summaryrefslogtreecommitdiff
path: root/app/openssl/crypto/sha/asm/sha1-586.pl
diff options
context:
space:
mode:
authorParménides GV <parmegv@sdf.org>2015-06-16 11:28:05 +0200
committerParménides GV <parmegv@sdf.org>2015-06-16 11:28:05 +0200
commit66c79953db6876ec17a7ebf50dc4fd07d24fae37 (patch)
tree67075abe6ea28f7fc7213f654b86464b13507058 /app/openssl/crypto/sha/asm/sha1-586.pl
parent1f41fec6765e49838141ad29151713c7ac3dd17c (diff)
parente533cf6939e3ea4233aa8a82812f8ce5fcb565ca (diff)
Merge branch 'develop'0.9.4
Diffstat (limited to 'app/openssl/crypto/sha/asm/sha1-586.pl')
-rw-r--r--app/openssl/crypto/sha/asm/sha1-586.pl1229
1 files changed, 0 insertions, 1229 deletions
diff --git a/app/openssl/crypto/sha/asm/sha1-586.pl b/app/openssl/crypto/sha/asm/sha1-586.pl
deleted file mode 100644
index 2b119ffa..00000000
--- a/app/openssl/crypto/sha/asm/sha1-586.pl
+++ /dev/null
@@ -1,1229 +0,0 @@
-#!/usr/bin/env perl
-
-# ====================================================================
-# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
-# project. The module is, however, dual licensed under OpenSSL and
-# CRYPTOGAMS licenses depending on where you obtain it. For further
-# details see http://www.openssl.org/~appro/cryptogams/.
-# ====================================================================
-
-# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
-# functions were re-implemented to address P4 performance issue [see
-# commentary below], and in 2006 the rest was rewritten in order to
-# gain freedom to liberate licensing terms.
-
-# January, September 2004.
-#
-# It was noted that Intel IA-32 C compiler generates code which
-# performs ~30% *faster* on P4 CPU than original *hand-coded*
-# SHA1 assembler implementation. To address this problem (and
-# prove that humans are still better than machines:-), the
-# original code was overhauled, which resulted in following
-# performance changes:
-#
-# compared with original compared with Intel cc
-# assembler impl. generated code
-# Pentium -16% +48%
-# PIII/AMD +8% +16%
-# P4 +85%(!) +45%
-#
-# As you can see Pentium came out as looser:-( Yet I reckoned that
-# improvement on P4 outweights the loss and incorporate this
-# re-tuned code to 0.9.7 and later.
-# ----------------------------------------------------------------
-# <appro@fy.chalmers.se>
-
-# August 2009.
-#
-# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
-# '(c&d) + (b&(c^d))', which allows to accumulate partial results
-# and lighten "pressure" on scratch registers. This resulted in
-# >12% performance improvement on contemporary AMD cores (with no
-# degradation on other CPUs:-). Also, the code was revised to maximize
-# "distance" between instructions producing input to 'lea' instruction
-# and the 'lea' instruction itself, which is essential for Intel Atom
-# core and resulted in ~15% improvement.
-
-# October 2010.
-#
-# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
-# is to offload message schedule denoted by Wt in NIST specification,
-# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
-# and in SSE2 context was first explored by Dean Gaudet in 2004, see
-# http://arctic.org/~dean/crypto/sha1.html. Since then several things
-# have changed that made it interesting again:
-#
-# a) XMM units became faster and wider;
-# b) instruction set became more versatile;
-# c) an important observation was made by Max Locktykhin, which made
-# it possible to reduce amount of instructions required to perform
-# the operation in question, for further details see
-# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
-
-# April 2011.
-#
-# Add AVX code path, probably most controversial... The thing is that
-# switch to AVX alone improves performance by as little as 4% in
-# comparison to SSSE3 code path. But below result doesn't look like
-# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
-# pair of µ-ops, and it's the additional µ-ops, two per round, that
-# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
-# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
-# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
-# cycles per processed byte. But 'sh[rl]d' is not something that used
-# to be fast, nor does it appear to be fast in upcoming Bulldozer
-# [according to its optimization manual]. Which is why AVX code path
-# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
-# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
-# makes no sense to keep the AVX code path. If somebody feels that
-# strongly, it's probably more appropriate to discuss possibility of
-# using vector rotate XOP on AMD...
-
-######################################################################
-# Current performance is summarized in following table. Numbers are
-# CPU clock cycles spent to process single byte (less is better).
-#
-# x86 SSSE3 AVX
-# Pentium 15.7 -
-# PIII 11.5 -
-# P4 10.6 -
-# AMD K8 7.1 -
-# Core2 7.3 6.1/+20% -
-# Atom 12.5 9.5(*)/+32% -
-# Westmere 7.3 5.6/+30% -
-# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+70%
-#
-# (*) Loop is 1056 instructions long and expected result is ~8.25.
-# It remains mystery [to me] why ILP is limited to 1.7.
