summaryrefslogtreecommitdiff
path: root/src/test_fuzzer.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/test_fuzzer.c')
-rw-r--r--src/test_fuzzer.c1215
1 files changed, 0 insertions, 1215 deletions
diff --git a/src/test_fuzzer.c b/src/test_fuzzer.c
deleted file mode 100644
index 10496f2..0000000
--- a/src/test_fuzzer.c
+++ /dev/null
@@ -1,1215 +0,0 @@
-/*
-** 2011 March 24
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** Code for a demonstration virtual table that generates variations
-** on an input word at increasing edit distances from the original.
-**
-** A fuzzer virtual table is created like this:
-**
-** CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>);
-**
-** When it is created, the new fuzzer table must be supplied with the
-** name of a "fuzzer data table", which must reside in the same database
-** file as the new fuzzer table. The fuzzer data table contains the various
-** transformations and their costs that the fuzzer logic uses to generate
-** variations.
-**
-** The fuzzer data table must contain exactly four columns (more precisely,
-** the statement "SELECT * FROM <fuzzer_data_table>" must return records
-** that consist of four columns). It does not matter what the columns are
-** named.
-**
-** Each row in the fuzzer data table represents a single character
-** transformation. The left most column of the row (column 0) contains an
-** integer value - the identifier of the ruleset to which the transformation
-** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the
-** row (column 0) contains the input character or characters. The third
-** column contains the output character or characters. And the fourth column
-** contains the integer cost of making the transformation. For example:
-**
-** CREATE TABLE f_data(ruleset, cFrom, cTo, Cost);
-** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100);
-** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87);
-** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38);
-** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40);
-**
-** The first row inserted into the fuzzer data table by the SQL script
-** above indicates that the cost of inserting a letter 'a' is 100. (All
-** costs are integers. We recommend that costs be scaled so that the
-** average cost is around 100.) The second INSERT statement creates a rule
-** saying that the cost of deleting a single letter 'b' is 87. The third
-** and fourth INSERT statements mean that the cost of transforming a
-** single letter "o" into the two-letter sequence "oe" is 38 and that the
-** cost of transforming "oe" back into "o" is 40.
-**
-** The contents of the fuzzer data table are loaded into main memory when
-** a fuzzer table is first created, and may be internally reloaded by the
-** system at any subsequent time. Therefore, the fuzzer data table should be
-** populated before the fuzzer table is created and not modified thereafter.
-** If you do need to modify the contents of the fuzzer data table, it is
-** recommended that the associated fuzzer table be dropped, the fuzzer data
-** table edited, and the fuzzer table recreated within a single transaction.
-** Alternatively, the fuzzer data table can be edited then the database
-** connection can be closed and reopened.
-**
-** Once it has been created, the fuzzer table can be queried as follows:
-**
-** SELECT word, distance FROM f
-** WHERE word MATCH 'abcdefg'
-** AND distance<200;
-**
-** This first query outputs the string "abcdefg" and all strings that
-** can be derived from that string by appling the specified transformations.
-** The strings are output together with their total transformation cost
-** (called "distance") and appear in order of increasing cost. No string
-** is output more than once. If there are multiple ways to transform the
-** target string into the output string then the lowest cost transform is
-** the one that is returned. In the example, the search is limited to
-** strings with a total distance of less than 200.
-**
-** The fuzzer is a read-only table. Any attempt to DELETE, INSERT, or
-** UPDATE on a fuzzer table will throw an error.
-**
-** It is important to put some kind of a limit on the fuzzer output. This
-** can be either in the form of a LIMIT clause at the end of the query,
-** or better, a "distance<NNN" constraint where NNN is some number. The
-** running time and memory requirement is exponential in the value of NNN
-** so you want to make sure that NNN is not too big. A value of NNN that
-** is about twice the average transformation cost seems to give good results.
-**
-** The fuzzer table can be useful for tasks such as spelling correction.
-** Suppose there is a second table vocabulary(w) where the w column contains
-** all correctly spelled words. Let $word be a word you want to look up.
-**
-** SELECT vocabulary.w FROM f, vocabulary
-** WHERE f.word MATCH $word
-** AND f.distance<=200
-** AND f.word=vocabulary.w
-** LIMIT 20
-**
-** The query above gives the 20 closest words to the $word being tested.
-** (Note that for good performance, the vocubulary.w column should be
-** indexed.)
-**
-** A similar query can be used to find all words in the dictionary that
-** begin with some prefix $prefix:
-**
-** SELECT vocabulary.w FROM f, vocabulary
-** WHERE f.word MATCH $prefix
-** AND f.distance<=200
-** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF')
-** LIMIT 50
-**
-** This last query will show up to 50 words out of the vocabulary that
-** match or nearly match the $prefix.
