summaryrefslogtreecommitdiff
path: root/ext/rtree
diff options
context:
space:
mode:
authorHans-Christoph Steiner <hans@eds.org>2012-03-30 20:42:12 -0400
committerHans-Christoph Steiner <hans@eds.org>2012-03-30 20:42:12 -0400
commit7bb481fda9ecb134804b49c2ce77ca28f7eea583 (patch)
tree31b520b9914d3e2453968abe375f2c102772c3dc /ext/rtree
Imported Upstream version 2.0.3
Diffstat (limited to 'ext/rtree')
-rw-r--r--ext/rtree/README120
-rw-r--r--ext/rtree/rtree.c3285
-rw-r--r--ext/rtree/rtree.h26
-rw-r--r--ext/rtree/rtree1.test500
-rw-r--r--ext/rtree/rtree2.test150
-rw-r--r--ext/rtree/rtree3.test237
-rw-r--r--ext/rtree/rtree4.test234
-rw-r--r--ext/rtree/rtree5.test78
-rw-r--r--ext/rtree/rtree6.test156
-rw-r--r--ext/rtree/rtree7.test58
-rw-r--r--ext/rtree/rtree8.test171
-rw-r--r--ext/rtree/rtree9.test125
-rw-r--r--ext/rtree/rtreeA.test220
-rw-r--r--ext/rtree/rtreeB.test34
-rw-r--r--ext/rtree/rtree_perf.tcl74
-rw-r--r--ext/rtree/rtree_util.tcl192
-rw-r--r--ext/rtree/sqlite3rtree.h56
-rw-r--r--ext/rtree/tkt3363.test50
-rw-r--r--ext/rtree/viewrtree.tcl188
19 files changed, 5954 insertions, 0 deletions
diff --git a/ext/rtree/README b/ext/rtree/README
new file mode 100644
index 0000000..3736f45
--- /dev/null
+++ b/ext/rtree/README
@@ -0,0 +1,120 @@
+
+This directory contains an SQLite extension that implements a virtual
+table type that allows users to create, query and manipulate r-tree[1]
+data structures inside of SQLite databases. Users create, populate
+and query r-tree structures using ordinary SQL statements.
+
+ 1. SQL Interface
+
+ 1.1 Table Creation
+ 1.2 Data Manipulation
+ 1.3 Data Querying
+ 1.4 Introspection and Analysis
+
+ 2. Compilation and Deployment
+
+ 3. References
+
+
+1. SQL INTERFACE
+
+ 1.1 Table Creation.
+
+ All r-tree virtual tables have an odd number of columns between
+ 3 and 11. Unlike regular SQLite tables, r-tree tables are strongly
+ typed.
+
+ The leftmost column is always the pimary key and contains 64-bit
+ integer values. Each subsequent column contains a 32-bit real
+ value. For each pair of real values, the first (leftmost) must be
+ less than or equal to the second. R-tree tables may be
+ constructed using the following syntax:
+
+ CREATE VIRTUAL TABLE <name> USING rtree(<column-names>)
+
+ For example:
+
+ CREATE VIRTUAL TABLE boxes USING rtree(boxno, xmin, xmax, ymin, ymax);
+ INSERT INTO boxes VALUES(1, 1.0, 3.0, 2.0, 4.0);
+
+ Constructing a virtual r-tree table <name> creates the following three
+ real tables in the database to store the data structure:
+
+ <name>_node
+ <name>_rowid
+ <name>_parent
+
+ Dropping or modifying the contents of these tables directly will
+ corrupt the r-tree structure. To delete an r-tree from a database,
+ use a regular DROP TABLE statement:
+
+ DROP TABLE <name>;
+
+ Dropping the main r-tree table automatically drops the automatically
+ created tables.
+
+ 1.2 Data Manipulation (INSERT, UPDATE, DELETE).
+
+ The usual INSERT, UPDATE or DELETE syntax is used to manipulate data
+ stored in an r-tree table. Please note the following:
+
+ * Inserting a NULL value into the primary key column has the
+ same effect as inserting a NULL into an INTEGER PRIMARY KEY
+ column of a regular table. The system automatically assigns
+ an unused integer key value to the new record. Usually, this
+ is one greater than the largest primary key value currently
+ present in the table.
+
+ * Attempting to insert a duplicate primary key value fails with
+ an SQLITE_CONSTRAINT error.
+
+ * Attempting to insert or modify a record such that the value
+ stored in the (N*2)th column is greater than that stored in
+ the (N*2+1)th column fails with an SQLITE_CONSTRAINT error.
+
+ * When a record is inserted, values are always converted to
+ the required type (64-bit integer or 32-bit real) as if they
+ were part of an SQL CAST expression. Non-numeric strings are
+ converted to zero.
+
+ 1.3 Queries.
+
+ R-tree tables may be queried using all of the same SQL syntax supported
+ by regular tables. However, some query patterns are more efficient
+ than others.
+
+ R-trees support fast lookup by primary key value (O(logN), like
+ regular tables).
+
+ Any combination of equality and range (<, <=, >, >=) constraints
+ on spatial data columns may be used to optimize other queries. This
+ is the key advantage to using r-tree tables instead of creating
+ indices on regular tables.
+
+ 1.4 Introspection and Analysis.
+
+ TODO: Describe rtreenode() and rtreedepth() functions.
+
+
+2. COMPILATION AND USAGE
+
+ The easiest way to compile and use the RTREE extension is to build
+ and use it as a dynamically loadable SQLite extension. To do this
+ using gcc on *nix:
+
+ gcc -shared rtree.c -o libSqliteRtree.so
+
+ You may need to add "-I" flags so that gcc can find sqlite3ext.h
+ and sqlite3.h. The resulting shared lib, libSqliteRtree.so, may be
+ loaded into sqlite in the same way as any other dynamicly loadable
+ extension.
+
+
+3. REFERENCES
+
+ [1] Atonin Guttman, "R-trees - A Dynamic Index Structure For Spatial
+ Searching", University of California Berkeley, 1984.
+
+ [2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger,
+ "The R*-tree: An Efficient and Robust Access Method for Points and
+ Rectangles", Universitaet Bremen, 1990.
diff --git a/ext/rtree/rtree.c b/ext/rtree/rtree.c
new file mode 100644
index 0000000..884482e
--- /dev/null
+++ b/ext/rtree/rtree.c
@@ -0,0 +1,3285 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code for implementations of the r-tree and r*-tree
+** algorithms packaged as an SQLite virtual table module.
+*/
+
+/*
+** Database Format of R-Tree Tables
+** --------------------------------
+**
+** The data structure for a single virtual r-tree table is stored in three
+** native SQLite tables declared as follows. In each case, the '%' character
+** in the table name is replaced with the user-supplied name of the r-tree
+** table.
+**
+** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
+** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
+** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
+**
+** The data for each node of the r-tree structure is stored in the %_node
+** table. For each node that is not the root node of the r-tree, there is
+** an entry in the %_parent table associating the node with its parent.
+** And for each row of data in the table, there is an entry in the %_rowid
+** table that maps from the entries rowid to the id of the node that it
+** is stored on.
+**
+** The root node of an r-tree always exists, even if the r-tree table is
+** empty. The nodeno of the root node is always 1. All other nodes in the
+** table must be the same size as the root node. The content of each node
+** is formatted as follows:
+**
+** 1. If the node is the root node (node 1), then the first 2 bytes
+** of the node contain the tree depth as a big-endian integer.
+** For non-root nodes, the first 2 bytes are left unused.
+**
+** 2. The next 2 bytes contain the number of entries currently
+** stored in the node.
+**
+** 3. The remainder of the node contains the node entries. Each entry
+** consists of a single 8-byte integer followed by an even number
+** of 4-byte coordinates. For leaf nodes the integer is the rowid
+** of a record. For internal nodes it is the node number of a
+** child page.
+*/
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
+
+/*
+** This file contains an implementation of a couple of different variants
+** of the r-tree algorithm. See the README file for further details. The
+** same data-structure is used for all, but the algorithms for insert and
+** delete operations vary. The variants used are selected at compile time
+** by defining the following symbols:
+*/
+
+/* Either, both or none of the following may be set to activate
+** r*tree variant algorithms.
+*/
+#define VARIANT_RSTARTREE_CHOOSESUBTREE 0
+#define VARIANT_RSTARTREE_REINSERT 1
+
+/*
+** Exactly one of the following must be set to 1.
+*/
+#define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0
+#define VARIANT_GUTTMAN_LINEAR_SPLIT 0
+#define VARIANT_RSTARTREE_SPLIT 1
+
+#define VARIANT_GUTTMAN_SPLIT \
+ (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT)
+
+#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
+ #define PickNext QuadraticPickNext
+ #define PickSeeds QuadraticPickSeeds
+ #define AssignCells splitNodeGuttman
+#endif
+#if VARIANT_GUTTMAN_LINEAR_SPLIT
+ #define PickNext LinearPickNext
+ #define PickSeeds LinearPickSeeds
+ #define AssignCells splitNodeGuttman
+#endif
+#if VARIANT_RSTARTREE_SPLIT
+ #define AssignCells splitNodeStartree
+#endif
+
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+
+#ifndef SQLITE_CORE
+ #include "sqlite3ext.h"
+ SQLITE_EXTENSION_INIT1
+#else
+ #include "sqlite3.h"
+#endif
+
+#include <string.h>
+#include <assert.h>
+
+#ifndef SQLITE_AMALGAMATION
+#include "sqlite3rtree.h"
+typedef sqlite3_int64 i64;
+typedef unsigned char u8;
+typedef unsigned int u32;
+#endif
+
+/* The following macro is used to suppress compiler warnings.
+*/
+#ifndef UNUSED_PARAMETER
+# define UNUSED_PARAMETER(x) (void)(x)
+#endif
+
+typedef struct Rtree Rtree;
+typedef struct RtreeCursor RtreeCursor;
+typedef struct RtreeNode RtreeNode;
+typedef struct RtreeCell RtreeCell;
+typedef struct RtreeConstraint RtreeConstraint;
+typedef struct RtreeMatchArg RtreeMatchArg;
+typedef struct RtreeGeomCallback RtreeGeomCallback;
+typedef union RtreeCoord RtreeCoord;
+
+/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
+#define RTREE_MAX_DIMENSIONS 5
+
+/* Size of hash table Rtree.aHash. This hash table is not expected to
+** ever contain very many entries, so a fixed number of buckets is
+** used.
+*/
+#define HASHSIZE 128
+
+/*
+** An rtree virtual-table object.
+*/
+struct Rtree {
+ sqlite3_vtab base;
+ sqlite3 *db; /* Host database connection */
+ int iNodeSize; /* Size in bytes of each node in the node table */
+ int nDim; /* Number of dimensions */
+ int nBytesPerCell; /* Bytes consumed per cell */
+ int iDepth; /* Current depth of the r-tree structure */
+ char *zDb; /* Name of database containing r-tree table */
+ char *zName; /* Name of r-tree table */
+ RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
+ int nBusy; /* Current number of users of this structure */
+
+ /* List of nodes removed during a CondenseTree operation. List is
+ ** linked together via the pointer normally used for hash chains -
+ ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
+ ** headed by the node (leaf nodes have RtreeNode.iNode==0).
+ */
+ RtreeNode *pDeleted;
+ int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */
+
+ /* Statements to read/write/delete a record from xxx_node */
+ sqlite3_stmt *pReadNode;
+ sqlite3_stmt *pWriteNode;
+ sqlite3_stmt *pDeleteNode;
+
+ /* Statements to read/write/delete a record from xxx_rowid */
+ sqlite3_stmt *pReadRowid;
+ sqlite3_stmt *pWriteRowid;
+ sqlite3_stmt *pDeleteRowid;
+
+ /* Statements to read/write/delete a record from xxx_parent */
+ sqlite3_stmt *pReadParent;
+ sqlite3_stmt *pWriteParent;
+ sqlite3_stmt *pDeleteParent;
+
+ int eCoordType;
+};
+
+/* Possible values for eCoordType: */
+#define RTREE_COORD_REAL32 0
+#define RTREE_COORD_INT32 1
+
+/*
+** The minimum number of cells allowed for a node is a third of the
+** maximum. In Gutman's notation:
+**
+** m = M/3
+**
+** If an R*-tree "Reinsert" operation is required, the same number of
+** cells are removed from the overfull node and reinserted into the tree.
+*/
+#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
+#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
+#define RTREE_MAXCELLS 51
+
+/*
+** The smallest possible node-size is (512-64)==448 bytes. And the largest
+** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
+** Therefore all non-root nodes must contain at least 3 entries. Since
+** 2^40 is greater than 2^64, an r-tree structure always has a depth of
+** 40 or less.
+*/
+#define RTREE_MAX_DEPTH 40
+
+/*
+** An rtree cursor object.
+*/
+struct RtreeCursor {
+ sqlite3_vtab_cursor base;
+ RtreeNode *pNode; /* Node cursor is currently pointing at */
+ int iCell; /* Index of current cell in pNode */
+ int iStrategy; /* Copy of idxNum search parameter */
+ int nConstraint; /* Number of entries in aConstraint */
+ RtreeConstraint *aConstraint; /* Search constraints. */
+};
+
+union RtreeCoord {
+ float f;
+ int i;
+};
+
+/*
+** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
+** formatted as a double. This macro assumes that local variable pRtree points
+** to the Rtree structure associated with the RtreeCoord.
+*/
+#define DCOORD(coord) ( \
+ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
+ ((double)coord.f) : \
+ ((double)coord.i) \
+)
+
+/*
+** A search constraint.
+*/
+struct RtreeConstraint {
+ int iCoord; /* Index of constrained coordinate */
+ int op; /* Constraining operation */
+ double rValue; /* Constraint value. */
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
+ sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */
+};
+
+/* Possible values for RtreeConstraint.op */
+#define RTREE_EQ 0x41
+#define RTREE_LE 0x42
+#define RTREE_LT 0x43
+#define RTREE_GE 0x44
+#define RTREE_GT 0x45
+#define RTREE_MATCH 0x46
+
+/*
+** An rtree structure node.
+*/
+struct RtreeNode {
+ RtreeNode *pParent; /* Parent node */
+ i64 iNode;
+ int nRef;
+ int isDirty;
+ u8 *zData;
+ RtreeNode *pNext; /* Next node in this hash chain */
+};
+#define NCELL(pNode) readInt16(&(pNode)->zData[2])
+
+/*
+** Structure to store a deserialized rtree record.
+*/
+struct RtreeCell {
+ i64 iRowid;
+ RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];
+};
+
+
+/*
+** Value for the first field of every RtreeMatchArg object. The MATCH
+** operator tests that the first field of a blob operand matches this
+** value to avoid operating on invalid blobs (which could cause a segfault).
+*/
+#define RTREE_GEOMETRY_MAGIC 0x891245AB
+
+/*
+** An instance of this structure must be supplied as a blob argument to
+** the right-hand-side of an SQL MATCH operator used to constrain an
+** r-tree query.
+*/
+struct RtreeMatchArg {
+ u32 magic; /* Always RTREE_GEOMETRY_MAGIC */
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
+ void *pContext;
+ int nParam;
+ double aParam[1];
+};
+
+/*
+** When a geometry callback is created (see sqlite3_rtree_geometry_callback),
+** a single instance of the following structure is allocated. It is used
+** as the context for the user-function created by by s_r_g_c(). The object
+** is eventually deleted by the destructor mechanism provided by
+** sqlite3_create_function_v2() (which is called by s_r_g_c() to create
+** the geometry callback function).
+*/
+struct RtreeGeomCallback {
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
+ void *pContext;
+};
+
+#ifndef MAX
+# define MAX(x,y) ((x) < (y) ? (y) : (x))
+#endif
+#ifndef MIN
+# define MIN(x,y) ((x) > (y) ? (y) : (x))
+#endif
+
+/*
+** Functions to deserialize a 16 bit integer, 32 bit real number and
+** 64 bit integer. The deserialized value is returned.
+*/
+static int readInt16(u8 *p){
+ return (p[0]<<8) + p[1];
+}
+static void readCoord(u8 *p, RtreeCoord *pCoord){
+ u32 i = (
+ (((u32)p[0]) << 24) +
+ (((u32)p[1]) << 16) +
+ (((u32)p[2]) << 8) +
+ (((u32)p[3]) << 0)
+ );
+ *(u32 *)pCoord = i;
+}
+static i64 readInt64(u8 *p){
+ return (
+ (((i64)p[0]) << 56) +
+ (((i64)p[1]) << 48) +
+ (((i64)p[2]) << 40) +
+ (((i64)p[3]) << 32) +
+ (((i64)p[4]) << 24) +
+ (((i64)p[5]) << 16) +
+ (((i64)p[6]) << 8) +
+ (((i64)p[7]) << 0)
+ );
+}
+
+/*
+** Functions to serialize a 16 bit integer, 32 bit real number and
+** 64 bit integer. The value returned is the number of bytes written
+** to the argument buffer (always 2, 4 and 8 respectively).
+*/
+static int writeInt16(u8 *p, int i){
+ p[0] = (i>> 8)&0xFF;
+ p[1] = (i>> 0)&0xFF;
+ return 2;
+}
+static int writeCoord(u8 *p, RtreeCoord *pCoord){
+ u32 i;
+ assert( sizeof(RtreeCoord)==4 );
+ assert( sizeof(u32)==4 );
+ i = *(u32 *)pCoord;
+ p[0] = (i>>24)&0xFF;
+ p[1] = (i>>16)&0xFF;
+ p[2] = (i>> 8)&0xFF;
+ p[3] = (i>> 0)&0xFF;
+ return 4;
+}
+static int writeInt64(u8 *p, i64 i){
+ p[0] = (i>>56)&0xFF;
+ p[1] = (i>>48)&0xFF;
+ p[2] = (i>>40)&0xFF;
+ p[3] = (i>>32)&0xFF;
+ p[4] = (i>>24)&0xFF;
+ p[5] = (i>>16)&0xFF;
+ p[6] = (i>> 8)&0xFF;
+ p[7] = (i>> 0)&0xFF;
+ return 8;
+}
+
+/*
+** Increment the reference count of node p.
+*/
+static void nodeReference(RtreeNode *p){
+ if( p ){
+ p->nRef++;
+ }
+}
+
+/*
+** Clear the content of node p (set all bytes to 0x00).
+*/
+static void nodeZero(Rtree *pRtree, RtreeNode *p){
+ memset(&p->zData[2], 0, pRtree->iNodeSize-2);
+ p->isDirty = 1;
+}
+
+/*
+** Given a node number iNode, return the corresponding key to use
+** in the Rtree.aHash table.
+*/
+static int nodeHash(i64 iNode){
+ return (
+ (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^
+ (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0)
+ ) % HASHSIZE;
+}
+
+/*
+** Search the node hash table for node iNode. If found, return a pointer
+** to it. Otherwise, return 0.
+*/
+static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
+ RtreeNode *p;
+ for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
+ return p;
+}
+
+/*
+** Add node pNode to the node hash table.
+*/
+static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
+ int iHash;
+ assert( pNode->pNext==0 );
+ iHash = nodeHash(pNode->iNode);
+ pNode->pNext = pRtree->aHash[iHash];
+ pRtree->aHash[iHash] = pNode;
+}
+
+/*
+** Remove node pNode from the node hash table.
+*/
+static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode **pp;
+ if( pNode->iNode!=0 ){
+ pp = &pRtree->aHash[nodeHash(pNode->iNode)];
+ for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
+ *pp = pNode->pNext;
+ pNode->pNext = 0;
+ }
+}
+
+/*
+** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
+** indicating that node has not yet been assigned a node number. It is
+** assigned a node number when nodeWrite() is called to write the
+** node contents out to the database.
+*/
+static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
+ RtreeNode *pNode;
+ pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
+ if( pNode ){
+ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pNode->pParent = pParent;
+ pNode->isDirty = 1;
+ nodeReference(pParent);
+ }
+ return pNode;
+}
+
+/*
+** Obtain a reference to an r-tree node.
+*/
+static int
+nodeAcquire(
+ Rtree *pRtree, /* R-tree structure */
+ i64 iNode, /* Node number to load */
+ RtreeNode *pParent, /* Either the parent node or NULL */
+ RtreeNode **ppNode /* OUT: Acquired node */
+){
+ int rc;
+ int rc2 = SQLITE_OK;
+ RtreeNode *pNode;
+
+ /* Check if the requested node is already in the hash table. If so,
+ ** increase its reference count and return it.
+ */
+ if( (pNode = nodeHashLookup(pRtree, iNode)) ){
+ assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
+ if( pParent && !pNode->pParent ){
+ nodeReference(pParent);
+ pNode->pParent = pParent;
+ }
+ pNode->nRef++;
+ *ppNode = pNode;
+ return SQLITE_OK;
+ }
+
+ sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
+ rc = sqlite3_step(pRtree->pReadNode);
+ if( rc==SQLITE_ROW ){
+ const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
+ if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
+ pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
+ if( !pNode ){
+ rc2 = SQLITE_NOMEM;
+ }else{
+ pNode->pParent = pParent;
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pNode->iNode = iNode;
+ pNode->isDirty = 0;
+ pNode->pNext = 0;
+ memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
+ nodeReference(pParent);
+ }
+ }
+ }
+ rc = sqlite3_reset(pRtree->pReadNode);
+ if( rc==SQLITE_OK ) rc = rc2;
+
+ /* If the root node was just loaded, set pRtree->iDepth to the height
+ ** of the r-tree structure. A height of zero means all data is stored on
+ ** the root node. A height of one means the children of the root node
+ ** are the leaves, and so on. If the depth as specified on the root node
+ ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
+ */
+ if( pNode && iNode==1 ){
+ pRtree->iDepth = readInt16(pNode->zData);
+ if( pRtree->iDepth>RTREE_MAX_DEPTH ){
+ rc = SQLITE_CORRUPT_VTAB;
+ }
+ }
+
+ /* If no error has occurred so far, check if the "number of entries"
+ ** field on the node is too large. If so, set the return code to
+ ** SQLITE_CORRUPT_VTAB.
+ */
+ if( pNode && rc==SQLITE_OK ){
+ if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
+ rc = SQLITE_CORRUPT_VTAB;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( pNode!=0 ){
+ nodeHashInsert(pRtree, pNode);
+ }else{
+ rc = SQLITE_CORRUPT_VTAB;
+ }
+ *ppNode = pNode;
+ }else{
+ sqlite3_free(pNode);
+ *ppNode = 0;
+ }
+
+ return rc;
+}
+
+/*
+** Overwrite cell iCell of node pNode with the contents of pCell.
+*/
+static void nodeOverwriteCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iCell
+){
+ int ii;
+ u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
+ p += writeInt64(p, pCell->iRowid);
+ for(ii=0; ii<(pRtree->nDim*2); ii++){
+ p += writeCoord(p, &pCell->aCoord[ii]);
+ }
+ pNode->isDirty = 1;
+}
+
+/*
+** Remove cell the cell with index iCell from node pNode.