-#
-# (**) As per above comment, the result is for AVX *plus* sh[rl]d.
-
-$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
-push(@INC,"${dir}","${dir}../../perlasm");
-require "x86asm.pl";
-
-&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
-
-$xmm=$ymm=0;
-for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
-
-$ymm=1 if ($xmm &&
- `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
- =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
- $1>=2.19); # first version supporting AVX
-
-$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
- `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
- $1>=2.03); # first version supporting AVX
-
-&external_label("OPENSSL_ia32cap_P") if ($xmm);
-
-
-$A="eax";
-$B="ebx";
-$C="ecx";
-$D="edx";
-$E="edi";
-$T="esi";
-$tmp1="ebp";
-
-@V=($A,$B,$C,$D,$E,$T);
-
-$alt=0; # 1 denotes alternative IALU implementation, which performs
- # 8% *worse* on P4, same on Westmere and Atom, 2% better on
- # Sandy Bridge...
-
-sub BODY_00_15
- {
- local($n,$a,$b,$c,$d,$e,$f)=@_;
-
- &comment("00_15 $n");
-
- &mov($f,$c); # f to hold F_00_19(b,c,d)
- if ($n==0) { &mov($tmp1,$a); }
- else { &mov($a,$tmp1); }
- &rotl($tmp1,5); # tmp1=ROTATE(a,5)
- &xor($f,$d);
- &add($tmp1,$e); # tmp1+=e;
- &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
- # with xi, also note that e becomes
- # f in next round...
- &and($f,$b);
- &rotr($b,2); # b=ROTATE(b,30)
- &xor($f,$d); # f holds F_00_19(b,c,d)
- &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
-
- if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
- &add($f,$tmp1); } # f+=tmp1
- else { &add($tmp1,$f); } # f becomes a in next round
- &mov($tmp1,$a) if ($alt && $n==15);
- }
-
-sub BODY_16_19
- {
- local($n,$a,$b,$c,$d,$e,$f)=@_;
-
- &comment("16_19 $n");
-
-if ($alt) {
- &xor($c,$d);
- &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
- &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
- &xor($f,&swtmp(($n+8)%16));
- &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
- &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
- &rotl($f,1); # f=ROTATE(f,1)
- &add($e,$tmp1); # e+=F_00_19(b,c,d)
- &xor($c,$d); # restore $c
- &mov($tmp1,$a); # b in next round
- &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
- &mov(&swtmp($n%16),$f); # xi=f
- &rotl($a,5); # ROTATE(a,5)
- &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
- &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
- &add($f,$a); # f+=ROTATE(a,5)
-} else {
- &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
- &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
- &xor($tmp1,$d);
- &xor($f,&swtmp(($n+8)%16));
- &and($tmp1,$b);
- &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
- &rotl($f,1); # f=ROTATE(f,1)
- &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
- &add($e,$tmp1); # e+=F_00_19(b,c,d)
- &mov($tmp1,$a);
- &rotr($b,2); # b=ROTATE(b,30)
- &mov(&swtmp($n%16),$f); # xi=f
- &rotl($tmp1,5); # ROTATE(a,5)
- &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
- &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
- &add($f,$tmp1); # f+=ROTATE(a,5)
-}
- }
-
-sub BODY_20_39
- {
- local($n,$a,$b,$c,$d,$e,$f)=@_;
- local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
-
- &comment("20_39 $n");
-
-if ($alt) {
- &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
- &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
- &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
- &xor($f,&swtmp(($n+8)%16));
- &add($e,$tmp1); # e+=F_20_39(b,c,d)
- &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
- &rotl($f,1); # f=ROTATE(f,1)
- &mov($tmp1,$a); # b in next round
- &rotr($b,7); # b=ROTATE(b,30)
- &mov(&swtmp($n%16),$f) if($n<77);# xi=f
- &rotl($a,5); # ROTATE(a,5)
- &xor($b,$c) if($n==39);# warm up for BODY_40_59
- &and($tmp1,$b) if($n==39);
- &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
- &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
- &add($f,$a); # f+=ROTATE(a,5)
- &rotr($a,5) if ($n==79);
-} else {
- &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
- &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
- &xor($tmp1,$c);
- &xor($f,&swtmp(($n+8)%16));
- &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
- &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
- &rotl($f,1); # f=ROTATE(f,1)
- &add($e,$tmp1); # e+=F_20_39(b,c,d)
- &rotr($b,2); # b=ROTATE(b,30)
- &mov($tmp1,$a);
- &rotl($tmp1,5); # ROTATE(a,5)