-**
-** MULTIPLE RULE SETS
-**
-** Normally, the "ruleset" value associated with all character transformations
-** in the fuzzer data table is zero. However, if required, the fuzzer table
-** allows multiple rulesets to be defined. Each query uses only a single
-** ruleset. This allows, for example, a single fuzzer table to support
-** multiple languages.
-**
-** By default, only the rules from ruleset 0 are used. To specify an
-** alternative ruleset, a "ruleset = ?" expression must be added to the
-** WHERE clause of a SELECT, where ? is the identifier of the desired
-** ruleset. For example:
-**
-** SELECT vocabulary.w FROM f, vocabulary
-** WHERE f.word MATCH $word
-** AND f.distance<=200
-** AND f.word=vocabulary.w
-** AND f.ruleset=1 -- Specify the ruleset to use here
-** LIMIT 20
-**
-** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset
-** 0 is used.
-**
-** LIMITS
-**
-** The maximum ruleset number is 2147483647. The maximum length of either
-** of the strings in the second or third column of the fuzzer data table
-** is 50 bytes. The maximum cost on a rule is 1000.
-*/
-
-/* If SQLITE_DEBUG is not defined, disable assert statements. */
-#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
-# define NDEBUG
-#endif
-
-#include "sqlite3.h"
-#include <stdlib.h>
-#include <string.h>
-#include <assert.h>
-#include <stdio.h>
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-
-/*
-** Forward declaration of objects used by this implementation
-*/
-typedef struct fuzzer_vtab fuzzer_vtab;
-typedef struct fuzzer_cursor fuzzer_cursor;
-typedef struct fuzzer_rule fuzzer_rule;
-typedef struct fuzzer_seen fuzzer_seen;
-typedef struct fuzzer_stem fuzzer_stem;
-
-/*
-** Various types.
-**
-** fuzzer_cost is the "cost" of an edit operation.
-**
-** fuzzer_len is the length of a matching string.
-**
-** fuzzer_ruleid is an ruleset identifier.
-*/
-typedef int fuzzer_cost;
-typedef signed char fuzzer_len;
-typedef int fuzzer_ruleid;
-
-/*
-** Limits
-*/
-#define FUZZER_MX_LENGTH 50 /* Maximum length of a rule string */
-#define FUZZER_MX_RULEID 2147483647 /* Maximum rule ID */
-#define FUZZER_MX_COST 1000 /* Maximum single-rule cost */
-#define FUZZER_MX_OUTPUT_LENGTH 100 /* Maximum length of an output string */
-
-
-/*
-** Each transformation rule is stored as an instance of this object.
-** All rules are kept on a linked list sorted by rCost.
-*/
-struct fuzzer_rule {
- fuzzer_rule *pNext; /* Next rule in order of increasing rCost */
- char *zFrom; /* Transform from */
- fuzzer_cost rCost; /* Cost of this transformation */
- fuzzer_len nFrom, nTo; /* Length of the zFrom and zTo strings */
- fuzzer_ruleid iRuleset; /* The rule set to which this rule belongs */
- char zTo[4]; /* Transform to (extra space appended) */
-};
-
-/*
-** A stem object is used to generate variants. It is also used to record
-** previously generated outputs.
-**
-** Every stem is added to a hash table as it is output. Generation of
-** duplicate stems is suppressed.
-**
-** Active stems (those that might generate new outputs) are kepts on a linked
-** list sorted by increasing cost. The cost is the sum of rBaseCost and
-** pRule->rCost.
-*/
-struct fuzzer_stem {
- char *zBasis; /* Word being fuzzed */
- const fuzzer_rule *pRule; /* Current rule to apply */
- fuzzer_stem *pNext; /* Next stem in rCost order */
- fuzzer_stem *pHash; /* Next stem with same hash on zBasis */
- fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */
- fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */
- fuzzer_len nBasis; /* Length of the zBasis string */
- fuzzer_len n; /* Apply pRule at this character offset */
-};
-
-/*
-** A fuzzer virtual-table object
-*/
-struct fuzzer_vtab {
- sqlite3_vtab base; /* Base class - must be first */
- char *zClassName; /* Name of this class. Default: "fuzzer" */
- fuzzer_rule *pRule; /* All active rules in this fuzzer */
- int nCursor; /* Number of active cursors */
-};
-
-#define FUZZER_HASH 4001 /* Hash table size */
-#define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */
-
-/* A fuzzer cursor object */
-struct fuzzer_cursor {
- sqlite3_vtab_cursor base; /* Base class - must be first */
- sqlite3_int64 iRowid; /* The rowid of the current word */
- fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */
- fuzzer_cost rLimit; /* Maximum cost of any term */
- fuzzer_stem *pStem; /* Stem with smallest rCostX */
- fuzzer_stem *pDone; /* Stems already processed to completion */
- fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */
- int mxQueue; /* Largest used index in aQueue[] */
- char *zBuf; /* Temporary use buffer */
- int nBuf; /* Bytes allocated for zBuf */
- int nStem; /* Number of stems allocated */
- int iRuleset; /* Only process rules from this ruleset */
- fuzzer_rule nullRule; /* Null rule used first */
- fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */
-};
-
-/*
-** The two input rule lists are both sorted in order of increasing
-** cost. Merge them together into a single list, sorted by cost, and
-** return a pointer to the head of that list.
