summaryrefslogtreecommitdiff
path: root/main/openssl/crypto/ec/ec2_smpl.c
diff options
context:
space:
mode:
authorArne Schwabe <arne@rfc2549.org>2015-04-15 00:17:26 +0200
committerArne Schwabe <arne@rfc2549.org>2015-04-15 00:20:23 +0200
commitc3ae4aaac9f0b168aed063d3e86c5196608eaba1 (patch)
tree1a18e7d8751d4dd3682d82d12c8441b335112984 /main/openssl/crypto/ec/ec2_smpl.c
parent5e42114d22faefe7c272b1b498fdf5640da494c7 (diff)
Move more to git, add submodules, fix build script, change hgignore to gitignore
Diffstat (limited to 'main/openssl/crypto/ec/ec2_smpl.c')
m---------main/openssl0
-rw-r--r--main/openssl/crypto/ec/ec2_smpl.c720
2 files changed, 0 insertions, 720 deletions
diff --git a/main/openssl b/main/openssl
new file mode 160000
+Subproject 4d377a9ce111930d8a8f06dc0e94a892a7f6c51
diff --git a/main/openssl/crypto/ec/ec2_smpl.c b/main/openssl/crypto/ec/ec2_smpl.c
deleted file mode 100644
index 62223cbb..00000000
--- a/main/openssl/crypto/ec/ec2_smpl.c
+++ /dev/null
@@ -1,720 +0,0 @@
-/* crypto/ec/ec2_smpl.c */
-/* ====================================================================
- * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
- *
- * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
- * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
- * to the OpenSSL project.
- *
- * The ECC Code is licensed pursuant to the OpenSSL open source
- * license provided below.
- *
- * The software is originally written by Sheueling Chang Shantz and
- * Douglas Stebila of Sun Microsystems Laboratories.
- *
- */
-/* ====================================================================
- * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
-
-#include <openssl/err.h>
-
-#include "ec_lcl.h"
-
-#ifndef OPENSSL_NO_EC2M
-
-#ifdef OPENSSL_FIPS
-#include <openssl/fips.h>
-#endif
-
-
-const EC_METHOD *EC_GF2m_simple_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_characteristic_two_field,
- ec_GF2m_simple_group_init,
- ec_GF2m_simple_group_finish,
- ec_GF2m_simple_group_clear_finish,
- ec_GF2m_simple_group_copy,
- ec_GF2m_simple_group_set_curve,
- ec_GF2m_simple_group_get_curve,
- ec_GF2m_simple_group_get_degree,
- ec_GF2m_simple_group_check_discriminant,
- ec_GF2m_simple_point_init,
- ec_GF2m_simple_point_finish,
- ec_GF2m_simple_point_clear_finish,
- ec_GF2m_simple_point_copy,
- ec_GF2m_simple_point_set_to_infinity,
- 0 /* set_Jprojective_coordinates_GFp */,
- 0 /* get_Jprojective_coordinates_GFp */,
- ec_GF2m_simple_point_set_affine_coordinates,
- ec_GF2m_simple_point_get_affine_coordinates,
- 0,0,0,
- ec_GF2m_simple_add,
- ec_GF2m_simple_dbl,
- ec_GF2m_simple_invert,
- ec_GF2m_simple_is_at_infinity,
- ec_GF2m_simple_is_on_curve,
- ec_GF2m_simple_cmp,
- ec_GF2m_simple_make_affine,
- ec_GF2m_simple_points_make_affine,
-
- /* the following three method functions are defined in ec2_mult.c */
- ec_GF2m_simple_mul,
- ec_GF2m_precompute_mult,
- ec_GF2m_have_precompute_mult,
-
- ec_GF2m_simple_field_mul,
- ec_GF2m_simple_field_sqr,
- ec_GF2m_simple_field_div,
- 0 /* field_encode */,
- 0 /* field_decode */,
- 0 /* field_set_to_one */ };
-
-#ifdef OPENSSL_FIPS
- if (FIPS_mode())
- return fips_ec_gf2m_simple_method();
-#endif
-
- return &ret;
- }
-
-
-/* Initialize a GF(2^m)-based EC_GROUP structure.
- * Note that all other members are handled by EC_GROUP_new.
- */
-int ec_GF2m_simple_group_init(EC_GROUP *group)
- {
- BN_init(&group->field);
- BN_init(&group->a);
- BN_init(&group->b);
- return 1;
- }
-
-
-/* Free a GF(2^m)-based EC_GROUP structure.