- &mov(&swtmp($n%16),$f) if($n<77);# xi=f
- &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
- &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
- &add($f,$tmp1); # f+=ROTATE(a,5)
-}
- }
-
-sub BODY_40_59
- {
- local($n,$a,$b,$c,$d,$e,$f)=@_;
-
- &comment("40_59 $n");
-
-if ($alt) {
- &add($e,$tmp1); # e+=b&(c^d)
- &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
- &mov($tmp1,$d);
- &xor($f,&swtmp(($n+8)%16));
- &xor($c,$d); # restore $c
- &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
- &rotl($f,1); # f=ROTATE(f,1)
- &and($tmp1,$c);
- &rotr($b,7); # b=ROTATE(b,30)
- &add($e,$tmp1); # e+=c&d
- &mov($tmp1,$a); # b in next round
- &mov(&swtmp($n%16),$f); # xi=f
- &rotl($a,5); # ROTATE(a,5)
- &xor($b,$c) if ($n<59);
- &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
- &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
- &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
- &add($f,$a); # f+=ROTATE(a,5)
-} else {
- &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
- &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
- &xor($tmp1,$d);
- &xor($f,&swtmp(($n+8)%16));
- &and($tmp1,$b);
- &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
- &rotl($f,1); # f=ROTATE(f,1)
- &add($tmp1,$e); # b&(c^d)+=e
- &rotr($b,2); # b=ROTATE(b,30)
- &mov($e,$a); # e becomes volatile
- &rotl($e,5); # ROTATE(a,5)
- &mov(&swtmp($n%16),$f); # xi=f
- &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
- &mov($tmp1,$c);
- &add($f,$e); # f+=ROTATE(a,5)
- &and($tmp1,$d);
- &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
- &add($f,$tmp1); # f+=c&d
-}
- }
-
-&function_begin("sha1_block_data_order");
-if ($xmm) {
- &static_label("ssse3_shortcut");
- &static_label("avx_shortcut") if ($ymm);
- &static_label("K_XX_XX");
-
- &call (&label("pic_point")); # make it PIC!
- &set_label("pic_point");
- &blindpop($tmp1);
- &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
- &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
-
- &mov ($A,&DWP(0,$T));
- &mov ($D,&DWP(4,$T));
- &test ($D,1<<9); # check SSSE3 bit
- &jz (&label("x86"));
- &test ($A,1<<24); # check FXSR bit
- &jz (&label("x86"));
- if ($ymm) {
- &and ($D,1<<28); # mask AVX bit
- &and ($A,1<<30); # mask "Intel CPU" bit
- &or ($A,$D);
- &cmp ($A,1<<28|1<<30);
- &je (&label("avx_shortcut"));
- }
- &jmp (&label("ssse3_shortcut"));
- &set_label("x86",16);
-}
- &mov($tmp1,&wparam(0)); # SHA_CTX *c
- &mov($T,&wparam(1)); # const void *input
- &mov($A,&wparam(2)); # size_t num
- &stack_push(16+3); # allocate X[16]
- &shl($A,6);
- &add($A,$T);
- &mov(&wparam(2),$A); # pointer beyond the end of input
- &mov($E,&DWP(16,$tmp1));# pre-load E
- &jmp(&label("loop"));
-
-&set_label("loop",16);
-
- # copy input chunk to X, but reversing byte order!
- for ($i=0; $i<16; $i+=4)
- {
- &mov($A,&DWP(4*($i+0),$T));
- &mov($B,&DWP(4*($i+1),$T));
- &mov($C,&DWP(4*($i+2),$T));
- &mov($D,&DWP(4*($i+3),$T));
- &bswap($A);
- &bswap($B);
- &bswap($C);
- &bswap($D);
- &mov(&swtmp($i+0),$A);
- &mov(&swtmp($i+1),$B);
- &mov(&swtmp($i+2),$C);
- &mov(&swtmp($i+3),$D);
- }
- &mov(&wparam(1),$T); # redundant in 1st spin
-
- &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
- &mov($B,&DWP(4,$tmp1));
- &mov($C,&DWP(8,$tmp1));
- &mov($D,&DWP(12,$tmp1));
- # E is pre-loaded
-
- for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
- for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
- for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
- for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
- for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
-
- (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
-
- &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
- &mov($D,&wparam(1)); # D is last "T" and is discarded
-
- &add($E,&DWP(0,$tmp1)); # E is last "A"...
- &add($T,&DWP(4,$tmp1));
- &add($A,&DWP(8,$tmp1));
- &add($B,&DWP(12,$tmp1));
- &add($C,&DWP(16,$tmp1));
-
- &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
- &add($D,64); # advance input pointer
- &mov(&DWP(4,$tmp1),$T);
- &cmp($D,&wparam(2)); # have we reached the end yet?
- &mov(&DWP(8,$tmp1),$A);
- &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
- &mov(&DWP(12,$tmp1),$B);
- &mov($T,$D); # input pointer
- &mov(&DWP(16,$tmp1),$C);
- &jb(&label("loop"));
-
- &stack_pop(16+3);
-&function_end("sha1_block_data_order");
-
-if ($xmm) {
-######################################################################
-# The SSSE3 implementation.