-*/
-static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){
- fuzzer_rule head;
- fuzzer_rule *pTail;
-
- pTail = &head;
- while( pA && pB ){
- if( pA->rCost<=pB->rCost ){
- pTail->pNext = pA;
- pTail = pA;
- pA = pA->pNext;
- }else{
- pTail->pNext = pB;
- pTail = pB;
- pB = pB->pNext;
- }
- }
- if( pA==0 ){
- pTail->pNext = pB;
- }else{
- pTail->pNext = pA;
- }
- return head.pNext;
-}
-
-/*
-** Statement pStmt currently points to a row in the fuzzer data table. This
-** function allocates and populates a fuzzer_rule structure according to
-** the content of the row.
-**
-** If successful, *ppRule is set to point to the new object and SQLITE_OK
-** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point
-** to an error message and an SQLite error code returned.
-*/
-static int fuzzerLoadOneRule(
- fuzzer_vtab *p, /* Fuzzer virtual table handle */
- sqlite3_stmt *pStmt, /* Base rule on statements current row */
- fuzzer_rule **ppRule, /* OUT: New rule object */
- char **pzErr /* OUT: Error message */
-){
- sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0);
- const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1);
- const char *zTo = (const char *)sqlite3_column_text(pStmt, 2);
- int nCost = sqlite3_column_int(pStmt, 3);
-
- int rc = SQLITE_OK; /* Return code */
- int nFrom; /* Size of string zFrom, in bytes */
- int nTo; /* Size of string zTo, in bytes */
- fuzzer_rule *pRule = 0; /* New rule object to return */
-
- if( zFrom==0 ) zFrom = "";
- if( zTo==0 ) zTo = "";
- nFrom = (int)strlen(zFrom);
- nTo = (int)strlen(zTo);
-
- /* Silently ignore null transformations */
- if( strcmp(zFrom, zTo)==0 ){
- *ppRule = 0;
- return SQLITE_OK;
- }
-
- if( nCost<=0 || nCost>FUZZER_MX_COST ){
- *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d",
- p->zClassName, FUZZER_MX_COST
- );
- rc = SQLITE_ERROR;
- }else
- if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){
- *pzErr = sqlite3_mprintf("%s: maximum string length is %d",
- p->zClassName, FUZZER_MX_LENGTH
- );
- rc = SQLITE_ERROR;
- }else
- if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){
- *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d",
- p->zClassName, FUZZER_MX_RULEID
- );
- rc = SQLITE_ERROR;
- }else{
-
- pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
- if( pRule==0 ){
- rc = SQLITE_NOMEM;
- }else{
- memset(pRule, 0, sizeof(*pRule));
- pRule->zFrom = &pRule->zTo[nTo+1];
- pRule->nFrom = nFrom;
- memcpy(pRule->zFrom, zFrom, nFrom+1);
- memcpy(pRule->zTo, zTo, nTo+1);
- pRule->nTo = nTo;
- pRule->rCost = nCost;
- pRule->iRuleset = (int)iRuleset;
- }
- }
-
- *ppRule = pRule;
- return rc;
-}
-
-/*
-** Load the content of the fuzzer data table into memory.
-*/
-static int fuzzerLoadRules(
- sqlite3 *db, /* Database handle */
- fuzzer_vtab *p, /* Virtual fuzzer table to configure */
- const char *zDb, /* Database containing rules data */
- const char *zData, /* Table containing rules data */
- char **pzErr /* OUT: Error message */
-){
- int rc = SQLITE_OK; /* Return code */
- char *zSql; /* SELECT used to read from rules table */
- fuzzer_rule *pHead = 0;
-
- zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData);
- if( zSql==0 ){
- rc = SQLITE_NOMEM;
- }else{
- int rc2; /* finalize() return code */
- sqlite3_stmt *pStmt = 0;
- rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
- if( rc!=SQLITE_OK ){
- *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db));
- }else if( sqlite3_column_count(pStmt)!=4 ){
- *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4",
- p->zClassName, zData, sqlite3_column_count(pStmt)
- );
- rc = SQLITE_ERROR;
- }else{
- while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
- fuzzer_rule *pRule = 0;
- rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr);
- if( pRule ){
- pRule->pNext = pHead;
- pHead = pRule;
- }
- }
- }
- rc2 = sqlite3_finalize(pStmt);
- if( rc==SQLITE_OK ) rc = rc2;
- }
- sqlite3_free(zSql);
-
- /* All rules are now in a singly linked list starting at pHead. This
- ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to
- ** point to the head of the sorted list.
