summaryrefslogtreecommitdiff
path: root/src/vdbe.c
diff options
context:
space:
mode:
authorHans-Christoph Steiner <hans@eds.org>2012-03-30 20:42:12 -0400
committerHans-Christoph Steiner <hans@eds.org>2012-03-30 20:42:12 -0400
commit7bb481fda9ecb134804b49c2ce77ca28f7eea583 (patch)
tree31b520b9914d3e2453968abe375f2c102772c3dc /src/vdbe.c
Imported Upstream version 2.0.3
Diffstat (limited to 'src/vdbe.c')
-rw-r--r--src/vdbe.c6158
1 files changed, 6158 insertions, 0 deletions
diff --git a/src/vdbe.c b/src/vdbe.c
new file mode 100644
index 0000000..22e6d9c
--- /dev/null
+++ b/src/vdbe.c
@@ -0,0 +1,6158 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** The code in this file implements execution method of the
+** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
+** handles housekeeping details such as creating and deleting
+** VDBE instances. This file is solely interested in executing
+** the VDBE program.
+**
+** In the external interface, an "sqlite3_stmt*" is an opaque pointer
+** to a VDBE.
+**
+** The SQL parser generates a program which is then executed by
+** the VDBE to do the work of the SQL statement. VDBE programs are
+** similar in form to assembly language. The program consists of
+** a linear sequence of operations. Each operation has an opcode
+** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
+** is a null-terminated string. Operand P5 is an unsigned character.
+** Few opcodes use all 5 operands.
+**
+** Computation results are stored on a set of registers numbered beginning
+** with 1 and going up to Vdbe.nMem. Each register can store
+** either an integer, a null-terminated string, a floating point
+** number, or the SQL "NULL" value. An implicit conversion from one
+** type to the other occurs as necessary.
+**
+** Most of the code in this file is taken up by the sqlite3VdbeExec()
+** function which does the work of interpreting a VDBE program.
+** But other routines are also provided to help in building up
+** a program instruction by instruction.
+**
+** Various scripts scan this source file in order to generate HTML
+** documentation, headers files, or other derived files. The formatting
+** of the code in this file is, therefore, important. See other comments
+** in this file for details. If in doubt, do not deviate from existing
+** commenting and indentation practices when changing or adding code.
+*/
+#include "sqliteInt.h"
+#include "vdbeInt.h"
+
+/*
+** Invoke this macro on memory cells just prior to changing the
+** value of the cell. This macro verifies that shallow copies are
+** not misused.
+*/
+#ifdef SQLITE_DEBUG
+# define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M)
+#else
+# define memAboutToChange(P,M)
+#endif
+
+/*
+** The following global variable is incremented every time a cursor
+** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
+** procedures use this information to make sure that indices are
+** working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_search_count = 0;
+#endif
+
+/*
+** When this global variable is positive, it gets decremented once before
+** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
+** field of the sqlite3 structure is set in order to simulate and interrupt.
+**
+** This facility is used for testing purposes only. It does not function
+** in an ordinary build.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_interrupt_count = 0;
+#endif
+
+/*
+** The next global variable is incremented each type the OP_Sort opcode
+** is executed. The test procedures use this information to make sure that
+** sorting is occurring or not occurring at appropriate times. This variable
+** has no function other than to help verify the correct operation of the
+** library.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_sort_count = 0;
+#endif
+
+/*
+** The next global variable records the size of the largest MEM_Blob
+** or MEM_Str that has been used by a VDBE opcode. The test procedures
+** use this information to make sure that the zero-blob functionality
+** is working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_max_blobsize = 0;
+static void updateMaxBlobsize(Mem *p){
+ if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
+ sqlite3_max_blobsize = p->n;
+ }
+}
+#endif
+
+/*
+** The next global variable is incremented each type the OP_Found opcode
+** is executed. This is used to test whether or not the foreign key
+** operation implemented using OP_FkIsZero is working. This variable
+** has no function other than to help verify the correct operation of the
+** library.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_found_count = 0;
+#endif
+
+/*
+** Test a register to see if it exceeds the current maximum blob size.
+** If it does, record the new maximum blob size.
+*/
+#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
+# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
+#else
+# define UPDATE_MAX_BLOBSIZE(P)
+#endif
+
+/*
+** Convert the given register into a string if it isn't one
+** already. Return non-zero if a malloc() fails.
+*/
+#define Stringify(P, enc) \
+ if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
+ { goto no_mem; }
+
+/*
+** An ephemeral string value (signified by the MEM_Ephem flag) contains
+** a pointer to a dynamically allocated string where some other entity
+** is responsible for deallocating that string. Because the register
+** does not control the string, it might be deleted without the register
+** knowing it.
+**
+** This routine converts an ephemeral string into a dynamically allocated
+** string that the register itself controls. In other words, it
+** converts an MEM_Ephem string into an MEM_Dyn string.
+*/
+#define Deephemeralize(P) \
+ if( ((P)->flags&MEM_Ephem)!=0 \
+ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
+
+/*
+** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
+** P if required.
+*/
+#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
+
+/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
+#ifdef SQLITE_OMIT_MERGE_SORT
+# define isSorter(x) 0
+#else
+# define isSorter(x) ((x)->pSorter!=0)
+#endif
+
+/*
+** Argument pMem points at a register that will be passed to a
+** user-defined function or returned to the user as the result of a query.
+** This routine sets the pMem->type variable used by the sqlite3_value_*()
+** routines.
+*/
+void sqlite3VdbeMemStoreType(Mem *pMem){
+ int flags = pMem->flags;
+ if( flags & MEM_Null ){
+ pMem->type = SQLITE_NULL;
+ }
+ else if( flags & MEM_Int ){
+ pMem->type = SQLITE_INTEGER;
+ }
+ else if( flags & MEM_Real ){
+ pMem->type = SQLITE_FLOAT;
+ }
+ else if( flags & MEM_Str ){
+ pMem->type = SQLITE_TEXT;
+ }else{
+ pMem->type = SQLITE_BLOB;
+ }
+}
+
+/*
+** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
+** if we run out of memory.
+*/
+static VdbeCursor *allocateCursor(
+ Vdbe *p, /* The virtual machine */
+ int iCur, /* Index of the new VdbeCursor */
+ int nField, /* Number of fields in the table or index */
+ int iDb, /* When database the cursor belongs to, or -1 */
+ int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
+){
+ /* Find the memory cell that will be used to store the blob of memory
+ ** required for this VdbeCursor structure. It is convenient to use a
+ ** vdbe memory cell to manage the memory allocation required for a
+ ** VdbeCursor structure for the following reasons:
+ **
+ ** * Sometimes cursor numbers are used for a couple of different
+ ** purposes in a vdbe program. The different uses might require
+ ** different sized allocations. Memory cells provide growable
+ ** allocations.
+ **
+ ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
+ ** be freed lazily via the sqlite3_release_memory() API. This
+ ** minimizes the number of malloc calls made by the system.
+ **
+ ** Memory cells for cursors are allocated at the top of the address
+ ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
+ ** cursor 1 is managed by memory cell (p->nMem-1), etc.
+ */
+ Mem *pMem = &p->aMem[p->nMem-iCur];
+
+ int nByte;
+ VdbeCursor *pCx = 0;
+ nByte =
+ ROUND8(sizeof(VdbeCursor)) +
+ (isBtreeCursor?sqlite3BtreeCursorSize():0) +
+ 2*nField*sizeof(u32);
+
+ assert( iCur<p->nCursor );
+ if( p->apCsr[iCur] ){
+ sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
+ p->apCsr[iCur] = 0;
+ }
+ if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
+ p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
+ memset(pCx, 0, sizeof(VdbeCursor));
+ pCx->iDb = iDb;
+ pCx->nField = nField;
+ if( nField ){
+ pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
+ }
+ if( isBtreeCursor ){
+ pCx->pCursor = (BtCursor*)
+ &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
+ sqlite3BtreeCursorZero(pCx->pCursor);
+ }
+ }
+ return pCx;
+}
+
+/*
+** Try to convert a value into a numeric representation if we can
+** do so without loss of information. In other words, if the string
+** looks like a number, convert it into a number. If it does not
+** look like a number, leave it alone.
+*/
+static void applyNumericAffinity(Mem *pRec){
+ if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
+ double rValue;
+ i64 iValue;
+ u8 enc = pRec->enc;
+ if( (pRec->flags&MEM_Str)==0 ) return;
+ if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
+ if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
+ pRec->u.i = iValue;
+ pRec->flags |= MEM_Int;
+ }else{
+ pRec->r = rValue;
+ pRec->flags |= MEM_Real;
+ }
+ }
+}
+
+/*
+** Processing is determine by the affinity parameter:
+**
+** SQLITE_AFF_INTEGER:
+** SQLITE_AFF_REAL:
+** SQLITE_AFF_NUMERIC:
+** Try to convert pRec to an integer representation or a
+** floating-point representation if an integer representation
+** is not possible. Note that the integer representation is
+** always preferred, even if the affinity is REAL, because
+** an integer representation is more space efficient on disk.
+**
+** SQLITE_AFF_TEXT:
+** Convert pRec to a text representation.
+**
+** SQLITE_AFF_NONE:
+** No-op. pRec is unchanged.
+*/
+static void applyAffinity(
+ Mem *pRec, /* The value to apply affinity to */
+ char affinity, /* The affinity to be applied */
+ u8 enc /* Use this text encoding */
+){
+ if( affinity==SQLITE_AFF_TEXT ){
+ /* Only attempt the conversion to TEXT if there is an integer or real
+ ** representation (blob and NULL do not get converted) but no string
+ ** representation.
+ */
+ if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
+ sqlite3VdbeMemStringify(pRec, enc);
+ }
+ pRec->flags &= ~(MEM_Real|MEM_Int);
+ }else if( affinity!=SQLITE_AFF_NONE ){
+ assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
+ || affinity==SQLITE_AFF_NUMERIC );
+ applyNumericAffinity(pRec);
+ if( pRec->flags & MEM_Real ){
+ sqlite3VdbeIntegerAffinity(pRec);
+ }
+ }
+}
+
+/*
+** Try to convert the type of a function argument or a result column
+** into a numeric representation. Use either INTEGER or REAL whichever
+** is appropriate. But only do the conversion if it is possible without
+** loss of information and return the revised type of the argument.
+*/
+int sqlite3_value_numeric_type(sqlite3_value *pVal){
+ Mem *pMem = (Mem*)pVal;
+ if( pMem->type==SQLITE_TEXT ){
+ applyNumericAffinity(pMem);
+ sqlite3VdbeMemStoreType(pMem);
+ }
+ return pMem->type;
+}
+
+/*
+** Exported version of applyAffinity(). This one works on sqlite3_value*,
+** not the internal Mem* type.
+*/
+void sqlite3ValueApplyAffinity(
+ sqlite3_value *pVal,
+ u8 affinity,
+ u8 enc
+){
+ applyAffinity((Mem *)pVal, affinity, enc);
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Write a nice string representation of the contents of cell pMem
+** into buffer zBuf, length nBuf.
+*/
+void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
+ char *zCsr = zBuf;
+ int f = pMem->flags;
+
+ static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
+
+ if( f&MEM_Blob ){
+ int i;
+ char c;
+ if( f & MEM_Dyn ){
+ c = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ c = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ c = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ c = 's';
+ }
+
+ sqlite3_snprintf(100, zCsr, "%c", c);
+ zCsr += sqlite3Strlen30(zCsr);
+ sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
+ zCsr += sqlite3Strlen30(zCsr);
+ for(i=0; i<16 && i<pMem->n; i++){
+ sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
+ zCsr += sqlite3Strlen30(zCsr);
+ }
+ for(i=0; i<16 && i<pMem->n; i++){
+ char z = pMem->z[i];
+ if( z<32 || z>126 ) *zCsr++ = '.';
+ else *zCsr++ = z;
+ }
+
+ sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
+ zCsr += sqlite3Strlen30(zCsr);
+ if( f & MEM_Zero ){
+ sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
+ zCsr += sqlite3Strlen30(zCsr);
+ }
+ *zCsr = '\0';
+ }else if( f & MEM_Str ){
+ int j, k;
+ zBuf[0] = ' ';
+ if( f & MEM_Dyn ){
+ zBuf[1] = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ zBuf[1] = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ zBuf[1] = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ zBuf[1] = 's';
+ }
+ k = 2;
+ sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
+ k += sqlite3Strlen30(&zBuf[k]);
+ zBuf[k++] = '[';
+ for(j=0; j<15 && j<pMem->n; j++){
+ u8 c = pMem->z[j];
+ if( c>=0x20 && c<0x7f ){
+ zBuf[k++] = c;
+ }else{
+ zBuf[k++] = '.';
+ }
+ }
+ zBuf[k++] = ']';
+ sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
+ k += sqlite3Strlen30(&zBuf[k]);
+ zBuf[k++] = 0;
+ }
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Print the value of a register for tracing purposes:
+*/
+static void memTracePrint(FILE *out, Mem *p){
+ if( p->flags & MEM_Null ){
+ fprintf(out, " NULL");
+ }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
+ fprintf(out, " si:%lld", p->u.i);
+ }else if( p->flags & MEM_Int ){
+ fprintf(out, " i:%lld", p->u.i);
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ }else if( p->flags & MEM_Real ){
+ fprintf(out, " r:%g", p->r);
+#endif
+ }else if( p->flags & MEM_RowSet ){
+ fprintf(out, " (rowset)");
+ }else{
+ char zBuf[200];
+ sqlite3VdbeMemPrettyPrint(p, zBuf);
+ fprintf(out, " ");
+ fprintf(out, "%s", zBuf);
+ }
+}
+static void registerTrace(FILE *out, int iReg, Mem *p){
+ fprintf(out, "REG[%d] = ", iReg);
+ memTracePrint(out, p);
+ fprintf(out, "\n");
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
+#else
+# define REGISTER_TRACE(R,M)
+#endif
+
+
+#ifdef VDBE_PROFILE
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+#include "hwtime.h"
+
+#endif
+
+/*
+** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
+** sqlite3_interrupt() routine has been called. If it has been, then
+** processing of the VDBE program is interrupted.
+**
+** This macro added to every instruction that does a jump in order to
+** implement a loop. This test used to be on every single instruction,
+** but that meant we more testing that we needed. By only testing the
+** flag on jump instructions, we get a (small) speed improvement.
+*/
+#define CHECK_FOR_INTERRUPT \
+ if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
+
+
+#ifndef NDEBUG
+/*
+** This function is only called from within an assert() expression. It
+** checks that the sqlite3.nTransaction variable is correctly set to
+** the number of non-transaction savepoints currently in the
+** linked list starting at sqlite3.pSavepoint.
+**
+** Usage:
+**
+** assert( checkSavepointCount(db) );
+*/
+static int checkSavepointCount(sqlite3 *db){
+ int n = 0;
+ Savepoint *p;
+ for(p=db->pSavepoint; p; p=p->pNext) n++;
+ assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
+ return 1;
+}
+#endif
+
+/*
+** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
+** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
+** in memory obtained from sqlite3DbMalloc).
+*/
+static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
+ sqlite3 *db = p->db;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
+ sqlite3_free(pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+}
+
+
+/*
+** Execute as much of a VDBE program as we can then return.
+**
+** sqlite3VdbeMakeReady() must be called before this routine in order to
+** close the program with a final OP_Halt and to set up the callbacks
+** and the error message pointer.
+**
+** Whenever a row or result data is available, this routine will either
+** invoke the result callback (if there is one) or return with
+** SQLITE_ROW.
+**
+** If an attempt is made to open a locked database, then this routine
+** will either invoke the busy callback (if there is one) or it will
+** return SQLITE_BUSY.
+**
+** If an error occurs, an error message is written to memory obtained
+** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
+** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
+**
+** If the callback ever returns non-zero, then the program exits
+** immediately. There will be no error message but the p->rc field is
+** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
+**
+** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
+** routine to return SQLITE_ERROR.
+**
+** Other fatal errors return SQLITE_ERROR.
+**
+** After this routine has finished, sqlite3VdbeFinalize() should be
+** used to clean up the mess that was left behind.
+*/
+int sqlite3VdbeExec(
+ Vdbe *p /* The VDBE */
+){
+ int pc=0; /* The program counter */
+ Op *aOp = p->aOp; /* Copy of p->aOp */
+ Op *pOp; /* Current operation */
+ int rc = SQLITE_OK; /* Value to return */
+ sqlite3 *db = p->db; /* The database */
+ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
+ u8 encoding = ENC(db); /* The database encoding */
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ int checkProgress; /* True if progress callbacks are enabled */
+ int nProgressOps = 0; /* Opcodes executed since progress callback. */
+#endif
+ Mem *aMem = p->aMem; /* Copy of p->aMem */
+ Mem *pIn1 = 0; /* 1st input operand */
+ Mem *pIn2 = 0; /* 2nd input operand */
+ Mem *pIn3 = 0; /* 3rd input operand */
+ Mem *pOut = 0; /* Output operand */
+ int iCompare = 0; /* Result of last OP_Compare operation */
+ int *aPermute = 0; /* Permutation of columns for OP_Compare */
+ i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
+#ifdef VDBE_PROFILE
+ u64 start; /* CPU clock count at start of opcode */
+ int origPc; /* Program counter at start of opcode */
+#endif
+ /*** INSERT STACK UNION HERE ***/
+
+ assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
+ sqlite3VdbeEnter(p);
+ if( p->rc==SQLITE_NOMEM ){
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or
+ ** sqlite3_column_text16() failed. */
+ goto no_mem;
+ }
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+ p->rc = SQLITE_OK;
+ assert( p->explain==0 );
+ p->pResultSet = 0;
+ db->busyHandler.nBusy = 0;
+ CHECK_FOR_INTERRUPT;
+ sqlite3VdbeIOTraceSql(p);
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ checkProgress = db->xProgress!=0;
+#endif
+#ifdef SQLITE_DEBUG
+ sqlite3BeginBenignMalloc();
+ if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
+ int i;
+ printf("VDBE Program Listing:\n");
+ sqlite3VdbePrintSql(p);
+ for(i=0; i<p->nOp; i++){
+ sqlite3VdbePrintOp(stdout, i, &aOp[i]);
+ }
+ }
+ sqlite3EndBenignMalloc();
+#endif
+ for(pc=p->pc; rc==SQLITE_OK; pc++){
+ assert( pc>=0 && pc<p->nOp );
+ if( db->mallocFailed ) goto no_mem;
+#ifdef VDBE_PROFILE
+ origPc = pc;
+ start = sqlite3Hwtime();
+#endif
+ pOp = &aOp[pc];
+
+ /* Only allow tracing if SQLITE_DEBUG is defined.
+ */
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ if( pc==0 ){
+ printf("VDBE Execution Trace:\n");
+ sqlite3VdbePrintSql(p);
+ }
+ sqlite3VdbePrintOp(p->trace, pc, pOp);
+ }
+#endif
+
+
+ /* Check to see if we need to simulate an interrupt. This only happens
+ ** if we have a special test build.
+ */
+#ifdef SQLITE_TEST
+ if( sqlite3_interrupt_count>0 ){
+ sqlite3_interrupt_count--;
+ if( sqlite3_interrupt_count==0 ){
+ sqlite3_interrupt(db);
+ }
+ }
+#endif
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ /* Call the progress callback if it is configured and the required number
+ ** of VDBE ops have been executed (either since this invocation of
+ ** sqlite3VdbeExec() or since last time the progress callback was called).
+ ** If the progress callback returns non-zero, exit the virtual machine with
+ ** a return code SQLITE_ABORT.
+ */
+ if( checkProgress ){
+ if( db->nProgressOps==nProgressOps ){
+ int prc;
+ prc = db->xProgress(db->pProgressArg);
+ if( prc!=0 ){
+ rc = SQLITE_INTERRUPT;
+ goto vdbe_error_halt;
+ }
+ nProgressOps = 0;
+ }
+ nProgressOps++;
+ }
+#endif
+
+ /* On any opcode with the "out2-prerelase" tag, free any
+ ** external allocations out of mem[p2] and set mem[p2] to be
+ ** an undefined integer. Opcodes will either fill in the integer
+ ** value or convert mem[p2] to a different type.
+ */
+ assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
+ if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pOut = &aMem[pOp->p2];
+ memAboutToChange(p, pOut);
+ MemReleaseExt(pOut);
+ pOut->flags = MEM_Int;
+ }
+
+ /* Sanity checking on other operands */
+#ifdef SQLITE_DEBUG
+ if( (pOp->opflags & OPFLG_IN1)!=0 ){
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=p->nMem );
+ assert( memIsValid(&aMem[pOp->p1]) );
+ REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
+ }
+ if( (pOp->opflags & OPFLG_IN2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ assert( memIsValid(&aMem[pOp->p2]) );
+ REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
+ }
+ if( (pOp->opflags & OPFLG_IN3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=p->nMem );
+ assert( memIsValid(&aMem[pOp->p3]) );
+ REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
+ }
+ if( (pOp->opflags & OPFLG_OUT2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ memAboutToChange(p, &aMem[pOp->p2]);
+ }
+ if( (pOp->opflags & OPFLG_OUT3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=p->nMem );
+ memAboutToChange(p, &aMem[pOp->p3]);
+ }
+#endif
+
+ switch( pOp->opcode ){
+
+/*****************************************************************************
+** What follows is a massive switch statement where each case implements a
+** separate instruction in the virtual machine. If we follow the usual
+** indentation conventions, each case should be indented by 6 spaces. But
+** that is a lot of wasted space on the left margin. So the code within
+** the switch statement will break with convention and be flush-left. Another
+** big comment (similar to this one) will mark the point in the code where
+** we transition back to normal indentation.
+**
+** The formatting of each case is important. The makefile for SQLite
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this
+** file looking for lines that begin with "case OP_". The opcodes.h files
+** will be filled with #defines that give unique integer values to each
+** opcode and the opcodes.c file is filled with an array of strings where
+** each string is the symbolic name for the corresponding opcode. If the
+** case statement is followed by a comment of the form "/# same as ... #/"
+** that comment is used to determine the particular value of the opcode.
+**
+** Other keywords in the comment that follows each case are used to
+** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
+** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
+** the mkopcodeh.awk script for additional information.
+**
+** Documentation about VDBE opcodes is generated by scanning this file
+** for lines of that contain "Opcode:". That line and all subsequent
+** comment lines are used in the generation of the opcode.html documentation
+** file.
+**
+** SUMMARY:
+**
+** Formatting is important to scripts that scan this file.
+** Do not deviate from the formatting style currently in use.
+**
+*****************************************************************************/
+
+/* Opcode: Goto * P2 * * *
+**
+** An unconditional jump to address P2.
