diff options
author | Arne Schwabe <arne@rfc2549.org> | 2015-04-15 00:17:26 +0200 |
---|---|---|
committer | Arne Schwabe <arne@rfc2549.org> | 2015-04-15 00:20:23 +0200 |
commit | c3ae4aaac9f0b168aed063d3e86c5196608eaba1 (patch) | |
tree | 1a18e7d8751d4dd3682d82d12c8441b335112984 /main/openssl/crypto/ec/ec2_smpl.c | |
parent | 5e42114d22faefe7c272b1b498fdf5640da494c7 (diff) |
Move more to git, add submodules, fix build script, change hgignore to gitignore
Diffstat (limited to 'main/openssl/crypto/ec/ec2_smpl.c')
m--------- | main/openssl | 0 | ||||
-rw-r--r-- | main/openssl/crypto/ec/ec2_smpl.c | 720 |
2 files changed, 0 insertions, 720 deletions
diff --git a/main/openssl b/main/openssl new file mode 160000 +Subproject 4d377a9ce111930d8a8f06dc0e94a892a7f6c51 diff --git a/main/openssl/crypto/ec/ec2_smpl.c b/main/openssl/crypto/ec/ec2_smpl.c deleted file mode 100644 index 62223cbb..00000000 --- a/main/openssl/crypto/ec/ec2_smpl.c +++ /dev/null @@ -1,720 +0,0 @@ -/* crypto/ec/ec2_smpl.c */ -/* ==================================================================== - * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. - * - * The Elliptic Curve Public-Key Crypto Library (ECC Code) included - * herein is developed by SUN MICROSYSTEMS, INC., and is contributed - * to the OpenSSL project. - * - * The ECC Code is licensed pursuant to the OpenSSL open source - * license provided below. - * - * The software is originally written by Sheueling Chang Shantz and - * Douglas Stebila of Sun Microsystems Laboratories. - * - */ -/* ==================================================================== - * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * 3. All advertising materials mentioning features or use of this - * software must display the following acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" - * - * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to - * endorse or promote products derived from this software without - * prior written permission. For written permission, please contact - * openssl-core@openssl.org. - * - * 5. Products derived from this software may not be called "OpenSSL" - * nor may "OpenSSL" appear in their names without prior written - * permission of the OpenSSL Project. - * - * 6. Redistributions of any form whatsoever must retain the following - * acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit (http://www.openssl.org/)" - * - * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY - * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED - * OF THE POSSIBILITY OF SUCH DAMAGE. - * ==================================================================== - * - * This product includes cryptographic software written by Eric Young - * (eay@cryptsoft.com). This product includes software written by Tim - * Hudson (tjh@cryptsoft.com). - * - */ - -#include <openssl/err.h> - -#include "ec_lcl.h" - -#ifndef OPENSSL_NO_EC2M - -#ifdef OPENSSL_FIPS -#include <openssl/fips.h> -#endif - - -const EC_METHOD *EC_GF2m_simple_method(void) - { - static const EC_METHOD ret = { - EC_FLAGS_DEFAULT_OCT, - NID_X9_62_characteristic_two_field, - ec_GF2m_simple_group_init, - ec_GF2m_simple_group_finish, - ec_GF2m_simple_group_clear_finish, - ec_GF2m_simple_group_copy, - ec_GF2m_simple_group_set_curve, - ec_GF2m_simple_group_get_curve, - ec_GF2m_simple_group_get_degree, - ec_GF2m_simple_group_check_discriminant, - ec_GF2m_simple_point_init, - ec_GF2m_simple_point_finish, - ec_GF2m_simple_point_clear_finish, - ec_GF2m_simple_point_copy, - ec_GF2m_simple_point_set_to_infinity, - 0 /* set_Jprojective_coordinates_GFp */, - 0 /* get_Jprojective_coordinates_GFp */, - ec_GF2m_simple_point_set_affine_coordinates, - ec_GF2m_simple_point_get_affine_coordinates, - 0,0,0, - ec_GF2m_simple_add, - ec_GF2m_simple_dbl, - ec_GF2m_simple_invert, - ec_GF2m_simple_is_at_infinity, - ec_GF2m_simple_is_on_curve, - ec_GF2m_simple_cmp, - ec_GF2m_simple_make_affine, - ec_GF2m_simple_points_make_affine, - - /* the following three method functions are defined in ec2_mult.c */ - ec_GF2m_simple_mul, - ec_GF2m_precompute_mult, - ec_GF2m_have_precompute_mult, - - ec_GF2m_simple_field_mul, - ec_GF2m_simple_field_sqr, - ec_GF2m_simple_field_div, - 0 /* field_encode */, - 0 /* field_decode */, - 0 /* field_set_to_one */ }; - -#ifdef OPENSSL_FIPS - if (FIPS_mode()) - return fips_ec_gf2m_simple_method(); -#endif - - return &ret; - } - - -/* Initialize a GF(2^m)-based EC_GROUP structure. - * Note that all other members are handled by