-#
-# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
-# 32 elements of the message schedule or Xupdate outputs. First 4
-# quadruples are simply byte-swapped input, next 4 are calculated
-# according to method originally suggested by Dean Gaudet (modulo
-# being implemented in SSSE3). Once 8 quadruples or 32 elements are
-# collected, it switches to routine proposed by Max Locktyukhin.
-#
-# Calculations inevitably require temporary reqisters, and there are
-# no %xmm registers left to spare. For this reason part of the ring
-# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
-# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
-# X[-5], and X[4] - X[-4]...
-#
-# Another notable optimization is aggressive stack frame compression
-# aiming to minimize amount of 9-byte instructions...
-#
-# Yet another notable optimization is "jumping" $B variable. It means
-# that there is no register permanently allocated for $B value. This
-# allowed to eliminate one instruction from body_20_39...
-#
-my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
-my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
-my @V=($A,$B,$C,$D,$E);
-my $j=0; # hash round
-my @T=($T,$tmp1);
-my $inp;
-
-my $_rol=sub { &rol(@_) };
-my $_ror=sub { &ror(@_) };
-
-&function_begin("_sha1_block_data_order_ssse3");
- &call (&label("pic_point")); # make it PIC!
- &set_label("pic_point");
- &blindpop($tmp1);
- &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
-&set_label("ssse3_shortcut");
-
- &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
- &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
- &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
- &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
- &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
-
- &mov ($E,&wparam(0)); # load argument block
- &mov ($inp=@T[1],&wparam(1));
- &mov ($D,&wparam(2));
- &mov (@T[0],"esp");
-
- # stack frame layout
- #
- # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
- # X[4]+K X[5]+K X[6]+K X[7]+K
- # X[8]+K X[9]+K X[10]+K X[11]+K
- # X[12]+K X[13]+K X[14]+K X[15]+K
- #
- # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
- # X[4] X[5] X[6] X[7]
- # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
- #
- # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
- # K_40_59 K_40_59 K_40_59 K_40_59
- # K_60_79 K_60_79 K_60_79 K_60_79
- # K_00_19 K_00_19 K_00_19 K_00_19
- # pbswap mask
- #
- # +192 ctx # argument block
- # +196 inp
- # +200 end
- # +204 esp
- &sub ("esp",208);
- &and ("esp",-64);
-
- &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
- &movdqa (&QWP(112+16,"esp"),@X[5]);
- &movdqa (&QWP(112+32,"esp"),@X[6]);
- &shl ($D,6); # len*64
- &movdqa (&QWP(112+48,"esp"),@X[3]);
- &add ($D,$inp); # end of input
- &movdqa (&QWP(112+64,"esp"),@X[2]);
- &add ($inp,64);
- &mov (&DWP(192+0,"esp"),$E); # save argument block
- &mov (&DWP(192+4,"esp"),$inp);
- &mov (&DWP(192+8,"esp"),$D);
- &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
-
- &mov ($A,&DWP(0,$E)); # load context
- &mov ($B,&DWP(4,$E));
- &mov ($C,&DWP(8,$E));
- &mov ($D,&DWP(12,$E));
- &mov ($E,&DWP(16,$E));
- &mov (@T[0],$B); # magic seed
-
- &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
- &movdqu (@X[-3&7],&QWP(-48,$inp));
- &movdqu (@X[-2&7],&QWP(-32,$inp));
- &movdqu (@X[-1&7],&QWP(-16,$inp));
- &pshufb (@X[-4&7],@X[2]); # byte swap
- &pshufb (@X[-3&7],@X[2]);
- &pshufb (@X[-2&7],@X[2]);
- &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
- &pshufb (@X[-1&7],@X[2]);
- &paddd (@X[-4&7],@X[3]); # add K_00_19
- &paddd (@X[-3&7],@X[3]);
- &paddd (@X[-2&7],@X[3]);
- &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
- &psubd (@X[-4&7],@X[3]); # restore X[]
- &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
- &psubd (@X[-3&7],@X[3]);
- &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
- &psubd (@X[-2&7],@X[3]);
- &movdqa (@X[0],@X[-3&7]);
- &jmp (&label("loop"));
-
-######################################################################
-# SSE instruction sequence is first broken to groups of indepentent
-# instructions, independent in respect to their inputs and shifter
-# (not all architectures have more than one). Then IALU instructions
-# are "knitted in" between the SSE groups. Distance is maintained for
-# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
-# [which allegedly also implements SSSE3]...
-#
-# Temporary registers usage. X[2] is volatile at the entry and at the
-# end is restored from backtrace ring buffer. X[3] is expected to
-# contain current K_XX_XX constant and is used to caclulate X[-1]+K
-# from previous round, it becomes volatile the moment the value is
-# saved to stack for transfer to IALU. X[4] becomes volatile whenever
-# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
-# end it is loaded with next K_XX_XX [which becomes X[3] in next
-# round]...
