summaryrefslogtreecommitdiff
path: root/app/openssl/ssl/s3_cbc.c
diff options
context:
space:
mode:
authorParménides GV <parmegv@sdf.org>2015-06-16 11:28:05 +0200
committerParménides GV <parmegv@sdf.org>2015-06-16 11:28:05 +0200
commit66c79953db6876ec17a7ebf50dc4fd07d24fae37 (patch)
tree67075abe6ea28f7fc7213f654b86464b13507058 /app/openssl/ssl/s3_cbc.c
parent1f41fec6765e49838141ad29151713c7ac3dd17c (diff)
parente533cf6939e3ea4233aa8a82812f8ce5fcb565ca (diff)
Merge branch 'develop'0.9.4
Diffstat (limited to 'app/openssl/ssl/s3_cbc.c')
-rw-r--r--app/openssl/ssl/s3_cbc.c755
1 files changed, 0 insertions, 755 deletions
diff --git a/app/openssl/ssl/s3_cbc.c b/app/openssl/ssl/s3_cbc.c
deleted file mode 100644
index 11f13adb..00000000
--- a/app/openssl/ssl/s3_cbc.c
+++ /dev/null
@@ -1,755 +0,0 @@
-/* ssl/s3_cbc.c */
-/* ====================================================================
- * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ====================================================================
- *
- * This product includes cryptographic software written by Eric Young
- * (eay@cryptsoft.com). This product includes software written by Tim
- * Hudson (tjh@cryptsoft.com).
- *
- */
-
-#include "../crypto/constant_time_locl.h"
-#include "ssl_locl.h"
-
-#include <openssl/md5.h>
-#include <openssl/sha.h>
-
-/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
- * field. (SHA-384/512 have 128-bit length.) */
-#define MAX_HASH_BIT_COUNT_BYTES 16
-
-/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
- * Currently SHA-384/512 has a 128-byte block size and that's the largest
- * supported by TLS.) */
-#define MAX_HASH_BLOCK_SIZE 128
-
-/* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
- * record in |rec| by updating |rec->length| in constant time.
- *
- * block_size: the block size of the cipher used to encrypt the record.
- * returns:
- * 0: (in non-constant time) if the record is publicly invalid.
- * 1: if the padding was valid
- * -1: otherwise. */
-int ssl3_cbc_remove_padding(const SSL* s,
- SSL3_RECORD *rec,
- unsigned block_size,
- unsigned mac_size)
- {
- unsigned padding_length, good;
- const unsigned overhead = 1 /* padding length byte */ + mac_size;
-
- /* These lengths are all public so we can test them in non-constant
- * time. */
- if (overhead > rec->length)
- return 0;
-
- padding_length = rec->data[rec->length-1];
- good = constant_time_ge(rec->length, padding_length+overhead);
- /* SSLv3 requires that the padding is minimal. */
- good &= constant_time_ge(block_size, padding_length+1);
- padding_length = good & (padding_length+1);
- rec->length -= padding_length;
- rec->type |= padding_length<<8; /* kludge: pass padding length */
- return constant_time_select_int(good, 1, -1);
- }
-
-/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
- * record in |rec| in constant time and returns 1 if the padding is valid and
- * -1 otherwise. It also removes any explicit IV from the start of the record
- * without leaking any timing about whether there was enough space after the
- * padding was removed.
- *
- * block_size: the block size of the cipher used to encrypt the record.
- * returns:
- * 0: (in non-constant time) if the record is publicly invalid.
- * 1: if the padding was valid
- * -1: otherwise. */
-int tls1_cbc_remove_padding(const SSL* s,
- SSL3_RECORD *rec,
- unsigned block_size,
- unsigned mac_size)
- {
- unsigned padding_length, good, to_check, i;
- const unsigned overhead = 1 /* padding length byte */ + mac_size;
- /* Check if version requires explicit IV */
- if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER)
- {
- /* These lengths are all public so we can test them in
- * non-constant time.