+*/
+static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
+ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
+ u8 *pSrc = &pDst[pRtree->nBytesPerCell];
+ int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
+ memmove(pDst, pSrc, nByte);
+ writeInt16(&pNode->zData[2], NCELL(pNode)-1);
+ pNode->isDirty = 1;
+}
+
+/*
+** Insert the contents of cell pCell into node pNode. If the insert
+** is successful, return SQLITE_OK.
+**
+** If there is not enough free space in pNode, return SQLITE_FULL.
+*/
+static int
+nodeInsertCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell
+){
+ int nCell; /* Current number of cells in pNode */
+ int nMaxCell; /* Maximum number of cells for pNode */
+
+ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
+ nCell = NCELL(pNode);
+
+ assert( nCell<=nMaxCell );
+ if( nCell<nMaxCell ){
+ nodeOverwriteCell(pRtree, pNode, pCell, nCell);
+ writeInt16(&pNode->zData[2], nCell+1);
+ pNode->isDirty = 1;
+ }
+
+ return (nCell==nMaxCell);
+}
+
+/*
+** If the node is dirty, write it out to the database.
+*/
+static int
+nodeWrite(Rtree *pRtree, RtreeNode *pNode){
+ int rc = SQLITE_OK;
+ if( pNode->isDirty ){
+ sqlite3_stmt *p = pRtree->pWriteNode;
+ if( pNode->iNode ){
+ sqlite3_bind_int64(p, 1, pNode->iNode);
+ }else{
+ sqlite3_bind_null(p, 1);
+ }
+ sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
+ sqlite3_step(p);
+ pNode->isDirty = 0;
+ rc = sqlite3_reset(p);
+ if( pNode->iNode==0 && rc==SQLITE_OK ){
+ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
+ nodeHashInsert(pRtree, pNode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Release a reference to a node. If the node is dirty and the reference
+** count drops to zero, the node data is written to the database.
+*/
+static int
+nodeRelease(Rtree *pRtree, RtreeNode *pNode){
+ int rc = SQLITE_OK;
+ if( pNode ){
+ assert( pNode->nRef>0 );
+ pNode->nRef--;
+ if( pNode->nRef==0 ){
+ if( pNode->iNode==1 ){
+ pRtree->iDepth = -1;
+ }
+ if( pNode->pParent ){
+ rc = nodeRelease(pRtree, pNode->pParent);
+ }
+ if( rc==SQLITE_OK ){
+ rc = nodeWrite(pRtree, pNode);
+ }
+ nodeHashDelete(pRtree, pNode);
+ sqlite3_free(pNode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Return the 64-bit integer value associated with cell iCell of
+** node pNode. If pNode is a leaf node, this is a rowid. If it is
+** an internal node, then the 64-bit integer is a child page number.
+*/
+static i64 nodeGetRowid(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ int iCell
+){
+ assert( iCell<NCELL(pNode) );
+ return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
+}
+
+/*
+** Return coordinate iCoord from cell iCell in node pNode.
+*/
+static void nodeGetCoord(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ int iCell,
+ int iCoord,
+ RtreeCoord *pCoord /* Space to write result to */
+){
+ readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
+}
+
+/*
+** Deserialize cell iCell of node pNode. Populate the structure pointed
+** to by pCell with the results.
+*/
+static void nodeGetCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ int iCell,
+ RtreeCell *pCell
+){
+ int ii;
+ pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
+ for(ii=0; ii<pRtree->nDim*2; ii++){
+ nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]);
+ }
+}
+
+
+/* Forward declaration for the function that does the work of
+** the virtual table module xCreate() and xConnect() methods.
+*/
+static int rtreeInit(
+ sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
+);
+
+/*
+** Rtree virtual table module xCreate method.
+*/
+static int rtreeCreate(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
+}
+
+/*
+** Rtree virtual table module xConnect method.
+*/
+static int rtreeConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
+}
+
+/*
+** Increment the r-tree reference count.
+*/
+static void rtreeReference(Rtree *pRtree){
+ pRtree->nBusy++;
+}
+
+/*
+** Decrement the r-tree reference count. When the reference count reaches
+** zero the structure is deleted.
+*/
+static void rtreeRelease(Rtree *pRtree){
+ pRtree->nBusy--;
+ if( pRtree->nBusy==0 ){
+ sqlite3_finalize(pRtree->pReadNode);
+ sqlite3_finalize(pRtree->pWriteNode);
+ sqlite3_finalize(pRtree->pDeleteNode);
+ sqlite3_finalize(pRtree->pReadRowid);
+ sqlite3_finalize(pRtree->pWriteRowid);
+ sqlite3_finalize(pRtree->pDeleteRowid);
+ sqlite3_finalize(pRtree->pReadParent);
+ sqlite3_finalize(pRtree->pWriteParent);
+ sqlite3_finalize(pRtree->pDeleteParent);
+ sqlite3_free(pRtree);
+ }
+}
+
+/*
+** Rtree virtual table module xDisconnect method.
+*/
+static int rtreeDisconnect(sqlite3_vtab *pVtab){
+ rtreeRelease((Rtree *)pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xDestroy method.
+*/
+static int rtreeDestroy(sqlite3_vtab *pVtab){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc;
+ char *zCreate = sqlite3_mprintf(
+ "DROP TABLE '%q'.'%q_node';"
+ "DROP TABLE '%q'.'%q_rowid';"
+ "DROP TABLE '%q'.'%q_parent';",
+ pRtree->zDb, pRtree->zName,
+ pRtree->zDb, pRtree->zName,
+ pRtree->zDb, pRtree->zName
+ );
+ if( !zCreate ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
+ sqlite3_free(zCreate);
+ }
+ if( rc==SQLITE_OK ){
+ rtreeRelease(pRtree);
+ }
+
+ return rc;
+}
+
+/*
+** Rtree virtual table module xOpen method.
+*/
+static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ int rc = SQLITE_NOMEM;
+ RtreeCursor *pCsr;
+
+ pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
+ if( pCsr ){
+ memset(pCsr, 0, sizeof(RtreeCursor));
+ pCsr->base.pVtab = pVTab;
+ rc = SQLITE_OK;
+ }
+ *ppCursor = (sqlite3_vtab_cursor *)pCsr;
+
+ return rc;
+}
+
+
+/*
+** Free the RtreeCursor.aConstraint[] array and its contents.
+*/
+static void freeCursorConstraints(RtreeCursor *pCsr){
+ if( pCsr->aConstraint ){
+ int i; /* Used to iterate through constraint array */
+ for(i=0; i<pCsr->nConstraint; i++){
+ sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom;
+ if( pGeom ){
+ if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser);
+ sqlite3_free(pGeom);
+ }
+ }
+ sqlite3_free(pCsr->aConstraint);
+ pCsr->aConstraint = 0;
+ }
+}
+
+/*
+** Rtree virtual table module xClose method.
+*/
+static int rtreeClose(sqlite3_vtab_cursor *cur){
+ Rtree *pRtree = (Rtree *)(cur->pVtab);
+ int rc;
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ freeCursorConstraints(pCsr);
+ rc = nodeRelease(pRtree, pCsr->pNode);
+ sqlite3_free(pCsr);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xEof method.
+**
+** Return non-zero if the cursor does not currently point to a valid
+** record (i.e if the scan has finished), or zero otherwise.
+*/
+static int rtreeEof(sqlite3_vtab_cursor *cur){
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ return (pCsr->pNode==0);
+}
+
+/*
+** The r-tree constraint passed as the second argument to this function is
+** guaranteed to be a MATCH constraint.
+*/
+static int testRtreeGeom(
+ Rtree *pRtree, /* R-Tree object */
+ RtreeConstraint *pConstraint, /* MATCH constraint to test */
+ RtreeCell *pCell, /* Cell to test */
+ int *pbRes /* OUT: Test result */
+){
+ int i;
+ double aCoord[RTREE_MAX_DIMENSIONS*2];
+ int nCoord = pRtree->nDim*2;
+
+ assert( pConstraint->op==RTREE_MATCH );
+ assert( pConstraint->pGeom );
+
+ for(i=0; i<nCoord; i++){
+ aCoord[i] = DCOORD(pCell->aCoord[i]);
+ }
+ return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes);
+}
+
+/*
+** Cursor pCursor currently points to a cell in a non-leaf page.
+** Set *pbEof to true if the sub-tree headed by the cell is filtered
+** (excluded) by the constraints in the pCursor->aConstraint[]
+** array, or false otherwise.
+**
+** Return SQLITE_OK if successful or an SQLite error code if an error
+** occurs within a geometry callback.
+*/
+static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
+ RtreeCell cell;
+ int ii;
+ int bRes = 0;
+ int rc = SQLITE_OK;
+
+ nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
+ for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
+ RtreeConstraint *p = &pCursor->aConstraint[ii];
+ double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
+ double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);
+
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
+ || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
+ );
+
+ switch( p->op ){
+ case RTREE_LE: case RTREE_LT:
+ bRes = p->rValue<cell_min;
+ break;
+
+ case RTREE_GE: case RTREE_GT:
+ bRes = p->rValue>cell_max;
+ break;
+
+ case RTREE_EQ:
+ bRes = (p->rValue>cell_max || p->rValue<cell_min);
+ break;
+
+ default: {
+ assert( p->op==RTREE_MATCH );
+ rc = testRtreeGeom(pRtree, p, &cell, &bRes);
+ bRes = !bRes;
+ break;
+ }
+ }
+ }
+
+ *pbEof = bRes;
+ return rc;
+}
+
+/*
+** Test if the cell that cursor pCursor currently points to
+** would be filtered (excluded) by the constraints in the
+** pCursor->aConstraint[] array. If so, set *pbEof to true before
+** returning. If the cell is not filtered (excluded) by the constraints,
+** set pbEof to zero.
+**
+** Return SQLITE_OK if successful or an SQLite error code if an error
+** occurs within a geometry callback.
+**
+** This function assumes that the cell is part of a leaf node.
+*/
+static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
+ RtreeCell cell;
+ int ii;
+ *pbEof = 0;
+
+ nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
+ for(ii=0; ii<pCursor->nConstraint; ii++){
+ RtreeConstraint *p = &pCursor->aConstraint[ii];
+ double coord = DCOORD(cell.aCoord[p->iCoord]);
+ int res;
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
+ || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
+ );
+ switch( p->op ){
+ case RTREE_LE: res = (coord<=p->rValue); break;
+ case RTREE_LT: res = (coord<p->rValue); break;
+ case RTREE_GE: res = (coord>=p->rValue); break;
+ case RTREE_GT: res = (coord>p->rValue); break;
+ case RTREE_EQ: res = (coord==p->rValue); break;
+ default: {
+ int rc;
+ assert( p->op==RTREE_MATCH );
+ rc = testRtreeGeom(pRtree, p, &cell, &res);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ break;
+ }
+ }
+
+ if( !res ){
+ *pbEof = 1;
+ return SQLITE_OK;
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Cursor pCursor currently points at a node that heads a sub-tree of
+** height iHeight (if iHeight==0, then the node is a leaf). Descend
+** to point to the left-most cell of the sub-tree that matches the
+** configured constraints.
+*/
+static int descendToCell(
+ Rtree *pRtree,
+ RtreeCursor *pCursor,
+ int iHeight,
+ int *pEof /* OUT: Set to true if cannot descend */
+){
+ int isEof;
+ int rc;
+ int ii;
+ RtreeNode *pChild;
+ sqlite3_int64 iRowid;
+
+ RtreeNode *pSavedNode = pCursor->pNode;
+ int iSavedCell = pCursor->iCell;
+
+ assert( iHeight>=0 );
+
+ if( iHeight==0 ){
+ rc = testRtreeEntry(pRtree, pCursor, &isEof);
+ }else{
+ rc = testRtreeCell(pRtree, pCursor, &isEof);
+ }
+ if( rc!=SQLITE_OK || isEof || iHeight==0 ){
+ goto descend_to_cell_out;
+ }
+
+ iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell);
+ rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild);
+ if( rc!=SQLITE_OK ){
+ goto descend_to_cell_out;
+ }
+
+ nodeRelease(pRtree, pCursor->pNode);
+ pCursor->pNode = pChild;
+ isEof = 1;
+ for(ii=0; isEof && ii<NCELL(pChild); ii++){
+ pCursor->iCell = ii;
+ rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof);
+ if( rc!=SQLITE_OK ){
+ goto descend_to_cell_out;
+ }
+ }
+
+ if( isEof ){
+ assert( pCursor->pNode==pChild );
+ nodeReference(pSavedNode);
+ nodeRelease(pRtree, pChild);
+ pCursor->pNode = pSavedNode;
+ pCursor->iCell = iSavedCell;
+ }
+
+descend_to_cell_out:
+ *pEof = isEof;
+ return rc;
+}
+
+/*
+** One of the cells in node pNode is guaranteed to have a 64-bit
+** integer value equal to iRowid. Return the index of this cell.
+*/
+static int nodeRowidIndex(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ i64 iRowid,
+ int *piIndex
+){
+ int ii;
+ int nCell = NCELL(pNode);
+ for(ii=0; ii<nCell; ii++){
+ if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
+ *piIndex = ii;
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_CORRUPT_VTAB;
+}
+
+/*
+** Return the index of the cell containing a pointer to node pNode
+** in its parent. If pNode is the root node, return -1.
+*/
+static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
+ RtreeNode *pParent = pNode->pParent;
+ if( pParent ){
+ return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
+ }
+ *piIndex = -1;
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xNext method.
+*/
+static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
+ Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab);
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ int rc = SQLITE_OK;
+
+ /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is
+ ** already at EOF. It is against the rules to call the xNext() method of
+ ** a cursor that has already reached EOF.
+ */
+ assert( pCsr->pNode );
+
+ if( pCsr->iStrategy==1 ){
+ /* This "scan" is a direct lookup by rowid. There is no next entry. */
+ nodeRelease(pRtree, pCsr->pNode);
+ pCsr->pNode = 0;
+ }else{
+ /* Move to the next entry that matches the configured constraints. */
+ int iHeight = 0;
+ while( pCsr->pNode ){
+ RtreeNode *pNode = pCsr->pNode;
+ int nCell = NCELL(pNode);
+ for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){
+ int isEof;
+ rc = descendToCell(pRtree, pCsr, iHeight, &isEof);
+ if( rc!=SQLITE_OK || !isEof ){
+ return rc;
+ }
+ }
+ pCsr->pNode = pNode->pParent;
+ rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ nodeReference(pCsr->pNode);
+ nodeRelease(pRtree, pNode);
+ iHeight++;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Rtree virtual table module xRowid method.
+*/
+static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+
+ assert(pCsr->pNode);
+ *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
+
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xColumn method.
+*/
+static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
+ Rtree *pRtree = (Rtree *)cur->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+
+ if( i==0 ){
+ i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
+ sqlite3_result_int64(ctx, iRowid);
+ }else{
+ RtreeCoord c;
+ nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ sqlite3_result_double(ctx, c.f);
+ }else{
+ assert( pRtree->eCoordType==RTREE_COORD_INT32 );
+ sqlite3_result_int(ctx, c.i);
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Use nodeAcquire() to obtain the leaf node containing the record with
+** rowid iRowid. If successful, set *ppLeaf to point to the node and
+** return SQLITE_OK. If there is no such record in the table, set
+** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
+** to zero and return an SQLite error code.
+*/
+static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){
+ int rc;
+ *ppLeaf = 0;
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
+ if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
+ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
+ rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
+ sqlite3_reset(pRtree->pReadRowid);
+ }else{
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ }
+ return rc;
+}
+
+/*
+** This function is called to configure the RtreeConstraint object passed
+** as the second argument for a MATCH constraint. The value passed as the
+** first argument to this function is the right-hand operand to the MATCH
+** operator.
+*/
+static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
+ RtreeMatchArg *p;
+ sqlite3_rtree_geometry *pGeom;
+ int nBlob;
+
+ /* Check that value is actually a blob. */
+ if( !sqlite3_value_type(pValue)==SQLITE_BLOB ) return SQLITE_ERROR;
+
+ /* Check that the blob is roughly the right size. */
+ nBlob = sqlite3_value_bytes(pValue);
+ if( nBlob<(int)sizeof(RtreeMatchArg)
+ || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0
+ ){
+ return SQLITE_ERROR;
+ }
+
+ pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc(
+ sizeof(sqlite3_rtree_geometry) + nBlob
+ );
+ if( !pGeom ) return SQLITE_NOMEM;
+ memset(pGeom, 0, sizeof(sqlite3_rtree_geometry));
+ p = (RtreeMatchArg *)&pGeom[1];
+
+ memcpy(p, sqlite3_value_blob(pValue), nBlob);
+ if( p->magic!=RTREE_GEOMETRY_MAGIC
+ || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double))
+ ){
+ sqlite3_free(pGeom);
+ return SQLITE_ERROR;
+ }
+
+ pGeom->pContext = p->pContext;
+ pGeom->nParam = p->nParam;
+ pGeom->aParam = p->aParam;
+
+ pCons->xGeom = p->xGeom;
+ pCons->pGeom = pGeom;
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xFilter method.
+*/
+static int rtreeFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+
+ RtreeNode *pRoot = 0;
+ int ii;
+ int rc = SQLITE_OK;
+
+ rtreeReference(pRtree);
+
+ freeCursorConstraints(pCsr);
+ pCsr->iStrategy = idxNum;
+
+ if( idxNum==1 ){
+ /* Special case - lookup by rowid. */
+ RtreeNode *pLeaf; /* Leaf on which the required cell resides */
+ i64 iRowid = sqlite3_value_int64(argv[0]);
+ rc = findLeafNode(pRtree, iRowid, &pLeaf);
+ pCsr->pNode = pLeaf;
+ if( pLeaf ){
+ assert( rc==SQLITE_OK );
+ rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell);
+ }
+ }else{
+ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
+ ** with the configured constraints.
+ */
+ if( argc>0 ){
+ pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
+ pCsr->nConstraint = argc;
+ if( !pCsr->aConstraint ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
+ assert( (idxStr==0 && argc==0)
+ || (idxStr && (int)strlen(idxStr)==argc*2) );
+ for(ii=0; ii<argc; ii++){
+ RtreeConstraint *p = &pCsr->aConstraint[ii];
+ p->op = idxStr[ii*2];
+ p->iCoord = idxStr[ii*2+1]-'a';
+ if( p->op==RTREE_MATCH ){
+ /* A MATCH operator. The right-hand-side must be a blob that
+ ** can be cast into an RtreeMatchArg object. One created using
+ ** an sqlite3_rtree_geometry_callback() SQL user function.
+ */
+ rc = deserializeGeometry(argv[ii], p);
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ }else{
+ p->rValue = sqlite3_value_double(argv[ii]);
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pCsr->pNode = 0;
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+ }
+ if( rc==SQLITE_OK ){
+ int isEof = 1;
+ int nCell = NCELL(pRoot);
+ pCsr->pNode = pRoot;
+ for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){
+ assert( pCsr->pNode==pRoot );
+ rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof);
+ if( !isEof ){
+ break;
+ }
+ }
+ if( rc==SQLITE_OK && isEof ){
+ assert( pCsr->pNode==pRoot );
+ nodeRelease(pRtree, pRoot);
+ pCsr->pNode = 0;
+ }
+ assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) );
+ }
+ }
+
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xBestIndex method. There are three
+** table scan strategies to choose from (in order from most to
+** least desirable):
+**
+** idxNum idxStr Strategy
+** ------------------------------------------------
+** 1 Unused Direct lookup by rowid.
+** 2 See below R-tree query or full-table scan.
+** ------------------------------------------------
+**
+** If strategy 1 is used, then idxStr is not meaningful. If strategy
+** 2 is used, idxStr is formatted to contain 2 bytes for each
+** constraint used. The first two bytes of idxStr correspond to
+** the constraint in sqlite3_index_info.aConstraintUsage[] with
+** (argvIndex==1) etc.
+**
+** The first of each pair of bytes in idxStr identifies the constraint
+** operator as follows:
+**
+** Operator Byte Value
+** ----------------------
+** = 0x41 ('A')
+** <= 0x42 ('B')
+** < 0x43 ('C')
+** >= 0x44 ('D')
+** > 0x45 ('E')
+** MATCH 0x46 ('F')
+** ----------------------
+**
+** The second of each pair of bytes identifies the coordinate column
+** to which the constraint applies. The leftmost coordinate column
+** is 'a', the second from the left 'b' etc.
+*/
+static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int rc = SQLITE_OK;
+ int ii;
+
+ int iIdx = 0;
+ char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
+ memset(zIdxStr, 0, sizeof(zIdxStr));
+ UNUSED_PARAMETER(tab);
+
+ assert( pIdxInfo->idxStr==0 );
+ for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
+
+ if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ /* We have an equality constraint on the rowid. Use strategy 1. */
+ int jj;
+ for(jj=0; jj<ii; jj++){
+ pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
+ pIdxInfo->aConstraintUsage[jj].omit = 0;
+ }
+ pIdxInfo->idxNum = 1;
+ pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[jj].omit = 1;
+
+ /* This strategy involves a two rowid lookups on an B-Tree structures
+ ** and then a linear search of an R-Tree node. This should be
+ ** considered almost as quick as a direct rowid lookup (for which
+ ** sqlite uses an internal cost of 0.0).
+ */
+ pIdxInfo->estimatedCost = 10.0;
+ return SQLITE_OK;
+ }
+
+ if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
+ u8 op;
+ switch( p->op ){
+ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
+ case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
+ case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
+ case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
+ case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
+ default:
+ assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
+ op = RTREE_MATCH;
+ break;
+ }
+ zIdxStr[iIdx++] = op;
+ zIdxStr[iIdx++] = p->iColumn - 1 + 'a';
+ pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
+ pIdxInfo->aConstraintUsage[ii].omit = 1;
+ }
+ }
+
+ pIdxInfo->idxNum = 2;
+ pIdxInfo->needToFreeIdxStr = 1;
+ if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
+ return SQLITE_NOMEM;
+ }
+ assert( iIdx>=0 );
+ pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1));
+ return rc;
+}
+
+/*
+** Return the N-dimensional volumn of the cell stored in *p.
+*/
+static float cellArea(Rtree *pRtree, RtreeCell *p){
+ float area = 1.0;
+ int ii;
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ area = (float)(area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])));
+ }
+ return area;
+}
+
+/*
+** Return the margin length of cell p. The margin length is the sum
+** of the objects size in each dimension.
+*/
+static float cellMargin(Rtree *pRtree, RtreeCell *p){
+ float margin = 0.0;
+ int ii;
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ margin += (float)(DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
+ }
+ return margin;
+}
+
+/*
+** Store the union of cells p1 and p2 in p1.
+*/
+static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
+ int ii;
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
+ p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
+ }
+ }else{
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
+ p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
+ }
+ }
+}
+
+/*
+** Return true if the area covered by p2 is a subset of the area covered
+** by p1. False otherwise.
