1]>r[P3] goto P2
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than the content of
** register P1. See the Lt opcode for additional information.
*/
/* Opcode: Ge P1 P2 P3 P4 P5
+** Synopsis: if r[P1]>=r[P3] goto P2
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than or equal to the content of
@@ -1825,6 +1952,7 @@ case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
*/
assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
assert( (flags1 & MEM_Cleared)==0 );
+ assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
if( (flags1&MEM_Null)!=0
&& (flags3&MEM_Null)!=0
&& (flags3&MEM_Cleared)==0
@@ -1842,8 +1970,11 @@ case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
pOut = &aMem[pOp->p2];
MemSetTypeFlag(pOut, MEM_Null);
REGISTER_TRACE(pOp->p2, pOut);
- }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
- pc = pOp->p2-1;
+ }else{
+ VdbeBranchTaken(2,3);
+ if( pOp->p5 & SQLITE_JUMPIFNULL ){
+ pc = pOp->p2-1;
+ }
}
break;
}
@@ -1876,10 +2007,12 @@ case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
MemSetTypeFlag(pOut, MEM_Int);
pOut->u.i = res;
REGISTER_TRACE(pOp->p2, pOut);
- }else if( res ){
- pc = pOp->p2-1;
+ }else{
+ VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ if( res ){
+ pc = pOp->p2-1;
+ }
}
-
/* Undo any changes made by applyAffinity() to the input registers. */
pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
@@ -1903,6 +2036,7 @@ case OP_Permutation: {
}
/* Opcode: Compare P1 P2 P3 P4 P5
+** Synopsis: r[P1@P3] <-> r[P2@P3]
**
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
@@ -1942,11 +2076,11 @@ case OP_Compare: {
if( aPermute ){
int k, mx = 0;
for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
- assert( p1>0 && p1+mx<=p->nMem+1 );
- assert( p2>0 && p2+mx<=p->nMem+1 );
+ assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
+ assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
}else{
- assert( p1>0 && p1+n<=p->nMem+1 );
- assert( p2>0 && p2+n<=p->nMem+1 );
+ assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
+ assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
}
#endif /* SQLITE_DEBUG */
for(i=0; i<n; i++){
@@ -1976,16 +2110,17 @@ case OP_Compare: {
*/
case OP_Jump: { /* jump */
if( iCompare<0 ){
- pc = pOp->p1 - 1;
+ pc = pOp->p1 - 1; VdbeBranchTaken(0,3);
}else if( iCompare==0 ){
- pc = pOp->p2 - 1;
+ pc = pOp->p2 - 1; VdbeBranchTaken(1,3);
}else{
- pc = pOp->p3 - 1;
+ pc = pOp->p3 - 1; VdbeBranchTaken(2,3);
}
break;
}
/* Opcode: And P1 P2 P3 * *
+** Synopsis: r[P3]=(r[P1] && r[P2])
**
** Take the logical AND of the values in registers P1 and P2 and
** write the result into register P3.
@@ -1995,6 +2130,7 @@ case OP_Jump: { /* jump */
** a NULL output.
*/
/* Opcode: Or P1 P2 P3 * *
+** Synopsis: r[P3]=(r[P1] || r[P2])
**
** Take the logical OR of the values in register P1 and P2 and
** store the answer in register P3.
@@ -2038,6 +2174,7 @@ case OP_Or: { /* same as TK_OR, in1, in2, out3 */
}
/* Opcode: Not P1 P2 * * *
+** Synopsis: r[P2]= !r[P1]
**
** Interpret the value in register P1 as a boolean value. Store the
** boolean complement in register P2. If the value in register P1 is
@@ -2055,6 +2192,7 @@ case OP_Not: { /* same as TK_NOT, in1, out2 */
}
/* Opcode: BitNot P1 P2 * * *
+** Synopsis: r[P1]= ~r[P1]
**
** Interpret the content of register P1 as an integer. Store the
** ones-complement of the P1 value into register P2. If P1 holds
@@ -2073,11 +2211,18 @@ case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
/* Opcode: Once P1 P2 * * *
**
-** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
-** set the flag and fall through to the next instruction.
+** Check the "once" flag number P1. If it is set, jump to instruction P2.
+** Otherwise, set the flag and fall through to the next instruction.
+** In other words, this opcode causes all following opcodes up through P2
+** (but not including P2) to run just once and to be skipped on subsequent
+** times through the loop.
+**
+** All "once" flags are initially cleared whenever a prepared statement
+** first begins to run.
*/
case OP_Once: { /* jump */
assert( pOp->p1<p->nOnceFlag );
+ VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
if( p->aOnceFlag[pOp->p1] ){
pc = pOp->p2-1;
}else{
@@ -2090,13 +2235,13 @@ case OP_Once: { /* jump */
**
** Jump to P2 if the value in register P1 is true. The value
** is considered true if it is numeric and non-zero. If the value
-** in P1 is NULL then take the jump if P3 is non-zero.
+** in P1 is NULL then take the jump if and only if P3 is non-zero.
*/
/* Opcode: IfNot P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is False. The value
** is considered false if it has a numeric value of zero. If the value
-** in P1 is NULL then take the jump if P3 is zero.
+** in P1 is NULL then take the jump if and only if P3 is non-zero.
*/
case OP_If: /* jump, in1 */
case OP_IfNot: { /* jump, in1 */
@@ -2112,6 +2257,7 @@ case OP_IfNot: { /* jump, in1 */
#endif
if( pOp->opcode==OP_IfNot ) c = !c;
}
+ VdbeBranchTaken(c!=0, 2);
if( c ){
pc = pOp->p2-1;
}
@@ -2119,11 +2265,13 @@ case OP_IfNot: { /* jump, in1 */
}
/* Opcode: IsNull P1 P2 * * *
+** Synopsis: if r[P1]==NULL goto P2
**
** Jump to P2 if the value in register P1 is NULL.
*/
case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
pIn1 = &aMem[pOp->p1];
+ VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
if( (pIn1->flags & MEM_Null)!=0 ){
pc = pOp->p2 - 1;
}
@@ -2131,11 +2279,13 @@ case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
}
/* Opcode: NotNull P1 P2 * * *
+** Synopsis: if r[P1]!=NULL goto P2
**
** Jump to P2 if the value in register P1 is not NULL.
*/
case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
pIn1 = &aMem[pOp->p1];
+ VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
if( (pIn1->flags & MEM_Null)==0 ){
pc = pOp->p2 - 1;
}
@@ -2143,6 +2293,7 @@ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
}
/* Opcode: Column P1 P2 P3 P4 P5
+** Synopsis: r[P3]=PX
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction. (See the MakeRecord opcode for additional
@@ -2167,153 +2318,98 @@ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
- u32 payloadSize; /* Number of bytes in the record */
i64 payloadSize64; /* Number of bytes in the record */
- int p1; /* P1 value of the opcode */
int p2; /* column number to retrieve */
VdbeCursor *pC; /* The VDBE cursor */
- char *zRec; /* Pointer to complete record-data */
BtCursor *pCrsr; /* The BTree cursor */
u32 *aType; /* aType[i] holds the numeric type of the i-th column */
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
- int nField; /* number of fields in the record */
int len; /* The length of the serialized data for the column */
int i; /* Loop counter */
- char *zData; /* Part of the record being decoded */
Mem *pDest; /* Where to write the extracted value */
Mem sMem; /* For storing the record being decoded */
- u8 *zIdx; /* Index into header */
- u8 *zEndHdr; /* Pointer to first byte after the header */
+ const u8 *zData; /* Part of the record being decoded */
+ const u8 *zHdr; /* Next unparsed byte of the header */
+ const u8 *zEndHdr; /* Pointer to first byte after the header */
u32 offset; /* Offset into the data */
u32 szField; /* Number of bytes in the content of a field */
- int szHdr; /* Size of the header size field at start of record */
- int avail; /* Number of bytes of available data */
+ u32 avail; /* Number of bytes of available data */
u32 t; /* A type code from the record header */
Mem *pReg; /* PseudoTable input register */
-
- p1 = pOp->p1;
p2 = pOp->p2;
- pC = 0;
- memset(&sMem, 0, sizeof(sMem));
- assert( p1<p->nCursor );
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
pDest = &aMem[pOp->p3];
memAboutToChange(p, pDest);
- zRec = 0;
-
- /* This block sets the variable payloadSize to be the total number of
- ** bytes in the record.
- **
- ** zRec is set to be the complete text of the record if it is available.
- ** The complete record text is always available for pseudo-tables
- ** If the record is stored in a cursor, the complete record text
- ** might be available in the pC->aRow cache. Or it might not be.
- ** If the data is unavailable, zRec is set to NULL.
- **
- ** We also compute the number of columns in the record. For cursors,
- ** the number of columns is stored in the VdbeCursor.nField element.
- */
- pC = p->apCsr[p1];
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
assert( pC!=0 );
+ assert( p2<pC->nField );
+ aType = pC->aType;
+ aOffset = aType + pC->nField;
#ifndef SQLITE_OMIT_VIRTUALTABLE
- assert( pC->pVtabCursor==0 );
+ assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
#endif
pCrsr = pC->pCursor;
- if( pCrsr!=0 ){
- /* The record is stored in a B-Tree */
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- if( pC->nullRow ){
- payloadSize = 0;
- }else if( pC->cacheStatus==p->cacheCtr ){
- payloadSize = pC->payloadSize;
- zRec = (char*)pC->aRow;
- }else if( pC->isIndex ){
- assert( sqlite3BtreeCursorIsValid(pCrsr) );
- VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
- assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
- /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
- ** payload size, so it is impossible for payloadSize64 to be
- ** larger than 32 bits. */
- assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
- payloadSize = (u32)payloadSize64;
- }else{
- assert( sqlite3BtreeCursorIsValid(pCrsr) );
- VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
- assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
- }
- }else if( ALWAYS(pC->pseudoTableReg>0) ){
- pReg = &aMem[pC->pseudoTableReg];
- if( pC->multiPseudo ){
- sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
- Deephemeralize(pDest);
- goto op_column_out;
- }
- assert( pReg->flags & MEM_Blob );
- assert( memIsValid(pReg) );
- payloadSize = pReg->n;
- zRec = pReg->z;
- pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
- assert( payloadSize==0 || zRec!=0 );
- }else{
- /* Consider the row to be NULL */
- payloadSize = 0;
- }
+ assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
+ assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
- /* If payloadSize is 0, then just store a NULL. This can happen because of
- ** nullRow or because of a corrupt database. */
- if( payloadSize==0 ){
- MemSetTypeFlag(pDest, MEM_Null);
- goto op_column_out;
- }
- assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
- if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
-
- nField = pC->nField;
- assert( p2<nField );
-
- /* Read and parse the table header. Store the results of the parse
- ** into the record header cache fields of the cursor.
- */
- aType = pC->aType;
- if( pC->cacheStatus==p->cacheCtr ){
- aOffset = pC->aOffset;
- }else{
- assert(aType);
- avail = 0;
- pC->aOffset = aOffset = &aType[nField];
- pC->payloadSize = payloadSize;
- pC->cacheStatus = p->cacheCtr;
-
- /* Figure out how many bytes are in the header */
- if( zRec ){
- zData = zRec;
+ /* If the cursor cache is stale, bring it up-to-date */
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){
+ if( pC->nullRow ){
+ if( pCrsr==0 ){
+ assert( pC->pseudoTableReg>0 );
+ pReg = &aMem[pC->pseudoTableReg];
+ assert( pReg->flags & MEM_Blob );
+ assert( memIsValid(pReg) );
+ pC->payloadSize = pC->szRow = avail = pReg->n;
+ pC->aRow = (u8*)pReg->z;
+ }else{
+ MemSetTypeFlag(pDest, MEM_Null);
+ goto op_column_out;
+ }
}else{
- if( pC->isIndex ){
- zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
+ assert( pCrsr );
+ if( pC->isTable==0 ){
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+ VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
+ assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
+ /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
+ ** payload size, so it is impossible for payloadSize64 to be
+ ** larger than 32 bits. */
+ assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
+ pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
+ pC->payloadSize = (u32)payloadSize64;
}else{
- zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+ VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
+ assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
+ pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
}
- /* If KeyFetch()/DataFetch() managed to get the entire payload,
- ** save the payload in the pC->aRow cache. That will save us from
- ** having to make additional calls to fetch the content portion of
- ** the record.
- */
- assert( avail>=0 );
- if( payloadSize <= (u32)avail ){
- zRec = zData;
- pC->aRow = (u8*)zData;
+ assert( avail<=65536 ); /* Maximum page size is 64KiB */
+ if( pC->payloadSize <= (u32)avail ){
+ pC->szRow = pC->payloadSize;
}else{
- pC->aRow = 0;
+ pC->szRow = avail;
}
+ if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ }
+ pC->cacheStatus = p->cacheCtr;
+ pC->iHdrOffset = getVarint32(pC->aRow, offset);
+ pC->nHdrParsed = 0;
+ aOffset[0] = offset;
+ if( avail<offset ){
+ /* pC->aRow does not have to hold the entire row, but it does at least
+ ** need to cover the header of the record. If pC->aRow does not contain
+ ** the complete header, then set it to zero, forcing the header to be
+ ** dynamically allocated. */
+ pC->aRow = 0;
+ pC->szRow = 0;
}
- /* The following assert is true in all cases except when
- ** the database file has been corrupted externally.
- ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
- szHdr = getVarint32((u8*)zData, offset);
/* Make sure a corrupt database has not given us an oversize header.
** Do this now to avoid an oversize memory allocation.
@@ -2324,161 +2420,156 @@ case OP_Column: {
** 3-byte type for each of the maximum of 32768 columns plus three
** extra bytes for the header length itself. 32768*3 + 3 = 98307.
*/
- if( offset > 98307 ){
+ if( offset > 98307 || offset > pC->payloadSize ){
rc = SQLITE_CORRUPT_BKPT;
- goto op_column_out;
+ goto op_column_error;
}
+ }
- /* Compute in len the number of bytes of data we need to read in order
- ** to get nField type values. offset is an upper bound on this. But
- ** nField might be significantly less than the true number of columns
- ** in the table, and in that case, 5*nField+3 might be smaller than offset.
