summaryrefslogtreecommitdiff
path: root/src/fkey.c
diff options
context:
space:
mode:
authorHans-Christoph Steiner <hans@eds.org>2012-03-30 20:42:12 -0400
committerHans-Christoph Steiner <hans@eds.org>2012-03-30 20:42:12 -0400
commit7bb481fda9ecb134804b49c2ce77ca28f7eea583 (patch)
tree31b520b9914d3e2453968abe375f2c102772c3dc /src/fkey.c
Imported Upstream version 2.0.3
Diffstat (limited to 'src/fkey.c')
-rw-r--r--src/fkey.c1219
1 files changed, 1219 insertions, 0 deletions
diff --git a/src/fkey.c b/src/fkey.c
new file mode 100644
index 0000000..82e4cdc
--- /dev/null
+++ b/src/fkey.c
@@ -0,0 +1,1219 @@
+/*
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used by the compiler to add foreign key
+** support to compiled SQL statements.
+*/
+#include "sqliteInt.h"
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+#ifndef SQLITE_OMIT_TRIGGER
+
+/*
+** Deferred and Immediate FKs
+** --------------------------
+**
+** Foreign keys in SQLite come in two flavours: deferred and immediate.
+** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
+** is returned and the current statement transaction rolled back. If a
+** deferred foreign key constraint is violated, no action is taken
+** immediately. However if the application attempts to commit the
+** transaction before fixing the constraint violation, the attempt fails.
+**
+** Deferred constraints are implemented using a simple counter associated
+** with the database handle. The counter is set to zero each time a
+** database transaction is opened. Each time a statement is executed
+** that causes a foreign key violation, the counter is incremented. Each
+** time a statement is executed that removes an existing violation from
+** the database, the counter is decremented. When the transaction is
+** committed, the commit fails if the current value of the counter is
+** greater than zero. This scheme has two big drawbacks:
+**
+** * When a commit fails due to a deferred foreign key constraint,
+** there is no way to tell which foreign constraint is not satisfied,
+** or which row it is not satisfied for.
+**
+** * If the database contains foreign key violations when the
+** transaction is opened, this may cause the mechanism to malfunction.
+**
+** Despite these problems, this approach is adopted as it seems simpler
+** than the alternatives.
+**
+** INSERT operations:
+**
+** I.1) For each FK for which the table is the child table, search
+** the parent table for a match. If none is found increment the
+** constraint counter.
+**
+** I.2) For each FK for which the table is the parent table,
+** search the child table for rows that correspond to the new
+** row in the parent table. Decrement the counter for each row
+** found (as the constraint is now satisfied).
+**
+** DELETE operations:
+**
+** D.1) For each FK for which the table is the child table,
+** search the parent table for a row that corresponds to the
+** deleted row in the child table. If such a row is not found,
+** decrement the counter.
+**
+** D.2) For each FK for which the table is the parent table, search
+** the child table for rows that correspond to the deleted row
+** in the parent table. For each found increment the counter.
+**
+** UPDATE operations:
+**
+** An UPDATE command requires that all 4 steps above are taken, but only
+** for FK constraints for which the affected columns are actually
+** modified (values must be compared at runtime).
+**
+** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
+** This simplifies the implementation a bit.
+**
+** For the purposes of immediate FK constraints, the OR REPLACE conflict
+** resolution is considered to delete rows before the new row is inserted.
+** If a delete caused by OR REPLACE violates an FK constraint, an exception
+** is thrown, even if the FK constraint would be satisfied after the new
+** row is inserted.
+**
+** Immediate constraints are usually handled similarly. The only difference
+** is that the counter used is stored as part of each individual statement
+** object (struct Vdbe). If, after the statement has run, its immediate
+** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
+** and the statement transaction is rolled back. An exception is an INSERT
+** statement that inserts a single row only (no triggers). In this case,
+** instead of using a counter, an exception is thrown immediately if the
+** INSERT violates a foreign key constraint. This is necessary as such
+** an INSERT does not open a statement transaction.
+**
+** TODO: How should dropping a table be handled? How should renaming a
+** table be handled?
+**
+**
+** Query API Notes
+** ---------------
+**
+** Before coding an UPDATE or DELETE row operation, the code-generator
+** for those two operations needs to know whether or not the operation
+** requires any FK processing and, if so, which columns of the original
+** row are required by the FK processing VDBE code (i.e. if FKs were
+** implemented using triggers, which of the old.* columns would be
+** accessed). No information is required by the code-generator before
+** coding an INSERT operation. The functions used by the UPDATE/DELETE
+** generation code to query for this information are:
+**
+** sqlite3FkRequired() - Test to see if FK processing is required.
+** sqlite3FkOldmask() - Query for the set of required old.* columns.
+**
+**
+** Externally accessible module functions
+** --------------------------------------
+**
+** sqlite3FkCheck() - Check for foreign key violations.
+** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
+** sqlite3FkDelete() - Delete an FKey structure.
+*/
+
+/*
+** VDBE Calling Convention
+** -----------------------
+**
+** Example:
+**
+** For the following INSERT statement:
+**
+** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
+** INSERT INTO t1 VALUES(1, 2, 3.1);
+**
+** Register (x): 2 (type integer)
+** Register (x+1): 1 (type integer)
+** Register (x+2): NULL (type NULL)
+** Register (x+3): 3.1 (type real)
+*/
+
+/*
+** A foreign key constraint requires that the key columns in the parent
+** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
+** Given that pParent is the parent table for foreign key constraint pFKey,
+** search the schema a unique index on the parent key columns.