+** The next instruction executed will be
+** the one at index P2 from the beginning of
+** the program.
+*/
+case OP_Goto: { /* jump */
+ CHECK_FOR_INTERRUPT;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Gosub P1 P2 * * *
+**
+** Write the current address onto register P1
+** and then jump to address P2.
+*/
+case OP_Gosub: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Dyn)==0 );
+ memAboutToChange(p, pIn1);
+ pIn1->flags = MEM_Int;
+ pIn1->u.i = pc;
+ REGISTER_TRACE(pOp->p1, pIn1);
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Return P1 * * * *
+**
+** Jump to the next instruction after the address in register P1.
+*/
+case OP_Return: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags & MEM_Int );
+ pc = (int)pIn1->u.i;
+ break;
+}
+
+/* Opcode: Yield P1 * * * *
+**
+** Swap the program counter with the value in register P1.
+*/
+case OP_Yield: { /* in1 */
+ int pcDest;
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Dyn)==0 );
+ pIn1->flags = MEM_Int;
+ pcDest = (int)pIn1->u.i;
+ pIn1->u.i = pc;
+ REGISTER_TRACE(pOp->p1, pIn1);
+ pc = pcDest;
+ break;
+}
+
+/* Opcode: HaltIfNull P1 P2 P3 P4 *
+**
+** Check the value in register P3. If it is NULL then Halt using
+** parameter P1, P2, and P4 as if this were a Halt instruction. If the
+** value in register P3 is not NULL, then this routine is a no-op.
+*/
+case OP_HaltIfNull: { /* in3 */
+ pIn3 = &aMem[pOp->p3];
+ if( (pIn3->flags & MEM_Null)==0 ) break;
+ /* Fall through into OP_Halt */
+}
+
+/* Opcode: Halt P1 P2 * P4 *
+**
+** Exit immediately. All open cursors, etc are closed
+** automatically.
+**
+** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
+** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
+** For errors, it can be some other value. If P1!=0 then P2 will determine
+** whether or not to rollback the current transaction. Do not rollback
+** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
+** then back out all changes that have occurred during this execution of the
+** VDBE, but do not rollback the transaction.
+**
+** If P4 is not null then it is an error message string.
+**
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of
+** every program. So a jump past the last instruction of the program
+** is the same as executing Halt.
+*/
+case OP_Halt: {
+ if( pOp->p1==SQLITE_OK && p->pFrame ){
+ /* Halt the sub-program. Return control to the parent frame. */
+ VdbeFrame *pFrame = p->pFrame;
+ p->pFrame = pFrame->pParent;
+ p->nFrame--;
+ sqlite3VdbeSetChanges(db, p->nChange);
+ pc = sqlite3VdbeFrameRestore(pFrame);
+ lastRowid = db->lastRowid;
+ if( pOp->p2==OE_Ignore ){
+ /* Instruction pc is the OP_Program that invoked the sub-program
+ ** currently being halted. If the p2 instruction of this OP_Halt
+ ** instruction is set to OE_Ignore, then the sub-program is throwing
+ ** an IGNORE exception. In this case jump to the address specified
+ ** as the p2 of the calling OP_Program. */
+ pc = p->aOp[pc].p2-1;
+ }
+ aOp = p->aOp;
+ aMem = p->aMem;
+ break;
+ }
+
+ p->rc = pOp->p1;
+ p->errorAction = (u8)pOp->p2;
+ p->pc = pc;
+ if( pOp->p4.z ){
+ assert( p->rc!=SQLITE_OK );
+ sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
+ }else if( p->rc ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
+ }
+ rc = sqlite3VdbeHalt(p);
+ assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
+ if( rc==SQLITE_BUSY ){
+ p->rc = rc = SQLITE_BUSY;
+ }else{
+ assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
+ assert( rc==SQLITE_OK || db->nDeferredCons>0 );
+ rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
+ }
+ goto vdbe_return;
+}
+
+/* Opcode: Integer P1 P2 * * *
+**
+** The 32-bit integer value P1 is written into register P2.
+*/
+case OP_Integer: { /* out2-prerelease */
+ pOut->u.i = pOp->p1;
+ break;
+}
+
+/* Opcode: Int64 * P2 * P4 *
+**
+** P4 is a pointer to a 64-bit integer value.
+** Write that value into register P2.
+*/
+case OP_Int64: { /* out2-prerelease */
+ assert( pOp->p4.pI64!=0 );
+ pOut->u.i = *pOp->p4.pI64;
+ break;
+}
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/* Opcode: Real * P2 * P4 *
+**
+** P4 is a pointer to a 64-bit floating point value.
+** Write that value into register P2.
+*/
+case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
+ pOut->flags = MEM_Real;
+ assert( !sqlite3IsNaN(*pOp->p4.pReal) );
+ pOut->r = *pOp->p4.pReal;
+ break;
+}
+#endif
+
+/* Opcode: String8 * P2 * P4 *
+**
+** P4 points to a nul terminated UTF-8 string. This opcode is transformed
+** into an OP_String before it is executed for the first time.
+*/
+case OP_String8: { /* same as TK_STRING, out2-prerelease */
+ assert( pOp->p4.z!=0 );
+ pOp->opcode = OP_String;
+ pOp->p1 = sqlite3Strlen30(pOp->p4.z);
+
+#ifndef SQLITE_OMIT_UTF16
+ if( encoding!=SQLITE_UTF8 ){
+ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
+ if( rc==SQLITE_TOOBIG ) goto too_big;
+ if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
+ assert( pOut->zMalloc==pOut->z );
+ assert( pOut->flags & MEM_Dyn );
+ pOut->zMalloc = 0;
+ pOut->flags |= MEM_Static;
+ pOut->flags &= ~MEM_Dyn;
+ if( pOp->p4type==P4_DYNAMIC ){
+ sqlite3DbFree(db, pOp->p4.z);
+ }
+ pOp->p4type = P4_DYNAMIC;
+ pOp->p4.z = pOut->z;
+ pOp->p1 = pOut->n;
+ }
+#endif
+ if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ /* Fall through to the next case, OP_String */
+}
+
+/* Opcode: String P1 P2 * P4 *
+**
+** The string value P4 of length P1 (bytes) is stored in register P2.
+*/
+case OP_String: { /* out2-prerelease */
+ assert( pOp->p4.z!=0 );
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term;
+ pOut->z = pOp->p4.z;
+ pOut->n = pOp->p1;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Null * P2 * * *
+**
+** Write a NULL into register P2.
+*/
+case OP_Null: { /* out2-prerelease */
+ pOut->flags = MEM_Null;
+ break;
+}
+
+
+/* Opcode: Blob P1 P2 * P4
+**
+** P4 points to a blob of data P1 bytes long. Store this
+** blob in register P2.
+*/
+case OP_Blob: { /* out2-prerelease */
+ assert( pOp->p1 <= SQLITE_MAX_LENGTH );
+ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Variable P1 P2 * P4 *
+**
+** Transfer the values of bound parameter P1 into register P2
+**
+** If the parameter is named, then its name appears in P4 and P3==1.
+** The P4 value is used by sqlite3_bind_parameter_name().
+*/
+case OP_Variable: { /* out2-prerelease */
+ Mem *pVar; /* Value being transferred */
+
+ assert( pOp->p1>0 && pOp->p1<=p->nVar );
+ assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
+ pVar = &p->aVar[pOp->p1 - 1];
+ if( sqlite3VdbeMemTooBig(pVar) ){
+ goto too_big;
+ }
+ sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Move P1 P2 P3 * *
+**
+** Move the values in register P1..P1+P3-1 over into
+** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
+** left holding a NULL. It is an error for register ranges
+** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
+*/
+case OP_Move: {
+ char *zMalloc; /* Holding variable for allocated memory */
+ int n; /* Number of registers left to copy */
+ int p1; /* Register to copy from */
+ int p2; /* Register to copy to */
+
+ n = pOp->p3;
+ p1 = pOp->p1;
+ p2 = pOp->p2;
+ assert( n>0 && p1>0 && p2>0 );
+ assert( p1+n<=p2 || p2+n<=p1 );
+
+ pIn1 = &aMem[p1];
+ pOut = &aMem[p2];
+ while( n-- ){
+ assert( pOut<=&aMem[p->nMem] );
+ assert( pIn1<=&aMem[p->nMem] );
+ assert( memIsValid(pIn1) );
+ memAboutToChange(p, pOut);
+ zMalloc = pOut->zMalloc;
+ pOut->zMalloc = 0;
+ sqlite3VdbeMemMove(pOut, pIn1);
+#ifdef SQLITE_DEBUG
+ if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
+ pOut->pScopyFrom += p1 - pOp->p2;
+ }
+#endif
+ pIn1->zMalloc = zMalloc;
+ REGISTER_TRACE(p2++, pOut);
+ pIn1++;
+ pOut++;
+ }
+ break;
+}
+
+/* Opcode: Copy P1 P2 * * *
+**
+** Make a copy of register P1 into register P2.
+**
+** This instruction makes a deep copy of the value. A duplicate
+** is made of any string or blob constant. See also OP_SCopy.
+*/
+case OP_Copy: { /* in1, out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+ Deephemeralize(pOut);
+ REGISTER_TRACE(pOp->p2, pOut);
+ break;
+}
+
+/* Opcode: SCopy P1 P2 * * *
+**
+** Make a shallow copy of register P1 into register P2.
+**
+** This instruction makes a shallow copy of the value. If the value
+** is a string or blob, then the copy is only a pointer to the
+** original and hence if the original changes so will the copy.
+** Worse, if the original is deallocated, the copy becomes invalid.
+** Thus the program must guarantee that the original will not change
+** during the lifetime of the copy. Use OP_Copy to make a complete
+** copy.
+*/
+case OP_SCopy: { /* in1, out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+#ifdef SQLITE_DEBUG
+ if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
+#endif
+ REGISTER_TRACE(pOp->p2, pOut);
+ break;
+}
+
+/* Opcode: ResultRow P1 P2 * * *
+**
+** The registers P1 through P1+P2-1 contain a single row of
+** results. This opcode causes the sqlite3_step() call to terminate
+** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
+** structure to provide access to the top P1 values as the result
+** row.
+*/
+case OP_ResultRow: {
+ Mem *pMem;
+ int i;
+ assert( p->nResColumn==pOp->p2 );
+ assert( pOp->p1>0 );
+ assert( pOp->p1+pOp->p2<=p->nMem+1 );
+
+ /* If this statement has violated immediate foreign key constraints, do
+ ** not return the number of rows modified. And do not RELEASE the statement
+ ** transaction. It needs to be rolled back. */
+ if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
+ assert( db->flags&SQLITE_CountRows );
+ assert( p->usesStmtJournal );
+ break;
+ }
+
+ /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
+ ** DML statements invoke this opcode to return the number of rows
+ ** modified to the user. This is the only way that a VM that
+ ** opens a statement transaction may invoke this opcode.
+ **
+ ** In case this is such a statement, close any statement transaction
+ ** opened by this VM before returning control to the user. This is to
+ ** ensure that statement-transactions are always nested, not overlapping.
+ ** If the open statement-transaction is not closed here, then the user
+ ** may step another VM that opens its own statement transaction. This
+ ** may lead to overlapping statement transactions.
+ **
+ ** The statement transaction is never a top-level transaction. Hence
+ ** the RELEASE call below can never fail.
+ */
+ assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
+ rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
+ if( NEVER(rc!=SQLITE_OK) ){
+ break;
+ }
+
+ /* Invalidate all ephemeral cursor row caches */
+ p->cacheCtr = (p->cacheCtr + 2)|1;
+
+ /* Make sure the results of the current row are \000 terminated
+ ** and have an assigned type. The results are de-ephemeralized as
+ ** as side effect.
+ */
+ pMem = p->pResultSet = &aMem[pOp->p1];
+ for(i=0; i<pOp->p2; i++){
+ assert( memIsValid(&pMem[i]) );
+ Deephemeralize(&pMem[i]);
+ assert( (pMem[i].flags & MEM_Ephem)==0
+ || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
+ sqlite3VdbeMemNulTerminate(&pMem[i]);
+ sqlite3VdbeMemStoreType(&pMem[i]);
+ REGISTER_TRACE(pOp->p1+i, &pMem[i]);
+ }
+ if( db->mallocFailed ) goto no_mem;
+
+ /* Return SQLITE_ROW
+ */
+ p->pc = pc + 1;
+ rc = SQLITE_ROW;
+ goto vdbe_return;
+}
+
+/* Opcode: Concat P1 P2 P3 * *
+**
+** Add the text in register P1 onto the end of the text in
+** register P2 and store the result in register P3.
+** If either the P1 or P2 text are NULL then store NULL in P3.
+**
+** P3 = P2 || P1
+**
+** It is illegal for P1 and P3 to be the same register. Sometimes,
+** if P3 is the same register as P2, the implementation is able
+** to avoid a memcpy().
+*/
+case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
+ i64 nByte;
+
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ assert( pIn1!=pOut );
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
+ Stringify(pIn1, encoding);
+ Stringify(pIn2, encoding);
+ nByte = pIn1->n + pIn2->n;
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ MemSetTypeFlag(pOut, MEM_Str);
+ if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
+ goto no_mem;
+ }
+ if( pOut!=pIn2 ){
+ memcpy(pOut->z, pIn2->z, pIn2->n);
+ }
+ memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
+ pOut->z[nByte] = 0;
+ pOut->z[nByte+1] = 0;
+ pOut->flags |= MEM_Term;
+ pOut->n = (int)nByte;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Add P1 P2 P3 * *
+**
+** Add the value in register P1 to the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Multiply P1 P2 P3 * *
+**
+**
+** Multiply the value in register P1 by the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Subtract P1 P2 P3 * *
+**
+** Subtract the value in register P1 from the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Divide P1 P2 P3 * *
+**
+** Divide the value in register P1 by the value in register P2
+** and store the result in register P3 (P3=P2/P1). If the value in
+** register P1 is zero, then the result is NULL. If either input is
+** NULL, the result is NULL.
+*/
+/* Opcode: Remainder P1 P2 P3 * *
+**
+** Compute the remainder after integer division of the value in
+** register P1 by the value in register P2 and store the result in P3.
+** If the value in register P2 is zero the result is NULL.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
+case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
+case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
+case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
+case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
+ int flags; /* Combined MEM_* flags from both inputs */
+ i64 iA; /* Integer value of left operand */
+ i64 iB; /* Integer value of right operand */
+ double rA; /* Real value of left operand */
+ double rB; /* Real value of right operand */
+
+ pIn1 = &aMem[pOp->p1];
+ applyNumericAffinity(pIn1);
+ pIn2 = &aMem[pOp->p2];
+ applyNumericAffinity(pIn2);
+ pOut = &aMem[pOp->p3];
+ flags = pIn1->flags | pIn2->flags;
+ if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
+ if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
+ iA = pIn1->u.i;
+ iB = pIn2->u.i;
+ switch( pOp->opcode ){
+ case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Divide: {
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
+ iB /= iA;
+ break;
+ }
+ default: {
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 ) iA = 1;
+ iB %= iA;
+ break;
+ }
+ }
+ pOut->u.i = iB;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }else{
+fp_math:
+ rA = sqlite3VdbeRealValue(pIn1);
+ rB = sqlite3VdbeRealValue(pIn2);
+ switch( pOp->opcode ){
+ case OP_Add: rB += rA; break;
+ case OP_Subtract: rB -= rA; break;
+ case OP_Multiply: rB *= rA; break;
+ case OP_Divide: {
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ if( rA==(double)0 ) goto arithmetic_result_is_null;
+ rB /= rA;
+ break;
+ }
+ default: {
+ iA = (i64)rA;
+ iB = (i64)rB;
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 ) iA = 1;
+ rB = (double)(iB % iA);
+ break;
+ }
+ }
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ pOut->u.i = rB;
+ MemSetTypeFlag(pOut, MEM_Int);
+#else
+ if( sqlite3IsNaN(rB) ){
+ goto arithmetic_result_is_null;
+ }
+ pOut->r = rB;
+ MemSetTypeFlag(pOut, MEM_Real);
+ if( (flags & MEM_Real)==0 ){
+ sqlite3VdbeIntegerAffinity(pOut);
+ }
+#endif
+ }
+ break;
+
+arithmetic_result_is_null:
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+}
+
+/* Opcode: CollSeq * * P4
+**
+** P4 is a pointer to a CollSeq struct. If the next call to a user function
+** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
+** be returned. This is used by the built-in min(), max() and nullif()
+** functions.
+**
+** The interface used by the implementation of the aforementioned functions
+** to retrieve the collation sequence set by this opcode is not available
+** publicly, only to user functions defined in func.c.
+*/
+case OP_CollSeq: {
+ assert( pOp->p4type==P4_COLLSEQ );
+ break;
+}
+
+/* Opcode: Function P1 P2 P3 P4 P5
+**
+** Invoke a user function (P4 is a pointer to a Function structure that
+** defines the function) with P5 arguments taken from register P2 and
+** successors. The result of the function is stored in register P3.
+** Register P3 must not be one of the function inputs.
+**
+** P1 is a 32-bit bitmask indicating whether or not each argument to the
+** function was determined to be constant at compile time. If the first
+** argument was constant then bit 0 of P1 is set. This is used to determine
+** whether meta data associated with a user function argument using the
+** sqlite3_set_auxdata() API may be safely retained until the next
+** invocation of this opcode.
+**
+** See also: AggStep and AggFinal
+*/
+case OP_Function: {
+ int i;
+ Mem *pArg;
+ sqlite3_context ctx;
+ sqlite3_value **apVal;
+ int n;
+
+ n = pOp->p5;
+ apVal = p->apArg;
+ assert( apVal || n==0 );
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pOut = &aMem[pOp->p3];
+ memAboutToChange(p, pOut);
+
+ assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
+ assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
+ pArg = &aMem[pOp->p2];
+ for(i=0; i<n; i++, pArg++){
+ assert( memIsValid(pArg) );
+ apVal[i] = pArg;
+ Deephemeralize(pArg);
+ sqlite3VdbeMemStoreType(pArg);
+ REGISTER_TRACE(pOp->p2+i, pArg);
+ }
+
+ assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
+ if( pOp->p4type==P4_FUNCDEF ){
+ ctx.pFunc = pOp->p4.pFunc;
+ ctx.pVdbeFunc = 0;
+ }else{
+ ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
+ ctx.pFunc = ctx.pVdbeFunc->pFunc;
+ }
+
+ ctx.s.flags = MEM_Null;
+ ctx.s.db = db;
+ ctx.s.xDel = 0;
+ ctx.s.zMalloc = 0;
+
+ /* The output cell may already have a buffer allocated. Move
+ ** the pointer to ctx.s so in case the user-function can use
+ ** the already allocated buffer instead of allocating a new one.
+ */
+ sqlite3VdbeMemMove(&ctx.s, pOut);
+ MemSetTypeFlag(&ctx.s, MEM_Null);
+
+ ctx.isError = 0;
+ if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
+ assert( pOp>aOp );
+ assert( pOp[-1].p4type==P4_COLLSEQ );
+ assert( pOp[-1].opcode==OP_CollSeq );
+ ctx.pColl = pOp[-1].p4.pColl;
+ }
+ db->lastRowid = lastRowid;
+ (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
+ lastRowid = db->lastRowid;
+
+ /* If any auxiliary data functions have been called by this user function,
+ ** immediately call the destructor for any non-static values.
+ */
+ if( ctx.pVdbeFunc ){
+ sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
+ pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
+ pOp->p4type = P4_VDBEFUNC;
+ }
+
+ if( db->mallocFailed ){
+ /* Even though a malloc() has failed, the implementation of the
+ ** user function may have called an sqlite3_result_XXX() function
+ ** to return a value. The following call releases any resources
+ ** associated with such a value.
+ */
+ sqlite3VdbeMemRelease(&ctx.s);
+ goto no_mem;
+ }
+
+ /* If the function returned an error, throw an exception */
+ if( ctx.isError ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
+ rc = ctx.isError;
+ }
+
+ /* Copy the result of the function into register P3 */
+ sqlite3VdbeChangeEncoding(&ctx.s, encoding);
+ sqlite3VdbeMemMove(pOut, &ctx.s);
+ if( sqlite3VdbeMemTooBig(pOut) ){
+ goto too_big;
+ }
+
+#if 0
+ /* The app-defined function has done something that as caused this
+ ** statement to expire. (Perhaps the function called sqlite3_exec()
+ ** with a CREATE TABLE statement.)
+ */
+ if( p->expired ) rc = SQLITE_ABORT;
+#endif
+
+ REGISTER_TRACE(pOp->p3, pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: BitAnd P1 P2 P3 * *
+**
+** Take the bit-wise AND of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: BitOr P1 P2 P3 * *
+**
+** Take the bit-wise OR of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: ShiftLeft P1 P2 P3 * *
+**
+** Shift the integer value in register P2 to the left by the
+** number of bits specified by the integer in register P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: ShiftRight P1 P2 P3 * *
+**
+** Shift the integer value in register P2 to the right by the
+** number of bits specified by the integer in register P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
+case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
+case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
+case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
+ i64 iA;
+ u64 uA;
+ i64 iB;
+ u8 op;
+
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ iA = sqlite3VdbeIntValue(pIn2);
+ iB = sqlite3VdbeIntValue(pIn1);
+ op = pOp->opcode;
+ if( op==OP_BitAnd ){
+ iA &= iB;
+ }else if( op==OP_BitOr ){
+ iA |= iB;
+ }else if( iB!=0 ){
+ assert( op==OP_ShiftRight || op==OP_ShiftLeft );
+
+ /* If shifting by a negative amount, shift in the other direction */
+ if( iB<0 ){
+ assert( OP_ShiftRight==OP_ShiftLeft+1 );
+ op = 2*OP_ShiftLeft + 1 - op;
+ iB = iB>(-64) ? -iB : 64;
+ }
+
+ if( iB>=64 ){
+ iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
+ }else{
+ memcpy(&uA, &iA, sizeof(uA));
+ if( op==OP_ShiftLeft ){
+ uA <<= iB;
+ }else{
+ uA >>= iB;
+ /* Sign-extend on a right shift of a negative number */
+ if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
+ }
+ memcpy(&iA, &uA, sizeof(iA));
+ }
+ }
+ pOut->u.i = iA;
+ MemSetTypeFlag(pOut, MEM_Int);
+ break;
+}
+
+/* Opcode: AddImm P1 P2 * * *
+**
+** Add the constant P2 to the value in register P1.
+** The result is always an integer.
+**
+** To force any register to be an integer, just add 0.