- ** We want to minimize len in order to limit the size of the memory
- ** allocation, especially if a corrupt database file has caused offset
- ** to be oversized. Offset is limited to 98307 above. But 98307 might
- ** still exceed Robson memory allocation limits on some configurations.
- ** On systems that cannot tolerate large memory allocations, nField*5+3
- ** will likely be much smaller since nField will likely be less than
- ** 20 or so. This insures that Robson memory allocation limits are
- ** not exceeded even for corrupt database files.
- */
- len = nField*5 + 3;
- if( len > (int)offset ) len = (int)offset;
-
- /* The KeyFetch() or DataFetch() above are fast and will get the entire
- ** record header in most cases. But they will fail to get the complete
- ** record header if the record header does not fit on a single page
- ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
- ** acquire the complete header text.
+ /* Make sure at least the first p2+1 entries of the header have been
+ ** parsed and valid information is in aOffset[] and aType[].
+ */
+ if( pC->nHdrParsed<=p2 ){
+ /* If there is more header available for parsing in the record, try
+ ** to extract additional fields up through the p2+1-th field
*/
- if( !zRec && avail<len ){
- sMem.flags = 0;
- sMem.db = 0;
- rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
- if( rc!=SQLITE_OK ){
- goto op_column_out;
+ if( pC->iHdrOffset<aOffset[0] ){
+ /* Make sure zData points to enough of the record to cover the header. */
+ if( pC->aRow==0 ){
+ memset(&sMem, 0, sizeof(sMem));
+ rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
+ !pC->isTable, &sMem);
+ if( rc!=SQLITE_OK ){
+ goto op_column_error;
+ }
+ zData = (u8*)sMem.z;
+ }else{
+ zData = pC->aRow;
}
- zData = sMem.z;
- }
- zEndHdr = (u8 *)&zData[len];
- zIdx = (u8 *)&zData[szHdr];
-
- /* Scan the header and use it to fill in the aType[] and aOffset[]
- ** arrays. aType[i] will contain the type integer for the i-th
- ** column and aOffset[i] will contain the offset from the beginning
- ** of the record to the start of the data for the i-th column
- */
- for(i=0; i<nField; i++){
- if( zIdx<zEndHdr ){
- aOffset[i] = offset;
- if( zIdx[0]<0x80 ){
- t = zIdx[0];
- zIdx++;
+
+ /* Fill in aType[i] and aOffset[i] values through the p2-th field. */
+ i = pC->nHdrParsed;
+ offset = aOffset[i];
+ zHdr = zData + pC->iHdrOffset;
+ zEndHdr = zData + aOffset[0];
+ assert( i<=p2 && zHdr<zEndHdr );
+ do{
+ if( zHdr[0]<0x80 ){
+ t = zHdr[0];
+ zHdr++;
}else{
- zIdx += sqlite3GetVarint32(zIdx, &t);
+ zHdr += sqlite3GetVarint32(zHdr, &t);
}
aType[i] = t;
szField = sqlite3VdbeSerialTypeLen(t);
offset += szField;
if( offset<szField ){ /* True if offset overflows */
- zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
+ zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
break;
}
- }else{
- /* If i is less that nField, then there are fewer fields in this
- ** record than SetNumColumns indicated there are columns in the
- ** table. Set the offset for any extra columns not present in
- ** the record to 0. This tells code below to store the default value
- ** for the column instead of deserializing a value from the record.
- */
- aOffset[i] = 0;
+ i++;
+ aOffset[i] = offset;
+ }while( i<=p2 && zHdr<zEndHdr );
+ pC->nHdrParsed = i;
+ pC->iHdrOffset = (u32)(zHdr - zData);
+ if( pC->aRow==0 ){
+ sqlite3VdbeMemRelease(&sMem);
+ sMem.flags = MEM_Null;
+ }
+
+ /* If we have read more header data than was contained in the header,
+ ** or if the end of the last field appears to be past the end of the
+ ** record, or if the end of the last field appears to be before the end
+ ** of the record (when all fields present), then we must be dealing
+ ** with a corrupt database.
+ */
+ if( (zHdr > zEndHdr)
+ || (offset > pC->payloadSize)
+ || (zHdr==zEndHdr && offset!=pC->payloadSize)
+ ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto op_column_error;
}
}
- sqlite3VdbeMemRelease(&sMem);
- sMem.flags = MEM_Null;
-
- /* If we have read more header data than was contained in the header,
- ** or if the end of the last field appears to be past the end of the
- ** record, or if the end of the last field appears to be before the end
- ** of the record (when all fields present), then we must be dealing
- ** with a corrupt database.
+
+ /* If after trying to extra new entries from the header, nHdrParsed is
+ ** still not up to p2, that means that the record has fewer than p2
+ ** columns. So the result will be either the default value or a NULL.
*/
- if( (zIdx > zEndHdr) || (offset > payloadSize)
- || (zIdx==zEndHdr && offset!=payloadSize) ){
- rc = SQLITE_CORRUPT_BKPT;
+ if( pC->nHdrParsed<=p2 ){
+ if( pOp->p4type==P4_MEM ){
+ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
+ }else{
+ MemSetTypeFlag(pDest, MEM_Null);
+ }
goto op_column_out;
}
}
- /* Get the column information. If aOffset[p2] is non-zero, then
- ** deserialize the value from the record. If aOffset[p2] is zero,
- ** then there are not enough fields in the record to satisfy the
- ** request. In this case, set the value NULL or to P4 if P4 is
- ** a pointer to a Mem object.
+ /* Extract the content for the p2+1-th column. Control can only
+ ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are
+ ** all valid.
*/
- if( aOffset[p2] ){
- assert( rc==SQLITE_OK );
- if( zRec ){
- /* This is the common case where the whole row fits on a single page */
- VdbeMemRelease(pDest);
- sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
+ assert( p2<pC->nHdrParsed );
+ assert( rc==SQLITE_OK );
+ assert( sqlite3VdbeCheckMemInvariants(pDest) );
+ if( pC->szRow>=aOffset[p2+1] ){
+ /* This is the common case where the desired content fits on the original
+ ** page - where the content is not on an overflow page */
+ VdbeMemRelease(pDest);
+ sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest);
+ }else{
+ /* This branch happens only when content is on overflow pages */
+ t = aType[p2];
+ if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
+ && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
+ || (len = sqlite3VdbeSerialTypeLen(t))==0
+ ){
+ /* Content is irrelevant for the typeof() function and for
+ ** the length(X) function if X is a blob. So we might as well use
+ ** bogus content rather than reading content from disk. NULL works
+ ** for text and blob and whatever is in the payloadSize64 variable
+ ** will work for everything else. Content is also irrelevant if
+ ** the content length is 0. */
+ zData = t<=13 ? (u8*)&payloadSize64 : 0;
+ sMem.zMalloc = 0;
}else{
- /* This branch happens only when the row overflows onto multiple pages */
- t = aType[p2];
- if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
- && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
- ){
- /* Content is irrelevant for the typeof() function and for
- ** the length(X) function if X is a blob. So we might as well use
- ** bogus content rather than reading content from disk. NULL works
- ** for text and blob and whatever is in the payloadSize64 variable
- ** will work for everything else. */
- zData = t<12 ? (char*)&payloadSize64 : 0;
- }else{
- len = sqlite3VdbeSerialTypeLen(t);
- sqlite3VdbeMemMove(&sMem, pDest);
- rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
- &sMem);
- if( rc!=SQLITE_OK ){
- goto op_column_out;
- }
- zData = sMem.z;
+ memset(&sMem, 0, sizeof(sMem));
+ sqlite3VdbeMemMove(&sMem, pDest);
+ rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
+ &sMem);
+ if( rc!=SQLITE_OK ){
+ goto op_column_error;
}
- sqlite3VdbeSerialGet((u8*)zData, t, pDest);
+ zData = (u8*)sMem.z;
}
- pDest->enc = encoding;
- }else{
- if( pOp->p4type==P4_MEM ){
- sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
- }else{
- MemSetTypeFlag(pDest, MEM_Null);
+ sqlite3VdbeSerialGet(zData, t, pDest);
+ /* If we dynamically allocated space to hold the data (in the
+ ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
+ ** dynamically allocated space over to the pDest structure.
+ ** This prevents a memory copy. */
+ if( sMem.zMalloc ){
+ assert( sMem.z==sMem.zMalloc );
+ assert( VdbeMemDynamic(pDest)==0 );
+ assert( (pDest->flags & (MEM_Blob|MEM_Str))==0 || pDest->z==sMem.z );
+ pDest->flags &= ~(MEM_Ephem|MEM_Static);
+ pDest->flags |= MEM_Term;
+ pDest->z = sMem.z;
+ pDest->zMalloc = sMem.zMalloc;
}
}
-
- /* If we dynamically allocated space to hold the data (in the
- ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
- ** dynamically allocated space over to the pDest structure.
- ** This prevents a memory copy.
- */
- if( sMem.zMalloc ){
- assert( sMem.z==sMem.zMalloc );
- assert( !(pDest->flags & MEM_Dyn) );
- assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
- pDest->flags &= ~(MEM_Ephem|MEM_Static);
- pDest->flags |= MEM_Term;
- pDest->z = sMem.z;
- pDest->zMalloc = sMem.zMalloc;
- }
-
- rc = sqlite3VdbeMemMakeWriteable(pDest);
+ pDest->enc = encoding;
op_column_out:
+ Deephemeralize(pDest);
+op_column_error:
UPDATE_MAX_BLOBSIZE(pDest);
REGISTER_TRACE(pOp->p3, pDest);
break;
}
/* Opcode: Affinity P1 P2 * P4 *
+** Synopsis: affinity(r[P1@P2])
**
** Apply affinities to a range of P2 registers starting with P1.
**
@@ -2495,9 +2586,8 @@ case OP_Affinity: {
assert( zAffinity[pOp->p2]==0 );
pIn1 = &aMem[pOp->p1];
while( (cAff = *(zAffinity++))!=0 ){
- assert( pIn1 <= &p->aMem[p->nMem] );
+ assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
assert( memIsValid(pIn1) );
- ExpandBlob(pIn1);
applyAffinity(pIn1, cAff, encoding);
pIn1++;
}
@@ -2505,6 +2595,7 @@ case OP_Affinity: {
}
/* Opcode: MakeRecord P1 P2 P3 P4 *
+** Synopsis: r[P3]=mkrec(r[P1@P2])
**
** Convert P2 registers beginning with P1 into the [record format]
** use as a data record in a database table or as a key
@@ -2533,7 +2624,8 @@ case OP_MakeRecord: {
int nField; /* Number of fields in the record */
char *zAffinity; /* The affinity string for the record */
int file_format; /* File format to use for encoding */
- int i; /* Space used in zNewRecord[] */
+ int i; /* Space used in zNewRecord[] header */
+ int j; /* Space used in zNewRecord[] content */
int len; /* Length of a field */
/* Assuming the record contains N fields, the record format looks
@@ -2556,7 +2648,7 @@ case OP_MakeRecord: {
nZero = 0; /* Number of zero bytes at the end of the record */
nField = pOp->p1;
zAffinity = pOp->p4.z;
- assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
+ assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
pData0 = &aMem[nField];
nField = pOp->p2;
pLast = &pData0[nField-1];
@@ -2567,36 +2659,52 @@ case OP_MakeRecord: {
pOut = &aMem[pOp->p3];
memAboutToChange(p, pOut);
+ /* Apply the requested affinity to all inputs
+ */
+ assert( pData0<=pLast );
+ if( zAffinity ){
+ pRec = pData0;
+ do{
+ applyAffinity(pRec++, *(zAffinity++), encoding);
+ assert( zAffinity[0]==0 || pRec<=pLast );
+ }while( zAffinity[0] );
+ }
+
/* Loop through the elements that will make up the record to figure
** out how much space is required for the new record.
*/
- for(pRec=pData0; pRec<=pLast; pRec++){
+ pRec = pLast;
+ do{
assert( memIsValid(pRec) );
- if( zAffinity ){
- applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
- }
- if( pRec->flags&MEM_Zero && pRec->n>0 ){
- sqlite3VdbeMemExpandBlob(pRec);
- }
serial_type = sqlite3VdbeSerialType(pRec, file_format);
len = sqlite3VdbeSerialTypeLen(serial_type);
- nData += len;
- nHdr += sqlite3VarintLen(serial_type);
if( pRec->flags & MEM_Zero ){
- /* Only pure zero-filled BLOBs can be input to this Opcode.