+**
+** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
+** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
+** is set to point to the unique index.
+**
+** If the parent key consists of a single column (the foreign key constraint
+** is not a composite foreign key), output variable *paiCol is set to NULL.
+** Otherwise, it is set to point to an allocated array of size N, where
+** N is the number of columns in the parent key. The first element of the
+** array is the index of the child table column that is mapped by the FK
+** constraint to the parent table column stored in the left-most column
+** of index *ppIdx. The second element of the array is the index of the
+** child table column that corresponds to the second left-most column of
+** *ppIdx, and so on.
+**
+** If the required index cannot be found, either because:
+**
+** 1) The named parent key columns do not exist, or
+**
+** 2) The named parent key columns do exist, but are not subject to a
+** UNIQUE or PRIMARY KEY constraint, or
+**
+** 3) No parent key columns were provided explicitly as part of the
+** foreign key definition, and the parent table does not have a
+** PRIMARY KEY, or
+**
+** 4) No parent key columns were provided explicitly as part of the
+** foreign key definition, and the PRIMARY KEY of the parent table
+** consists of a a different number of columns to the child key in
+** the child table.
+**
+** then non-zero is returned, and a "foreign key mismatch" error loaded
+** into pParse. If an OOM error occurs, non-zero is returned and the
+** pParse->db->mallocFailed flag is set.
+*/
+static int locateFkeyIndex(
+ Parse *pParse, /* Parse context to store any error in */
+ Table *pParent, /* Parent table of FK constraint pFKey */
+ FKey *pFKey, /* Foreign key to find index for */
+ Index **ppIdx, /* OUT: Unique index on parent table */
+ int **paiCol /* OUT: Map of index columns in pFKey */
+){
+ Index *pIdx = 0; /* Value to return via *ppIdx */
+ int *aiCol = 0; /* Value to return via *paiCol */
+ int nCol = pFKey->nCol; /* Number of columns in parent key */
+ char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
+
+ /* The caller is responsible for zeroing output parameters. */
+ assert( ppIdx && *ppIdx==0 );
+ assert( !paiCol || *paiCol==0 );
+ assert( pParse );
+
+ /* If this is a non-composite (single column) foreign key, check if it
+ ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
+ ** and *paiCol set to zero and return early.
+ **
+ ** Otherwise, for a composite foreign key (more than one column), allocate
+ ** space for the aiCol array (returned via output parameter *paiCol).
+ ** Non-composite foreign keys do not require the aiCol array.
+ */
+ if( nCol==1 ){
+ /* The FK maps to the IPK if any of the following are true:
+ **
+ ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
+ ** mapped to the primary key of table pParent, or
+ ** 2) The FK is explicitly mapped to a column declared as INTEGER
+ ** PRIMARY KEY.
+ */
+ if( pParent->iPKey>=0 ){
+ if( !zKey ) return 0;
+ if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
+ }
+ }else if( paiCol ){
+ assert( nCol>1 );
+ aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
+ if( !aiCol ) return 1;
+ *paiCol = aiCol;
+ }
+
+ for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
+ /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
+ ** of columns. If each indexed column corresponds to a foreign key
+ ** column of pFKey, then this index is a winner. */
+
+ if( zKey==0 ){
+ /* If zKey is NULL, then this foreign key is implicitly mapped to
+ ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
+ ** identified by the test (Index.autoIndex==2). */
+ if( pIdx->autoIndex==2 ){
+ if( aiCol ){
+ int i;
+ for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
+ }
+ break;
+ }
+ }else{
+ /* If zKey is non-NULL, then this foreign key was declared to
+ ** map to an explicit list of columns in table pParent. Check if this
+ ** index matches those columns. Also, check that the index uses
+ ** the default collation sequences for each column. */
+ int i, j;
+ for(i=0; i<nCol; i++){
+ int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
+ char *zDfltColl; /* Def. collation for column */
+ char *zIdxCol; /* Name of indexed column */
+
+ /* If the index uses a collation sequence that is different from
+ ** the default collation sequence for the column, this index is
+ ** unusable. Bail out early in this case. */
+ zDfltColl = pParent->aCol[iCol].zColl;
+ if( !zDfltColl ){
+ zDfltColl = "BINARY";
+ }
+ if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
+
+ zIdxCol = pParent->aCol[iCol].zName;
+ for(j=0; j<nCol; j++){
+ if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
+ if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
+ break;
+ }
+ }
+ if( j==nCol ) break;
+ }
+ if( i==nCol ) break; /* pIdx is usable */
+ }
+ }
+ }
+
+ if( !pIdx ){
+ if( !pParse->disableTriggers ){
+ sqlite3ErrorMsg(pParse, "foreign key mismatch");
+ }
+ sqlite3DbFree(pParse->db, aiCol);
+ return 1;
+ }
+
+ *ppIdx = pIdx;
+ return 0;
+}
+
+/*
+** This function is called when a row is inserted into or deleted from the
+** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
+** on the child table of pFKey, this function is invoked twice for each row
+** affected - once to "delete" the old row, and then again to "insert" the
+** new row.