+*/
+case OP_AddImm: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn1->u.i += pOp->p2;
+ break;
+}
+
+/* Opcode: MustBeInt P1 P2 * * *
+**
+** Force the value in register P1 to be an integer. If the value
+** in P1 is not an integer and cannot be converted into an integer
+** without data loss, then jump immediately to P2, or if P2==0
+** raise an SQLITE_MISMATCH exception.
+*/
+case OP_MustBeInt: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
+ if( (pIn1->flags & MEM_Int)==0 ){
+ if( pOp->p2==0 ){
+ rc = SQLITE_MISMATCH;
+ goto abort_due_to_error;
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ }else{
+ MemSetTypeFlag(pIn1, MEM_Int);
+ }
+ break;
+}
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/* Opcode: RealAffinity P1 * * * *
+**
+** If register P1 holds an integer convert it to a real value.
+**
+** This opcode is used when extracting information from a column that
+** has REAL affinity. Such column values may still be stored as
+** integers, for space efficiency, but after extraction we want them
+** to have only a real value.
+*/
+case OP_RealAffinity: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( pIn1->flags & MEM_Int ){
+ sqlite3VdbeMemRealify(pIn1);
+ }
+ break;
+}
+#endif
+
+#ifndef SQLITE_OMIT_CAST
+/* Opcode: ToText P1 * * * *
+**
+** Force the value in register P1 to be text.
+** If the value is numeric, convert it to a string using the
+** equivalent of printf(). Blob values are unchanged and
+** are afterwards simply interpreted as text.
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_ToText: { /* same as TK_TO_TEXT, in1 */
+ pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
+ if( pIn1->flags & MEM_Null ) break;
+ assert( MEM_Str==(MEM_Blob>>3) );
+ pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
+ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
+ rc = ExpandBlob(pIn1);
+ assert( pIn1->flags & MEM_Str || db->mallocFailed );
+ pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ break;
+}
+
+/* Opcode: ToBlob P1 * * * *
+**
+** Force the value in register P1 to be a BLOB.
+** If the value is numeric, convert it to a string first.
+** Strings are simply reinterpreted as blobs with no change
+** to the underlying data.
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( pIn1->flags & MEM_Null ) break;
+ if( (pIn1->flags & MEM_Blob)==0 ){
+ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
+ assert( pIn1->flags & MEM_Str || db->mallocFailed );
+ MemSetTypeFlag(pIn1, MEM_Blob);
+ }else{
+ pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
+ }
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ break;
+}
+
+/* Opcode: ToNumeric P1 * * * *
+**
+** Force the value in register P1 to be numeric (either an
+** integer or a floating-point number.)
+** If the value is text or blob, try to convert it to an using the
+** equivalent of atoi() or atof() and store 0 if no such conversion
+** is possible.
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
+ pIn1 = &aMem[pOp->p1];
+ sqlite3VdbeMemNumerify(pIn1);
+ break;
+}
+#endif /* SQLITE_OMIT_CAST */
+
+/* Opcode: ToInt P1 * * * *
+**
+** Force the value in register P1 to be an integer. If
+** The value is currently a real number, drop its fractional part.
+** If the value is text or blob, try to convert it to an integer using the
+** equivalent of atoi() and store 0 if no such conversion is possible.
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_ToInt: { /* same as TK_TO_INT, in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( (pIn1->flags & MEM_Null)==0 ){
+ sqlite3VdbeMemIntegerify(pIn1);
+ }
+ break;
+}
+
+#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
+/* Opcode: ToReal P1 * * * *
+**
+** Force the value in register P1 to be a floating point number.
+** If The value is currently an integer, convert it.
+** If the value is text or blob, try to convert it to an integer using the
+** equivalent of atoi() and store 0.0 if no such conversion is possible.
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_ToReal: { /* same as TK_TO_REAL, in1 */
+ pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
+ if( (pIn1->flags & MEM_Null)==0 ){
+ sqlite3VdbeMemRealify(pIn1);
+ }
+ break;
+}
+#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
+
+/* Opcode: Lt P1 P2 P3 P4 P5
+**
+** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
+** jump to address P2.
+**
+** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
+** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
+** bit is clear then fall through if either operand is NULL.
+**
+** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
+** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
+** to coerce both inputs according to this affinity before the
+** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
+** affinity is used. Note that the affinity conversions are stored
+** back into the input registers P1 and P3. So this opcode can cause
+** persistent changes to registers P1 and P3.
+**
+** Once any conversions have taken place, and neither value is NULL,
+** the values are compared. If both values are blobs then memcmp() is
+** used to determine the results of the comparison. If both values
+** are text, then the appropriate collating function specified in
+** P4 is used to do the comparison. If P4 is not specified then
+** memcmp() is used to compare text string. If both values are
+** numeric, then a numeric comparison is used. If the two values
+** are of different types, then numbers are considered less than
+** strings and strings are considered less than blobs.
+**
+** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
+** store a boolean result (either 0, or 1, or NULL) in register P2.
+*/
+/* Opcode: Ne P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the operands in registers P1 and P3 are not equal. See the Lt opcode for
+** additional information.
+**
+** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
+** true or false and is never NULL. If both operands are NULL then the result
+** of comparison is false. If either operand is NULL then the result is true.
+** If neither operand is NULL the result is the same as it would be if
+** the SQLITE_NULLEQ flag were omitted from P5.
+*/
+/* Opcode: Eq P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the operands in registers P1 and P3 are equal.
+** See the Lt opcode for additional information.
+**
+** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
+** true or false and is never NULL. If both operands are NULL then the result
+** of comparison is true. If either operand is NULL then the result is false.
+** If neither operand is NULL the result is the same as it would be if
+** the SQLITE_NULLEQ flag were omitted from P5.
+*/
+/* Opcode: Le P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is less than or equal to the content of
+** register P1. See the Lt opcode for additional information.
+*/
+/* Opcode: Gt P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than the content of
+** register P1. See the Lt opcode for additional information.
+*/
+/* Opcode: Ge P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than or equal to the content of
+** register P1. See the Lt opcode for additional information.
+*/
+case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
+case OP_Ne: /* same as TK_NE, jump, in1, in3 */
+case OP_Lt: /* same as TK_LT, jump, in1, in3 */
+case OP_Le: /* same as TK_LE, jump, in1, in3 */
+case OP_Gt: /* same as TK_GT, jump, in1, in3 */
+case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
+ int res; /* Result of the comparison of pIn1 against pIn3 */
+ char affinity; /* Affinity to use for comparison */
+ u16 flags1; /* Copy of initial value of pIn1->flags */
+ u16 flags3; /* Copy of initial value of pIn3->flags */
+
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ flags1 = pIn1->flags;
+ flags3 = pIn3->flags;
+ if( (flags1 | flags3)&MEM_Null ){
+ /* One or both operands are NULL */
+ if( pOp->p5 & SQLITE_NULLEQ ){
+ /* If SQLITE_NULLEQ is set (which will only happen if the operator is
+ ** OP_Eq or OP_Ne) then take the jump or not depending on whether
+ ** or not both operands are null.
+ */
+ assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
+ res = (flags1 & flags3 & MEM_Null)==0;
+ }else{
+ /* SQLITE_NULLEQ is clear and at least one operand is NULL,
+ ** then the result is always NULL.
+ ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
+ */
+ if( pOp->p5 & SQLITE_STOREP2 ){
+ pOut = &aMem[pOp->p2];
+ MemSetTypeFlag(pOut, MEM_Null);
+ REGISTER_TRACE(pOp->p2, pOut);
+ }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
+ pc = pOp->p2-1;
+ }
+ break;
+ }
+ }else{
+ /* Neither operand is NULL. Do a comparison. */
+ affinity = pOp->p5 & SQLITE_AFF_MASK;
+ if( affinity ){
+ applyAffinity(pIn1, affinity, encoding);
+ applyAffinity(pIn3, affinity, encoding);
+ if( db->mallocFailed ) goto no_mem;
+ }
+
+ assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
+ ExpandBlob(pIn1);
+ ExpandBlob(pIn3);
+ res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
+ }
+ switch( pOp->opcode ){
+ case OP_Eq: res = res==0; break;
+ case OP_Ne: res = res!=0; break;
+ case OP_Lt: res = res<0; break;
+ case OP_Le: res = res<=0; break;
+ case OP_Gt: res = res>0; break;
+ default: res = res>=0; break;
+ }
+
+ if( pOp->p5 & SQLITE_STOREP2 ){
+ pOut = &aMem[pOp->p2];
+ memAboutToChange(p, pOut);
+ MemSetTypeFlag(pOut, MEM_Int);
+ pOut->u.i = res;
+ REGISTER_TRACE(pOp->p2, pOut);
+ }else if( res ){
+ pc = pOp->p2-1;
+ }
+
+ /* Undo any changes made by applyAffinity() to the input registers. */
+ pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
+ pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
+ break;
+}
+
+/* Opcode: Permutation * * * P4 *
+**
+** Set the permutation used by the OP_Compare operator to be the array
+** of integers in P4.
+**
+** The permutation is only valid until the next OP_Permutation, OP_Compare,
+** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
+** immediately prior to the OP_Compare.
+*/
+case OP_Permutation: {
+ assert( pOp->p4type==P4_INTARRAY );
+ assert( pOp->p4.ai );
+ aPermute = pOp->p4.ai;
+ break;
+}
+
+/* Opcode: Compare P1 P2 P3 P4 *
+**
+** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
+** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
+** the comparison for use by the next OP_Jump instruct.
+**
+** P4 is a KeyInfo structure that defines collating sequences and sort
+** orders for the comparison. The permutation applies to registers
+** only. The KeyInfo elements are used sequentially.
+**
+** The comparison is a sort comparison, so NULLs compare equal,
+** NULLs are less than numbers, numbers are less than strings,
+** and strings are less than blobs.
+*/
+case OP_Compare: {
+ int n;
+ int i;
+ int p1;
+ int p2;
+ const KeyInfo *pKeyInfo;
+ int idx;
+ CollSeq *pColl; /* Collating sequence to use on this term */
+ int bRev; /* True for DESCENDING sort order */
+
+ n = pOp->p3;
+ pKeyInfo = pOp->p4.pKeyInfo;
+ assert( n>0 );
+ assert( pKeyInfo!=0 );
+ p1 = pOp->p1;
+ p2 = pOp->p2;
+#if SQLITE_DEBUG
+ if( aPermute ){
+ int k, mx = 0;
+ for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
+ assert( p1>0 && p1+mx<=p->nMem+1 );
+ assert( p2>0 && p2+mx<=p->nMem+1 );
+ }else{
+ assert( p1>0 && p1+n<=p->nMem+1 );
+ assert( p2>0 && p2+n<=p->nMem+1 );
+ }
+#endif /* SQLITE_DEBUG */
+ for(i=0; i<n; i++){
+ idx = aPermute ? aPermute[i] : i;
+ assert( memIsValid(&aMem[p1+idx]) );
+ assert( memIsValid(&aMem[p2+idx]) );
+ REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
+ REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
+ assert( i<pKeyInfo->nField );
+ pColl = pKeyInfo->aColl[i];
+ bRev = pKeyInfo->aSortOrder[i];
+ iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
+ if( iCompare ){
+ if( bRev ) iCompare = -iCompare;
+ break;
+ }
+ }
+ aPermute = 0;
+ break;
+}
+
+/* Opcode: Jump P1 P2 P3 * *
+**
+** Jump to the instruction at address P1, P2, or P3 depending on whether
+** in the most recent OP_Compare instruction the P1 vector was less than
+** equal to, or greater than the P2 vector, respectively.
+*/
+case OP_Jump: { /* jump */
+ if( iCompare<0 ){
+ pc = pOp->p1 - 1;
+ }else if( iCompare==0 ){
+ pc = pOp->p2 - 1;
+ }else{
+ pc = pOp->p3 - 1;
+ }
+ break;
+}
+
+/* Opcode: And P1 P2 P3 * *
+**
+** Take the logical AND of the values in registers P1 and P2 and
+** write the result into register P3.
+**
+** If either P1 or P2 is 0 (false) then the result is 0 even if
+** the other input is NULL. A NULL and true or two NULLs give
+** a NULL output.
+*/
+/* Opcode: Or P1 P2 P3 * *
+**
+** Take the logical OR of the values in register P1 and P2 and
+** store the answer in register P3.
+**
+** If either P1 or P2 is nonzero (true) then the result is 1 (true)
+** even if the other input is NULL. A NULL and false or two NULLs
+** give a NULL output.
+*/
+case OP_And: /* same as TK_AND, in1, in2, out3 */
+case OP_Or: { /* same as TK_OR, in1, in2, out3 */
+ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+
+ pIn1 = &aMem[pOp->p1];
+ if( pIn1->flags & MEM_Null ){
+ v1 = 2;
+ }else{
+ v1 = sqlite3VdbeIntValue(pIn1)!=0;
+ }
+ pIn2 = &aMem[pOp->p2];
+ if( pIn2->flags & MEM_Null ){
+ v2 = 2;
+ }else{
+ v2 = sqlite3VdbeIntValue(pIn2)!=0;
+ }
+ if( pOp->opcode==OP_And ){
+ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
+ v1 = and_logic[v1*3+v2];
+ }else{
+ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
+ v1 = or_logic[v1*3+v2];
+ }
+ pOut = &aMem[pOp->p3];
+ if( v1==2 ){
+ MemSetTypeFlag(pOut, MEM_Null);
+ }else{
+ pOut->u.i = v1;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }
+ break;
+}
+
+/* Opcode: Not P1 P2 * * *
+**
+** Interpret the value in register P1 as a boolean value. Store the
+** boolean complement in register P2. If the value in register P1 is
+** NULL, then a NULL is stored in P2.
+*/
+case OP_Not: { /* same as TK_NOT, in1, out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ if( pIn1->flags & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ }else{
+ sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
+ }
+ break;
+}
+
+/* Opcode: BitNot P1 P2 * * *
+**
+** Interpret the content of register P1 as an integer. Store the
+** ones-complement of the P1 value into register P2. If P1 holds
+** a NULL then store a NULL in P2.
+*/
+case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ if( pIn1->flags & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ }else{
+ sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
+ }
+ break;
+}
+
+/* Opcode: Once P1 P2 * * *
+**
+** Jump to P2 if the value in register P1 is a not null or zero. If
+** the value is NULL or zero, fall through and change the P1 register
+** to an integer 1.
+**
+** When P1 is not used otherwise in a program, this opcode falls through
+** once and jumps on all subsequent invocations. It is the equivalent
+** of "OP_If P1 P2", followed by "OP_Integer 1 P1".
+*/
+/* Opcode: If P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is true. The value
+** is considered true if it is numeric and non-zero. If the value
+** in P1 is NULL then take the jump if P3 is true.
+*/
+/* Opcode: IfNot P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is False. The value
+** is considered true if it has a numeric value of zero. If the value
+** in P1 is NULL then take the jump if P3 is true.
+*/
+case OP_Once: /* jump, in1 */
+case OP_If: /* jump, in1 */
+case OP_IfNot: { /* jump, in1 */
+ int c;
+ pIn1 = &aMem[pOp->p1];
+ if( pIn1->flags & MEM_Null ){
+ c = pOp->p3;
+ }else{
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ c = sqlite3VdbeIntValue(pIn1)!=0;
+#else
+ c = sqlite3VdbeRealValue(pIn1)!=0.0;
+#endif
+ if( pOp->opcode==OP_IfNot ) c = !c;
+ }
+ if( c ){
+ pc = pOp->p2-1;
+ }else if( pOp->opcode==OP_Once ){
+ assert( (pIn1->flags & (MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))==0 );
+ memAboutToChange(p, pIn1);
+ pIn1->flags = MEM_Int;
+ pIn1->u.i = 1;
+ REGISTER_TRACE(pOp->p1, pIn1);
+ }
+ break;
+}
+
+/* Opcode: IsNull P1 P2 * * *
+**
+** Jump to P2 if the value in register P1 is NULL.
+*/
+case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( (pIn1->flags & MEM_Null)!=0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: NotNull P1 P2 * * *
+**
+** Jump to P2 if the value in register P1 is not NULL.
+*/
+case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( (pIn1->flags & MEM_Null)==0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: Column P1 P2 P3 P4 P5
+**
+** Interpret the data that cursor P1 points to as a structure built using
+** the MakeRecord instruction. (See the MakeRecord opcode for additional
+** information about the format of the data.) Extract the P2-th column
+** from this record. If there are less that (P2+1)
+** values in the record, extract a NULL.
+**
+** The value extracted is stored in register P3.
+**
+** If the column contains fewer than P2 fields, then extract a NULL. Or,
+** if the P4 argument is a P4_MEM use the value of the P4 argument as
+** the result.
+**
+** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
+** then the cache of the cursor is reset prior to extracting the column.
+** The first OP_Column against a pseudo-table after the value of the content
+** register has changed should have this bit set.
+*/
+case OP_Column: {
+ u32 payloadSize; /* Number of bytes in the record */
+ i64 payloadSize64; /* Number of bytes in the record */
+ int p1; /* P1 value of the opcode */
+ int p2; /* column number to retrieve */
+ VdbeCursor *pC; /* The VDBE cursor */
+ char *zRec; /* Pointer to complete record-data */
+ BtCursor *pCrsr; /* The BTree cursor */
+ u32 *aType; /* aType[i] holds the numeric type of the i-th column */
+ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
+ int nField; /* number of fields in the record */
+ int len; /* The length of the serialized data for the column */
+ int i; /* Loop counter */
+ char *zData; /* Part of the record being decoded */
+ Mem *pDest; /* Where to write the extracted value */
+ Mem sMem; /* For storing the record being decoded */
+ u8 *zIdx; /* Index into header */
+ u8 *zEndHdr; /* Pointer to first byte after the header */
+ u32 offset; /* Offset into the data */
+ u32 szField; /* Number of bytes in the content of a field */
+ int szHdr; /* Size of the header size field at start of record */
+ int avail; /* Number of bytes of available data */
+ u32 t; /* A type code from the record header */
+ Mem *pReg; /* PseudoTable input register */
+
+
+ p1 = pOp->p1;
+ p2 = pOp->p2;
+ pC = 0;
+ memset(&sMem, 0, sizeof(sMem));
+ assert( p1<p->nCursor );
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ zRec = 0;
+
+ /* This block sets the variable payloadSize to be the total number of
+ ** bytes in the record.
+ **
+ ** zRec is set to be the complete text of the record if it is available.
+ ** The complete record text is always available for pseudo-tables
+ ** If the record is stored in a cursor, the complete record text
+ ** might be available in the pC->aRow cache. Or it might not be.
+ ** If the data is unavailable, zRec is set to NULL.
+ **
+ ** We also compute the number of columns in the record. For cursors,
+ ** the number of columns is stored in the VdbeCursor.nField element.
+ */
+ pC = p->apCsr[p1];
+ assert( pC!=0 );
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ assert( pC->pVtabCursor==0 );
+#endif
+ pCrsr = pC->pCursor;
+ if( pCrsr!=0 ){
+ /* The record is stored in a B-Tree */
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ if( pC->nullRow ){
+ payloadSize = 0;
+ }else if( pC->cacheStatus==p->cacheCtr ){
+ payloadSize = pC->payloadSize;
+ zRec = (char*)pC->aRow;
+ }else if( pC->isIndex ){
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+ VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
+ assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
+ /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
+ ** payload size, so it is impossible for payloadSize64 to be
+ ** larger than 32 bits. */
+ assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
+ payloadSize = (u32)payloadSize64;
+ }else{
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+ VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
+ assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
+ }
+ }else if( ALWAYS(pC->pseudoTableReg>0) ){
+ pReg = &aMem[pC->pseudoTableReg];
+ assert( pReg->flags & MEM_Blob );
+ assert( memIsValid(pReg) );
+ payloadSize = pReg->n;
+ zRec = pReg->z;
+ pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
+ assert( payloadSize==0 || zRec!=0 );
+ }else{
+ /* Consider the row to be NULL */
+ payloadSize = 0;
+ }
+
+ /* If payloadSize is 0, then just store a NULL. This can happen because of
+ ** nullRow or because of a corrupt database. */
+ if( payloadSize==0 ){
+ MemSetTypeFlag(pDest, MEM_Null);
+ goto op_column_out;
+ }
+ assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
+ if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+
+ nField = pC->nField;
+ assert( p2<nField );
+
+ /* Read and parse the table header. Store the results of the parse
+ ** into the record header cache fields of the cursor.
+ */
+ aType = pC->aType;
+ if( pC->cacheStatus==p->cacheCtr ){
+ aOffset = pC->aOffset;
+ }else{
+ assert(aType);
+ avail = 0;
+ pC->aOffset = aOffset = &aType[nField];
+ pC->payloadSize = payloadSize;
+ pC->cacheStatus = p->cacheCtr;
+
+ /* Figure out how many bytes are in the header */
+ if( zRec ){
+ zData = zRec;
+ }else{
+ if( pC->isIndex ){
+ zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
+ }else{
+ zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
+ }
+ /* If KeyFetch()/DataFetch() managed to get the entire payload,
+ ** save the payload in the pC->aRow cache. That will save us from
+ ** having to make additional calls to fetch the content portion of
+ ** the record.
+ */
+ assert( avail>=0 );
+ if( payloadSize <= (u32)avail ){
+ zRec = zData;
+ pC->aRow = (u8*)zData;
+ }else{
+ pC->aRow = 0;
+ }
+ }
+ /* The following assert is true in all cases accept when
+ ** the database file has been corrupted externally.
+ ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
+ szHdr = getVarint32((u8*)zData, offset);
+
+ /* Make sure a corrupt database has not given us an oversize header.
+ ** Do this now to avoid an oversize memory allocation.
+ **
+ ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
+ ** types use so much data space that there can only be 4096 and 32 of
+ ** them, respectively. So the maximum header length results from a
+ ** 3-byte type for each of the maximum of 32768 columns plus three
+ ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
+ */
+ if( offset > 98307 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto op_column_out;
+ }
+
+ /* Compute in len the number of bytes of data we need to read in order
+ ** to get nField type values. offset is an upper bound on this. But
+ ** nField might be significantly less than the true number of columns
+ ** in the table, and in that case, 5*nField+3 might be smaller than offset.
+ ** We want to minimize len in order to limit the size of the memory
+ ** allocation, especially if a corrupt database file has caused offset
+ ** to be oversized. Offset is limited to 98307 above. But 98307 might
+ ** still exceed Robson memory allocation limits on some configurations.
+ ** On systems that cannot tolerate large memory allocations, nField*5+3
+ ** will likely be much smaller since nField will likely be less than
+ ** 20 or so. This insures that Robson memory allocation limits are
+ ** not exceeded even for corrupt database files.