- ** We do not allow blobs with a prefix and a zero-filled tail. */
- nZero += pRec->u.nZero;
- }else if( len ){
- nZero = 0;
+ if( nData ){
+ sqlite3VdbeMemExpandBlob(pRec);
+ }else{
+ nZero += pRec->u.nZero;
+ len -= pRec->u.nZero;
+ }
}
- }
+ nData += len;
+ testcase( serial_type==127 );
+ testcase( serial_type==128 );
+ nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
+ }while( (--pRec)>=pData0 );
/* Add the initial header varint and total the size */
- nHdr += nVarint = sqlite3VarintLen(nHdr);
- if( nVarint<sqlite3VarintLen(nHdr) ){
- nHdr++;
+ testcase( nHdr==126 );
+ testcase( nHdr==127 );
+ if( nHdr<=126 ){
+ /* The common case */
+ nHdr += 1;
+ }else{
+ /* Rare case of a really large header */
+ nVarint = sqlite3VarintLen(nHdr);
+ nHdr += nVarint;
+ if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
}
- nByte = nHdr+nData-nZero;
+ nByte = nHdr+nData;
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
@@ -2613,18 +2721,20 @@ case OP_MakeRecord: {
/* Write the record */
i = putVarint32(zNewRecord, nHdr);
- for(pRec=pData0; pRec<=pLast; pRec++){
+ j = nHdr;
+ assert( pData0<=pLast );
+ pRec = pData0;
+ do{
serial_type = sqlite3VdbeSerialType(pRec, file_format);
- i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
- }
- for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
- i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
- }
- assert( i==nByte );
+ i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
+ j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
+ }while( (++pRec)<=pLast );
+ assert( i==nHdr );
+ assert( j==nByte );
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
pOut->n = (int)nByte;
- pOut->flags = MEM_Blob | MEM_Dyn;
+ pOut->flags = MEM_Blob;
pOut->xDel = 0;
if( nZero ){
pOut->u.nZero = nZero;
@@ -2637,6 +2747,7 @@ case OP_MakeRecord: {
}
/* Opcode: Count P1 P2 * * *
+** Synopsis: r[P2]=count()
**
** Store the number of entries (an integer value) in the table or index
** opened by cursor P1 in register P2
@@ -2647,11 +2758,9 @@ case OP_Count: { /* out2-prerelease */
BtCursor *pCrsr;
pCrsr = p->apCsr[pOp->p1]->pCursor;
- if( ALWAYS(pCrsr) ){
- rc = sqlite3BtreeCount(pCrsr, &nEntry);
- }else{
- nEntry = 0;
- }
+ assert( pCrsr );
+ nEntry = 0; /* Not needed. Only used to silence a warning. */
+ rc = sqlite3BtreeCount(pCrsr, &nEntry);
pOut->u.i = nEntry;
break;
}
@@ -2683,9 +2792,10 @@ case OP_Savepoint: {
assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
assert( db->pSavepoint || db->isTransactionSavepoint==0 );
assert( checkSavepointCount(db) );
+ assert( p->bIsReader );
if( p1==SAVEPOINT_BEGIN ){
- if( db->writeVdbeCnt>0 ){
+ if( db->nVdbeWrite>0 ){
/* A new savepoint cannot be created if there are active write
** statements (i.e. open read/write incremental blob handles).
*/
@@ -2725,6 +2835,7 @@ case OP_Savepoint: {
pNew->pNext = db->pSavepoint;
db->pSavepoint = pNew;
pNew->nDeferredCons = db->nDeferredCons;
+ pNew->nDeferredImmCons = db->nDeferredImmCons;
}
}
}else{
@@ -2742,7 +2853,7 @@ case OP_Savepoint: {
if( !pSavepoint ){
sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
rc = SQLITE_ERROR;
- }else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
+ }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
/* It is not possible to release (commit) a savepoint if there are
** active write statements.
*/
@@ -2812,6 +2923,7 @@ case OP_Savepoint: {
}
}else{
db->nDeferredCons = pSavepoint->nDeferredCons;
+ db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
}
if( !isTransaction ){
@@ -2843,10 +2955,11 @@ case OP_AutoCommit: {
turnOnAC = desiredAutoCommit && !db->autoCommit;
assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
assert( desiredAutoCommit==1 || iRollback==0 );
- assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
+ assert( db->nVdbeActive>0 ); /* At least this one VM is active */
+ assert( p->bIsReader );
#if 0
- if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
+ if( turnOnAC && iRollback && db->nVdbeActive>1 ){
/* If this instruction implements a ROLLBACK and other VMs are
** still running, and a transaction is active, return an error indicating
** that the other VMs must complete first.
@@ -2856,7 +2969,7 @@ case OP_AutoCommit: {
rc = SQLITE_BUSY;
}else
#endif
- if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
+ if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
/* If this instruction implements a COMMIT and other VMs are writing
** return an error indicating that the other VMs must complete first.
*/
@@ -2898,25 +3011,19 @@ case OP_AutoCommit: {
break;
}
-/* Opcode: Transaction P1 P2 * * *
+/* Opcode: Transaction P1 P2 P3 P4 P5
**
-** Begin a transaction. The transaction ends when a Commit or Rollback
-** opcode is encountered. Depending on the ON CONFLICT setting, the
-** transaction might also be rolled back if an error is encountered.
+** Begin a transaction on database P1 if a transaction is not already
+** active.
+** If P2 is non-zero, then a write-transaction is started, or if a
+** read-transaction is already active, it is upgraded to a write-transaction.
+** If P2 is zero, then a read-transaction is started.
**
** P1 is the index of the database file on which the transaction is
** started. Index 0 is the main database file and index 1 is the
** file used for temporary tables. Indices of 2 or more are used for
** attached databases.
**
-** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
-** obtained on the database file when a write-transaction is started. No
-** other process can start another write transaction while this transaction is
-** underway. Starting a write transaction also creates a rollback journal. A
-** write transaction must be started before any changes can be made to the
-** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
-** on the file.
-**
** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
** true (this flag is set if the Vdbe may modify more than one row and may
** throw an ABORT exception), a statement transaction may also be opened.
@@ -2927,13 +3034,30 @@ case OP_AutoCommit: {
** entire transaction. If no error is encountered, the statement transaction
** will automatically commit when the VDBE halts.
**
-** If P2 is zero, then a read-lock is obtained on the database file.
+** If P5!=0 then this opcode also checks the schema cookie against P3
+** and the schema generation counter against P4.
+** The cookie changes its value whenever the database schema changes.
+** This operation is used to detect when that the cookie has changed
+** and that the current process needs to reread the schema. If the schema
+** cookie in P3 differs from the schema cookie in the database header or
+** if the schema generation counter in P4 differs from the current
+** generation counter, then an SQLITE_SCHEMA error is raised and execution
+** halts. The sqlite3_step() wrapper function might then reprepare the
+** statement and rerun it from the beginning.
*/
case OP_Transaction: {
Btree *pBt;
+ int iMeta;
+ int iGen;
+ assert( p->bIsReader );
+ assert( p->readOnly==0 || pOp->p2==0 );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
+ rc = SQLITE_READONLY;
+ goto abort_due_to_error;
+ }
pBt = db->aDb[pOp->p1].pBt;
if( pBt ){
@@ -2948,7 +3072,7 @@ case OP_Transaction: {
}
if( pOp->p2 && p->usesStmtJournal
- && (db->autoCommit==0 || db->activeVdbeCnt>1)
+ && (db->autoCommit==0 || db->nVdbeRead>1)
){
assert( sqlite3BtreeIsInTrans(pBt) );
if( p->iStatement==0 ){
@@ -2966,7 +3090,37 @@ case OP_Transaction: {
** counter. If the statement transaction needs to be rolled back,
** the value of this counter needs to be restored too. */
p->nStmtDefCons = db->nDeferredCons;
+ p->nStmtDefImmCons = db->nDeferredImmCons;
}
+
+ /* Gather the schema version number for checking */
+ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
+ iGen = db->aDb[pOp->p1].pSchema->iGeneration;
+ }else{
+ iGen = iMeta = 0;
+ }
+ assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
+ if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
+ /* If the schema-cookie from the database file matches the cookie
+ ** stored with the in-memory representation of the schema, do
+ ** not reload the schema from the database file.
+ **
+ ** If virtual-tables are in use, this is not just an optimization.
+ ** Often, v-tables store their data in other SQLite tables, which
+ ** are queried from within xNext() and other v-table methods using
+ ** prepared queries. If such a query is out-of-date, we do not want to
+ ** discard the database schema, as the user code implementing the
+ ** v-table would have to be ready for the sqlite3_vtab structure itself
+ ** to be invalidated whenever sqlite3_step() is called from within
+ ** a v-table method.
+ */
+ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
+ sqlite3ResetOneSchema(db, pOp->p1);
+ }
+ p->expired = 1;
+ rc = SQLITE_SCHEMA;
}
break;
}
@@ -2988,12 +3142,13 @@ case OP_ReadCookie: { /* out2-prerelease */
int iDb;
int iCookie;
+ assert( p->bIsReader );
iDb = pOp->p1;
iCookie = pOp->p3;
assert( pOp->p3<SQLITE_N_BTREE_META );
assert( iDb>=0 && iDb<db->nDb );
assert( db->aDb[iDb].pBt!=0 );
- assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
+ assert( DbMaskTest(p->btreeMask, iDb) );
sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
pOut->u.i = iMeta;
@@ -3014,7 +3169,8 @@ case OP_SetCookie: { /* in3 */
Db *pDb;
assert( pOp->p2<SQLITE_N_BTREE_META );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
pDb = &db->aDb[pOp->p1];
assert( pDb->pBt!=0 );
assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
@@ -3039,66 +3195,8 @@ case OP_SetCookie: { /* in3 */
break;
}
-/* Opcode: VerifyCookie P1 P2 P3 * *
-**
-** Check the value of global database parameter number 0 (the
-** schema version) and make sure it is equal to P2 and that the
-** generation counter on the local schema parse equals P3.
-**
-** P1 is the database number which is 0 for the main database file
-** and 1 for the file holding temporary tables and some higher number
-** for auxiliary databases.
-**
-** The cookie changes its value whenever the database schema changes.
-** This operation is used to detect when that the cookie has changed
-** and that the current process needs to reread the schema.
-**
-** Either a transaction needs to have been started or an OP_Open needs
-** to be executed (to establish a read lock) before this opcode is
-** invoked.
-*/
-case OP_VerifyCookie: {
- int iMeta;
- int iGen;
- Btree *pBt;
-
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
- assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
- pBt = db->aDb[pOp->p1].pBt;
- if( pBt ){
- sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
- iGen = db->aDb[pOp->p1].pSchema->iGeneration;
- }else{
- iGen = iMeta = 0;
- }
- if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
- /* If the schema-cookie from the database file matches the cookie
- ** stored with the in-memory representation of the schema, do
- ** not reload the schema from the database file.
- **
- ** If virtual-tables are in use, this is not just an optimization.
- ** Often, v-tables store their data in other SQLite tables, which
- ** are queried from within xNext() and other v-table methods using
- ** prepared queries. If such a query is out-of-date, we do not want to
- ** discard the database schema, as the user code implementing the
- ** v-table would have to be ready for the sqlite3_vtab structure itself
- ** to be invalidated whenever sqlite3_step() is called from within
- ** a v-table method.
- */
- if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
- sqlite3ResetOneSchema(db, pOp->p1);
- }
-
- p->expired = 1;
- rc = SQLITE_SCHEMA;
- }
- break;
-}
-
/* Opcode: OpenRead P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file. The database file is determined by P3.
@@ -3126,9 +3224,24 @@ case OP_VerifyCookie: {
** sequence of the index being opened. Otherwise, if P4 is an integer
** value, it is set to the number of columns in the table.
**
-** See also OpenWrite.
+** See also: OpenWrite, ReopenIdx
+*/
+/* Opcode: ReopenIdx P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
+**
+** The ReopenIdx opcode works exactly like ReadOpen except that it first
+** checks to see if the cursor on P1 is already open with a root page
+** number of P2 and if it is this opcode becomes a no-op. In other words,
+** if the cursor is already open, do not reopen it.
+**
+** The ReopenIdx opcode may only be used with P5==0 and with P4 being
+** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
+** every other ReopenIdx or OpenRead for the same cursor number.
+**
+** See the OpenRead opcode documentation for additional information.
*/
/* Opcode: OpenWrite P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2. Or if P5!=0 use the content of register P2 to find the
@@ -3147,6 +3260,19 @@ case OP_VerifyCookie: {
**
** See also OpenRead.
*/
+case OP_ReopenIdx: {
+ VdbeCursor *pCur;
+
+ assert( pOp->p5==0 );
+ assert( pOp->p4type==P4_KEYINFO );
+ pCur = p->apCsr[pOp->p1];
+ if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
+ assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
+ break;
+ }
+ /* If the cursor is not currently open or is open on a different
+ ** index, then fall through into OP_OpenRead to force a reopen */
+}
case OP_OpenRead:
case OP_OpenWrite: {
int nField;
@@ -3160,6 +3286,9 @@ case OP_OpenWrite: {
assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
+ assert( p->bIsReader );
+ assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
+ || p->readOnly==0 );
if( p->expired ){
rc = SQLITE_ABORT;
@@ -3171,7 +3300,7 @@ case OP_OpenWrite: {
p2 = pOp->p2;
iDb = pOp->p3;
assert( iDb>=0 && iDb<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
+ assert( DbMaskTest(p->btreeMask, iDb) );
pDb = &db->aDb[iDb];
pX = pDb->pBt;
assert( pX!=0 );
@@ -3186,7 +3315,7 @@ case OP_OpenWrite: {
}
if( pOp->p5 & OPFLAG_P2ISREG ){
assert( p2>0 );
- assert( p2<=p->nMem );
+ assert( p2<=(p->nMem-p->nCursor) );
pIn2 = &aMem[p2];
assert( memIsValid(pIn2) );
assert( (pIn2->flags & MEM_Int)!=0 );
@@ -3203,16 +3332,20 @@ case OP_OpenWrite: {
}
if( pOp->p4type==P4_KEYINFO ){
pKeyInfo = pOp->p4.pKeyInfo;
- pKeyInfo->enc = ENC(p->db);
- nField = pKeyInfo->nField+1;
+ assert( pKeyInfo->enc==ENC(db) );
+ assert( pKeyInfo->db==db );
+ nField = pKeyInfo->nField+pKeyInfo->nXField;
}else if( pOp->p4type==P4_INT32 ){
nField = pOp->p4.i;
}
assert( pOp->p1>=0 );
+ assert( nField>=0 );
+ testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
if( pCur==0 ) goto no_mem;
pCur->nullRow = 1;
pCur->isOrdered = 1;
+ pCur->pgnoRoot = p2;
rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
pCur->pKeyInfo = pKeyInfo;
assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
@@ -3222,16 +3355,16 @@ case OP_OpenWrite: {
** sqlite3BtreeCursor() may return is SQLITE_OK. */
assert( rc==SQLITE_OK );
- /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
+ /* Set the VdbeCursor.isTable variable. Previous versions of
** SQLite used to check if the root-page flags were sane at this point
** and report database corruption if they were not, but this check has
** since moved into the btree layer. */
pCur->isTable = pOp->p4type!=P4_KEYINFO;
- pCur->isIndex = !pCur->isTable;
break;
}
/* Opcode: OpenEphemeral P1 P2 * P4 P5
+** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if
@@ -3243,18 +3376,13 @@ case OP_OpenWrite: {
** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
-** This opcode was once called OpenTemp. But that created
-** confusion because the term "temp table", might refer either
-** to a TEMP table at the SQL level, or to a table opened by
-** this opcode. Then this opcode was call OpenVirtual. But
-** that created confusion with the whole virtual-table idea.