- */
- if (overhead + block_size > rec->length)
- return 0;
- /* We can now safely skip explicit IV */
- rec->data += block_size;
- rec->input += block_size;
- rec->length -= block_size;
- }
- else if (overhead > rec->length)
- return 0;
-
- padding_length = rec->data[rec->length-1];
-
- /* NB: if compression is in operation the first packet may not be of
- * even length so the padding bug check cannot be performed. This bug
- * workaround has been around since SSLeay so hopefully it is either
- * fixed now or no buggy implementation supports compression [steve]
- */
- if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
- {
- /* First packet is even in size, so check */
- if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
- !(padding_length & 1))
- {
- s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
- }
- if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
- padding_length > 0)
- {
- padding_length--;
- }
- }
-
- if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
- {
- /* padding is already verified */
- rec->length -= padding_length + 1;
- return 1;
- }
-
- good = constant_time_ge(rec->length, overhead+padding_length);
- /* The padding consists of a length byte at the end of the record and
- * then that many bytes of padding, all with the same value as the
- * length byte. Thus, with the length byte included, there are i+1
- * bytes of padding.
- *
- * We can't check just |padding_length+1| bytes because that leaks
- * decrypted information. Therefore we always have to check the maximum
- * amount of padding possible. (Again, the length of the record is
- * public information so we can use it.) */
- to_check = 255; /* maximum amount of padding. */
- if (to_check > rec->length-1)
- to_check = rec->length-1;
-
- for (i = 0; i < to_check; i++)
- {
- unsigned char mask = constant_time_ge_8(padding_length, i);
- unsigned char b = rec->data[rec->length-1-i];
- /* The final |padding_length+1| bytes should all have the value
- * |padding_length|. Therefore the XOR should be zero. */
- good &= ~(mask&(padding_length ^ b));
- }
-
- /* If any of the final |padding_length+1| bytes had the wrong value,
- * one or more of the lower eight bits of |good| will be cleared.
- */
- good = constant_time_eq(0xff, good & 0xff);
- padding_length = good & (padding_length+1);
- rec->length -= padding_length;
- rec->type |= padding_length<<8; /* kludge: pass padding length */
-
- return constant_time_select_int(good, 1, -1);
- }
-
-/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
- * constant time (independent of the concrete value of rec->length, which may
- * vary within a 256-byte window).
- *
- * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
- * this function.
- *
- * On entry:
- * rec->orig_len >= md_size
- * md_size <= EVP_MAX_MD_SIZE
- *
- * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
- * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
- * a single or pair of cache-lines, then the variable memory accesses don't
- * actually affect the timing. CPUs with smaller cache-lines [if any] are
- * not multi-core and are not considered vulnerable to cache-timing attacks.
- */
-#define CBC_MAC_ROTATE_IN_PLACE
-
-void ssl3_cbc_copy_mac(unsigned char* out,
- const SSL3_RECORD *rec,
- unsigned md_size,unsigned orig_len)
- {
-#if defined(CBC_MAC_ROTATE_IN_PLACE)
- unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
- unsigned char *rotated_mac;
-#else
- unsigned char rotated_mac[EVP_MAX_MD_SIZE];
-#endif
-
- /* mac_end is the index of |rec->data| just after the end of the MAC. */
- unsigned mac_end = rec->length;
- unsigned mac_start = mac_end - md_size;
- /* scan_start contains the number of bytes that we can ignore because
- * the MAC's position can only vary by 255 bytes. */
- unsigned scan_start = 0;
- unsigned i, j;
- unsigned div_spoiler;
- unsigned rotate_offset;
-
- OPENSSL_assert(orig_len >= md_size);
- OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
-
-#if defined(CBC_MAC_ROTATE_IN_PLACE)
- rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
-#endif
-
- /* This information is public so it's safe to branch based on it. */
- if (orig_len > md_size + 255 + 1)
- scan_start = orig_len - (md_size + 255 + 1);
- /* div_spoiler contains a multiple of md_size that is used to cause the
- * modulo operation to be constant time. Without this, the time varies
- * based on the amount of padding when running on Intel chips at least.