+ */
+ len = nField*5 + 3;
+ if( len > (int)offset ) len = (int)offset;
+
+ /* The KeyFetch() or DataFetch() above are fast and will get the entire
+ ** record header in most cases. But they will fail to get the complete
+ ** record header if the record header does not fit on a single page
+ ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
+ ** acquire the complete header text.
+ */
+ if( !zRec && avail<len ){
+ sMem.flags = 0;
+ sMem.db = 0;
+ rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
+ if( rc!=SQLITE_OK ){
+ goto op_column_out;
+ }
+ zData = sMem.z;
+ }
+ zEndHdr = (u8 *)&zData[len];
+ zIdx = (u8 *)&zData[szHdr];
+
+ /* Scan the header and use it to fill in the aType[] and aOffset[]
+ ** arrays. aType[i] will contain the type integer for the i-th
+ ** column and aOffset[i] will contain the offset from the beginning
+ ** of the record to the start of the data for the i-th column
+ */
+ for(i=0; i<nField; i++){
+ if( zIdx<zEndHdr ){
+ aOffset[i] = offset;
+ if( zIdx[0]<0x80 ){
+ t = zIdx[0];
+ zIdx++;
+ }else{
+ zIdx += sqlite3GetVarint32(zIdx, &t);
+ }
+ aType[i] = t;
+ szField = sqlite3VdbeSerialTypeLen(t);
+ offset += szField;
+ if( offset<szField ){ /* True if offset overflows */
+ zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
+ break;
+ }
+ }else{
+ /* If i is less that nField, then there are less fields in this
+ ** record than SetNumColumns indicated there are columns in the
+ ** table. Set the offset for any extra columns not present in
+ ** the record to 0. This tells code below to store a NULL
+ ** instead of deserializing a value from the record.
+ */
+ aOffset[i] = 0;
+ }
+ }
+ sqlite3VdbeMemRelease(&sMem);
+ sMem.flags = MEM_Null;
+
+ /* If we have read more header data than was contained in the header,
+ ** or if the end of the last field appears to be past the end of the
+ ** record, or if the end of the last field appears to be before the end
+ ** of the record (when all fields present), then we must be dealing
+ ** with a corrupt database.
+ */
+ if( (zIdx > zEndHdr) || (offset > payloadSize)
+ || (zIdx==zEndHdr && offset!=payloadSize) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto op_column_out;
+ }
+ }
+
+ /* Get the column information. If aOffset[p2] is non-zero, then
+ ** deserialize the value from the record. If aOffset[p2] is zero,
+ ** then there are not enough fields in the record to satisfy the
+ ** request. In this case, set the value NULL or to P4 if P4 is
+ ** a pointer to a Mem object.
+ */
+ if( aOffset[p2] ){
+ assert( rc==SQLITE_OK );
+ if( zRec ){
+ MemReleaseExt(pDest);
+ sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
+ }else{
+ len = sqlite3VdbeSerialTypeLen(aType[p2]);
+ sqlite3VdbeMemMove(&sMem, pDest);
+ rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
+ if( rc!=SQLITE_OK ){
+ goto op_column_out;
+ }
+ zData = sMem.z;
+ sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
+ }
+ pDest->enc = encoding;
+ }else{
+ if( pOp->p4type==P4_MEM ){
+ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
+ }else{
+ MemSetTypeFlag(pDest, MEM_Null);
+ }
+ }
+
+ /* If we dynamically allocated space to hold the data (in the
+ ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
+ ** dynamically allocated space over to the pDest structure.
+ ** This prevents a memory copy.
+ */
+ if( sMem.zMalloc ){
+ assert( sMem.z==sMem.zMalloc );
+ assert( !(pDest->flags & MEM_Dyn) );
+ assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
+ pDest->flags &= ~(MEM_Ephem|MEM_Static);
+ pDest->flags |= MEM_Term;
+ pDest->z = sMem.z;
+ pDest->zMalloc = sMem.zMalloc;
+ }
+
+ rc = sqlite3VdbeMemMakeWriteable(pDest);
+
+op_column_out:
+ UPDATE_MAX_BLOBSIZE(pDest);
+ REGISTER_TRACE(pOp->p3, pDest);
+ break;
+}
+
+/* Opcode: Affinity P1 P2 * P4 *
+**
+** Apply affinities to a range of P2 registers starting with P1.
+**
+** P4 is a string that is P2 characters long. The nth character of the
+** string indicates the column affinity that should be used for the nth
+** memory cell in the range.
+*/
+case OP_Affinity: {
+ const char *zAffinity; /* The affinity to be applied */
+ char cAff; /* A single character of affinity */
+
+ zAffinity = pOp->p4.z;
+ assert( zAffinity!=0 );
+ assert( zAffinity[pOp->p2]==0 );
+ pIn1 = &aMem[pOp->p1];
+ while( (cAff = *(zAffinity++))!=0 ){
+ assert( pIn1 <= &p->aMem[p->nMem] );
+ assert( memIsValid(pIn1) );
+ ExpandBlob(pIn1);
+ applyAffinity(pIn1, cAff, encoding);
+ pIn1++;
+ }
+ break;
+}
+
+/* Opcode: MakeRecord P1 P2 P3 P4 *
+**
+** Convert P2 registers beginning with P1 into the [record format]
+** use as a data record in a database table or as a key
+** in an index. The OP_Column opcode can decode the record later.
+**
+** P4 may be a string that is P2 characters long. The nth character of the
+** string indicates the column affinity that should be used for the nth
+** field of the index key.
+**
+** The mapping from character to affinity is given by the SQLITE_AFF_
+** macros defined in sqliteInt.h.
+**
+** If P4 is NULL then all index fields have the affinity NONE.
+*/
+case OP_MakeRecord: {
+ u8 *zNewRecord; /* A buffer to hold the data for the new record */
+ Mem *pRec; /* The new record */
+ u64 nData; /* Number of bytes of data space */
+ int nHdr; /* Number of bytes of header space */
+ i64 nByte; /* Data space required for this record */
+ int nZero; /* Number of zero bytes at the end of the record */
+ int nVarint; /* Number of bytes in a varint */
+ u32 serial_type; /* Type field */
+ Mem *pData0; /* First field to be combined into the record */
+ Mem *pLast; /* Last field of the record */
+ int nField; /* Number of fields in the record */
+ char *zAffinity; /* The affinity string for the record */
+ int file_format; /* File format to use for encoding */
+ int i; /* Space used in zNewRecord[] */
+ int len; /* Length of a field */
+
+ /* Assuming the record contains N fields, the record format looks
+ ** like this:
+ **
+ ** ------------------------------------------------------------------------
+ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
+ ** ------------------------------------------------------------------------
+ **
+ ** Data(0) is taken from register P1. Data(1) comes from register P1+1
+ ** and so froth.
+ **
+ ** Each type field is a varint representing the serial type of the
+ ** corresponding data element (see sqlite3VdbeSerialType()). The
+ ** hdr-size field is also a varint which is the offset from the beginning
+ ** of the record to data0.
+ */
+ nData = 0; /* Number of bytes of data space */
+ nHdr = 0; /* Number of bytes of header space */
+ nZero = 0; /* Number of zero bytes at the end of the record */
+ nField = pOp->p1;
+ zAffinity = pOp->p4.z;
+ assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
+ pData0 = &aMem[nField];
+ nField = pOp->p2;
+ pLast = &pData0[nField-1];
+ file_format = p->minWriteFileFormat;
+
+ /* Identify the output register */
+ assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
+ pOut = &aMem[pOp->p3];
+ memAboutToChange(p, pOut);
+
+ /* Loop through the elements that will make up the record to figure
+ ** out how much space is required for the new record.
+ */
+ for(pRec=pData0; pRec<=pLast; pRec++){
+ assert( memIsValid(pRec) );
+ if( zAffinity ){
+ applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
+ }
+ if( pRec->flags&MEM_Zero && pRec->n>0 ){
+ sqlite3VdbeMemExpandBlob(pRec);
+ }
+ serial_type = sqlite3VdbeSerialType(pRec, file_format);
+ len = sqlite3VdbeSerialTypeLen(serial_type);
+ nData += len;
+ nHdr += sqlite3VarintLen(serial_type);
+ if( pRec->flags & MEM_Zero ){
+ /* Only pure zero-filled BLOBs can be input to this Opcode.
+ ** We do not allow blobs with a prefix and a zero-filled tail. */
+ nZero += pRec->u.nZero;
+ }else if( len ){
+ nZero = 0;
+ }
+ }
+
+ /* Add the initial header varint and total the size */
+ nHdr += nVarint = sqlite3VarintLen(nHdr);
+ if( nVarint<sqlite3VarintLen(nHdr) ){
+ nHdr++;
+ }
+ nByte = nHdr+nData-nZero;
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+
+ /* Make sure the output register has a buffer large enough to store
+ ** the new record. The output register (pOp->p3) is not allowed to
+ ** be one of the input registers (because the following call to
+ ** sqlite3VdbeMemGrow() could clobber the value before it is used).
+ */
+ if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
+ goto no_mem;
+ }
+ zNewRecord = (u8 *)pOut->z;
+
+ /* Write the record */
+ i = putVarint32(zNewRecord, nHdr);
+ for(pRec=pData0; pRec<=pLast; pRec++){
+ serial_type = sqlite3VdbeSerialType(pRec, file_format);
+ i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
+ }
+ for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
+ i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
+ }
+ assert( i==nByte );
+
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pOut->n = (int)nByte;
+ pOut->flags = MEM_Blob | MEM_Dyn;
+ pOut->xDel = 0;
+ if( nZero ){
+ pOut->u.nZero = nZero;
+ pOut->flags |= MEM_Zero;
+ }
+ pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
+ REGISTER_TRACE(pOp->p3, pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Count P1 P2 * * *
+**
+** Store the number of entries (an integer value) in the table or index
+** opened by cursor P1 in register P2
+*/
+#ifndef SQLITE_OMIT_BTREECOUNT
+case OP_Count: { /* out2-prerelease */
+ i64 nEntry;
+ BtCursor *pCrsr;
+
+ pCrsr = p->apCsr[pOp->p1]->pCursor;
+ if( ALWAYS(pCrsr) ){
+ rc = sqlite3BtreeCount(pCrsr, &nEntry);
+ }else{
+ nEntry = 0;
+ }
+ pOut->u.i = nEntry;
+ break;
+}
+#endif
+
+/* Opcode: Savepoint P1 * * P4 *
+**
+** Open, release or rollback the savepoint named by parameter P4, depending
+** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
+** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
+*/
+case OP_Savepoint: {
+ int p1; /* Value of P1 operand */
+ char *zName; /* Name of savepoint */
+ int nName;
+ Savepoint *pNew;
+ Savepoint *pSavepoint;
+ Savepoint *pTmp;
+ int iSavepoint;
+ int ii;
+
+ p1 = pOp->p1;
+ zName = pOp->p4.z;
+
+ /* Assert that the p1 parameter is valid. Also that if there is no open
+ ** transaction, then there cannot be any savepoints.
+ */
+ assert( db->pSavepoint==0 || db->autoCommit==0 );
+ assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
+ assert( db->pSavepoint || db->isTransactionSavepoint==0 );
+ assert( checkSavepointCount(db) );
+
+ if( p1==SAVEPOINT_BEGIN ){
+ if( db->writeVdbeCnt>0 ){
+ /* A new savepoint cannot be created if there are active write
+ ** statements (i.e. open read/write incremental blob handles).
+ */
+ sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else{
+ nName = sqlite3Strlen30(zName);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* This call is Ok even if this savepoint is actually a transaction
+ ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
+ ** If this is a transaction savepoint being opened, it is guaranteed
+ ** that the db->aVTrans[] array is empty. */
+ assert( db->autoCommit==0 || db->nVTrans==0 );
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
+ db->nStatement+db->nSavepoint);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+#endif
+
+ /* Create a new savepoint structure. */
+ pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
+ if( pNew ){
+ pNew->zName = (char *)&pNew[1];
+ memcpy(pNew->zName, zName, nName+1);
+
+ /* If there is no open transaction, then mark this as a special
+ ** "transaction savepoint". */
+ if( db->autoCommit ){
+ db->autoCommit = 0;
+ db->isTransactionSavepoint = 1;
+ }else{
+ db->nSavepoint++;
+ }
+
+ /* Link the new savepoint into the database handle's list. */
+ pNew->pNext = db->pSavepoint;
+ db->pSavepoint = pNew;
+ pNew->nDeferredCons = db->nDeferredCons;
+ }
+ }
+ }else{
+ iSavepoint = 0;
+
+ /* Find the named savepoint. If there is no such savepoint, then an
+ ** an error is returned to the user. */
+ for(
+ pSavepoint = db->pSavepoint;
+ pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
+ pSavepoint = pSavepoint->pNext
+ ){
+ iSavepoint++;
+ }
+ if( !pSavepoint ){
+ sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
+ rc = SQLITE_ERROR;
+ }else if(
+ db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
+ ){
+ /* It is not possible to release (commit) a savepoint if there are
+ ** active write statements. It is not possible to rollback a savepoint
+ ** if there are any active statements at all.
+ */
+ sqlite3SetString(&p->zErrMsg, db,
+ "cannot %s savepoint - SQL statements in progress",
+ (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
+ );
+ rc = SQLITE_BUSY;
+ }else{
+
+ /* Determine whether or not this is a transaction savepoint. If so,
+ ** and this is a RELEASE command, then the current transaction
+ ** is committed.
+ */
+ int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
+ if( isTransaction && p1==SAVEPOINT_RELEASE ){
+ if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
+ goto vdbe_return;
+ }
+ db->autoCommit = 1;
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pc = pc;
+ db->autoCommit = 0;
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ db->isTransactionSavepoint = 0;
+ rc = p->rc;
+ }else{
+ iSavepoint = db->nSavepoint - iSavepoint - 1;
+ for(ii=0; ii<db->nDb; ii++){
+ rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ }
+ if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
+ sqlite3ExpirePreparedStatements(db);
+ sqlite3ResetInternalSchema(db, -1);
+ db->flags = (db->flags | SQLITE_InternChanges);
+ }
+ }
+
+ /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
+ ** savepoints nested inside of the savepoint being operated on. */
+ while( db->pSavepoint!=pSavepoint ){
+ pTmp = db->pSavepoint;
+ db->pSavepoint = pTmp->pNext;
+ sqlite3DbFree(db, pTmp);
+ db->nSavepoint--;
+ }
+
+ /* If it is a RELEASE, then destroy the savepoint being operated on
+ ** too. If it is a ROLLBACK TO, then set the number of deferred
+ ** constraint violations present in the database to the value stored
+ ** when the savepoint was created. */
+ if( p1==SAVEPOINT_RELEASE ){
+ assert( pSavepoint==db->pSavepoint );
+ db->pSavepoint = pSavepoint->pNext;
+ sqlite3DbFree(db, pSavepoint);
+ if( !isTransaction ){
+ db->nSavepoint--;
+ }
+ }else{
+ db->nDeferredCons = pSavepoint->nDeferredCons;
+ }
+
+ if( !isTransaction ){
+ rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }
+ }
+
+ break;
+}
+
+/* Opcode: AutoCommit P1 P2 * * *
+**
+** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
+** back any currently active btree transactions. If there are any active
+** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
+** there are active writing VMs or active VMs that use shared cache.
+**
+** This instruction causes the VM to halt.
+*/
+case OP_AutoCommit: {
+ int desiredAutoCommit;
+ int iRollback;
+ int turnOnAC;
+
+ desiredAutoCommit = pOp->p1;
+ iRollback = pOp->p2;
+ turnOnAC = desiredAutoCommit && !db->autoCommit;
+ assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
+ assert( desiredAutoCommit==1 || iRollback==0 );
+ assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
+
+ if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
+ /* If this instruction implements a ROLLBACK and other VMs are
+ ** still running, and a transaction is active, return an error indicating
+ ** that the other VMs must complete first.
+ */
+ sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
+ /* If this instruction implements a COMMIT and other VMs are writing
+ ** return an error indicating that the other VMs must complete first.
+ */
+ sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else if( desiredAutoCommit!=db->autoCommit ){
+ if( iRollback ){
+ assert( desiredAutoCommit==1 );
+ sqlite3RollbackAll(db);
+ db->autoCommit = 1;
+ }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
+ goto vdbe_return;
+ }else{
+ db->autoCommit = (u8)desiredAutoCommit;
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pc = pc;
+ db->autoCommit = (u8)(1-desiredAutoCommit);
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ }
+ assert( db->nStatement==0 );
+ sqlite3CloseSavepoints(db);
+ if( p->rc==SQLITE_OK ){
+ rc = SQLITE_DONE;
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ goto vdbe_return;
+ }else{
+ sqlite3SetString(&p->zErrMsg, db,
+ (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
+ (iRollback)?"cannot rollback - no transaction is active":
+ "cannot commit - no transaction is active"));
+
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: Transaction P1 P2 * * *
+**
+** Begin a transaction. The transaction ends when a Commit or Rollback
+** opcode is encountered. Depending on the ON CONFLICT setting, the
+** transaction might also be rolled back if an error is encountered.
+**
+** P1 is the index of the database file on which the transaction is
+** started. Index 0 is the main database file and index 1 is the
+** file used for temporary tables. Indices of 2 or more are used for
+** attached databases.
+**
+** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
+** obtained on the database file when a write-transaction is started. No
+** other process can start another write transaction while this transaction is
+** underway. Starting a write transaction also creates a rollback journal. A
+** write transaction must be started before any changes can be made to the
+** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
+** on the file.
+**
+** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
+** true (this flag is set if the Vdbe may modify more than one row and may
+** throw an ABORT exception), a statement transaction may also be opened.
+** More specifically, a statement transaction is opened iff the database
+** connection is currently not in autocommit mode, or if there are other
+** active statements. A statement transaction allows the affects of this
+** VDBE to be rolled back after an error without having to roll back the
+** entire transaction. If no error is encountered, the statement transaction
+** will automatically commit when the VDBE halts.
+**
+** If P2 is zero, then a read-lock is obtained on the database file.
+*/
+case OP_Transaction: {
+ Btree *pBt;
+
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
+ pBt = db->aDb[pOp->p1].pBt;
+
+ if( pBt ){
+ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
+ if( rc==SQLITE_BUSY ){
+ p->pc = pc;
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+
+ if( pOp->p2 && p->usesStmtJournal
+ && (db->autoCommit==0 || db->activeVdbeCnt>1)
+ ){
+ assert( sqlite3BtreeIsInTrans(pBt) );
+ if( p->iStatement==0 ){
+ assert( db->nStatement>=0 && db->nSavepoint>=0 );
+ db->nStatement++;
+ p->iStatement = db->nSavepoint + db->nStatement;
+ }
+
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
+ }
+
+ /* Store the current value of the database handles deferred constraint
+ ** counter. If the statement transaction needs to be rolled back,
+ ** the value of this counter needs to be restored too. */
+ p->nStmtDefCons = db->nDeferredCons;
+ }
+ }
+ break;
+}
+
+/* Opcode: ReadCookie P1 P2 P3 * *
+**
+** Read cookie number P3 from database P1 and write it into register P2.
+** P3==1 is the schema version. P3==2 is the database format.
+** P3==3 is the recommended pager cache size, and so forth. P1==0 is
+** the main database file and P1==1 is the database file used to store
+** temporary tables.
+**
+** There must be a read-lock on the database (either a transaction
+** must be started or there must be an open cursor) before
+** executing this instruction.
+*/
+case OP_ReadCookie: { /* out2-prerelease */
+ int iMeta;
+ int iDb;
+ int iCookie;
+
+ iDb = pOp->p1;
+ iCookie = pOp->p3;
+ assert( pOp->p3<SQLITE_N_BTREE_META );
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+ assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
+
+ sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
+ pOut->u.i = iMeta;
+ break;
+}
+
+/* Opcode: SetCookie P1 P2 P3 * *
+**
+** Write the content of register P3 (interpreted as an integer)
+** into cookie number P2 of database P1. P2==1 is the schema version.
+** P2==2 is the database format. P2==3 is the recommended pager cache
+** size, and so forth. P1==0 is the main database file and P1==1 is the
+** database file used to store temporary tables.
+**
+** A transaction must be started before executing this opcode.
+*/
+case OP_SetCookie: { /* in3 */
+ Db *pDb;
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
+ pIn3 = &aMem[pOp->p3];
+ sqlite3VdbeMemIntegerify(pIn3);
+ /* See note about index shifting on OP_ReadCookie */
+ rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
+ if( pOp->p2==BTREE_SCHEMA_VERSION ){
+ /* When the schema cookie changes, record the new cookie internally */
+ pDb->pSchema->schema_cookie = (int)pIn3->u.i;
+ db->flags |= SQLITE_InternChanges;
+ }else if( pOp->p2==BTREE_FILE_FORMAT ){
+ /* Record changes in the file format */
+ pDb->pSchema->file_format = (u8)pIn3->u.i;
+ }
+ if( pOp->p1==1 ){
+ /* Invalidate all prepared statements whenever the TEMP database
+ ** schema is changed. Ticket #1644 */
+ sqlite3ExpirePreparedStatements(db);
+ p->expired = 0;
+ }
+ break;
+}
+
+/* Opcode: VerifyCookie P1 P2 P3 * *
+**
+** Check the value of global database parameter number 0 (the
+** schema version) and make sure it is equal to P2 and that the
+** generation counter on the local schema parse equals P3.
+**
+** P1 is the database number which is 0 for the main database file
+** and 1 for the file holding temporary tables and some higher number
+** for auxiliary databases.
+**
+** The cookie changes its value whenever the database schema changes.
+** This operation is used to detect when that the cookie has changed
+** and that the current process needs to reread the schema.
+**
+** Either a transaction needs to have been started or an OP_Open needs
+** to be executed (to establish a read lock) before this opcode is
+** invoked.
+*/
+case OP_VerifyCookie: {
+ int iMeta;
+ int iGen;
+ Btree *pBt;
+
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
+ assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
+ pBt = db->aDb[pOp->p1].pBt;
+ if( pBt ){
+ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
+ iGen = db->aDb[pOp->p1].pSchema->iGeneration;
+ }else{
+ iGen = iMeta = 0;
+ }
+ if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
+ /* If the schema-cookie from the database file matches the cookie
+ ** stored with the in-memory representation of the schema, do
+ ** not reload the schema from the database file.
+ **
+ ** If virtual-tables are in use, this is not just an optimization.
+ ** Often, v-tables store their data in other SQLite tables, which
+ ** are queried from within xNext() and other v-table methods using
+ ** prepared queries. If such a query is out-of-date, we do not want to
+ ** discard the database schema, as the user code implementing the
+ ** v-table would have to be ready for the sqlite3_vtab structure itself
+ ** to be invalidated whenever sqlite3_step() is called from within
+ ** a v-table method.
