summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/tools/go/ssa/builder.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/tools/go/ssa/builder.go')
-rw-r--r--vendor/golang.org/x/tools/go/ssa/builder.go2379
1 files changed, 0 insertions, 2379 deletions
diff --git a/vendor/golang.org/x/tools/go/ssa/builder.go b/vendor/golang.org/x/tools/go/ssa/builder.go
deleted file mode 100644
index 44abc5b..0000000
--- a/vendor/golang.org/x/tools/go/ssa/builder.go
+++ /dev/null
@@ -1,2379 +0,0 @@
-// Copyright 2013 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package ssa
-
-// This file implements the BUILD phase of SSA construction.
-//
-// SSA construction has two phases, CREATE and BUILD. In the CREATE phase
-// (create.go), all packages are constructed and type-checked and
-// definitions of all package members are created, method-sets are
-// computed, and wrapper methods are synthesized.
-// ssa.Packages are created in arbitrary order.
-//
-// In the BUILD phase (builder.go), the builder traverses the AST of
-// each Go source function and generates SSA instructions for the
-// function body. Initializer expressions for package-level variables
-// are emitted to the package's init() function in the order specified
-// by go/types.Info.InitOrder, then code for each function in the
-// package is generated in lexical order.
-// The BUILD phases for distinct packages are independent and are
-// executed in parallel.
-//
-// TODO(adonovan): indeed, building functions is now embarrassingly parallel.
-// Audit for concurrency then benchmark using more goroutines.
-//
-// The builder's and Program's indices (maps) are populated and
-// mutated during the CREATE phase, but during the BUILD phase they
-// remain constant. The sole exception is Prog.methodSets and its
-// related maps, which are protected by a dedicated mutex.
-
-import (
- "fmt"
- "go/ast"
- exact "go/constant"
- "go/token"
- "go/types"
- "os"
- "sync"
-)
-
-type opaqueType struct {
- types.Type
- name string
-}
-
-func (t *opaqueType) String() string { return t.name }
-
-var (
- varOk = newVar("ok", tBool)
- varIndex = newVar("index", tInt)
-
- // Type constants.
- tBool = types.Typ[types.Bool]
- tByte = types.Typ[types.Byte]
- tInt = types.Typ[types.Int]
- tInvalid = types.Typ[types.Invalid]
- tString = types.Typ[types.String]
- tUntypedNil = types.Typ[types.UntypedNil]
- tRangeIter = &opaqueType{nil, "iter"} // the type of all "range" iterators
- tEface = types.NewInterface(nil, nil).Complete()
-
- // SSA Value constants.
- vZero = intConst(0)
- vOne = intConst(1)
- vTrue = NewConst(exact.MakeBool(true), tBool)
-)
-
-// builder holds state associated with the package currently being built.
-// Its methods contain all the logic for AST-to-SSA conversion.
-type builder struct{}
-
-// cond emits to fn code to evaluate boolean condition e and jump
-// to t or f depending on its value, performing various simplifications.
-//
-// Postcondition: fn.currentBlock is nil.
-//
-func (b *builder) cond(fn *Function, e ast.Expr, t, f *BasicBlock) {
- switch e := e.(type) {
- case *ast.ParenExpr:
- b.cond(fn, e.X, t, f)
- return
-
- case *ast.BinaryExpr:
- switch e.Op {
- case token.LAND:
- ltrue := fn.newBasicBlock("cond.true")
- b.cond(fn, e.X, ltrue, f)
- fn.currentBlock = ltrue
- b.cond(fn, e.Y, t, f)
- return
-
- case token.LOR:
- lfalse := fn.newBasicBlock("cond.false")
- b.cond(fn, e.X, t, lfalse)
- fn.currentBlock = lfalse
- b.cond(fn, e.Y, t, f)
- return
- }
-
- case *ast.UnaryExpr:
- if e.Op == token.NOT {
- b.cond(fn, e.X, f, t)
- return
- }
- }
-
- // A traditional compiler would simplify "if false" (etc) here
- // but we do not, for better fidelity to the source code.
- //
- // The value of a constant condition may be platform-specific,
- // and may cause blocks that are reachable in some configuration
- // to be hidden from subsequent analyses such as bug-finding tools.
- emitIf(fn, b.expr(fn, e), t, f)
-}
-
-// logicalBinop emits code to fn to evaluate e, a &&- or
-// ||-expression whose reified boolean value is wanted.
-// The value is returned.
-//
-func (b *builder) logicalBinop(fn *Function, e *ast.BinaryExpr) Value {
- rhs := fn.newBasicBlock("binop.rhs")
- done := fn.newBasicBlock("binop.done")
-
- // T(e) = T(e.X) = T(e.Y) after untyped constants have been
- // eliminated.
- // TODO(adonovan): not true; MyBool==MyBool yields UntypedBool.
- t := fn.Pkg.typeOf(e)
-
- var short Value // value of the short-circuit path
- switch e.Op {
- case token.LAND:
- b.cond(fn, e.X, rhs, done)
- short = NewConst(exact.MakeBool(false), t)
-
- case token.LOR:
- b.cond(fn, e.X, done, rhs)
- short = NewConst(exact.MakeBool(true), t)
- }
-
- // Is rhs unreachable?
- if rhs.Preds == nil {
- // Simplify false&&y to false, true||y to true.
- fn.currentBlock = done
- return short
- }
-
- // Is done unreachable?