- */
- if( rc==SQLITE_OK ){
- unsigned int i;
- fuzzer_rule *pX;
- fuzzer_rule *a[15];
- for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
- while( (pX = pHead)!=0 ){
- pHead = pX->pNext;
- pX->pNext = 0;
- for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
- pX = fuzzerMergeRules(a[i], pX);
- a[i] = 0;
- }
- a[i] = fuzzerMergeRules(a[i], pX);
- }
- for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
- pX = fuzzerMergeRules(a[i], pX);
- }
- p->pRule = fuzzerMergeRules(p->pRule, pX);
- }else{
- /* An error has occurred. Setting p->pRule to point to the head of the
- ** allocated list ensures that the list will be cleaned up in this case.
- */
- assert( p->pRule==0 );
- p->pRule = pHead;
- }
-
- return rc;
-}
-
-/*
-** This function converts an SQL quoted string into an unquoted string
-** and returns a pointer to a buffer allocated using sqlite3_malloc()
-** containing the result. The caller should eventually free this buffer
-** using sqlite3_free.
-**
-** Examples:
-**
-** "abc" becomes abc
-** 'xyz' becomes xyz
-** [pqr] becomes pqr
-** `mno` becomes mno
-*/
-static char *fuzzerDequote(const char *zIn){
- int nIn; /* Size of input string, in bytes */
- char *zOut; /* Output (dequoted) string */
-
- nIn = (int)strlen(zIn);
- zOut = sqlite3_malloc(nIn+1);
- if( zOut ){
- char q = zIn[0]; /* Quote character (if any ) */
-
- if( q!='[' && q!= '\'' && q!='"' && q!='`' ){
- memcpy(zOut, zIn, nIn+1);
- }else{
- int iOut = 0; /* Index of next byte to write to output */
- int iIn; /* Index of next byte to read from input */
-
- if( q=='[' ) q = ']';
- for(iIn=1; iIn<nIn; iIn++){
- if( zIn[iIn]==q ) iIn++;
- zOut[iOut++] = zIn[iIn];
- }
- }
- assert( (int)strlen(zOut)<=nIn );
- }
- return zOut;
-}
-
-/*
-** xDisconnect/xDestroy method for the fuzzer module.
-*/
-static int fuzzerDisconnect(sqlite3_vtab *pVtab){
- fuzzer_vtab *p = (fuzzer_vtab*)pVtab;
- assert( p->nCursor==0 );
- while( p->pRule ){
- fuzzer_rule *pRule = p->pRule;
- p->pRule = pRule->pNext;
- sqlite3_free(pRule);
- }
- sqlite3_free(p);
- return SQLITE_OK;
-}
-
-/*
-** xConnect/xCreate method for the fuzzer module. Arguments are:
-**
-** argv[0] -> module name ("fuzzer")
-** argv[1] -> database name
-** argv[2] -> table name
-** argv[3] -> fuzzer rule table name
-*/
-static int fuzzerConnect(
- sqlite3 *db,
- void *pAux,
- int argc, const char *const*argv,
- sqlite3_vtab **ppVtab,
- char **pzErr
-){
- int rc = SQLITE_OK; /* Return code */
- fuzzer_vtab *pNew = 0; /* New virtual table */
- const char *zModule = argv[0];
- const char *zDb = argv[1];
-
- if( argc!=4 ){
- *pzErr = sqlite3_mprintf(
- "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule
- );
- rc = SQLITE_ERROR;
- }else{
- int nModule; /* Length of zModule, in bytes */
-
- nModule = (int)strlen(zModule);
- pNew = sqlite3_malloc( sizeof(*pNew) + nModule + 1);
- if( pNew==0 ){
- rc = SQLITE_NOMEM;
- }else{
- char *zTab; /* Dequoted name of fuzzer data table */
-
- memset(pNew, 0, sizeof(*pNew));
- pNew->zClassName = (char*)&pNew[1];
- memcpy(pNew->zClassName, zModule, nModule+1);
-
- zTab = fuzzerDequote(argv[3]);
- if( zTab==0 ){
- rc = SQLITE_NOMEM;
- }else{
- rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr);
- sqlite3_free(zTab);
- }
-
- if( rc==SQLITE_OK ){
- rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)");
- }
- if( rc!=SQLITE_OK ){
- fuzzerDisconnect((sqlite3_vtab *)pNew);
- pNew = 0;
- }
- }
- }
-
- *ppVtab = (sqlite3_vtab *)pNew;
- return rc;
-}
-
-/*
-** Open a new fuzzer cursor.