+**
+** Each time it is called, this function generates VDBE code to locate the
+** row in the parent table that corresponds to the row being inserted into
+** or deleted from the child table. If the parent row can be found, no
+** special action is taken. Otherwise, if the parent row can *not* be
+** found in the parent table:
+**
+** Operation | FK type | Action taken
+** --------------------------------------------------------------------------
+** INSERT immediate Increment the "immediate constraint counter".
+**
+** DELETE immediate Decrement the "immediate constraint counter".
+**
+** INSERT deferred Increment the "deferred constraint counter".
+**
+** DELETE deferred Decrement the "deferred constraint counter".
+**
+** These operations are identified in the comment at the top of this file
+** (fkey.c) as "I.1" and "D.1".
+*/
+static void fkLookupParent(
+ Parse *pParse, /* Parse context */
+ int iDb, /* Index of database housing pTab */
+ Table *pTab, /* Parent table of FK pFKey */
+ Index *pIdx, /* Unique index on parent key columns in pTab */
+ FKey *pFKey, /* Foreign key constraint */
+ int *aiCol, /* Map from parent key columns to child table columns */
+ int regData, /* Address of array containing child table row */
+ int nIncr, /* Increment constraint counter by this */
+ int isIgnore /* If true, pretend pTab contains all NULL values */
+){
+ int i; /* Iterator variable */
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
+ int iCur = pParse->nTab - 1; /* Cursor number to use */
+ int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
+
+ /* If nIncr is less than zero, then check at runtime if there are any
+ ** outstanding constraints to resolve. If there are not, there is no need
+ ** to check if deleting this row resolves any outstanding violations.
+ **
+ ** Check if any of the key columns in the child table row are NULL. If
+ ** any are, then the constraint is considered satisfied. No need to
+ ** search for a matching row in the parent table. */
+ if( nIncr<0 ){
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
+ }
+ for(i=0; i<pFKey->nCol; i++){
+ int iReg = aiCol[i] + regData + 1;
+ sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
+ }
+
+ if( isIgnore==0 ){
+ if( pIdx==0 ){
+ /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
+ ** column of the parent table (table pTab). */
+ int iMustBeInt; /* Address of MustBeInt instruction */
+ int regTemp = sqlite3GetTempReg(pParse);
+
+ /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
+ ** apply the affinity of the parent key). If this fails, then there
+ ** is no matching parent key. Before using MustBeInt, make a copy of
+ ** the value. Otherwise, the value inserted into the child key column
+ ** will have INTEGER affinity applied to it, which may not be correct. */
+ sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
+ iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
+
+ /* If the parent table is the same as the child table, and we are about
+ ** to increment the constraint-counter (i.e. this is an INSERT operation),
+ ** then check if the row being inserted matches itself. If so, do not
+ ** increment the constraint-counter. */
+ if( pTab==pFKey->pFrom && nIncr==1 ){
+ sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
+ }
+
+ sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
+ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
+ sqlite3VdbeJumpHere(v, iMustBeInt);
+ sqlite3ReleaseTempReg(pParse, regTemp);
+ }else{
+ int nCol = pFKey->nCol;
+ int regTemp = sqlite3GetTempRange(pParse, nCol);
+ int regRec = sqlite3GetTempReg(pParse);
+ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
+
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
+ sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
+ for(i=0; i<nCol; i++){
+ sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
+ }
+
+ /* If the parent table is the same as the child table, and we are about
+ ** to increment the constraint-counter (i.e. this is an INSERT operation),
+ ** then check if the row being inserted matches itself. If so, do not
+ ** increment the constraint-counter.
+ **
+ ** If any of the parent-key values are NULL, then the row cannot match
+ ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
+ ** of the parent-key values are NULL (at this point it is known that
+ ** none of the child key values are).
+ */
+ if( pTab==pFKey->pFrom && nIncr==1 ){
+ int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
+ for(i=0; i<nCol; i++){
+ int iChild = aiCol[i]+1+regData;
+ int iParent = pIdx->aiColumn[i]+1+regData;
+ assert( aiCol[i]!=pTab->iPKey );
+ if( pIdx->aiColumn[i]==pTab->iPKey ){
+ /* The parent key is a composite key that includes the IPK column */
+ iParent = regData;
+ }
+ sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
+ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
+ }
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
+ }
+
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
+ sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
+ sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
+
+ sqlite3ReleaseTempReg(pParse, regRec);
+ sqlite3ReleaseTempRange(pParse, regTemp, nCol);
+ }
+ }
+
+ if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
+ /* Special case: If this is an INSERT statement that will insert exactly
+ ** one row into the table, raise a constraint immediately instead of
+ ** incrementing a counter. This is necessary as the VM code is being
+ ** generated for will not open a statement transaction. */
+ assert( nIncr==1 );
+ sqlite3HaltConstraint(
+ pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
+ );
+ }else{
+ if( nIncr>0 && pFKey->isDeferred==0 ){
+ sqlite3ParseToplevel(pParse)->mayAbort = 1;
+ }
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
+ }
+
+ sqlite3VdbeResolveLabel(v, iOk);
+ sqlite3VdbeAddOp1(v, OP_Close, iCur);
+}
+
+/*
+** This function is called to generate code executed when a row is deleted
+** from the parent table of foreign key constraint pFKey and, if pFKey is
+** deferred, when a row is inserted into the same table. When generating
+** code for an SQL UPDATE operation, this function may be called twice -
+** once to "delete" the old row and once to "insert" the new row.