+ */
+ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
+ sqlite3ResetInternalSchema(db, pOp->p1);
+ }
+
+ p->expired = 1;
+ rc = SQLITE_SCHEMA;
+ }
+ break;
+}
+
+/* Opcode: OpenRead P1 P2 P3 P4 P5
+**
+** Open a read-only cursor for the database table whose root page is
+** P2 in a database file. The database file is determined by P3.
+** P3==0 means the main database, P3==1 means the database used for
+** temporary tables, and P3>1 means used the corresponding attached
+** database. Give the new cursor an identifier of P1. The P1
+** values need not be contiguous but all P1 values should be small integers.
+** It is an error for P1 to be negative.
+**
+** If P5!=0 then use the content of register P2 as the root page, not
+** the value of P2 itself.
+**
+** There will be a read lock on the database whenever there is an
+** open cursor. If the database was unlocked prior to this instruction
+** then a read lock is acquired as part of this instruction. A read
+** lock allows other processes to read the database but prohibits
+** any other process from modifying the database. The read lock is
+** released when all cursors are closed. If this instruction attempts
+** to get a read lock but fails, the script terminates with an
+** SQLITE_BUSY error code.
+**
+** The P4 value may be either an integer (P4_INT32) or a pointer to
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
+** structure, then said structure defines the content and collating
+** sequence of the index being opened. Otherwise, if P4 is an integer
+** value, it is set to the number of columns in the table.
+**
+** See also OpenWrite.
+*/
+/* Opcode: OpenWrite P1 P2 P3 P4 P5
+**
+** Open a read/write cursor named P1 on the table or index whose root
+** page is P2. Or if P5!=0 use the content of register P2 to find the
+** root page.
+**
+** The P4 value may be either an integer (P4_INT32) or a pointer to
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
+** structure, then said structure defines the content and collating
+** sequence of the index being opened. Otherwise, if P4 is an integer
+** value, it is set to the number of columns in the table, or to the
+** largest index of any column of the table that is actually used.
+**
+** This instruction works just like OpenRead except that it opens the cursor
+** in read/write mode. For a given table, there can be one or more read-only
+** cursors or a single read/write cursor but not both.
+**
+** See also OpenRead.
+*/
+case OP_OpenRead:
+case OP_OpenWrite: {
+ int nField;
+ KeyInfo *pKeyInfo;
+ int p2;
+ int iDb;
+ int wrFlag;
+ Btree *pX;
+ VdbeCursor *pCur;
+ Db *pDb;
+
+ if( p->expired ){
+ rc = SQLITE_ABORT;
+ break;
+ }
+
+ nField = 0;
+ pKeyInfo = 0;
+ p2 = pOp->p2;
+ iDb = pOp->p3;
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
+ pDb = &db->aDb[iDb];
+ pX = pDb->pBt;
+ assert( pX!=0 );
+ if( pOp->opcode==OP_OpenWrite ){
+ wrFlag = 1;
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( pDb->pSchema->file_format < p->minWriteFileFormat ){
+ p->minWriteFileFormat = pDb->pSchema->file_format;
+ }
+ }else{
+ wrFlag = 0;
+ }
+ if( pOp->p5 ){
+ assert( p2>0 );
+ assert( p2<=p->nMem );
+ pIn2 = &aMem[p2];
+ assert( memIsValid(pIn2) );
+ assert( (pIn2->flags & MEM_Int)!=0 );
+ sqlite3VdbeMemIntegerify(pIn2);
+ p2 = (int)pIn2->u.i;
+ /* The p2 value always comes from a prior OP_CreateTable opcode and
+ ** that opcode will always set the p2 value to 2 or more or else fail.
+ ** If there were a failure, the prepared statement would have halted
+ ** before reaching this instruction. */
+ if( NEVER(p2<2) ) {
+ rc = SQLITE_CORRUPT_BKPT;
+ goto abort_due_to_error;
+ }
+ }
+ if( pOp->p4type==P4_KEYINFO ){
+ pKeyInfo = pOp->p4.pKeyInfo;
+ pKeyInfo->enc = ENC(p->db);
+ nField = pKeyInfo->nField+1;
+ }else if( pOp->p4type==P4_INT32 ){
+ nField = pOp->p4.i;
+ }
+ assert( pOp->p1>=0 );
+ pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
+ if( pCur==0 ) goto no_mem;
+ pCur->nullRow = 1;
+ pCur->isOrdered = 1;
+ rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
+ pCur->pKeyInfo = pKeyInfo;
+
+ /* Since it performs no memory allocation or IO, the only value that
+ ** sqlite3BtreeCursor() may return is SQLITE_OK. */
+ assert( rc==SQLITE_OK );
+
+ /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
+ ** SQLite used to check if the root-page flags were sane at this point
+ ** and report database corruption if they were not, but this check has
+ ** since moved into the btree layer. */
+ pCur->isTable = pOp->p4type!=P4_KEYINFO;
+ pCur->isIndex = !pCur->isTable;
+ break;
+}
+
+/* Opcode: OpenEphemeral P1 P2 * P4 P5
+**
+** Open a new cursor P1 to a transient table.
+** The cursor is always opened read/write even if
+** the main database is read-only. The ephemeral
+** table is deleted automatically when the cursor is closed.
+**
+** P2 is the number of columns in the ephemeral table.
+** The cursor points to a BTree table if P4==0 and to a BTree index
+** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
+** that defines the format of keys in the index.
+**
+** This opcode was once called OpenTemp. But that created
+** confusion because the term "temp table", might refer either
+** to a TEMP table at the SQL level, or to a table opened by
+** this opcode. Then this opcode was call OpenVirtual. But
+** that created confusion with the whole virtual-table idea.
+**
+** The P5 parameter can be a mask of the BTREE_* flags defined
+** in btree.h. These flags control aspects of the operation of
+** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
+** added automatically.
+*/
+/* Opcode: OpenAutoindex P1 P2 * P4 *
+**
+** This opcode works the same as OP_OpenEphemeral. It has a
+** different name to distinguish its use. Tables created using
+** by this opcode will be used for automatically created transient
+** indices in joins.
+*/
+case OP_OpenAutoindex:
+case OP_OpenEphemeral: {
+ VdbeCursor *pCx;
+ static const int vfsFlags =
+ SQLITE_OPEN_READWRITE |
+ SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_TRANSIENT_DB;
+
+ assert( pOp->p1>=0 );
+ pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
+ BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
+ }
+ if( rc==SQLITE_OK ){
+ /* If a transient index is required, create it by calling
+ ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
+ ** opening it. If a transient table is required, just use the
+ ** automatically created table with root-page 1 (an BLOB_INTKEY table).
+ */
+ if( pOp->p4.pKeyInfo ){
+ int pgno;
+ assert( pOp->p4type==P4_KEYINFO );
+ rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
+ if( rc==SQLITE_OK ){
+ assert( pgno==MASTER_ROOT+1 );
+ rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
+ (KeyInfo*)pOp->p4.z, pCx->pCursor);
+ pCx->pKeyInfo = pOp->p4.pKeyInfo;
+ pCx->pKeyInfo->enc = ENC(p->db);
+ }
+ pCx->isTable = 0;
+ }else{
+ rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
+ pCx->isTable = 1;
+ }
+ }
+ pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
+ pCx->isIndex = !pCx->isTable;
+ break;
+}
+
+/* Opcode: OpenSorter P1 P2 * P4 *
+**
+** This opcode works like OP_OpenEphemeral except that it opens
+** a transient index that is specifically designed to sort large
+** tables using an external merge-sort algorithm.
+*/
+case OP_SorterOpen: {
+ VdbeCursor *pCx;
+#ifndef SQLITE_OMIT_MERGE_SORT
+ pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
+ if( pCx==0 ) goto no_mem;
+ pCx->pKeyInfo = pOp->p4.pKeyInfo;
+ pCx->pKeyInfo->enc = ENC(p->db);
+ pCx->isSorter = 1;
+ rc = sqlite3VdbeSorterInit(db, pCx);
+#else
+ pOp->opcode = OP_OpenEphemeral;
+ pc--;
+#endif
+ break;
+}
+
+/* Opcode: OpenPseudo P1 P2 P3 * *
+**
+** Open a new cursor that points to a fake table that contains a single
+** row of data. The content of that one row in the content of memory
+** register P2. In other words, cursor P1 becomes an alias for the
+** MEM_Blob content contained in register P2.
+**
+** A pseudo-table created by this opcode is used to hold a single
+** row output from the sorter so that the row can be decomposed into
+** individual columns using the OP_Column opcode. The OP_Column opcode
+** is the only cursor opcode that works with a pseudo-table.
+**
+** P3 is the number of fields in the records that will be stored by
+** the pseudo-table.
+*/
+case OP_OpenPseudo: {
+ VdbeCursor *pCx;
+
+ assert( pOp->p1>=0 );
+ pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ pCx->pseudoTableReg = pOp->p2;
+ pCx->isTable = 1;
+ pCx->isIndex = 0;
+ break;
+}
+
+/* Opcode: Close P1 * * * *
+**
+** Close a cursor previously opened as P1. If P1 is not
+** currently open, this instruction is a no-op.
+*/
+case OP_Close: {
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
+ p->apCsr[pOp->p1] = 0;
+ break;
+}
+
+/* Opcode: SeekGe P1 P2 P3 P4 *
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as the key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than or equal to the key value. If there are no records
+** greater than or equal to the key and P2 is not zero, then jump to P2.
+**
+** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
+*/
+/* Opcode: SeekGt P1 P2 P3 P4 *
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than the key value. If there are no records greater than
+** the key and P2 is not zero, then jump to P2.
+**
+** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
+*/
+/* Opcode: SeekLt P1 P2 P3 P4 *
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than the key value. If there are no records less than
+** the key and P2 is not zero, then jump to P2.
+**
+** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
+*/
+/* Opcode: SeekLe P1 P2 P3 P4 *
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than or equal to the key value. If there are no records
+** less than or equal to the key and P2 is not zero, then jump to P2.
+**
+** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
+*/
+case OP_SeekLt: /* jump, in3 */
+case OP_SeekLe: /* jump, in3 */
+case OP_SeekGe: /* jump, in3 */
+case OP_SeekGt: { /* jump, in3 */
+ int res;
+ int oc;
+ VdbeCursor *pC;
+ UnpackedRecord r;
+ int nField;
+ i64 iKey; /* The rowid we are to seek to */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p2!=0 );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->pseudoTableReg==0 );
+ assert( OP_SeekLe == OP_SeekLt+1 );
+ assert( OP_SeekGe == OP_SeekLt+2 );
+ assert( OP_SeekGt == OP_SeekLt+3 );
+ assert( pC->isOrdered );
+ if( ALWAYS(pC->pCursor!=0) ){
+ oc = pOp->opcode;
+ pC->nullRow = 0;
+ if( pC->isTable ){
+ /* The input value in P3 might be of any type: integer, real, string,
+ ** blob, or NULL. But it needs to be an integer before we can do
+ ** the seek, so covert it. */
+ pIn3 = &aMem[pOp->p3];
+ applyNumericAffinity(pIn3);
+ iKey = sqlite3VdbeIntValue(pIn3);
+ pC->rowidIsValid = 0;
+
+ /* If the P3 value could not be converted into an integer without
+ ** loss of information, then special processing is required... */
+ if( (pIn3->flags & MEM_Int)==0 ){
+ if( (pIn3->flags & MEM_Real)==0 ){
+ /* If the P3 value cannot be converted into any kind of a number,
+ ** then the seek is not possible, so jump to P2 */
+ pc = pOp->p2 - 1;
+ break;
+ }
+ /* If we reach this point, then the P3 value must be a floating
+ ** point number. */
+ assert( (pIn3->flags & MEM_Real)!=0 );
+
+ if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
+ /* The P3 value is too large in magnitude to be expressed as an
+ ** integer. */
+ res = 1;
+ if( pIn3->r<0 ){
+ if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
+ rc = sqlite3BtreeFirst(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }else{
+ if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
+ rc = sqlite3BtreeLast(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }
+ if( res ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+ }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
+ /* Use the ceiling() function to convert real->int */
+ if( pIn3->r > (double)iKey ) iKey++;
+ }else{
+ /* Use the floor() function to convert real->int */
+ assert( oc==OP_SeekLe || oc==OP_SeekGt );
+ if( pIn3->r < (double)iKey ) iKey--;
+ }
+ }
+ rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( res==0 ){
+ pC->rowidIsValid = 1;
+ pC->lastRowid = iKey;
+ }
+ }else{
+ nField = pOp->p4.i;
+ assert( pOp->p4type==P4_INT32 );
+ assert( nField>0 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)nField;
+
+ /* The next line of code computes as follows, only faster:
+ ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
+ ** r.flags = UNPACKED_INCRKEY;
+ ** }else{
+ ** r.flags = 0;
+ ** }
+ */
+ r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
+ assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
+ assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
+ assert( oc!=OP_SeekGe || r.flags==0 );
+ assert( oc!=OP_SeekLt || r.flags==0 );
+
+ r.aMem = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
+#endif
+ ExpandBlob(r.aMem);
+ rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ pC->rowidIsValid = 0;
+ }
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
+ if( res<0 || (res==0 && oc==OP_SeekGt) ){
+ rc = sqlite3BtreeNext(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ pC->rowidIsValid = 0;
+ }else{
+ res = 0;
+ }
+ }else{
+ assert( oc==OP_SeekLt || oc==OP_SeekLe );
+ if( res>0 || (res==0 && oc==OP_SeekLt) ){
+ rc = sqlite3BtreePrevious(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ pC->rowidIsValid = 0;
+ }else{
+ /* res might be negative because the table is empty. Check to
+ ** see if this is the case.
+ */
+ res = sqlite3BtreeEof(pC->pCursor);
+ }
+ }
+ assert( pOp->p2>0 );
+ if( res ){
+ pc = pOp->p2 - 1;
+ }
+ }else{
+ /* This happens when attempting to open the sqlite3_master table
+ ** for read access returns SQLITE_EMPTY. In this case always
+ ** take the jump (since there are no records in the table).
+ */
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: Seek P1 P2 * * *
+**
+** P1 is an open table cursor and P2 is a rowid integer. Arrange
+** for P1 to move so that it points to the rowid given by P2.
+**
+** This is actually a deferred seek. Nothing actually happens until
+** the cursor is used to read a record. That way, if no reads
+** occur, no unnecessary I/O happens.
+*/
+case OP_Seek: { /* in2 */
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ if( ALWAYS(pC->pCursor!=0) ){
+ assert( pC->isTable );
+ pC->nullRow = 0;
+ pIn2 = &aMem[pOp->p2];
+ pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
+ pC->rowidIsValid = 0;
+ pC->deferredMoveto = 1;
+ }
+ break;
+}
+
+
+/* Opcode: Found P1 P2 P3 P4 *
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** is a prefix of any entry in P1 then a jump is made to P2 and
+** P1 is left pointing at the matching entry.
+*/
+/* Opcode: NotFound P1 P2 P3 P4 *
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** is not the prefix of any entry in P1 then a jump is made to P2. If P1
+** does contain an entry whose prefix matches the P3/P4 record then control
+** falls through to the next instruction and P1 is left pointing at the
+** matching entry.
+**
+** See also: Found, NotExists, IsUnique
+*/
+case OP_NotFound: /* jump, in3 */
+case OP_Found: { /* jump, in3 */
+ int alreadyExists;
+ VdbeCursor *pC;
+ int res;
+ char *pFree;
+ UnpackedRecord *pIdxKey;
+ UnpackedRecord r;
+ char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
+
+#ifdef SQLITE_TEST
+ sqlite3_found_count++;
+#endif
+
+ alreadyExists = 0;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p4type==P4_INT32 );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ pIn3 = &aMem[pOp->p3];
+ if( ALWAYS(pC->pCursor!=0) ){
+
+ assert( pC->isTable==0 );
+ if( pOp->p4.i>0 ){
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p4.i;
+ r.aMem = pIn3;
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
+#endif
+ r.flags = UNPACKED_PREFIX_MATCH;
+ pIdxKey = &r;
+ }else{
+ pIdxKey = sqlite3VdbeAllocUnpackedRecord(
+ pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
+ );
+ if( pIdxKey==0 ) goto no_mem;
+ assert( pIn3->flags & MEM_Blob );
+ assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
+ sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
+ pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
+ }
+ rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
+ if( pOp->p4.i==0 ){
+ sqlite3DbFree(db, pFree);
+ }
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ alreadyExists = (res==0);
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }
+ if( pOp->opcode==OP_Found ){
+ if( alreadyExists ) pc = pOp->p2 - 1;
+ }else{
+ if( !alreadyExists ) pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: IsUnique P1 P2 P3 P4 *
+**
+** Cursor P1 is open on an index b-tree - that is to say, a btree which
+** no data and where the key are records generated by OP_MakeRecord with
+** the list field being the integer ROWID of the entry that the index
+** entry refers to.
+**
+** The P3 register contains an integer record number. Call this record
+** number R. Register P4 is the first in a set of N contiguous registers
+** that make up an unpacked index key that can be used with cursor P1.
+** The value of N can be inferred from the cursor. N includes the rowid
+** value appended to the end of the index record. This rowid value may
+** or may not be the same as R.
+**
+** If any of the N registers beginning with register P4 contains a NULL
+** value, jump immediately to P2.
+**
+** Otherwise, this instruction checks if cursor P1 contains an entry
+** where the first (N-1) fields match but the rowid value at the end
+** of the index entry is not R. If there is no such entry, control jumps
+** to instruction P2. Otherwise, the rowid of the conflicting index
+** entry is copied to register P3 and control falls through to the next
+** instruction.
+**
+** See also: NotFound, NotExists, Found
+*/
+case OP_IsUnique: { /* jump, in3 */
+ u16 ii;
+ VdbeCursor *pCx;
+ BtCursor *pCrsr;
+ u16 nField;
+ Mem *aMx;
+ UnpackedRecord r; /* B-Tree index search key */
+ i64 R; /* Rowid stored in register P3 */
+
+ pIn3 = &aMem[pOp->p3];
+ aMx = &aMem[pOp->p4.i];
+ /* Assert that the values of parameters P1 and P4 are in range. */
+ assert( pOp->p4type==P4_INT32 );
+ assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+
+ /* Find the index cursor. */
+ pCx = p->apCsr[pOp->p1];
+ assert( pCx->deferredMoveto==0 );
+ pCx->seekResult = 0;
+ pCx->cacheStatus = CACHE_STALE;
+ pCrsr = pCx->pCursor;
+
+ /* If any of the values are NULL, take the jump. */
+ nField = pCx->pKeyInfo->nField;
+ for(ii=0; ii<nField; ii++){
+ if( aMx[ii].flags & MEM_Null ){
+ pc = pOp->p2 - 1;
+ pCrsr = 0;
+ break;
+ }
+ }
+ assert( (aMx[nField].flags & MEM_Null)==0 );
+
+ if( pCrsr!=0 ){
+ /* Populate the index search key. */
+ r.pKeyInfo = pCx->pKeyInfo;
+ r.nField = nField + 1;
+ r.flags = UNPACKED_PREFIX_SEARCH;
+ r.aMem = aMx;
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
+#endif
+
+ /* Extract the value of R from register P3. */
+ sqlite3VdbeMemIntegerify(pIn3);
+ R = pIn3->u.i;
+
+ /* Search the B-Tree index. If no conflicting record is found, jump
+ ** to P2. Otherwise, copy the rowid of the conflicting record to
+ ** register P3 and fall through to the next instruction. */
+ rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
+ if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
+ pc = pOp->p2 - 1;
+ }else{
+ pIn3->u.i = r.rowid;
+ }
+ }
+ break;
+}
+
+/* Opcode: NotExists P1 P2 P3 * *
+**
+** Use the content of register P3 as an integer key. If a record
+** with that key does not exist in table of P1, then jump to P2.
+** If the record does exist, then fall through. The cursor is left
+** pointing to the record if it exists.
+**
+** The difference between this operation and NotFound is that this
+** operation assumes the key is an integer and that P1 is a table whereas
+** NotFound assumes key is a blob constructed from MakeRecord and
+** P1 is an index.
+**
+** See also: Found, NotFound, IsUnique
+*/
+case OP_NotExists: { /* jump, in3 */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ u64 iKey;
+
+ pIn3 = &aMem[pOp->p3];
+ assert( pIn3->flags & MEM_Int );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->isTable );
+ assert( pC->pseudoTableReg==0 );
+ pCrsr = pC->pCursor;
+ if( ALWAYS(pCrsr!=0) ){
+ res = 0;
+ iKey = pIn3->u.i;
+ rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
+ pC->lastRowid = pIn3->u.i;
+ pC->rowidIsValid = res==0 ?1:0;
+ pC->nullRow = 0;
+ pC->cacheStatus = CACHE_STALE;
+ pC->deferredMoveto = 0;
+ if( res!=0 ){
+ pc = pOp->p2 - 1;
+ assert( pC->rowidIsValid==0 );
+ }
+ pC->seekResult = res;
+ }else{
+ /* This happens when an attempt to open a read cursor on the
+ ** sqlite_master table returns SQLITE_EMPTY.
+ */
+ pc = pOp->p2 - 1;
+ assert( pC->rowidIsValid==0 );
+ pC->seekResult = 0;
+ }
+ break;
+}
+
+/* Opcode: Sequence P1 P2 * * *
+**
+** Find the next available sequence number for cursor P1.
+** Write the sequence number into register P2.
+** The sequence number on the cursor is incremented after this
+** instruction.
+*/
+case OP_Sequence: { /* out2-prerelease */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( p->apCsr[pOp->p1]!=0 );
+ pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
+ break;
+}
+
+
+/* Opcode: NewRowid P1 P2 P3 * *
+**
+** Get a new integer record number (a.k.a "rowid") used as the key to a table.
+** The record number is not previously used as a key in the database
+** table that cursor P1 points to. The new record number is written
+** written to register P2.
+**
+** If P3>0 then P3 is a register in the root frame of this VDBE that holds
+** the largest previously generated record number. No new record numbers are
+** allowed to be less than this value. When this value reaches its maximum,
+** an SQLITE_FULL error is generated. The P3 register is updated with the '
+** generated record number. This P3 mechanism is used to help implement the
+** AUTOINCREMENT feature.
+*/
+case OP_NewRowid: { /* out2-prerelease */
+ i64 v; /* The new rowid */
+ VdbeCursor *pC; /* Cursor of table to get the new rowid */
+ int res; /* Result of an sqlite3BtreeLast() */
+ int cnt; /* Counter to limit the number of searches */
+ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
+ VdbeFrame *pFrame; /* Root frame of VDBE */
+
+ v = 0;
+ res = 0;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ if( NEVER(pC->pCursor==0) ){
+ /* The zero initialization above is all that is needed */
+ }else{
+ /* The next rowid or record number (different terms for the same
+ ** thing) is obtained in a two-step algorithm.