- * Note that all other members are handled by EC_GROUP_free.
- */
-void ec_GF2m_simple_group_finish(EC_GROUP *group)
- {
- BN_free(&group->field);
- BN_free(&group->a);
- BN_free(&group->b);
- }
-
-
-/* Clear and free a GF(2^m)-based EC_GROUP structure.
- * Note that all other members are handled by EC_GROUP_clear_free.
- */
-void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
- {
- BN_clear_free(&group->field);
- BN_clear_free(&group->a);
- BN_clear_free(&group->b);
- group->poly[0] = 0;
- group->poly[1] = 0;
- group->poly[2] = 0;
- group->poly[3] = 0;
- group->poly[4] = 0;
- group->poly[5] = -1;
- }
-
-
-/* Copy a GF(2^m)-based EC_GROUP structure.
- * Note that all other members are handled by EC_GROUP_copy.
- */
-int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
- {
- int i;
- if (!BN_copy(&dest->field, &src->field)) return 0;
- if (!BN_copy(&dest->a, &src->a)) return 0;
- if (!BN_copy(&dest->b, &src->b)) return 0;
- dest->poly[0] = src->poly[0];
- dest->poly[1] = src->poly[1];
- dest->poly[2] = src->poly[2];
- dest->poly[3] = src->poly[3];
- dest->poly[4] = src->poly[4];
- dest->poly[5] = src->poly[5];
- if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
- if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0;
- for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0;
- for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0;
- return 1;
- }
-
-
-/* Set the curve parameters of an EC_GROUP structure. */
-int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
- const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0, i;
-
- /* group->field */
- if (!BN_copy(&group->field, p)) goto err;
- i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
- if ((i != 5) && (i != 3))
- {
- ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
- goto err;
- }
-
- /* group->a */
- if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err;
- if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
- for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0;
-
- /* group->b */
- if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err;
- if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err;
- for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0;
-
- ret = 1;
- err:
- return ret;
- }
-
-
-/* Get the curve parameters of an EC_GROUP structure.
- * If p, a, or b are NULL then there values will not be set but the method will return with success.
- */
-int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0;
-
- if (p != NULL)
- {
- if (!BN_copy(p, &group->field)) return 0;
- }
-
- if (a != NULL)
- {
- if (!BN_copy(a, &group->a)) goto err;
- }
-
- if (b != NULL)
- {
- if (!BN_copy(b, &group->b)) goto err;
- }
-
- ret = 1;
-
- err:
- return ret;
- }
-
-
-/* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */
-int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
- {
- return BN_num_bits(&group->field)-1;
- }
-
-
-/* Checks the discriminant of the curve.
- * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
- */
-int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *b;
- BN_CTX *new_ctx = NULL;
-
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- {
- ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
- goto err;
- }
- }
- BN_CTX_start(ctx);
- b = BN_CTX_get(ctx);
- if (b == NULL) goto err;
-
- if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err;
-
- /* check the discriminant:
- * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
- */
- if (BN_is_zero(b)) goto err;
-
- ret = 1;
-
-err:
- if (ctx != NULL)
- BN_CTX_end(ctx);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return ret;
- }
-
-
-/* Initializes an EC_POINT. */
-int ec_GF2m_simple_point_init(EC_POINT *point)
- {
- BN_init(&point->X);
- BN_init(&point->Y);
- BN_init(&point->Z);
- return 1;
- }
-
-
-/* Frees an EC_POINT. */
-void ec_GF2m_simple_point_finish(EC_POINT *point)
- {
- BN_free(&point->X);
- BN_free(&point->Y);
- BN_free(&point->Z);
- }
-
-
-/* Clears and frees an EC_POINT. */
-void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
- {
- BN_clear_free(&point->X);
- BN_clear_free(&point->Y);
- BN_clear_free(&point->Z);
- point->Z_is_one = 0;
- }
-
-
-/* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */
-int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
- {
- if (!BN_copy(&dest->X, &src->X)) return 0;
- if (!BN_copy(&dest->Y, &src->Y)) return 0;
- if (!BN_copy(&dest->Z, &src->Z)) return 0;
- dest->Z_is_one = src->Z_is_one;
-
- return 1;
- }
-
-
-/* Set an EC_POINT to the point at infinity.