-**
** The P5 parameter can be a mask of the BTREE_* flags defined
** in btree.h. These flags control aspects of the operation of
** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
** added automatically.
*/
/* Opcode: OpenAutoindex P1 P2 * P4 *
+** Synopsis: nColumn=P2
**
** This opcode works the same as OP_OpenEphemeral. It has a
** different name to distinguish its use. Tables created using
@@ -3264,17 +3392,20 @@ case OP_OpenWrite: {
case OP_OpenAutoindex:
case OP_OpenEphemeral: {
VdbeCursor *pCx;
+ KeyInfo *pKeyInfo;
+
static const int vfsFlags =
SQLITE_OPEN_READWRITE |
SQLITE_OPEN_CREATE |
SQLITE_OPEN_EXCLUSIVE |
SQLITE_OPEN_DELETEONCLOSE |
SQLITE_OPEN_TRANSIENT_DB;
-
assert( pOp->p1>=0 );
+ assert( pOp->p2>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
if( pCx==0 ) goto no_mem;
pCx->nullRow = 1;
+ pCx->isEphemeral = 1;
rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
if( rc==SQLITE_OK ){
@@ -3286,16 +3417,16 @@ case OP_OpenEphemeral: {
** opening it. If a transient table is required, just use the
** automatically created table with root-page 1 (an BLOB_INTKEY table).
*/
- if( pOp->p4.pKeyInfo ){
+ if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
int pgno;
assert( pOp->p4type==P4_KEYINFO );
rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
if( rc==SQLITE_OK ){
assert( pgno==MASTER_ROOT+1 );
- rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
- (KeyInfo*)pOp->p4.z, pCx->pCursor);
- pCx->pKeyInfo = pOp->p4.pKeyInfo;
- pCx->pKeyInfo->enc = ENC(p->db);
+ assert( pKeyInfo->db==db );
+ assert( pKeyInfo->enc==ENC(db) );
+ pCx->pKeyInfo = pKeyInfo;
+ rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
}
pCx->isTable = 0;
}else{
@@ -3304,7 +3435,6 @@ case OP_OpenEphemeral: {
}
}
pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
- pCx->isIndex = !pCx->isTable;
break;
}
@@ -3317,22 +3447,24 @@ case OP_OpenEphemeral: {
case OP_SorterOpen: {
VdbeCursor *pCx;
+ assert( pOp->p1>=0 );
+ assert( pOp->p2>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
if( pCx==0 ) goto no_mem;
pCx->pKeyInfo = pOp->p4.pKeyInfo;
- pCx->pKeyInfo->enc = ENC(p->db);
- pCx->isSorter = 1;
+ assert( pCx->pKeyInfo->db==db );
+ assert( pCx->pKeyInfo->enc==ENC(db) );
rc = sqlite3VdbeSorterInit(db, pCx);
break;
}
-/* Opcode: OpenPseudo P1 P2 P3 * P5
+/* Opcode: OpenPseudo P1 P2 P3 * *
+** Synopsis: P3 columns in r[P2]
**
** Open a new cursor that points to a fake table that contains a single
-** row of data. The content of that one row in the content of memory
-** register P2 when P5==0. In other words, cursor P1 becomes an alias for the
-** MEM_Blob content contained in register P2. When P5==1, then the
-** row is represented by P3 consecutive registers beginning with P2.
+** row of data. The content of that one row is the content of memory
+** register P2. In other words, cursor P1 becomes an alias for the
+** MEM_Blob content contained in register P2.
**
** A pseudo-table created by this opcode is used to hold a single
** row output from the sorter so that the row can be decomposed into
@@ -3346,13 +3478,13 @@ case OP_OpenPseudo: {
VdbeCursor *pCx;
assert( pOp->p1>=0 );
+ assert( pOp->p3>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
if( pCx==0 ) goto no_mem;
pCx->nullRow = 1;
pCx->pseudoTableReg = pOp->p2;
pCx->isTable = 1;
- pCx->isIndex = 0;
- pCx->multiPseudo = pOp->p5;
+ assert( pOp->p5==0 );
break;
}
@@ -3368,7 +3500,8 @@ case OP_Close: {
break;
}
-/* Opcode: SeekGe P1 P2 P3 P4 *
+/* Opcode: SeekGE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as the key. If cursor P1 refers
@@ -3379,9 +3512,14 @@ case OP_Close: {
** is greater than or equal to the key value. If there are no records
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
-** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+**
+** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
*/
-/* Opcode: SeekGt P1 P2 P3 P4 *
+/* Opcode: SeekGT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
@@ -3392,9 +3530,14 @@ case OP_Close: {
** is greater than the key value. If there are no records greater than
** the key and P2 is not zero, then jump to P2.
**
-** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+**
+** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
*/
-/* Opcode: SeekLt P1 P2 P3 P4 *
+/* Opcode: SeekLT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
@@ -3405,9 +3548,14 @@ case OP_Close: {
** is less than the key value. If there are no records less than
** the key and P2 is not zero, then jump to P2.
**
-** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+**
+** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
*/
-/* Opcode: SeekLe P1 P2 P3 P4 *
+/* Opcode: SeekLE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
@@ -3418,12 +3566,16 @@ case OP_Close: {
** is less than or equal to the key value. If there are no records
** less than or equal to the key and P2 is not zero, then jump to P2.
**
-** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+**
+** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
*/
-case OP_SeekLt: /* jump, in3 */
-case OP_SeekLe: /* jump, in3 */
-case OP_SeekGe: /* jump, in3 */
-case OP_SeekGt: { /* jump, in3 */
+case OP_SeekLT: /* jump, in3 */
+case OP_SeekLE: /* jump, in3 */
+case OP_SeekGE: /* jump, in3 */
+case OP_SeekGT: { /* jump, in3 */
int res;
int oc;
VdbeCursor *pC;
@@ -3436,143 +3588,135 @@ case OP_SeekGt: { /* jump, in3 */
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->pseudoTableReg==0 );
- assert( OP_SeekLe == OP_SeekLt+1 );
- assert( OP_SeekGe == OP_SeekLt+2 );
- assert( OP_SeekGt == OP_SeekLt+3 );
+ assert( OP_SeekLE == OP_SeekLT+1 );
+ assert( OP_SeekGE == OP_SeekLT+2 );
+ assert( OP_SeekGT == OP_SeekLT+3 );
assert( pC->isOrdered );
- if( ALWAYS(pC->pCursor!=0) ){
- oc = pOp->opcode;
- pC->nullRow = 0;
- if( pC->isTable ){
- /* The input value in P3 might be of any type: integer, real, string,
- ** blob, or NULL. But it needs to be an integer before we can do
- ** the seek, so covert it. */
- pIn3 = &aMem[pOp->p3];
- applyNumericAffinity(pIn3);
- iKey = sqlite3VdbeIntValue(pIn3);
- pC->rowidIsValid = 0;
+ assert( pC->pCursor!=0 );
+ oc = pOp->opcode;
+ pC->nullRow = 0;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
+ if( pC->isTable ){
+ /* The input value in P3 might be of any type: integer, real, string,
+ ** blob, or NULL. But it needs to be an integer before we can do
+ ** the seek, so covert it. */
+ pIn3 = &aMem[pOp->p3];
+ ApplyNumericAffinity(pIn3);
+ iKey = sqlite3VdbeIntValue(pIn3);
+ pC->rowidIsValid = 0;
- /* If the P3 value could not be converted into an integer without
- ** loss of information, then special processing is required... */
- if( (pIn3->flags & MEM_Int)==0 ){
- if( (pIn3->flags & MEM_Real)==0 ){
- /* If the P3 value cannot be converted into any kind of a number,
- ** then the seek is not possible, so jump to P2 */
- pc = pOp->p2 - 1;
- break;
- }
- /* If we reach this point, then the P3 value must be a floating
- ** point number. */
- assert( (pIn3->flags & MEM_Real)!=0 );
-
- if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
- /* The P3 value is too large in magnitude to be expressed as an
- ** integer. */
- res = 1;
- if( pIn3->r<0 ){
- if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
- rc = sqlite3BtreeFirst(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- }
- }else{
- if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
- rc = sqlite3BtreeLast(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- }
- }
- if( res ){
- pc = pOp->p2 - 1;
- }
- break;
- }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
- /* Use the ceiling() function to convert real->int */
- if( pIn3->r > (double)iKey ) iKey++;
- }else{
- /* Use the floor() function to convert real->int */
- assert( oc==OP_SeekLe || oc==OP_SeekGt );
- if( pIn3->r < (double)iKey ) iKey--;
- }
- }
- rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( res==0 ){
- pC->rowidIsValid = 1;
- pC->lastRowid = iKey;
+ /* If the P3 value could not be converted into an integer without
+ ** loss of information, then special processing is required... */
+ if( (pIn3->flags & MEM_Int)==0 ){
+ if( (pIn3->flags & MEM_Real)==0 ){
+ /* If the P3 value cannot be converted into any kind of a number,
+ ** then the seek is not possible, so jump to P2 */
+ pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
+ break;
}
- }else{
- nField = pOp->p4.i;
- assert( pOp->p4type==P4_INT32 );
- assert( nField>0 );
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)nField;
-
- /* The next line of code computes as follows, only faster:
- ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
- ** r.flags = UNPACKED_INCRKEY;
- ** }else{
- ** r.flags = 0;
- ** }
+
+ /* If the approximation iKey is larger than the actual real search
+ ** term, substitute >= for > and < for <=. e.g. if the search term
+ ** is 4.9 and the integer approximation 5:
+ **
+ ** (x > 4.9) -> (x >= 5)
+ ** (x <= 4.9) -> (x < 5)
*/
- r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
- assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
- assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
- assert( oc!=OP_SeekGe || r.flags==0 );
- assert( oc!=OP_SeekLt || r.flags==0 );
+ if( pIn3->r<(double)iKey ){
+ assert( OP_SeekGE==(OP_SeekGT-1) );
+ assert( OP_SeekLT==(OP_SeekLE-1) );
+ assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
+ if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
+ }
- r.aMem = &aMem[pOp->p3];
+ /* If the approximation iKey is smaller than the actual real search
+ ** term, substitute <= for < and > for >=. */
+ else if( pIn3->r>(double)iKey ){
+ assert( OP_SeekLE==(OP_SeekLT+1) );
+ assert( OP_SeekGT==(OP_SeekGE+1) );
+ assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
+ if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
+ }
+ }
+ rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( res==0 ){
+ pC->rowidIsValid = 1;
+ pC->lastRowid = iKey;
+ }
+ }else{
+ nField = pOp->p4.i;
+ assert( pOp->p4type==P4_INT32 );
+ assert( nField>0 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)nField;
+
+ /* The next line of code computes as follows, only faster:
+ ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
+ ** r.default_rc = -1;
+ ** }else{
+ ** r.default_rc = +1;
+ ** }
+ */
+ r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
+ assert( oc!=OP_SeekGT || r.default_rc==-1 );
+ assert( oc!=OP_SeekLE || r.default_rc==-1 );
+ assert( oc!=OP_SeekGE || r.default_rc==+1 );
+ assert( oc!=OP_SeekLT || r.default_rc==+1 );
+
+ r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
- ExpandBlob(r.aMem);
- rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- pC->rowidIsValid = 0;
+ ExpandBlob(r.aMem);
+ rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
}
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
+ pC->rowidIsValid = 0;
+ }
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
- sqlite3_search_count++;
+ sqlite3_search_count++;
#endif
- if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
- if( res<0 || (res==0 && oc==OP_SeekGt) ){
- rc = sqlite3BtreeNext(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- pC->rowidIsValid = 0;
- }else{
- res = 0;
- }
+ if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
+ if( res<0 || (res==0 && oc==OP_SeekGT) ){
+ res = 0;
+ rc = sqlite3BtreeNext(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ pC->rowidIsValid = 0;
}else{
- assert( oc==OP_SeekLt || oc==OP_SeekLe );
- if( res>0 || (res==0 && oc==OP_SeekLt) ){
- rc = sqlite3BtreePrevious(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- pC->rowidIsValid = 0;
- }else{
- /* res might be negative because the table is empty. Check to
- ** see if this is the case.
- */
- res = sqlite3BtreeEof(pC->pCursor);
- }
- }
- assert( pOp->p2>0 );
- if( res ){
- pc = pOp->p2 - 1;
+ res = 0;
}
}else{
- /* This happens when attempting to open the sqlite3_master table
- ** for read access returns SQLITE_EMPTY. In this case always
- ** take the jump (since there are no records in the table).
- */
+ assert( oc==OP_SeekLT || oc==OP_SeekLE );
+ if( res>0 || (res==0 && oc==OP_SeekLT) ){
+ res = 0;
+ rc = sqlite3BtreePrevious(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ pC->rowidIsValid = 0;
+ }else{
+ /* res might be negative because the table is empty. Check to
+ ** see if this is the case.
+ */
+ res = sqlite3BtreeEof(pC->pCursor);
+ }
+ }
+ assert( pOp->p2>0 );
+ VdbeBranchTaken(res!=0,2);
+ if( res ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: Seek P1 P2 * * *
+** Synopsis: intkey=r[P2]
**
** P1 is an open table cursor and P2 is a rowid integer. Arrange
** for P1 to move so that it points to the rowid given by P2.
@@ -3587,19 +3731,19 @@ case OP_Seek: { /* in2 */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
- if( ALWAYS(pC->pCursor!=0) ){
- assert( pC->isTable );
- pC->nullRow = 0;
- pIn2 = &aMem[pOp->p2];
- pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 1;
- }
+ assert( pC->pCursor!=0 );
+ assert( pC->isTable );
+ pC->nullRow = 0;
+ pIn2 = &aMem[pOp->p2];
+ pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
+ pC->rowidIsValid = 0;
+ pC->deferredMoveto = 1;
break;
}
/* Opcode: Found P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
@@ -3608,8 +3752,15 @@ case OP_Seek: { /* in2 */
** Cursor P1 is on an index btree. If the record identified by P3 and P4
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
+**
+** This operation leaves the cursor in a state where it can be
+** advanced in the forward direction. The Next instruction will work,
+** but not the Prev instruction.
+**
+** See also: NotFound, NoConflict, NotExists. SeekGe
*/
/* Opcode: NotFound P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
@@ -3621,169 +3772,134 @@ case OP_Seek: { /* in2 */
** falls through to the next instruction and P1 is left pointing at the
** matching entry.
**
-** See also: Found, NotExists, IsUnique
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
+** See also: Found, NotExists, NoConflict
*/
+/* Opcode: NoConflict P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** contains any NULL value, jump immediately to P2. If all terms of the
+** record are not-NULL then a check is done to determine if any row in the
+** P1 index btree has a matching key prefix. If there are no matches, jump
+** immediately to P2. If there is a match, fall through and leave the P1
+** cursor pointing to the matching row.