-#
-sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
-{ use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
- my ($a,$b,$c,$d,$e);
-
- eval(shift(@insns));
- eval(shift(@insns));
- &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
- &movdqa (@X[2],@X[-1&7]);
- eval(shift(@insns));
- eval(shift(@insns));
-
- &paddd (@X[3],@X[-1&7]);
- &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
- eval(shift(@insns));
- eval(shift(@insns));
- &psrldq (@X[2],4); # "X[-3]", 3 dwords
- eval(shift(@insns));
- eval(shift(@insns));
- &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
- eval(shift(@insns));
- eval(shift(@insns));
-
- &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
-
- &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
- eval(shift(@insns));
- eval(shift(@insns));
- &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
- eval(shift(@insns));
- eval(shift(@insns));
-
- &movdqa (@X[4],@X[0]);
- &movdqa (@X[2],@X[0]);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
-
- &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
- &paddd (@X[0],@X[0]);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
-
- &psrld (@X[2],31);
- eval(shift(@insns));
- eval(shift(@insns));
- &movdqa (@X[3],@X[4]);
- eval(shift(@insns));
- eval(shift(@insns));
-
- &psrld (@X[4],30);
- &por (@X[0],@X[2]); # "X[0]"<<<=1
- eval(shift(@insns));
- eval(shift(@insns));
- &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
- eval(shift(@insns));
- eval(shift(@insns));
-
- &pslld (@X[3],2);
- &pxor (@X[0],@X[4]);
- eval(shift(@insns));
- eval(shift(@insns));
- &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
- eval(shift(@insns));
- eval(shift(@insns));
-
- &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
- &movdqa (@X[1],@X[-2&7]) if ($Xi<7);
- eval(shift(@insns));
- eval(shift(@insns));
-
- foreach (@insns) { eval; } # remaining instructions [if any]
-
- $Xi++; push(@X,shift(@X)); # "rotate" X[]
-}
-
-sub Xupdate_ssse3_32_79()
-{ use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
- my ($a,$b,$c,$d,$e);
-
- &movdqa (@X[2],@X[-1&7]) if ($Xi==8);
- eval(shift(@insns)); # body_20_39
- &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
- &palignr(@X[2],@X[-2&7],8); # compose "X[-6]"
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # rol
-
- &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
- &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
- eval(shift(@insns));
- eval(shift(@insns));
- if ($Xi%5) {
- &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
- } else { # ... or load next one
- &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
- }
- &paddd (@X[3],@X[-1&7]);
- eval(shift(@insns)); # ror
- eval(shift(@insns));
-
- &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
- eval(shift(@insns)); # body_20_39
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # rol
-
- &movdqa (@X[2],@X[0]);
- &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # ror
- eval(shift(@insns));
-
- &pslld (@X[0],2);
- eval(shift(@insns)); # body_20_39
- eval(shift(@insns));
- &psrld (@X[2],30);
- eval(shift(@insns));
- eval(shift(@insns)); # rol
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # ror
- eval(shift(@insns));
-
- &por (@X[0],@X[2]); # "X[0]"<<<=2
- eval(shift(@insns)); # body_20_39
- eval(shift(@insns));
- &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
- eval(shift(@insns));
- eval(shift(@insns)); # rol
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # ror
- &movdqa (@X[3],@X[0]) if ($Xi<19);
- eval(shift(@insns));
-
- foreach (@insns) { eval; } # remaining instructions
-
- $Xi++; push(@X,shift(@X)); # "rotate" X[]
-}
-
-sub Xuplast_ssse3_80()
-{ use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
- my ($a,$b,$c,$d,$e);
-
- eval(shift(@insns));
- &paddd (@X[3],@X[-1&7]);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
-
- &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
-
- foreach (@insns) { eval; } # remaining instructions
-
- &mov ($inp=@T[1],&DWP(192+4,"esp"));
- &cmp ($inp,&DWP(192+8,"esp"));
- &je (&label("done"));
-
- &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
- &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
- &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
- &movdqu (@X[-3&7],&QWP(16,$inp));
- &movdqu (@X[-2&7],&QWP(32,$inp));
- &movdqu (@X[-1&7],&QWP(48,$inp));
- &add ($inp,64);
- &pshufb (@X[-4&7],@X[2]); # byte swap
- &mov (&DWP(192+4,"esp"),$inp);
- &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
-
- $Xi=0;
-}
-
-sub Xloop_ssse3()
-{ use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
- my ($a,$b,$c,$d,$e);
-
- eval(shift(@insns));
- eval(shift(@insns));
- &pshufb (@X[($Xi-3)&7],@X[2]);
- eval(shift(@insns));
- eval(shift(@insns));
- &paddd (@X[($Xi-4)&7],@X[3]);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
- eval(shift(@insns));
- eval(shift(@insns));
- &psubd (@X[($Xi-4)&7],@X[3]);
-
- foreach (@insns) { eval; }
- $Xi++;
-}
-
-sub Xtail_ssse3()
-{ use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
- my ($a,$b,$c,$d,$e);
-
- foreach (@insns) { eval; }
-}
-
-sub body_00_19 () {
- (
- '($a,$b,$c,$d,$e)=@V;'.