-*/
-static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
- fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
- fuzzer_cursor *pCur;
- pCur = sqlite3_malloc( sizeof(*pCur) );
- if( pCur==0 ) return SQLITE_NOMEM;
- memset(pCur, 0, sizeof(*pCur));
- pCur->pVtab = p;
- *ppCursor = &pCur->base;
- p->nCursor++;
- return SQLITE_OK;
-}
-
-/*
-** Free all stems in a list.
-*/
-static void fuzzerClearStemList(fuzzer_stem *pStem){
- while( pStem ){
- fuzzer_stem *pNext = pStem->pNext;
- sqlite3_free(pStem);
- pStem = pNext;
- }
-}
-
-/*
-** Free up all the memory allocated by a cursor. Set it rLimit to 0
-** to indicate that it is at EOF.
-*/
-static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){
- int i;
- fuzzerClearStemList(pCur->pStem);
- fuzzerClearStemList(pCur->pDone);
- for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]);
- pCur->rLimit = (fuzzer_cost)0;
- if( clearHash && pCur->nStem ){
- pCur->mxQueue = 0;
- pCur->pStem = 0;
- pCur->pDone = 0;
- memset(pCur->aQueue, 0, sizeof(pCur->aQueue));
- memset(pCur->apHash, 0, sizeof(pCur->apHash));
- }
- pCur->nStem = 0;
-}
-
-/*
-** Close a fuzzer cursor.
-*/
-static int fuzzerClose(sqlite3_vtab_cursor *cur){
- fuzzer_cursor *pCur = (fuzzer_cursor *)cur;
- fuzzerClearCursor(pCur, 0);
- sqlite3_free(pCur->zBuf);
- pCur->pVtab->nCursor--;
- sqlite3_free(pCur);
- return SQLITE_OK;
-}
-
-/*
-** Compute the current output term for a fuzzer_stem.
-*/
-static int fuzzerRender(
- fuzzer_stem *pStem, /* The stem to be rendered */
- char **pzBuf, /* Write results into this buffer. realloc if needed */
- int *pnBuf /* Size of the buffer */
-){
- const fuzzer_rule *pRule = pStem->pRule;
- int n; /* Size of output term without nul-term */
- char *z; /* Buffer to assemble output term in */
-
- n = pStem->nBasis + pRule->nTo - pRule->nFrom;
- if( (*pnBuf)<n+1 ){
- (*pzBuf) = sqlite3_realloc((*pzBuf), n+100);
- if( (*pzBuf)==0 ) return SQLITE_NOMEM;
- (*pnBuf) = n+100;
- }
- n = pStem->n;
- z = *pzBuf;
- if( n<0 ){
- memcpy(z, pStem->zBasis, pStem->nBasis+1);
- }else{
- memcpy(z, pStem->zBasis, n);
- memcpy(&z[n], pRule->zTo, pRule->nTo);
- memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom],
- pStem->nBasis-n-pRule->nFrom+1);
- }
-
- assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 );
- return SQLITE_OK;
-}
-
-/*
-** Compute a hash on zBasis.
-*/
-static unsigned int fuzzerHash(const char *z){
- unsigned int h = 0;
- while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); }
- return h % FUZZER_HASH;
-}
-
-/*
-** Current cost of a stem
-*/
-static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){
- return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost;
-}
-
-#if 0
-/*
-** Print a description of a fuzzer_stem on stderr.
-*/
-static void fuzzerStemPrint(
- const char *zPrefix,
- fuzzer_stem *pStem,
- const char *zSuffix
-){
- if( pStem->n<0 ){
- fprintf(stderr, "%s[%s](%d)-->self%s",
- zPrefix,
- pStem->zBasis, pStem->rBaseCost,
- zSuffix
- );
- }else{
- char *zBuf = 0;
- int nBuf = 0;
- if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return;
- fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s",
- zPrefix,
- pStem->zBasis, pStem->rBaseCost, zBuf, pStem->,
- zSuffix
- );
- sqlite3_free(zBuf);
- }
-}
-#endif
-
-/*
-** Return 1 if the string to which the cursor is point has already
-** been emitted. Return 0 if not. Return -1 on a memory allocation
-** failures.
-*/
-static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){
- unsigned int h;
- fuzzer_stem *pLookup;
-
- if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
- return -1;
- }
- h = fuzzerHash(pCur->zBuf);
- pLookup = pCur->apHash[h];
- while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){
- pLookup = pLookup->pHash;
- }
- return pLookup!=0;
-}
-
-/*
-** If argument pRule is NULL, this function returns false.
-**
-** Otherwise, it returns true if rule pRule should be skipped. A rule
-** should be skipped if it does not belong to rule-set iRuleset, or if
-** applying it to stem pStem would create a string longer than
-** FUZZER_MX_OUTPUT_LENGTH bytes.