+**
+** This opcode is similar to OP_NotFound with the exceptions that the
+** branch is always taken if any part of the search key input is NULL.
+**
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
+** See also: NotFound, Found, NotExists
+*/
+case OP_NoConflict: /* jump, in3 */
case OP_NotFound: /* jump, in3 */
case OP_Found: { /* jump, in3 */
int alreadyExists;
+ int ii;
VdbeCursor *pC;
int res;
char *pFree;
UnpackedRecord *pIdxKey;
UnpackedRecord r;
- char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
+ char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
#ifdef SQLITE_TEST
- sqlite3_found_count++;
+ if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
#endif
- alreadyExists = 0;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p4type==P4_INT32 );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
pIn3 = &aMem[pOp->p3];
- if( ALWAYS(pC->pCursor!=0) ){
-
- assert( pC->isTable==0 );
- if( pOp->p4.i>0 ){
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)pOp->p4.i;
- r.aMem = pIn3;
+ assert( pC->pCursor!=0 );
+ assert( pC->isTable==0 );
+ pFree = 0; /* Not needed. Only used to suppress a compiler warning. */
+ if( pOp->p4.i>0 ){
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p4.i;
+ r.aMem = pIn3;
+ for(ii=0; ii<r.nField; ii++){
+ assert( memIsValid(&r.aMem[ii]) );
+ ExpandBlob(&r.aMem[ii]);
#ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
+ if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
#endif
- r.flags = UNPACKED_PREFIX_MATCH;
- pIdxKey = &r;
- }else{
- pIdxKey = sqlite3VdbeAllocUnpackedRecord(
- pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
- );
- if( pIdxKey==0 ) goto no_mem;
- assert( pIn3->flags & MEM_Blob );
- assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
- sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
- pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
- }
- rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
- if( pOp->p4.i==0 ){
- sqlite3DbFree(db, pFree);
}
- if( rc!=SQLITE_OK ){
- break;
+ pIdxKey = &r;
+ }else{
+ pIdxKey = sqlite3VdbeAllocUnpackedRecord(
+ pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
+ );
+ if( pIdxKey==0 ) goto no_mem;
+ assert( pIn3->flags & MEM_Blob );
+ assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
+ sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
+ }
+ pIdxKey->default_rc = 0;
+ if( pOp->opcode==OP_NoConflict ){
+ /* For the OP_NoConflict opcode, take the jump if any of the
+ ** input fields are NULL, since any key with a NULL will not
+ ** conflict */
+ for(ii=0; ii<r.nField; ii++){
+ if( r.aMem[ii].flags & MEM_Null ){
+ pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
+ break;
+ }
}
- alreadyExists = (res==0);
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
}
+ rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
+ if( pOp->p4.i==0 ){
+ sqlite3DbFree(db, pFree);
+ }
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ pC->seekResult = res;
+ alreadyExists = (res==0);
+ pC->nullRow = 1-alreadyExists;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
if( pOp->opcode==OP_Found ){
+ VdbeBranchTaken(alreadyExists!=0,2);
if( alreadyExists ) pc = pOp->p2 - 1;
}else{
+ VdbeBranchTaken(alreadyExists==0,2);
if( !alreadyExists ) pc = pOp->p2 - 1;
}
break;
}
-/* Opcode: IsUnique P1 P2 P3 P4 *
-**
-** Cursor P1 is open on an index b-tree - that is to say, a btree which
-** no data and where the key are records generated by OP_MakeRecord with
-** the list field being the integer ROWID of the entry that the index
-** entry refers to.
-**
-** The P3 register contains an integer record number. Call this record
-** number R. Register P4 is the first in a set of N contiguous registers
-** that make up an unpacked index key that can be used with cursor P1.
-** The value of N can be inferred from the cursor. N includes the rowid
-** value appended to the end of the index record. This rowid value may
-** or may not be the same as R.
-**
-** If any of the N registers beginning with register P4 contains a NULL
-** value, jump immediately to P2.
-**
-** Otherwise, this instruction checks if cursor P1 contains an entry
-** where the first (N-1) fields match but the rowid value at the end
-** of the index entry is not R. If there is no such entry, control jumps
-** to instruction P2. Otherwise, the rowid of the conflicting index
-** entry is copied to register P3 and control falls through to the next
-** instruction.
-**
-** See also: NotFound, NotExists, Found
-*/
-case OP_IsUnique: { /* jump, in3 */
- u16 ii;
- VdbeCursor *pCx;
- BtCursor *pCrsr;
- u16 nField;
- Mem *aMx;
- UnpackedRecord r; /* B-Tree index search key */
- i64 R; /* Rowid stored in register P3 */
-
- pIn3 = &aMem[pOp->p3];
- aMx = &aMem[pOp->p4.i];
- /* Assert that the values of parameters P1 and P4 are in range. */
- assert( pOp->p4type==P4_INT32 );
- assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
-
- /* Find the index cursor. */
- pCx = p->apCsr[pOp->p1];
- assert( pCx->deferredMoveto==0 );
- pCx->seekResult = 0;
- pCx->cacheStatus = CACHE_STALE;
- pCrsr = pCx->pCursor;
-
- /* If any of the values are NULL, take the jump. */
- nField = pCx->pKeyInfo->nField;
- for(ii=0; ii<nField; ii++){
- if( aMx[ii].flags & MEM_Null ){
- pc = pOp->p2 - 1;
- pCrsr = 0;
- break;
- }
- }
- assert( (aMx[nField].flags & MEM_Null)==0 );
-
- if( pCrsr!=0 ){
- /* Populate the index search key. */
- r.pKeyInfo = pCx->pKeyInfo;
- r.nField = nField + 1;
- r.flags = UNPACKED_PREFIX_SEARCH;
- r.aMem = aMx;
-#ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
-#endif
-
- /* Extract the value of R from register P3. */
- sqlite3VdbeMemIntegerify(pIn3);
- R = pIn3->u.i;
-
- /* Search the B-Tree index. If no conflicting record is found, jump
- ** to P2. Otherwise, copy the rowid of the conflicting record to
- ** register P3 and fall through to the next instruction. */
- rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
- if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
- pc = pOp->p2 - 1;
- }else{
- pIn3->u.i = r.rowid;
- }
- }
- break;
-}
-
/* Opcode: NotExists P1 P2 P3 * *
+** Synopsis: intkey=r[P3]
**
-** Use the content of register P3 as an integer key. If a record
-** with that key does not exist in table of P1, then jump to P2.
-** If the record does exist, then fall through. The cursor is left
-** pointing to the record if it exists.
+** P1 is the index of a cursor open on an SQL table btree (with integer
+** keys). P3 is an integer rowid. If P1 does not contain a record with
+** rowid P3 then jump immediately to P2. If P1 does contain a record
+** with rowid P3 then leave the cursor pointing at that record and fall
+** through to the next instruction.
**
-** The difference between this operation and NotFound is that this
-** operation assumes the key is an integer and that P1 is a table whereas
-** NotFound assumes key is a blob constructed from MakeRecord and
-** P1 is an index.
+** The OP_NotFound opcode performs the same operation on index btrees
+** (with arbitrary multi-value keys).
**
-** See also: Found, NotFound, IsUnique
+** This opcode leaves the cursor in a state where it cannot be advanced
+** in either direction. In other words, the Next and Prev opcodes will
+** not work following this opcode.
+**
+** See also: Found, NotFound, NoConflict
*/
case OP_NotExists: { /* jump, in3 */
VdbeCursor *pC;
@@ -3796,35 +3912,32 @@ case OP_NotExists: { /* jump, in3 */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ pC->seekOp = 0;
+#endif
assert( pC->isTable );
assert( pC->pseudoTableReg==0 );
pCrsr = pC->pCursor;
- if( ALWAYS(pCrsr!=0) ){
- res = 0;
- iKey = pIn3->u.i;
- rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
- pC->lastRowid = pIn3->u.i;
- pC->rowidIsValid = res==0 ?1:0;
- pC->nullRow = 0;
- pC->cacheStatus = CACHE_STALE;
- pC->deferredMoveto = 0;
- if( res!=0 ){
- pc = pOp->p2 - 1;
- assert( pC->rowidIsValid==0 );
- }
- pC->seekResult = res;
- }else{
- /* This happens when an attempt to open a read cursor on the
- ** sqlite_master table returns SQLITE_EMPTY.
- */
+ assert( pCrsr!=0 );
+ res = 0;
+ iKey = pIn3->u.i;
+ rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
+ pC->lastRowid = pIn3->u.i;
+ pC->rowidIsValid = res==0 ?1:0;
+ pC->nullRow = 0;
+ pC->cacheStatus = CACHE_STALE;
+ pC->deferredMoveto = 0;
+ VdbeBranchTaken(res!=0,2);
+ if( res!=0 ){
pc = pOp->p2 - 1;
assert( pC->rowidIsValid==0 );
- pC->seekResult = 0;
}
+ pC->seekResult = res;
break;
}
/* Opcode: Sequence P1 P2 * * *
+** Synopsis: r[P2]=cursor[P1].ctr++
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
@@ -3840,6 +3953,7 @@ case OP_Sequence: { /* out2-prerelease */
/* Opcode: NewRowid P1 P2 P3 * *
+** Synopsis: r[P2]=rowid
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
@@ -3895,59 +4009,54 @@ case OP_NewRowid: { /* out2-prerelease */
#endif
if( !pC->useRandomRowid ){
- v = sqlite3BtreeGetCachedRowid(pC->pCursor);
- if( v==0 ){
- rc = sqlite3BtreeLast(pC->pCursor, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( res ){
- v = 1; /* IMP: R-61914-48074 */
+ rc = sqlite3BtreeLast(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( res ){
+ v = 1; /* IMP: R-61914-48074 */
+ }else{
+ assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
+ rc = sqlite3BtreeKeySize(pC->pCursor, &v);
+ assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
+ if( v>=MAX_ROWID ){
+ pC->useRandomRowid = 1;
}else{
- assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
- rc = sqlite3BtreeKeySize(pC->pCursor, &v);
- assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
- if( v>=MAX_ROWID ){
- pC->useRandomRowid = 1;
- }else{
- v++; /* IMP: R-29538-34987 */
- }
+ v++; /* IMP: R-29538-34987 */
}
}
+ }
#ifndef SQLITE_OMIT_AUTOINCREMENT
- if( pOp->p3 ){
+ if( pOp->p3 ){
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3>0 );
+ if( p->pFrame ){
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
/* Assert that P3 is a valid memory cell. */
- assert( pOp->p3>0 );
- if( p->pFrame ){
- for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
- /* Assert that P3 is a valid memory cell. */
- assert( pOp->p3<=pFrame->nMem );
- pMem = &pFrame->aMem[pOp->p3];
- }else{
- /* Assert that P3 is a valid memory cell. */
- assert( pOp->p3<=p->nMem );
- pMem = &aMem[pOp->p3];
- memAboutToChange(p, pMem);
- }
- assert( memIsValid(pMem) );
-
- REGISTER_TRACE(pOp->p3, pMem);
- sqlite3VdbeMemIntegerify(pMem);
- assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
- if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
- rc = SQLITE_FULL; /* IMP: R-12275-61338 */
- goto abort_due_to_error;
- }
- if( v<pMem->u.i+1 ){
- v = pMem->u.i + 1;
- }
- pMem->u.i = v;
+ assert( pOp->p3<=pFrame->nMem );
+ pMem = &pFrame->aMem[pOp->p3];
+ }else{
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=(p->nMem-p->nCursor) );
+ pMem = &aMem[pOp->p3];
+ memAboutToChange(p, pMem);
}
-#endif
+ assert( memIsValid(pMem) );
- sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
+ REGISTER_TRACE(pOp->p3, pMem);
+ sqlite3VdbeMemIntegerify(pMem);
+ assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
+ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
+ rc = SQLITE_FULL; /* IMP: R-12275-61338 */
+ goto abort_due_to_error;
+ }
+ if( v<pMem->u.i+1 ){
+ v = pMem->u.i + 1;
+ }
+ pMem->u.i = v;
}
+#endif
if( pC->useRandomRowid ){
/* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
** largest possible integer (9223372036854775807) then the database
@@ -3989,6 +4098,7 @@ case OP_NewRowid: { /* out2-prerelease */
}
/* Opcode: Insert P1 P2 P3 P4 P5
+** Synopsis: intkey=r[P3] data=r[P2]
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
@@ -4028,6 +4138,7 @@ case OP_NewRowid: { /* out2-prerelease */
** for indices is OP_IdxInsert.
*/
/* Opcode: InsertInt P1 P2 P3 P4 P5
+** Synopsis: intkey=P3 data=r[P2]
**
** This works exactly like OP_Insert except that the key is the
** integer value P3, not the value of the integer stored in register P3.
@@ -4079,10 +4190,9 @@ case OP_InsertInt: {
}else{
nZero = 0;
}
- sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
pData->z, pData->n, nZero,
- pOp->p5 & OPFLAG_APPEND, seekResult
+ (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
);
pC->rowidIsValid = 0;
pC->deferredMoveto = 0;
@@ -4107,7 +4217,7 @@ case OP_InsertInt: {
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op. Hence it is OK to delete
-** a record from within an Next loop.
+** a record from within a Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
@@ -4124,20 +4234,11 @@ case OP_Delete: {
i64 iKey;
VdbeCursor *pC;
- iKey = 0;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
-
- /* If the update-hook will be invoked, set iKey to the rowid of the
- ** row being deleted.