- '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
- '&xor ($c,$d);',
- '&mov (@T[1],$a);', # $b in next round
- '&$_rol ($a,5);',
- '&and (@T[0],$c);', # ($b&($c^$d))
- '&xor ($c,$d);', # restore $c
- '&xor (@T[0],$d);',
- '&add ($e,$a);',
- '&$_ror ($b,$j?7:2);', # $b>>>2
- '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
- );
-}
-
-sub body_20_39 () {
- (
- '($a,$b,$c,$d,$e)=@V;'.
- '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
- '&xor (@T[0],$d);', # ($b^$d)
- '&mov (@T[1],$a);', # $b in next round
- '&$_rol ($a,5);',
- '&xor (@T[0],$c);', # ($b^$d^$c)
- '&add ($e,$a);',
- '&$_ror ($b,7);', # $b>>>2
- '&add ($e,@T[0]);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
- );
-}
-
-sub body_40_59 () {
- (
- '($a,$b,$c,$d,$e)=@V;'.
- '&mov (@T[1],$c);',
- '&xor ($c,$d);',
- '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
- '&and (@T[1],$d);',
- '&and (@T[0],$c);', # ($b&($c^$d))
- '&$_ror ($b,7);', # $b>>>2
- '&add ($e,@T[1]);',
- '&mov (@T[1],$a);', # $b in next round
- '&$_rol ($a,5);',
- '&add ($e,@T[0]);',
- '&xor ($c,$d);', # restore $c
- '&add ($e,$a);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
- );
-}
-
-&set_label("loop",16);
- &Xupdate_ssse3_16_31(\&body_00_19);
- &Xupdate_ssse3_16_31(\&body_00_19);
- &Xupdate_ssse3_16_31(\&body_00_19);
- &Xupdate_ssse3_16_31(\&body_00_19);
- &Xupdate_ssse3_32_79(\&body_00_19);
- &Xupdate_ssse3_32_79(\&body_20_39);
- &Xupdate_ssse3_32_79(\&body_20_39);
- &Xupdate_ssse3_32_79(\&body_20_39);
- &Xupdate_ssse3_32_79(\&body_20_39);
- &Xupdate_ssse3_32_79(\&body_20_39);
- &Xupdate_ssse3_32_79(\&body_40_59);
- &Xupdate_ssse3_32_79(\&body_40_59);
- &Xupdate_ssse3_32_79(\&body_40_59);
- &Xupdate_ssse3_32_79(\&body_40_59);
- &Xupdate_ssse3_32_79(\&body_40_59);
- &Xupdate_ssse3_32_79(\&body_20_39);
- &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
-
- $saved_j=$j; @saved_V=@V;
-
- &Xloop_ssse3(\&body_20_39);
- &Xloop_ssse3(\&body_20_39);
- &Xloop_ssse3(\&body_20_39);
-
- &mov (@T[1],&DWP(192,"esp")); # update context
- &add ($A,&DWP(0,@T[1]));
- &add (@T[0],&DWP(4,@T[1])); # $b
- &add ($C,&DWP(8,@T[1]));
- &mov (&DWP(0,@T[1]),$A);
- &add ($D,&DWP(12,@T[1]));
- &mov (&DWP(4,@T[1]),@T[0]);
- &add ($E,&DWP(16,@T[1]));
- &mov (&DWP(8,@T[1]),$C);
- &mov ($B,@T[0]);
- &mov (&DWP(12,@T[1]),$D);
- &mov (&DWP(16,@T[1]),$E);
- &movdqa (@X[0],@X[-3&7]);
-
- &jmp (&label("loop"));
-
-&set_label("done",16); $j=$saved_j; @V=@saved_V;
-
- &Xtail_ssse3(\&body_20_39);
- &Xtail_ssse3(\&body_20_39);
- &Xtail_ssse3(\&body_20_39);
-
- &mov (@T[1],&DWP(192,"esp")); # update context
- &add ($A,&DWP(0,@T[1]));
- &mov ("esp",&DWP(192+12,"esp")); # restore %esp
- &add (@T[0],&DWP(4,@T[1])); # $b
- &add ($C,&DWP(8,@T[1]));
- &mov (&DWP(0,@T[1]),$A);
- &add ($D,&DWP(12,@T[1]));
- &mov (&DWP(4,@T[1]),@T[0]);
- &add ($E,&DWP(16,@T[1]));
- &mov (&DWP(8,@T[1]),$C);
- &mov (&DWP(12,@T[1]),$D);
- &mov (&DWP(16,@T[1]),$E);
-
-&function_end("_sha1_block_data_order_ssse3");
-
-if ($ymm) {
-my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
-my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
-my @V=($A,$B,$C,$D,$E);
-my $j=0; # hash round
-my @T=($T,$tmp1);
-my $inp;
-
-my $_rol=sub { &shld(@_[0],@_) };
-my $_ror=sub { &shrd(@_[0],@_) };
-
-&function_begin("_sha1_block_data_order_avx");
- &call (&label("pic_point")); # make it PIC!