-*/
-static int fuzzerSkipRule(
- const fuzzer_rule *pRule, /* Determine whether or not to skip this */
- fuzzer_stem *pStem, /* Stem rule may be applied to */
- int iRuleset /* Rule-set used by the current query */
-){
- return pRule && (
- (pRule->iRuleset!=iRuleset)
- || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH
- );
-}
-
-/*
-** Advance a fuzzer_stem to its next value. Return 0 if there are
-** no more values that can be generated by this fuzzer_stem. Return
-** -1 on a memory allocation failure.
-*/
-static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){
- const fuzzer_rule *pRule;
- while( (pRule = pStem->pRule)!=0 ){
- assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset );
- while( pStem->n < pStem->nBasis - pRule->nFrom ){
- pStem->n++;
- if( pRule->nFrom==0
- || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0
- ){
- /* Found a rewrite case. Make sure it is not a duplicate */
- int rc = fuzzerSeen(pCur, pStem);
- if( rc<0 ) return -1;
- if( rc==0 ){
- fuzzerCost(pStem);
- return 1;
- }
- }
- }
- pStem->n = -1;
- do{
- pRule = pRule->pNext;
- }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) );
- pStem->pRule = pRule;
- if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0;
- }
- return 0;
-}
-
-/*
-** The two input stem lists are both sorted in order of increasing
-** rCostX. Merge them together into a single list, sorted by rCostX, and
-** return a pointer to the head of that new list.
-*/
-static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){
- fuzzer_stem head;
- fuzzer_stem *pTail;
-
- pTail = &head;
- while( pA && pB ){
- if( pA->rCostX<=pB->rCostX ){
- pTail->pNext = pA;
- pTail = pA;
- pA = pA->pNext;
- }else{
- pTail->pNext = pB;
- pTail = pB;
- pB = pB->pNext;
- }
- }
- if( pA==0 ){
- pTail->pNext = pB;
- }else{
- pTail->pNext = pA;
- }
- return head.pNext;
-}
-
-/*
-** Load pCur->pStem with the lowest-cost stem. Return a pointer
-** to the lowest-cost stem.
-*/
-static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){
- fuzzer_stem *pBest, *pX;
- int iBest;
- int i;
-
- if( pCur->pStem==0 ){
- iBest = -1;
- pBest = 0;
- for(i=0; i<=pCur->mxQueue; i++){
- pX = pCur->aQueue[i];
- if( pX==0 ) continue;
- if( pBest==0 || pBest->rCostX>pX->rCostX ){
- pBest = pX;
- iBest = i;
- }
- }
- if( pBest ){
- pCur->aQueue[iBest] = pBest->pNext;
- pBest->pNext = 0;
- pCur->pStem = pBest;
- }
- }
- return pCur->pStem;
-}
-
-/*
-** Insert pNew into queue of pending stems. Then find the stem
-** with the lowest rCostX and move it into pCur->pStem.
-** list. The insert is done such the pNew is in the correct order
-** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost.
-*/
-static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){
- fuzzer_stem *pX;
- int i;
-
- /* If pCur->pStem exists and is greater than pNew, then make pNew
- ** the new pCur->pStem and insert the old pCur->pStem instead.
- */
- if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){
- pNew->pNext = 0;
- pCur->pStem = pNew;
- pNew = pX;
- }
-
- /* Insert the new value */
- pNew->pNext = 0;
- pX = pNew;
- for(i=0; i<=pCur->mxQueue; i++){
- if( pCur->aQueue[i] ){
- pX = fuzzerMergeStems(pX, pCur->aQueue[i]);
- pCur->aQueue[i] = 0;
- }else{
- pCur->aQueue[i] = pX;
- break;
- }
- }
- if( i>pCur->mxQueue ){
- if( i<FUZZER_NQUEUE ){
- pCur->mxQueue = i;
- pCur->aQueue[i] = pX;
- }else{
- assert( pCur->mxQueue==FUZZER_NQUEUE-1 );
- pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]);
- pCur->aQueue[FUZZER_NQUEUE-1] = pX;
- }
- }
-
- return fuzzerLowestCostStem(pCur);
-}
-
-/*
-** Allocate a new fuzzer_stem. Add it to the hash table but do not
-** link it into either the pCur->pStem or pCur->pDone lists.