- *
- * The aim of right-shifting md_size is so that the compiler doesn't
- * figure out that it can remove div_spoiler as that would require it
- * to prove that md_size is always even, which I hope is beyond it. */
- div_spoiler = md_size >> 1;
- div_spoiler <<= (sizeof(div_spoiler)-1)*8;
- rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
-
- memset(rotated_mac, 0, md_size);
- for (i = scan_start, j = 0; i < orig_len; i++)
- {
- unsigned char mac_started = constant_time_ge_8(i, mac_start);
- unsigned char mac_ended = constant_time_ge_8(i, mac_end);
- unsigned char b = rec->data[i];
- rotated_mac[j++] |= b & mac_started & ~mac_ended;
- j &= constant_time_lt(j,md_size);
- }
-
- /* Now rotate the MAC */
-#if defined(CBC_MAC_ROTATE_IN_PLACE)
- j = 0;
- for (i = 0; i < md_size; i++)
- {
- /* in case cache-line is 32 bytes, touch second line */
- ((volatile unsigned char *)rotated_mac)[rotate_offset^32];
- out[j++] = rotated_mac[rotate_offset++];
- rotate_offset &= constant_time_lt(rotate_offset,md_size);
- }
-#else
- memset(out, 0, md_size);
- rotate_offset = md_size - rotate_offset;
- rotate_offset &= constant_time_lt(rotate_offset,md_size);
- for (i = 0; i < md_size; i++)
- {
- for (j = 0; j < md_size; j++)
- out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
- rotate_offset++;
- rotate_offset &= constant_time_lt(rotate_offset,md_size);
- }
-#endif
- }
-
-/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
- * little-endian order. The value of p is advanced by four. */
-#define u32toLE(n, p) \
- (*((p)++)=(unsigned char)(n), \
- *((p)++)=(unsigned char)(n>>8), \
- *((p)++)=(unsigned char)(n>>16), \
- *((p)++)=(unsigned char)(n>>24))
-
-/* These functions serialize the state of a hash and thus perform the standard
- * "final" operation without adding the padding and length that such a function
- * typically does. */
-static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
- {
- MD5_CTX *md5 = ctx;
- u32toLE(md5->A, md_out);
- u32toLE(md5->B, md_out);
- u32toLE(md5->C, md_out);
- u32toLE(md5->D, md_out);
- }
-
-static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
- {
- SHA_CTX *sha1 = ctx;
- l2n(sha1->h0, md_out);
- l2n(sha1->h1, md_out);
- l2n(sha1->h2, md_out);
- l2n(sha1->h3, md_out);
- l2n(sha1->h4, md_out);
- }
-#define LARGEST_DIGEST_CTX SHA_CTX
-
-#ifndef OPENSSL_NO_SHA256
-static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
- {
- SHA256_CTX *sha256 = ctx;
- unsigned i;
-
- for (i = 0; i < 8; i++)
- {
- l2n(sha256->h[i], md_out);
- }
- }
-#undef LARGEST_DIGEST_CTX
-#define LARGEST_DIGEST_CTX SHA256_CTX
-#endif
-
-#ifndef OPENSSL_NO_SHA512
-static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
- {
- SHA512_CTX *sha512 = ctx;
- unsigned i;
-
- for (i = 0; i < 8; i++)
- {
- l2n8(sha512->h[i], md_out);
- }
- }
-#undef LARGEST_DIGEST_CTX
-#define LARGEST_DIGEST_CTX SHA512_CTX
-#endif
-
-/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
- * which ssl3_cbc_digest_record supports. */
-char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
- {
-#ifdef OPENSSL_FIPS
- if (FIPS_mode())
- return 0;
-#endif
- switch (EVP_MD_CTX_type(ctx))
- {
- case NID_md5:
- case NID_sha1:
-#ifndef OPENSSL_NO_SHA256
- case NID_sha224:
- case NID_sha256:
-#endif
-#ifndef OPENSSL_NO_SHA512
- case NID_sha384:
- case NID_sha512:
-#endif
- return 1;
- default:
- return 0;
- }
- }
-
-/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
- * record.
- *
- * ctx: the EVP_MD_CTX from which we take the hash function.
- * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
- * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
- * md_out_size: if non-NULL, the number of output bytes is written here.
- * header: the 13-byte, TLS record header.
- * data: the record data itself, less any preceeding explicit IV.
- * data_plus_mac_size: the secret, reported length of the data and MAC
- * once the padding has been removed.
- * data_plus_mac_plus_padding_size: the public length of the whole
- * record, including padding.
- * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
- *
- * On entry: by virtue of having been through one of the remove_padding
- * functions, above, we know that data_plus_mac_size is large enough to contain
- * a padding byte and MAC. (If the padding was invalid, it might contain the
- * padding too. ) */
-void ssl3_cbc_digest_record(
- const EVP_MD_CTX *ctx,
- unsigned char* md_out,
- size_t* md_out_size,
- const unsigned char header[13],
- const unsigned char *data,
- size_t data_plus_mac_size,
- size_t data_plus_mac_plus_padding_size,
- const unsigned char *mac_secret,
- unsigned mac_secret_length,
- char is_sslv3)
- {
- union { double align;
- unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
- void (*md_final_raw)(void *ctx, unsigned char *md_out);
- void (*md_transform)(void *ctx, const unsigned char *block);
- unsigned md_size, md_block_size = 64;
- unsigned sslv3_pad_length = 40, header_length, variance_blocks,
- len, max_mac_bytes, num_blocks,
- num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
- unsigned int bits; /* at most 18 bits */
- unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
- /* hmac_pad is the masked HMAC key. */
- unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
- unsigned char first_block[MAX_HASH_BLOCK_SIZE];
- unsigned char mac_out[EVP_MAX_MD_SIZE];
- unsigned i, j, md_out_size_u;
- EVP_MD_CTX md_ctx;
- /* mdLengthSize is the number of bytes in the length field that terminates
- * the hash. */
- unsigned md_length_size = 8;
- char length_is_big_endian = 1;
-
- /* This is a, hopefully redundant, check that allows us to forget about
- * many possible overflows later in this function. */
- OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
-
- switch (EVP_MD_CTX_type(ctx))
- {
- case NID_md5:
- MD5_Init((MD5_CTX*)md_state.c);
- md_final_raw = tls1_md5_final_raw;
- md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
- md_size = 16;
- sslv3_pad_length = 48;
- length_is_big_endian = 0;
- break;
- case NID_sha1:
- SHA1_Init((SHA_CTX*)md_state.c);
- md_final_raw = tls1_sha1_final_raw;
- md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
- md_size = 20;
- break;
-#ifndef OPENSSL_NO_SHA256
- case NID_sha224:
- SHA224_Init((SHA256_CTX*)md_state.c);
- md_final_raw = tls1_sha256_final_raw;
- md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
- md_size = 224/8;
- break;
- case NID_sha256:
- SHA256_Init((SHA256_CTX*)md_state.c);
- md_final_raw = tls1_sha256_final_raw;
- md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
- md_size = 32;
- break;
-#endif
-#ifndef OPENSSL_NO_SHA512
- case NID_sha384:
- SHA384_Init((SHA512_CTX*)md_state.c);
- md_final_raw = tls1_sha512_final_raw;
- md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
- md_size = 384/8;
- md_block_size = 128;
- md_length_size = 16;
- break;
- case NID_sha512:
- SHA512_Init((SHA512_CTX*)md_state.c);
- md_final_raw = tls1_sha512_final_raw;
- md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
- md_size = 64;
- md_block_size = 128;
- md_length_size = 16;
- break;
-#endif
- default:
- /* ssl3_cbc_record_digest_supported should have been
- * called first to check that the hash function is
- * supported. */
- OPENSSL_assert(0);
- if (md_out_size)
- *md_out_size = -1;
- return;
- }
-
- OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
- OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
- OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
-
- header_length = 13;
- if (is_sslv3)
- {
- header_length =
- mac_secret_length +
- sslv3_pad_length +
- 8 /* sequence number */ +
- 1 /* record type */ +
- 2 /* record length */;
- }
-
- /* variance_blocks is the number of blocks of the hash that we have to
- * calculate in constant time because they could be altered by the
- * padding value.
- *
- * In SSLv3, the padding must be minimal so the end of the plaintext
- * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
- * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
- * termination (0x80 + 64-bit length) don't fit in the final block, we
- * say that the final two blocks can vary based on the padding.
- *
- * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
- * required to be minimal. Therefore we say that the final six blocks
- * can vary based on the padding.
