1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
#!/usr/bin/env python
# Given a JSON file output by pytest-benchmark, this script compares the
# results of a test session with the results stored in elasticsearch.
#
# - iterate through test results in pytest-benchmark JSON file.
#
# - for each one, get mean and stddev of the mean of last 20 results from
# master branch.
#
# - compare the result in the file with the results in elastic.
#
# - if there are bad outliers, exit with status code given in command line.
import argparse
import copy
import json
import requests
import sys
URL = "https://moose.leap.se:9200/benchmark/_search"
BLOCK_SIZE = 20
MULTIPLIER = 1.5
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'file',
help='The file with JSON results of pytest-benchmark')
parser.add_argument(
'--status-code', type=int, default=0,
help='The status code to exit with in case bad outliers are detected.')
return parser.parse_args()
def parse_file(file):
data = None
tests = []
with open(file) as f:
data = json.loads(f.read())
for test in data['benchmarks']:
name = test['name']
mean = test['stats']['mean']
extra = test['extra_info']
tests.append((name, mean, extra))
return tests
base_query = {
"query": {
"bool": {
"must": [
{"term": {"machine_info.host": "weasel"}},
{"term": {"commit_info.branch": "master"}},
{"term": {"commit_info.project": "soledad"}},
{"exists": {"field": "extra_info"}},
{"exists": {"field": "extra_info.cpu_percent"}}
],
"must_not": [
],
},
},
"aggs": {
"commit_id_time": {
"terms": {
"field": "commit_info.id",
"size": BLOCK_SIZE,
"order": {"commit_info_time": "desc"},
},
"aggs": {
"commit_info_time": {"max": {"field": "commit_info.time"}},
}
}
},
}
def get_time_cpu_stats(test):
query = copy.deepcopy(base_query)
query['query']['bool']['must'].append({
'term': {'name': test}})
query['query']['bool']['must_not'].append(
{'exists': {'field': "extra_info.memory_percent"}})
query['aggs']['commit_id_time']['aggs']['time'] = \
{"stats": {"field": "stats.mean"}}
query['aggs']['commit_id_time']['aggs']['cpu'] = \
{"stats": {"field": "extra_info.cpu_percent"}}
response = requests.get("%s?size=0" % URL, data=json.dumps(query))
data = response.json()
time = []
cpu = []
buckets = data['aggregations']['commit_id_time']['buckets']
for bucket in buckets:
time.append(bucket['time']['avg'])
cpu.append(bucket['cpu']['avg'])
return time, cpu
def get_mem_stats(test):
query = copy.deepcopy(base_query)
query['query']['bool']['must'].append({
'term': {'name': test}})
query['query']['bool']['must'].append(
{'exists': {'field': "extra_info.memory_percent"}})
query['aggs']['commit_id_time']['aggs']['mem'] = \
{"stats": {"field": "extra_info.memory_percent.stats.max"}}
response = requests.get("%s?size=0" % URL, data=json.dumps(query))
data = response.json()
mem = []
buckets = data['aggregations']['commit_id_time']['buckets']
for bucket in buckets:
mem.append(bucket['mem']['avg'])
return mem
def _mean(l):
return float(sum(l)) / len(l)
def _std(l):
if len(l) <= 1:
return 0
mean = _mean(l)
squares = [(x - mean) ** 2 for x in l]
return (sum(squares) / (len(l) - 1)) ** 0.5
def detect_bad_outlier(test, mean, extra):
bad = False
if 'memory_percent' in extra:
mem = get_mem_stats(test)
value = extra['memory_percent']['stats']['max']
bad |= _detect_outlier(test, 'mem', value, mem) > 0
else:
time, cpu = get_time_cpu_stats(test)
value = mean
bad |= _detect_outlier(test, 'time', value, time) > 0
value = extra['cpu_percent']
bad |= _detect_outlier(test, 'cpu', value, cpu) > 0
return bad
def _detect_outlier(test, name, value, list):
if not list:
return 0
mean = _mean(list)
std = _std(list)
result = 0
print "Checking %s (%s):" % (test, name)
print " value: %f" % (value,)
print " lower limit: %f" % (mean - (MULTIPLIER * std))
print " upper limit: %f" % (mean + (MULTIPLIER * std))
if value < mean - MULTIPLIER * std:
print " => good outlier detected!"
result = -1
elif value > mean + MULTIPLIER * std:
print " => bad outlier detected!"
result = 1
return result
if __name__ == '__main__':
args = parse_args()
tests = parse_file(args.file)
print "Checking %d test results for outliers..." % len(tests)
failed = False
for test, mean, extra in tests:
failed |= detect_bad_outlier(test, mean, extra)
if failed:
print "Tests have bad outliers! o_O"
sys.exit(args.status_code)
else:
print "All good, no outliers were detected. :-)"
|