-*/
-static fuzzer_stem *fuzzerNewStem(
- fuzzer_cursor *pCur,
- const char *zWord,
- fuzzer_cost rBaseCost
-){
- fuzzer_stem *pNew;
- fuzzer_rule *pRule;
- unsigned int h;
-
- pNew = sqlite3_malloc( sizeof(*pNew) + (int)strlen(zWord) + 1 );
- if( pNew==0 ) return 0;
- memset(pNew, 0, sizeof(*pNew));
- pNew->zBasis = (char*)&pNew[1];
- pNew->nBasis = (int)strlen(zWord);
- memcpy(pNew->zBasis, zWord, pNew->nBasis+1);
- pRule = pCur->pVtab->pRule;
- while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){
- pRule = pRule->pNext;
- }
- pNew->pRule = pRule;
- pNew->n = -1;
- pNew->rBaseCost = pNew->rCostX = rBaseCost;
- h = fuzzerHash(pNew->zBasis);
- pNew->pHash = pCur->apHash[h];
- pCur->apHash[h] = pNew;
- pCur->nStem++;
- return pNew;
-}
-
-
-/*
-** Advance a cursor to its next row of output
-*/
-static int fuzzerNext(sqlite3_vtab_cursor *cur){
- fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
- int rc;
- fuzzer_stem *pStem, *pNew;
-
- pCur->iRowid++;
-
- /* Use the element the cursor is currently point to to create
- ** a new stem and insert the new stem into the priority queue.
- */
- pStem = pCur->pStem;
- if( pStem->rCostX>0 ){
- rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf);
- if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
- pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX);
- if( pNew ){
- if( fuzzerAdvance(pCur, pNew)==0 ){
- pNew->pNext = pCur->pDone;
- pCur->pDone = pNew;
- }else{
- if( fuzzerInsert(pCur, pNew)==pNew ){
- return SQLITE_OK;
- }
- }
- }else{
- return SQLITE_NOMEM;
- }
- }
-
- /* Adjust the priority queue so that the first element of the
- ** stem list is the next lowest cost word.
- */
- while( (pStem = pCur->pStem)!=0 ){
- int res = fuzzerAdvance(pCur, pStem);
- if( res<0 ){
- return SQLITE_NOMEM;
- }else if( res>0 ){
- pCur->pStem = 0;
- pStem = fuzzerInsert(pCur, pStem);
- if( (rc = fuzzerSeen(pCur, pStem))!=0 ){
- if( rc<0 ) return SQLITE_NOMEM;
- continue;
- }
- return SQLITE_OK; /* New word found */
- }
- pCur->pStem = 0;
- pStem->pNext = pCur->pDone;
- pCur->pDone = pStem;
- if( fuzzerLowestCostStem(pCur) ){
- rc = fuzzerSeen(pCur, pCur->pStem);
- if( rc<0 ) return SQLITE_NOMEM;
- if( rc==0 ){
- return SQLITE_OK;
- }
- }
- }
-
- /* Reach this point only if queue has been exhausted and there is
- ** nothing left to be output. */
- pCur->rLimit = (fuzzer_cost)0;
- return SQLITE_OK;
-}
-
-/*
-** Called to "rewind" a cursor back to the beginning so that
-** it starts its output over again. Always called at least once
-** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call.
-*/
-static int fuzzerFilter(
- sqlite3_vtab_cursor *pVtabCursor,
- int idxNum, const char *idxStr,
- int argc, sqlite3_value **argv
-){
- fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor;
- const char *zWord = "";
- fuzzer_stem *pStem;
- int idx;
-
- fuzzerClearCursor(pCur, 1);
- pCur->rLimit = 2147483647;
- idx = 0;
- if( idxNum & 1 ){
- zWord = (const char*)sqlite3_value_text(argv[0]);
- idx++;
- }
- if( idxNum & 2 ){
- pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]);
- idx++;
- }
- if( idxNum & 4 ){
- pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]);
- idx++;
- }
- pCur->nullRule.pNext = pCur->pVtab->pRule;
- pCur->nullRule.rCost = 0;
- pCur->nullRule.nFrom = 0;
- pCur->nullRule.nTo = 0;
- pCur->nullRule.zFrom = "";
- pCur->iRowid = 1;
- assert( pCur->pStem==0 );
-
- /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this
- ** query will return zero rows. */
- if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){
- pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0);
- if( pStem==0 ) return SQLITE_NOMEM;
- pStem->pRule = &pCur->nullRule;
- pStem->n = pStem->nBasis;
- }else{
- pCur->rLimit = 0;
- }
-
- return SQLITE_OK;
-}
-
-/*
-** Only the word and distance columns have values. All other columns
-** return NULL
-*/
-static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
- fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
- if( i==0 ){
- /* the "word" column */
- if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
- return SQLITE_NOMEM;
- }
- sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
- }else if( i==1 ){
- /* the "distance" column */
- sqlite3_result_int(ctx, pCur->pStem->rCostX);
- }else{
- /* All other columns are NULL */
- sqlite3_result_null(ctx);
- }
- return SQLITE_OK;
-}
-
-/*
-** The rowid.
-*/
-static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
- fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
- *pRowid = pCur->iRowid;
- return SQLITE_OK;
-}
-
-/*
-** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal
-** that the cursor has nothing more to output.
