summaryrefslogtreecommitdiff
path: root/src/test_fuzzer.c
diff options
context:
space:
mode:
authorHans-Christoph Steiner <hans@eds.org>2012-03-30 20:42:12 -0400
committerHans-Christoph Steiner <hans@eds.org>2012-03-30 20:42:12 -0400
commit7bb481fda9ecb134804b49c2ce77ca28f7eea583 (patch)
tree31b520b9914d3e2453968abe375f2c102772c3dc /src/test_fuzzer.c
Imported Upstream version 2.0.3
Diffstat (limited to 'src/test_fuzzer.c')
-rw-r--r--src/test_fuzzer.c944
1 files changed, 944 insertions, 0 deletions
diff --git a/src/test_fuzzer.c b/src/test_fuzzer.c
new file mode 100644
index 0000000..cf59257
--- /dev/null
+++ b/src/test_fuzzer.c
@@ -0,0 +1,944 @@
+/*
+** 2011 March 24
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Code for demonstartion virtual table that generates variations
+** on an input word at increasing edit distances from the original.
+**
+** A fuzzer virtual table is created like this:
+**
+** CREATE VIRTUAL TABLE temp.f USING fuzzer;
+**
+** The name of the new virtual table in the example above is "f".
+** Note that all fuzzer virtual tables must be TEMP tables. The
+** "temp." prefix in front of the table name is required when the
+** table is being created. The "temp." prefix can be omitted when
+** using the table as long as the name is unambiguous.
+**
+** Before being used, the fuzzer needs to be programmed by giving it
+** character transformations and a cost associated with each transformation.
+** Examples:
+**
+** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100);
+**
+** The above statement says that the cost of inserting a letter 'a' is
+** 100. (All costs are integers. We recommend that costs be scaled so
+** that the average cost is around 100.)
+**
+** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87);
+**
+** The above statement says that the cost of deleting a single letter
+** 'b' is 87.
+**
+** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38);
+** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40);
+**
+** This third example says that the cost of transforming the single
+** letter "o" into the two-letter sequence "oe" is 38 and that the
+** cost of transforming "oe" back into "o" is 40.
+**
+** After all the transformation costs have been set, the fuzzer table
+** can be queried as follows:
+**
+** SELECT word, distance FROM f
+** WHERE word MATCH 'abcdefg'
+** AND distance<200;
+**
+** This first query outputs the string "abcdefg" and all strings that
+** can be derived from that string by appling the specified transformations.
+** The strings are output together with their total transformation cost
+** (called "distance") and appear in order of increasing cost. No string
+** is output more than once. If there are multiple ways to transform the
+** target string into the output string then the lowest cost transform is
+** the one that is returned. In the example, the search is limited to
+** strings with a total distance of less than 200.
+**
+** It is important to put some kind of a limit on the fuzzer output. This
+** can be either in the form of a LIMIT clause at the end of the query,
+** or better, a "distance<NNN" constraint where NNN is some number. The
+** running time and memory requirement is exponential in the value of NNN
+** so you want to make sure that NNN is not too big. A value of NNN that
+** is about twice the average transformation cost seems to give good results.
+**
+** The fuzzer table can be useful for tasks such as spelling correction.
+** Suppose there is a second table vocabulary(w) where the w column contains
+** all correctly spelled words. Let $word be a word you want to look up.
+**
+** SELECT vocabulary.w FROM f, vocabulary
+** WHERE f.word MATCH $word
+** AND f.distance<=200
+** AND f.word=vocabulary.w
+** LIMIT 20
+**
+** The query above gives the 20 closest words to the $word being tested.
+** (Note that for good performance, the vocubulary.w column should be
+** indexed.)
+**
+** A similar query can be used to find all words in the dictionary that
+** begin with some prefix $prefix:
+**
+** SELECT vocabulary.w FROM f, vocabulary
+** WHERE f.word MATCH $prefix
+** AND f.distance<=200
+** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF')
+** LIMIT 50
+**
+** This last query will show up to 50 words out of the vocabulary that
+** match or nearly match the $prefix.
