summaryrefslogtreecommitdiff
path: root/t/020-btree-basics.t
diff options
context:
space:
mode:
Diffstat (limited to 't/020-btree-basics.t')
-rw-r--r--t/020-btree-basics.t191
1 files changed, 191 insertions, 0 deletions
diff --git a/t/020-btree-basics.t b/t/020-btree-basics.t
new file mode 100644
index 00000000..7f7820ab
--- /dev/null
+++ b/t/020-btree-basics.t
@@ -0,0 +1,191 @@
+#!/usr/bin/env escript
+%% -*- erlang -*-
+%%! -pa ./src/couchdb -sasl errlog_type error -boot start_sasl -noshell
+
+-define(FILE_NAME, "./t/temp.020").
+
+-record(btree, {fd, root, extract_kv, assemble_kv, less, reduce}).
+
+main(_) ->
+ etap:plan(48),
+ case (catch test()) of
+ ok ->
+ etap:end_tests();
+ Other ->
+ etap:diag(io_lib:format("Test died abnormally: ~p", [Other])),
+ etap:bail()
+ end,
+ ok.
+
+%% @todo Determine if this number should be greater to see if the btree was
+%% broken into multiple nodes. AKA "How do we appropiately detect if multiple
+%% nodes were created."
+test()->
+ Sorted = [{Seq, random:uniform()} || Seq <- lists:seq(1, 1000)],
+ etap:ok(test_kvs(Sorted), "Testing sorted keys"),
+ etap:ok(test_kvs(lists:reverse(Sorted)), "Testing reversed sorted keys"),
+ etap:ok(test_kvs(shuffle(Sorted)), "Testing shuffled keys."),
+ ok.
+
+test_kvs(KeyValues) ->
+ ReduceFun = fun
+ (reduce, KVs) ->
+ length(KVs);
+ (rereduce, Reds) ->
+ lists:sum(Reds)
+ end,
+
+ Keys = [K || {K, _} <- KeyValues],
+
+ {ok, Fd} = couch_file:open(?FILE_NAME, [create,overwrite]),
+ {ok, Btree} = couch_btree:open(nil, Fd),
+ etap:ok(is_record(Btree, btree), "Created btree is really a btree record"),
+ etap:is(Btree#btree.fd, Fd, "Btree#btree.fd is set correctly."),
+ etap:is(Btree#btree.root, nil, "Btree#btree.root is set correctly."),
+
+ Btree1 = couch_btree:set_options(Btree, [{reduce, ReduceFun}]),
+ etap:is(Btree1#btree.reduce, ReduceFun, "Reduce function was set"),
+ EmptyRes = couch_btree:foldl(Btree1, fun(_, X) -> {ok, X+1} end, 0),
+ etap:is(EmptyRes, {ok, 0}, "Folding over an empty btree"),
+
+ {ok, Btree2} = couch_btree:add_remove(Btree1, KeyValues, []),
+ etap:ok(test_btree(Btree2, KeyValues),
+ "Adding all keys at once returns a complete btree."),
+
+ etap:fun_is(
+ fun
+ ({ok, {kp_node, _}}) -> true;
+ (_) -> false
+ end,
+ couch_file:pread_term(Fd, element(1, Btree2#btree.root)),
+ "Btree root pointer is a kp_node."
+ ),
+
+ {ok, Btree3} = couch_btree:add_remove(Btree2, [], Keys),
+ etap:ok(test_btree(Btree3, []),
+ "Removing all keys at once returns an empty btree."),
+
+ Btree4 = lists:foldl(fun(KV, BtAcc) ->
+ {ok, BtAcc2} = couch_btree:add_remove(BtAcc, [KV], []),
+ BtAcc2
+ end, Btree3, KeyValues),
+ etap:ok(test_btree(Btree4, KeyValues),
+ "Adding all keys one at a time returns a complete btree."),
+
+ Btree5 = lists:foldl(fun({K, _}, BtAcc) ->
+ {ok, BtAcc2} = couch_btree:add_remove(BtAcc, [], [K]),
+ BtAcc2
+ end, Btree4, KeyValues),
+ etap:ok(test_btree(Btree5, []),
+ "Removing all keys one at a time returns an empty btree."),
+
+ KeyValuesRev = lists:reverse(KeyValues),
+ Btree6 = lists:foldl(fun(KV, BtAcc) ->
+ {ok, BtAcc2} = couch_btree:add_remove(BtAcc, [KV], []),
+ BtAcc2
+ end, Btree5, KeyValuesRev),
+ etap:ok(test_btree(Btree6, KeyValues),
+ "Adding all keys in reverse order returns a complete btree."),
+
+ {_, Rem2Keys0, Rem2Keys1} = lists:foldl(fun(X, {Count, Left, Right}) ->
+ case Count rem 2 == 0 of
+ true-> {Count+1, [X | Left], Right};
+ false -> {Count+1, Left, [X | Right]}
+ end
+ end, {0, [], []}, KeyValues),
+
+ etap:ok(test_add_remove(Btree6, Rem2Keys0, Rem2Keys1),
+ "Add/Remove every other key."),
+
+ etap:ok(test_add_remove(Btree6, Rem2Keys1, Rem2Keys0),
+ "Add/Remove opposite every other key."),
+
+ {ok, Btree7} = couch_btree:add_remove(Btree6, [], [K||{K,_}<-Rem2Keys1]),
+ {ok, Btree8} = couch_btree:add_remove(Btree7, [], [K||{K,_}<-Rem2Keys0]),
+ etap:ok(test_btree(Btree8, []),
+ "Removing both halves of every other key returns an empty btree."),
+
+ %% Third chunk (close out)
+ etap:is(couch_file:close(Fd), ok, "closing out"),
+ true.