+*/
+static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
+ int ii;
+ int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ RtreeCoord *a1 = &p1->aCoord[ii];
+ RtreeCoord *a2 = &p2->aCoord[ii];
+ if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f))
+ || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i))
+ ){
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/*
+** Return the amount cell p would grow by if it were unioned with pCell.
+*/
+static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
+ float area;
+ RtreeCell cell;
+ memcpy(&cell, p, sizeof(RtreeCell));
+ area = cellArea(pRtree, &cell);
+ cellUnion(pRtree, &cell, pCell);
+ return (cellArea(pRtree, &cell)-area);
+}
+
+#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
+static float cellOverlap(
+ Rtree *pRtree,
+ RtreeCell *p,
+ RtreeCell *aCell,
+ int nCell,
+ int iExclude
+){
+ int ii;
+ float overlap = 0.0;
+ for(ii=0; ii<nCell; ii++){
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+ if( ii!=iExclude )
+#else
+ assert( iExclude==-1 );
+ UNUSED_PARAMETER(iExclude);
+#endif
+ {
+ int jj;
+ float o = 1.0;
+ for(jj=0; jj<(pRtree->nDim*2); jj+=2){
+ double x1;
+ double x2;
+
+ x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
+ x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
+
+ if( x2<x1 ){
+ o = 0.0;
+ break;
+ }else{
+ o = o * (float)(x2-x1);
+ }
+ }
+ overlap += o;
+ }
+ }
+ return overlap;
+}
+#endif
+
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+static float cellOverlapEnlargement(
+ Rtree *pRtree,
+ RtreeCell *p,
+ RtreeCell *pInsert,
+ RtreeCell *aCell,
+ int nCell,
+ int iExclude
+){
+ double before;
+ double after;
+ before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
+ cellUnion(pRtree, p, pInsert);
+ after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
+ return (float)(after-before);
+}
+#endif
+
+
+/*
+** This function implements the ChooseLeaf algorithm from Gutman[84].
+** ChooseSubTree in r*tree terminology.
+*/
+static int ChooseLeaf(
+ Rtree *pRtree, /* Rtree table */
+ RtreeCell *pCell, /* Cell to insert into rtree */
+ int iHeight, /* Height of sub-tree rooted at pCell */
+ RtreeNode **ppLeaf /* OUT: Selected leaf page */
+){
+ int rc;
+ int ii;
+ RtreeNode *pNode;
+ rc = nodeAcquire(pRtree, 1, 0, &pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
+ int iCell;
+ sqlite3_int64 iBest = 0;
+
+ float fMinGrowth = 0.0;
+ float fMinArea = 0.0;
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+ float fMinOverlap = 0.0;
+ float overlap;
+#endif
+
+ int nCell = NCELL(pNode);
+ RtreeCell cell;
+ RtreeNode *pChild;
+
+ RtreeCell *aCell = 0;
+
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+ if( ii==(pRtree->iDepth-1) ){
+ int jj;
+ aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell);
+ if( !aCell ){
+ rc = SQLITE_NOMEM;
+ nodeRelease(pRtree, pNode);
+ pNode = 0;
+ continue;
+ }
+ for(jj=0; jj<nCell; jj++){
+ nodeGetCell(pRtree, pNode, jj, &aCell[jj]);
+ }
+ }
+#endif
+
+ /* Select the child node which will be enlarged the least if pCell
+ ** is inserted into it. Resolve ties by choosing the entry with
+ ** the smallest area.
+ */
+ for(iCell=0; iCell<nCell; iCell++){
+ int bBest = 0;
+ float growth;
+ float area;
+ nodeGetCell(pRtree, pNode, iCell, &cell);
+ growth = cellGrowth(pRtree, &cell, pCell);
+ area = cellArea(pRtree, &cell);
+
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+ if( ii==(pRtree->iDepth-1) ){
+ overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
+ }else{
+ overlap = 0.0;
+ }
+ if( (iCell==0)
+ || (overlap<fMinOverlap)
+ || (overlap==fMinOverlap && growth<fMinGrowth)
+ || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea)
+ ){
+ bBest = 1;
+ fMinOverlap = overlap;
+ }
+#else
+ if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
+ bBest = 1;
+ }
+#endif
+ if( bBest ){
+ fMinGrowth = growth;
+ fMinArea = area;
+ iBest = cell.iRowid;
+ }
+ }
+
+ sqlite3_free(aCell);
+ rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
+ nodeRelease(pRtree, pNode);
+ pNode = pChild;
+ }
+
+ *ppLeaf = pNode;
+ return rc;
+}
+
+/*
+** A cell with the same content as pCell has just been inserted into
+** the node pNode. This function updates the bounding box cells in
+** all ancestor elements.
+*/
+static int AdjustTree(
+ Rtree *pRtree, /* Rtree table */
+ RtreeNode *pNode, /* Adjust ancestry of this node. */
+ RtreeCell *pCell /* This cell was just inserted */
+){
+ RtreeNode *p = pNode;
+ while( p->pParent ){
+ RtreeNode *pParent = p->pParent;
+ RtreeCell cell;
+ int iCell;
+
+ if( nodeParentIndex(pRtree, p, &iCell) ){
+ return SQLITE_CORRUPT_VTAB;
+ }
+
+ nodeGetCell(pRtree, pParent, iCell, &cell);
+ if( !cellContains(pRtree, &cell, pCell) ){
+ cellUnion(pRtree, &cell, pCell);
+ nodeOverwriteCell(pRtree, pParent, &cell, iCell);
+ }
+
+ p = pParent;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
+*/
+static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
+ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
+ sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
+ sqlite3_step(pRtree->pWriteRowid);
+ return sqlite3_reset(pRtree->pWriteRowid);
+}
+
+/*
+** Write mapping (iNode->iPar) to the <rtree>_parent table.
+*/
+static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
+ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
+ sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
+ sqlite3_step(pRtree->pWriteParent);
+ return sqlite3_reset(pRtree->pWriteParent);
+}
+
+static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
+
+#if VARIANT_GUTTMAN_LINEAR_SPLIT
+/*
+** Implementation of the linear variant of the PickNext() function from
+** Guttman[84].
+*/
+static RtreeCell *LinearPickNext(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeCell *pLeftBox,
+ RtreeCell *pRightBox,
+ int *aiUsed
+){
+ int ii;
+ for(ii=0; aiUsed[ii]; ii++);
+ aiUsed[ii] = 1;
+ return &aCell[ii];
+}
+
+/*
+** Implementation of the linear variant of the PickSeeds() function from
+** Guttman[84].
+*/
+static void LinearPickSeeds(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ int *piLeftSeed,
+ int *piRightSeed
+){
+ int i;
+ int iLeftSeed = 0;
+ int iRightSeed = 1;
+ float maxNormalInnerWidth = 0.0;
+
+ /* Pick two "seed" cells from the array of cells. The algorithm used
+ ** here is the LinearPickSeeds algorithm from Gutman[1984]. The
+ ** indices of the two seed cells in the array are stored in local
+ ** variables iLeftSeek and iRightSeed.
+ */
+ for(i=0; i<pRtree->nDim; i++){
+ float x1 = DCOORD(aCell[0].aCoord[i*2]);
+ float x2 = DCOORD(aCell[0].aCoord[i*2+1]);
+ float x3 = x1;
+ float x4 = x2;
+ int jj;
+
+ int iCellLeft = 0;
+ int iCellRight = 0;
+
+ for(jj=1; jj<nCell; jj++){
+ float left = DCOORD(aCell[jj].aCoord[i*2]);
+ float right = DCOORD(aCell[jj].aCoord[i*2+1]);
+
+ if( left<x1 ) x1 = left;
+ if( right>x4 ) x4 = right;
+ if( left>x3 ){
+ x3 = left;
+ iCellRight = jj;
+ }
+ if( right<x2 ){
+ x2 = right;
+ iCellLeft = jj;
+ }
+ }
+
+ if( x4!=x1 ){
+ float normalwidth = (x3 - x2) / (x4 - x1);
+ if( normalwidth>maxNormalInnerWidth ){
+ iLeftSeed = iCellLeft;
+ iRightSeed = iCellRight;
+ }
+ }
+ }
+
+ *piLeftSeed = iLeftSeed;
+ *piRightSeed = iRightSeed;
+}
+#endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */
+
+#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
+/*
+** Implementation of the quadratic variant of the PickNext() function from
+** Guttman[84].
+*/
+static RtreeCell *QuadraticPickNext(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeCell *pLeftBox,
+ RtreeCell *pRightBox,
+ int *aiUsed
+){
+ #define FABS(a) ((a)<0.0?-1.0*(a):(a))
+
+ int iSelect = -1;
+ float fDiff;
+ int ii;
+ for(ii=0; ii<nCell; ii++){
+ if( aiUsed[ii]==0 ){
+ float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
+ float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
+ float diff = FABS(right-left);
+ if( iSelect<0 || diff>fDiff ){
+ fDiff = diff;
+ iSelect = ii;
+ }
+ }
+ }
+ aiUsed[iSelect] = 1;
+ return &aCell[iSelect];
+}
+
+/*
+** Implementation of the quadratic variant of the PickSeeds() function from
+** Guttman[84].
+*/
+static void QuadraticPickSeeds(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ int *piLeftSeed,
+ int *piRightSeed
+){
+ int ii;
+ int jj;
+
+ int iLeftSeed = 0;
+ int iRightSeed = 1;
+ float fWaste = 0.0;
+
+ for(ii=0; ii<nCell; ii++){
+ for(jj=ii+1; jj<nCell; jj++){
+ float right = cellArea(pRtree, &aCell[jj]);
+ float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
+ float waste = growth - right;
+
+ if( waste>fWaste ){
+ iLeftSeed = ii;
+ iRightSeed = jj;
+ fWaste = waste;
+ }
+ }
+ }
+
+ *piLeftSeed = iLeftSeed;
+ *piRightSeed = iRightSeed;
+}
+#endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */
+
+/*
+** Arguments aIdx, aDistance and aSpare all point to arrays of size
+** nIdx. The aIdx array contains the set of integers from 0 to
+** (nIdx-1) in no particular order. This function sorts the values
+** in aIdx according to the indexed values in aDistance. For
+** example, assuming the inputs:
+**
+** aIdx = { 0, 1, 2, 3 }
+** aDistance = { 5.0, 2.0, 7.0, 6.0 }
+**
+** this function sets the aIdx array to contain:
+**
+** aIdx = { 0, 1, 2, 3 }
+**
+** The aSpare array is used as temporary working space by the
+** sorting algorithm.
+*/
+static void SortByDistance(
+ int *aIdx,
+ int nIdx,
+ float *aDistance,
+ int *aSpare
+){
+ if( nIdx>1 ){
+ int iLeft = 0;
+ int iRight = 0;
+
+ int nLeft = nIdx/2;
+ int nRight = nIdx-nLeft;
+ int *aLeft = aIdx;
+ int *aRight = &aIdx[nLeft];
+
+ SortByDistance(aLeft, nLeft, aDistance, aSpare);
+ SortByDistance(aRight, nRight, aDistance, aSpare);
+
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft);
+ aLeft = aSpare;
+
+ while( iLeft<nLeft || iRight<nRight ){
+ if( iLeft==nLeft ){
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }else if( iRight==nRight ){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ float fLeft = aDistance[aLeft[iLeft]];
+ float fRight = aDistance[aRight[iRight]];
+ if( fLeft<fRight ){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }
+ }
+ }
+
+#if 0
+ /* Check that the sort worked */
+ {
+ int jj;
+ for(jj=1; jj<nIdx; jj++){
+ float left = aDistance[aIdx[jj-1]];
+ float right = aDistance[aIdx[jj]];
+ assert( left<=right );
+ }
+ }
+#endif
+ }
+}
+
+/*
+** Arguments aIdx, aCell and aSpare all point to arrays of size
+** nIdx. The aIdx array contains the set of integers from 0 to
+** (nIdx-1) in no particular order. This function sorts the values
+** in aIdx according to dimension iDim of the cells in aCell. The
+** minimum value of dimension iDim is considered first, the
+** maximum used to break ties.
+**
+** The aSpare array is used as temporary working space by the
+** sorting algorithm.
+*/
+static void SortByDimension(
+ Rtree *pRtree,
+ int *aIdx,
+ int nIdx,
+ int iDim,
+ RtreeCell *aCell,
+ int *aSpare
+){
+ if( nIdx>1 ){
+
+ int iLeft = 0;
+ int iRight = 0;
+
+ int nLeft = nIdx/2;
+ int nRight = nIdx-nLeft;
+ int *aLeft = aIdx;
+ int *aRight = &aIdx[nLeft];
+
+ SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
+ SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
+
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft);
+ aLeft = aSpare;
+ while( iLeft<nLeft || iRight<nRight ){
+ double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
+ double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
+ double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
+ double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
+ if( (iLeft!=nLeft) && ((iRight==nRight)
+ || (xleft1<xright1)
+ || (xleft1==xright1 && xleft2<xright2)
+ )){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }
+ }
+
+#if 0
+ /* Check that the sort worked */
+ {
+ int jj;
+ for(jj=1; jj<nIdx; jj++){
+ float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
+ float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
+ float xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
+ float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
+ assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
+ }
+ }
+#endif
+ }
+}
+
+#if VARIANT_RSTARTREE_SPLIT
+/*
+** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
+*/
+static int splitNodeStartree(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeNode *pLeft,
+ RtreeNode *pRight,
+ RtreeCell *pBboxLeft,
+ RtreeCell *pBboxRight
+){
+ int **aaSorted;
+ int *aSpare;
+ int ii;
+
+ int iBestDim = 0;
+ int iBestSplit = 0;
+ float fBestMargin = 0.0;
+
+ int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
+
+ aaSorted = (int **)sqlite3_malloc(nByte);
+ if( !aaSorted ){
+ return SQLITE_NOMEM;
+ }
+
+ aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
+ memset(aaSorted, 0, nByte);
+ for(ii=0; ii<pRtree->nDim; ii++){
+ int jj;
+ aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
+ for(jj=0; jj<nCell; jj++){
+ aaSorted[ii][jj] = jj;
+ }
+ SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
+ }
+
+ for(ii=0; ii<pRtree->nDim; ii++){
+ float margin = 0.0;
+ float fBestOverlap = 0.0;
+ float fBestArea = 0.0;
+ int iBestLeft = 0;
+ int nLeft;
+
+ for(
+ nLeft=RTREE_MINCELLS(pRtree);
+ nLeft<=(nCell-RTREE_MINCELLS(pRtree));
+ nLeft++
+ ){
+ RtreeCell left;
+ RtreeCell right;
+ int kk;
+ float overlap;
+ float area;
+
+ memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
+ memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
+ for(kk=1; kk<(nCell-1); kk++){
+ if( kk<nLeft ){
+ cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
+ }else{
+ cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
+ }
+ }
+ margin += cellMargin(pRtree, &left);
+ margin += cellMargin(pRtree, &right);
+ overlap = cellOverlap(pRtree, &left, &right, 1, -1);
+ area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
+ if( (nLeft==RTREE_MINCELLS(pRtree))
+ || (overlap<fBestOverlap)
+ || (overlap==fBestOverlap && area<fBestArea)
+ ){
+ iBestLeft = nLeft;
+ fBestOverlap = overlap;
+ fBestArea = area;
+ }
+ }
+
+ if( ii==0 || margin<fBestMargin ){
+ iBestDim = ii;
+ fBestMargin = margin;
+ iBestSplit = iBestLeft;
+ }
+ }
+
+ memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
+ memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
+ for(ii=0; ii<nCell; ii++){
+ RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
+ RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
+ RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
+ nodeInsertCell(pRtree, pTarget, pCell);
+ cellUnion(pRtree, pBbox, pCell);
+ }
+
+ sqlite3_free(aaSorted);
+ return SQLITE_OK;
+}
+#endif
+
+#if VARIANT_GUTTMAN_SPLIT
+/*
+** Implementation of the regular R-tree SplitNode from Guttman[1984].
+*/
+static int splitNodeGuttman(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeNode *pLeft,
+ RtreeNode *pRight,
+ RtreeCell *pBboxLeft,
+ RtreeCell *pBboxRight
+){
+ int iLeftSeed = 0;
+ int iRightSeed = 1;
+ int *aiUsed;
+ int i;
+
+ aiUsed = sqlite3_malloc(sizeof(int)*nCell);
+ if( !aiUsed ){
+ return SQLITE_NOMEM;
+ }
+ memset(aiUsed, 0, sizeof(int)*nCell);
+
+ PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed);
+
+ memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell));
+ memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell));
+ nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]);
+ nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
+ aiUsed[iLeftSeed] = 1;
+ aiUsed[iRightSeed] = 1;
+
+ for(i=nCell-2; i>0; i--){
+ RtreeCell *pNext;
+ pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
+ float diff =
+ cellGrowth(pRtree, pBboxLeft, pNext) -
+ cellGrowth(pRtree, pBboxRight, pNext)
+ ;
+ if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
+ || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
+ ){
+ nodeInsertCell(pRtree, pRight, pNext);
+ cellUnion(pRtree, pBboxRight, pNext);
+ }else{
+ nodeInsertCell(pRtree, pLeft, pNext);
+ cellUnion(pRtree, pBboxLeft, pNext);
+ }
+ }
+
+ sqlite3_free(aiUsed);
+ return SQLITE_OK;
+}
+#endif
+
+static int updateMapping(
+ Rtree *pRtree,
+ i64 iRowid,
+ RtreeNode *pNode,
+ int iHeight
+){
+ int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
+ xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
+ if( iHeight>0 ){
+ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
+ if( pChild ){
+ nodeRelease(pRtree, pChild->pParent);
+ nodeReference(pNode);
+ pChild->pParent = pNode;
+ }
+ }
+ return xSetMapping(pRtree, iRowid, pNode->iNode);
+}
+
+static int SplitNode(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int i;
+ int newCellIsRight = 0;
+
+ int rc = SQLITE_OK;
+ int nCell = NCELL(pNode);
+ RtreeCell *aCell;
+ int *aiUsed;
+
+ RtreeNode *pLeft = 0;
+ RtreeNode *pRight = 0;
+
+ RtreeCell leftbbox;
+ RtreeCell rightbbox;
+
+ /* Allocate an array and populate it with a copy of pCell and
+ ** all cells from node pLeft. Then zero the original node.
+ */
+ aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
+ if( !aCell ){
+ rc = SQLITE_NOMEM;
+ goto splitnode_out;
+ }
+ aiUsed = (int *)&aCell[nCell+1];
+ memset(aiUsed, 0, sizeof(int)*(nCell+1));
+ for(i=0; i<nCell; i++){
+ nodeGetCell(pRtree, pNode, i, &aCell[i]);
+ }
+ nodeZero(pRtree, pNode);
+ memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
+ nCell++;
+
+ if( pNode->iNode==1 ){
+ pRight = nodeNew(pRtree, pNode);
+ pLeft = nodeNew(pRtree, pNode);
+ pRtree->iDepth++;
+ pNode->isDirty = 1;
+ writeInt16(pNode->zData, pRtree->iDepth);
+ }else{
+ pLeft = pNode;
+ pRight = nodeNew(pRtree, pLeft->pParent);
+ nodeReference(pLeft);
+ }
+
+ if( !pLeft || !pRight ){
+ rc = SQLITE_NOMEM;
+ goto splitnode_out;
+ }
+
+ memset(pLeft->zData, 0, pRtree->iNodeSize);
+ memset(pRight->zData, 0, pRtree->iNodeSize);
+
+ rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+
+ /* Ensure both child nodes have node numbers assigned to them by calling
+ ** nodeWrite(). Node pRight always needs a node number, as it was created
+ ** by nodeNew() above. But node pLeft sometimes already has a node number.
+ ** In this case avoid the all to nodeWrite().
+ */
+ if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
+ || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
+ ){
+ goto splitnode_out;
+ }
+
+ rightbbox.iRowid = pRight->iNode;
+ leftbbox.iRowid = pLeft->iNode;
+
+ if( pNode->iNode==1 ){
+ rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }else{
+ RtreeNode *pParent = pLeft->pParent;
+ int iCell;
+ rc = nodeParentIndex(pRtree, pLeft, &iCell);
+ if( rc==SQLITE_OK ){
+ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
+ rc = AdjustTree(pRtree, pParent, &leftbbox);
+ }
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
+ goto splitnode_out;
+ }
+
+ for(i=0; i<NCELL(pRight); i++){
+ i64 iRowid = nodeGetRowid(pRtree, pRight, i);
+ rc = updateMapping(pRtree, iRowid, pRight, iHeight);
+ if( iRowid==pCell->iRowid ){
+ newCellIsRight = 1;
+ }
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ if( pNode->iNode==1 ){
+ for(i=0; i<NCELL(pLeft); i++){
+ i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
+ rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ }else if( newCellIsRight==0 ){
+ rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pRight);
+ pRight = 0;
+ }
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pLeft);
+ pLeft = 0;
+ }
+
+splitnode_out:
+ nodeRelease(pRtree, pRight);
+ nodeRelease(pRtree, pLeft);
+ sqlite3_free(aCell);
+ return rc;
+}
+
+/*
+** If node pLeaf is not the root of the r-tree and its pParent pointer is
+** still NULL, load all ancestor nodes of pLeaf into memory and populate
+** the pLeaf->pParent chain all the way up to the root node.
+**
+** This operation is required when a row is deleted (or updated - an update
+** is implemented as a delete followed by an insert). SQLite provides the
+** rowid of the row to delete, which can be used to find the leaf on which
+** the entry resides (argument pLeaf). Once the leaf is located, this
+** function is called to determine its ancestry.
+*/
+static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
+ int rc = SQLITE_OK;
+ RtreeNode *pChild = pLeaf;
+ while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
+ int rc2 = SQLITE_OK; /* sqlite3_reset() return code */
+ sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
+ rc = sqlite3_step(pRtree->pReadParent);
+ if( rc==SQLITE_ROW ){
+ RtreeNode *pTest; /* Used to test for reference loops */
+ i64 iNode; /* Node number of parent node */
+
+ /* Before setting pChild->pParent, test that we are not creating a
+ ** loop of references (as we would if, say, pChild==pParent). We don't
+ ** want to do this as it leads to a memory leak when trying to delete
+ ** the referenced counted node structures.