+**
+** The code generated by this function scans through the rows in the child
+** table that correspond to the parent table row being deleted or inserted.
+** For each child row found, one of the following actions is taken:
+**
+** Operation | FK type | Action taken
+** --------------------------------------------------------------------------
+** DELETE immediate Increment the "immediate constraint counter".
+** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
+** throw a "foreign key constraint failed" exception.
+**
+** INSERT immediate Decrement the "immediate constraint counter".
+**
+** DELETE deferred Increment the "deferred constraint counter".
+** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
+** throw a "foreign key constraint failed" exception.
+**
+** INSERT deferred Decrement the "deferred constraint counter".
+**
+** These operations are identified in the comment at the top of this file
+** (fkey.c) as "I.2" and "D.2".
+*/
+static void fkScanChildren(
+ Parse *pParse, /* Parse context */
+ SrcList *pSrc, /* SrcList containing the table to scan */
+ Table *pTab,
+ Index *pIdx, /* Foreign key index */
+ FKey *pFKey, /* Foreign key relationship */
+ int *aiCol, /* Map from pIdx cols to child table cols */
+ int regData, /* Referenced table data starts here */
+ int nIncr /* Amount to increment deferred counter by */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ int i; /* Iterator variable */
+ Expr *pWhere = 0; /* WHERE clause to scan with */
+ NameContext sNameContext; /* Context used to resolve WHERE clause */
+ WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
+ int iFkIfZero = 0; /* Address of OP_FkIfZero */
+ Vdbe *v = sqlite3GetVdbe(pParse);
+
+ assert( !pIdx || pIdx->pTable==pTab );
+
+ if( nIncr<0 ){
+ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
+ }
+
+ /* Create an Expr object representing an SQL expression like:
+ **
+ ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
+ **
+ ** The collation sequence used for the comparison should be that of
+ ** the parent key columns. The affinity of the parent key column should
+ ** be applied to each child key value before the comparison takes place.
+ */
+ for(i=0; i<pFKey->nCol; i++){
+ Expr *pLeft; /* Value from parent table row */
+ Expr *pRight; /* Column ref to child table */
+ Expr *pEq; /* Expression (pLeft = pRight) */
+ int iCol; /* Index of column in child table */
+ const char *zCol; /* Name of column in child table */
+
+ pLeft = sqlite3Expr(db, TK_REGISTER, 0);
+ if( pLeft ){
+ /* Set the collation sequence and affinity of the LHS of each TK_EQ
+ ** expression to the parent key column defaults. */
+ if( pIdx ){
+ Column *pCol;
+ iCol = pIdx->aiColumn[i];
+ pCol = &pTab->aCol[iCol];
+ if( pTab->iPKey==iCol ) iCol = -1;
+ pLeft->iTable = regData+iCol+1;
+ pLeft->affinity = pCol->affinity;
+ pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
+ }else{
+ pLeft->iTable = regData;
+ pLeft->affinity = SQLITE_AFF_INTEGER;
+ }
+ }
+ iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
+ assert( iCol>=0 );
+ zCol = pFKey->pFrom->aCol[iCol].zName;
+ pRight = sqlite3Expr(db, TK_ID, zCol);
+ pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
+ pWhere = sqlite3ExprAnd(db, pWhere, pEq);
+ }
+
+ /* If the child table is the same as the parent table, and this scan
+ ** is taking place as part of a DELETE operation (operation D.2), omit the
+ ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE
+ ** clause, where $rowid is the rowid of the row being deleted. */
+ if( pTab==pFKey->pFrom && nIncr>0 ){
+ Expr *pEq; /* Expression (pLeft = pRight) */
+ Expr *pLeft; /* Value from parent table row */
+ Expr *pRight; /* Column ref to child table */
+ pLeft = sqlite3Expr(db, TK_REGISTER, 0);
+ pRight = sqlite3Expr(db, TK_COLUMN, 0);
+ if( pLeft && pRight ){
+ pLeft->iTable = regData;
+ pLeft->affinity = SQLITE_AFF_INTEGER;
+ pRight->iTable = pSrc->a[0].iCursor;
+ pRight->iColumn = -1;
+ }
+ pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
+ pWhere = sqlite3ExprAnd(db, pWhere, pEq);
+ }
+
+ /* Resolve the references in the WHERE clause. */
+ memset(&sNameContext, 0, sizeof(NameContext));
+ sNameContext.pSrcList = pSrc;
+ sNameContext.pParse = pParse;
+ sqlite3ResolveExprNames(&sNameContext, pWhere);
+
+ /* Create VDBE to loop through the entries in pSrc that match the WHERE
+ ** clause. If the constraint is not deferred, throw an exception for
+ ** each row found. Otherwise, for deferred constraints, increment the
+ ** deferred constraint counter by nIncr for each row selected. */
+ pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0);
+ if( nIncr>0 && pFKey->isDeferred==0 ){
+ sqlite3ParseToplevel(pParse)->mayAbort = 1;
+ }
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
+ if( pWInfo ){
+ sqlite3WhereEnd(pWInfo);
+ }
+
+ /* Clean up the WHERE clause constructed above. */
+ sqlite3ExprDelete(db, pWhere);
+ if( iFkIfZero ){
+ sqlite3VdbeJumpHere(v, iFkIfZero);
+ }
+}
+
+/*
+** This function returns a pointer to the head of a linked list of FK
+** constraints for which table pTab is the parent table. For example,
+** given the following schema:
+**
+** CREATE TABLE t1(a PRIMARY KEY);
+** CREATE TABLE t2(b REFERENCES t1(a);
+**
+** Calling this function with table "t1" as an argument returns a pointer
+** to the FKey structure representing the foreign key constraint on table
+** "t2". Calling this function with "t2" as the argument would return a
+** NULL pointer (as there are no FK constraints for which t2 is the parent
+** table).