- *
- * Later in the function, if the message is short and there obviously
- * cannot be this many blocks then variance_blocks can be reduced. */
- variance_blocks = is_sslv3 ? 2 : 6;
- /* From now on we're dealing with the MAC, which conceptually has 13
- * bytes of `header' before the start of the data (TLS) or 71/75 bytes
- * (SSLv3) */
- len = data_plus_mac_plus_padding_size + header_length;
- /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
- * |header|, assuming that there's no padding. */
- max_mac_bytes = len - md_size - 1;
- /* num_blocks is the maximum number of hash blocks. */
- num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
- /* In order to calculate the MAC in constant time we have to handle
- * the final blocks specially because the padding value could cause the
- * end to appear somewhere in the final |variance_blocks| blocks and we
- * can't leak where. However, |num_starting_blocks| worth of data can
- * be hashed right away because no padding value can affect whether
- * they are plaintext. */
- num_starting_blocks = 0;
- /* k is the starting byte offset into the conceptual header||data where
- * we start processing. */
- k = 0;
- /* mac_end_offset is the index just past the end of the data to be
- * MACed. */
- mac_end_offset = data_plus_mac_size + header_length - md_size;
- /* c is the index of the 0x80 byte in the final hash block that
- * contains application data. */
- c = mac_end_offset % md_block_size;
- /* index_a is the hash block number that contains the 0x80 terminating
- * value. */
- index_a = mac_end_offset / md_block_size;
- /* index_b is the hash block number that contains the 64-bit hash
- * length, in bits. */
- index_b = (mac_end_offset + md_length_size) / md_block_size;
- /* bits is the hash-length in bits. It includes the additional hash
- * block for the masked HMAC key, or whole of |header| in the case of
- * SSLv3. */
-
- /* For SSLv3, if we're going to have any starting blocks then we need
- * at least two because the header is larger than a single block. */
- if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
- {
- num_starting_blocks = num_blocks - variance_blocks;
- k = md_block_size*num_starting_blocks;
- }
-
- bits = 8*mac_end_offset;
- if (!is_sslv3)
- {
- /* Compute the initial HMAC block. For SSLv3, the padding and
- * secret bytes are included in |header| because they take more
- * than a single block. */
- bits += 8*md_block_size;
- memset(hmac_pad, 0, md_block_size);
- OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
- memcpy(hmac_pad, mac_secret, mac_secret_length);
- for (i = 0; i < md_block_size; i++)
- hmac_pad[i] ^= 0x36;
-
- md_transform(md_state.c, hmac_pad);
- }
-
- if (length_is_big_endian)
- {
- memset(length_bytes,0,md_length_size-4);
- length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
- length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
- length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
- length_bytes[md_length_size-1] = (unsigned char)bits;
- }
- else
- {
- memset(length_bytes,0,md_length_size);
- length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
- length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
- length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
- length_bytes[md_length_size-8] = (unsigned char)bits;
- }
-
- if (k > 0)
- {
- if (is_sslv3)
- {
- /* The SSLv3 header is larger than a single block.
- * overhang is the number of bytes beyond a single
- * block that the header consumes: either 7 bytes
- * (SHA1) or 11 bytes (MD5). */
- unsigned overhang = header_length-md_block_size;
- md_transform(md_state.c, header);
- memcpy(first_block, header + md_block_size, overhang);
- memcpy(first_block + overhang, data, md_block_size-overhang);
- md_transform(md_state.c, first_block);
- for (i = 1; i < k/md_block_size - 1; i++)
- md_transform(md_state.c, data + md_block_size*i - overhang);
- }
- else
- {
- /* k is a multiple of md_block_size. */
- memcpy(first_block, header, 13);
- memcpy(first_block+13, data, md_block_size-13);
- md_transform(md_state.c, first_block);
- for (i = 1; i < k/md_block_size; i++)
- md_transform(md_state.c, data + md_block_size*i - 13);
- }
- }
-
- memset(mac_out, 0, sizeof(mac_out));
-
- /* We now process the final hash blocks. For each block, we construct
- * it in constant time. If the |i==index_a| then we'll include the 0x80