- */
- if( db->xUpdateCallback && pOp->p4.z ){
- assert( pC->isTable );
- assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
- iKey = pC->lastRowid;
- }
+ iKey = pC->lastRowid; /* Only used for the update hook */
/* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
** OP_Column on the same table without any intervening operations that
@@ -4150,15 +4251,13 @@ case OP_Delete: {
rc = sqlite3VdbeCursorMoveto(pC);
if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
- sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
rc = sqlite3BtreeDelete(pC->pCursor);
pC->cacheStatus = CACHE_STALE;
/* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
- const char *zDb = db->aDb[pC->iDb].zName;
- const char *zTbl = pOp->p4.z;
- db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
+ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
+ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
+ db->aDb[pC->iDb].zName, pOp->p4.z, iKey);
assert( pC->iDb>=0 );
}
if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
@@ -4177,21 +4276,33 @@ case OP_ResetCount: {
break;
}
-/* Opcode: SorterCompare P1 P2 P3
+/* Opcode: SorterCompare P1 P2 P3 P4
+** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
+**
+** P1 is a sorter cursor. This instruction compares a prefix of the
+** record blob in register P3 against a prefix of the entry that
+** the sorter cursor currently points to. Only the first P4 fields
+** of r[P3] and the sorter record are compared.
+**
+** If either P3 or the sorter contains a NULL in one of their significant
+** fields (not counting the P4 fields at the end which are ignored) then
+** the comparison is assumed to be equal.
**
-** P1 is a sorter cursor. This instruction compares the record blob in
-** register P3 with the entry that the sorter cursor currently points to.
-** If, excluding the rowid fields at the end, the two records are a match,
-** fall through to the next instruction. Otherwise, jump to instruction P2.
+** Fall through to next instruction if the two records compare equal to
+** each other. Jump to P2 if they are different.
*/
case OP_SorterCompare: {
VdbeCursor *pC;
int res;
+ int nKeyCol;
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
+ assert( pOp->p4type==P4_INT32 );
pIn3 = &aMem[pOp->p3];
- rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
+ nKeyCol = pOp->p4.i;
+ rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
+ VdbeBranchTaken(res!=0,2);
if( res ){
pc = pOp->p2-1;
}
@@ -4199,6 +4310,7 @@ case OP_SorterCompare: {
};
/* Opcode: SorterData P1 P2 * * *
+** Synopsis: r[P2]=data
**
** Write into register P2 the current sorter data for sorter cursor P1.
*/
@@ -4207,12 +4319,14 @@ case OP_SorterData: {
pOut = &aMem[pOp->p2];
pC = p->apCsr[pOp->p1];
- assert( pC->isSorter );
+ assert( isSorter(pC) );
rc = sqlite3VdbeSorterRowkey(pC, pOut);
+ assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
break;
}
/* Opcode: RowData P1 P2 * * *
+** Synopsis: r[P2]=data
**
** Write into register P2 the complete row data for cursor P1.
** There is no interpretation of the data.
@@ -4223,10 +4337,11 @@ case OP_SorterData: {
** of a real table, not a pseudo-table.
*/
/* Opcode: RowKey P1 P2 * * *
+** Synopsis: r[P2]=key
**
** Write into register P2 the complete row key for cursor P1.
** There is no interpretation of the data.
-** The key is copied onto the P3 register exactly as
+** The key is copied onto the P2 register exactly as
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
@@ -4245,9 +4360,9 @@ case OP_RowData: {
/* Note that RowKey and RowData are really exactly the same instruction */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
- assert( pC->isSorter==0 );
+ assert( isSorter(pC)==0 );
assert( pC->isTable || pOp->opcode!=OP_RowData );
- assert( pC->isIndex || pOp->opcode==OP_RowData );
+ assert( pC->isTable==0 || pOp->opcode==OP_RowData );
assert( pC!=0 );
assert( pC->nullRow==0 );
assert( pC->pseudoTableReg==0 );
@@ -4264,7 +4379,7 @@ case OP_RowData: {
rc = sqlite3VdbeCursorMoveto(pC);
if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
- if( pC->isIndex ){
+ if( pC->isTable==0 ){
assert( !pC->isTable );
VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
@@ -4284,17 +4399,19 @@ case OP_RowData: {
}
pOut->n = n;
MemSetTypeFlag(pOut, MEM_Blob);
- if( pC->isIndex ){
+ if( pC->isTable==0 ){
rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
}else{
rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
}
pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
UPDATE_MAX_BLOBSIZE(pOut);
+ REGISTER_TRACE(pOp->p2, pOut);
break;
}
/* Opcode: Rowid P1 P2 * * *
+** Synopsis: r[P2]=rowid
**
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
@@ -4324,7 +4441,7 @@ case OP_Rowid: { /* out2-prerelease */
pModule = pVtab->pModule;
assert( pModule->xRowid );
rc = pModule->xRowid(pC->pVtabCursor, &v);
- importVtabErrMsg(p, pVtab);
+ sqlite3VtabImportErrmsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
}else{
assert( pC->pCursor!=0 );
@@ -4355,7 +4472,7 @@ case OP_NullRow: {
assert( pC!=0 );
pC->nullRow = 1;
pC->rowidIsValid = 0;
- assert( pC->pCursor || pC->pVtabCursor );
+ pC->cacheStatus = CACHE_STALE;
if( pC->pCursor ){
sqlite3BtreeClearCursor(pC->pCursor);
}
@@ -4364,11 +4481,15 @@ case OP_NullRow: {
/* Opcode: Last P1 P2 * * *
**
-** The next use of the Rowid or Column or Next instruction for P1
+** The next use of the Rowid or Column or Prev instruction for P1
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
*/
case OP_Last: { /* jump */
VdbeCursor *pC;
@@ -4380,15 +4501,18 @@ case OP_Last: { /* jump */
assert( pC!=0 );
pCrsr = pC->pCursor;
res = 0;
- if( ALWAYS(pCrsr!=0) ){
- rc = sqlite3BtreeLast(pCrsr, &res);
- }
+ assert( pCrsr!=0 );
+ rc = sqlite3BtreeLast(pCrsr, &res);
pC->nullRow = (u8)res;
pC->deferredMoveto = 0;
pC->rowidIsValid = 0;
pC->cacheStatus = CACHE_STALE;
- if( pOp->p2>0 && res ){
- pc = pOp->p2 - 1;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = OP_Last;
+#endif
+ if( pOp->p2>0 ){
+ VdbeBranchTaken(res!=0,2);
+ if( res ) pc = pOp->p2 - 1;
}
break;
}
@@ -4412,7 +4536,7 @@ case OP_Sort: { /* jump */
sqlite3_sort_count++;
sqlite3_search_count--;
#endif
- p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
+ p->aCounter[SQLITE_STMTSTATUS_SORT]++;
/* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 * * *
@@ -4422,6 +4546,10 @@ case OP_Sort: { /* jump */
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
*/
case OP_Rewind: { /* jump */
VdbeCursor *pC;
@@ -4431,35 +4559,48 @@ case OP_Rewind: { /* jump */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
- assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
+ assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
res = 1;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = OP_Rewind;
+#endif
if( isSorter(pC) ){
rc = sqlite3VdbeSorterRewind(db, pC, &res);
}else{
pCrsr = pC->pCursor;
assert( pCrsr );
rc = sqlite3BtreeFirst(pCrsr, &res);
- pC->atFirst = res==0 ?1:0;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
pC->rowidIsValid = 0;
}
pC->nullRow = (u8)res;
assert( pOp->p2>0 && pOp->p2<p->nOp );
+ VdbeBranchTaken(res!=0,2);
if( res ){
pc = pOp->p2 - 1;
}
break;
}
-/* Opcode: Next P1 P2 * P4 P5
+/* Opcode: Next P1 P2 P3 P4 P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index. If there are no more key/value pairs then fall through
** to the following instruction. But if the cursor advance was successful,
** jump immediately to P2.
**
-** The P1 cursor must be for a real table, not a pseudo-table.
+** The Next opcode is only valid following an SeekGT, SeekGE, or
+** OP_Rewind opcode used to position the cursor. Next is not allowed
+** to follow SeekLT, SeekLE, or OP_Last.
+**
+** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
+** been opened prior to this opcode or the program will segfault.
+**
+** The P3 value is a hint to the btree implementation. If P3==1, that
+** means P1 is an SQL index and that this instruction could have been
+** omitted if that index had been unique. P3 is usually 0. P3 is
+** always either 0 or 1.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreeNext().
@@ -4467,16 +4608,32 @@ case OP_Rewind: { /* jump */
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
-** See also: Prev
+** See also: Prev, NextIfOpen
+*/
+/* Opcode: NextIfOpen P1 P2 P3 P4 P5
+**
+** This opcode works just like Next except that if cursor P1 is not
+** open it behaves a no-op.
*/
-/* Opcode: Prev P1 P2 * * P5
+/* Opcode: Prev P1 P2 P3 P4 P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index. If there is no previous key/value pairs then fall through
** to the following instruction. But if the cursor backup was successful,
** jump immediately to P2.
**
-** The P1 cursor must be for a real table, not a pseudo-table.
+**
+** The Prev opcode is only valid following an SeekLT, SeekLE, or
+** OP_Last opcode used to position the cursor. Prev is not allowed
+** to follow SeekGT, SeekGE, or OP_Rewind.
+**
+** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
+** not open then the behavior is undefined.
+**
+** The P3 value is a hint to the btree implementation. If P3==1, that
+** means P1 is an SQL index and that this instruction could have been
+** omitted if that index had been unique. P3 is usually 0. P3 is
+** always either 0 or 1.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreePrevious().
@@ -4484,45 +4641,69 @@ case OP_Rewind: { /* jump */
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
-case OP_SorterNext: /* jump */
-case OP_Prev: /* jump */
-case OP_Next: { /* jump */
+/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
+**
+** This opcode works just like Prev except that if cursor P1 is not
+** open it behaves a no-op.
+*/
+case OP_SorterNext: { /* jump */
VdbeCursor *pC;
int res;
- CHECK_FOR_INTERRUPT;
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ res = 0;
+ rc = sqlite3VdbeSorterNext(db, pC, &res);
+ goto next_tail;
+case OP_PrevIfOpen: /* jump */
+case OP_NextIfOpen: /* jump */
+ if( p->apCsr[pOp->p1]==0 ) break;
+ /* Fall through */
+case OP_Prev: /* jump */
+case OP_Next: /* jump */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( pOp->p5<=ArraySize(p->aCounter) );
+ assert( pOp->p5<ArraySize(p->aCounter) );
pC = p->apCsr[pOp->p1];
- if( pC==0 ){
- break; /* See ticket #2273 */
- }
- assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
- if( isSorter(pC) ){
- assert( pOp->opcode==OP_SorterNext );
- rc = sqlite3VdbeSorterNext(db, pC, &res);
- }else{
- res = 1;
- assert( pC->deferredMoveto==0 );
- assert( pC->pCursor );
- assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
- assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
- rc = pOp->p4.xAdvance(pC->pCursor, &res);
- }
- pC->nullRow = (u8)res;
+ res = pOp->p3;
+ assert( pC!=0 );
+ assert( pC->deferredMoveto==0 );
+ assert( pC->pCursor );
+ assert( res==0 || (res==1 && pC->isTable==0) );
+ testcase( res==1 );
+ assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
+ assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
+ assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
+ assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
+
+ /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
+ ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
+ assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
+ || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
+ || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
+ assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
+ || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
+ || pC->seekOp==OP_Last );
+
+ rc = pOp->p4.xAdvance(pC->pCursor, &res);
+next_tail:
pC->cacheStatus = CACHE_STALE;
+ VdbeBranchTaken(res==0,2);
if( res==0 ){
+ pC->nullRow = 0;
pc = pOp->p2 - 1;
- if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
+ p->aCounter[pOp->p5]++;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
+ }else{
+ pC->nullRow = 1;
}
pC->rowidIsValid = 0;
- break;
+ goto check_for_interrupt;
}
/* Opcode: IdxInsert P1 P2 P3 * P5
+** Synopsis: key=r[P2]
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions. This opcode writes that key
@@ -4531,6 +4712,14 @@ case OP_Next: { /* jump */
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
+** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
+** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
+** then the change counter is unchanged.
+**
+** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
+** just done a seek to the spot where the new entry is to be inserted.
+** This flag avoids doing an extra seek.
+**
** This instruction only works for indices. The equivalent instruction
** for tables is OP_Insert.
*/
@@ -4544,31 +4733,32 @@ case OP_IdxInsert: { /* in2 */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
- assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
+ assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
pIn2 = &aMem[pOp->p2];
assert( pIn2->flags & MEM_Blob );
pCrsr = pC->pCursor;
- if( ALWAYS(pCrsr!=0) ){
- assert( pC->isTable==0 );
- rc = ExpandBlob(pIn2);
- if( rc==SQLITE_OK ){
- if( isSorter(pC) ){
- rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
- }else{
- nKey = pIn2->n;
- zKey = pIn2->z;
- rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
- ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
- );
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
- }
+ if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
+ assert( pCrsr!=0 );
+ assert( pC->isTable==0 );
+ rc = ExpandBlob(pIn2);
+ if( rc==SQLITE_OK ){
+ if( isSorter(pC) ){
+ rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
+ }else{
+ nKey = pIn2->n;
+ zKey = pIn2->z;
+ rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
+ ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
+ );
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
}
}
break;
}
/* Opcode: IdxDelete P1 P2 P3 * *
+** Synopsis: key=r[P2@P3]
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the
@@ -4581,30 +4771,31 @@ case OP_IdxDelete: {
UnpackedRecord r;
assert( pOp->p3>0 );
- assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
+ assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
pCrsr = pC->pCursor;
- if( ALWAYS(pCrsr!=0) ){
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)pOp->p3;
- r.flags = 0;
- r.aMem = &aMem[pOp->p2];
+ assert( pCrsr!=0 );
+ assert( pOp->p5==0 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p3;
+ r.default_rc = 0;
+ r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
- rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
- if( rc==SQLITE_OK && res==0 ){
- rc = sqlite3BtreeDelete(pCrsr);
- }
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
+ rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
+ if( rc==SQLITE_OK && res==0 ){
+ rc = sqlite3BtreeDelete(pCrsr);
}
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
break;
}
/* Opcode: IdxRowid P1 P2 * * *
+** Synopsis: r[P2]=rowid
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1. This integer should be
@@ -4621,52 +4812,72 @@ case OP_IdxRowid: { /* out2-prerelease */
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
pCrsr = pC->pCursor;
+ assert( pCrsr!=0 );
pOut->flags = MEM_Null;
- if( ALWAYS(pCrsr!=0) ){
- rc = sqlite3VdbeCursorMoveto(pC);
- if( NEVER(rc) ) goto abort_due_to_error;
- assert( pC->deferredMoveto==0 );
- assert( pC->isTable==0 );
- if( !pC->nullRow ){
- rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- pOut->u.i = rowid;
- pOut->flags = MEM_Int;
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( NEVER(rc) ) goto abort_due_to_error;
+ assert( pC->deferredMoveto==0 );
+ assert( pC->isTable==0 );
+ if( !pC->nullRow ){
+ rowid = 0; /* Not needed. Only used to silence a warning. */
+ rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
}
+ pOut->u.i = rowid;
+ pOut->flags = MEM_Int;
}
break;
}
/* Opcode: IdxGE P1 P2 P3 P4 P5
+** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
-** key that omits the ROWID. Compare this key value against the index
-** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
+** key that omits the PRIMARY KEY. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
+** fields at the end.