+ **
+ ** First we attempt to find the largest existing rowid and add one
+ ** to that. But if the largest existing rowid is already the maximum
+ ** positive integer, we have to fall through to the second
+ ** probabilistic algorithm
+ **
+ ** The second algorithm is to select a rowid at random and see if
+ ** it already exists in the table. If it does not exist, we have
+ ** succeeded. If the random rowid does exist, we select a new one
+ ** and try again, up to 100 times.
+ */
+ assert( pC->isTable );
+
+#ifdef SQLITE_32BIT_ROWID
+# define MAX_ROWID 0x7fffffff
+#else
+ /* Some compilers complain about constants of the form 0x7fffffffffffffff.
+ ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
+ ** to provide the constant while making all compilers happy.
+ */
+# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
+#endif
+
+ if( !pC->useRandomRowid ){
+ v = sqlite3BtreeGetCachedRowid(pC->pCursor);
+ if( v==0 ){
+ rc = sqlite3BtreeLast(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( res ){
+ v = 1; /* IMP: R-61914-48074 */
+ }else{
+ assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
+ rc = sqlite3BtreeKeySize(pC->pCursor, &v);
+ assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
+ if( v==MAX_ROWID ){
+ pC->useRandomRowid = 1;
+ }else{
+ v++; /* IMP: R-29538-34987 */
+ }
+ }
+ }
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ if( pOp->p3 ){
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3>0 );
+ if( p->pFrame ){
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=pFrame->nMem );
+ pMem = &pFrame->aMem[pOp->p3];
+ }else{
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=p->nMem );
+ pMem = &aMem[pOp->p3];
+ memAboutToChange(p, pMem);
+ }
+ assert( memIsValid(pMem) );
+
+ REGISTER_TRACE(pOp->p3, pMem);
+ sqlite3VdbeMemIntegerify(pMem);
+ assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
+ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
+ rc = SQLITE_FULL; /* IMP: R-12275-61338 */
+ goto abort_due_to_error;
+ }
+ if( v<pMem->u.i+1 ){
+ v = pMem->u.i + 1;
+ }
+ pMem->u.i = v;
+ }
+#endif
+
+ sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
+ }
+ if( pC->useRandomRowid ){
+ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
+ ** largest possible integer (9223372036854775807) then the database
+ ** engine starts picking positive candidate ROWIDs at random until
+ ** it finds one that is not previously used. */
+ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
+ ** an AUTOINCREMENT table. */
+ /* on the first attempt, simply do one more than previous */
+ v = lastRowid;
+ v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
+ v++; /* ensure non-zero */
+ cnt = 0;
+ while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
+ 0, &res))==SQLITE_OK)
+ && (res==0)
+ && (++cnt<100)){
+ /* collision - try another random rowid */
+ sqlite3_randomness(sizeof(v), &v);
+ if( cnt<5 ){
+ /* try "small" random rowids for the initial attempts */
+ v &= 0xffffff;
+ }else{
+ v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
+ }
+ v++; /* ensure non-zero */
+ }
+ if( rc==SQLITE_OK && res==0 ){
+ rc = SQLITE_FULL; /* IMP: R-38219-53002 */
+ goto abort_due_to_error;
+ }
+ assert( v>0 ); /* EV: R-40812-03570 */
+ }
+ pC->rowidIsValid = 0;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }
+ pOut->u.i = v;
+ break;
+}
+
+/* Opcode: Insert P1 P2 P3 P4 P5
+**
+** Write an entry into the table of cursor P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value MEM_Blob stored in register
+** number P2. The key is stored in register P3. The key must
+** be a MEM_Int.
+**
+** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
+** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
+** then rowid is stored for subsequent return by the
+** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
+**
+** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
+** the last seek operation (OP_NotExists) was a success, then this
+** operation will not attempt to find the appropriate row before doing
+** the insert but will instead overwrite the row that the cursor is
+** currently pointing to. Presumably, the prior OP_NotExists opcode
+** has already positioned the cursor correctly. This is an optimization
+** that boosts performance by avoiding redundant seeks.
+**
+** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
+** UPDATE operation. Otherwise (if the flag is clear) then this opcode
+** is part of an INSERT operation. The difference is only important to
+** the update hook.
+**
+** Parameter P4 may point to a string containing the table-name, or
+** may be NULL. If it is not NULL, then the update-hook
+** (sqlite3.xUpdateCallback) is invoked following a successful insert.
+**
+** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
+** allocated, then ownership of P2 is transferred to the pseudo-cursor
+** and register P2 becomes ephemeral. If the cursor is changed, the
+** value of register P2 will then change. Make sure this does not
+** cause any problems.)
+**
+** This instruction only works on tables. The equivalent instruction
+** for indices is OP_IdxInsert.
+*/
+/* Opcode: InsertInt P1 P2 P3 P4 P5
+**
+** This works exactly like OP_Insert except that the key is the
+** integer value P3, not the value of the integer stored in register P3.
+*/
+case OP_Insert:
+case OP_InsertInt: {
+ Mem *pData; /* MEM cell holding data for the record to be inserted */
+ Mem *pKey; /* MEM cell holding key for the record */
+ i64 iKey; /* The integer ROWID or key for the record to be inserted */
+ VdbeCursor *pC; /* Cursor to table into which insert is written */
+ int nZero; /* Number of zero-bytes to append */
+ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
+ const char *zDb; /* database name - used by the update hook */
+ const char *zTbl; /* Table name - used by the opdate hook */
+ int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
+
+ pData = &aMem[pOp->p2];
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( memIsValid(pData) );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->pCursor!=0 );
+ assert( pC->pseudoTableReg==0 );
+ assert( pC->isTable );
+ REGISTER_TRACE(pOp->p2, pData);
+
+ if( pOp->opcode==OP_Insert ){
+ pKey = &aMem[pOp->p3];
+ assert( pKey->flags & MEM_Int );
+ assert( memIsValid(pKey) );
+ REGISTER_TRACE(pOp->p3, pKey);
+ iKey = pKey->u.i;
+ }else{
+ assert( pOp->opcode==OP_InsertInt );
+ iKey = pOp->p3;
+ }
+
+ if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
+ if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
+ if( pData->flags & MEM_Null ){
+ pData->z = 0;
+ pData->n = 0;
+ }else{
+ assert( pData->flags & (MEM_Blob|MEM_Str) );
+ }
+ seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
+ if( pData->flags & MEM_Zero ){
+ nZero = pData->u.nZero;
+ }else{
+ nZero = 0;
+ }
+ sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
+ rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
+ pData->z, pData->n, nZero,
+ pOp->p5 & OPFLAG_APPEND, seekResult
+ );
+ pC->rowidIsValid = 0;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+
+ /* Invoke the update-hook if required. */
+ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
+ zDb = db->aDb[pC->iDb].zName;
+ zTbl = pOp->p4.z;
+ op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
+ assert( pC->isTable );
+ db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
+ assert( pC->iDb>=0 );
+ }
+ break;
+}
+
+/* Opcode: Delete P1 P2 * P4 *
+**
+** Delete the record at which the P1 cursor is currently pointing.
+**
+** The cursor will be left pointing at either the next or the previous
+** record in the table. If it is left pointing at the next record, then
+** the next Next instruction will be a no-op. Hence it is OK to delete
+** a record from within an Next loop.
+**
+** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
+** incremented (otherwise not).
+**
+** P1 must not be pseudo-table. It has to be a real table with
+** multiple rows.
+**
+** If P4 is not NULL, then it is the name of the table that P1 is
+** pointing to. The update hook will be invoked, if it exists.
+** If P4 is not NULL then the P1 cursor must have been positioned
+** using OP_NotFound prior to invoking this opcode.
+*/
+case OP_Delete: {
+ i64 iKey;
+ VdbeCursor *pC;
+
+ iKey = 0;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
+
+ /* If the update-hook will be invoked, set iKey to the rowid of the
+ ** row being deleted.
+ */
+ if( db->xUpdateCallback && pOp->p4.z ){
+ assert( pC->isTable );
+ assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
+ iKey = pC->lastRowid;
+ }
+
+ /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
+ ** OP_Column on the same table without any intervening operations that
+ ** might move or invalidate the cursor. Hence cursor pC is always pointing
+ ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
+ ** below is always a no-op and cannot fail. We will run it anyhow, though,
+ ** to guard against future changes to the code generator.
+ **/
+ assert( pC->deferredMoveto==0 );
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
+
+ sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
+ rc = sqlite3BtreeDelete(pC->pCursor);
+ pC->cacheStatus = CACHE_STALE;
+
+ /* Invoke the update-hook if required. */
+ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
+ const char *zDb = db->aDb[pC->iDb].zName;
+ const char *zTbl = pOp->p4.z;
+ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
+ assert( pC->iDb>=0 );
+ }
+ if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
+ break;
+}
+/* Opcode: ResetCount * * * * *
+**
+** The value of the change counter is copied to the database handle
+** change counter (returned by subsequent calls to sqlite3_changes()).
+** Then the VMs internal change counter resets to 0.
+** This is used by trigger programs.
+*/
+case OP_ResetCount: {
+ sqlite3VdbeSetChanges(db, p->nChange);
+ p->nChange = 0;
+ break;
+}
+
+/* Opcode: SorterCompare P1 P2 P3
+**
+** P1 is a sorter cursor. This instruction compares the record blob in
+** register P3 with the entry that the sorter cursor currently points to.
+** If, excluding the rowid fields at the end, the two records are a match,
+** fall through to the next instruction. Otherwise, jump to instruction P2.
+*/
+case OP_SorterCompare: {
+ VdbeCursor *pC;
+ int res;
+
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ pIn3 = &aMem[pOp->p3];
+ rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
+ if( res ){
+ pc = pOp->p2-1;
+ }
+ break;
+};
+
+/* Opcode: SorterData P1 P2 * * *
+**
+** Write into register P2 the current sorter data for sorter cursor P1.
+*/
+case OP_SorterData: {
+ VdbeCursor *pC;
+#ifndef SQLITE_OMIT_MERGE_SORT
+ pOut = &aMem[pOp->p2];
+ pC = p->apCsr[pOp->p1];
+ assert( pC->isSorter );
+ rc = sqlite3VdbeSorterRowkey(pC, pOut);
+#else
+ pOp->opcode = OP_RowKey;
+ pc--;
+#endif
+ break;
+}
+
+/* Opcode: RowData P1 P2 * * *
+**
+** Write into register P2 the complete row data for cursor P1.
+** There is no interpretation of the data.
+** It is just copied onto the P2 register exactly as
+** it is found in the database file.
+**
+** If the P1 cursor must be pointing to a valid row (not a NULL row)
+** of a real table, not a pseudo-table.
+*/
+/* Opcode: RowKey P1 P2 * * *
+**
+** Write into register P2 the complete row key for cursor P1.
+** There is no interpretation of the data.
+** The key is copied onto the P3 register exactly as
+** it is found in the database file.
+**
+** If the P1 cursor must be pointing to a valid row (not a NULL row)
+** of a real table, not a pseudo-table.
+*/
+case OP_RowKey:
+case OP_RowData: {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ u32 n;
+ i64 n64;
+
+ pOut = &aMem[pOp->p2];
+ memAboutToChange(p, pOut);
+
+ /* Note that RowKey and RowData are really exactly the same instruction */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC->isSorter==0 );
+ assert( pC->isTable || pOp->opcode!=OP_RowData );
+ assert( pC->isIndex || pOp->opcode==OP_RowData );
+ assert( pC!=0 );
+ assert( pC->nullRow==0 );
+ assert( pC->pseudoTableReg==0 );
+ assert( !pC->isSorter );
+ assert( pC->pCursor!=0 );
+ pCrsr = pC->pCursor;
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+
+ /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
+ ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
+ ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
+ ** a no-op and can never fail. But we leave it in place as a safety.
+ */
+ assert( pC->deferredMoveto==0 );
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
+
+ if( pC->isIndex ){
+ assert( !pC->isTable );
+ VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
+ assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
+ if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ n = (u32)n64;
+ }else{
+ VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
+ assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
+ if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ }
+ if( sqlite3VdbeMemGrow(pOut, n, 0) ){
+ goto no_mem;
+ }
+ pOut->n = n;
+ MemSetTypeFlag(pOut, MEM_Blob);
+ if( pC->isIndex ){
+ rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
+ }else{
+ rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
+ }
+ pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Rowid P1 P2 * * *
+**
+** Store in register P2 an integer which is the key of the table entry that
+** P1 is currently point to.
+**
+** P1 can be either an ordinary table or a virtual table. There used to
+** be a separate OP_VRowid opcode for use with virtual tables, but this
+** one opcode now works for both table types.
+*/
+case OP_Rowid: { /* out2-prerelease */
+ VdbeCursor *pC;
+ i64 v;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->pseudoTableReg==0 );
+ if( pC->nullRow ){
+ pOut->flags = MEM_Null;
+ break;
+ }else if( pC->deferredMoveto ){
+ v = pC->movetoTarget;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( pC->pVtabCursor ){
+ pVtab = pC->pVtabCursor->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xRowid );
+ rc = pModule->xRowid(pC->pVtabCursor, &v);
+ importVtabErrMsg(p, pVtab);
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+ }else{
+ assert( pC->pCursor!=0 );
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ if( pC->rowidIsValid ){
+ v = pC->lastRowid;
+ }else{
+ rc = sqlite3BtreeKeySize(pC->pCursor, &v);
+ assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
+ }
+ }
+ pOut->u.i = v;
+ break;
+}
+
+/* Opcode: NullRow P1 * * * *
+**
+** Move the cursor P1 to a null row. Any OP_Column operations
+** that occur while the cursor is on the null row will always
+** write a NULL.
+*/
+case OP_NullRow: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ pC->nullRow = 1;
+ pC->rowidIsValid = 0;
+ assert( pC->pCursor || pC->pVtabCursor );
+ if( pC->pCursor ){
+ sqlite3BtreeClearCursor(pC->pCursor);
+ }
+ break;
+}
+
+/* Opcode: Last P1 P2 * * *
+**
+** The next use of the Rowid or Column or Next instruction for P1
+** will refer to the last entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Last: { /* jump */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ pCrsr = pC->pCursor;
+ res = 0;
+ if( ALWAYS(pCrsr!=0) ){
+ rc = sqlite3BtreeLast(pCrsr, &res);
+ }
+ pC->nullRow = (u8)res;
+ pC->deferredMoveto = 0;
+ pC->rowidIsValid = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( pOp->p2>0 && res ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+
+/* Opcode: Sort P1 P2 * * *
+**
+** This opcode does exactly the same thing as OP_Rewind except that
+** it increments an undocumented global variable used for testing.
+**
+** Sorting is accomplished by writing records into a sorting index,
+** then rewinding that index and playing it back from beginning to
+** end. We use the OP_Sort opcode instead of OP_Rewind to do the
+** rewinding so that the global variable will be incremented and
+** regression tests can determine whether or not the optimizer is
+** correctly optimizing out sorts.
+*/
+case OP_SorterSort: /* jump */
+#ifdef SQLITE_OMIT_MERGE_SORT
+ pOp->opcode = OP_Sort;
+#endif
+case OP_Sort: { /* jump */
+#ifdef SQLITE_TEST
+ sqlite3_sort_count++;
+ sqlite3_search_count--;
+#endif
+ p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
+ /* Fall through into OP_Rewind */
+}
+/* Opcode: Rewind P1 P2 * * *
+**
+** The next use of the Rowid or Column or Next instruction for P1
+** will refer to the first entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Rewind: { /* jump */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
+ res = 1;
+ if( isSorter(pC) ){
+ rc = sqlite3VdbeSorterRewind(db, pC, &res);
+ }else{
+ pCrsr = pC->pCursor;
+ assert( pCrsr );
+ rc = sqlite3BtreeFirst(pCrsr, &res);
+ pC->atFirst = res==0 ?1:0;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ pC->rowidIsValid = 0;
+ }
+ pC->nullRow = (u8)res;
+ assert( pOp->p2>0 && pOp->p2<p->nOp );
+ if( res ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: Next P1 P2 * P4 P5
+**
+** Advance cursor P1 so that it points to the next key/data pair in its
+** table or index. If there are no more key/value pairs then fall through
+** to the following instruction. But if the cursor advance was successful,
+** jump immediately to P2.
+**
+** The P1 cursor must be for a real table, not a pseudo-table.
+**
+** P4 is always of type P4_ADVANCE. The function pointer points to
+** sqlite3BtreeNext().
+**
+** If P5 is positive and the jump is taken, then event counter
+** number P5-1 in the prepared statement is incremented.
+**
+** See also: Prev
+*/
+/* Opcode: Prev P1 P2 * * P5
+**
+** Back up cursor P1 so that it points to the previous key/data pair in its
+** table or index. If there is no previous key/value pairs then fall through
+** to the following instruction. But if the cursor backup was successful,
+** jump immediately to P2.
+**
+** The P1 cursor must be for a real table, not a pseudo-table.
+**
+** P4 is always of type P4_ADVANCE. The function pointer points to
+** sqlite3BtreePrevious().
+**
+** If P5 is positive and the jump is taken, then event counter
+** number P5-1 in the prepared statement is incremented.
+*/
+case OP_SorterNext: /* jump */
+#ifdef SQLITE_OMIT_MERGE_SORT
+ pOp->opcode = OP_Next;
+#endif
+case OP_Prev: /* jump */
+case OP_Next: { /* jump */
+ VdbeCursor *pC;
+ int res;
+
+ CHECK_FOR_INTERRUPT;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p5<=ArraySize(p->aCounter) );
+ pC = p->apCsr[pOp->p1];
+ if( pC==0 ){
+ break; /* See ticket #2273 */
+ }
+ assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
+ if( isSorter(pC) ){
+ assert( pOp->opcode==OP_SorterNext );
+ rc = sqlite3VdbeSorterNext(db, pC, &res);
+ }else{
+ res = 1;
+ assert( pC->deferredMoveto==0 );
+ assert( pC->pCursor );
+ assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
+ assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
+ rc = pOp->p4.xAdvance(pC->pCursor, &res);
+ }
+ pC->nullRow = (u8)res;
+ pC->cacheStatus = CACHE_STALE;
+ if( res==0 ){
+ pc = pOp->p2 - 1;
+ if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ }
+ pC->rowidIsValid = 0;
+ break;
+}
+
+/* Opcode: IdxInsert P1 P2 P3 * P5
+**
+** Register P2 holds an SQL index key made using the
+** MakeRecord instructions. This opcode writes that key
+** into the index P1. Data for the entry is nil.
+**
+** P3 is a flag that provides a hint to the b-tree layer that this
+** insert is likely to be an append.
+**
+** This instruction only works for indices. The equivalent instruction
+** for tables is OP_Insert.
+*/
+case OP_SorterInsert: /* in2 */
+#ifdef SQLITE_OMIT_MERGE_SORT
+ pOp->opcode = OP_IdxInsert;
+#endif
+case OP_IdxInsert: { /* in2 */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int nKey;
+ const char *zKey;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
+ pIn2 = &aMem[pOp->p2];
+ assert( pIn2->flags & MEM_Blob );
+ pCrsr = pC->pCursor;
+ if( ALWAYS(pCrsr!=0) ){
+ assert( pC->isTable==0 );
+ rc = ExpandBlob(pIn2);
+ if( rc==SQLITE_OK ){
+ if( isSorter(pC) ){
+ rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
+ }else{
+ nKey = pIn2->n;
+ zKey = pIn2->z;
+ rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
+ ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
+ );
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
+ }
+ }
+ }
+ break;
+}
+
+/* Opcode: IdxDelete P1 P2 P3 * *
+**
+** The content of P3 registers starting at register P2 form
+** an unpacked index key. This opcode removes that entry from the
+** index opened by cursor P1.
+*/
+case OP_IdxDelete: {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ UnpackedRecord r;
+
+ assert( pOp->p3>0 );
+ assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ pCrsr = pC->pCursor;
+ if( ALWAYS(pCrsr!=0) ){
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p3;
+ r.flags = 0;
+ r.aMem = &aMem[pOp->p2];
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
+#endif
+ rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
+ if( rc==SQLITE_OK && res==0 ){
+ rc = sqlite3BtreeDelete(pCrsr);
+ }
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
+ }
+ break;
+}
+
+/* Opcode: IdxRowid P1 P2 * * *
+**
+** Write into register P2 an integer which is the last entry in the record at
+** the end of the index key pointed to by cursor P1. This integer should be
+** the rowid of the table entry to which this index entry points.
+**
+** See also: Rowid, MakeRecord.
+*/
+case OP_IdxRowid: { /* out2-prerelease */
+ BtCursor *pCrsr;
+ VdbeCursor *pC;
+ i64 rowid;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ pCrsr = pC->pCursor;
+ pOut->flags = MEM_Null;
+ if( ALWAYS(pCrsr!=0) ){
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( NEVER(rc) ) goto abort_due_to_error;
+ assert( pC->deferredMoveto==0 );
+ assert( pC->isTable==0 );
+ if( !pC->nullRow ){
+ rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ pOut->u.i = rowid;
+ pOut->flags = MEM_Int;
+ }
+ }
+ break;
+}
+
+/* Opcode: IdxGE P1 P2 P3 P4 P5
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the ROWID. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
+**
+** If the P1 index entry is greater than or equal to the key value
+** then jump to P2. Otherwise fall through to the next instruction.
+**
+** If P5 is non-zero then the key value is increased by an epsilon
+** prior to the comparison. This make the opcode work like IdxGT except
+** that if the key from register P3 is a prefix of the key in the cursor,
+** the result is false whereas it would be true with IdxGT.
+*/
+/* Opcode: IdxLT P1 P2 P3 P4 P5
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the ROWID. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
+**
+** If the P1 index entry is less than the key value then jump to P2.
+** Otherwise fall through to the next instruction.
+**
+** If P5 is non-zero then the key value is increased by an epsilon prior
+** to the comparison. This makes the opcode work like IdxLE.
+*/
+case OP_IdxLT: /* jump */
+case OP_IdxGE: { /* jump */
+ VdbeCursor *pC;
+ int res;
+ UnpackedRecord r;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->isOrdered );
+ if( ALWAYS(pC->pCursor!=0) ){
+ assert( pC->deferredMoveto==0 );
+ assert( pOp->p5==0 || pOp->p5==1 );
+ assert( pOp->p4type==P4_INT32 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p4.i;
+ if( pOp->p5 ){
+ r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
+ }else{
+ r.flags = UNPACKED_IGNORE_ROWID;
+ }
+ r.aMem = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
+#endif
+ rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
+ if( pOp->opcode==OP_IdxLT ){
+ res = -res;
+ }else{
+ assert( pOp->opcode==OP_IdxGE );
+ res++;
+ }
+ if( res>0 ){
+ pc = pOp->p2 - 1 ;
+ }
+ }
+ break;
+}
+
+/* Opcode: Destroy P1 P2 P3 * *
+**
+** Delete an entire database table or index whose root page in the database
+** file is given by P1.