+ */
+ iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
+ for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
+ if( !pTest ){
+ rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
+ }
+ }
+ rc = sqlite3_reset(pRtree->pReadParent);
+ if( rc==SQLITE_OK ) rc = rc2;
+ if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB;
+ pChild = pChild->pParent;
+ }
+ return rc;
+}
+
+static int deleteCell(Rtree *, RtreeNode *, int, int);
+
+static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
+ int rc;
+ int rc2;
+ RtreeNode *pParent = 0;
+ int iCell;
+
+ assert( pNode->nRef==1 );
+
+ /* Remove the entry in the parent cell. */
+ rc = nodeParentIndex(pRtree, pNode, &iCell);
+ if( rc==SQLITE_OK ){
+ pParent = pNode->pParent;
+ pNode->pParent = 0;
+ rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
+ }
+ rc2 = nodeRelease(pRtree, pParent);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Remove the xxx_node entry. */
+ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
+ sqlite3_step(pRtree->pDeleteNode);
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
+ return rc;
+ }
+
+ /* Remove the xxx_parent entry. */
+ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
+ sqlite3_step(pRtree->pDeleteParent);
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
+ return rc;
+ }
+
+ /* Remove the node from the in-memory hash table and link it into
+ ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
+ */
+ nodeHashDelete(pRtree, pNode);
+ pNode->iNode = iHeight;
+ pNode->pNext = pRtree->pDeleted;
+ pNode->nRef++;
+ pRtree->pDeleted = pNode;
+
+ return SQLITE_OK;
+}
+
+static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode *pParent = pNode->pParent;
+ int rc = SQLITE_OK;
+ if( pParent ){
+ int ii;
+ int nCell = NCELL(pNode);
+ RtreeCell box; /* Bounding box for pNode */
+ nodeGetCell(pRtree, pNode, 0, &box);
+ for(ii=1; ii<nCell; ii++){
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, ii, &cell);
+ cellUnion(pRtree, &box, &cell);
+ }
+ box.iRowid = pNode->iNode;
+ rc = nodeParentIndex(pRtree, pNode, &ii);
+ if( rc==SQLITE_OK ){
+ nodeOverwriteCell(pRtree, pParent, &box, ii);
+ rc = fixBoundingBox(pRtree, pParent);
+ }
+ }
+ return rc;
+}
+
+/*
+** Delete the cell at index iCell of node pNode. After removing the
+** cell, adjust the r-tree data structure if required.
+*/
+static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
+ RtreeNode *pParent;
+ int rc;
+
+ if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
+ return rc;
+ }
+
+ /* Remove the cell from the node. This call just moves bytes around
+ ** the in-memory node image, so it cannot fail.
+ */
+ nodeDeleteCell(pRtree, pNode, iCell);
+
+ /* If the node is not the tree root and now has less than the minimum
+ ** number of cells, remove it from the tree. Otherwise, update the
+ ** cell in the parent node so that it tightly contains the updated
+ ** node.
+ */
+ pParent = pNode->pParent;
+ assert( pParent || pNode->iNode==1 );
+ if( pParent ){
+ if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
+ rc = removeNode(pRtree, pNode, iHeight);
+ }else{
+ rc = fixBoundingBox(pRtree, pNode);
+ }
+ }
+
+ return rc;
+}
+
+static int Reinsert(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int *aOrder;
+ int *aSpare;
+ RtreeCell *aCell;
+ float *aDistance;
+ int nCell;
+ float aCenterCoord[RTREE_MAX_DIMENSIONS];
+ int iDim;
+ int ii;
+ int rc = SQLITE_OK;
+
+ memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS);
+
+ nCell = NCELL(pNode)+1;
+
+ /* Allocate the buffers used by this operation. The allocation is
+ ** relinquished before this function returns.
+ */
+ aCell = (RtreeCell *)sqlite3_malloc(nCell * (
+ sizeof(RtreeCell) + /* aCell array */
+ sizeof(int) + /* aOrder array */
+ sizeof(int) + /* aSpare array */
+ sizeof(float) /* aDistance array */
+ ));
+ if( !aCell ){
+ return SQLITE_NOMEM;
+ }
+ aOrder = (int *)&aCell[nCell];
+ aSpare = (int *)&aOrder[nCell];
+ aDistance = (float *)&aSpare[nCell];
+
+ for(ii=0; ii<nCell; ii++){
+ if( ii==(nCell-1) ){
+ memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
+ }else{
+ nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
+ }
+ aOrder[ii] = ii;
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ aCenterCoord[iDim] += (float)DCOORD(aCell[ii].aCoord[iDim*2]);
+ aCenterCoord[iDim] += (float)DCOORD(aCell[ii].aCoord[iDim*2+1]);
+ }
+ }
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ aCenterCoord[iDim] = (float)(aCenterCoord[iDim]/((float)nCell*2.0));
+ }
+
+ for(ii=0; ii<nCell; ii++){
+ aDistance[ii] = 0.0;
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ float coord = (float)(DCOORD(aCell[ii].aCoord[iDim*2+1]) -
+ DCOORD(aCell[ii].aCoord[iDim*2]));
+ aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
+ }
+ }
+
+ SortByDistance(aOrder, nCell, aDistance, aSpare);
+ nodeZero(pRtree, pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
+ RtreeCell *p = &aCell[aOrder[ii]];
+ nodeInsertCell(pRtree, pNode, p);
+ if( p->iRowid==pCell->iRowid ){
+ if( iHeight==0 ){
+ rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
+ }else{
+ rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = fixBoundingBox(pRtree, pNode);
+ }
+ for(; rc==SQLITE_OK && ii<nCell; ii++){
+ /* Find a node to store this cell in. pNode->iNode currently contains
+ ** the height of the sub-tree headed by the cell.
+ */
+ RtreeNode *pInsert;
+ RtreeCell *p = &aCell[aOrder[ii]];
+ rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
+ rc2 = nodeRelease(pRtree, pInsert);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+ sqlite3_free(aCell);
+ return rc;
+}
+
+/*
+** Insert cell pCell into node pNode. Node pNode is the head of a
+** subtree iHeight high (leaf nodes have iHeight==0).
+*/
+static int rtreeInsertCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int rc = SQLITE_OK;
+ if( iHeight>0 ){
+ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
+ if( pChild ){
+ nodeRelease(pRtree, pChild->pParent);
+ nodeReference(pNode);
+ pChild->pParent = pNode;
+ }
+ }
+ if( nodeInsertCell(pRtree, pNode, pCell) ){
+#if VARIANT_RSTARTREE_REINSERT
+ if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
+ rc = SplitNode(pRtree, pNode, pCell, iHeight);
+ }else{
+ pRtree->iReinsertHeight = iHeight;
+ rc = Reinsert(pRtree, pNode, pCell, iHeight);
+ }
+#else
+ rc = SplitNode(pRtree, pNode, pCell, iHeight);
+#endif
+ }else{
+ rc = AdjustTree(pRtree, pNode, pCell);
+ if( rc==SQLITE_OK ){
+ if( iHeight==0 ){
+ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }else{
+ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }
+ }
+ }
+ return rc;
+}
+
+static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
+ int ii;
+ int rc = SQLITE_OK;
+ int nCell = NCELL(pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
+ RtreeNode *pInsert;
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, ii, &cell);
+
+ /* Find a node to store this cell in. pNode->iNode currently contains
+ ** the height of the sub-tree headed by the cell.
+ */
+ rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode);
+ rc2 = nodeRelease(pRtree, pInsert);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Select a currently unused rowid for a new r-tree record.
+*/
+static int newRowid(Rtree *pRtree, i64 *piRowid){
+ int rc;
+ sqlite3_bind_null(pRtree->pWriteRowid, 1);
+ sqlite3_bind_null(pRtree->pWriteRowid, 2);
+ sqlite3_step(pRtree->pWriteRowid);
+ rc = sqlite3_reset(pRtree->pWriteRowid);
+ *piRowid = sqlite3_last_insert_rowid(pRtree->db);
+ return rc;
+}
+
+/*
+** Remove the entry with rowid=iDelete from the r-tree structure.
+*/
+static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
+ int rc; /* Return code */
+ RtreeNode *pLeaf; /* Leaf node containing record iDelete */
+ int iCell; /* Index of iDelete cell in pLeaf */
+ RtreeNode *pRoot; /* Root node of rtree structure */
+
+
+ /* Obtain a reference to the root node to initialise Rtree.iDepth */
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+
+ /* Obtain a reference to the leaf node that contains the entry
+ ** about to be deleted.
+ */
+ if( rc==SQLITE_OK ){
+ rc = findLeafNode(pRtree, iDelete, &pLeaf);
+ }
+
+ /* Delete the cell in question from the leaf node. */
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
+ if( rc==SQLITE_OK ){
+ rc = deleteCell(pRtree, pLeaf, iCell, 0);
+ }
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+
+ /* Delete the corresponding entry in the <rtree>_rowid table. */
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
+ sqlite3_step(pRtree->pDeleteRowid);
+ rc = sqlite3_reset(pRtree->pDeleteRowid);
+ }
+
+ /* Check if the root node now has exactly one child. If so, remove
+ ** it, schedule the contents of the child for reinsertion and
+ ** reduce the tree height by one.
+ **
+ ** This is equivalent to copying the contents of the child into
+ ** the root node (the operation that Gutman's paper says to perform
+ ** in this scenario).
+ */
+ if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
+ int rc2;
+ RtreeNode *pChild;
+ i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
+ rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
+ if( rc==SQLITE_OK ){
+ rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
+ }
+ rc2 = nodeRelease(pRtree, pChild);
+ if( rc==SQLITE_OK ) rc = rc2;
+ if( rc==SQLITE_OK ){
+ pRtree->iDepth--;
+ writeInt16(pRoot->zData, pRtree->iDepth);
+ pRoot->isDirty = 1;
+ }
+ }
+
+ /* Re-insert the contents of any underfull nodes removed from the tree. */
+ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
+ if( rc==SQLITE_OK ){
+ rc = reinsertNodeContent(pRtree, pLeaf);
+ }
+ pRtree->pDeleted = pLeaf->pNext;
+ sqlite3_free(pLeaf);
+ }
+
+ /* Release the reference to the root node. */
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pRoot);
+ }else{
+ nodeRelease(pRtree, pRoot);
+ }
+
+ return rc;
+}
+
+/*
+** The xUpdate method for rtree module virtual tables.
+*/
+static int rtreeUpdate(
+ sqlite3_vtab *pVtab,
+ int nData,
+ sqlite3_value **azData,
+ sqlite_int64 *pRowid
+){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_OK;
+ RtreeCell cell; /* New cell to insert if nData>1 */
+ int bHaveRowid = 0; /* Set to 1 after new rowid is determined */
+
+ rtreeReference(pRtree);
+ assert(nData>=1);
+
+ /* Constraint handling. A write operation on an r-tree table may return
+ ** SQLITE_CONSTRAINT for two reasons:
+ **
+ ** 1. A duplicate rowid value, or
+ ** 2. The supplied data violates the "x2>=x1" constraint.
+ **
+ ** In the first case, if the conflict-handling mode is REPLACE, then
+ ** the conflicting row can be removed before proceeding. In the second
+ ** case, SQLITE_CONSTRAINT must be returned regardless of the
+ ** conflict-handling mode specified by the user.
+ */
+ if( nData>1 ){
+ int ii;
+
+ /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
+ assert( nData==(pRtree->nDim*2 + 3) );
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]);
+ cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]);
+ if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
+ rc = SQLITE_CONSTRAINT;
+ goto constraint;
+ }
+ }
+ }else{
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
+ cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
+ if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
+ rc = SQLITE_CONSTRAINT;
+ goto constraint;
+ }
+ }
+ }
+
+ /* If a rowid value was supplied, check if it is already present in
+ ** the table. If so, the constraint has failed. */
+ if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){
+ cell.iRowid = sqlite3_value_int64(azData[2]);
+ if( sqlite3_value_type(azData[0])==SQLITE_NULL
+ || sqlite3_value_int64(azData[0])!=cell.iRowid
+ ){
+ int steprc;
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
+ steprc = sqlite3_step(pRtree->pReadRowid);
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ if( SQLITE_ROW==steprc ){
+ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
+ rc = rtreeDeleteRowid(pRtree, cell.iRowid);
+ }else{
+ rc = SQLITE_CONSTRAINT;
+ goto constraint;
+ }
+ }
+ }
+ bHaveRowid = 1;
+ }
+ }
+
+ /* If azData[0] is not an SQL NULL value, it is the rowid of a
+ ** record to delete from the r-tree table. The following block does
+ ** just that.
+ */
+ if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
+ rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0]));
+ }
+
+ /* If the azData[] array contains more than one element, elements
+ ** (azData[2]..azData[argc-1]) contain a new record to insert into
+ ** the r-tree structure.
+ */
+ if( rc==SQLITE_OK && nData>1 ){
+ /* Insert the new record into the r-tree */
+ RtreeNode *pLeaf;
+
+ /* Figure out the rowid of the new row. */
+ if( bHaveRowid==0 ){
+ rc = newRowid(pRtree, &cell.iRowid);
+ }
+ *pRowid = cell.iRowid;
+
+ if( rc==SQLITE_OK ){
+ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ pRtree->iReinsertHeight = -1;
+ rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+constraint:
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** The xRename method for rtree module virtual tables.
+*/
+static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_NOMEM;
+ char *zSql = sqlite3_mprintf(
+ "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
+ "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
+ "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
+ , pRtree->zDb, pRtree->zName, zNewName
+ , pRtree->zDb, pRtree->zName, zNewName
+ , pRtree->zDb, pRtree->zName, zNewName
+ );
+ if( zSql ){
+ rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
+ sqlite3_free(zSql);
+ }
+ return rc;
+}
+
+static sqlite3_module rtreeModule = {
+ 0, /* iVersion */
+ rtreeCreate, /* xCreate - create a table */
+ rtreeConnect, /* xConnect - connect to an existing table */
+ rtreeBestIndex, /* xBestIndex - Determine search strategy */
+ rtreeDisconnect, /* xDisconnect - Disconnect from a table */
+ rtreeDestroy, /* xDestroy - Drop a table */
+ rtreeOpen, /* xOpen - open a cursor */
+ rtreeClose, /* xClose - close a cursor */
+ rtreeFilter, /* xFilter - configure scan constraints */
+ rtreeNext, /* xNext - advance a cursor */
+ rtreeEof, /* xEof */
+ rtreeColumn, /* xColumn - read data */
+ rtreeRowid, /* xRowid - read data */
+ rtreeUpdate, /* xUpdate - write data */
+ 0, /* xBegin - begin transaction */
+ 0, /* xSync - sync transaction */
+ 0, /* xCommit - commit transaction */
+ 0, /* xRollback - rollback transaction */
+ 0, /* xFindFunction - function overloading */
+ rtreeRename, /* xRename - rename the table */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0 /* xRollbackTo */
+};
+
+static int rtreeSqlInit(
+ Rtree *pRtree,
+ sqlite3 *db,
+ const char *zDb,
+ const char *zPrefix,
+ int isCreate
+){
+ int rc = SQLITE_OK;
+
+ #define N_STATEMENT 9
+ static const char *azSql[N_STATEMENT] = {
+ /* Read and write the xxx_node table */
+ "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
+ "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
+ "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",
+
+ /* Read and write the xxx_rowid table */
+ "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
+ "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
+ "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
+
+ /* Read and write the xxx_parent table */
+ "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
+ "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
+ "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
+ };
+ sqlite3_stmt **appStmt[N_STATEMENT];
+ int i;
+
+ pRtree->db = db;
+
+ if( isCreate ){
+ char *zCreate = sqlite3_mprintf(
+"CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
+"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
+"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);"
+"INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
+ zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
+ );
+ if( !zCreate ){
+ return SQLITE_NOMEM;
+ }
+ rc = sqlite3_exec(db, zCreate, 0, 0, 0);
+ sqlite3_free(zCreate);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+
+ appStmt[0] = &pRtree->pReadNode;
+ appStmt[1] = &pRtree->pWriteNode;
+ appStmt[2] = &pRtree->pDeleteNode;
+ appStmt[3] = &pRtree->pReadRowid;
+ appStmt[4] = &pRtree->pWriteRowid;
+ appStmt[5] = &pRtree->pDeleteRowid;
+ appStmt[6] = &pRtree->pReadParent;
+ appStmt[7] = &pRtree->pWriteParent;
+ appStmt[8] = &pRtree->pDeleteParent;
+
+ for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
+ char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
+ if( zSql ){
+ rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ sqlite3_free(zSql);
+ }
+
+ return rc;
+}
+
+/*
+** The second argument to this function contains the text of an SQL statement
+** that returns a single integer value. The statement is compiled and executed
+** using database connection db. If successful, the integer value returned
+** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
+** code is returned and the value of *piVal after returning is not defined.
+*/
+static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
+ int rc = SQLITE_NOMEM;
+ if( zSql ){
+ sqlite3_stmt *pStmt = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *piVal = sqlite3_column_int(pStmt, 0);
+ }
+ rc = sqlite3_finalize(pStmt);
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is called from within the xConnect() or xCreate() method to
+** determine the node-size used by the rtree table being created or connected
+** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
+** Otherwise, an SQLite error code is returned.
+**
+** If this function is being called as part of an xConnect(), then the rtree
+** table already exists. In this case the node-size is determined by inspecting
+** the root node of the tree.
+**
+** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
+** This ensures that each node is stored on a single database page. If the
+** database page-size is so large that more than RTREE_MAXCELLS entries
+** would fit in a single node, use a smaller node-size.
+*/
+static int getNodeSize(
+ sqlite3 *db, /* Database handle */
+ Rtree *pRtree, /* Rtree handle */
+ int isCreate /* True for xCreate, false for xConnect */
+){
+ int rc;
+ char *zSql;
+ if( isCreate ){
+ int iPageSize = 0;
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
+ rc = getIntFromStmt(db, zSql, &iPageSize);
+ if( rc==SQLITE_OK ){
+ pRtree->iNodeSize = iPageSize-64;
+ if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
+ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
+ }
+ }
+ }else{
+ zSql = sqlite3_mprintf(
+ "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
+ pRtree->zDb, pRtree->zName
+ );
+ rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
+ }
+
+ sqlite3_free(zSql);
+ return rc;
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the r-tree virtual table.
+**
+** argv[0] -> module name
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> column names...
+*/
+static int rtreeInit(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* One of the RTREE_COORD_* constants */
+ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
+ sqlite3_vtab **ppVtab, /* OUT: New virtual table */
+ char **pzErr, /* OUT: Error message, if any */
+ int isCreate /* True for xCreate, false for xConnect */
+){
+ int rc = SQLITE_OK;
+ Rtree *pRtree;
+ int nDb; /* Length of string argv[1] */
+ int nName; /* Length of string argv[2] */
+ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
+
+ const char *aErrMsg[] = {
+ 0, /* 0 */
+ "Wrong number of columns for an rtree table", /* 1 */
+ "Too few columns for an rtree table", /* 2 */
+ "Too many columns for an rtree table" /* 3 */
+ };
+
+ int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
+ if( aErrMsg[iErr] ){
+ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
+ return SQLITE_ERROR;
+ }
+
+ sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
+
+ /* Allocate the sqlite3_vtab structure */
+ nDb = strlen(argv[1]);
+ nName = strlen(argv[2]);
+ pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
+ if( !pRtree ){
+ return SQLITE_NOMEM;
+ }
+ memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
+ pRtree->nBusy = 1;
+ pRtree->base.pModule = &rtreeModule;
+ pRtree->zDb = (char *)&pRtree[1];
+ pRtree->zName = &pRtree->zDb[nDb+1];
+ pRtree->nDim = (argc-4)/2;
+ pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
+ pRtree->eCoordType = eCoordType;
+ memcpy(pRtree->zDb, argv[1], nDb);
+ memcpy(pRtree->zName, argv[2], nName);
+
+ /* Figure out the node size to use. */
+ rc = getNodeSize(db, pRtree, isCreate);
+
+ /* Create/Connect to the underlying relational database schema. If
+ ** that is successful, call sqlite3_declare_vtab() to configure
+ ** the r-tree table schema.
+ */
+ if( rc==SQLITE_OK ){
+ if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }else{
+ char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
+ char *zTmp;
+ int ii;
+ for(ii=4; zSql && ii<argc; ii++){
+ zTmp = zSql;
+ zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
+ sqlite3_free(zTmp);
+ }
+ if( zSql ){
+ zTmp = zSql;
+ zSql = sqlite3_mprintf("%s);", zTmp);
+ sqlite3_free(zTmp);
+ }
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+ sqlite3_free(zSql);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ *ppVtab = (sqlite3_vtab *)pRtree;
+ }else{
+ rtreeRelease(pRtree);
+ }
+ return rc;
+}
+
+
+/*
+** Implementation of a scalar function that decodes r-tree nodes to
+** human readable strings. This can be used for debugging and analysis.
+**
+** The scalar function takes two arguments, a blob of data containing
+** an r-tree node, and the number of dimensions the r-tree indexes.
+** For a two-dimensional r-tree structure called "rt", to deserialize
+** all nodes, a statement like:
+**
+** SELECT rtreenode(2, data) FROM rt_node;
+**
+** The human readable string takes the form of a Tcl list with one
+** entry for each cell in the r-tree node. Each entry is itself a
+** list, containing the 8-byte rowid/pageno followed by the
+** <num-dimension>*2 coordinates.
+*/
+static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
+ char *zText = 0;
+ RtreeNode node;
+ Rtree tree;
+ int ii;
+
+ UNUSED_PARAMETER(nArg);
+ memset(&node, 0, sizeof(RtreeNode));
+ memset(&tree, 0, sizeof(Rtree));
+ tree.nDim = sqlite3_value_int(apArg[0]);
+ tree.nBytesPerCell = 8 + 8 * tree.nDim;
+ node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
+
+ for(ii=0; ii<NCELL(&node); ii++){
+ char zCell[512];
+ int nCell = 0;
+ RtreeCell cell;
+ int jj;
+
+ nodeGetCell(&tree, &node, ii, &cell);
+ sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
+ nCell = strlen(zCell);
+ for(jj=0; jj<tree.nDim*2; jj++){
+ sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f);
+ nCell = strlen(zCell);
+ }
+
+ if( zText ){
+ char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
+ sqlite3_free(zText);
+ zText = zTextNew;
+ }else{
+ zText = sqlite3_mprintf("{%s}", zCell);
+ }
+ }
+
+ sqlite3_result_text(ctx, zText, -1, sqlite3_free);
+}
+
+static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
+ UNUSED_PARAMETER(nArg);
+ if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
+ || sqlite3_value_bytes(apArg[0])<2
+ ){
+ sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
+ }else{
+ u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
+ sqlite3_result_int(ctx, readInt16(zBlob));
+ }
+}
+
+/*
+** Register the r-tree module with database handle db. This creates the
+** virtual table module "rtree" and the debugging/analysis scalar
+** function "rtreenode".
+*/
+int sqlite3RtreeInit(sqlite3 *db){
+ const int utf8 = SQLITE_UTF8;
+ int rc;
+
+ rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ void *c = (void *)RTREE_COORD_REAL32;
+ rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
+ }
+ if( rc==SQLITE_OK ){
+ void *c = (void *)RTREE_COORD_INT32;
+ rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
+ }
+
+ return rc;
+}
+
+/*
+** A version of sqlite3_free() that can be used as a callback. This is used
+** in two places - as the destructor for the blob value returned by the
+** invocation of a geometry function, and as the destructor for the geometry
+** functions themselves.
+*/
+static void doSqlite3Free(void *p){
+ sqlite3_free(p);
+}
+
+/*
+** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite
+** scalar user function. This C function is the callback used for all such
+** registered SQL functions.