**
** If the P1 index entry is greater than or equal to the key value
** then jump to P2. Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxGT P1 P2 P3 P4 P5
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
+** fields at the end.
**
-** If P5 is non-zero then the key value is increased by an epsilon
-** prior to the comparison. This make the opcode work like IdxGT except
-** that if the key from register P3 is a prefix of the key in the cursor,
-** the result is false whereas it would be true with IdxGT.
+** If the P1 index entry is greater than the key value
+** then jump to P2. Otherwise fall through to the next instruction.
*/
/* Opcode: IdxLT P1 P2 P3 P4 P5
+** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
-** key that omits the ROWID. Compare this key value against the index
-** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
+** key that omits the PRIMARY KEY or ROWID. Compare this key value against
+** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
+** ROWID on the P1 index.
**
** If the P1 index entry is less than the key value then jump to P2.
** Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxLE P1 P2 P3 P4 P5
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY or ROWID. Compare this key value against
+** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
+** ROWID on the P1 index.
**
-** If P5 is non-zero then the key value is increased by an epsilon prior
-** to the comparison. This makes the opcode work like IdxLE.
+** If the P1 index entry is less than or equal to the key value then jump
+** to P2. Otherwise fall through to the next instruction.
*/
+case OP_IdxLE: /* jump */
+case OP_IdxGT: /* jump */
case OP_IdxLT: /* jump */
-case OP_IdxGE: { /* jump */
+case OP_IdxGE: { /* jump */
VdbeCursor *pC;
int res;
UnpackedRecord r;
@@ -4675,31 +4886,36 @@ case OP_IdxGE: { /* jump */
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->isOrdered );
- if( ALWAYS(pC->pCursor!=0) ){
- assert( pC->deferredMoveto==0 );
- assert( pOp->p5==0 || pOp->p5==1 );
- assert( pOp->p4type==P4_INT32 );
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)pOp->p4.i;
- if( pOp->p5 ){
- r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
- }else{
- r.flags = UNPACKED_PREFIX_MATCH;
- }
- r.aMem = &aMem[pOp->p3];
+ assert( pC->pCursor!=0);
+ assert( pC->deferredMoveto==0 );
+ assert( pOp->p5==0 || pOp->p5==1 );
+ assert( pOp->p4type==P4_INT32 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p4.i;
+ if( pOp->opcode<OP_IdxLT ){
+ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
+ r.default_rc = -1;
+ }else{
+ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
+ r.default_rc = 0;
+ }
+ r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
- rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
- if( pOp->opcode==OP_IdxLT ){
- res = -res;
- }else{
- assert( pOp->opcode==OP_IdxGE );
- res++;
- }
- if( res>0 ){
- pc = pOp->p2 - 1 ;
- }
+ res = 0; /* Not needed. Only used to silence a warning. */
+ rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
+ assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
+ if( (pOp->opcode&1)==(OP_IdxLT&1) ){
+ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
+ res = -res;
+ }else{
+ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
+ res++;
+ }
+ VdbeBranchTaken(res>0,2);
+ if( res>0 ){
+ pc = pOp->p2 - 1 ;
}
break;
}
@@ -4730,15 +4946,18 @@ case OP_Destroy: { /* out2-prerelease */
Vdbe *pVdbe;
int iDb;
+ assert( p->readOnly==0 );
#ifndef SQLITE_OMIT_VIRTUALTABLE
iCnt = 0;
for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
- if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
+ if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
+ && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
+ ){
iCnt++;
}
}
#else
- iCnt = db->activeVdbeCnt;
+ iCnt = db->nVdbeRead;
#endif
pOut->flags = MEM_Null;
if( iCnt>1 ){
@@ -4747,7 +4966,8 @@ case OP_Destroy: { /* out2-prerelease */
}else{
iDb = pOp->p3;
assert( iCnt==1 );
- assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
+ assert( DbMaskTest(p->btreeMask, iDb) );
+ iMoved = 0; /* Not needed. Only to silence a warning. */
rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
pOut->flags = MEM_Int;
pOut->u.i = iMoved;
@@ -4785,7 +5005,8 @@ case OP_Clear: {
int nChange;
nChange = 0;
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
+ assert( p->readOnly==0 );
+ assert( DbMaskTest(p->btreeMask, pOp->p2) );
rc = sqlite3BtreeClearTable(
db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
);
@@ -4800,7 +5021,31 @@ case OP_Clear: {
break;
}
+/* Opcode: ResetSorter P1 * * * *
+**
+** Delete all contents from the ephemeral table or sorter
+** that is open on cursor P1.
+**
+** This opcode only works for cursors used for sorting and
+** opened with OP_OpenEphemeral or OP_SorterOpen.
+*/
+case OP_ResetSorter: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ if( pC->pSorter ){
+ sqlite3VdbeSorterReset(db, pC->pSorter);
+ }else{
+ assert( pC->isEphemeral );
+ rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
+ }
+ break;
+}
+
/* Opcode: CreateTable P1 P2 * * *
+** Synopsis: r[P2]=root iDb=P1
**
** Allocate a new table in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
@@ -4814,6 +5059,7 @@ case OP_Clear: {
** See also: CreateIndex
*/
/* Opcode: CreateIndex P1 P2 * * *
+** Synopsis: r[P2]=root iDb=P1
**
** Allocate a new index in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
@@ -4830,7 +5076,8 @@ case OP_CreateTable: { /* out2-prerelease */
pgno = 0;
assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
pDb = &db->aDb[pOp->p1];
assert( pDb->pBt!=0 );
if( pOp->opcode==OP_CreateTable ){
@@ -4917,7 +5164,8 @@ case OP_LoadAnalysis: {
**
** Remove the internal (in-memory) data structures that describe
** the table named P4 in database P1. This is called after a table
-** is dropped in order to keep the internal representation of the
+** is dropped from disk (using the Destroy opcode) in order to keep
+** the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {
@@ -4929,7 +5177,8 @@ case OP_DropTable: {
**
** Remove the internal (in-memory) data structures that describe
** the index named P4 in database P1. This is called after an index
-** is dropped in order to keep the internal representation of the
+** is dropped from disk (using the Destroy opcode)
+** in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {
@@ -4941,7 +5190,8 @@ case OP_DropIndex: {
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P4 in database P1. This is called after a trigger
-** is dropped in order to keep the internal representation of the
+** is dropped from disk (using the Destroy opcode) in order to keep
+** the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {
@@ -4978,12 +5228,13 @@ case OP_IntegrityCk: {
int nErr; /* Number of errors reported */
char *z; /* Text of the error report */
Mem *pnErr; /* Register keeping track of errors remaining */
-
+
+ assert( p->bIsReader );
nRoot = pOp->p2;
assert( nRoot>0 );
aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
if( aRoot==0 ) goto no_mem;
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
pnErr = &aMem[pOp->p3];
assert( (pnErr->flags & MEM_Int)!=0 );
assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
@@ -4993,7 +5244,7 @@ case OP_IntegrityCk: {
}
aRoot[j] = 0;
assert( pOp->p5<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
+ assert( DbMaskTest(p->btreeMask, pOp->p5) );
z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
(int)pnErr->u.i, &nErr);
sqlite3DbFree(db, aRoot);
@@ -5013,6 +5264,7 @@ case OP_IntegrityCk: {
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/* Opcode: RowSetAdd P1 P2 * * *
+** Synopsis: rowset(P1)=r[P2]
**
** Insert the integer value held by register P2 into a boolean index
** held in register P1.
@@ -5032,6 +5284,7 @@ case OP_RowSetAdd: { /* in1, in2 */
}
/* Opcode: RowSetRead P1 P2 P3 * *
+** Synopsis: r[P3]=rowset(P1)
**
** Extract the smallest value from boolean index P1 and put that value into
** register P3. Or, if boolean index P1 is initially empty, leave P3
@@ -5039,7 +5292,7 @@ case OP_RowSetAdd: { /* in1, in2 */
*/
case OP_RowSetRead: { /* jump, in1, out3 */
i64 val;
- CHECK_FOR_INTERRUPT;
+
pIn1 = &aMem[pOp->p1];
if( (pIn1->flags & MEM_RowSet)==0
|| sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
@@ -5047,14 +5300,17 @@ case OP_RowSetRead: { /* jump, in1, out3 */
/* The boolean index is empty */
sqlite3VdbeMemSetNull(pIn1);
pc = pOp->p2 - 1;
+ VdbeBranchTaken(1,2);
}else{
/* A value was pulled from the index */
sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
+ VdbeBranchTaken(0,2);
}
- break;
+ goto check_for_interrupt;
}
/* Opcode: RowSetTest P1 P2 P3 P4
+** Synopsis: if r[P3] in rowset(P1) goto P2
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1
** contains a RowSet object and that RowSet object contains
@@ -5097,9 +5353,8 @@ case OP_RowSetTest: { /* jump, in1, in3 */
assert( pOp->p4type==P4_INT32 );
assert( iSet==-1 || iSet>=0 );
if( iSet ){
- exists = sqlite3RowSetTest(pIn1->u.pRowSet,
- (u8)(iSet>=0 ? iSet & 0xf : 0xff),
- pIn3->u.i);
+ exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
+ VdbeBranchTaken(exists!=0,2);
if( exists ){
pc = pOp->p2 - 1;
break;
@@ -5114,7 +5369,7 @@ case OP_RowSetTest: { /* jump, in1, in3 */
#ifndef SQLITE_OMIT_TRIGGER
-/* Opcode: Program P1 P2 P3 P4 *
+/* Opcode: Program P1 P2 P3 P4 P5
**
** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
**
@@ -5126,6 +5381,8 @@ case OP_RowSetTest: { /* jump, in1, in3 */
** memory required by the sub-vdbe at runtime.
**
** P4 is a pointer to the VM containing the trigger program.
+**
+** If P5 is non-zero, then recursive program invocation is enabled.
*/
case OP_Program: { /* jump */
int nMem; /* Number of memory registers for sub-program */
@@ -5203,7 +5460,7 @@ case OP_Program: { /* jump */
pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
- pMem->flags = MEM_Invalid;
+ pMem->flags = MEM_Undefined;
pMem->db = db;
}
}else{
@@ -5258,6 +5515,7 @@ case OP_Param: { /* out2-prerelease */
#ifndef SQLITE_OMIT_FOREIGN_KEY
/* Opcode: FkCounter P1 P2 * * *
+** Synopsis: fkctr[P1]+=P2
**
** Increment a "constraint counter" by P2 (P2 may be negative or positive).
** If P1 is non-zero, the database constraint counter is incremented
@@ -5265,7 +5523,9 @@ case OP_Param: { /* out2-prerelease */
** statement counter is incremented (immediate foreign key constraints).
*/
case OP_FkCounter: {
- if( pOp->p1 ){
+ if( db->flags & SQLITE_DeferFKs ){
+ db->nDeferredImmCons += pOp->p2;
+ }else if( pOp->p1 ){
db->nDeferredCons += pOp->p2;
}else{
p->nFkConstraint += pOp->p2;
@@ -5274,6 +5534,7 @@ case OP_FkCounter: {
}
/* Opcode: FkIfZero P1 P2 * * *
+** Synopsis: if fkctr[P1]==0 goto P2
**
** This opcode tests if a foreign key constraint-counter is currently zero.
** If so, jump to instruction P2. Otherwise, fall through to the next
@@ -5286,9 +5547,11 @@ case OP_FkCounter: {
*/
case OP_FkIfZero: { /* jump */
if( pOp->p1 ){
- if( db->nDeferredCons==0 ) pc = pOp->p2-1;
+ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
+ if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
}else{
- if( p->nFkConstraint==0 ) pc = pOp->p2-1;
+ VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
+ if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
}
break;
}
@@ -5296,6 +5559,7 @@ case OP_FkIfZero: { /* jump */
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 P2 * * *
+** Synopsis: r[P1]=max(r[P1],r[P2])
**
** P1 is a register in the root frame of this VM (the root frame is
** different from the current frame if this instruction is being executed
@@ -5306,7 +5570,6 @@ case OP_FkIfZero: { /* jump */
** an integer.
*/
case OP_MemMax: { /* in2 */
- Mem *pIn1;
VdbeFrame *pFrame;
if( p->pFrame ){
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
@@ -5326,6 +5589,7 @@ case OP_MemMax: { /* in2 */
#endif /* SQLITE_OMIT_AUTOINCREMENT */
/* Opcode: IfPos P1 P2 * * *
+** Synopsis: if r[P1]>0 goto P2
**
** If the value of register P1 is 1 or greater, jump to P2.
**
@@ -5335,22 +5599,24 @@ case OP_MemMax: { /* in2 */
case OP_IfPos: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
+ VdbeBranchTaken( pIn1->u.i>0, 2);
if( pIn1->u.i>0 ){
pc = pOp->p2 - 1;
}
break;
}
-/* Opcode: IfNeg P1 P2 * * *
-**
-** If the value of register P1 is less than zero, jump to P2.
+/* Opcode: IfNeg P1 P2 P3 * *
+** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
**
-** It is illegal to use this instruction on a register that does
-** not contain an integer. An assertion fault will result if you try.
+** Register P1 must contain an integer. Add literal P3 to the value in
+** register P1 then if the value of register P1 is less than zero, jump to P2.