+*/
+#include "sqlite3.h"
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <stdio.h>
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+
+/*
+** Forward declaration of objects used by this implementation
+*/
+typedef struct fuzzer_vtab fuzzer_vtab;
+typedef struct fuzzer_cursor fuzzer_cursor;
+typedef struct fuzzer_rule fuzzer_rule;
+typedef struct fuzzer_seen fuzzer_seen;
+typedef struct fuzzer_stem fuzzer_stem;
+
+/*
+** Type of the "cost" of an edit operation. Might be changed to
+** "float" or "double" or "sqlite3_int64" in the future.
+*/
+typedef int fuzzer_cost;
+
+
+/*
+** Each transformation rule is stored as an instance of this object.
+** All rules are kept on a linked list sorted by rCost.
+*/
+struct fuzzer_rule {
+ fuzzer_rule *pNext; /* Next rule in order of increasing rCost */
+ fuzzer_cost rCost; /* Cost of this transformation */
+ int nFrom, nTo; /* Length of the zFrom and zTo strings */
+ char *zFrom; /* Transform from */
+ char zTo[4]; /* Transform to (extra space appended) */
+};
+
+/*
+** A stem object is used to generate variants. It is also used to record
+** previously generated outputs.
+**
+** Every stem is added to a hash table as it is output. Generation of
+** duplicate stems is suppressed.
+**
+** Active stems (those that might generate new outputs) are kepts on a linked
+** list sorted by increasing cost. The cost is the sum of rBaseCost and
+** pRule->rCost.
+*/
+struct fuzzer_stem {
+ char *zBasis; /* Word being fuzzed */
+ int nBasis; /* Length of the zBasis string */
+ const fuzzer_rule *pRule; /* Current rule to apply */
+ int n; /* Apply pRule at this character offset */
+ fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */
+ fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */
+ fuzzer_stem *pNext; /* Next stem in rCost order */
+ fuzzer_stem *pHash; /* Next stem with same hash on zBasis */
+};
+
+/*
+** A fuzzer virtual-table object
+*/
+struct fuzzer_vtab {
+ sqlite3_vtab base; /* Base class - must be first */
+ char *zClassName; /* Name of this class. Default: "fuzzer" */
+ fuzzer_rule *pRule; /* All active rules in this fuzzer */
+ fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */
+ int nCursor; /* Number of active cursors */
+};
+
+#define FUZZER_HASH 4001 /* Hash table size */
+#define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */
+
+/* A fuzzer cursor object */
+struct fuzzer_cursor {
+ sqlite3_vtab_cursor base; /* Base class - must be first */
+ sqlite3_int64 iRowid; /* The rowid of the current word */
+ fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */
+ fuzzer_cost rLimit; /* Maximum cost of any term */
+ fuzzer_stem *pStem; /* Stem with smallest rCostX */
+ fuzzer_stem *pDone; /* Stems already processed to completion */
+ fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */
+ int mxQueue; /* Largest used index in aQueue[] */
+ char *zBuf; /* Temporary use buffer */
+ int nBuf; /* Bytes allocated for zBuf */
+ int nStem; /* Number of stems allocated */
+ fuzzer_rule nullRule; /* Null rule used first */
+ fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */
+};
+
+/* Methods for the fuzzer module */
+static int fuzzerConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ fuzzer_vtab *pNew;
+ int n;
+ if( strcmp(argv[1],"temp")!=0 ){
+ *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]);
+ return SQLITE_ERROR;
+ }
+ n = strlen(argv[0]) + 1;
+ pNew = sqlite3_malloc( sizeof(*pNew) + n );
+ if( pNew==0 ) return SQLITE_NOMEM;
+ pNew->zClassName = (char*)&pNew[1];
+ memcpy(pNew->zClassName, argv[0], n);
+ sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)");
+ memset(pNew, 0, sizeof(*pNew));
+ *ppVtab = &pNew->base;
+ return SQLITE_OK;
+}
+/* Note that for this virtual table, the xCreate and xConnect
+** methods are identical. */
+
+static int fuzzerDisconnect(sqlite3_vtab *pVtab){
+ fuzzer_vtab *p = (fuzzer_vtab*)pVtab;
+ assert( p->nCursor==0 );
+ do{
+ while( p->pRule ){
+ fuzzer_rule *pRule = p->pRule;
+ p->pRule = pRule->pNext;
+ sqlite3_free(pRule);
+ }
+ p->pRule = p->pNewRule;
+ p->pNewRule = 0;
+ }while( p->pRule );
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+/* The xDisconnect and xDestroy methods are also the same */
+
+/*
+** The two input rule lists are both sorted in order of increasing
+** cost. Merge them together into a single list, sorted by cost, and
+** return a pointer to the head of that list.