+**
+** The scalar user functions return a blob that is interpreted by r-tree
+** table MATCH operators.
+*/
+static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
+ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
+ RtreeMatchArg *pBlob;
+ int nBlob;
+
+ nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double);
+ pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
+ if( !pBlob ){
+ sqlite3_result_error_nomem(ctx);
+ }else{
+ int i;
+ pBlob->magic = RTREE_GEOMETRY_MAGIC;
+ pBlob->xGeom = pGeomCtx->xGeom;
+ pBlob->pContext = pGeomCtx->pContext;
+ pBlob->nParam = nArg;
+ for(i=0; i<nArg; i++){
+ pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
+ }
+ sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free);
+ }
+}
+
+/*
+** Register a new geometry function for use with the r-tree MATCH operator.
+*/
+int sqlite3_rtree_geometry_callback(
+ sqlite3 *db,
+ const char *zGeom,
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *),
+ void *pContext
+){
+ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
+
+ /* Allocate and populate the context object. */
+ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
+ if( !pGeomCtx ) return SQLITE_NOMEM;
+ pGeomCtx->xGeom = xGeom;
+ pGeomCtx->pContext = pContext;
+
+ /* Create the new user-function. Register a destructor function to delete
+ ** the context object when it is no longer required. */
+ return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
+ (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free
+ );
+}
+
+#if !SQLITE_CORE
+int sqlite3_extension_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3RtreeInit(db);
+}
+#endif
+
+#endif
diff --git a/ext/rtree/rtree.h b/ext/rtree/rtree.h
new file mode 100644
index 0000000..1fdbccc
--- /dev/null
+++ b/ext/rtree/rtree.h
@@ -0,0 +1,26 @@
+/*
+** 2008 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** RTREE library. All it does is declare the sqlite3RtreeInit() interface.
+*/
+#include "sqlite3.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+
+int sqlite3RtreeInit(sqlite3 *db);
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif /* __cplusplus */
diff --git a/ext/rtree/rtree1.test b/ext/rtree/rtree1.test
new file mode 100644
index 0000000..583b028
--- /dev/null
+++ b/ext/rtree/rtree1.test
@@ -0,0 +1,500 @@
+# 2008 Feb 19
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+# The focus of this file is testing the r-tree extension.
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source [file join [file dirname [info script]] rtree_util.tcl]
+source $testdir/tester.tcl
+
+# Test plan:
+#
+# rtree-1.*: Creating/destroying r-tree tables.
+# rtree-2.*: Test the implicit constraints - unique rowid and
+# (coord[N]<=coord[N+1]) for even values of N. Also
+# automatic assigning of rowid values.
+# rtree-3.*: Linear scans of r-tree data.
+# rtree-4.*: Test INSERT
+# rtree-5.*: Test DELETE
+# rtree-6.*: Test UPDATE
+# rtree-7.*: Test renaming an r-tree table.
+# rtree-8.*: Test constrained scans of r-tree data.
+#
+# rtree-12.*: Test that on-conflict clauses are supported.
+#
+
+ifcapable !rtree {
+ finish_test
+ return
+}
+
+#----------------------------------------------------------------------------
+# Test cases rtree-1.* test CREATE and DROP table statements.
+#
+
+# Test creating and dropping an rtree table.
+#
+do_test rtree-1.1.1 {
+ execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2) }
+} {}
+do_test rtree-1.1.2 {
+ execsql { SELECT name FROM sqlite_master ORDER BY name }
+} {t1 t1_node t1_parent t1_rowid}
+do_test rtree-1.1.3 {
+ execsql {
+ DROP TABLE t1;
+ SELECT name FROM sqlite_master ORDER BY name;
+ }
+} {}
+
+# Test creating and dropping an rtree table with an odd name in
+# an attached database.
+#
+do_test rtree-1.2.1 {
+ file delete -force test2.db
+ execsql {
+ ATTACH 'test2.db' AS aux;
+ CREATE VIRTUAL TABLE aux.'a" "b' USING rtree(ii, x1, x2, y1, y2);
+ }
+} {}
+do_test rtree-1.2.2 {
+ execsql { SELECT name FROM sqlite_master ORDER BY name }
+} {}
+do_test rtree-1.2.3 {
+ execsql { SELECT name FROM aux.sqlite_master ORDER BY name }
+} {{a" "b} {a" "b_node} {a" "b_parent} {a" "b_rowid}}
+do_test rtree-1.2.4 {
+ execsql {
+ DROP TABLE aux.'a" "b';
+ SELECT name FROM aux.sqlite_master ORDER BY name;
+ }
+} {}
+
+# Test that the logic for checking the number of columns specified
+# for an rtree table. Acceptable values are odd numbers between 3 and
+# 11, inclusive.
+#
+set cols [list i1 i2 i3 i4 i5 i6 i7 i8 i9 iA iB iC iD iE iF iG iH iI iJ iK]
+for {set nCol 1} {$nCol<[llength $cols]} {incr nCol} {
+
+ set columns [join [lrange $cols 0 [expr {$nCol-1}]] ,]
+
+ set X {0 {}}
+ if {$nCol%2 == 0} { set X {1 {Wrong number of columns for an rtree table}} }
+ if {$nCol < 3} { set X {1 {Too few columns for an rtree table}} }
+ if {$nCol > 11} { set X {1 {Too many columns for an rtree table}} }
+
+ do_test rtree-1.3.$nCol {
+ catchsql "
+ CREATE VIRTUAL TABLE t1 USING rtree($columns);
+ "
+ } $X
+
+ catchsql { DROP TABLE t1 }
+}
+
+# Test that it is possible to open an existing database that contains
+# r-tree tables.
+#
+do_test rtree-1.4.1 {
+ execsql {
+ CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2);
+ INSERT INTO t1 VALUES(1, 5.0, 10.0);
+ INSERT INTO t1 VALUES(2, 15.0, 20.0);
+ }
+} {}
+do_test rtree-1.4.2 {
+ db close
+ sqlite3 db test.db
+ execsql { SELECT * FROM t1 ORDER BY ii }
+} {1 5.0 10.0 2 15.0 20.0}
+do_test rtree-1.4.3 {
+ execsql { DROP TABLE t1 }
+} {}
+
+# Test that it is possible to create an r-tree table with ridiculous
+# column names.
+#
+do_test rtree-1.5.1 {
+ execsql {
+ CREATE VIRTUAL TABLE t1 USING rtree("the key", "x dim.", "x2'dim");
+ INSERT INTO t1 VALUES(1, 2, 3);
+ SELECT "the key", "x dim.", "x2'dim" FROM t1;
+ }
+} {1 2.0 3.0}
+do_test rtree-1.5.1 {
+ execsql { DROP TABLE t1 }
+} {}
+
+# Force the r-tree constructor to fail.
+#
+do_test rtree-1.6.1 {
+ execsql { CREATE TABLE t1_rowid(a); }
+ catchsql {
+ CREATE VIRTUAL TABLE t1 USING rtree("the key", "x dim.", "x2'dim");
+ }
+} {1 {table "t1_rowid" already exists}}
+do_test rtree-1.6.1 {
+ execsql { DROP TABLE t1_rowid }
+} {}
+
+#----------------------------------------------------------------------------
+# Test cases rtree-2.*
+#
+do_test rtree-2.1.1 {
+ execsql {
+ CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2);
+ SELECT * FROM t1;
+ }
+} {}
+
+do_test rtree-2.1.2 {
+ execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
+ execsql { SELECT * FROM t1 }
+} {1 1.0 3.0 2.0 4.0}
+do_test rtree-2.1.3 {
+ execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
+ execsql { SELECT rowid FROM t1 ORDER BY rowid }
+} {1 2}
+do_test rtree-2.1.3 {
+ execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
+ execsql { SELECT ii FROM t1 ORDER BY ii }
+} {1 2 3}
+
+do_test rtree-2.2.1 {
+ catchsql { INSERT INTO t1 VALUES(2, 1, 3, 2, 4) }
+} {1 {constraint failed}}
+do_test rtree-2.2.2 {
+ catchsql { INSERT INTO t1 VALUES(4, 1, 3, 4, 2) }
+} {1 {constraint failed}}
+do_test rtree-2.2.3 {
+ catchsql { INSERT INTO t1 VALUES(4, 3, 1, 2, 4) }
+} {1 {constraint failed}}
+do_test rtree-2.2.4 {
+ execsql { SELECT ii FROM t1 ORDER BY ii }
+} {1 2 3}
+
+do_test rtree-2.X {
+ execsql { DROP TABLE t1 }
+} {}
+
+#----------------------------------------------------------------------------
+# Test cases rtree-3.* test linear scans of r-tree table data. To test
+# this we have to insert some data into an r-tree, but that is not the
+# focus of these tests.
+#
+do_test rtree-3.1.1 {
+ execsql {
+ CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2);
+ SELECT * FROM t1;
+ }
+} {}
+do_test rtree-3.1.2 {
+ execsql {
+ INSERT INTO t1 VALUES(5, 1, 3, 2, 4);
+ SELECT * FROM t1;
+ }
+} {5 1.0 3.0 2.0 4.0}
+do_test rtree-3.1.3 {
+ execsql {
+ INSERT INTO t1 VALUES(6, 2, 6, 4, 8);
+ SELECT * FROM t1;
+ }
+} {5 1.0 3.0 2.0 4.0 6 2.0 6.0 4.0 8.0}
+
+# Test the constraint on the coordinates (c[i]<=c[i+1] where (i%2==0)):
+do_test rtree-3.2.1 {
+ catchsql { INSERT INTO t1 VALUES(7, 2, 6, 4, 3) }
+} {1 {constraint failed}}
+do_test rtree-3.2.2 {
+ catchsql { INSERT INTO t1 VALUES(8, 2, 6, 3, 3) }
+} {0 {}}
+
+#----------------------------------------------------------------------------
+# Test cases rtree-5.* test DELETE operations.
+#
+do_test rtree-5.1.1 {
+ execsql { CREATE VIRTUAL TABLE t2 USING rtree(ii, x1, x2) }
+} {}
+do_test rtree-5.1.2 {
+ execsql {
+ INSERT INTO t2 VALUES(1, 10, 20);
+ INSERT INTO t2 VALUES(2, 30, 40);
+ INSERT INTO t2 VALUES(3, 50, 60);
+ SELECT * FROM t2 ORDER BY ii;
+ }
+} {1 10.0 20.0 2 30.0 40.0 3 50.0 60.0}
+do_test rtree-5.1.3 {
+ execsql {
+ DELETE FROM t2 WHERE ii=2;
+ SELECT * FROM t2 ORDER BY ii;
+ }
+} {1 10.0 20.0 3 50.0 60.0}
+do_test rtree-5.1.4 {
+ execsql {
+ DELETE FROM t2 WHERE ii=1;
+ SELECT * FROM t2 ORDER BY ii;
+ }
+} {3 50.0 60.0}
+do_test rtree-5.1.5 {
+ execsql {
+ DELETE FROM t2 WHERE ii=3;
+ SELECT * FROM t2 ORDER BY ii;
+ }
+} {}
+do_test rtree-5.1.6 {
+ execsql { SELECT * FROM t2_rowid }
+} {}
+
+#----------------------------------------------------------------------------
+# Test cases rtree-5.* test UPDATE operations.
+#
+do_test rtree-6.1.1 {
+ execsql { CREATE VIRTUAL TABLE t3 USING rtree(ii, x1, x2, y1, y2) }
+} {}
+do_test rtree-6.1.2 {
+ execsql {
+ INSERT INTO t3 VALUES(1, 2, 3, 4, 5);
+ UPDATE t3 SET x2=5;
+ SELECT * FROM t3;
+ }
+} {1 2.0 5.0 4.0 5.0}
+do_test rtree-6.1.3 {
+ execsql { UPDATE t3 SET ii = 2 }
+ execsql { SELECT * FROM t3 }
+} {2 2.0 5.0 4.0 5.0}
+
+#----------------------------------------------------------------------------
+# Test cases rtree-7.* test rename operations.
+#
+do_test rtree-7.1.1 {
+ execsql {
+ CREATE VIRTUAL TABLE t4 USING rtree(ii, x1, x2, y1, y2, z1, z2);
+ INSERT INTO t4 VALUES(1, 2, 3, 4, 5, 6, 7);
+ }
+} {}
+do_test rtree-7.1.2 {
+ execsql { ALTER TABLE t4 RENAME TO t5 }
+ execsql { SELECT * FROM t5 }
+} {1 2.0 3.0 4.0 5.0 6.0 7.0}
+do_test rtree-7.1.3 {
+ db close
+ sqlite3 db test.db
+ execsql { SELECT * FROM t5 }
+} {1 2.0 3.0 4.0 5.0 6.0 7.0}
+do_test rtree-7.1.4 {
+ execsql { ALTER TABLE t5 RENAME TO 'raisara "one"'''}
+ execsql { SELECT * FROM "raisara ""one""'" }
+} {1 2.0 3.0 4.0 5.0 6.0 7.0}
+do_test rtree-7.1.5 {
+ execsql { SELECT * FROM 'raisara "one"''' }
+} {1 2.0 3.0 4.0 5.0 6.0 7.0}
+do_test rtree-7.1.6 {
+ execsql { ALTER TABLE "raisara ""one""'" RENAME TO "abc 123" }
+ execsql { SELECT * FROM "abc 123" }
+} {1 2.0 3.0 4.0 5.0 6.0 7.0}
+do_test rtree-7.1.7 {
+ db close
+ sqlite3 db test.db
+ execsql { SELECT * FROM "abc 123" }
+} {1 2.0 3.0 4.0 5.0 6.0 7.0}
+
+# An error midway through a rename operation.
+do_test rtree-7.2.1 {
+ execsql {
+ CREATE TABLE t4_node(a);
+ }
+ catchsql { ALTER TABLE "abc 123" RENAME TO t4 }
+} {1 {SQL logic error or missing database}}
+do_test rtree-7.2.2 {
+ execsql { SELECT * FROM "abc 123" }
+} {1 2.0 3.0 4.0 5.0 6.0 7.0}
+do_test rtree-7.2.3 {
+ execsql {
+ DROP TABLE t4_node;
+ CREATE TABLE t4_rowid(a);
+ }
+ catchsql { ALTER TABLE "abc 123" RENAME TO t4 }
+} {1 {SQL logic error or missing database}}
+do_test rtree-7.2.4 {
+ db close
+ sqlite3 db test.db
+ execsql { SELECT * FROM "abc 123" }
+} {1 2.0 3.0 4.0 5.0 6.0 7.0}
+do_test rtree-7.2.5 {
+ execsql { DROP TABLE t4_rowid }
+ execsql { ALTER TABLE "abc 123" RENAME TO t4 }
+ execsql { SELECT * FROM t4 }
+} {1 2.0 3.0 4.0 5.0 6.0 7.0}
+
+
+#----------------------------------------------------------------------------
+# Test cases rtree-8.*
+#
+
+# Test that the function to determine if a leaf cell is part of the
+# result set works.
+do_test rtree-8.1.1 {
+ execsql {
+ CREATE VIRTUAL TABLE t6 USING rtree(ii, x1, x2);
+ INSERT INTO t6 VALUES(1, 3, 7);
+ INSERT INTO t6 VALUES(2, 4, 6);
+ }
+} {}
+do_test rtree-8.1.2 { execsql { SELECT ii FROM t6 WHERE x1>2 } } {1 2}
+do_test rtree-8.1.3 { execsql { SELECT ii FROM t6 WHERE x1>3 } } {2}
+do_test rtree-8.1.4 { execsql { SELECT ii FROM t6 WHERE x1>4 } } {}
+do_test rtree-8.1.5 { execsql { SELECT ii FROM t6 WHERE x1>5 } } {}
+do_test rtree-8.1.6 { execsql { SELECT ii FROM t6 WHERE x1<3 } } {}
+do_test rtree-8.1.7 { execsql { SELECT ii FROM t6 WHERE x1<4 } } {1}
+do_test rtree-8.1.8 { execsql { SELECT ii FROM t6 WHERE x1<5 } } {1 2}
+
+#----------------------------------------------------------------------------
+# Test cases rtree-9.*
+#
+# Test that ticket #3549 is fixed.
+do_test rtree-9.1 {
+ execsql {
+ CREATE TABLE foo (id INTEGER PRIMARY KEY);
+ CREATE VIRTUAL TABLE bar USING rtree (id, minX, maxX, minY, maxY);
+ INSERT INTO foo VALUES (null);
+ INSERT INTO foo SELECT null FROM foo;
+ INSERT INTO foo SELECT null FROM foo;
+ INSERT INTO foo SELECT null FROM foo;
+ INSERT INTO foo SELECT null FROM foo;
+ INSERT INTO foo SELECT null FROM foo;
+ INSERT INTO foo SELECT null FROM foo;
+ DELETE FROM foo WHERE id > 40;
+ INSERT INTO bar SELECT NULL, 0, 0, 0, 0 FROM foo;
+ }
+} {}
+
+# This used to crash.
+do_test rtree-9.2 {
+ execsql {
+ SELECT count(*) FROM bar b1, bar b2, foo s1 WHERE s1.id = b1.id;
+ }
+} {1600}
+do_test rtree-9.3 {
+ execsql {
+ SELECT count(*) FROM bar b1, bar b2, foo s1
+ WHERE b1.minX <= b2.maxX AND s1.id = b1.id;
+ }
+} {1600}
+
+#-------------------------------------------------------------------------
+# Ticket #3970: Check that the error message is meaningful when a
+# keyword is used as a column name.
+#
+do_test rtree-10.1 {
+ catchsql { CREATE VIRTUAL TABLE t7 USING rtree(index, x1, y1, x2, y2) }
+} {1 {near "index": syntax error}}
+
+#-------------------------------------------------------------------------
+# Test last_insert_rowid().
+#
+do_test rtree-11.1 {
+ execsql {
+ CREATE VIRTUAL TABLE t8 USING rtree(idx, x1, x2, y1, y2);
+ INSERT INTO t8 VALUES(1, 1.0, 1.0, 2.0, 2.0);
+ SELECT last_insert_rowid();
+ }
+} {1}
+do_test rtree-11.2 {
+ execsql {
+ INSERT INTO t8 VALUES(NULL, 1.0, 1.0, 2.0, 2.0);
+ SELECT last_insert_rowid();
+ }
+} {2}
+
+#-------------------------------------------------------------------------
+# Test on-conflict clause handling.
+#
+db_delete_and_reopen
+do_execsql_test 12.0 {
+ CREATE VIRTUAL TABLE t1 USING rtree_i32(idx, x1, x2, y1, y2);
+ INSERT INTO t1 VALUES(1, 1, 2, 3, 4);
+ INSERT INTO t1 VALUES(2, 2, 3, 4, 5);
+ INSERT INTO t1 VALUES(3, 3, 4, 5, 6);
+
+ CREATE TABLE source(idx, x1, x2, y1, y2);
+ INSERT INTO source VALUES(5, 8, 8, 8, 8);
+ INSERT INTO source VALUES(2, 7, 7, 7, 7);
+
+}
+db_save_and_close
+foreach {tn sql_template testdata} {
+ 1 "INSERT %CONF% INTO t1 VALUES(2, 7, 7, 7, 7)" {
+ ROLLBACK 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6}
+ ABORT 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ IGNORE 0 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ FAIL 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ REPLACE 0 0 {1 1 2 3 4 2 7 7 7 7 3 3 4 5 6 4 4 5 6 7}
+ }
+
+ 2 "INSERT %CONF% INTO t1 SELECT * FROM source" {
+ ROLLBACK 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6}
+ ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8}
+ FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8}
+ REPLACE 1 0 {1 1 2 3 4 2 7 7 7 7 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8}
+ }
+
+ 3 "UPDATE %CONF% t1 SET idx = 2 WHERE idx = 4" {
+ ROLLBACK 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6}
+ ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ REPLACE 1 0 {1 1 2 3 4 2 4 5 6 7 3 3 4 5 6}
+ }
+
+ 3 "UPDATE %CONF% t1 SET idx = ((idx+1)%5)+1 WHERE idx > 2" {
+ ROLLBACK 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6}
+ ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 4 4 5 6 7 5 3 4 5 6}
+ FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 4 4 5 6 7 5 3 4 5 6}
+ REPLACE 1 0 {1 4 5 6 7 2 2 3 4 5 5 3 4 5 6}
+ }
+
+ 4 "INSERT %CONF% INTO t1 VALUES(2, 7, 6, 7, 7)" {
+ ROLLBACK 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6}
+ ABORT 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ IGNORE 0 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ FAIL 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ REPLACE 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
+ }
+
+} {
+ foreach {mode uses error data} $testdata {
+ db_restore_and_reopen
+
+ set sql [string map [list %CONF% "OR $mode"] $sql_template]
+ set testname "12.$tn.[string tolower $mode]"
+
+ execsql {
+ BEGIN;
+ INSERT INTO t1 VALUES(4, 4, 5, 6, 7);
+ }
+
+ set res(0) {0 {}}
+ set res(1) {1 {constraint failed}}
+ do_catchsql_test $testname.1 $sql $res($error)
+ do_test $testname.2 [list sql_uses_stmt db $sql] $uses
+ do_execsql_test $testname.3 { SELECT * FROM t1 ORDER BY idx } $data
+
+ do_test $testname.4 { rtree_check db t1 } 0
+ db close
+ }
+}
+finish_test
diff --git a/ext/rtree/rtree2.test b/ext/rtree/rtree2.test
new file mode 100644
index 0000000..f5d15cc
--- /dev/null
+++ b/ext/rtree/rtree2.test
@@ -0,0 +1,150 @@
+# 2008 Feb 19
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+# The focus of this file is testing the r-tree extension.