-*/
-static int fuzzerEof(sqlite3_vtab_cursor *cur){
- fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
- return pCur->rLimit<=(fuzzer_cost)0;
-}
-
-/*
-** Search for terms of these forms:
-**
-** (A) word MATCH $str
-** (B1) distance < $value
-** (B2) distance <= $value
-** (C) ruleid == $ruleid
-**
-** The distance< and distance<= are both treated as distance<=.
-** The query plan number is a bit vector:
-**
-** bit 1: Term of the form (A) found
-** bit 2: Term like (B1) or (B2) found
-** bit 3: Term like (C) found
-**
-** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set
-** then $value is in filter.argv[0] if bit-1 is clear and is in
-** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is
-** in filter.argv[0] if bit-1 and bit-2 are both zero, is in
-** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in
-** filter.argv[2] if both bit-1 and bit-2 are set.
-*/
-static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
- int iPlan = 0;
- int iDistTerm = -1;
- int iRulesetTerm = -1;
- int i;
- const struct sqlite3_index_constraint *pConstraint;
- pConstraint = pIdxInfo->aConstraint;
- for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
- if( pConstraint->usable==0 ) continue;
- if( (iPlan & 1)==0
- && pConstraint->iColumn==0
- && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
- ){
- iPlan |= 1;
- pIdxInfo->aConstraintUsage[i].argvIndex = 1;
- pIdxInfo->aConstraintUsage[i].omit = 1;
- }
- if( (iPlan & 2)==0
- && pConstraint->iColumn==1
- && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
- || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
- ){
- iPlan |= 2;
- iDistTerm = i;
- }
- if( (iPlan & 4)==0
- && pConstraint->iColumn==2
- && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
- ){
- iPlan |= 4;
- pIdxInfo->aConstraintUsage[i].omit = 1;
- iRulesetTerm = i;
- }
- }
- if( iPlan & 2 ){
- pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
- }
- if( iPlan & 4 ){
- int idx = 1;
- if( iPlan & 1 ) idx++;
- if( iPlan & 2 ) idx++;
- pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx;
- }
- pIdxInfo->idxNum = iPlan;
- if( pIdxInfo->nOrderBy==1
- && pIdxInfo->aOrderBy[0].iColumn==1
- && pIdxInfo->aOrderBy[0].desc==0
- ){
- pIdxInfo->orderByConsumed = 1;
- }
- pIdxInfo->estimatedCost = (double)10000;
-
- return SQLITE_OK;
-}
-
-/*
-** A virtual table module that implements the "fuzzer".
-*/
-static sqlite3_module fuzzerModule = {
- 0, /* iVersion */
- fuzzerConnect,
- fuzzerConnect,
- fuzzerBestIndex,
- fuzzerDisconnect,
- fuzzerDisconnect,
- fuzzerOpen, /* xOpen - open a cursor */
- fuzzerClose, /* xClose - close a cursor */
- fuzzerFilter, /* xFilter - configure scan constraints */
- fuzzerNext, /* xNext - advance a cursor */
- fuzzerEof, /* xEof - check for end of scan */
- fuzzerColumn, /* xColumn - read data */
- fuzzerRowid, /* xRowid - read data */
- 0, /* xUpdate */
- 0, /* xBegin */
- 0, /* xSync */
- 0, /* xCommit */
- 0, /* xRollback */
- 0, /* xFindMethod */
- 0, /* xRename */
-};
-
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-
-/*
-** Register the fuzzer virtual table
-*/
-int fuzzer_register(sqlite3 *db){
- int rc = SQLITE_OK;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0);
-#endif
- return rc;
-}
-
-#ifdef SQLITE_TEST
-#include <tcl.h>
-/*
-** Decode a pointer to an sqlite3 object.
-*/
-extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb);
-
-/*
-** Register the echo virtual table module.
-*/
-static int register_fuzzer_module(
- ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
- Tcl_Interp *interp, /* The TCL interpreter that invoked this command */
- int objc, /* Number of arguments */
- Tcl_Obj *CONST objv[] /* Command arguments */
-){
- sqlite3 *db;
- if( objc!=2 ){
- Tcl_WrongNumArgs(interp, 1, objv, "DB");
- return TCL_ERROR;
- }
- getDbPointer(interp, Tcl_GetString(objv[1]), &db);
- fuzzer_register(db);
- return TCL_OK;
-}
-
-
-/*
-** Register commands with the TCL interpreter.
-*/
-int Sqlitetestfuzzer_Init(Tcl_Interp *interp){
- static struct {
- char *zName;
- Tcl_ObjCmdProc *xProc;
- void *clientData;
- } aObjCmd[] = {
- { "register_fuzzer_module", register_fuzzer_module, 0 },
- };
- int i;
- for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
- Tcl_CreateObjCommand(interp, aObjCmd[i].zName,
- aObjCmd[i].xProc, aObjCmd[i].clientData, 0);
- }
- return TCL_OK;
-}
-
-#endif /* SQLITE_TEST */