+*/
+static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){
+ fuzzer_rule head;
+ fuzzer_rule *pTail;
+
+ pTail = &head;
+ while( pA && pB ){
+ if( pA->rCost<=pB->rCost ){
+ pTail->pNext = pA;
+ pTail = pA;
+ pA = pA->pNext;
+ }else{
+ pTail->pNext = pB;
+ pTail = pB;
+ pB = pB->pNext;
+ }
+ }
+ if( pA==0 ){
+ pTail->pNext = pB;
+ }else{
+ pTail->pNext = pA;
+ }
+ return head.pNext;
+}
+
+
+/*
+** Open a new fuzzer cursor.
+*/
+static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
+ fuzzer_cursor *pCur;
+ pCur = sqlite3_malloc( sizeof(*pCur) );
+ if( pCur==0 ) return SQLITE_NOMEM;
+ memset(pCur, 0, sizeof(*pCur));
+ pCur->pVtab = p;
+ *ppCursor = &pCur->base;
+ if( p->nCursor==0 && p->pNewRule ){
+ unsigned int i;
+ fuzzer_rule *pX;
+ fuzzer_rule *a[15];
+ for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
+ while( (pX = p->pNewRule)!=0 ){
+ p->pNewRule = pX->pNext;
+ pX->pNext = 0;
+ for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
+ pX = fuzzerMergeRules(a[i], pX);
+ a[i] = 0;
+ }
+ a[i] = fuzzerMergeRules(a[i], pX);
+ }
+ for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
+ pX = fuzzerMergeRules(a[i], pX);
+ }
+ p->pRule = fuzzerMergeRules(p->pRule, pX);
+ }
+ p->nCursor++;
+ return SQLITE_OK;
+}
+
+/*
+** Free all stems in a list.
+*/
+static void fuzzerClearStemList(fuzzer_stem *pStem){
+ while( pStem ){
+ fuzzer_stem *pNext = pStem->pNext;
+ sqlite3_free(pStem);
+ pStem = pNext;
+ }
+}
+
+/*
+** Free up all the memory allocated by a cursor. Set it rLimit to 0
+** to indicate that it is at EOF.
+*/
+static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){
+ int i;
+ fuzzerClearStemList(pCur->pStem);
+ fuzzerClearStemList(pCur->pDone);
+ for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]);
+ pCur->rLimit = (fuzzer_cost)0;
+ if( clearHash && pCur->nStem ){
+ pCur->mxQueue = 0;
+ pCur->pStem = 0;
+ pCur->pDone = 0;
+ memset(pCur->aQueue, 0, sizeof(pCur->aQueue));
+ memset(pCur->apHash, 0, sizeof(pCur->apHash));
+ }
+ pCur->nStem = 0;
+}
+
+/*
+** Close a fuzzer cursor.
+*/
+static int fuzzerClose(sqlite3_vtab_cursor *cur){
+ fuzzer_cursor *pCur = (fuzzer_cursor *)cur;
+ fuzzerClearCursor(pCur, 0);
+ sqlite3_free(pCur->zBuf);
+ pCur->pVtab->nCursor--;
+ sqlite3_free(pCur);
+ return SQLITE_OK;
+}
+
+/*
+** Compute the current output term for a fuzzer_stem.
+*/
+static int fuzzerRender(
+ fuzzer_stem *pStem, /* The stem to be rendered */
+ char **pzBuf, /* Write results into this buffer. realloc if needed */
+ int *pnBuf /* Size of the buffer */
+){
+ const fuzzer_rule *pRule = pStem->pRule;
+ int n;
+ char *z;
+
+ n = pStem->nBasis + pRule->nTo - pRule->nFrom;
+ if( (*pnBuf)<n+1 ){
+ (*pzBuf) = sqlite3_realloc((*pzBuf), n+100);
+ if( (*pzBuf)==0 ) return SQLITE_NOMEM;
+ (*pnBuf) = n+100;
+ }
+ n = pStem->n;
+ z = *pzBuf;
+ if( n<0 ){
+ memcpy(z, pStem->zBasis, pStem->nBasis+1);
+ }else{
+ memcpy(z, pStem->zBasis, n);
+ memcpy(&z[n], pRule->zTo, pRule->nTo);
+ memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom],
+ pStem->nBasis-n-pRule->nFrom+1);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Compute a hash on zBasis.