+*/
+FKey *sqlite3FkReferences(Table *pTab){
+ int nName = sqlite3Strlen30(pTab->zName);
+ return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
+}
+
+/*
+** The second argument is a Trigger structure allocated by the
+** fkActionTrigger() routine. This function deletes the Trigger structure
+** and all of its sub-components.
+**
+** The Trigger structure or any of its sub-components may be allocated from
+** the lookaside buffer belonging to database handle dbMem.
+*/
+static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
+ if( p ){
+ TriggerStep *pStep = p->step_list;
+ sqlite3ExprDelete(dbMem, pStep->pWhere);
+ sqlite3ExprListDelete(dbMem, pStep->pExprList);
+ sqlite3SelectDelete(dbMem, pStep->pSelect);
+ sqlite3ExprDelete(dbMem, p->pWhen);
+ sqlite3DbFree(dbMem, p);
+ }
+}
+
+/*
+** This function is called to generate code that runs when table pTab is
+** being dropped from the database. The SrcList passed as the second argument
+** to this function contains a single entry guaranteed to resolve to
+** table pTab.
+**
+** Normally, no code is required. However, if either
+**
+** (a) The table is the parent table of a FK constraint, or
+** (b) The table is the child table of a deferred FK constraint and it is
+** determined at runtime that there are outstanding deferred FK
+** constraint violations in the database,
+**
+** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
+** the table from the database. Triggers are disabled while running this
+** DELETE, but foreign key actions are not.
+*/
+void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
+ sqlite3 *db = pParse->db;
+ if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
+ int iSkip = 0;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+
+ assert( v ); /* VDBE has already been allocated */
+ if( sqlite3FkReferences(pTab)==0 ){
+ /* Search for a deferred foreign key constraint for which this table
+ ** is the child table. If one cannot be found, return without
+ ** generating any VDBE code. If one can be found, then jump over
+ ** the entire DELETE if there are no outstanding deferred constraints
+ ** when this statement is run. */
+ FKey *p;
+ for(p=pTab->pFKey; p; p=p->pNextFrom){
+ if( p->isDeferred ) break;
+ }
+ if( !p ) return;
+ iSkip = sqlite3VdbeMakeLabel(v);
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
+ }
+
+ pParse->disableTriggers = 1;
+ sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
+ pParse->disableTriggers = 0;
+
+ /* If the DELETE has generated immediate foreign key constraint
+ ** violations, halt the VDBE and return an error at this point, before
+ ** any modifications to the schema are made. This is because statement
+ ** transactions are not able to rollback schema changes. */
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
+ sqlite3HaltConstraint(
+ pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
+ );
+
+ if( iSkip ){
+ sqlite3VdbeResolveLabel(v, iSkip);
+ }
+ }
+}
+
+/*
+** This function is called when inserting, deleting or updating a row of
+** table pTab to generate VDBE code to perform foreign key constraint
+** processing for the operation.
+**
+** For a DELETE operation, parameter regOld is passed the index of the
+** first register in an array of (pTab->nCol+1) registers containing the
+** rowid of the row being deleted, followed by each of the column values
+** of the row being deleted, from left to right. Parameter regNew is passed
+** zero in this case.
+**
+** For an INSERT operation, regOld is passed zero and regNew is passed the
+** first register of an array of (pTab->nCol+1) registers containing the new
+** row data.
+**
+** For an UPDATE operation, this function is called twice. Once before
+** the original record is deleted from the table using the calling convention
+** described for DELETE. Then again after the original record is deleted
+** but before the new record is inserted using the INSERT convention.
+*/
+void sqlite3FkCheck(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Row is being deleted from this table */
+ int regOld, /* Previous row data is stored here */
+ int regNew /* New row data is stored here */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ FKey *pFKey; /* Used to iterate through FKs */
+ int iDb; /* Index of database containing pTab */
+ const char *zDb; /* Name of database containing pTab */
+ int isIgnoreErrors = pParse->disableTriggers;
+
+ /* Exactly one of regOld and regNew should be non-zero. */
+ assert( (regOld==0)!=(regNew==0) );
+
+ /* If foreign-keys are disabled, this function is a no-op. */
+ if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
+
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ zDb = db->aDb[iDb].zName;
+
+ /* Loop through all the foreign key constraints for which pTab is the
+ ** child table (the table that the foreign key definition is part of). */
+ for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ Table *pTo; /* Parent table of foreign key pFKey */
+ Index *pIdx = 0; /* Index on key columns in pTo */
+ int *aiFree = 0;
+ int *aiCol;
+ int iCol;
+ int i;
+ int isIgnore = 0;
+
+ /* Find the parent table of this foreign key. Also find a unique index
+ ** on the parent key columns in the parent table. If either of these
+ ** schema items cannot be located, set an error in pParse and return
+ ** early. */
+ if( pParse->disableTriggers ){
+ pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
+ }else{
+ pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
+ }
+ if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
+ assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
+ if( !isIgnoreErrors || db->mallocFailed ) return;
+ if( pTo==0 ){
+ /* If isIgnoreErrors is true, then a table is being dropped. In this
+ ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
+ ** before actually dropping it in order to check FK constraints.