+**
+** The table being destroyed is in the main database file if P3==0. If
+** P3==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** If AUTOVACUUM is enabled then it is possible that another root page
+** might be moved into the newly deleted root page in order to keep all
+** root pages contiguous at the beginning of the database. The former
+** value of the root page that moved - its value before the move occurred -
+** is stored in register P2. If no page
+** movement was required (because the table being dropped was already
+** the last one in the database) then a zero is stored in register P2.
+** If AUTOVACUUM is disabled then a zero is stored in register P2.
+**
+** See also: Clear
+*/
+case OP_Destroy: { /* out2-prerelease */
+ int iMoved;
+ int iCnt;
+ Vdbe *pVdbe;
+ int iDb;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ iCnt = 0;
+ for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
+ if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
+ iCnt++;
+ }
+ }
+#else
+ iCnt = db->activeVdbeCnt;
+#endif
+ pOut->flags = MEM_Null;
+ if( iCnt>1 ){
+ rc = SQLITE_LOCKED;
+ p->errorAction = OE_Abort;
+ }else{
+ iDb = pOp->p3;
+ assert( iCnt==1 );
+ assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
+ rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
+ pOut->flags = MEM_Int;
+ pOut->u.i = iMoved;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( rc==SQLITE_OK && iMoved!=0 ){
+ sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
+ /* All OP_Destroy operations occur on the same btree */
+ assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
+ resetSchemaOnFault = iDb+1;
+ }
+#endif
+ }
+ break;
+}
+
+/* Opcode: Clear P1 P2 P3
+**
+** Delete all contents of the database table or index whose root page
+** in the database file is given by P1. But, unlike Destroy, do not
+** remove the table or index from the database file.
+**
+** The table being clear is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** If the P3 value is non-zero, then the table referred to must be an
+** intkey table (an SQL table, not an index). In this case the row change
+** count is incremented by the number of rows in the table being cleared.
+** If P3 is greater than zero, then the value stored in register P3 is
+** also incremented by the number of rows in the table being cleared.
+**
+** See also: Destroy
+*/
+case OP_Clear: {
+ int nChange;
+
+ nChange = 0;
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
+ rc = sqlite3BtreeClearTable(
+ db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
+ );
+ if( pOp->p3 ){
+ p->nChange += nChange;
+ if( pOp->p3>0 ){
+ assert( memIsValid(&aMem[pOp->p3]) );
+ memAboutToChange(p, &aMem[pOp->p3]);
+ aMem[pOp->p3].u.i += nChange;
+ }
+ }
+ break;
+}
+
+/* Opcode: CreateTable P1 P2 * * *
+**
+** Allocate a new table in the main database file if P1==0 or in the
+** auxiliary database file if P1==1 or in an attached database if
+** P1>1. Write the root page number of the new table into
+** register P2
+**
+** The difference between a table and an index is this: A table must
+** have a 4-byte integer key and can have arbitrary data. An index
+** has an arbitrary key but no data.
+**
+** See also: CreateIndex
+*/
+/* Opcode: CreateIndex P1 P2 * * *
+**
+** Allocate a new index in the main database file if P1==0 or in the
+** auxiliary database file if P1==1 or in an attached database if
+** P1>1. Write the root page number of the new table into
+** register P2.
+**
+** See documentation on OP_CreateTable for additional information.
+*/
+case OP_CreateIndex: /* out2-prerelease */
+case OP_CreateTable: { /* out2-prerelease */
+ int pgno;
+ int flags;
+ Db *pDb;
+
+ pgno = 0;
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ if( pOp->opcode==OP_CreateTable ){
+ /* flags = BTREE_INTKEY; */
+ flags = BTREE_INTKEY;
+ }else{
+ flags = BTREE_BLOBKEY;
+ }
+ rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
+ pOut->u.i = pgno;
+ break;
+}
+
+/* Opcode: ParseSchema P1 * * P4 *
+**
+** Read and parse all entries from the SQLITE_MASTER table of database P1
+** that match the WHERE clause P4.
+**
+** This opcode invokes the parser to create a new virtual machine,
+** then runs the new virtual machine. It is thus a re-entrant opcode.
+*/
+case OP_ParseSchema: {
+ int iDb;
+ const char *zMaster;
+ char *zSql;
+ InitData initData;
+
+ /* Any prepared statement that invokes this opcode will hold mutexes
+ ** on every btree. This is a prerequisite for invoking
+ ** sqlite3InitCallback().
+ */
+#ifdef SQLITE_DEBUG
+ for(iDb=0; iDb<db->nDb; iDb++){
+ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
+ }
+#endif
+
+ iDb = pOp->p1;
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
+ /* Used to be a conditional */ {
+ zMaster = SCHEMA_TABLE(iDb);
+ initData.db = db;
+ initData.iDb = pOp->p1;
+ initData.pzErrMsg = &p->zErrMsg;
+ zSql = sqlite3MPrintf(db,
+ "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
+ db->aDb[iDb].zName, zMaster, pOp->p4.z);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ assert( db->init.busy==0 );
+ db->init.busy = 1;
+ initData.rc = SQLITE_OK;
+ assert( !db->mallocFailed );
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
+ if( rc==SQLITE_OK ) rc = initData.rc;
+ sqlite3DbFree(db, zSql);
+ db->init.busy = 0;
+ }
+ }
+ if( rc==SQLITE_NOMEM ){
+ goto no_mem;
+ }
+ break;
+}
+
+#if !defined(SQLITE_OMIT_ANALYZE)
+/* Opcode: LoadAnalysis P1 * * * *
+**
+** Read the sqlite_stat1 table for database P1 and load the content
+** of that table into the internal index hash table. This will cause
+** the analysis to be used when preparing all subsequent queries.
+*/
+case OP_LoadAnalysis: {
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ rc = sqlite3AnalysisLoad(db, pOp->p1);
+ break;
+}
+#endif /* !defined(SQLITE_OMIT_ANALYZE) */
+
+/* Opcode: DropTable P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the table named P4 in database P1. This is called after a table
+** is dropped in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTable: {
+ sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+/* Opcode: DropIndex P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the index named P4 in database P1. This is called after an index
+** is dropped in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropIndex: {
+ sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+/* Opcode: DropTrigger P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the trigger named P4 in database P1. This is called after a trigger
+** is dropped in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTrigger: {
+ sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/* Opcode: IntegrityCk P1 P2 P3 * P5
+**
+** Do an analysis of the currently open database. Store in
+** register P1 the text of an error message describing any problems.
+** If no problems are found, store a NULL in register P1.
+**
+** The register P3 contains the maximum number of allowed errors.
+** At most reg(P3) errors will be reported.
+** In other words, the analysis stops as soon as reg(P1) errors are
+** seen. Reg(P1) is updated with the number of errors remaining.
+**
+** The root page numbers of all tables in the database are integer
+** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
+** total.
+**
+** If P5 is not zero, the check is done on the auxiliary database
+** file, not the main database file.
+**
+** This opcode is used to implement the integrity_check pragma.
+*/
+case OP_IntegrityCk: {
+ int nRoot; /* Number of tables to check. (Number of root pages.) */
+ int *aRoot; /* Array of rootpage numbers for tables to be checked */
+ int j; /* Loop counter */
+ int nErr; /* Number of errors reported */
+ char *z; /* Text of the error report */
+ Mem *pnErr; /* Register keeping track of errors remaining */
+
+ nRoot = pOp->p2;
+ assert( nRoot>0 );
+ aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
+ if( aRoot==0 ) goto no_mem;
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pnErr = &aMem[pOp->p3];
+ assert( (pnErr->flags & MEM_Int)!=0 );
+ assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
+ pIn1 = &aMem[pOp->p1];
+ for(j=0; j<nRoot; j++){
+ aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
+ }
+ aRoot[j] = 0;
+ assert( pOp->p5<db->nDb );
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
+ z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
+ (int)pnErr->u.i, &nErr);
+ sqlite3DbFree(db, aRoot);
+ pnErr->u.i -= nErr;
+ sqlite3VdbeMemSetNull(pIn1);
+ if( nErr==0 ){
+ assert( z==0 );
+ }else if( z==0 ){
+ goto no_mem;
+ }else{
+ sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
+ }
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ sqlite3VdbeChangeEncoding(pIn1, encoding);
+ break;
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+/* Opcode: RowSetAdd P1 P2 * * *
+**
+** Insert the integer value held by register P2 into a boolean index
+** held in register P1.
+**
+** An assertion fails if P2 is not an integer.
+*/
+case OP_RowSetAdd: { /* in1, in2 */
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ assert( (pIn2->flags & MEM_Int)!=0 );
+ if( (pIn1->flags & MEM_RowSet)==0 ){
+ sqlite3VdbeMemSetRowSet(pIn1);
+ if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
+ }
+ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
+ break;
+}
+
+/* Opcode: RowSetRead P1 P2 P3 * *
+**
+** Extract the smallest value from boolean index P1 and put that value into
+** register P3. Or, if boolean index P1 is initially empty, leave P3
+** unchanged and jump to instruction P2.
+*/
+case OP_RowSetRead: { /* jump, in1, out3 */
+ i64 val;
+ CHECK_FOR_INTERRUPT;
+ pIn1 = &aMem[pOp->p1];
+ if( (pIn1->flags & MEM_RowSet)==0
+ || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
+ ){
+ /* The boolean index is empty */
+ sqlite3VdbeMemSetNull(pIn1);
+ pc = pOp->p2 - 1;
+ }else{
+ /* A value was pulled from the index */
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
+ }
+ break;
+}
+
+/* Opcode: RowSetTest P1 P2 P3 P4
+**
+** Register P3 is assumed to hold a 64-bit integer value. If register P1
+** contains a RowSet object and that RowSet object contains
+** the value held in P3, jump to register P2. Otherwise, insert the
+** integer in P3 into the RowSet and continue on to the
+** next opcode.
+**
+** The RowSet object is optimized for the case where successive sets
+** of integers, where each set contains no duplicates. Each set
+** of values is identified by a unique P4 value. The first set
+** must have P4==0, the final set P4=-1. P4 must be either -1 or
+** non-negative. For non-negative values of P4 only the lower 4
+** bits are significant.
+**
+** This allows optimizations: (a) when P4==0 there is no need to test
+** the rowset object for P3, as it is guaranteed not to contain it,
+** (b) when P4==-1 there is no need to insert the value, as it will
+** never be tested for, and (c) when a value that is part of set X is
+** inserted, there is no need to search to see if the same value was
+** previously inserted as part of set X (only if it was previously
+** inserted as part of some other set).
+*/
+case OP_RowSetTest: { /* jump, in1, in3 */
+ int iSet;
+ int exists;
+
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ iSet = pOp->p4.i;
+ assert( pIn3->flags&MEM_Int );
+
+ /* If there is anything other than a rowset object in memory cell P1,
+ ** delete it now and initialize P1 with an empty rowset
+ */
+ if( (pIn1->flags & MEM_RowSet)==0 ){
+ sqlite3VdbeMemSetRowSet(pIn1);
+ if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
+ }
+
+ assert( pOp->p4type==P4_INT32 );
+ assert( iSet==-1 || iSet>=0 );
+ if( iSet ){
+ exists = sqlite3RowSetTest(pIn1->u.pRowSet,
+ (u8)(iSet>=0 ? iSet & 0xf : 0xff),
+ pIn3->u.i);
+ if( exists ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ }
+ if( iSet>=0 ){
+ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
+ }
+ break;
+}
+
+
+#ifndef SQLITE_OMIT_TRIGGER
+
+/* Opcode: Program P1 P2 P3 P4 *
+**
+** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
+**
+** P1 contains the address of the memory cell that contains the first memory
+** cell in an array of values used as arguments to the sub-program. P2
+** contains the address to jump to if the sub-program throws an IGNORE
+** exception using the RAISE() function. Register P3 contains the address
+** of a memory cell in this (the parent) VM that is used to allocate the
+** memory required by the sub-vdbe at runtime.
+**
+** P4 is a pointer to the VM containing the trigger program.
+*/
+case OP_Program: { /* jump */
+ int nMem; /* Number of memory registers for sub-program */
+ int nByte; /* Bytes of runtime space required for sub-program */
+ Mem *pRt; /* Register to allocate runtime space */
+ Mem *pMem; /* Used to iterate through memory cells */
+ Mem *pEnd; /* Last memory cell in new array */
+ VdbeFrame *pFrame; /* New vdbe frame to execute in */
+ SubProgram *pProgram; /* Sub-program to execute */
+ void *t; /* Token identifying trigger */
+
+ pProgram = pOp->p4.pProgram;
+ pRt = &aMem[pOp->p3];
+ assert( memIsValid(pRt) );
+ assert( pProgram->nOp>0 );
+
+ /* If the p5 flag is clear, then recursive invocation of triggers is
+ ** disabled for backwards compatibility (p5 is set if this sub-program
+ ** is really a trigger, not a foreign key action, and the flag set
+ ** and cleared by the "PRAGMA recursive_triggers" command is clear).
+ **
+ ** It is recursive invocation of triggers, at the SQL level, that is
+ ** disabled. In some cases a single trigger may generate more than one
+ ** SubProgram (if the trigger may be executed with more than one different
+ ** ON CONFLICT algorithm). SubProgram structures associated with a
+ ** single trigger all have the same value for the SubProgram.token
+ ** variable. */
+ if( pOp->p5 ){
+ t = pProgram->token;
+ for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
+ if( pFrame ) break;
+ }
+
+ if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
+ rc = SQLITE_ERROR;
+ sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
+ break;
+ }
+
+ /* Register pRt is used to store the memory required to save the state
+ ** of the current program, and the memory required at runtime to execute
+ ** the trigger program. If this trigger has been fired before, then pRt
+ ** is already allocated. Otherwise, it must be initialized. */
+ if( (pRt->flags&MEM_Frame)==0 ){
+ /* SubProgram.nMem is set to the number of memory cells used by the
+ ** program stored in SubProgram.aOp. As well as these, one memory
+ ** cell is required for each cursor used by the program. Set local
+ ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
+ */
+ nMem = pProgram->nMem + pProgram->nCsr;
+ nByte = ROUND8(sizeof(VdbeFrame))
+ + nMem * sizeof(Mem)
+ + pProgram->nCsr * sizeof(VdbeCursor *);
+ pFrame = sqlite3DbMallocZero(db, nByte);
+ if( !pFrame ){
+ goto no_mem;
+ }
+ sqlite3VdbeMemRelease(pRt);
+ pRt->flags = MEM_Frame;
+ pRt->u.pFrame = pFrame;
+
+ pFrame->v = p;
+ pFrame->nChildMem = nMem;
+ pFrame->nChildCsr = pProgram->nCsr;
+ pFrame->pc = pc;
+ pFrame->aMem = p->aMem;
+ pFrame->nMem = p->nMem;
+ pFrame->apCsr = p->apCsr;
+ pFrame->nCursor = p->nCursor;
+ pFrame->aOp = p->aOp;
+ pFrame->nOp = p->nOp;
+ pFrame->token = pProgram->token;
+
+ pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
+ for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
+ pMem->flags = MEM_Null;
+ pMem->db = db;
+ }
+ }else{
+ pFrame = pRt->u.pFrame;
+ assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
+ assert( pProgram->nCsr==pFrame->nChildCsr );
+ assert( pc==pFrame->pc );
+ }
+
+ p->nFrame++;
+ pFrame->pParent = p->pFrame;
+ pFrame->lastRowid = lastRowid;
+ pFrame->nChange = p->nChange;
+ p->nChange = 0;
+ p->pFrame = pFrame;
+ p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
+ p->nMem = pFrame->nChildMem;
+ p->nCursor = (u16)pFrame->nChildCsr;
+ p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
+ p->aOp = aOp = pProgram->aOp;
+ p->nOp = pProgram->nOp;
+ pc = -1;
+
+ break;
+}
+
+/* Opcode: Param P1 P2 * * *
+**
+** This opcode is only ever present in sub-programs called via the
+** OP_Program instruction. Copy a value currently stored in a memory
+** cell of the calling (parent) frame to cell P2 in the current frames
+** address space. This is used by trigger programs to access the new.*
+** and old.* values.
+**
+** The address of the cell in the parent frame is determined by adding
+** the value of the P1 argument to the value of the P1 argument to the
+** calling OP_Program instruction.
+*/
+case OP_Param: { /* out2-prerelease */
+ VdbeFrame *pFrame;
+ Mem *pIn;
+ pFrame = p->pFrame;
+ pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
+ sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
+ break;
+}
+
+#endif /* #ifndef SQLITE_OMIT_TRIGGER */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+/* Opcode: FkCounter P1 P2 * * *
+**
+** Increment a "constraint counter" by P2 (P2 may be negative or positive).
+** If P1 is non-zero, the database constraint counter is incremented
+** (deferred foreign key constraints). Otherwise, if P1 is zero, the
+** statement counter is incremented (immediate foreign key constraints).
+*/
+case OP_FkCounter: {
+ if( pOp->p1 ){
+ db->nDeferredCons += pOp->p2;
+ }else{
+ p->nFkConstraint += pOp->p2;
+ }
+ break;
+}
+
+/* Opcode: FkIfZero P1 P2 * * *
+**
+** This opcode tests if a foreign key constraint-counter is currently zero.
+** If so, jump to instruction P2. Otherwise, fall through to the next
+** instruction.
+**
+** If P1 is non-zero, then the jump is taken if the database constraint-counter
+** is zero (the one that counts deferred constraint violations). If P1 is
+** zero, the jump is taken if the statement constraint-counter is zero
+** (immediate foreign key constraint violations).
+*/
+case OP_FkIfZero: { /* jump */
+ if( pOp->p1 ){
+ if( db->nDeferredCons==0 ) pc = pOp->p2-1;
+ }else{
+ if( p->nFkConstraint==0 ) pc = pOp->p2-1;
+ }
+ break;
+}
+#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+/* Opcode: MemMax P1 P2 * * *
+**
+** P1 is a register in the root frame of this VM (the root frame is
+** different from the current frame if this instruction is being executed
+** within a sub-program). Set the value of register P1 to the maximum of
+** its current value and the value in register P2.
+**
+** This instruction throws an error if the memory cell is not initially
+** an integer.
+*/
+case OP_MemMax: { /* in2 */
+ Mem *pIn1;
+ VdbeFrame *pFrame;
+ if( p->pFrame ){
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ pIn1 = &pFrame->aMem[pOp->p1];
+ }else{
+ pIn1 = &aMem[pOp->p1];
+ }
+ assert( memIsValid(pIn1) );
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn2 = &aMem[pOp->p2];
+ sqlite3VdbeMemIntegerify(pIn2);
+ if( pIn1->u.i<pIn2->u.i){
+ pIn1->u.i = pIn2->u.i;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_AUTOINCREMENT */
+
+/* Opcode: IfPos P1 P2 * * *
+**
+** If the value of register P1 is 1 or greater, jump to P2.
+**
+** It is illegal to use this instruction on a register that does
+** not contain an integer. An assertion fault will result if you try.
+*/
+case OP_IfPos: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i>0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: IfNeg P1 P2 * * *
+**
+** If the value of register P1 is less than zero, jump to P2.
+**
+** It is illegal to use this instruction on a register that does
+** not contain an integer. An assertion fault will result if you try.
+*/
+case OP_IfNeg: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i<0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: IfZero P1 P2 P3 * *
+**
+** The register P1 must contain an integer. Add literal P3 to the
+** value in register P1. If the result is exactly 0, jump to P2.
+**
+** It is illegal to use this instruction on a register that does
+** not contain an integer. An assertion fault will result if you try.
+*/
+case OP_IfZero: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ pIn1->u.i += pOp->p3;
+ if( pIn1->u.i==0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: AggStep * P2 P3 P4 P5
+**
+** Execute the step function for an aggregate. The
+** function has P5 arguments. P4 is a pointer to the FuncDef
+** structure that specifies the function. Use register
+** P3 as the accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+*/
+case OP_AggStep: {
+ int n;
+ int i;
+ Mem *pMem;
+ Mem *pRec;
+ sqlite3_context ctx;
+ sqlite3_value **apVal;
+
+ n = pOp->p5;
+ assert( n>=0 );
+ pRec = &aMem[pOp->p2];
+ apVal = p->apArg;
+ assert( apVal || n==0 );
+ for(i=0; i<n; i++, pRec++){
+ assert( memIsValid(pRec) );
+ apVal[i] = pRec;
+ memAboutToChange(p, pRec);
+ sqlite3VdbeMemStoreType(pRec);
+ }
+ ctx.pFunc = pOp->p4.pFunc;
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ ctx.pMem = pMem = &aMem[pOp->p3];
+ pMem->n++;
+ ctx.s.flags = MEM_Null;
+ ctx.s.z = 0;
+ ctx.s.zMalloc = 0;
+ ctx.s.xDel = 0;
+ ctx.s.db = db;
+ ctx.isError = 0;
+ ctx.pColl = 0;
+ if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
+ assert( pOp>p->aOp );
+ assert( pOp[-1].p4type==P4_COLLSEQ );
+ assert( pOp[-1].opcode==OP_CollSeq );
+ ctx.pColl = pOp[-1].p4.pColl;
+ }
+ (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
+ if( ctx.isError ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
+ rc = ctx.isError;
+ }
+
+ sqlite3VdbeMemRelease(&ctx.s);
+
+ break;
+}
+
+/* Opcode: AggFinal P1 P2 * P4 *
+**
+** Execute the finalizer function for an aggregate. P1 is
+** the memory location that is the accumulator for the aggregate.
+**
+** P2 is the number of arguments that the step function takes and
+** P4 is a pointer to the FuncDef for this function. The P2
+** argument is not used by this opcode. It is only there to disambiguate
+** functions that can take varying numbers of arguments. The
+** P4 argument is only needed for the degenerate case where
+** the step function was not previously called.