- &set_label("pic_point");
- &blindpop($tmp1);
- &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
-&set_label("avx_shortcut");
- &vzeroall();
-
- &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
- &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
- &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
- &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
- &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
-
- &mov ($E,&wparam(0)); # load argument block
- &mov ($inp=@T[1],&wparam(1));
- &mov ($D,&wparam(2));
- &mov (@T[0],"esp");
-
- # stack frame layout
- #
- # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
- # X[4]+K X[5]+K X[6]+K X[7]+K
- # X[8]+K X[9]+K X[10]+K X[11]+K
- # X[12]+K X[13]+K X[14]+K X[15]+K
- #
- # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
- # X[4] X[5] X[6] X[7]
- # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
- #
- # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
- # K_40_59 K_40_59 K_40_59 K_40_59
- # K_60_79 K_60_79 K_60_79 K_60_79
- # K_00_19 K_00_19 K_00_19 K_00_19
- # pbswap mask
- #
- # +192 ctx # argument block
- # +196 inp
- # +200 end
- # +204 esp
- &sub ("esp",208);
- &and ("esp",-64);
-
- &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
- &vmovdqa(&QWP(112+16,"esp"),@X[5]);
- &vmovdqa(&QWP(112+32,"esp"),@X[6]);
- &shl ($D,6); # len*64
- &vmovdqa(&QWP(112+48,"esp"),@X[3]);
- &add ($D,$inp); # end of input
- &vmovdqa(&QWP(112+64,"esp"),@X[2]);
- &add ($inp,64);
- &mov (&DWP(192+0,"esp"),$E); # save argument block
- &mov (&DWP(192+4,"esp"),$inp);
- &mov (&DWP(192+8,"esp"),$D);
- &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
-
- &mov ($A,&DWP(0,$E)); # load context
- &mov ($B,&DWP(4,$E));
- &mov ($C,&DWP(8,$E));
- &mov ($D,&DWP(12,$E));
- &mov ($E,&DWP(16,$E));
- &mov (@T[0],$B); # magic seed
-
- &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
- &vmovdqu(@X[-3&7],&QWP(-48,$inp));
- &vmovdqu(@X[-2&7],&QWP(-32,$inp));
- &vmovdqu(@X[-1&7],&QWP(-16,$inp));
- &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
- &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
- &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
- &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
- &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
- &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
- &vpaddd (@X[1],@X[-3&7],@X[3]);
- &vpaddd (@X[2],@X[-2&7],@X[3]);
- &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
- &vmovdqa(&QWP(0+16,"esp"),@X[1]);
- &vmovdqa(&QWP(0+32,"esp"),@X[2]);
- &jmp (&label("loop"));
-
-sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
-{ use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
- my ($a,$b,$c,$d,$e);
-
- eval(shift(@insns));
- eval(shift(@insns));
- &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
- eval(shift(@insns));
- eval(shift(@insns));
-
- &vpaddd (@X[3],@X[3],@X[-1&7]);
- &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
- eval(shift(@insns));
- eval(shift(@insns));
- &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
- eval(shift(@insns));
- eval(shift(@insns));
- &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
- eval(shift(@insns));
- eval(shift(@insns));
-
- &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
- eval(shift(@insns));
- eval(shift(@insns));
- &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
- eval(shift(@insns));
- eval(shift(@insns));
-
- &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
-
- &vpsrld (@X[2],@X[0],31);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
-
- &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
- &vpaddd (@X[0],@X[0],@X[0]);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
-
- &vpsrld (@X[3],@X[4],30);
- &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
-
- &vpslld (@X[4],@X[4],2);
- &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
- eval(shift(@insns));
- eval(shift(@insns));
- &vpxor (@X[0],@X[0],@X[3]);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
-
- &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
- eval(shift(@insns));
- eval(shift(@insns));
- &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
- eval(shift(@insns));
- eval(shift(@insns));
-
- foreach (@insns) { eval; } # remaining instructions [if any]
-
- $Xi++; push(@X,shift(@X)); # "rotate" X[]
-}
-
-sub Xupdate_avx_32_79()
-{ use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
- my ($a,$b,$c,$d,$e);
-
- &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
- &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
- eval(shift(@insns)); # body_20_39
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # rol
-
- &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
- &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
