summaryrefslogtreecommitdiff
path: root/src/util.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/util.c')
-rw-r--r--src/util.c213
1 files changed, 185 insertions, 28 deletions
diff --git a/src/util.c b/src/util.c
index d83a630..619af7f 100644
--- a/src/util.c
+++ b/src/util.c
@@ -31,6 +31,24 @@ void sqlite3Coverage(int x){
}
#endif
+/*
+** Give a callback to the test harness that can be used to simulate faults
+** in places where it is difficult or expensive to do so purely by means
+** of inputs.
+**
+** The intent of the integer argument is to let the fault simulator know
+** which of multiple sqlite3FaultSim() calls has been hit.
+**
+** Return whatever integer value the test callback returns, or return
+** SQLITE_OK if no test callback is installed.
+*/
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+int sqlite3FaultSim(int iTest){
+ int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
+ return xCallback ? xCallback(iTest) : SQLITE_OK;
+}
+#endif
+
#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Return true if the floating point value is Not a Number (NaN).
@@ -115,18 +133,17 @@ int sqlite3Strlen30(const char *z){
** to NULL.
*/
void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
- if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
- db->errCode = err_code;
- if( zFormat ){
- char *z;
- va_list ap;
- va_start(ap, zFormat);
- z = sqlite3VMPrintf(db, zFormat, ap);
- va_end(ap);
- sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
- }else{
- sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
- }
+ assert( db!=0 );
+ db->errCode = err_code;
+ if( zFormat && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
+ char *z;
+ va_list ap;
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
+ }else if( db->pErr ){
+ sqlite3ValueSetNull(db->pErr);
}
}
@@ -193,7 +210,8 @@ int sqlite3Dequote(char *z){
case '[': quote = ']'; break; /* For MS SqlServer compatibility */
default: return -1;
}
- for(i=1, j=0; ALWAYS(z[i]); i++){
+ for(i=1, j=0;; i++){
+ assert( z[i] );
if( z[i]==quote ){
if( z[i+1]==quote ){
z[j++] = quote;
@@ -457,19 +475,19 @@ static int compare2pow63(const char *zNum, int incr){
return c;
}
-
/*
-** Convert zNum to a 64-bit signed integer.
+** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
+** routine does *not* accept hexadecimal notation.
**
** If the zNum value is representable as a 64-bit twos-complement
** integer, then write that value into *pNum and return 0.
**
-** If zNum is exactly 9223372036854665808, return 2. This special
-** case is broken out because while 9223372036854665808 cannot be a
-** signed 64-bit integer, its negative -9223372036854665808 can be.
+** If zNum is exactly 9223372036854775808, return 2. This special
+** case is broken out because while 9223372036854775808 cannot be a
+** signed 64-bit integer, its negative -9223372036854775808 can be.
**
** If zNum is too big for a 64-bit integer and is not
-** 9223372036854665808 or if zNum contains any non-numeric text,
+** 9223372036854775808 or if zNum contains any non-numeric text,
** then return 1.
**
** length is the number of bytes in the string (bytes, not characters).
@@ -511,7 +529,7 @@ int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
u = u*10 + c - '0';
}
if( u>LARGEST_INT64 ){
- *pNum = SMALLEST_INT64;
+ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
}else if( neg ){
*pNum = -(i64)u;
}else{
@@ -542,16 +560,49 @@ int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
/* zNum is exactly 9223372036854775808. Fits if negative. The
** special case 2 overflow if positive */
assert( u-1==LARGEST_INT64 );
- assert( (*pNum)==SMALLEST_INT64 );
return neg ? 0 : 2;
}
}
}
/*
+** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
+** into a 64-bit signed integer. This routine accepts hexadecimal literals,
+** whereas sqlite3Atoi64() does not.
+**
+** Returns:
+**
+** 0 Successful transformation. Fits in a 64-bit signed integer.
+** 1 Integer too large for a 64-bit signed integer or is malformed
+** 2 Special case of 9223372036854775808
+*/
+int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
+#ifndef SQLITE_OMIT_HEX_INTEGER
+ if( z[0]=='0'
+ && (z[1]=='x' || z[1]=='X')
+ && sqlite3Isxdigit(z[2])
+ ){
+ u64 u = 0;
+ int i, k;
+ for(i=2; z[i]=='0'; i++){}
+ for(k=i; sqlite3Isxdigit(z[k]); k++){
+ u = u*16 + sqlite3HexToInt(z[k]);
+ }
+ memcpy(pOut, &u, 8);
+ return (z[k]==0 && k-i<=16) ? 0 : 1;
+ }else
+#endif /* SQLITE_OMIT_HEX_INTEGER */
+ {
+ return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
+ }
+}
+
+/*
** If zNum represents an integer that will fit in 32-bits, then set
** *pValue to that integer and return true. Otherwise return false.
**
+** This routine accepts both decimal and hexadecimal notation for integers.