EC_GROUP_new. - */ -int ec_GF2m_simple_group_init(EC_GROUP *group) - { - BN_init(&group->field); - BN_init(&group->a); - BN_init(&group->b); - return 1; - } - - -/* Free a GF(2^m)-based EC_GROUP structure. - * Note that all other members are handled by EC_GROUP_free. - */ -void ec_GF2m_simple_group_finish(EC_GROUP *group) - { - BN_free(&group->field); - BN_free(&group->a); - BN_free(&group->b); - } - - -/* Clear and free a GF(2^m)-based EC_GROUP structure. - * Note that all other members are handled by EC_GROUP_clear_free. - */ -void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) - { - BN_clear_free(&group->field); - BN_clear_free(&group->a); - BN_clear_free(&group->b); - group->poly[0] = 0; - group->poly[1] = 0; - group->poly[2] = 0; - group->poly[3] = 0; - group->poly[4] = 0; - group->poly[5] = -1; - } - - -/* Copy a GF(2^m)-based EC_GROUP structure. - * Note that all other members are handled by EC_GROUP_copy. - */ -int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) - { - int i; - if (!BN_copy(&dest->field, &src->field)) return 0; - if (!BN_copy(&dest->a, &src->a)) return 0; - if (!BN_copy(&dest->b, &src->b)) return 0; - dest->poly[0] = src->poly[0]; - dest->poly[1] = src->poly[1]; - dest->poly[2] = src->poly[2]; - dest->poly[3] = src->poly[3]; - dest->poly[4] = src->poly[4]; - dest->poly[5] = src->poly[5]; - if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; - if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; - for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0; - for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0; - return 1; - } - - -/* Set the curve parameters of an EC_GROUP structure. */ -int ec_GF2m_simple_group_set_curve(EC_GROUP *group, - const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) - { - int ret = 0, i; - - /* group->field */ - if (!BN_copy(&group->field, p)) goto err; - i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; - if ((i != 5) && (i != 3)) - { - ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); - goto err; - } - - /* group->a */ - if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err; - if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; - for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0; - - /* group->b */ - if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err; - if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; - for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0; - - ret = 1; - err: - return ret; - } - - -/* Get the curve parameters of an EC_GROUP structure. - * If p, a, or b are NULL then there values will not be set but the method will return with success. - */ -int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) - { - int ret = 0; - - if (p != NULL) - { - if (!BN_copy(p, &group->field)) return 0; - } - - if (a != NULL) - { - if (!BN_copy(a, &group->a)) goto err; - } - - if (b != NULL) - { - if (!BN_copy(b, &group->b)) goto err; - } - - ret = 1; - - err: - return ret; - } - - -/* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ -int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) - { - return BN_num_bits(&group->field)-1; - } - - -/* Checks the discriminant of the curve. - * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) - */ -int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) - { - int ret = 0; - BIGNUM *b; - BN_CTX *new_ctx = NULL; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - { - ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); - goto err; - } - } - BN_CTX_start(ctx); - b = BN_CTX_get(ctx); - if (b == NULL) goto err; - - if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err; - - /* check the discriminant: - * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) - */ - if (BN_is_zero(b)) goto err; - - ret = 1; - -err: - if (ctx != NULL) - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - - -/* Initializes an EC_POINT. */ -int ec_GF2m_simple_point_init(EC_POINT *point) - { - BN_init(&point->X); - BN_init(&point->Y); - BN_init(&point->Z); - return 1; - } - - -/* Frees an EC_POINT. */ -void ec_GF2m_simple_point_finish(EC_POINT *point) - { - BN_free(&point->X); - BN_free(&point->Y); - BN_free(&point->Z); - } - - -/* Clears and frees an EC_POINT. */ -void ec_GF2m_simple_point_clear_finish(EC_POINT *point) - { - BN_clear_free(&point->X); - BN_clear_free(&point->Y); - BN_clear_free(&point->Z); - point->Z_is_one = 0; - } - - -/* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ -int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) - { - if (!BN_copy(&dest->X, &src->X)) return 0; - if (!BN_copy(&dest->Y, &src->Y)) return 0; - if (!BN_copy(&dest->Z, &src->Z)) return 0; - dest->Z_is_one = src->Z_is_one; - - return 1; - } - - -/* Set an EC_POINT to the point at infinity. - * A point at infinity is represented by having Z=0. - */ -int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) - { - point->Z_is_one = 0; - BN_zero(&point->Z); - return 1; - } - - -/* Set the coordinates of an EC_POINT using affine coordinates. - * Note that the simple implementation only uses affine coordinates. - */ -int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, - const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) - { - int ret = 0; - if (x == NULL || y == NULL) - { - ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); - return 0; - } - - if (!BN_copy(&point->X, x)) goto err; - BN_set_negative(&point->X, 0); - if (!BN_copy(&point->Y, y)) goto err; - BN_set_negative(&point->Y, 0); - if (!BN_copy(&point->Z, BN_value_one())) goto err; - BN_set_negative(&point->Z, 0); - point->Z_is_one = 1; - ret = 1; - - err: - return ret; - } - - -/* Gets the affine coordinates of an EC_POINT. - * Note that the simple implementation only uses affine coordinates. - */ -int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, - BIGNUM *x, BIGNUM *y, BN_CTX *ctx) - { - int ret = 0; - - if (EC_POINT_is_at_infinity(group, point)) - { - ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); - return 0; - } - - if (BN_cmp(&point->Z, BN_value_one())) - { - ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); - return 0; - } - if (x != NULL) - { - if (!BN_copy(x, &point->X)) goto err; - BN_set_negative(x, 0); - } - if (y != NULL) - { - if (!BN_copy(y, &point->Y)) goto err; - BN_set_negative(y, 0); - } - ret = 1; - - err: - return ret; - } - -/* Computes a + b and stores the result in r. r could be a or b, a could be b. - * Uses algorithm A.10.2 of IEEE P1363. - */ -int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) - { - BN_CTX *new_ctx = NULL; - BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; - int ret = 0; - - if (EC_POINT_is_at_infinity(group, a)) - { - if (!EC_POINT_copy(r, b)) return 0; - return 1; - } - - if (EC_POINT_is_at_infinity(group, b)) - { - if (!EC_POINT_copy(r, a)) return 0; - return 1; - } - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - BN_CTX_start(ctx); - x0 = BN_CTX_get(ctx); - y0 = BN_CTX_get(ctx); - x1 = BN_CTX_get(ctx); - y1 = BN_CTX_get(ctx); - x2 = BN_CTX_get(ctx); - y2 = BN_CTX_get(ctx); - s = BN_CTX_get(ctx); - t = BN_CTX_get(ctx); - if (t == NULL) goto err; - - if (a->Z_is_one) - { - if (!BN_copy(x0, &a->X)) goto err; - if (!BN_copy(y0, &a->Y)) goto err; - } - else - { - if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err; - } - if (b->Z_is_one) - { - if (!BN_copy(x1, &b->X)) goto err; - if (!BN_copy(y1, &b->Y)) goto err; - } - else - { - if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err; - } - - - if (BN_GF2m_cmp(x0, x1)) - { - if (!BN_GF2m_add(t, x0, x1)) goto err; - if (!BN_GF2m_add(s, y0, y1)) goto err; - if (!group->meth->field_div(group, s, s, t, ctx)) goto err; - if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; - if (!BN_GF2m_add(x2, x2, &group->a)) goto err; - if (!BN_GF2m_add(x2, x2, s)) goto err; - if (!BN_GF2m_add(x2, x2, t)) goto err; - } - else - { - if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) - { - if (!EC_POINT_set_to_infinity(group, r)) goto err; - ret = 1; - goto err; - } - if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err; - if (!BN_GF2m_add(s, s, x1)) goto err; - - if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; - if (!BN_GF2m_add(x2, x2, s)) goto err; - if (!BN_GF2m_add(x2, x2, &group->a)) goto err; - } - - if (!BN_GF2m_add(y2, x1, x2)) goto err; - if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err; - if (!BN_GF2m_add(y2, y2, x2)) goto err; - if (!BN_GF2m_add(y2, y2, y1)) goto err; - - if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err; - - ret = 1; - - err: - BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - return ret; - } - - -/* Computes 2 * a and stores the result in r. r could be a. - * Uses algorithm A.10.2 of IEEE P1363. - */ -int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) - { - return ec_GF2m_simple_add(group, r, a, a, ctx); - } - - -int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) - { - if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) - /* point is its own inverse */ - return 1; - - if (!EC_POINT_make_affine(group, point, ctx)) return 0; - return BN_GF2m_add(&point->Y, &point->X, &point->Y); - } - - -/* Indicates whether the given point is the point at infinity. */ -int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) - { - return BN_is_zero(&point->Z); - } - - -/* Determines whether the given EC_POINT is an actual point on the curve defined - * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: - * y^2 + x*y = x^3 + a*x^2 + b. - */ -int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) - { - int ret = -1; - BN_CTX *new_ctx = NULL; - BIGNUM *lh, *y2; - int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); - int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); - - if (EC_POINT_is_at_infinity(group, point)) - return 1; - - field_mul = group->meth->field_mul; - field_sqr = group->meth->field_sqr; - - /* only support affine coordinates */ - if (!point->Z_is_one) return -1; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return -1; - } - - BN_CTX_start(ctx); - y2 = BN_CTX_get(ctx); - lh = BN_CTX_get(ctx); - if (lh == NULL) goto err; - - /* We have a curve defined by a Weierstrass equation - * y^2 + x*y = x^3 + a*x^2 + b. - * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 - * <=> ((x + a) * x + y ) * x + b + y^2 = 0 - */ - if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err; - if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; - if (!BN_GF2m_add(lh, lh, &point->Y)) goto err; - if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; - if (!BN_GF2m_add(lh, lh, &group->b)) goto err; - if (!field_sqr(group, y2, &point->Y, ctx)) goto err; - if (!BN_GF2m_add(lh, lh, y2)) goto err; - ret = BN_is_zero(lh); - err: - if (ctx) BN_CTX_end(ctx); - if (new_ctx) BN_CTX_free(new_ctx); - return ret; - } - - -/* Indicates whether two points are equal. - * Return values: - * -1 error - * 0 equal (in affine coordinates) - * 1 not equal - */ -int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) - { - BIGNUM *aX, *aY, *bX, *bY; - BN_CTX *new_ctx = NULL; - int ret = -1; - - if (EC_POINT_is_at_infinity(group, a)) - { - return EC_POINT_is_at_infinity(group, b) ? 0 : 1; - } - - if (EC_POINT_is_at_infinity(group, b)) - return 1; - - if (a->Z_is_one && b->Z_is_one) - { - return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; - } - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return -1; - } - - BN_CTX_start(ctx); - aX = BN_CTX_get(ctx); - aY = BN_CTX_get(ctx); - bX = BN_CTX_get(ctx); - bY = BN_CTX_get(ctx); - if (bY == NULL) goto err; - - if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err; - if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err; - ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; - - err: - if (ctx) BN_CTX_end(ctx); - if (new_ctx) BN_CTX_free(new_ctx); - return ret; - } - - -/* Forces the given EC_POINT to internally use affine coordinates. */ -int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) - { - BN_CTX *new_ctx = NULL; - BIGNUM *x, *y; - int ret = 0; - - if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) - return 1; - - if (ctx == NULL) - { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - return 0; - } - - BN_CTX_start(ctx); - x = BN_CTX_get(ctx); - y = BN_CTX_get(ctx); - if (y == NULL) goto err; - - if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; - if (!BN_copy(&point->X, x)) goto err; - if (!BN_copy(&point->Y, y)) goto err; - if (!BN_one(&point->Z)) goto err; - - ret = 1; - - err: - if (ctx) BN_CTX_end(ctx); - if (new_ctx) BN_CTX_free(new_ctx); - return ret; - } - - -/* Forces each of the EC_POINTs in the given array to use affine coordinates. */ -int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) - { - size_t i; - - for (i = 0; i < num; i++) - { - if (!group->meth->make_affine(group, points[i], ctx)) return 0; - } - - return 1; - } - - -/* Wrapper to simple binary polynomial field multiplication implementation. */ -int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) - { - return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); - } - - -/* Wrapper to simple binary polynomial field squaring implementation. */ -int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) - { - return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); - } - - -/* Wrapper to simple binary polynomial field division implementation. */ -int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) - { - return BN_GF2m_mod_div(r, a, b, &group->field, ctx); - } - -#endif |