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source [file join [file dirname [info script]] rtree_util.tcl]
+source $testdir/tester.tcl
+
+ifcapable !rtree {
+ finish_test
+ return
+}
+
+set ::NROW 1000
+set ::NDEL 10
+set ::NSELECT 100
+
+if {[info exists G(isquick)] && $G(isquick)} {
+ set ::NROW 100
+ set ::NSELECT 10
+}
+
+foreach module {rtree_i32 rtree} {
+ for {set nDim 1} {$nDim <= 5} {incr nDim} {
+
+ do_test rtree2-$module.$nDim.1 {
+ set cols [list]
+ foreach c [list c0 c1 c2 c3 c4 c5 c6 c7 c8 c9] {
+ lappend cols "$c REAL"
+ }
+ set cols [join [lrange $cols 0 [expr {$nDim*2-1}]] ", "]
+ execsql "
+ CREATE VIRTUAL TABLE t1 USING ${module}(ii, $cols);
+ CREATE TABLE t2 (ii, $cols);
+ "
+ } {}
+
+ do_test rtree2-$module.$nDim.2 {
+ db transaction {
+ for {set ii 0} {$ii < $::NROW} {incr ii} {
+ #puts "Row $ii"
+ set values [list]
+ for {set jj 0} {$jj<$nDim*2} {incr jj} {
+ lappend values [expr int(rand()*1000)]
+ }
+ set values [join $values ,]
+ #puts [rtree_treedump db t1]
+ #puts "INSERT INTO t2 VALUES($ii, $values)"
+ set rc [catch {db eval "INSERT INTO t1 VALUES($ii, $values)"}]
+ if {$rc} {
+ incr ii -1
+ } else {
+ db eval "INSERT INTO t2 VALUES($ii, $values)"
+ }
+ #if {[rtree_check db t1]} {
+ #puts [rtree_treedump db t1]
+ #exit
+ #}
+ }
+ }
+
+ set t1 [execsql {SELECT * FROM t1 ORDER BY ii}]
+ set t2 [execsql {SELECT * FROM t2 ORDER BY ii}]
+ set rc [expr {$t1 eq $t2}]
+ if {$rc != 1} {
+ puts $t1
+ puts $t2
+ }
+ set rc
+ } {1}
+
+ do_test rtree2-$module.$nDim.3 {
+ rtree_check db t1
+ } 0
+
+ set OPS [list < > <= >= =]
+ for {set ii 0} {$ii < $::NSELECT} {incr ii} {
+ do_test rtree2-$module.$nDim.4.$ii.1 {
+ set where [list]
+ foreach look_three_dots! {. . .} {
+ set colidx [expr int(rand()*($nDim*2+1))-1]
+ if {$colidx<0} {
+ set col ii
+ } else {
+ set col "c$colidx"
+ }
+ set op [lindex $OPS [expr int(rand()*[llength $OPS])]]
+ set val [expr int(rand()*1000)]
+ lappend where "$col $op $val"
+ }
+ set where [join $where " AND "]
+
+ set t1 [execsql "SELECT * FROM t1 WHERE $where ORDER BY ii"]
+ set t2 [execsql "SELECT * FROM t2 WHERE $where ORDER BY ii"]
+ set rc [expr {$t1 eq $t2}]
+ if {$rc != 1} {
+ #puts $where
+ puts $t1
+ puts $t2
+ #puts [rtree_treedump db t1]
+ #breakpoint
+ #set t1 [execsql "SELECT * FROM t1 WHERE $where ORDER BY ii"]
+ #exit
+ }
+ set rc
+ } {1}
+ }
+
+ for {set ii 0} {$ii < $::NROW} {incr ii $::NDEL} {
+ #puts [rtree_treedump db t1]
+ do_test rtree2-$module.$nDim.5.$ii.1 {
+ execsql "DELETE FROM t2 WHERE ii <= $::ii"
+ execsql "DELETE FROM t1 WHERE ii <= $::ii"
+
+ set t1 [execsql {SELECT * FROM t1 ORDER BY ii}]
+ set t2 [execsql {SELECT * FROM t2 ORDER BY ii}]
+ set rc [expr {$t1 eq $t2}]
+ if {$rc != 1} {
+ puts $t1
+ puts $t2
+ }
+ set rc
+ } {1}
+ do_test rtree2-$module.$nDim.5.$ii.2 {
+ rtree_check db t1
+ } {0}
+ }
+
+ do_test rtree2-$module.$nDim.6 {
+ execsql {
+ DROP TABLE t1;
+ DROP TABLE t2;
+ }
+ } {}
+ }
+}
+
+finish_test
diff --git a/ext/rtree/rtree3.test b/ext/rtree/rtree3.test
new file mode 100644
index 0000000..fea5513
--- /dev/null
+++ b/ext/rtree/rtree3.test
@@ -0,0 +1,237 @@
+# 2008 Feb 19
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+# The focus of this file is testing that the r-tree correctly handles
+# out-of-memory conditions.
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source $testdir/tester.tcl
+source $testdir/malloc_common.tcl
+ifcapable !rtree {
+ finish_test
+ return
+}
+
+# Test summary:
+#
+# rtree3-1: Test OOM in simple CREATE TABLE, INSERT, DELETE and SELECT
+# commands on an almost empty table.
+#
+# rtree3-2: Test OOM in a DROP TABLE command.
+#
+# rtree3-3a: Test OOM during a transaction to insert 100 pseudo-random rows.
+#
+# rtree3-3b: Test OOM during a transaction deleting all entries in the
+# database constructed in [rtree3-3a] in pseudo-random order.
+#
+# rtree3-4a: OOM during "SELECT count(*) FROM ..." on a big table.
+#
+# rtree3-4b: OOM while deleting rows from a big table.
+#
+# rtree3-5: Test OOM while inserting rows into a big table.
+#
+# rtree3-6: Test OOM while deleting all rows of a table, one at a time.
+#
+# rtree3-7: OOM during an ALTER TABLE RENAME TABLE command.
+#
+# rtree3-8: Test OOM while registering the r-tree module with sqlite.
+#
+
+do_faultsim_test rtree3-1 -faults oom* -prep {
+ faultsim_delete_and_reopen
+} -body {
+ execsql {
+ BEGIN TRANSACTION;
+ CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2);
+ INSERT INTO rt VALUES(NULL, 3, 5, 7, 9);
+ INSERT INTO rt VALUES(NULL, 13, 15, 17, 19);
+ DELETE FROM rt WHERE ii = 1;
+ SELECT * FROM rt;
+ SELECT ii FROM rt WHERE ii = 2;
+ COMMIT;
+ }
+}
+
+do_test rtree3-2.prep {
+ faultsim_delete_and_reopen
+ execsql {
+ CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2);
+ INSERT INTO rt VALUES(NULL, 3, 5, 7, 9);
+ }
+ faultsim_save_and_close
+} {}
+do_faultsim_test rtree3-2 -faults oom* -prep {
+ faultsim_restore_and_reopen
+} -body {
+ execsql { DROP TABLE rt }
+}
+
+do_malloc_test rtree3-3.prep {
+ faultsim_delete_and_reopen
+ execsql {
+ CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2);
+ INSERT INTO rt VALUES(NULL, 3, 5, 7, 9);
+ }
+ faultsim_save_and_close
+} {}
+
+do_faultsim_test rtree3-3a -faults oom* -prep {
+ faultsim_restore_and_reopen
+} -body {
+ db eval BEGIN
+ for {set ii 0} {$ii < 100} {incr ii} {
+ set f [expr rand()]
+ db eval {INSERT INTO rt VALUES(NULL, $f*10.0, $f*10.0, $f*15.0, $f*15.0)}
+ }
+ db eval COMMIT
+}
+faultsim_save_and_close
+
+do_faultsim_test rtree3-3b -faults oom* -prep {
+ faultsim_restore_and_reopen
+} -body {
+ db eval BEGIN
+ for {set ii 0} {$ii < 100} {incr ii} {
+ set f [expr rand()]
+ db eval { DELETE FROM rt WHERE x1<($f*10.0) AND x1>($f*10.5) }
+ }
+ db eval COMMIT
+}
+
+do_test rtree3-4.prep {
+ faultsim_delete_and_reopen
+ execsql {
+ BEGIN;
+ PRAGMA page_size = 512;
+ CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2);
+ }
+ for {set i 0} {$i < 1500} {incr i} {
+ execsql { INSERT INTO rt VALUES($i, $i, $i+1, $i, $i+1) }
+ }
+ execsql { COMMIT }
+ faultsim_save_and_close
+} {}
+
+do_faultsim_test rtree3-4a -faults oom-* -prep {
+ faultsim_restore_and_reopen
+} -body {
+ db eval { SELECT count(*) FROM rt }
+} -test {
+ faultsim_test_result {0 1500}
+}
+
+do_faultsim_test rtree3-4b -faults oom-transient -prep {
+ faultsim_restore_and_reopen
+} -body {
+ db eval { DELETE FROM rt WHERE ii BETWEEN 1 AND 100 }
+} -test {
+ faultsim_test_result {0 {}}
+}
+
+do_test rtree3-5.prep {
+ faultsim_delete_and_reopen
+ execsql {
+ BEGIN;
+ PRAGMA page_size = 512;
+ CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2);
+ }
+ for {set i 0} {$i < 100} {incr i} {
+ execsql { INSERT INTO rt VALUES($i, $i, $i+1, $i, $i+1) }
+ }
+ execsql { COMMIT }
+ faultsim_save_and_close
+} {}
+do_faultsim_test rtree3-5 -faults oom-* -prep {
+ faultsim_restore_and_reopen
+} -body {
+ for {set i 100} {$i < 110} {incr i} {
+ execsql { INSERT INTO rt VALUES($i, $i, $i+1, $i, $i+1) }
+ }
+} -test {
+ faultsim_test_result {0 {}}
+}
+
+do_test rtree3-6.prep {
+ faultsim_delete_and_reopen
+ execsql {
+ BEGIN;
+ PRAGMA page_size = 512;
+ CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2);
+ }
+ for {set i 0} {$i < 50} {incr i} {
+ execsql { INSERT INTO rt VALUES($i, $i, $i+1, $i, $i+1) }
+ }
+ execsql { COMMIT }
+ faultsim_save_and_close
+} {}
+do_faultsim_test rtree3-6 -faults oom-* -prep {
+ faultsim_restore_and_reopen
+} -body {
+ execsql BEGIN
+ for {set i 0} {$i < 50} {incr i} {
+ execsql { DELETE FROM rt WHERE ii=$i }
+ }
+ execsql COMMIT
+} -test {
+ faultsim_test_result {0 {}}
+}
+
+do_test rtree3-7.prep {
+ faultsim_delete_and_reopen
+ execsql { CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2) }
+ faultsim_save_and_close
+} {}
+do_faultsim_test rtree3-7 -faults oom-* -prep {
+ faultsim_restore_and_reopen
+} -body {
+ execsql { ALTER TABLE rt RENAME TO rt2 }
+} -test {
+ faultsim_test_result {0 {}}
+}
+
+do_faultsim_test rtree3-8 -faults oom-* -prep {
+ catch { db close }
+} -body {
+ sqlite3 db test.db
+}
+
+do_faultsim_test rtree3-9 -faults oom-* -prep {
+ sqlite3 db :memory:
+} -body {
+ set rc [register_cube_geom db]
+ if {$rc != "SQLITE_OK"} { error $rc }
+} -test {
+ faultsim_test_result {0 {}} {1 SQLITE_NOMEM}
+}
+
+do_test rtree3-10.prep {
+ faultsim_delete_and_reopen
+ execsql {
+ CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2, z1, z2);
+ INSERT INTO rt VALUES(1, 10, 10, 10, 11, 11, 11);
+ INSERT INTO rt VALUES(2, 5, 6, 6, 7, 7, 8);
+ }
+ faultsim_save_and_close
+} {}
+do_faultsim_test rtree3-10 -faults oom-* -prep {
+ faultsim_restore_and_reopen
+ register_cube_geom db
+ execsql { SELECT * FROM rt }
+} -body {
+ execsql { SELECT ii FROM rt WHERE ii MATCH cube(4.5, 5.5, 6.5, 1, 1, 1) }
+} -test {
+ faultsim_test_result {0 2}
+}
+
+finish_test
diff --git a/ext/rtree/rtree4.test b/ext/rtree/rtree4.test
new file mode 100644
index 0000000..708d335
--- /dev/null
+++ b/ext/rtree/rtree4.test
@@ -0,0 +1,234 @@
+# 2008 May 23
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+# Randomized test cases for the rtree extension.
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source $testdir/tester.tcl
+
+ifcapable !rtree {
+ finish_test
+ return
+}
+
+set ::NROW 2500
+if {[info exists G(isquick)] && $G(isquick)} {
+ set ::NROW 250
+}
+
+# Return a floating point number between -X and X.
+#
+proc rand {X} {
+ return [expr {int((rand()-0.5)*1024.0*$X)/512.0}]
+}
+
+# Return a positive floating point number less than or equal to X
+#
+proc randincr {X} {
+ while 1 {
+ set r [expr {int(rand()*$X*32.0)/32.0}]
+ if {$r>0.0} {return $r}
+ }
+}
+
+# Scramble the $inlist into a random order.
+#
+proc scramble {inlist} {
+ set y {}
+ foreach x $inlist {
+ lappend y [list [expr {rand()}] $x]
+ }
+ set y [lsort $y]
+ set outlist {}
+ foreach x $y {
+ lappend outlist [lindex $x 1]
+ }
+ return $outlist
+}
+
+# Always use the same random seed so that the sequence of tests
+# is repeatable.
+#
+expr {srand(1234)}
+
+# Run these tests for all number of dimensions between 1 and 5.
+#
+for {set nDim 1} {$nDim<=5} {incr nDim} {
+
+ # Construct an rtree virtual table and an ordinary btree table
+ # to mirror it. The ordinary table should be much slower (since
+ # it has to do a full table scan) but should give the exact same
+ # answers.
+ #
+ do_test rtree4-$nDim.1 {
+ set clist {}
+ set cklist {}
+ for {set i 0} {$i<$nDim} {incr i} {
+ lappend clist mn$i mx$i
+ lappend cklist "mn$i<mx$i"
+ }
+ db eval "DROP TABLE IF EXISTS rx"
+ db eval "DROP TABLE IF EXISTS bx"
+ db eval "CREATE VIRTUAL TABLE rx USING rtree(id, [join $clist ,])"
+ db eval "CREATE TABLE bx(id INTEGER PRIMARY KEY,\
+ [join $clist ,], CHECK( [join $cklist { AND }] ))"
+ } {}
+
+ # Do many insertions of small objects. Do both overlapping and
+ # contained-within queries after each insert to verify that all
+ # is well.
+ #
+ unset -nocomplain where
+ for {set i 1} {$i<$::NROW} {incr i} {
+ # Do a random insert
+ #
+ do_test rtree4-$nDim.2.$i.1 {
+ set vlist {}
+ for {set j 0} {$j<$nDim} {incr j} {
+ set mn [rand 10000]
+ set mx [expr {$mn+[randincr 50]}]
+ lappend vlist $mn $mx
+ }
+ db eval "INSERT INTO rx VALUES(NULL, [join $vlist ,])"
+ db eval "INSERT INTO bx VALUES(NULL, [join $vlist ,])"
+ } {}
+
+ # Do a contained-in query on all dimensions
+ #
+ set where {}
+ for {set j 0} {$j<$nDim} {incr j} {
+ set mn [rand 10000]
+ set mx [expr {$mn+[randincr 500]}]
+ lappend where mn$j>=$mn mx$j<=$mx
+ }
+ set where "WHERE [join $where { AND }]"
+ do_test rtree4-$nDim.2.$i.2 {
+ list $where [db eval "SELECT id FROM rx $where ORDER BY id"]
+ } [list $where [db eval "SELECT id FROM bx $where ORDER BY id"]]
+
+ # Do an overlaps query on all dimensions
+ #
+ set where {}
+ for {set j 0} {$j<$nDim} {incr j} {
+ set mn [rand 10000]
+ set mx [expr {$mn+[randincr 500]}]
+ lappend where mx$j>=$mn mn$j<=$mx
+ }
+ set where "WHERE [join $where { AND }]"
+ do_test rtree4-$nDim.2.$i.3 {
+ list $where [db eval "SELECT id FROM rx $where ORDER BY id"]
+ } [list $where [db eval "SELECT id FROM bx $where ORDER BY id"]]
+
+ # Do a contained-in query with surplus contraints at the beginning.
+ # This should force a full-table scan on the rtree.
+ #
+ set where {}
+ for {set j 0} {$j<$nDim} {incr j} {
+ lappend where mn$j>-10000 mx$j<10000
+ }
+ for {set j 0} {$j<$nDim} {incr j} {
+ set mn [rand 10000]
+ set mx [expr {$mn+[randincr 500]}]
+ lappend where mn$j>=$mn mx$j<=$mx
+ }
+ set where "WHERE [join $where { AND }]"
+ do_test rtree4-$nDim.2.$i.3 {
+ list $where [db eval "SELECT id FROM rx $where ORDER BY id"]
+ } [list $where [db eval "SELECT id FROM bx $where ORDER BY id"]]
+
+ # Do an overlaps query with surplus contraints at the beginning.
+ # This should force a full-table scan on the rtree.
+ #
+ set where {}
+ for {set j 0} {$j<$nDim} {incr j} {
+ lappend where mn$j>=-10000 mx$j<=10000
+ }
+ for {set j 0} {$j<$nDim} {incr j} {
+ set mn [rand 10000]
+ set mx [expr {$mn+[randincr 500]}]
+ lappend where mx$j>$mn mn$j<$mx
+ }
+ set where "WHERE [join $where { AND }]"
+ do_test rtree4-$nDim.2.$i.4 {
+ list $where [db eval "SELECT id FROM rx $where ORDER BY id"]
+ } [list $where [db eval "SELECT id FROM bx $where ORDER BY id"]]
+
+ # Do a contained-in query with surplus contraints at the end
+ #
+ set where {}
+ for {set j 0} {$j<$nDim} {incr j} {
+ set mn [rand 10000]
+ set mx [expr {$mn+[randincr 500]}]
+ lappend where mn$j>=$mn mx$j<$mx
+ }
+ for {set j [expr {$nDim-1}]} {$j>=0} {incr j -1} {
+ lappend where mn$j>=-10000 mx$j<10000
+ }
+ set where "WHERE [join $where { AND }]"
+ do_test rtree4-$nDim.2.$i.5 {
+ list $where [db eval "SELECT id FROM rx $where ORDER BY id"]
+ } [list $where [db eval "SELECT id FROM bx $where ORDER BY id"]]
+
+ # Do an overlaps query with surplus contraints at the end
+ #
+ set where {}
+ for {set j [expr {$nDim-1}]} {$j>=0} {incr j -1} {
+ set mn [rand 10000]
+ set mx [expr {$mn+[randincr 500]}]
+ lappend where mx$j>$mn mn$j<=$mx
+ }
+ for {set j 0} {$j<$nDim} {incr j} {
+ lappend where mx$j>-10000 mn$j<=10000
+ }
+ set where "WHERE [join $where { AND }]"
+ do_test rtree4-$nDim.2.$i.6 {
+ list $where [db eval "SELECT id FROM rx $where ORDER BY id"]
+ } [list $where [db eval "SELECT id FROM bx $where ORDER BY id"]]
+
+ # Do a contained-in query with surplus contraints where the
+ # constraints appear in a random order.
+ #
+ set where {}
+ for {set j 0} {$j<$nDim} {incr j} {
+ set mn1 [rand 10000]
+ set mn2 [expr {$mn1+[randincr 100]}]
+ set mx1 [expr {$mn2+[randincr 400]}]
+ set mx2 [expr {$mx1+[randincr 100]}]
+ lappend where mn$j>=$mn1 mn$j>$mn2 mx$j<$mx1 mx$j<=$mx2
+ }
+ set where "WHERE [join [scramble $where] { AND }]"
+ do_test rtree4-$nDim.2.$i.7 {
+ list $where [db eval "SELECT id FROM rx $where ORDER BY id"]
+ } [list $where [db eval "SELECT id FROM bx $where ORDER BY id"]]
+
+ # Do an overlaps query with surplus contraints where the
+ # constraints appear in a random order.
+ #
+ set where {}
+ for {set j 0} {$j<$nDim} {incr j} {
+ set mn1 [rand 10000]
+ set mn2 [expr {$mn1+[randincr 100]}]
+ set mx1 [expr {$mn2+[randincr 400]}]
+ set mx2 [expr {$mx1+[randincr 100]}]
+ lappend where mx$j>=$mn1 mx$j>$mn2 mn$j<$mx1 mn$j<=$mx2
+ }
+ set where "WHERE [join [scramble $where] { AND }]"
+ do_test rtree4-$nDim.2.$i.8 {
+ list $where [db eval "SELECT id FROM rx $where ORDER BY id"]
+ } [list $where [db eval "SELECT id FROM bx $where ORDER BY id"]]
+ }
+
+}
+
+finish_test
diff --git a/ext/rtree/rtree5.test b/ext/rtree/rtree5.test
new file mode 100644
index 0000000..ea2946f
--- /dev/null
+++ b/ext/rtree/rtree5.test
@@ -0,0 +1,78 @@
+# 2008 Jul 14
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+# The focus of this file is testing the r-tree extension when it is
+# configured to store values as 32 bit integers.