- * A point at infinity is represented by having Z=0.
- */
-int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
- {
- point->Z_is_one = 0;
- BN_zero(&point->Z);
- return 1;
- }
-
-
-/* Set the coordinates of an EC_POINT using affine coordinates.
- * Note that the simple implementation only uses affine coordinates.
- */
-int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
- const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
- {
- int ret = 0;
- if (x == NULL || y == NULL)
- {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
- return 0;
- }
-
- if (!BN_copy(&point->X, x)) goto err;
- BN_set_negative(&point->X, 0);
- if (!BN_copy(&point->Y, y)) goto err;
- BN_set_negative(&point->Y, 0);
- if (!BN_copy(&point->Z, BN_value_one())) goto err;
- BN_set_negative(&point->Z, 0);
- point->Z_is_one = 1;
- ret = 1;
-
- err:
- return ret;
- }
-
-
-/* Gets the affine coordinates of an EC_POINT.
- * Note that the simple implementation only uses affine coordinates.
- */
-int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
- BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
- {
- int ret = 0;
-
- if (EC_POINT_is_at_infinity(group, point))
- {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
- return 0;
- }
-
- if (BN_cmp(&point->Z, BN_value_one()))
- {
- ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
- return 0;
- }
- if (x != NULL)
- {
- if (!BN_copy(x, &point->X)) goto err;
- BN_set_negative(x, 0);
- }
- if (y != NULL)
- {
- if (!BN_copy(y, &point->Y)) goto err;
- BN_set_negative(y, 0);
- }
- ret = 1;
-
- err:
- return ret;
- }
-
-/* Computes a + b and stores the result in r. r could be a or b, a could be b.
- * Uses algorithm A.10.2 of IEEE P1363.
- */
-int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
- int ret = 0;
-
- if (EC_POINT_is_at_infinity(group, a))
- {
- if (!EC_POINT_copy(r, b)) return 0;
- return 1;
- }
-
- if (EC_POINT_is_at_infinity(group, b))
- {
- if (!EC_POINT_copy(r, a)) return 0;
- return 1;
- }
-
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
-
- BN_CTX_start(ctx);
- x0 = BN_CTX_get(ctx);
- y0 = BN_CTX_get(ctx);
- x1 = BN_CTX_get(ctx);
- y1 = BN_CTX_get(ctx);
- x2 = BN_CTX_get(ctx);
- y2 = BN_CTX_get(ctx);
- s = BN_CTX_get(ctx);
- t = BN_CTX_get(ctx);
- if (t == NULL) goto err;
-
- if (a->Z_is_one)
- {
- if (!BN_copy(x0, &a->X)) goto err;
- if (!BN_copy(y0, &a->Y)) goto err;
- }
- else
- {
- if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err;
- }
- if (b->Z_is_one)
- {
- if (!BN_copy(x1, &b->X)) goto err;
- if (!BN_copy(y1, &b->Y)) goto err;
- }
- else
- {
- if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err;
- }
-
-
- if (BN_GF2m_cmp(x0, x1))
- {
- if (!BN_GF2m_add(t, x0, x1)) goto err;
- if (!BN_GF2m_add(s, y0, y1)) goto err;
- if (!group->meth->field_div(group, s, s, t, ctx)) goto err;
- if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
- if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
- if (!BN_GF2m_add(x2, x2, s)) goto err;
- if (!BN_GF2m_add(x2, x2, t)) goto err;
- }
- else
- {
- if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1))
- {
- if (!EC_POINT_set_to_infinity(group, r)) goto err;
- ret = 1;
- goto err;
- }
- if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err;
- if (!BN_GF2m_add(s, s, x1)) goto err;
-
- if (!group->meth->field_sqr(group, x2, s, ctx)) goto err;
- if (!BN_GF2m_add(x2, x2, s)) goto err;
- if (!BN_GF2m_add(x2, x2, &group->a)) goto err;
- }
-
- if (!BN_GF2m_add(y2, x1, x2)) goto err;
- if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err;
- if (!BN_GF2m_add(y2, y2, x2)) goto err;
- if (!BN_GF2m_add(y2, y2, y1)) goto err;
-
- if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err;
-
- ret = 1;
-
- err:
- BN_CTX_end(ctx);
- if (new_ctx != NULL)
- BN_CTX_free(new_ctx);
- return ret;
- }
-
-
-/* Computes 2 * a and stores the result in r. r could be a.