+**
** Any non-numeric characters that following zNum are ignored.
** This is different from sqlite3Atoi64() which requires the
** input number to be zero-terminated.
@@ -566,7 +617,25 @@ int sqlite3GetInt32(const char *zNum, int *pValue){
}else if( zNum[0]=='+' ){
zNum++;
}
- while( zNum[0]=='0' ) zNum++;
+#ifndef SQLITE_OMIT_HEX_INTEGER
+ else if( zNum[0]=='0'
+ && (zNum[1]=='x' || zNum[1]=='X')
+ && sqlite3Isxdigit(zNum[2])
+ ){
+ u32 u = 0;
+ zNum += 2;
+ while( zNum[0]=='0' ) zNum++;
+ for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
+ u = u*16 + sqlite3HexToInt(zNum[i]);
+ }
+ if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
+ memcpy(pValue, &u, 4);
+ return 1;
+ }else{
+ return 0;
+ }
+ }
+#endif
for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
v = v*10 + c;
}
@@ -1002,7 +1071,8 @@ int sqlite3VarintLen(u64 v){
** Read or write a four-byte big-endian integer value.
*/
u32 sqlite3Get4byte(const u8 *p){
- return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
+ testcase( p[0]&0x80 );
+ return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
}
void sqlite3Put4byte(unsigned char *p, u32 v){
p[0] = (u8)(v>>24);
@@ -1123,13 +1193,12 @@ int sqlite3AddInt64(i64 *pA, i64 iB){
testcase( iA>0 && LARGEST_INT64 - iA == iB );
testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
- *pA += iB;
}else{
testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
- *pA += iB;
}
+ *pA += iB;
return 0;
}
int sqlite3SubInt64(i64 *pA, i64 iB){
@@ -1153,9 +1222,18 @@ int sqlite3MulInt64(i64 *pA, i64 iB){
iA0 = iA % TWOPOWER32;
iB1 = iB/TWOPOWER32;
iB0 = iB % TWOPOWER32;
- if( iA1*iB1 != 0 ) return 1;
- assert( iA1*iB0==0 || iA0*iB1==0 );
- r = iA1*iB0 + iA0*iB1;
+ if( iA1==0 ){
+ if( iB1==0 ){
+ *pA *= iB;
+ return 0;
+ }
+ r = iA0*iB1;
+ }else if( iB1==0 ){
+ r = iA1*iB0;
+ }else{
+ /* If both iA1 and iB1 are non-zero, overflow will result */
+ return 1;
+ }
testcase( r==(-TWOPOWER31)-1 );
testcase( r==(-TWOPOWER31) );
testcase( r==TWOPOWER31 );
@@ -1207,3 +1285,82 @@ void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
}
}
#endif
+
+/*
+** Find (an approximate) sum of two LogEst values. This computation is
+** not a simple "+" operator because LogEst is stored as a logarithmic
+** value.
+**
+*/
+LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
+ static const unsigned char x[] = {
+ 10, 10, /* 0,1 */
+ 9, 9, /* 2,3 */
+ 8, 8, /* 4,5 */
+ 7, 7, 7, /* 6,7,8 */
+ 6, 6, 6, /* 9,10,11 */
+ 5, 5, 5, /* 12-14 */
+ 4, 4, 4, 4, /* 15-18 */
+ 3, 3, 3, 3, 3, 3, /* 19-24 */
+ 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
+ };
+ if( a>=b ){
+ if( a>b+49 ) return a;
+ if( a>b+31 ) return a+1;
+ return a+x[a-b];
+ }else{
+ if( b>a+49 ) return b;
+ if( b>a+31 ) return b+1;
+ return b+x[b-a];
+ }
+}
+
+/*
+** Convert an integer into a LogEst. In other words, compute an
+** approximation for 10*log2(x).
+*/
+LogEst sqlite3LogEst(u64 x){
+ static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
+ LogEst y = 40;
+ if( x<8 ){
+ if( x<2 ) return 0;
+ while( x<8 ){ y -= 10; x <<= 1; }
+ }else{
+ while( x>255 ){ y += 40; x >>= 4; }
+ while( x>15 ){ y += 10; x >>= 1; }
+ }
+ return a[x&7] + y - 10;
+}
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Convert a double into a LogEst
+** In other words, compute an approximation for 10*log2(x).
+*/
+LogEst sqlite3LogEstFromDouble(double x){
+ u64 a;
+ LogEst e;
+ assert( sizeof(x)==8 && sizeof(a)==8 );
+ if( x<=1 ) return 0;
+ if( x<=2000000000 ) return sqlite3LogEst((u64)x);
+ memcpy(&a, &x, 8);
+ e = (a>>52) - 1022;
+ return e*10;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** Convert a LogEst into an integer.
+*/
+u64 sqlite3LogEstToInt(LogEst x){
+ u64 n;
+ if( x<10 ) return 1;
+ n = x%10;
+ x /= 10;
+ if( n>=5 ) n -= 2;
+ else if( n>=1 ) n -= 1;
+ if( x>=3 ){
+ return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
+ }
+ return (n+8)>>(3-x);
+}