- eval(shift(@insns));
- eval(shift(@insns));
- if ($Xi%5) {
- &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
- } else { # ... or load next one
- &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
- }
- &vpaddd (@X[3],@X[3],@X[-1&7]);
- eval(shift(@insns)); # ror
- eval(shift(@insns));
-
- &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
- eval(shift(@insns)); # body_20_39
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # rol
-
- &vpsrld (@X[2],@X[0],30);
- &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # ror
- eval(shift(@insns));
-
- &vpslld (@X[0],@X[0],2);
- eval(shift(@insns)); # body_20_39
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # rol
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # ror
- eval(shift(@insns));
-
- &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
- eval(shift(@insns)); # body_20_39
- eval(shift(@insns));
- &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
- eval(shift(@insns));
- eval(shift(@insns)); # rol
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns)); # ror
- eval(shift(@insns));
-
- foreach (@insns) { eval; } # remaining instructions
-
- $Xi++; push(@X,shift(@X)); # "rotate" X[]
-}
-
-sub Xuplast_avx_80()
-{ use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
- my ($a,$b,$c,$d,$e);
-
- eval(shift(@insns));
- &vpaddd (@X[3],@X[3],@X[-1&7]);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
-
- &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
-
- foreach (@insns) { eval; } # remaining instructions
-
- &mov ($inp=@T[1],&DWP(192+4,"esp"));
- &cmp ($inp,&DWP(192+8,"esp"));
- &je (&label("done"));
-
- &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
- &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
- &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
- &vmovdqu(@X[-3&7],&QWP(16,$inp));
- &vmovdqu(@X[-2&7],&QWP(32,$inp));
- &vmovdqu(@X[-1&7],&QWP(48,$inp));
- &add ($inp,64);
- &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
- &mov (&DWP(192+4,"esp"),$inp);
- &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
-
- $Xi=0;
-}
-
-sub Xloop_avx()
-{ use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
- my ($a,$b,$c,$d,$e);
-
- eval(shift(@insns));
- eval(shift(@insns));
- &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
- eval(shift(@insns));
- eval(shift(@insns));
- &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
- eval(shift(@insns));
- eval(shift(@insns));
-
- foreach (@insns) { eval; }
- $Xi++;
-}
-
-sub Xtail_avx()
-{ use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
- my ($a,$b,$c,$d,$e);
-
- foreach (@insns) { eval; }
-}
-
-&set_label("loop",16);
- &Xupdate_avx_16_31(\&body_00_19);
- &Xupdate_avx_16_31(\&body_00_19);
- &Xupdate_avx_16_31(\&body_00_19);
- &Xupdate_avx_16_31(\&body_00_19);
- &Xupdate_avx_32_79(\&body_00_19);
- &Xupdate_avx_32_79(\&body_20_39);
- &Xupdate_avx_32_79(\&body_20_39);
- &Xupdate_avx_32_79(\&body_20_39);
- &Xupdate_avx_32_79(\&body_20_39);
- &Xupdate_avx_32_79(\&body_20_39);
- &Xupdate_avx_32_79(\&body_40_59);
- &Xupdate_avx_32_79(\&body_40_59);
- &Xupdate_avx_32_79(\&body_40_59);
- &Xupdate_avx_32_79(\&body_40_59);
- &Xupdate_avx_32_79(\&body_40_59);
- &Xupdate_avx_32_79(\&body_20_39);
- &Xuplast_avx_80(\&body_20_39); # can jump to "done"
-
- $saved_j=$j; @saved_V=@V;
-
- &Xloop_avx(\&body_20_39);
- &Xloop_avx(\&body_20_39);
- &Xloop_avx(\&body_20_39);
-
- &mov (@T[1],&DWP(192,"esp")); # update context
- &add ($A,&DWP(0,@T[1]));
- &add (@T[0],&DWP(4,@T[1])); # $b
- &add ($C,&DWP(8,@T[1]));
- &mov (&DWP(0,@T[1]),$A);
- &add ($D,&DWP(12,@T[1]));
- &mov (&DWP(4,@T[1]),@T[0]);
- &add ($E,&DWP(16,@T[1]));
- &mov (&DWP(8,@T[1]),$C);
- &mov ($B,@T[0]);
- &mov (&DWP(12,@T[1]),$D);
- &mov (&DWP(16,@T[1]),$E);
-
- &jmp (&label("loop"));
-
-&set_label("done",16); $j=$saved_j; @V=@saved_V;
-
- &Xtail_avx(\&body_20_39);
- &Xtail_avx(\&body_20_39);
- &Xtail_avx(\&body_20_39);
-
- &vzeroall();
-
- &mov (@T[1],&DWP(192,"esp")); # update context
- &add ($A,&DWP(0,@T[1]));
- &mov ("esp",&DWP(192+12,"esp")); # restore %esp
- &add (@T[0],&DWP(4,@T[1])); # $b
- &add ($C,&DWP(8,@T[1]));
- &mov (&DWP(0,@T[1]),$A);
- &add ($D,&DWP(12,@T[1]));
- &mov (&DWP(4,@T[1]),@T[0]);
- &add ($E,&DWP(16,@T[1]));
- &mov (&DWP(8,@T[1]),$C);
- &mov (&DWP(12,@T[1]),$D);
- &mov (&DWP(16,@T[1]),$E);
-&function_end("_sha1_block_data_order_avx");
-}
-&set_label("K_XX_XX",64);
-&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
-&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
-&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
-&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
-&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
-}
-&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
-
-&asm_finish();