+ ** If the parent table of an FK constraint on the current table is
+ ** missing, behave as if it is empty. i.e. decrement the relevant
+ ** FK counter for each row of the current table with non-NULL keys.
+ */
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
+ for(i=0; i<pFKey->nCol; i++){
+ int iReg = pFKey->aCol[i].iFrom + regOld + 1;
+ sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump);
+ }
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
+ }
+ continue;
+ }
+ assert( pFKey->nCol==1 || (aiFree && pIdx) );
+
+ if( aiFree ){
+ aiCol = aiFree;
+ }else{
+ iCol = pFKey->aCol[0].iFrom;
+ aiCol = &iCol;
+ }
+ for(i=0; i<pFKey->nCol; i++){
+ if( aiCol[i]==pTab->iPKey ){
+ aiCol[i] = -1;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Request permission to read the parent key columns. If the
+ ** authorization callback returns SQLITE_IGNORE, behave as if any
+ ** values read from the parent table are NULL. */
+ if( db->xAuth ){
+ int rcauth;
+ char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
+ rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
+ isIgnore = (rcauth==SQLITE_IGNORE);
+ }
+#endif
+ }
+
+ /* Take a shared-cache advisory read-lock on the parent table. Allocate
+ ** a cursor to use to search the unique index on the parent key columns
+ ** in the parent table. */
+ sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
+ pParse->nTab++;
+
+ if( regOld!=0 ){
+ /* A row is being removed from the child table. Search for the parent.
+ ** If the parent does not exist, removing the child row resolves an
+ ** outstanding foreign key constraint violation. */
+ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
+ }
+ if( regNew!=0 ){
+ /* A row is being added to the child table. If a parent row cannot
+ ** be found, adding the child row has violated the FK constraint. */
+ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
+ }
+
+ sqlite3DbFree(db, aiFree);
+ }
+
+ /* Loop through all the foreign key constraints that refer to this table */
+ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
+ Index *pIdx = 0; /* Foreign key index for pFKey */
+ SrcList *pSrc;
+ int *aiCol = 0;
+
+ if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
+ assert( regOld==0 && regNew!=0 );
+ /* Inserting a single row into a parent table cannot cause an immediate
+ ** foreign key violation. So do nothing in this case. */
+ continue;
+ }
+
+ if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
+ if( !isIgnoreErrors || db->mallocFailed ) return;
+ continue;
+ }
+ assert( aiCol || pFKey->nCol==1 );
+
+ /* Create a SrcList structure containing a single table (the table
+ ** the foreign key that refers to this table is attached to). This
+ ** is required for the sqlite3WhereXXX() interface. */
+ pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
+ if( pSrc ){
+ struct SrcList_item *pItem = pSrc->a;
+ pItem->pTab = pFKey->pFrom;
+ pItem->zName = pFKey->pFrom->zName;
+ pItem->pTab->nRef++;
+ pItem->iCursor = pParse->nTab++;
+
+ if( regNew!=0 ){
+ fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
+ }
+ if( regOld!=0 ){
+ /* If there is a RESTRICT action configured for the current operation
+ ** on the parent table of this FK, then throw an exception
+ ** immediately if the FK constraint is violated, even if this is a
+ ** deferred trigger. That's what RESTRICT means. To defer checking
+ ** the constraint, the FK should specify NO ACTION (represented
+ ** using OE_None). NO ACTION is the default. */
+ fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
+ }
+ pItem->zName = 0;
+ sqlite3SrcListDelete(db, pSrc);
+ }
+ sqlite3DbFree(db, aiCol);
+ }
+}
+
+#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
+
+/*
+** This function is called before generating code to update or delete a
+** row contained in table pTab.
+*/
+u32 sqlite3FkOldmask(
+ Parse *pParse, /* Parse context */
+ Table *pTab /* Table being modified */
+){
+ u32 mask = 0;
+ if( pParse->db->flags&SQLITE_ForeignKeys ){
+ FKey *p;
+ int i;
+ for(p=pTab->pFKey; p; p=p->pNextFrom){
+ for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
+ }
+ for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
+ Index *pIdx = 0;
+ locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
+ if( pIdx ){
+ for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
+ }
+ }
+ }
+ return mask;
+}
+
+/*
+** This function is called before generating code to update or delete a
+** row contained in table pTab. If the operation is a DELETE, then
+** parameter aChange is passed a NULL value. For an UPDATE, aChange points
+** to an array of size N, where N is the number of columns in table pTab.
+** If the i'th column is not modified by the UPDATE, then the corresponding
+** entry in the aChange[] array is set to -1. If the column is modified,
+** the value is 0 or greater. Parameter chngRowid is set to true if the
+** UPDATE statement modifies the rowid fields of the table.