*/
case OP_IfNeg: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
+ pIn1->u.i += pOp->p3;
+ VdbeBranchTaken(pIn1->u.i<0, 2);
if( pIn1->u.i<0 ){
pc = pOp->p2 - 1;
}
@@ -5358,17 +5624,16 @@ case OP_IfNeg: { /* jump, in1 */
}
/* Opcode: IfZero P1 P2 P3 * *
+** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
**
** The register P1 must contain an integer. Add literal P3 to the
** value in register P1. If the result is exactly 0, jump to P2.
-**
-** It is illegal to use this instruction on a register that does
-** not contain an integer. An assertion fault will result if you try.
*/
case OP_IfZero: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
pIn1->u.i += pOp->p3;
+ VdbeBranchTaken(pIn1->u.i==0, 2);
if( pIn1->u.i==0 ){
pc = pOp->p2 - 1;
}
@@ -5376,6 +5641,7 @@ case OP_IfZero: { /* jump, in1 */
}
/* Opcode: AggStep * P2 P3 P4 P5
+** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate. The
** function has P5 arguments. P4 is a pointer to the FuncDef
@@ -5402,10 +5668,9 @@ case OP_AggStep: {
assert( memIsValid(pRec) );
apVal[i] = pRec;
memAboutToChange(p, pRec);
- sqlite3VdbeMemStoreType(pRec);
}
ctx.pFunc = pOp->p4.pFunc;
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
ctx.pMem = pMem = &aMem[pOp->p3];
pMem->n++;
ctx.s.flags = MEM_Null;
@@ -5416,7 +5681,7 @@ case OP_AggStep: {
ctx.isError = 0;
ctx.pColl = 0;
ctx.skipFlag = 0;
- if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
+ if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
assert( pOp>p->aOp );
assert( pOp[-1].p4type==P4_COLLSEQ );
assert( pOp[-1].opcode==OP_CollSeq );
@@ -5439,6 +5704,7 @@ case OP_AggStep: {
}
/* Opcode: AggFinal P1 P2 * P4 *
+** Synopsis: accum=r[P1] N=P2
**
** Execute the finalizer function for an aggregate. P1 is
** the memory location that is the accumulator for the aggregate.
@@ -5452,7 +5718,7 @@ case OP_AggStep: {
*/
case OP_AggFinal: {
Mem *pMem;
- assert( pOp->p1>0 && pOp->p1<=p->nMem );
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
pMem = &aMem[pOp->p1];
assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
@@ -5484,6 +5750,7 @@ case OP_Checkpoint: {
int aRes[3]; /* Results */
Mem *pMem; /* Write results here */
+ assert( p->readOnly==0 );
aRes[0] = 0;
aRes[1] = aRes[2] = -1;
assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
@@ -5503,7 +5770,7 @@ case OP_Checkpoint: {
#endif
#ifndef SQLITE_OMIT_PRAGMA
-/* Opcode: JournalMode P1 P2 P3 * P5
+/* Opcode: JournalMode P1 P2 P3 * *
**
** Change the journal mode of database P1 to P3. P3 must be one of the
** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
@@ -5533,6 +5800,7 @@ case OP_JournalMode: { /* out2-prerelease */
|| eNew==PAGER_JOURNALMODE_QUERY
);
assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( p->readOnly==0 );
pBt = db->aDb[pOp->p1].pBt;
pPager = sqlite3BtreePager(pBt);
@@ -5556,7 +5824,7 @@ case OP_JournalMode: { /* out2-prerelease */
if( (eNew!=eOld)
&& (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
){
- if( !db->autoCommit || db->activeVdbeCnt>1 ){
+ if( !db->autoCommit || db->nVdbeRead>1 ){
rc = SQLITE_ERROR;
sqlite3SetString(&p->zErrMsg, db,
"cannot change %s wal mode from within a transaction",
@@ -5615,6 +5883,7 @@ case OP_JournalMode: { /* out2-prerelease */
** a transaction.
*/
case OP_Vacuum: {
+ assert( p->readOnly==0 );
rc = sqlite3RunVacuum(&p->zErrMsg, db);
break;
}
@@ -5631,9 +5900,11 @@ case OP_IncrVacuum: { /* jump */
Btree *pBt;
assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
pBt = db->aDb[pOp->p1].pBt;
rc = sqlite3BtreeIncrVacuum(pBt);
+ VdbeBranchTaken(rc==SQLITE_DONE,2);
if( rc==SQLITE_DONE ){
pc = pOp->p2 - 1;
rc = SQLITE_OK;
@@ -5644,12 +5915,13 @@ case OP_IncrVacuum: { /* jump */
/* Opcode: Expire P1 * * * *
**
-** Cause precompiled statements to become expired. An expired statement
-** fails with an error code of SQLITE_SCHEMA if it is ever executed
-** (via sqlite3_step()).
+** Cause precompiled statements to expire. When an expired statement
+** is executed using sqlite3_step() it will either automatically
+** reprepare itself (if it was originally created using sqlite3_prepare_v2())
+** or it will fail with SQLITE_SCHEMA.
**
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
-** then only the currently executing statement is affected.
+** then only the currently executing statement is expired.
*/
case OP_Expire: {
if( !pOp->p1 ){
@@ -5662,6 +5934,7 @@ case OP_Expire: {
#ifndef SQLITE_OMIT_SHARED_CACHE
/* Opcode: TableLock P1 P2 P3 P4 *
+** Synopsis: iDb=P1 root=P2 write=P3
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled.
@@ -5680,7 +5953,7 @@ case OP_TableLock: {
if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
int p1 = pOp->p1;
assert( p1>=0 && p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
+ assert( DbMaskTest(p->btreeMask, p1) );
assert( isWriteLock==0 || isWriteLock==1 );
rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
if( (rc&0xFF)==SQLITE_LOCKED ){
@@ -5706,7 +5979,7 @@ case OP_VBegin: {
VTable *pVTab;
pVTab = pOp->p4.pVtab;
rc = sqlite3VtabBegin(db, pVTab);
- if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
+ if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
@@ -5750,13 +6023,14 @@ case OP_VOpen: {
sqlite3_vtab *pVtab;
sqlite3_module *pModule;
+ assert( p->bIsReader );
pCur = 0;
pVtabCursor = 0;
pVtab = pOp->p4.pVtab->pVtab;
pModule = (sqlite3_module *)pVtab->pModule;
assert(pVtab && pModule);
rc = pModule->xOpen(pVtab, &pVtabCursor);
- importVtabErrMsg(p, pVtab);
+ sqlite3VtabImportErrmsg(p, pVtab);
if( SQLITE_OK==rc ){
/* Initialize sqlite3_vtab_cursor base class */
pVtabCursor->pVtab = pVtab;
@@ -5765,7 +6039,6 @@ case OP_VOpen: {
pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
if( pCur ){
pCur->pVtabCursor = pVtabCursor;
- pCur->pModule = pVtabCursor->pVtab->pModule;
}else{
db->mallocFailed = 1;
pModule->xClose(pVtabCursor);
@@ -5777,6 +6050,7 @@ case OP_VOpen: {
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VFilter P1 P2 P3 P4 *
+** Synopsis: iplan=r[P3] zplan='P4'
**
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
** the filtered result set is empty.
@@ -5828,17 +6102,16 @@ case OP_VFilter: { /* jump */
apArg = p->apArg;
for(i = 0; i<nArg; i++){
apArg[i] = &pArgc[i+1];
- sqlite3VdbeMemStoreType(apArg[i]);
}
p->inVtabMethod = 1;
rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
p->inVtabMethod = 0;
- importVtabErrMsg(p, pVtab);
+ sqlite3VtabImportErrmsg(p, pVtab);
if( rc==SQLITE_OK ){
res = pModule->xEof(pVtabCursor);
}
-
+ VdbeBranchTaken(res!=0,2);
if( res ){
pc = pOp->p2 - 1;
}
@@ -5851,6 +6124,7 @@ case OP_VFilter: { /* jump */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VColumn P1 P2 P3 * *
+** Synopsis: r[P3]=vcolumn(P2)
**
** Store the value of the P2-th column of
** the row of the virtual-table that the
@@ -5864,7 +6138,7 @@ case OP_VColumn: {
VdbeCursor *pCur = p->apCsr[pOp->p1];
assert( pCur->pVtabCursor );
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
pDest = &aMem[pOp->p3];
memAboutToChange(p, pDest);
if( pCur->nullRow ){
@@ -5885,7 +6159,7 @@ case OP_VColumn: {
MemSetTypeFlag(&sContext.s, MEM_Null);
rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
- importVtabErrMsg(p, pVtab);
+ sqlite3VtabImportErrmsg(p, pVtab);
if( sContext.isError ){
rc = sContext.isError;
}
@@ -5938,16 +6212,16 @@ case OP_VNext: { /* jump */
p->inVtabMethod = 1;
rc = pModule->xNext(pCur->pVtabCursor);
p->inVtabMethod = 0;
- importVtabErrMsg(p, pVtab);
+ sqlite3VtabImportErrmsg(p, pVtab);
if( rc==SQLITE_OK ){
res = pModule->xEof(pCur->pVtabCursor);
}
-
+ VdbeBranchTaken(!res,2);
if( !res ){
/* If there is data, jump to P2 */
pc = pOp->p2 - 1;
}
- break;
+ goto check_for_interrupt;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
@@ -5966,6 +6240,7 @@ case OP_VRename: {
pName = &aMem[pOp->p1];
assert( pVtab->pModule->xRename );
assert( memIsValid(pName) );
+ assert( p->readOnly==0 );
REGISTER_TRACE(pOp->p1, pName);
assert( pName->flags & MEM_Str );
testcase( pName->enc==SQLITE_UTF8 );
@@ -5974,7 +6249,7 @@ case OP_VRename: {
rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
if( rc==SQLITE_OK ){
rc = pVtab->pModule->xRename(pVtab, pName->z);
- importVtabErrMsg(p, pVtab);
+ sqlite3VtabImportErrmsg(p, pVtab);
p->expired = 0;
}
break;
@@ -5982,7 +6257,8 @@ case OP_VRename: {
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VUpdate P1 P2 P3 P4 *
+/* Opcode: VUpdate P1 P2 P3 P4 P5
+** Synopsis: data=r[P3@P2]
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
@@ -6004,6 +6280,9 @@ case OP_VRename: {
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid()
** is set to the value of the rowid for the row just inserted.
+**
+** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
+** apply in the case of a constraint failure on an insert or update.
*/
case OP_VUpdate: {
sqlite3_vtab *pVtab;
@@ -6017,6 +6296,7 @@ case OP_VUpdate: {
assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
|| pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
);
+ assert( p->readOnly==0 );
pVtab = pOp->p4.pVtab->pVtab;
pModule = (sqlite3_module *)pVtab->pModule;
nArg = pOp->p2;
@@ -6028,14 +6308,13 @@ case OP_VUpdate: {
for(i=0; i<nArg; i++){
assert( memIsValid(pX) );
memAboutToChange(p, pX);
- sqlite3VdbeMemStoreType(pX);
apArg[i] = pX;
pX++;
}
db->vtabOnConflict = pOp->p5;
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
db->vtabOnConflict = vtabOnConflict;
- importVtabErrMsg(p, pVtab);
+ sqlite3VtabImportErrmsg(p, pVtab);
if( rc==SQLITE_OK && pOp->p1 ){
assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
db->lastRowid = lastRowid = rowid;
@@ -6091,16 +6370,26 @@ case OP_MaxPgcnt: { /* out2-prerelease */
#endif
-#ifndef SQLITE_OMIT_TRACE
-/* Opcode: Trace * * * P4 *
+/* Opcode: Init * P2 * P4 *
+** Synopsis: Start at P2
+**
+** Programs contain a single instance of this opcode as the very first
+** opcode.
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
+** Or if P4 is blank, use the string returned by sqlite3_sql().
+**
+** If P2 is not zero, jump to instruction P2.
*/
-case OP_Trace: {
+case OP_Init: { /* jump */
char *zTrace;
char *z;
+ if( pOp->p2 ){
+ pc = pOp->p2 - 1;
+ }
+#ifndef SQLITE_OMIT_TRACE
if( db->xTrace
&& !p->doingRerun
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
@@ -6109,6 +6398,16 @@ case OP_Trace: {
db->xTrace(db->pTraceArg, z);
sqlite3DbFree(db, z);
}
+#ifdef SQLITE_USE_FCNTL_TRACE
+ zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
+ if( zTrace ){
+ int i;
+ for(i=0; i<db->nDb; i++){
+ if( DbMaskTest(p->btreeMask, i)==0 ) continue;
+ sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
+ }
+ }
+#endif /* SQLITE_USE_FCNTL_TRACE */
#ifdef SQLITE_DEBUG
if( (db->flags & SQLITE_SqlTrace)!=0
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
@@ -6116,9 +6415,9 @@ case OP_Trace: {
sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
}
#endif /* SQLITE_DEBUG */
+#endif /* SQLITE_OMIT_TRACE */
break;
}
-#endif
/* Opcode: Noop * * * * *
@@ -6147,13 +6446,9 @@ default: { /* This is really OP_Noop and OP_Explain */
#ifdef VDBE_PROFILE
{
- u64 elapsed = sqlite3Hwtime() - start;
- pOp->cycles += elapsed;
+ u64 endTime = sqlite3Hwtime();
+ if( endTime>start ) pOp->cycles += endTime - start;
pOp->cnt++;
-#if 0
- fprintf(stdout, "%10llu ", elapsed);
- sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
-#endif
}
#endif
@@ -6166,13 +6461,13 @@ default: { /* This is really OP_Noop and OP_Explain */
assert( pc>=-1 && pc<p->nOp );
#ifdef SQLITE_DEBUG
- if( p->trace ){
- if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
+ if( db->flags & SQLITE_VdbeTrace ){
+ if( rc!=0 ) printf("rc=%d\n",rc);
if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
- registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
+ registerTrace(pOp->p2, &aMem[pOp->p2]);
}
if( pOp->opflags & OPFLG_OUT3 ){
- registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
+ registerTrace(pOp->p3, &aMem[pOp->p3]);
}
}
#endif /* SQLITE_DEBUG */
@@ -6200,6 +6495,8 @@ vdbe_error_halt:
** top. */
vdbe_return:
db->lastRowid = lastRowid;
+ testcase( nVmStep>0 );
+ p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
sqlite3VdbeLeave(p);
return rc;