+*/
+static unsigned int fuzzerHash(const char *z){
+ unsigned int h = 0;
+ while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); }
+ return h % FUZZER_HASH;
+}
+
+/*
+** Current cost of a stem
+*/
+static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){
+ return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost;
+}
+
+#if 0
+/*
+** Print a description of a fuzzer_stem on stderr.
+*/
+static void fuzzerStemPrint(
+ const char *zPrefix,
+ fuzzer_stem *pStem,
+ const char *zSuffix
+){
+ if( pStem->n<0 ){
+ fprintf(stderr, "%s[%s](%d)-->self%s",
+ zPrefix,
+ pStem->zBasis, pStem->rBaseCost,
+ zSuffix
+ );
+ }else{
+ char *zBuf = 0;
+ int nBuf = 0;
+ if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return;
+ fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s",
+ zPrefix,
+ pStem->zBasis, pStem->rBaseCost, zBuf, pStem->,
+ zSuffix
+ );
+ sqlite3_free(zBuf);
+ }
+}
+#endif
+
+/*
+** Return 1 if the string to which the cursor is point has already
+** been emitted. Return 0 if not. Return -1 on a memory allocation
+** failures.
+*/
+static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){
+ unsigned int h;
+ fuzzer_stem *pLookup;
+
+ if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
+ return -1;
+ }
+ h = fuzzerHash(pCur->zBuf);
+ pLookup = pCur->apHash[h];
+ while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){
+ pLookup = pLookup->pHash;
+ }
+ return pLookup!=0;
+}
+
+/*
+** Advance a fuzzer_stem to its next value. Return 0 if there are
+** no more values that can be generated by this fuzzer_stem. Return
+** -1 on a memory allocation failure.
+*/
+static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){
+ const fuzzer_rule *pRule;
+ while( (pRule = pStem->pRule)!=0 ){
+ while( pStem->n < pStem->nBasis - pRule->nFrom ){
+ pStem->n++;
+ if( pRule->nFrom==0
+ || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0
+ ){
+ /* Found a rewrite case. Make sure it is not a duplicate */
+ int rc = fuzzerSeen(pCur, pStem);
+ if( rc<0 ) return -1;
+ if( rc==0 ){
+ fuzzerCost(pStem);
+ return 1;
+ }
+ }
+ }
+ pStem->n = -1;
+ pStem->pRule = pRule->pNext;
+ if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0;
+ }
+ return 0;
+}
+
+/*
+** The two input stem lists are both sorted in order of increasing
+** rCostX. Merge them together into a single list, sorted by rCostX, and
+** return a pointer to the head of that new list.
+*/
+static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){
+ fuzzer_stem head;
+ fuzzer_stem *pTail;
+
+ pTail = &head;
+ while( pA && pB ){
+ if( pA->rCostX<=pB->rCostX ){
+ pTail->pNext = pA;
+ pTail = pA;
+ pA = pA->pNext;
+ }else{
+ pTail->pNext = pB;
+ pTail = pB;
+ pB = pB->pNext;
+ }
+ }
+ if( pA==0 ){
+ pTail->pNext = pB;
+ }else{
+ pTail->pNext = pA;
+ }
+ return head.pNext;
+}
+
+/*
+** Load pCur->pStem with the lowest-cost stem. Return a pointer
+** to the lowest-cost stem.
+*/
+static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){
+ fuzzer_stem *pBest, *pX;
+ int iBest;
+ int i;
+
+ if( pCur->pStem==0 ){
+ iBest = -1;
+ pBest = 0;
+ for(i=0; i<=pCur->mxQueue; i++){
+ pX = pCur->aQueue[i];
+ if( pX==0 ) continue;
+ if( pBest==0 || pBest->rCostX>pX->rCostX ){
+ pBest = pX;
+ iBest = i;
+ }
+ }
+ if( pBest ){
+ pCur->aQueue[iBest] = pBest->pNext;
+ pBest->pNext = 0;
+ pCur->pStem = pBest;
+ }
+ }
+ return pCur->pStem;
+}
+
+/*
+** Insert pNew into queue of pending stems. Then find the stem
+** with the lowest rCostX and move it into pCur->pStem.