- * bytes and zero pad etc. For each block we selectively copy it, in
- * constant time, to |mac_out|. */
- for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
- {
- unsigned char block[MAX_HASH_BLOCK_SIZE];
- unsigned char is_block_a = constant_time_eq_8(i, index_a);
- unsigned char is_block_b = constant_time_eq_8(i, index_b);
- for (j = 0; j < md_block_size; j++)
- {
- unsigned char b = 0, is_past_c, is_past_cp1;
- if (k < header_length)
- b = header[k];
- else if (k < data_plus_mac_plus_padding_size + header_length)
- b = data[k-header_length];
- k++;
-
- is_past_c = is_block_a & constant_time_ge_8(j, c);
- is_past_cp1 = is_block_a & constant_time_ge_8(j, c+1);
- /* If this is the block containing the end of the
- * application data, and we are at the offset for the
- * 0x80 value, then overwrite b with 0x80. */
- b = constant_time_select_8(is_past_c, 0x80, b);
- /* If this the the block containing the end of the
- * application data and we're past the 0x80 value then
- * just write zero. */
- b = b&~is_past_cp1;
- /* If this is index_b (the final block), but not
- * index_a (the end of the data), then the 64-bit
- * length didn't fit into index_a and we're having to
- * add an extra block of zeros. */
- b &= ~is_block_b | is_block_a;
-
- /* The final bytes of one of the blocks contains the
- * length. */
- if (j >= md_block_size - md_length_size)
- {
- /* If this is index_b, write a length byte. */
- b = constant_time_select_8(
- is_block_b, length_bytes[j-(md_block_size-md_length_size)], b);
- }
- block[j] = b;
- }
-
- md_transform(md_state.c, block);
- md_final_raw(md_state.c, block);
- /* If this is index_b, copy the hash value to |mac_out|. */
- for (j = 0; j < md_size; j++)
- mac_out[j] |= block[j]&is_block_b;
- }
-
- EVP_MD_CTX_init(&md_ctx);
- EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
- if (is_sslv3)
- {
- /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
- memset(hmac_pad, 0x5c, sslv3_pad_length);
-
- EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
- EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
- EVP_DigestUpdate(&md_ctx, mac_out, md_size);
- }
- else
- {
- /* Complete the HMAC in the standard manner. */
- for (i = 0; i < md_block_size; i++)
- hmac_pad[i] ^= 0x6a;
-
- EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
- EVP_DigestUpdate(&md_ctx, mac_out, md_size);
- }
- EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
- if (md_out_size)
- *md_out_size = md_out_size_u;
- EVP_MD_CTX_cleanup(&md_ctx);
- }
-
-#ifdef OPENSSL_FIPS
-
-/* Due to the need to use EVP in FIPS mode we can't reimplement digests but
- * we can ensure the number of blocks processed is equal for all cases
- * by digesting additional data.
- */
-
-void tls_fips_digest_extra(
- const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
- const unsigned char *data, size_t data_len, size_t orig_len)
- {
- size_t block_size, digest_pad, blocks_data, blocks_orig;
- if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
- return;
- block_size = EVP_MD_CTX_block_size(mac_ctx);
- /* We are in FIPS mode if we get this far so we know we have only SHA*
- * digests and TLS to deal with.
- * Minimum digest padding length is 17 for SHA384/SHA512 and 9
- * otherwise.
- * Additional header is 13 bytes. To get the number of digest blocks
- * processed round up the amount of data plus padding to the nearest
- * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
- * So we have:
- * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
- * equivalently:
- * blocks = (payload_len + digest_pad + 12)/block_size + 1
- * HMAC adds a constant overhead.
- * We're ultimately only interested in differences so this becomes
- * blocks = (payload_len + 29)/128
- * for SHA384/SHA512 and
- * blocks = (payload_len + 21)/64
- * otherwise.
- */
- digest_pad = block_size == 64 ? 21 : 29;
- blocks_orig = (orig_len + digest_pad)/block_size;
- blocks_data = (data_len + digest_pad)/block_size;
- /* MAC enough blocks to make up the difference between the original
- * and actual lengths plus one extra block to ensure this is never a
- * no op. The "data" pointer should always have enough space to
- * perform this operation as it is large enough for a maximum
- * length TLS buffer.
- */
- EVP_DigestSignUpdate(mac_ctx, data,
- (blocks_orig - blocks_data + 1) * block_size);
- }
-#endif