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source $testdir/tester.tcl
+
+ifcapable !rtree {
+ finish_test
+ return
+}
+
+do_test rtree5-1.0 {
+ execsql { CREATE VIRTUAL TABLE t1 USING rtree_i32(id, x1, x2, y1, y2) }
+} {}
+do_test rtree5-1.1 {
+ execsql { INSERT INTO t1 VALUES(1, 5, 10, 4, 11.2) }
+} {}
+do_test rtree5-1.2 {
+ execsql { SELECT * FROM t1 }
+} {1 5 10 4 11}
+do_test rtree5-1.3 {
+ execsql { SELECT typeof(x1) FROM t1 }
+} {integer}
+
+do_test rtree5-1.4 {
+ execsql { SELECT x1==5 FROM t1 }
+} {1}
+do_test rtree5-1.5 {
+ execsql { SELECT x1==5.2 FROM t1 }
+} {0}
+do_test rtree5-1.6 {
+ execsql { SELECT x1==5.0 FROM t1 }
+} {1}
+
+do_test rtree5-1.7 {
+ execsql { SELECT count(*) FROM t1 WHERE x1==5 }
+} {1}
+do_test rtree5-1.8 {
+ execsql { SELECT count(*) FROM t1 WHERE x1==5.2 }
+} {0}
+do_test rtree5-1.9 {
+ execsql { SELECT count(*) FROM t1 WHERE x1==5.0 }
+} {1}
+
+do_test rtree5-1.10 {
+ execsql { SELECT (1<<31)-5, (1<<31)-1, -1*(1<<31), -1*(1<<31)+5 }
+} {2147483643 2147483647 -2147483648 -2147483643}
+do_test rtree5-1.10 {
+ execsql {
+ INSERT INTO t1 VALUES(2, (1<<31)-5, (1<<31)-1, -1*(1<<31), -1*(1<<31)+5)
+ }
+} {}
+do_test rtree5-1.12 {
+ execsql { SELECT * FROM t1 WHERE id=2 }
+} {2 2147483643 2147483647 -2147483648 -2147483643}
+do_test rtree5-1.13 {
+ execsql {
+ SELECT * FROM t1 WHERE
+ x1=2147483643 AND x2=2147483647 AND
+ y1=-2147483648 AND y2=-2147483643
+ }
+} {2 2147483643 2147483647 -2147483648 -2147483643}
+
+finish_test
diff --git a/ext/rtree/rtree6.test b/ext/rtree/rtree6.test
new file mode 100644
index 0000000..ba0e53c
--- /dev/null
+++ b/ext/rtree/rtree6.test
@@ -0,0 +1,156 @@
+# 2008 Sep 1
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source $testdir/tester.tcl
+
+ifcapable !rtree {
+ finish_test
+ return
+}
+
+# Operator Byte Value
+# ----------------------
+# = 0x41 ('A')
+# <= 0x42 ('B')
+# < 0x43 ('C')
+# >= 0x44 ('D')
+# > 0x45 ('E')
+# ----------------------
+
+proc rtree_strategy {sql} {
+ set ret [list]
+ db eval "explain $sql" a {
+ if {$a(opcode) eq "VFilter"} {
+ lappend ret $a(p4)
+ }
+ }
+ set ret
+}
+
+proc query_plan {sql} {
+ set ret [list]
+ db eval "explain query plan $sql" a {
+ lappend ret $a(detail)
+ }
+ set ret
+}
+
+do_test rtree6-1.1 {
+ execsql {
+ CREATE TABLE t2(k INTEGER PRIMARY KEY, v);
+ CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2);
+ }
+} {}
+
+do_test rtree6-1.2 {
+ rtree_strategy {SELECT * FROM t1 WHERE x1>10}
+} {Ea}
+
+do_test rtree6-1.3 {
+ rtree_strategy {SELECT * FROM t1 WHERE x1<10}
+} {Ca}
+
+do_test rtree6-1.4 {
+ rtree_strategy {SELECT * FROM t1,t2 WHERE k=ii AND x1<10}
+} {Ca}
+
+do_test rtree6-1.5 {
+ rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10}
+} {Ca}
+
+do_eqp_test rtree6.2.1 {
+ SELECT * FROM t1,t2 WHERE k=+ii AND x1<10
+} {
+ 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca (~0 rows)}
+ 0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
+}
+
+do_eqp_test rtree6.2.2 {
+ SELECT * FROM t1,t2 WHERE k=ii AND x1<10
+} {
+ 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca (~0 rows)}
+ 0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
+}
+
+do_eqp_test rtree6.2.3 {
+ SELECT * FROM t1,t2 WHERE k=ii
+} {
+ 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2: (~0 rows)}
+ 0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
+}
+
+do_eqp_test rtree6.2.4 {
+ SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10
+} {
+ 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:CaEb (~0 rows)}
+ 0 1 1 {SCAN TABLE t2 (~100000 rows)}
+}
+
+do_eqp_test rtree6.2.5 {
+ SELECT * FROM t1,t2 WHERE k=ii AND x1<v
+} {
+ 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2: (~0 rows)}
+ 0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
+}
+
+do_execsql_test rtree6-3.1 {
+ CREATE VIRTUAL TABLE t3 USING rtree(id, x1, x2, y1, y2);
+ INSERT INTO t3 VALUES(NULL, 1, 1, 2, 2);
+ SELECT * FROM t3 WHERE
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5;
+} {1 1.0 1.0 2.0 2.0}
+
+do_test rtree6.3.2 {
+ rtree_strategy {
+ SELECT * FROM t3 WHERE
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5
+ }
+} {EaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEa}
+do_test rtree6.3.3 {
+ rtree_strategy {
+ SELECT * FROM t3 WHERE
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5
+ }
+} {EaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEaEa}
+
+do_execsql_test rtree6-3.4 {
+ SELECT * FROM t3 WHERE x1>0.5 AND x1>0.8 AND x1>1.1
+} {}
+do_execsql_test rtree6-3.5 {
+ SELECT * FROM t3 WHERE
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND
+ x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>1.1
+} {}
+
+
+finish_test
diff --git a/ext/rtree/rtree7.test b/ext/rtree/rtree7.test
new file mode 100644
index 0000000..31dae0c
--- /dev/null
+++ b/ext/rtree/rtree7.test
@@ -0,0 +1,58 @@
+# 2010 February 16
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+# Test that nothing goes wrong if an rtree table is created, then the
+# database page-size is modified. At one point (3.6.22), this was causing
+# malfunctions.
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source $testdir/tester.tcl
+
+ifcapable !rtree||!vacuum {
+ finish_test
+ return
+}
+
+do_test rtree7-1.1 {
+ execsql {
+ PRAGMA page_size = 1024;
+ CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, y1, y2);
+ INSERT INTO rt VALUES(1, 1, 2, 3, 4);
+ }
+} {}
+do_test rtree7-1.2 {
+ execsql { SELECT * FROM rt }
+} {1 1.0 2.0 3.0 4.0}
+do_test rtree7-1.3 {
+ execsql {
+ PRAGMA page_size = 2048;
+ VACUUM;
+ SELECT * FROM rt;
+ }
+} {1 1.0 2.0 3.0 4.0}
+do_test rtree7-1.4 {
+ for {set i 2} {$i <= 51} {incr i} {
+ execsql { INSERT INTO rt VALUES($i, 1, 2, 3, 4) }
+ }
+ execsql { SELECT sum(x1), sum(x2), sum(y1), sum(y2) FROM rt }
+} {51.0 102.0 153.0 204.0}
+do_test rtree7-1.5 {
+ execsql {
+ PRAGMA page_size = 512;
+ VACUUM;
+ SELECT sum(x1), sum(x2), sum(y1), sum(y2) FROM rt
+ }
+} {51.0 102.0 153.0 204.0}
+
+finish_test
diff --git a/ext/rtree/rtree8.test b/ext/rtree/rtree8.test
new file mode 100644
index 0000000..bf22cbf
--- /dev/null
+++ b/ext/rtree/rtree8.test
@@ -0,0 +1,171 @@
+# 2010 February 16
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source $testdir/tester.tcl
+ifcapable !rtree { finish_test ; return }
+
+#-------------------------------------------------------------------------
+# The following block of tests - rtree8-1.* - feature reading and writing
+# an r-tree table while there exist open cursors on it.
+#
+proc populate_t1 {n} {
+ execsql { DELETE FROM t1 }
+ for {set i 1} {$i <= $n} {incr i} {
+ execsql { INSERT INTO t1 VALUES($i, $i, $i+2) }
+ }
+}
+
+# A DELETE while a cursor is reading the table.
+#
+do_test rtree8-1.1.1 {
+ execsql { PRAGMA page_size = 512 }
+ execsql { CREATE VIRTUAL TABLE t1 USING rtree_i32(id, x1, x2) }
+ populate_t1 5
+} {}
+do_test rtree8-1.1.2 {
+ set res [list]
+ db eval { SELECT * FROM t1 } {
+ lappend res $x1 $x2
+ if {$id==3} { db eval { DELETE FROM t1 WHERE id>3 } }
+ }
+ set res
+} {1 3 2 4 3 5}
+do_test rtree8-1.1.3 {
+ execsql { SELECT * FROM t1 }
+} {1 1 3 2 2 4 3 3 5}
+
+# Many SELECTs on the same small table.
+#
+proc nested_select {n} {
+ set ::max $n
+ db eval { SELECT * FROM t1 } {
+ if {$id == $n} { nested_select [expr $n+1] }
+ }
+ return $::max
+}
+do_test rtree8-1.2.1 { populate_t1 50 } {}
+do_test rtree8-1.2.2 { nested_select 1 } {51}
+
+# This test runs many SELECT queries simultaneously against a large
+# table, causing a collision in the hash-table used to store r-tree
+# nodes internally.
+#
+populate_t1 1500
+do_execsql_test rtree8-1.3.1 { SELECT max(nodeno) FROM t1_node } {164}
+do_test rtree8-1.3.2 {
+ set rowids [execsql {SELECT min(rowid) FROM t1_rowid GROUP BY nodeno}]
+ set stmt_list [list]
+ foreach row $rowids {
+ set stmt [sqlite3_prepare db "SELECT * FROM t1 WHERE id = $row" -1 tail]
+ sqlite3_step $stmt
+ lappend res_list [sqlite3_column_int $stmt 0]
+ lappend stmt_list $stmt
+ }
+} {}
+do_test rtree8-1.3.3 { set res_list } $rowids
+do_execsql_test rtree8-1.3.4 { SELECT count(*) FROM t1 } {1500}
+do_test rtree8-1.3.5 {
+ foreach stmt $stmt_list { sqlite3_finalize $stmt }
+} {}
+
+
+#-------------------------------------------------------------------------
+# The following block of tests - rtree8-2.* - test a couple of database
+# corruption cases. In this case things are not corrupted at the b-tree
+# level, but the contents of the various tables used internally by an
+# r-tree table are inconsistent.
+#
+populate_t1 50
+do_execsql_test rtree8-2.1.1 { SELECT max(nodeno) FROM t1_node } {5}
+do_execsql_test rtree8-2.1.2 { DELETE FROM t1_node } {}
+for {set i 1} {$i <= 50} {incr i} {
+ do_catchsql_test rtree8-2.1.3.$i {
+ SELECT * FROM t1 WHERE id = $i
+ } {1 {database disk image is malformed}}
+}
+do_catchsql_test rtree8-2.1.4 {
+ SELECT * FROM t1
+} {1 {database disk image is malformed}}
+do_catchsql_test rtree8-2.1.5 {
+ DELETE FROM t1
+} {1 {database disk image is malformed}}
+
+do_execsql_test rtree8-2.1.6 {
+ DROP TABLE t1;
+ CREATE VIRTUAL TABLE t1 USING rtree_i32(id, x1, x2);
+} {}
+
+
+populate_t1 50
+do_execsql_test rtree8-2.2.1 {
+ DELETE FROM t1_parent
+} {}
+do_catchsql_test rtree8-2.2.2 {
+ DELETE FROM t1 WHERE id=25
+} {1 {database disk image is malformed}}
+do_execsql_test rtree8-2.2.3 {
+ DROP TABLE t1;
+ CREATE VIRTUAL TABLE t1 USING rtree_i32(id, x1, x2);
+} {}
+
+
+#-------------------------------------------------------------------------
+# Test that trying to use the MATCH operator with the r-tree module does
+# not confuse it.
+#
+populate_t1 10
+do_catchsql_test rtree8-3.1 {
+ SELECT * FROM t1 WHERE x1 MATCH '1234'
+} {1 {SQL logic error or missing database}}
+
+#-------------------------------------------------------------------------
+# Test a couple of invalid arguments to rtreedepth().
+#
+do_catchsql_test rtree8-4.1 {
+ SELECT rtreedepth('hello world')
+} {1 {Invalid argument to rtreedepth()}}
+do_catchsql_test rtree8-4.2 {
+ SELECT rtreedepth(X'00')
+} {1 {Invalid argument to rtreedepth()}}
+
+
+#-------------------------------------------------------------------------
+# Delete half of a lopsided tree.
+#
+do_execsql_test rtree8-5.1 {
+ CREATE VIRTUAL TABLE t2 USING rtree_i32(id, x1, x2)
+} {}
+do_test rtree8-5.2 {
+ execsql BEGIN
+ for {set i 0} {$i < 100} {incr i} {
+ execsql { INSERT INTO t2 VALUES($i, 100, 101) }
+ }
+ for {set i 100} {$i < 200} {incr i} {
+ execsql { INSERT INTO t2 VALUES($i, 1000, 1001) }
+ }
+ execsql COMMIT
+} {}
+do_test rtree8-5.3 {
+ execsql BEGIN
+ for {set i 0} {$i < 200} {incr i} {
+ execsql { DELETE FROM t2 WHERE id = $i }
+ }
+ execsql COMMIT
+} {}
+
+
+finish_test
+
diff --git a/ext/rtree/rtree9.test b/ext/rtree/rtree9.test
new file mode 100644
index 0000000..ddee277
--- /dev/null
+++ b/ext/rtree/rtree9.test
@@ -0,0 +1,125 @@
+# 2010 August 28
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+# This file contains tests for the r-tree module. Specifically, it tests
+# that custom r-tree queries (geometry callbacks) work.
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source $testdir/tester.tcl
+ifcapable !rtree { finish_test ; return }
+
+register_cube_geom db
+
+do_execsql_test rtree9-1.1 {
+ CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, y1, y2, z1, z2);
+ INSERT INTO rt VALUES(1, 1, 2, 1, 2, 1, 2);
+} {}
+do_execsql_test rtree9-1.2 {
+ SELECT * FROM rt WHERE id MATCH cube(0, 0, 0, 2, 2, 2);
+} {1 1.0 2.0 1.0 2.0 1.0 2.0}
+do_execsql_test rtree9-1.3 {
+ SELECT * FROM rt WHERE id MATCH cube(3, 3, 3, 2, 2, 2);
+} {}
+do_execsql_test rtree9-1.4 {
+ DELETE FROM rt;
+} {}
+
+
+for {set i 0} {$i < 1000} {incr i} {
+ set x [expr $i%10]
+ set y [expr ($i/10)%10]
+ set z [expr ($i/100)%10]
+ execsql { INSERT INTO rt VALUES($i, $x, $x+1, $y, $y+1, $z, $z+1) }
+}
+do_execsql_test rtree9-2.1 {
+ SELECT id FROM rt WHERE id MATCH cube(2.5, 2.5, 2.5, 1, 1, 1) ORDER BY id;
+} {222 223 232 233 322 323 332 333}
+do_execsql_test rtree9-2.2 {
+ SELECT id FROM rt WHERE id MATCH cube(5.5, 5.5, 5.5, 1, 1, 1) ORDER BY id;
+} {555 556 565 566 655 656 665 666}
+
+
+do_execsql_test rtree9-3.1 {
+ CREATE VIRTUAL TABLE rt32 USING rtree_i32(id, x1, x2, y1, y2, z1, z2);
+} {}
+for {set i 0} {$i < 1000} {incr i} {
+ set x [expr $i%10]
+ set y [expr ($i/10)%10]
+ set z [expr ($i/100)%10]
+ execsql { INSERT INTO rt32 VALUES($i, $x, $x+1, $y, $y+1, $z, $z+1) }
+}
+do_execsql_test rtree9-3.2 {
+ SELECT id FROM rt32 WHERE id MATCH cube(3, 3, 3, 1, 1, 1) ORDER BY id;
+} {222 223 224 232 233 234 242 243 244 322 323 324 332 333 334 342 343 344 422 423 424 432 433 434 442 443 444}
+do_execsql_test rtree9-3.3 {
+ SELECT id FROM rt32 WHERE id MATCH cube(5.5, 5.5, 5.5, 1, 1, 1) ORDER BY id;
+} {555 556 565 566 655 656 665 666}
+
+
+do_catchsql_test rtree9-4.1 {
+ SELECT id FROM rt32 WHERE id MATCH cube(5.5, 5.5, 1, 1, 1) ORDER BY id;
+} {1 {SQL logic error or missing database}}
+for {set x 2} {$x<200} {incr x 2} {
+ do_catchsql_test rtree9-4.2.[expr $x/2] {
+ SELECT id FROM rt WHERE id MATCH randomblob($x)
+ } {1 {SQL logic error or missing database}}
+}
+do_catchsql_test rtree9-4.3 {
+ SELECT id FROM rt WHERE id MATCH CAST(
+ (cube(5.5, 5.5, 5.5, 1, 1, 1) || X'1234567812345678') AS blob
+ )
+} {1 {SQL logic error or missing database}}
+
+
+#-------------------------------------------------------------------------
+# Test the example 2d "circle" geometry callback.
+#
+register_circle_geom db
+
+breakpoint
+do_execsql_test rtree9-5.1 {
+ CREATE VIRTUAL TABLE rt2 USING rtree(id, xmin, xmax, ymin, ymax);
+
+ INSERT INTO rt2 VALUES(1, 1, 2, 1, 2);
+ INSERT INTO rt2 VALUES(2, 1, 2, -2, -1);
+ INSERT INTO rt2 VALUES(3, -2, -1, -2, -1);
+ INSERT INTO rt2 VALUES(4, -2, -1, 1, 2);
+
+ INSERT INTO rt2 VALUES(5, 2, 3, 2, 3);
+ INSERT INTO rt2 VALUES(6, 2, 3, -3, -2);
+ INSERT INTO rt2 VALUES(7, -3, -2, -3, -2);
+ INSERT INTO rt2 VALUES(8, -3, -2, 2, 3);
+
+ INSERT INTO rt2 VALUES(9, 1.8, 3, 1.8, 3);
+ INSERT INTO rt2 VALUES(10, 1.8, 3, -3, -1.8);
+ INSERT INTO rt2 VALUES(11, -3, -1.8, -3, -1.8);
+ INSERT INTO rt2 VALUES(12, -3, -1.8, 1.8, 3);
+
+ INSERT INTO rt2 VALUES(13, -15, 15, 1.8, 2.2);
+ INSERT INTO rt2 VALUES(14, -15, 15, -2.2, -1.8);
+ INSERT INTO rt2 VALUES(15, 1.8, 2.2, -15, 15);
+ INSERT INTO rt2 VALUES(16, -2.2, -1.8, -15, 15);
+
+ INSERT INTO rt2 VALUES(17, -100, 100, -100, 100);
+} {}
+
+do_execsql_test rtree9-5.2 {
+ SELECT id FROM rt2 WHERE id MATCH circle(0.0, 0.0, 2.0);
+} {1 2 3 4 13 14 15 16 17}
+
+do_execsql_test rtree9-5.3 {
+ UPDATE rt2 SET xmin=xmin+5, ymin=ymin+5, xmax=xmax+5, ymax=ymax+5;
+ SELECT id FROM rt2 WHERE id MATCH circle(5.0, 5.0, 2.0);
+} {1 2 3 4 13 14 15 16 17}
+
+finish_test
diff --git a/ext/rtree/rtreeA.test b/ext/rtree/rtreeA.test
new file mode 100644
index 0000000..e377b01
--- /dev/null
+++ b/ext/rtree/rtreeA.test
@@ -0,0 +1,220 @@
+# 2010 September 22
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+# This file contains tests for the r-tree module. Specifically, it tests
+# that corrupt or inconsistent databases do not cause crashes in the r-tree
+# module.
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source $testdir/tester.tcl
+ifcapable !rtree { finish_test ; return }
+
+proc create_t1 {} {
+ db close
+ forcedelete test.db
+ sqlite3 db test.db
+ execsql {
+ PRAGMA page_size = 1024;
+ CREATE VIRTUAL TABLE t1 USING rtree(id, x1, x2, y1, y2);
+ }
+}
+proc populate_t1 {} {
+ execsql BEGIN
+ for {set i 0} {$i < 500} {incr i} {
+ set x2 [expr $i+5]
+ set y2 [expr $i+5]
+ execsql { INSERT INTO t1 VALUES($i, $i, $x2, $i, $y2) }
+ }
+ execsql COMMIT
+}
+
+proc truncate_node {nodeno nTrunc} {
+ set blob [db one {SELECT data FROM t1_node WHERE nodeno=$nodeno}]
+ if {$nTrunc<0} {set nTrunc "end-$nTrunc"}
+ set blob [string range $blob 0 $nTrunc]
+ db eval { UPDATE t1_node SET data = $blob WHERE nodeno=$nodeno }
+}
+
+proc set_tree_depth {tbl {newvalue ""}} {
+ set blob [db one "SELECT data FROM ${tbl}_node WHERE nodeno=1"]
+
+ if {$newvalue == ""} {
+ binary scan $blob Su oldvalue
+ return $oldvalue
+ }
+
+ set blob [binary format Sua* $newvalue [string range $blob 2 end]]
+ db eval "UPDATE ${tbl}_node SET data = \$blob WHERE nodeno=1"
+ return [set_tree_depth $tbl]
+}
+
+proc set_entry_count {tbl nodeno {newvalue ""}} {
+ set blob [db one "SELECT data FROM ${tbl}_node WHERE nodeno=$nodeno"]
+
+ if {$newvalue == ""} {
+ binary scan [string range $blob 2 end] Su oldvalue
+ return $oldvalue
+ }
+
+ set blob [binary format a*Sua* \
+ [string range $blob 0 1] $newvalue [string range $blob 4 end]
+ ]
+ db eval "UPDATE ${tbl}_node SET data = \$blob WHERE nodeno=$nodeno"
+ return [set_entry_count $tbl $nodeno]
+}
+
+
+proc do_corruption_tests {prefix args} {
+ set testarray [lindex $args end]
+ set errormsg {database disk image is malformed}
+
+ foreach {z value} [lrange $args 0 end-1] {
+ set n [string length $z]
+ if {$n>=2 && [string equal -length $n $z "-error"]} {
+ set errormsg $value
+ }
+ }
+
+ foreach {tn sql} $testarray {
+ do_catchsql_test $prefix.$tn $sql [list 1 $errormsg]
+ }
+}
+
+#-------------------------------------------------------------------------
+# Test the libraries response if the %_node table is completely empty
+# (i.e. the root node is missing), or has been removed from the database
+# entirely.
+#
+create_t1
+populate_t1
+do_execsql_test rtreeA-1.0 {
+ DELETE FROM t1_node;
+} {}
+
+do_corruption_tests rtreeA-1.1 {
+ 1 "SELECT * FROM t1"
+ 2 "SELECT * FROM t1 WHERE rowid=5"
+ 3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
+ 4 "SELECT * FROM t1 WHERE x1<10 AND x2>12"
+}
+
+do_execsql_test rtreeA-1.2.0 { DROP TABLE t1_node } {}
+do_corruption_tests rtreeA-1.2 -error "SQL logic error or missing database" {
+ 1 "SELECT * FROM t1"
+ 2 "SELECT * FROM t1 WHERE rowid=5"
+ 3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
+ 4 "SELECT * FROM t1 WHERE x1<10 AND x2>12"
+}
+
+#-------------------------------------------------------------------------
+# Test the libraries response if some of the entries in the %_node table
+# are the wrong size.
+#
+create_t1
+populate_t1
+do_test rtreeA-2.1.0 {
+ set nodes [db eval {select nodeno FROM t1_node}]
+ foreach {a b c} $nodes { truncate_node $c 200 }
+} {}
+do_corruption_tests rtreeA-2.1 {
+ 1 "SELECT * FROM t1"
+ 2 "SELECT * FROM t1 WHERE rowid=5"
+ 3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
+ 4 "SELECT * FROM t1 WHERE x1<10 AND x2>12"
+}
+
+create_t1
+populate_t1
+do_test rtreeA-2.2.0 { truncate_node 1 200 } {}
+do_corruption_tests rtreeA-2.2 {
+ 1 "SELECT * FROM t1"
+ 2 "SELECT * FROM t1 WHERE rowid=5"
+ 3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
+ 4 "SELECT * FROM t1 WHERE x1<10 AND x2>12"
+}
+
+#-------------------------------------------------------------------------
+# Set the "depth" of the tree stored on the root node incorrectly. Test
+# that this does not cause any problems.
+#
+create_t1
+populate_t1
+do_test rtreeA-3.1.0.1 { set_tree_depth t1 } {1}
+do_test rtreeA-3.1.0.2 { set_tree_depth t1 3 } {3}
+do_corruption_tests rtreeA-3.1 {
+ 1 "SELECT * FROM t1"
+ 2 "SELECT * FROM t1 WHERE rowid=5"
+ 3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
+}
+
+do_test rtreeA-3.2.0 { set_tree_depth t1 1000 } {1000}
+do_corruption_tests rtreeA-3.2 {
+ 1 "SELECT * FROM t1"
+ 2 "SELECT * FROM t1 WHERE rowid=5"
+ 3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
+}
+
+create_t1
+populate_t1
+do_test rtreeA-3.3.0 {
+ execsql { DELETE FROM t1 WHERE rowid = 0 }
+ set_tree_depth t1 65535
+} {65535}
+do_corruption_tests rtreeA-3.3 {
+ 1 "SELECT * FROM t1"
+ 2 "SELECT * FROM t1 WHERE rowid=5"
+ 3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
+}
+
+#-------------------------------------------------------------------------
+# Set the "number of entries" field on some nodes incorrectly.