+*/
+case OP_AggFinal: {
+ Mem *pMem;
+ assert( pOp->p1>0 && pOp->p1<=p->nMem );
+ pMem = &aMem[pOp->p1];
+ assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
+ rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
+ if( rc ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
+ }
+ sqlite3VdbeChangeEncoding(pMem, encoding);
+ UPDATE_MAX_BLOBSIZE(pMem);
+ if( sqlite3VdbeMemTooBig(pMem) ){
+ goto too_big;
+ }
+ break;
+}
+
+#ifndef SQLITE_OMIT_WAL
+/* Opcode: Checkpoint P1 P2 P3 * *
+**
+** Checkpoint database P1. This is a no-op if P1 is not currently in
+** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
+** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
+** SQLITE_BUSY or not, respectively. Write the number of pages in the
+** WAL after the checkpoint into mem[P3+1] and the number of pages
+** in the WAL that have been checkpointed after the checkpoint
+** completes into mem[P3+2]. However on an error, mem[P3+1] and
+** mem[P3+2] are initialized to -1.
+*/
+case OP_Checkpoint: {
+ int i; /* Loop counter */
+ int aRes[3]; /* Results */
+ Mem *pMem; /* Write results here */
+
+ aRes[0] = 0;
+ aRes[1] = aRes[2] = -1;
+ assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
+ || pOp->p2==SQLITE_CHECKPOINT_FULL
+ || pOp->p2==SQLITE_CHECKPOINT_RESTART
+ );
+ rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
+ if( rc==SQLITE_BUSY ){
+ rc = SQLITE_OK;
+ aRes[0] = 1;
+ }
+ for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
+ sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
+ }
+ break;
+};
+#endif
+
+#ifndef SQLITE_OMIT_PRAGMA
+/* Opcode: JournalMode P1 P2 P3 * P5
+**
+** Change the journal mode of database P1 to P3. P3 must be one of the
+** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
+** modes (delete, truncate, persist, off and memory), this is a simple
+** operation. No IO is required.
+**
+** If changing into or out of WAL mode the procedure is more complicated.
+**
+** Write a string containing the final journal-mode to register P2.
+*/
+case OP_JournalMode: { /* out2-prerelease */
+ Btree *pBt; /* Btree to change journal mode of */
+ Pager *pPager; /* Pager associated with pBt */
+ int eNew; /* New journal mode */
+ int eOld; /* The old journal mode */
+ const char *zFilename; /* Name of database file for pPager */
+
+ eNew = pOp->p3;
+ assert( eNew==PAGER_JOURNALMODE_DELETE
+ || eNew==PAGER_JOURNALMODE_TRUNCATE
+ || eNew==PAGER_JOURNALMODE_PERSIST
+ || eNew==PAGER_JOURNALMODE_OFF
+ || eNew==PAGER_JOURNALMODE_MEMORY
+ || eNew==PAGER_JOURNALMODE_WAL
+ || eNew==PAGER_JOURNALMODE_QUERY
+ );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+
+ pBt = db->aDb[pOp->p1].pBt;
+ pPager = sqlite3BtreePager(pBt);
+ eOld = sqlite3PagerGetJournalMode(pPager);
+ if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
+ if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
+
+#ifndef SQLITE_OMIT_WAL
+ zFilename = sqlite3PagerFilename(pPager);
+
+ /* Do not allow a transition to journal_mode=WAL for a database
+ ** in temporary storage or if the VFS does not support shared memory
+ */
+ if( eNew==PAGER_JOURNALMODE_WAL
+ && (sqlite3Strlen30(zFilename)==0 /* Temp file */
+ || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
+ ){
+ eNew = eOld;
+ }
+
+ if( (eNew!=eOld)
+ && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
+ ){
+ if( !db->autoCommit || db->activeVdbeCnt>1 ){
+ rc = SQLITE_ERROR;
+ sqlite3SetString(&p->zErrMsg, db,
+ "cannot change %s wal mode from within a transaction",
+ (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
+ );
+ break;
+ }else{
+
+ if( eOld==PAGER_JOURNALMODE_WAL ){
+ /* If leaving WAL mode, close the log file. If successful, the call
+ ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
+ ** file. An EXCLUSIVE lock may still be held on the database file
+ ** after a successful return.
+ */
+ rc = sqlite3PagerCloseWal(pPager);
+ if( rc==SQLITE_OK ){
+ sqlite3PagerSetJournalMode(pPager, eNew);
+ }
+ }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
+ /* Cannot transition directly from MEMORY to WAL. Use mode OFF
+ ** as an intermediate */
+ sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
+ }
+
+ /* Open a transaction on the database file. Regardless of the journal
+ ** mode, this transaction always uses a rollback journal.
+ */
+ assert( sqlite3BtreeIsInTrans(pBt)==0 );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
+ }
+ }
+ }
+#endif /* ifndef SQLITE_OMIT_WAL */
+
+ if( rc ){
+ eNew = eOld;
+ }
+ eNew = sqlite3PagerSetJournalMode(pPager, eNew);
+
+ pOut = &aMem[pOp->p2];
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term;
+ pOut->z = (char *)sqlite3JournalModename(eNew);
+ pOut->n = sqlite3Strlen30(pOut->z);
+ pOut->enc = SQLITE_UTF8;
+ sqlite3VdbeChangeEncoding(pOut, encoding);
+ break;
+};
+#endif /* SQLITE_OMIT_PRAGMA */
+
+#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
+/* Opcode: Vacuum * * * * *
+**
+** Vacuum the entire database. This opcode will cause other virtual
+** machines to be created and run. It may not be called from within
+** a transaction.
+*/
+case OP_Vacuum: {
+ rc = sqlite3RunVacuum(&p->zErrMsg, db);
+ break;
+}
+#endif
+
+#if !defined(SQLITE_OMIT_AUTOVACUUM)
+/* Opcode: IncrVacuum P1 P2 * * *
+**
+** Perform a single step of the incremental vacuum procedure on
+** the P1 database. If the vacuum has finished, jump to instruction
+** P2. Otherwise, fall through to the next instruction.
+*/
+case OP_IncrVacuum: { /* jump */
+ Btree *pBt;
+
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
+ pBt = db->aDb[pOp->p1].pBt;
+ rc = sqlite3BtreeIncrVacuum(pBt);
+ if( rc==SQLITE_DONE ){
+ pc = pOp->p2 - 1;
+ rc = SQLITE_OK;
+ }
+ break;
+}
+#endif
+
+/* Opcode: Expire P1 * * * *
+**
+** Cause precompiled statements to become expired. An expired statement
+** fails with an error code of SQLITE_SCHEMA if it is ever executed
+** (via sqlite3_step()).
+**
+** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
+** then only the currently executing statement is affected.
+*/
+case OP_Expire: {
+ if( !pOp->p1 ){
+ sqlite3ExpirePreparedStatements(db);
+ }else{
+ p->expired = 1;
+ }
+ break;
+}
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/* Opcode: TableLock P1 P2 P3 P4 *
+**
+** Obtain a lock on a particular table. This instruction is only used when
+** the shared-cache feature is enabled.
+**
+** P1 is the index of the database in sqlite3.aDb[] of the database
+** on which the lock is acquired. A readlock is obtained if P3==0 or
+** a write lock if P3==1.
+**
+** P2 contains the root-page of the table to lock.
+**
+** P4 contains a pointer to the name of the table being locked. This is only
+** used to generate an error message if the lock cannot be obtained.
+*/
+case OP_TableLock: {
+ u8 isWriteLock = (u8)pOp->p3;
+ if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
+ int p1 = pOp->p1;
+ assert( p1>=0 && p1<db->nDb );
+ assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
+ assert( isWriteLock==0 || isWriteLock==1 );
+ rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
+ if( (rc&0xFF)==SQLITE_LOCKED ){
+ const char *z = pOp->p4.z;
+ sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
+ }
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VBegin * * * P4 *
+**
+** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
+** xBegin method for that table.
+**
+** Also, whether or not P4 is set, check that this is not being called from
+** within a callback to a virtual table xSync() method. If it is, the error
+** code will be set to SQLITE_LOCKED.
+*/
+case OP_VBegin: {
+ VTable *pVTab;
+ pVTab = pOp->p4.pVtab;
+ rc = sqlite3VtabBegin(db, pVTab);
+ if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VCreate P1 * * P4 *
+**
+** P4 is the name of a virtual table in database P1. Call the xCreate method
+** for that table.
+*/
+case OP_VCreate: {
+ rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VDestroy P1 * * P4 *
+**
+** P4 is the name of a virtual table in database P1. Call the xDestroy method
+** of that table.
+*/
+case OP_VDestroy: {
+ p->inVtabMethod = 2;
+ rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
+ p->inVtabMethod = 0;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VOpen P1 * * P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** P1 is a cursor number. This opcode opens a cursor to the virtual
+** table and stores that cursor in P1.
+*/
+case OP_VOpen: {
+ VdbeCursor *pCur;
+ sqlite3_vtab_cursor *pVtabCursor;
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pModule;
+
+ pCur = 0;
+ pVtabCursor = 0;
+ pVtab = pOp->p4.pVtab->pVtab;
+ pModule = (sqlite3_module *)pVtab->pModule;
+ assert(pVtab && pModule);
+ rc = pModule->xOpen(pVtab, &pVtabCursor);
+ importVtabErrMsg(p, pVtab);
+ if( SQLITE_OK==rc ){
+ /* Initialize sqlite3_vtab_cursor base class */
+ pVtabCursor->pVtab = pVtab;
+
+ /* Initialise vdbe cursor object */
+ pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
+ if( pCur ){
+ pCur->pVtabCursor = pVtabCursor;
+ pCur->pModule = pVtabCursor->pVtab->pModule;
+ }else{
+ db->mallocFailed = 1;
+ pModule->xClose(pVtabCursor);
+ }
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VFilter P1 P2 P3 P4 *
+**
+** P1 is a cursor opened using VOpen. P2 is an address to jump to if
+** the filtered result set is empty.
+**
+** P4 is either NULL or a string that was generated by the xBestIndex
+** method of the module. The interpretation of the P4 string is left
+** to the module implementation.
+**
+** This opcode invokes the xFilter method on the virtual table specified
+** by P1. The integer query plan parameter to xFilter is stored in register
+** P3. Register P3+1 stores the argc parameter to be passed to the
+** xFilter method. Registers P3+2..P3+1+argc are the argc
+** additional parameters which are passed to
+** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
+**
+** A jump is made to P2 if the result set after filtering would be empty.
+*/
+case OP_VFilter: { /* jump */
+ int nArg;
+ int iQuery;
+ const sqlite3_module *pModule;
+ Mem *pQuery;
+ Mem *pArgc;
+ sqlite3_vtab_cursor *pVtabCursor;
+ sqlite3_vtab *pVtab;
+ VdbeCursor *pCur;
+ int res;
+ int i;
+ Mem **apArg;
+
+ pQuery = &aMem[pOp->p3];
+ pArgc = &pQuery[1];
+ pCur = p->apCsr[pOp->p1];
+ assert( memIsValid(pQuery) );
+ REGISTER_TRACE(pOp->p3, pQuery);
+ assert( pCur->pVtabCursor );
+ pVtabCursor = pCur->pVtabCursor;
+ pVtab = pVtabCursor->pVtab;
+ pModule = pVtab->pModule;
+
+ /* Grab the index number and argc parameters */
+ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
+ nArg = (int)pArgc->u.i;
+ iQuery = (int)pQuery->u.i;
+
+ /* Invoke the xFilter method */
+ {
+ res = 0;
+ apArg = p->apArg;
+ for(i = 0; i<nArg; i++){
+ apArg[i] = &pArgc[i+1];
+ sqlite3VdbeMemStoreType(apArg[i]);
+ }
+
+ p->inVtabMethod = 1;
+ rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
+ p->inVtabMethod = 0;
+ importVtabErrMsg(p, pVtab);
+ if( rc==SQLITE_OK ){
+ res = pModule->xEof(pVtabCursor);
+ }
+
+ if( res ){
+ pc = pOp->p2 - 1;
+ }
+ }
+ pCur->nullRow = 0;
+
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VColumn P1 P2 P3 * *
+**
+** Store the value of the P2-th column of
+** the row of the virtual-table that the
+** P1 cursor is pointing to into register P3.
+*/
+case OP_VColumn: {
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ Mem *pDest;
+ sqlite3_context sContext;
+
+ VdbeCursor *pCur = p->apCsr[pOp->p1];
+ assert( pCur->pVtabCursor );
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ if( pCur->nullRow ){
+ sqlite3VdbeMemSetNull(pDest);
+ break;
+ }
+ pVtab = pCur->pVtabCursor->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xColumn );
+ memset(&sContext, 0, sizeof(sContext));
+
+ /* The output cell may already have a buffer allocated. Move
+ ** the current contents to sContext.s so in case the user-function
+ ** can use the already allocated buffer instead of allocating a
+ ** new one.
+ */
+ sqlite3VdbeMemMove(&sContext.s, pDest);
+ MemSetTypeFlag(&sContext.s, MEM_Null);
+
+ rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
+ importVtabErrMsg(p, pVtab);
+ if( sContext.isError ){
+ rc = sContext.isError;
+ }
+
+ /* Copy the result of the function to the P3 register. We
+ ** do this regardless of whether or not an error occurred to ensure any
+ ** dynamic allocation in sContext.s (a Mem struct) is released.
+ */
+ sqlite3VdbeChangeEncoding(&sContext.s, encoding);
+ sqlite3VdbeMemMove(pDest, &sContext.s);
+ REGISTER_TRACE(pOp->p3, pDest);
+ UPDATE_MAX_BLOBSIZE(pDest);
+
+ if( sqlite3VdbeMemTooBig(pDest) ){
+ goto too_big;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VNext P1 P2 * * *
+**
+** Advance virtual table P1 to the next row in its result set and
+** jump to instruction P2. Or, if the virtual table has reached
+** the end of its result set, then fall through to the next instruction.
+*/
+case OP_VNext: { /* jump */
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ int res;
+ VdbeCursor *pCur;
+
+ res = 0;
+ pCur = p->apCsr[pOp->p1];
+ assert( pCur->pVtabCursor );
+ if( pCur->nullRow ){
+ break;
+ }
+ pVtab = pCur->pVtabCursor->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xNext );
+
+ /* Invoke the xNext() method of the module. There is no way for the
+ ** underlying implementation to return an error if one occurs during
+ ** xNext(). Instead, if an error occurs, true is returned (indicating that
+ ** data is available) and the error code returned when xColumn or
+ ** some other method is next invoked on the save virtual table cursor.
+ */
+ p->inVtabMethod = 1;
+ rc = pModule->xNext(pCur->pVtabCursor);
+ p->inVtabMethod = 0;
+ importVtabErrMsg(p, pVtab);
+ if( rc==SQLITE_OK ){
+ res = pModule->xEof(pCur->pVtabCursor);
+ }
+
+ if( !res ){
+ /* If there is data, jump to P2 */
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VRename P1 * * P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xRename method. The value
+** in register P1 is passed as the zName argument to the xRename method.
+*/
+case OP_VRename: {
+ sqlite3_vtab *pVtab;
+ Mem *pName;
+
+ pVtab = pOp->p4.pVtab->pVtab;
+ pName = &aMem[pOp->p1];
+ assert( pVtab->pModule->xRename );
+ assert( memIsValid(pName) );
+ REGISTER_TRACE(pOp->p1, pName);
+ assert( pName->flags & MEM_Str );
+ testcase( pName->enc==SQLITE_UTF8 );
+ testcase( pName->enc==SQLITE_UTF16BE );
+ testcase( pName->enc==SQLITE_UTF16LE );
+ rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
+ if( rc==SQLITE_OK ){
+ rc = pVtab->pModule->xRename(pVtab, pName->z);
+ importVtabErrMsg(p, pVtab);
+ p->expired = 0;
+ }
+ break;
+}
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VUpdate P1 P2 P3 P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xUpdate method. P2 values
+** are contiguous memory cells starting at P3 to pass to the xUpdate
+** invocation. The value in register (P3+P2-1) corresponds to the
+** p2th element of the argv array passed to xUpdate.
+**
+** The xUpdate method will do a DELETE or an INSERT or both.
+** The argv[0] element (which corresponds to memory cell P3)
+** is the rowid of a row to delete. If argv[0] is NULL then no
+** deletion occurs. The argv[1] element is the rowid of the new
+** row. This can be NULL to have the virtual table select the new
+** rowid for itself. The subsequent elements in the array are
+** the values of columns in the new row.
+**
+** If P2==1 then no insert is performed. argv[0] is the rowid of
+** a row to delete.
+**
+** P1 is a boolean flag. If it is set to true and the xUpdate call
+** is successful, then the value returned by sqlite3_last_insert_rowid()
+** is set to the value of the rowid for the row just inserted.
+*/
+case OP_VUpdate: {
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pModule;
+ int nArg;
+ int i;
+ sqlite_int64 rowid;
+ Mem **apArg;
+ Mem *pX;
+
+ assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
+ || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
+ );
+ pVtab = pOp->p4.pVtab->pVtab;
+ pModule = (sqlite3_module *)pVtab->pModule;
+ nArg = pOp->p2;
+ assert( pOp->p4type==P4_VTAB );
+ if( ALWAYS(pModule->xUpdate) ){
+ u8 vtabOnConflict = db->vtabOnConflict;
+ apArg = p->apArg;
+ pX = &aMem[pOp->p3];
+ for(i=0; i<nArg; i++){
+ assert( memIsValid(pX) );
+ memAboutToChange(p, pX);
+ sqlite3VdbeMemStoreType(pX);
+ apArg[i] = pX;
+ pX++;
+ }
+ db->vtabOnConflict = pOp->p5;
+ rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
+ db->vtabOnConflict = vtabOnConflict;
+ importVtabErrMsg(p, pVtab);
+ if( rc==SQLITE_OK && pOp->p1 ){
+ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
+ db->lastRowid = lastRowid = rowid;
+ }
+ if( rc==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
+ if( pOp->p5==OE_Ignore ){
+ rc = SQLITE_OK;
+ }else{
+ p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
+ }
+ }else{
+ p->nChange++;
+ }
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/* Opcode: Pagecount P1 P2 * * *
+**
+** Write the current number of pages in database P1 to memory cell P2.
+*/
+case OP_Pagecount: { /* out2-prerelease */
+ pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
+ break;
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/* Opcode: MaxPgcnt P1 P2 P3 * *
+**
+** Try to set the maximum page count for database P1 to the value in P3.
+** Do not let the maximum page count fall below the current page count and
+** do not change the maximum page count value if P3==0.
+**
+** Store the maximum page count after the change in register P2.
+*/
+case OP_MaxPgcnt: { /* out2-prerelease */
+ unsigned int newMax;
+ Btree *pBt;
+
+ pBt = db->aDb[pOp->p1].pBt;
+ newMax = 0;
+ if( pOp->p3 ){
+ newMax = sqlite3BtreeLastPage(pBt);
+ if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
+ }
+ pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
+ break;
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_TRACE
+/* Opcode: Trace * * * P4 *
+**
+** If tracing is enabled (by the sqlite3_trace()) interface, then
+** the UTF-8 string contained in P4 is emitted on the trace callback.
+*/
+case OP_Trace: {
+ char *zTrace;
+ char *z;
+
+ if( db->xTrace && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){
+ z = sqlite3VdbeExpandSql(p, zTrace);
+ db->xTrace(db->pTraceArg, z);
+ sqlite3DbFree(db, z);
+ }
+#ifdef SQLITE_DEBUG
+ if( (db->flags & SQLITE_SqlTrace)!=0
+ && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
+ ){
+ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
+ }
+#endif /* SQLITE_DEBUG */
+ break;
+}
+#endif
+
+
+/* Opcode: Noop * * * * *
+**
+** Do nothing. This instruction is often useful as a jump
+** destination.
+*/
+/*
+** The magic Explain opcode are only inserted when explain==2 (which
+** is to say when the EXPLAIN QUERY PLAN syntax is used.)
+** This opcode records information from the optimizer. It is the
+** the same as a no-op. This opcodesnever appears in a real VM program.
+*/
+default: { /* This is really OP_Noop and OP_Explain */
+ assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
+ break;
+}
+
+/*****************************************************************************
+** The cases of the switch statement above this line should all be indented
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the
+** readability. From this point on down, the normal indentation rules are
+** restored.
+*****************************************************************************/
+ }
+
+#ifdef VDBE_PROFILE
+ {
+ u64 elapsed = sqlite3Hwtime() - start;
+ pOp->cycles += elapsed;
+ pOp->cnt++;
+#if 0
+ fprintf(stdout, "%10llu ", elapsed);
+ sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
+#endif
+ }
+#endif
+
+ /* The following code adds nothing to the actual functionality
+ ** of the program. It is only here for testing and debugging.
+ ** On the other hand, it does burn CPU cycles every time through
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
+ */
+#ifndef NDEBUG
+ assert( pc>=-1 && pc<p->nOp );
+
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
+ if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
+ registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
+ }
+ if( pOp->opflags & OPFLG_OUT3 ){
+ registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
+ }
+ }
+#endif /* SQLITE_DEBUG */
+#endif /* NDEBUG */
+ } /* The end of the for(;;) loop the loops through opcodes */
+
+ /* If we reach this point, it means that execution is finished with
+ ** an error of some kind.
+ */
+vdbe_error_halt:
+ assert( rc );
+ p->rc = rc;
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(rc, "statement aborts at %d: [%s] %s",
+ pc, p->zSql, p->zErrMsg);
+ sqlite3VdbeHalt(p);
+ if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
+ rc = SQLITE_ERROR;
+ if( resetSchemaOnFault>0 ){
+ sqlite3ResetInternalSchema(db, resetSchemaOnFault-1);
+ }
+
+ /* This is the only way out of this procedure. We have to
+ ** release the mutexes on btrees that were acquired at the
+ ** top. */
+vdbe_return:
+ db->lastRowid = lastRowid;
+ sqlite3VdbeLeave(p);
+ return rc;
+
+ /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
+ ** is encountered.
+ */
+too_big:
+ sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
+ rc = SQLITE_TOOBIG;
+ goto vdbe_error_halt;
+
+ /* Jump to here if a malloc() fails.
+ */
+no_mem:
+ db->mallocFailed = 1;
+ sqlite3SetString(&p->zErrMsg, db, "out of memory");
+ rc = SQLITE_NOMEM;
+ goto vdbe_error_halt;
+
+ /* Jump to here for any other kind of fatal error. The "rc" variable
+ ** should hold the error number.
+ */
+abort_due_to_error:
+ assert( p->zErrMsg==0 );
+ if( db->mallocFailed ) rc = SQLITE_NOMEM;
+ if( rc!=SQLITE_IOERR_NOMEM ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
+ }
+ goto vdbe_error_halt;
+
+ /* Jump to here if the sqlite3_interrupt() API sets the interrupt
+ ** flag.
+ */
+abort_due_to_interrupt:
+ assert( db->u1.isInterrupted );
+ rc = SQLITE_INTERRUPT;
+ p->rc = rc;
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
+ goto vdbe_error_halt;
+}