- * Uses algorithm A.10.2 of IEEE P1363.
- */
-int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
- {
- return ec_GF2m_simple_add(group, r, a, a, ctx);
- }
-
-
-int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
- {
- if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
- /* point is its own inverse */
- return 1;
-
- if (!EC_POINT_make_affine(group, point, ctx)) return 0;
- return BN_GF2m_add(&point->Y, &point->X, &point->Y);
- }
-
-
-/* Indicates whether the given point is the point at infinity. */
-int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
- {
- return BN_is_zero(&point->Z);
- }
-
-
-/* Determines whether the given EC_POINT is an actual point on the curve defined
- * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
- * y^2 + x*y = x^3 + a*x^2 + b.
- */
-int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
- {
- int ret = -1;
- BN_CTX *new_ctx = NULL;
- BIGNUM *lh, *y2;
- int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
- int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
-
- if (EC_POINT_is_at_infinity(group, point))
- return 1;
-
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
-
- /* only support affine coordinates */
- if (!point->Z_is_one) return -1;
-
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return -1;
- }
-
- BN_CTX_start(ctx);
- y2 = BN_CTX_get(ctx);
- lh = BN_CTX_get(ctx);
- if (lh == NULL) goto err;
-
- /* We have a curve defined by a Weierstrass equation
- * y^2 + x*y = x^3 + a*x^2 + b.
- * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
- * <=> ((x + a) * x + y ) * x + b + y^2 = 0
- */
- if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err;
- if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
- if (!BN_GF2m_add(lh, lh, &point->Y)) goto err;
- if (!field_mul(group, lh, lh, &point->X, ctx)) goto err;
- if (!BN_GF2m_add(lh, lh, &group->b)) goto err;
- if (!field_sqr(group, y2, &point->Y, ctx)) goto err;
- if (!BN_GF2m_add(lh, lh, y2)) goto err;
- ret = BN_is_zero(lh);
- err:
- if (ctx) BN_CTX_end(ctx);
- if (new_ctx) BN_CTX_free(new_ctx);
- return ret;
- }
-
-
-/* Indicates whether two points are equal.
- * Return values:
- * -1 error
- * 0 equal (in affine coordinates)
- * 1 not equal
- */
-int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
- {
- BIGNUM *aX, *aY, *bX, *bY;
- BN_CTX *new_ctx = NULL;
- int ret = -1;
-
- if (EC_POINT_is_at_infinity(group, a))
- {
- return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
- }
-
- if (EC_POINT_is_at_infinity(group, b))
- return 1;
-
- if (a->Z_is_one && b->Z_is_one)
- {
- return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
- }
-
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return -1;
- }
-
- BN_CTX_start(ctx);
- aX = BN_CTX_get(ctx);
- aY = BN_CTX_get(ctx);
- bX = BN_CTX_get(ctx);
- bY = BN_CTX_get(ctx);
- if (bY == NULL) goto err;
-
- if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err;
- if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err;
- ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
-
- err:
- if (ctx) BN_CTX_end(ctx);
- if (new_ctx) BN_CTX_free(new_ctx);
- return ret;
- }
-
-
-/* Forces the given EC_POINT to internally use affine coordinates. */
-int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- int ret = 0;
-
- if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
- return 1;
-
- if (ctx == NULL)
- {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
-
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL) goto err;
-
- if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err;
- if (!BN_copy(&point->X, x)) goto err;
- if (!BN_copy(&point->Y, y)) goto err;
- if (!BN_one(&point->Z)) goto err;
-
- ret = 1;
-
- err:
- if (ctx) BN_CTX_end(ctx);
- if (new_ctx) BN_CTX_free(new_ctx);
- return ret;
- }
-
-
-/* Forces each of the EC_POINTs in the given array to use affine coordinates. */
-int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
- {
- size_t i;
-
- for (i = 0; i < num; i++)
- {
- if (!group->meth->make_affine(group, points[i], ctx)) return 0;
- }
-
- return 1;
- }
-
-
-/* Wrapper to simple binary polynomial field multiplication implementation. */
-int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
- }
-
-
-/* Wrapper to simple binary polynomial field squaring implementation. */
-int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
- {
- return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
- }
-
-
-/* Wrapper to simple binary polynomial field division implementation. */
-int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
- }
-
-#endif