+#
+create_t1
+populate_t1
+do_test rtreeA-4.1.0 {
+ set_entry_count t1 1 4000
+} {4000}
+do_corruption_tests rtreeA-4.1 {
+ 1 "SELECT * FROM t1"
+ 2 "SELECT * FROM t1 WHERE rowid=5"
+ 3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
+ 4 "SELECT * FROM t1 WHERE x1<10 AND x2>12"
+}
+
+#-------------------------------------------------------------------------
+# Remove entries from the %_parent table and check that this does not
+# cause a crash.
+#
+create_t1
+populate_t1
+do_execsql_test rtreeA-5.1.0 { DELETE FROM t1_parent } {}
+do_corruption_tests rtreeA-5.1 {
+ 1 "DELETE FROM t1 WHERE rowid = 5"
+ 2 "DELETE FROM t1"
+}
+
+#-------------------------------------------------------------------------
+# Add some bad entries to the %_parent table.
+#
+create_t1
+populate_t1
+do_execsql_test rtreeA-6.1.0 {
+ UPDATE t1_parent set parentnode = parentnode+1
+} {}
+do_corruption_tests rtreeA-6.1 {
+ 1 "DELETE FROM t1 WHERE rowid = 5"
+ 2 "UPDATE t1 SET x1=x1+1, x2=x2+1"
+}
+
+
+finish_test
diff --git a/ext/rtree/rtreeB.test b/ext/rtree/rtreeB.test
new file mode 100644
index 0000000..2756fce
--- /dev/null
+++ b/ext/rtree/rtreeB.test
@@ -0,0 +1,34 @@
+# 2011 March 2
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+# Make sure the rtreenode() testing function can handle entries with
+# 64-bit rowids.
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source $testdir/tester.tcl
+ifcapable !rtree { finish_test ; return }
+
+do_test rtreeB-1.1 {
+ db eval {
+ CREATE VIRTUAL TABLE t1 USING rtree(ii, x0, y0, x1, y1);
+ INSERT INTO t1 VALUES(1073741824, 0.0, 0.0, 100.0, 100.0);
+ INSERT INTO t1 VALUES(2147483646, 0.0, 0.0, 200.0, 200.0);
+ INSERT INTO t1 VALUES(4294967296, 0.0, 0.0, 300.0, 300.0);
+ INSERT INTO t1 VALUES(8589934592, 20.0, 20.0, 150.0, 150.0);
+ INSERT INTO t1 VALUES(9223372036854775807, 150, 150, 400, 400);
+ SELECT rtreenode(2, data) FROM t1_node;
+ }
+} {{{1073741824 0.000000 0.000000 100.000000 100.000000} {2147483646 0.000000 0.000000 200.000000 200.000000} {4294967296 0.000000 0.000000 300.000000 300.000000} {8589934592 20.000000 20.000000 150.000000 150.000000} {9223372036854775807 150.000000 150.000000 400.000000 400.000000}}}
+
+
+finish_test
diff --git a/ext/rtree/rtree_perf.tcl b/ext/rtree/rtree_perf.tcl
new file mode 100644
index 0000000..e42e685
--- /dev/null
+++ b/ext/rtree/rtree_perf.tcl
@@ -0,0 +1,74 @@
+
+set testdir [file join [file dirname $argv0] .. .. test]
+source $testdir/tester.tcl
+
+ifcapable !rtree {
+ finish_test
+ return
+}
+
+set NROW 10000
+set NQUERY 500
+
+puts "Generating $NROW rows of data..."
+set data [list]
+for {set ii 0} {$ii < $NROW} {incr ii} {
+ set x1 [expr {rand()*1000}]
+ set x2 [expr {$x1+rand()*50}]
+ set y1 [expr {rand()*1000}]
+ set y2 [expr {$y1+rand()*50}]
+ lappend data $x1 $x2 $y1 $y2
+}
+puts "Finished generating data"
+
+
+set sql1 {CREATE TABLE btree(ii INTEGER PRIMARY KEY, x1, x2, y1, y2)}
+set sql2 {CREATE VIRTUAL TABLE rtree USING rtree(ii, x1, x2, y1, y2)}
+puts "Creating tables:"
+puts " $sql1"
+puts " $sql2"
+db eval $sql1
+db eval $sql2
+
+db eval "pragma cache_size=100"
+
+puts -nonewline "Inserting into btree... "
+flush stdout
+set btree_time [time {db transaction {
+ set ii 1
+ foreach {x1 x2 y1 y2} $data {
+ db eval {INSERT INTO btree VALUES($ii, $x1, $x2, $y1, $y2)}
+ incr ii
+ }
+}}]
+puts "$btree_time"
+
+puts -nonewline "Inserting into rtree... "
+flush stdout
+set rtree_time [time {db transaction {
+ set ii 1
+ foreach {x1 x2 y1 y2} $data {
+ incr ii
+ db eval {INSERT INTO rtree VALUES($ii, $x1, $x2, $y1, $y2)}
+ }
+}}]
+puts "$rtree_time"
+
+
+puts -nonewline "Selecting from btree... "
+flush stdout
+set btree_select_time [time {
+ foreach {x1 x2 y1 y2} [lrange $data 0 [expr $NQUERY*4-1]] {
+ db eval {SELECT * FROM btree WHERE x1<$x1 AND x2>$x2 AND y1<$y1 AND y2>$y2}
+ }
+}]
+puts "$btree_select_time"
+
+puts -nonewline "Selecting from rtree... "
+flush stdout
+set rtree_select_time [time {
+ foreach {x1 x2 y1 y2} [lrange $data 0 [expr $NQUERY*4-1]] {
+ db eval {SELECT * FROM rtree WHERE x1<$x1 AND x2>$x2 AND y1<$y1 AND y2>$y2}
+ }
+}]
+puts "$rtree_select_time"
diff --git a/ext/rtree/rtree_util.tcl b/ext/rtree/rtree_util.tcl
new file mode 100644
index 0000000..50a1b58
--- /dev/null
+++ b/ext/rtree/rtree_util.tcl
@@ -0,0 +1,192 @@
+# 2008 Feb 19
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+# This file contains Tcl code that may be useful for testing or
+# analyzing r-tree structures created with this module. It is
+# used by both test procedures and the r-tree viewer application.
+#
+
+
+#--------------------------------------------------------------------------
+# PUBLIC API:
+#
+# rtree_depth
+# rtree_ndim
+# rtree_node
+# rtree_mincells
+# rtree_check
+# rtree_dump
+# rtree_treedump
+#
+
+proc rtree_depth {db zTab} {
+ $db one "SELECT rtreedepth(data) FROM ${zTab}_node WHERE nodeno=1"
+}
+
+proc rtree_nodedepth {db zTab iNode} {
+ set iDepth [rtree_depth $db $zTab]
+
+ set ii $iNode
+ while {$ii != 1} {
+ set sql "SELECT parentnode FROM ${zTab}_parent WHERE nodeno = $ii"
+ set ii [db one $sql]
+ incr iDepth -1
+ }
+
+ return $iDepth
+}
+
+# Return the number of dimensions of the rtree.
+#
+proc rtree_ndim {db zTab} {
+ set nDim [expr {(([llength [$db eval "pragma table_info($zTab)"]]/6)-1)/2}]
+}
+
+# Return the contents of rtree node $iNode.
+#
+proc rtree_node {db zTab iNode {iPrec 6}} {
+ set nDim [rtree_ndim $db $zTab]
+ set sql "
+ SELECT rtreenode($nDim, data) FROM ${zTab}_node WHERE nodeno = $iNode
+ "
+ set node [db one $sql]
+
+ set nCell [llength $node]
+ set nCoord [expr $nDim*2]
+ for {set ii 0} {$ii < $nCell} {incr ii} {
+ for {set jj 1} {$jj <= $nCoord} {incr jj} {
+ set newval [format "%.${iPrec}f" [lindex $node $ii $jj]]
+ lset node $ii $jj $newval
+ }
+ }
+ set node
+}
+
+proc rtree_mincells {db zTab} {
+ set n [$db one "select length(data) FROM ${zTab}_node LIMIT 1"]
+ set nMax [expr {int(($n-4)/(8+[rtree_ndim $db $zTab]*2*4))}]
+ return [expr {int($nMax/3)}]
+}
+
+# An integrity check for the rtree $zTab accessible via database
+# connection $db.
+#
+proc rtree_check {db zTab} {
+ array unset ::checked
+
+ # Check each r-tree node.
+ set rc [catch {
+ rtree_node_check $db $zTab 1 [rtree_depth $db $zTab]
+ } msg]
+ if {$rc && $msg ne ""} { error $msg }
+
+ # Check that the _rowid and _parent tables have the right
+ # number of entries.
+ set nNode [$db one "SELECT count(*) FROM ${zTab}_node"]
+ set nRow [$db one "SELECT count(*) FROM ${zTab}"]
+ set nRowid [$db one "SELECT count(*) FROM ${zTab}_rowid"]
+ set nParent [$db one "SELECT count(*) FROM ${zTab}_parent"]
+
+ if {$nNode != ($nParent+1)} {
+ error "Wrong number of entries in ${zTab}_parent"
+ }
+ if {$nRow != $nRowid} {
+ error "Wrong number of entries in ${zTab}_rowid"
+ }
+
+ return $rc
+}
+
+proc rtree_node_check {db zTab iNode iDepth} {
+ if {[info exists ::checked($iNode)]} { error "Second ref to $iNode" }
+ set ::checked($iNode) 1
+
+ set node [rtree_node $db $zTab $iNode]
+ if {$iNode!=1 && [llength $node]==0} { error "No such node: $iNode" }
+
+ if {$iNode != 1 && [llength $node]<[rtree_mincells $db $zTab]} {
+ puts "Node $iNode: Has only [llength $node] cells"
+ error ""
+ }
+ if {$iNode == 1 && [llength $node]==1 && [rtree_depth $db $zTab]>0} {
+ set depth [rtree_depth $db $zTab]
+ puts "Node $iNode: Has only 1 child (tree depth is $depth)"
+ error ""
+ }
+
+ set nDim [expr {([llength [lindex $node 0]]-1)/2}]
+
+ if {$iDepth > 0} {
+ set d [expr $iDepth-1]
+ foreach cell $node {
+ set shouldbe [rtree_node_check $db $zTab [lindex $cell 0] $d]
+ if {$cell ne $shouldbe} {
+ puts "Node $iNode: Cell is: {$cell}, should be {$shouldbe}"
+ error ""
+ }
+ }
+ }
+
+ set mapping_table "${zTab}_parent"
+ set mapping_sql "SELECT parentnode FROM $mapping_table WHERE rowid = \$rowid"
+ if {$iDepth==0} {
+ set mapping_table "${zTab}_rowid"
+ set mapping_sql "SELECT nodeno FROM $mapping_table WHERE rowid = \$rowid"
+ }
+ foreach cell $node {
+ set rowid [lindex $cell 0]
+ set mapping [db one $mapping_sql]
+ if {$mapping != $iNode} {
+ puts "Node $iNode: $mapping_table entry for cell $rowid is $mapping"
+ error ""
+ }
+ }
+
+ set ret [list $iNode]
+ for {set ii 1} {$ii <= $nDim*2} {incr ii} {
+ set f [lindex $node 0 $ii]
+ foreach cell $node {
+ set f2 [lindex $cell $ii]
+ if {($ii%2)==1 && $f2<$f} {set f $f2}
+ if {($ii%2)==0 && $f2>$f} {set f $f2}
+ }
+ lappend ret $f
+ }
+ return $ret
+}
+
+proc rtree_dump {db zTab} {
+ set zRet ""
+ set nDim [expr {(([llength [$db eval "pragma table_info($zTab)"]]/6)-1)/2}]
+ set sql "SELECT nodeno, rtreenode($nDim, data) AS node FROM ${zTab}_node"
+ $db eval $sql {
+ append zRet [format "% -10s %s\n" $nodeno $node]
+ }
+ set zRet
+}
+
+proc rtree_nodetreedump {db zTab zIndent iDepth iNode} {
+ set ret ""
+ set node [rtree_node $db $zTab $iNode 1]
+ append ret [format "%-3d %s%s\n" $iNode $zIndent $node]
+ if {$iDepth>0} {
+ foreach cell $node {
+ set i [lindex $cell 0]
+ append ret [rtree_nodetreedump $db $zTab "$zIndent " [expr $iDepth-1] $i]
+ }
+ }
+ set ret
+}
+
+proc rtree_treedump {db zTab} {
+ set d [rtree_depth $db $zTab]
+ rtree_nodetreedump $db $zTab "" $d 1
+}
diff --git a/ext/rtree/sqlite3rtree.h b/ext/rtree/sqlite3rtree.h
new file mode 100644
index 0000000..cffb300
--- /dev/null
+++ b/ext/rtree/sqlite3rtree.h
@@ -0,0 +1,56 @@
+/*
+** 2010 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*/
+
+#ifndef _SQLITE3RTREE_H_
+#define _SQLITE3RTREE_H_
+
+#include <sqlite3.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;
+
+/*
+** Register a geometry callback named zGeom that can be used as part of an
+** R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
+*/
+int sqlite3_rtree_geometry_callback(
+ sqlite3 *db,
+ const char *zGeom,
+ int (*xGeom)(sqlite3_rtree_geometry *, int nCoord, double *aCoord, int *pRes),
+ void *pContext
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the first
+** argument to callbacks registered using rtree_geometry_callback().
+*/
+struct sqlite3_rtree_geometry {
+ void *pContext; /* Copy of pContext passed to s_r_g_c() */
+ int nParam; /* Size of array aParam[] */
+ double *aParam; /* Parameters passed to SQL geom function */
+ void *pUser; /* Callback implementation user data */
+ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */
+};
+
+
+#ifdef __cplusplus
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* ifndef _SQLITE3RTREE_H_ */
diff --git a/ext/rtree/tkt3363.test b/ext/rtree/tkt3363.test
new file mode 100644
index 0000000..db05ed5
--- /dev/null
+++ b/ext/rtree/tkt3363.test
@@ -0,0 +1,50 @@
+# 2008 Sep 08
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+# The focus of this file is testing that ticket #3363 is fixed.
+#
+
+if {![info exists testdir]} {
+ set testdir [file join [file dirname [info script]] .. .. test]
+}
+source [file join [file dirname [info script]] rtree_util.tcl]
+source $testdir/tester.tcl
+
+ifcapable !rtree {
+ finish_test
+ return
+}
+
+do_test tkt3363.1.1 {
+ execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2) }
+} {}
+
+do_test tkt3363.1.2 {
+ for {set ii 1} {$ii < 50} {incr ii} {
+ set x 1000000
+ set y [expr 4000000 + $ii*10]
+ execsql { INSERT INTO t1 VALUES($ii, $x, $x, $y, $y) }
+ }
+} {}
+
+do_test tkt3363.1.3 {
+ execsql {
+ SELECT count(*) FROM t1 WHERE +y2>4000425.0;
+ }
+} {7}
+
+do_test tkt3363.1.4 {
+ execsql {
+ SELECT count(*) FROM t1 WHERE y2>4000425.0;
+ }
+} {7}
+
+finish_test
diff --git a/ext/rtree/viewrtree.tcl b/ext/rtree/viewrtree.tcl
new file mode 100644
index 0000000..794677f
--- /dev/null
+++ b/ext/rtree/viewrtree.tcl
@@ -0,0 +1,188 @@
+
+load ./libsqlite3.dylib
+#package require sqlite3
+source [file join [file dirname $argv0] rtree_util.tcl]
+
+wm title . "SQLite r-tree viewer"
+
+if {[llength $argv]!=1} {
+ puts stderr "Usage: $argv0 <database-file>"
+ puts stderr ""
+ exit
+}
+sqlite3 db [lindex $argv 0]
+
+canvas .c -background white -width 400 -height 300 -highlightthickness 0
+
+button .b -text "Parent Node" -command {
+ set sql "SELECT parentnode FROM $::O(zTab)_parent WHERE nodeno = $::O(iNode)"
+ set ::O(iNode) [db one $sql]
+ if {$::O(iNode) eq ""} {set ::O(iNode) 1}
+ view_node
+}
+
+set O(iNode) 1
+set O(zTab) ""
+set O(listbox_captions) [list]
+set O(listbox_itemmap) [list]
+set O(listbox_highlight) -1
+
+listbox .l -listvariable ::O(listbox_captions) -yscrollcommand {.ls set}
+scrollbar .ls -command {.l yview}
+label .status -font courier -anchor w
+label .title -anchor w -text "Node 1:" -background white -borderwidth 0
+
+
+set rtree_tables [list]
+db eval {
+ SELECT name
+ FROM sqlite_master
+ WHERE type='table' AND sql LIKE '%virtual%table%using%rtree%'
+} {
+ set nCol [expr [llength [db eval "pragma table_info($name)"]]/6]
+ if {$nCol != 5} {
+ puts stderr "Not viewing $name - is not 2-dimensional"
+ } else {
+ lappend rtree_tables [list Table $name]
+ }
+}
+if {$rtree_tables eq ""} {
+ puts stderr "Cannot find an r-tree table in database [lindex $argv 0]"
+ puts stderr ""
+ exit
+}
+eval tk_optionMenu .select option_var $rtree_tables
+trace add variable option_var write set_option_var
+proc set_option_var {args} {
+ set ::O(zTab) [lindex $::option_var 1]
+ set ::O(iNode) 1
+ view_node
+}
+set ::O(zTab) [lindex $::rtree_tables 0 1]
+
+bind .l <1> {listbox_click [.l nearest %y]}
+bind .l <Motion> {listbox_mouseover [.l nearest %y]}
+bind .l <Leave> {listbox_mouseover -1}
+
+proc listbox_click {sel} {
+ if {$sel ne ""} {
+ set ::O(iNode) [lindex $::O(listbox_captions) $sel 1]
+ view_node
+ }
+}
+proc listbox_mouseover {i} {
+ set oldid [lindex $::O(listbox_itemmap) $::O(listbox_highlight)]
+ .c itemconfigure $oldid -fill ""
+
+ .l selection clear 0 end
+ .status configure -text ""
+ if {$i>=0} {
+ set id [lindex $::O(listbox_itemmap) $i]
+ .c itemconfigure $id -fill grey
+ .c lower $id
+ set ::O(listbox_highlight) $i
+ .l selection set $i
+ .status configure -text [cell_report db $::O(zTab) $::O(iNode) $i]
+ }
+}
+
+grid configure .select -row 0 -column 0 -columnspan 2 -sticky nsew
+grid configure .b -row 1 -column 0 -columnspan 2 -sticky nsew
+grid configure .l -row 2 -column 0 -sticky nsew
+grid configure .status -row 3 -column 0 -columnspan 3 -sticky nsew
+
+grid configure .title -row 0 -column 2 -sticky nsew
+grid configure .c -row 1 -column 2 -rowspan 2 -sticky nsew
+grid configure .ls -row 2 -column 1 -sticky nsew
+
+grid columnconfigure . 2 -weight 1
+grid rowconfigure . 2 -weight 1
+
+proc node_bbox {data} {
+ set xmin 0
+ set xmax 0
+ set ymin 0
+ set ymax 0
+ foreach {rowid xmin xmax ymin ymax} [lindex $data 0] break
+ foreach cell [lrange $data 1 end] {
+ foreach {rowid x1 x2 y1 y2} $cell break
+ if {$x1 < $xmin} {set xmin $x1}
+ if {$x2 > $xmax} {set xmax $x2}
+ if {$y1 < $ymin} {set ymin $y1}
+ if {$y2 > $ymax} {set ymax $y2}
+ }
+ list $xmin $xmax $ymin $ymax
+}
+
+proc view_node {} {
+ set iNode $::O(iNode)
+ set zTab $::O(zTab)
+
+ set data [rtree_node db $zTab $iNode 12]
+ set depth [rtree_nodedepth db $zTab $iNode]
+
+ .c delete all
+ set ::O(listbox_captions) [list]
+ set ::O(listbox_itemmap) [list]
+ set $::O(listbox_highlight) -1
+
+ .b configure -state normal
+ if {$iNode == 1} {.b configure -state disabled}
+ .title configure -text "Node $iNode: [cell_report db $zTab $iNode -1]"
+
+ foreach {xmin xmax ymin ymax} [node_bbox $data] break
+ set total_area 0.0
+
+ set xscale [expr {double([winfo width .c]-20)/($xmax-$xmin)}]
+ set yscale [expr {double([winfo height .c]-20)/($ymax-$ymin)}]
+
+ set xoff [expr {10.0 - $xmin*$xscale}]
+ set yoff [expr {10.0 - $ymin*$yscale}]
+
+ foreach cell $data {
+ foreach {rowid x1 x2 y1 y2} $cell break
+ set total_area [expr {$total_area + ($x2-$x1)*($y2-$y1)}]
+ set x1 [expr {$x1*$xscale + $xoff}]
+ set x2 [expr {$x2*$xscale + $xoff}]
+ set y1 [expr {$y1*$yscale + $yoff}]
+ set y2 [expr {$y2*$yscale + $yoff}]
+
+ set id [.c create rectangle $x1 $y1 $x2 $y2]
+ if {$depth>0} {
+ lappend ::O(listbox_captions) "Node $rowid"
+ lappend ::O(listbox_itemmap) $id
+ }
+ }
+}
+
+proc cell_report {db zTab iParent iCell} {
+ set data [rtree_node db $zTab $iParent 12]
+ set cell [lindex $data $iCell]
+
+ foreach {xmin xmax ymin ymax} [node_bbox $data] break
+ set total_area [expr ($xmax-$xmin)*($ymax-$ymin)]
+
+ if {$cell eq ""} {
+ set cell_area 0.0
+ foreach cell $data {
+ foreach {rowid x1 x2 y1 y2} $cell break
+ set cell_area [expr $cell_area+($x2-$x1)*($y2-$y1)]
+ }
+ set cell_area [expr $cell_area/[llength $data]]
+ set zReport [format "Size = %.1f x %.1f Average child area = %.1f%%" \
+ [expr $xmax-$xmin] [expr $ymax-$ymin] [expr 100.0*$cell_area/$total_area]\
+ ]
+ append zReport " Sub-tree height: [rtree_nodedepth db $zTab $iParent]"
+ } else {
+ foreach {rowid x1 x2 y1 y2} $cell break
+ set cell_area [expr ($x2-$x1)*($y2-$y1)]
+ set zReport [format "Size = %.1f x %.1f Area = %.1f%%" \
+ [expr $x2-$x1] [expr $y2-$y1] [expr 100.0*$cell_area/$total_area]
+ ]
+ }
+
+ return $zReport
+}
+
+view_node
+bind .c <Configure> view_node