+** list. The insert is done such the pNew is in the correct order
+** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost.
+*/
+static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){
+ fuzzer_stem *pX;
+ int i;
+
+ /* If pCur->pStem exists and is greater than pNew, then make pNew
+ ** the new pCur->pStem and insert the old pCur->pStem instead.
+ */
+ if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){
+ pNew->pNext = 0;
+ pCur->pStem = pNew;
+ pNew = pX;
+ }
+
+ /* Insert the new value */
+ pNew->pNext = 0;
+ pX = pNew;
+ for(i=0; i<=pCur->mxQueue; i++){
+ if( pCur->aQueue[i] ){
+ pX = fuzzerMergeStems(pX, pCur->aQueue[i]);
+ pCur->aQueue[i] = 0;
+ }else{
+ pCur->aQueue[i] = pX;
+ break;
+ }
+ }
+ if( i>pCur->mxQueue ){
+ if( i<FUZZER_NQUEUE ){
+ pCur->mxQueue = i;
+ pCur->aQueue[i] = pX;
+ }else{
+ assert( pCur->mxQueue==FUZZER_NQUEUE-1 );
+ pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]);
+ pCur->aQueue[FUZZER_NQUEUE-1] = pX;
+ }
+ }
+
+ return fuzzerLowestCostStem(pCur);
+}
+
+/*
+** Allocate a new fuzzer_stem. Add it to the hash table but do not
+** link it into either the pCur->pStem or pCur->pDone lists.
+*/
+static fuzzer_stem *fuzzerNewStem(
+ fuzzer_cursor *pCur,
+ const char *zWord,
+ fuzzer_cost rBaseCost
+){
+ fuzzer_stem *pNew;
+ unsigned int h;
+
+ pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 );
+ if( pNew==0 ) return 0;
+ memset(pNew, 0, sizeof(*pNew));
+ pNew->zBasis = (char*)&pNew[1];
+ pNew->nBasis = strlen(zWord);
+ memcpy(pNew->zBasis, zWord, pNew->nBasis+1);
+ pNew->pRule = pCur->pVtab->pRule;
+ pNew->n = -1;
+ pNew->rBaseCost = pNew->rCostX = rBaseCost;
+ h = fuzzerHash(pNew->zBasis);
+ pNew->pHash = pCur->apHash[h];
+ pCur->apHash[h] = pNew;
+ pCur->nStem++;
+ return pNew;
+}
+
+
+/*
+** Advance a cursor to its next row of output
+*/
+static int fuzzerNext(sqlite3_vtab_cursor *cur){
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
+ int rc;
+ fuzzer_stem *pStem, *pNew;
+
+ pCur->iRowid++;
+
+ /* Use the element the cursor is currently point to to create
+ ** a new stem and insert the new stem into the priority queue.
+ */
+ pStem = pCur->pStem;
+ if( pStem->rCostX>0 ){
+ rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf);
+ if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
+ pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX);
+ if( pNew ){
+ if( fuzzerAdvance(pCur, pNew)==0 ){
+ pNew->pNext = pCur->pDone;
+ pCur->pDone = pNew;
+ }else{
+ if( fuzzerInsert(pCur, pNew)==pNew ){
+ return SQLITE_OK;
+ }
+ }
+ }else{
+ return SQLITE_NOMEM;
+ }
+ }
+
+ /* Adjust the priority queue so that the first element of the
+ ** stem list is the next lowest cost word.
+ */
+ while( (pStem = pCur->pStem)!=0 ){
+ if( fuzzerAdvance(pCur, pStem) ){
+ pCur->pStem = 0;
+ pStem = fuzzerInsert(pCur, pStem);
+ if( (rc = fuzzerSeen(pCur, pStem))!=0 ){
+ if( rc<0 ) return SQLITE_NOMEM;
+ continue;
+ }
+ return SQLITE_OK; /* New word found */
+ }
+ pCur->pStem = 0;
+ pStem->pNext = pCur->pDone;
+ pCur->pDone = pStem;
+ if( fuzzerLowestCostStem(pCur) ){
+ rc = fuzzerSeen(pCur, pCur->pStem);
+ if( rc<0 ) return SQLITE_NOMEM;
+ if( rc==0 ){
+ return SQLITE_OK;
+ }
+ }
+ }
+
+ /* Reach this point only if queue has been exhausted and there is
+ ** nothing left to be output. */
+ pCur->rLimit = (fuzzer_cost)0;
+ return SQLITE_OK;
+}
+
+/*
+** Called to "rewind" a cursor back to the beginning so that
+** it starts its output over again. Always called at least once
+** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call.