+**
+** If any foreign key processing will be required, this function returns
+** true. If there is no foreign key related processing, this function
+** returns false.
+*/
+int sqlite3FkRequired(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being modified */
+ int *aChange, /* Non-NULL for UPDATE operations */
+ int chngRowid /* True for UPDATE that affects rowid */
+){
+ if( pParse->db->flags&SQLITE_ForeignKeys ){
+ if( !aChange ){
+ /* A DELETE operation. Foreign key processing is required if the
+ ** table in question is either the child or parent table for any
+ ** foreign key constraint. */
+ return (sqlite3FkReferences(pTab) || pTab->pFKey);
+ }else{
+ /* This is an UPDATE. Foreign key processing is only required if the
+ ** operation modifies one or more child or parent key columns. */
+ int i;
+ FKey *p;
+
+ /* Check if any child key columns are being modified. */
+ for(p=pTab->pFKey; p; p=p->pNextFrom){
+ for(i=0; i<p->nCol; i++){
+ int iChildKey = p->aCol[i].iFrom;
+ if( aChange[iChildKey]>=0 ) return 1;
+ if( iChildKey==pTab->iPKey && chngRowid ) return 1;
+ }
+ }
+
+ /* Check if any parent key columns are being modified. */
+ for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
+ for(i=0; i<p->nCol; i++){
+ char *zKey = p->aCol[i].zCol;
+ int iKey;
+ for(iKey=0; iKey<pTab->nCol; iKey++){
+ Column *pCol = &pTab->aCol[iKey];
+ if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){
+ if( aChange[iKey]>=0 ) return 1;
+ if( iKey==pTab->iPKey && chngRowid ) return 1;
+ }
+ }
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** This function is called when an UPDATE or DELETE operation is being
+** compiled on table pTab, which is the parent table of foreign-key pFKey.
+** If the current operation is an UPDATE, then the pChanges parameter is
+** passed a pointer to the list of columns being modified. If it is a
+** DELETE, pChanges is passed a NULL pointer.
+**
+** It returns a pointer to a Trigger structure containing a trigger
+** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
+** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
+** returned (these actions require no special handling by the triggers
+** sub-system, code for them is created by fkScanChildren()).
+**
+** For example, if pFKey is the foreign key and pTab is table "p" in
+** the following schema:
+**
+** CREATE TABLE p(pk PRIMARY KEY);
+** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
+**
+** then the returned trigger structure is equivalent to:
+**
+** CREATE TRIGGER ... DELETE ON p BEGIN
+** DELETE FROM c WHERE ck = old.pk;
+** END;
+**
+** The returned pointer is cached as part of the foreign key object. It
+** is eventually freed along with the rest of the foreign key object by
+** sqlite3FkDelete().
+*/
+static Trigger *fkActionTrigger(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being updated or deleted from */
+ FKey *pFKey, /* Foreign key to get action for */
+ ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ int action; /* One of OE_None, OE_Cascade etc. */
+ Trigger *pTrigger; /* Trigger definition to return */
+ int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
+
+ action = pFKey->aAction[iAction];
+ pTrigger = pFKey->apTrigger[iAction];
+
+ if( action!=OE_None && !pTrigger ){
+ u8 enableLookaside; /* Copy of db->lookaside.bEnabled */
+ char const *zFrom; /* Name of child table */
+ int nFrom; /* Length in bytes of zFrom */
+ Index *pIdx = 0; /* Parent key index for this FK */
+ int *aiCol = 0; /* child table cols -> parent key cols */
+ TriggerStep *pStep = 0; /* First (only) step of trigger program */
+ Expr *pWhere = 0; /* WHERE clause of trigger step */
+ ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
+ Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
+ int i; /* Iterator variable */
+ Expr *pWhen = 0; /* WHEN clause for the trigger */
+
+ if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
+ assert( aiCol || pFKey->nCol==1 );
+
+ for(i=0; i<pFKey->nCol; i++){
+ Token tOld = { "old", 3 }; /* Literal "old" token */
+ Token tNew = { "new", 3 }; /* Literal "new" token */
+ Token tFromCol; /* Name of column in child table */
+ Token tToCol; /* Name of column in parent table */
+ int iFromCol; /* Idx of column in child table */
+ Expr *pEq; /* tFromCol = OLD.tToCol */
+
+ iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
+ assert( iFromCol>=0 );
+ tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
+ tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
+
+ tToCol.n = sqlite3Strlen30(tToCol.z);
+ tFromCol.n = sqlite3Strlen30(tFromCol.z);
+
+ /* Create the expression "OLD.zToCol = zFromCol". It is important
+ ** that the "OLD.zToCol" term is on the LHS of the = operator, so
+ ** that the affinity and collation sequence associated with the
+ ** parent table are used for the comparison. */
+ pEq = sqlite3PExpr(pParse, TK_EQ,
+ sqlite3PExpr(pParse, TK_DOT,
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
+ , 0),
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
+ , 0);
+ pWhere = sqlite3ExprAnd(db, pWhere, pEq);
+
+ /* For ON UPDATE, construct the next term of the WHEN clause.