+
+test_btree(Btree, KeyValues) ->
+ ok = test_key_access(Btree, KeyValues),
+ ok = test_lookup_access(Btree, KeyValues),
+ ok = test_final_reductions(Btree, KeyValues),
+ true.
+
+test_add_remove(Btree, OutKeyValues, RemainingKeyValues) ->
+ Btree2 = lists:foldl(fun({K, _}, BtAcc) ->
+ {ok, BtAcc2} = couch_btree:add_remove(BtAcc, [], [K]),
+ BtAcc2
+ end, Btree, OutKeyValues),
+ true = test_btree(Btree2, RemainingKeyValues),
+
+ Btree3 = lists:foldl(fun(KV, BtAcc) ->
+ {ok, BtAcc2} = couch_btree:add_remove(BtAcc, [KV], []),
+ BtAcc2
+ end, Btree2, OutKeyValues),
+ true = test_btree(Btree3, OutKeyValues ++ RemainingKeyValues).
+
+test_key_access(Btree, List) ->
+ FoldFun = fun(Element, {[HAcc|TAcc], Count}) ->
+ case Element == HAcc of
+ true -> {ok, {TAcc, Count + 1}};
+ _ -> {ok, {TAcc, Count + 1}}
+ end
+ end,
+ Length = length(List),
+ Sorted = lists:sort(List),
+ {ok, {[], Length}} = couch_btree:foldl(Btree, FoldFun, {Sorted, 0}),
+ {ok, {[], Length}} = couch_btree:foldr(Btree, FoldFun, {Sorted, 0}),
+ ok.
+
+test_lookup_access(Btree, KeyValues) ->
+ FoldFun = fun({Key, Value}, {Key, Value}) -> {stop, true} end,
+ lists:foreach(fun({Key, Value}) ->
+ [{ok, {Key, Value}}] = couch_btree:lookup(Btree, [Key]),
+ {ok, true} = couch_btree:foldl(Btree, Key, FoldFun, {Key, Value})
+ end, KeyValues).
+
+test_final_reductions(Btree, KeyValues) ->
+ KVLen = length(KeyValues),
+ FoldLFun = fun(_X, LeadingReds, Acc) ->
+ CountToStart = KVLen div 3 + Acc,
+ CountToStart = couch_btree:final_reduce(Btree, LeadingReds),
+ {ok, Acc+1}
+ end,
+ FoldRFun = fun(_X, LeadingReds, Acc) ->
+ CountToEnd = KVLen - KVLen div 3 + Acc,
+ CountToEnd = couch_btree:final_reduce(Btree, LeadingReds),
+ {ok, Acc+1}
+ end,
+ {LStartKey, _} = case KVLen of
+ 0 -> {nil, nil};
+ _ -> lists:nth(KVLen div 3 + 1, lists:sort(KeyValues))
+ end,
+ {RStartKey, _} = case KVLen of
+ 0 -> {nil, nil};
+ _ -> lists:nth(KVLen div 3, lists:sort(KeyValues))
+ end,
+ {ok, FoldLRed} = couch_btree:foldl(Btree, LStartKey, FoldLFun, 0),
+ {ok, FoldRRed} = couch_btree:foldr(Btree, RStartKey, FoldRFun, 0),
+ KVLen = FoldLRed + FoldRRed,
+ ok.
+
+shuffle(List) ->
+ randomize(round(math:log(length(List)) + 0.5), List).
+
+randomize(1, List) ->
+ randomize(List);
+randomize(T, List) ->
+ lists:foldl(fun(_E, Acc) ->
+ randomize(Acc)
+ end, randomize(List), lists:seq(1, (T - 1))).
+
+randomize(List) ->
+ D = lists:map(fun(A) ->
+ {random:uniform(), A}
+ end, List),
+ {_, D1} = lists:unzip(lists:keysort(1, D)),
+ D1.