+*/
+static int fuzzerFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor;
+ const char *zWord = 0;
+ fuzzer_stem *pStem;
+
+ fuzzerClearCursor(pCur, 1);
+ pCur->rLimit = 2147483647;
+ if( idxNum==1 ){
+ zWord = (const char*)sqlite3_value_text(argv[0]);
+ }else if( idxNum==2 ){
+ pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]);
+ }else if( idxNum==3 ){
+ zWord = (const char*)sqlite3_value_text(argv[0]);
+ pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]);
+ }
+ if( zWord==0 ) zWord = "";
+ pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0);
+ if( pStem==0 ) return SQLITE_NOMEM;
+ pCur->nullRule.pNext = pCur->pVtab->pRule;
+ pCur->nullRule.rCost = 0;
+ pCur->nullRule.nFrom = 0;
+ pCur->nullRule.nTo = 0;
+ pCur->nullRule.zFrom = "";
+ pStem->pRule = &pCur->nullRule;
+ pStem->n = pStem->nBasis;
+ pCur->iRowid = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Only the word and distance columns have values. All other columns
+** return NULL
+*/
+static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
+ if( i==0 ){
+ /* the "word" column */
+ if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
+ return SQLITE_NOMEM;
+ }
+ sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
+ }else if( i==1 ){
+ /* the "distance" column */
+ sqlite3_result_int(ctx, pCur->pStem->rCostX);
+ }else{
+ /* All other columns are NULL */
+ sqlite3_result_null(ctx);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The rowid.
+*/
+static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
+ *pRowid = pCur->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal
+** that the cursor has nothing more to output.
+*/
+static int fuzzerEof(sqlite3_vtab_cursor *cur){
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
+ return pCur->rLimit<=(fuzzer_cost)0;
+}
+
+/*
+** Search for terms of these forms:
+**
+** word MATCH $str
+** distance < $value
+** distance <= $value
+**
+** The distance< and distance<= are both treated as distance<=.
+** The query plan number is as follows:
+**
+** 0: None of the terms above are found
+** 1: There is a "word MATCH" term with $str in filter.argv[0].
+** 2: There is a "distance<" term with $value in filter.argv[0].
+** 3: Both "word MATCH" and "distance<" with $str in argv[0] and
+** $value in argv[1].
+*/
+static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int iPlan = 0;
+ int iDistTerm = -1;
+ int i;
+ const struct sqlite3_index_constraint *pConstraint;
+ pConstraint = pIdxInfo->aConstraint;
+ for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
+ if( pConstraint->usable==0 ) continue;
+ if( (iPlan & 1)==0
+ && pConstraint->iColumn==0
+ && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
+ ){
+ iPlan |= 1;
+ pIdxInfo->aConstraintUsage[i].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ }
+ if( (iPlan & 2)==0
+ && pConstraint->iColumn==1
+ && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
+ || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
+ ){
+ iPlan |= 2;
+ iDistTerm = i;
+ }
+ }
+ if( iPlan==2 ){
+ pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1;
+ }else if( iPlan==3 ){
+ pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2;
+ }
+ pIdxInfo->idxNum = iPlan;
+ if( pIdxInfo->nOrderBy==1
+ && pIdxInfo->aOrderBy[0].iColumn==1
+ && pIdxInfo->aOrderBy[0].desc==0
+ ){
+ pIdxInfo->orderByConsumed = 1;
+ }
+ pIdxInfo->estimatedCost = (double)10000;
+
+ return SQLITE_OK;
+}
+
+/*
+** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed.
+**
+** On an insert, the cFrom, cTo, and cost columns are used to construct
+** a new rule. All other columns are ignored. The rule is ignored
+** if cFrom and cTo are identical. A NULL value for cFrom or cTo is
+** interpreted as an empty string. The cost must be positive.