+ ** The final WHEN clause will be like this:
+ **
+ ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
+ */
+ if( pChanges ){
+ pEq = sqlite3PExpr(pParse, TK_IS,
+ sqlite3PExpr(pParse, TK_DOT,
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
+ 0),
+ sqlite3PExpr(pParse, TK_DOT,
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
+ 0),
+ 0);
+ pWhen = sqlite3ExprAnd(db, pWhen, pEq);
+ }
+
+ if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
+ Expr *pNew;
+ if( action==OE_Cascade ){
+ pNew = sqlite3PExpr(pParse, TK_DOT,
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
+ , 0);
+ }else if( action==OE_SetDflt ){
+ Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
+ if( pDflt ){
+ pNew = sqlite3ExprDup(db, pDflt, 0);
+ }else{
+ pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
+ }
+ }else{
+ pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
+ }
+ pList = sqlite3ExprListAppend(pParse, pList, pNew);
+ sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
+ }
+ }
+ sqlite3DbFree(db, aiCol);
+
+ zFrom = pFKey->pFrom->zName;
+ nFrom = sqlite3Strlen30(zFrom);
+
+ if( action==OE_Restrict ){
+ Token tFrom;
+ Expr *pRaise;
+
+ tFrom.z = zFrom;
+ tFrom.n = nFrom;
+ pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
+ if( pRaise ){
+ pRaise->affinity = OE_Abort;
+ }
+ pSelect = sqlite3SelectNew(pParse,
+ sqlite3ExprListAppend(pParse, 0, pRaise),
+ sqlite3SrcListAppend(db, 0, &tFrom, 0),
+ pWhere,
+ 0, 0, 0, 0, 0, 0
+ );
+ pWhere = 0;
+ }
+
+ /* Disable lookaside memory allocation */
+ enableLookaside = db->lookaside.bEnabled;
+ db->lookaside.bEnabled = 0;
+
+ pTrigger = (Trigger *)sqlite3DbMallocZero(db,
+ sizeof(Trigger) + /* struct Trigger */
+ sizeof(TriggerStep) + /* Single step in trigger program */
+ nFrom + 1 /* Space for pStep->target.z */
+ );
+ if( pTrigger ){
+ pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
+ pStep->target.z = (char *)&pStep[1];
+ pStep->target.n = nFrom;
+ memcpy((char *)pStep->target.z, zFrom, nFrom);
+
+ pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
+ pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
+ pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
+ if( pWhen ){
+ pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
+ pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
+ }
+ }
+
+ /* Re-enable the lookaside buffer, if it was disabled earlier. */
+ db->lookaside.bEnabled = enableLookaside;
+
+ sqlite3ExprDelete(db, pWhere);
+ sqlite3ExprDelete(db, pWhen);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3SelectDelete(db, pSelect);
+ if( db->mallocFailed==1 ){
+ fkTriggerDelete(db, pTrigger);
+ return 0;
+ }
+ assert( pStep!=0 );
+
+ switch( action ){
+ case OE_Restrict:
+ pStep->op = TK_SELECT;
+ break;
+ case OE_Cascade:
+ if( !pChanges ){
+ pStep->op = TK_DELETE;
+ break;
+ }
+ default:
+ pStep->op = TK_UPDATE;
+ }
+ pStep->pTrig = pTrigger;
+ pTrigger->pSchema = pTab->pSchema;
+ pTrigger->pTabSchema = pTab->pSchema;
+ pFKey->apTrigger[iAction] = pTrigger;
+ pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
+ }
+
+ return pTrigger;
+}
+
+/*
+** This function is called when deleting or updating a row to implement
+** any required CASCADE, SET NULL or SET DEFAULT actions.
+*/
+void sqlite3FkActions(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being updated or deleted from */
+ ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
+ int regOld /* Address of array containing old row */
+){
+ /* If foreign-key support is enabled, iterate through all FKs that
+ ** refer to table pTab. If there is an action associated with the FK
+ ** for this operation (either update or delete), invoke the associated
+ ** trigger sub-program. */
+ if( pParse->db->flags&SQLITE_ForeignKeys ){
+ FKey *pFKey; /* Iterator variable */
+ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
+ Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
+ if( pAction ){
+ sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
+ }
+ }
+ }
+}
+
+#endif /* ifndef SQLITE_OMIT_TRIGGER */
+
+/*
+** Free all memory associated with foreign key definitions attached to
+** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
+** hash table.
+*/
+void sqlite3FkDelete(sqlite3 *db, Table *pTab){
+ FKey *pFKey; /* Iterator variable */
+ FKey *pNext; /* Copy of pFKey->pNextFrom */
+
+ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
+ for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
+
+ /* Remove the FK from the fkeyHash hash table. */
+ if( !db || db->pnBytesFreed==0 ){
+ if( pFKey->pPrevTo ){
+ pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
+ }else{
+ void *p = (void *)pFKey->pNextTo;
+ const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
+ sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
+ }
+ if( pFKey->pNextTo ){
+ pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
+ }
+ }
+
+ /* EV: R-30323-21917 Each foreign key constraint in SQLite is
+ ** classified as either immediate or deferred.
+ */
+ assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
+
+ /* Delete any triggers created to implement actions for this FK. */
+#ifndef SQLITE_OMIT_TRIGGER
+ fkTriggerDelete(db, pFKey->apTrigger[0]);
+ fkTriggerDelete(db, pFKey->apTrigger[1]);
+#endif
+
+ pNext = pFKey->pNextFrom;
+ sqlite3DbFree(db, pFKey);
+ }
+}
+#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */