summaryrefslogtreecommitdiff
path: root/openvpn/doc/doxygen/doc_tunnel_state.h
diff options
context:
space:
mode:
authorArne Schwabe <arne@rfc2549.org>2012-04-16 19:21:14 +0200
committerArne Schwabe <arne@rfc2549.org>2012-04-16 19:21:14 +0200
commit3e4d8f433239c40311037616b1b8833a06651ae0 (patch)
tree98ab7fce0d011d34677b0beb762d389cb5c39199 /openvpn/doc/doxygen/doc_tunnel_state.h
Initial import
Diffstat (limited to 'openvpn/doc/doxygen/doc_tunnel_state.h')
-rw-r--r--openvpn/doc/doxygen/doc_tunnel_state.h155
1 files changed, 155 insertions, 0 deletions
diff --git a/openvpn/doc/doxygen/doc_tunnel_state.h b/openvpn/doc/doxygen/doc_tunnel_state.h
new file mode 100644
index 0000000..6c93e71
--- /dev/null
+++ b/openvpn/doc/doxygen/doc_tunnel_state.h
@@ -0,0 +1,155 @@
+/*
+ * OpenVPN -- An application to securely tunnel IP networks
+ * over a single TCP/UDP port, with support for SSL/TLS-based
+ * session authentication and key exchange,
+ * packet encryption, packet authentication, and
+ * packet compression.
+ *
+ * Copyright (C) 2010 Fox Crypto B.V. <openvpn@fox-it.com>
+ *
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2
+ * as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program (see the file COPYING included with this
+ * distribution); if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+/**
+ * @file
+ * VPN tunnel state documentation file.
+ */
+
+/**
+ * @page tunnel_state Structure of the VPN tunnel state storage
+ *
+ * This section describes how OpenVPN stores its VPN tunnel state during
+ * operation.
+ *
+ * OpenVPN uses several data structures as storage containers for state
+ * information of active VPN tunnels. These are described in this
+ * section, together with a little bit of history to help understand the
+ * origin of the current architecture.
+ *
+ * Whether an OpenVPN process is running in client-mode or server-mode
+ * determines whether it can support only one or multiple simultaneously
+ * active VPN tunnels. This consequently also determines how the
+ * associated state information is wrapped up internally. This section
+ * gives an overview of the differences.
+ *
+ * @section tunnel_state_history Historic developments
+ *
+ * In the old v1.x series, an OpenVPN process managed only one single VPN
+ * tunnel. This allowed the VPN tunnel state to be stored together with
+ * process-global information in one single \c context structure.
+ *
+ * This changed, however, in the v2.x series, as new OpenVPN versions
+ * running in server-mode can support multiple simultaneously active VPN
+ * tunnels. This necessitated a redesign of the VPN tunnel state
+ * container structures, and modification of the \link
+ * external_multiplexer External Multiplexer\endlink and \link
+ * internal_multiplexer Internal Multiplexer\endlink systems. The
+ * majority of these changes are only relevant for OpenVPN processes
+ * running in server-mode, and the client-mode structure has remained very
+ * similar to the v1.x single-tunnel form.
+ *
+ * @section tunnel_state_client Client-mode state
+ *
+ * An OpenVPN process running in client-mode can manage at most one single
+ * VPN tunnel at any one time. The state information for a client's VPN
+ * tunnel is stored in a \c context structure.
+ *
+ * The \c context structure is created in the \c main() function. That is
+ * also where process-wide initialization takes place, such as parsing
+ * command line %options and reading configuration files. The \c context
+ * is then passed to \c tunnel_point_to_point() which drives OpenVPN's
+ * main event processing loop. These functions are both part of the \link
+ * eventloop Main Event Loop\endlink module.
+ *
+ * @subsection tunnel_state_client_init Initialization and cleanup
+ *
+ * Because there is only one \c context structure present, it can be
+ * initialized and cleaned up from the client's main event processing
+ * function. Before the \c tunnel_point_to_point() function enters its
+ * event loop, it calls \c init_instance_handle_signals() which calls \c
+ * init_instance() to initialize the single \c context structure. After
+ * the event loop stops, it calls \c close_instance() to clean up the \c
+ * context.
+ *
+ * @subsection tunnel_state_client_event Event processing
+ *
+ * When the main event processing loop activates the external or internal
+ * multiplexer to handle a network event, it is not necessary to determine
+ * which VPN tunnel the event is associated with, because there is only
+ * one VPN tunnel active.
+ *
+ * @section tunnel_state_server Server-mode state
+ *
+ * An OpenVPN process running in server-mode can manage multiple
+ * simultaneously active VPN tunnels. For every VPN tunnel active, in
+ * other words for every OpenVPN client which is connected to a server,
+ * the OpenVPN server has one \c context structure in which it stores that
+ * particular VPN tunnel's state information.
+ *
+ * @subsection tunnel_state_server_multi Multi_context and multi_instance structures
+ *
+ * To support multiple \c context structures, each is wrapped in a \c
+ * multi_instance structure, and all the \c multi_instance structures are
+ * registered in one single \c multi_context structure. The \link
+ * external_multiplexer External Multiplexer\endlink and \link
+ * internal_multiplexer Internal Multiplexer\endlink then use the \c
+ * multi_context to retrieve the correct \c multi_instance and \c context
+ * associated with a given network address.
+ *
+ * @subsection tunnel_state_server_init Startup and initialization
+ *
+ * An OpenVPN process running in server-mode starts in the same \c main()
+ * function as it would in client-mode. The same process-wide
+ * initialization is performed, and the resulting state and configuration
+ * is stored in a \c context structure. The server-mode and client-mode
+ * processes diverge when the \c main() function calls one of \c
+ * tunnel_point_to_point() or \c tunnel_server().
+ *
+ * In server-mode, \c main() calls the \c tunnel_server() function, which
+ * transfers control to \c tunnel_server_udp_single_threaded() or \c
+ * tunnel_server_tcp() depending on the external transport protocol.
+ *
+ * These functions receive the \c context created in \c main(). This
+ * object has a special status in server-mode, as it does not represent an
+ * active VPN tunnel, but does contain process-wide configuration
+ * parameters. In the source code, it is often stored in "top" variables.
+ * To distinguish this object from other instances of the same type, its
+ * \c context.mode value is set to \c CM_TOP. Other \c context objects,
+ * which do represent active VPN tunnels, have a \c context.mode set to \c
+ * CM_CHILD_UDP or \c CM_CHILD_TCP, depending on the external transport
+ * protocol.
+ *
+ * Both \c tunnel_server_udp_single_threaded() and \c tunnel_server_tcp()
+ * perform similar initialization. In either case, a \c multi_context
+ * structure is created, and it is initialized according to the
+ * configuration stored in the top \c context by the \c multi_init() and
+ * \c multi_top_init() functions.
+ *
+ * @subsection tunnel_state_server_tunnels Creating and destroying VPN tunnels
+ *
+ * When an OpenVPN client makes a new connection to a server, the server
+ * creates a new \c context and \c multi_instance. The latter is
+ * registered in the \c multi_context, which makes it possible for the
+ * external and internal multiplexers to retrieve the correct \c
+ * multi_instance and \c context when a network event occurs.
+ *
+ * @subsection tunnel_state_server_cleanup Final cleanup
+ *
+ * After the main event loop exits, both \c
+ * tunnel_server_udp_single_threaded() and \c tunnel_server_tcp() perform
+ * similar cleanup. They call \c multi_uninit() followed by \c
+ * multi_top_free() to clean up the \c multi_context structure.
+ */