+*/
+static int fuzzerUpdate(
+ sqlite3_vtab *pVTab,
+ int argc,
+ sqlite3_value **argv,
+ sqlite_int64 *pRowid
+){
+ fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
+ fuzzer_rule *pRule;
+ const char *zFrom;
+ int nFrom;
+ const char *zTo;
+ int nTo;
+ fuzzer_cost rCost;
+ if( argc!=7 ){
+ sqlite3_free(pVTab->zErrMsg);
+ pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table",
+ p->zClassName);
+ return SQLITE_CONSTRAINT;
+ }
+ if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){
+ sqlite3_free(pVTab->zErrMsg);
+ pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table",
+ p->zClassName);
+ return SQLITE_CONSTRAINT;
+ }
+ zFrom = (char*)sqlite3_value_text(argv[4]);
+ if( zFrom==0 ) zFrom = "";
+ zTo = (char*)sqlite3_value_text(argv[5]);
+ if( zTo==0 ) zTo = "";
+ if( strcmp(zFrom,zTo)==0 ){
+ /* Silently ignore null transformations */
+ return SQLITE_OK;
+ }
+ rCost = sqlite3_value_int(argv[6]);
+ if( rCost<=0 ){
+ sqlite3_free(pVTab->zErrMsg);
+ pVTab->zErrMsg = sqlite3_mprintf("cost must be positive");
+ return SQLITE_CONSTRAINT;
+ }
+ nFrom = strlen(zFrom);
+ nTo = strlen(zTo);
+ pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
+ if( pRule==0 ){
+ return SQLITE_NOMEM;
+ }
+ pRule->zFrom = &pRule->zTo[nTo+1];
+ pRule->nFrom = nFrom;
+ memcpy(pRule->zFrom, zFrom, nFrom+1);
+ memcpy(pRule->zTo, zTo, nTo+1);
+ pRule->nTo = nTo;
+ pRule->rCost = rCost;
+ pRule->pNext = p->pNewRule;
+ p->pNewRule = pRule;
+ return SQLITE_OK;
+}
+
+/*
+** A virtual table module that provides read-only access to a
+** Tcl global variable namespace.
+*/
+static sqlite3_module fuzzerModule = {
+ 0, /* iVersion */
+ fuzzerConnect,
+ fuzzerConnect,
+ fuzzerBestIndex,
+ fuzzerDisconnect,
+ fuzzerDisconnect,
+ fuzzerOpen, /* xOpen - open a cursor */
+ fuzzerClose, /* xClose - close a cursor */
+ fuzzerFilter, /* xFilter - configure scan constraints */
+ fuzzerNext, /* xNext - advance a cursor */
+ fuzzerEof, /* xEof - check for end of scan */
+ fuzzerColumn, /* xColumn - read data */
+ fuzzerRowid, /* xRowid - read data */
+ fuzzerUpdate, /* xUpdate - INSERT */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+};
+
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+
+/*
+** Register the fuzzer virtual table
+*/
+int fuzzer_register(sqlite3 *db){
+ int rc = SQLITE_OK;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0);
+#endif
+ return rc;
+}
+
+#ifdef SQLITE_TEST
+#include <tcl.h>
+/*
+** Decode a pointer to an sqlite3 object.
+*/
+extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb);
+
+/*
+** Register the echo virtual table module.
+*/
+static int register_fuzzer_module(
+ ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
+ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */
+ int objc, /* Number of arguments */
+ Tcl_Obj *CONST objv[] /* Command arguments */
+){
+ sqlite3 *db;
+ if( objc!=2 ){
+ Tcl_WrongNumArgs(interp, 1, objv, "DB");
+ return TCL_ERROR;
+ }
+ if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
+ fuzzer_register(db);
+ return TCL_OK;
+}
+
+
+/*
+** Register commands with the TCL interpreter.
+*/
+int Sqlitetestfuzzer_Init(Tcl_Interp *interp){
+ static struct {
+ char *zName;
+ Tcl_ObjCmdProc *xProc;
+ void *clientData;
+ } aObjCmd[] = {
+ { "register_fuzzer_module", register_fuzzer_module, 0 },
+ };
+ int i;
+ for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
+ Tcl_CreateObjCommand(interp, aObjCmd[i].zName,
+ aObjCmd[i].xProc, aObjCmd[i].clientData, 0);
+ }
+ return TCL_OK;
+}
+
+#endif /* SQLITE_TEST */