- if done.Preds == nil {
- // Simplify true&&y (or false||y) to y.
- fn.currentBlock = rhs
- return b.expr(fn, e.Y)
- }
-
- // All edges from e.X to done carry the short-circuit value.
- var edges []Value
- for range done.Preds {
- edges = append(edges, short)
- }
-
- // The edge from e.Y to done carries the value of e.Y.
- fn.currentBlock = rhs
- edges = append(edges, b.expr(fn, e.Y))
- emitJump(fn, done)
- fn.currentBlock = done
-
- phi := &Phi{Edges: edges, Comment: e.Op.String()}
- phi.pos = e.OpPos
- phi.typ = t
- return done.emit(phi)
-}
-
-// exprN lowers a multi-result expression e to SSA form, emitting code
-// to fn and returning a single Value whose type is a *types.Tuple.
-// The caller must access the components via Extract.
-//
-// Multi-result expressions include CallExprs in a multi-value
-// assignment or return statement, and "value,ok" uses of
-// TypeAssertExpr, IndexExpr (when X is a map), and UnaryExpr (when Op
-// is token.ARROW).
-//
-func (b *builder) exprN(fn *Function, e ast.Expr) Value {
- typ := fn.Pkg.typeOf(e).(*types.Tuple)
- switch e := e.(type) {
- case *ast.ParenExpr:
- return b.exprN(fn, e.X)
-
- case *ast.CallExpr:
- // Currently, no built-in function nor type conversion
- // has multiple results, so we can avoid some of the
- // cases for single-valued CallExpr.
- var c Call
- b.setCall(fn, e, &c.Call)
- c.typ = typ
- return fn.emit(&c)
-
- case *ast.IndexExpr:
- mapt := fn.Pkg.typeOf(e.X).Underlying().(*types.Map)
- lookup := &Lookup{
- X: b.expr(fn, e.X),
- Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()),
- CommaOk: true,
- }
- lookup.setType(typ)
- lookup.setPos(e.Lbrack)
- return fn.emit(lookup)
-
- case *ast.TypeAssertExpr:
- return emitTypeTest(fn, b.expr(fn, e.X), typ.At(0).Type(), e.Lparen)
-
- case *ast.UnaryExpr: // must be receive <-
- unop := &UnOp{
- Op: token.ARROW,
- X: b.expr(fn, e.X),
- CommaOk: true,
- }
- unop.setType(typ)
- unop.setPos(e.OpPos)
- return fn.emit(unop)
- }
- panic(fmt.Sprintf("exprN(%T) in %s", e, fn))
-}
-
-// builtin emits to fn SSA instructions to implement a call to the
-// built-in function obj with the specified arguments
-// and return type. It returns the value defined by the result.
-//
-// The result is nil if no special handling was required; in this case
-// the caller should treat this like an ordinary library function
-// call.
-//
-func (b *builder) builtin(fn *Function, obj *types.Builtin, args []ast.Expr, typ types.Type, pos token.Pos) Value {
- switch obj.Name() {
- case "make":
- switch typ.Underlying().(type) {
- case *types.Slice:
- n := b.expr(fn, args[1])
- m := n
- if len(args) == 3 {
- m = b.expr(fn, args[2])
- }
- if m, ok := m.(*Const); ok {
- // treat make([]T, n, m) as new([m]T)[:n]
- cap := m.Int64()
- at := types.NewArray(typ.Underlying().(*types.Slice).Elem(), cap)
- alloc := emitNew(fn, at, pos)
- alloc.Comment = "makeslice"
- v := &Slice{
- X: alloc,
- High: n,
- }
- v.setPos(pos)
- v.setType(typ)
- return fn.emit(v)
- }
- v := &MakeSlice{
- Len: n,
- Cap: m,
- }
- v.setPos(pos)
- v.setType(typ)
- return fn.emit(v)
-
- case *types.Map:
- var res Value
- if len(args) == 2 {
- res = b.expr(fn, args[1])
- }
- v := &MakeMap{Reserve: res}
- v.setPos(pos)
- v.setType(typ)
- return fn.emit(v)
-
- case *types.Chan:
- var sz Value = vZero
- if len(args) == 2 {
- sz = b.expr(fn, args[1])
- }
- v := &MakeChan{Size: sz}
- v.setPos(pos)
- v.setType(typ)
- return fn.emit(v)
- }
-
- case "new":
- alloc := emitNew(fn, deref(typ), pos)
- alloc.Comment = "new"
- return alloc
-
- case "len", "cap":
- // Special case: len or cap of an array or *array is
- // based on the type, not the value which may be nil.
- // We must still evaluate the value, though. (If it
- // was side-effect free, the whole call would have
- // been constant-folded.)
- t := deref(fn.Pkg.typeOf(args[0])).Underlying()
- if at, ok := t.(*types.Array); ok {
- b.expr(fn, args[0]) // for effects only
- return intConst(at.Len())
- }
- // Otherwise treat as normal.
-
- case "panic":
- fn.emit(&Panic{
- X: emitConv(fn, b.expr(fn, args[0]), tEface),
- pos: pos,
- })
- fn.currentBlock = fn.newBasicBlock("unreachable")
- return vTrue // any non-nil Value will do
- }
- return nil // treat all others as a regular function call
-}
-
-// addr lowers a single-result addressable expression e to SSA form,
-// emitting code to fn and returning the location (an lvalue) defined
-// by the expression.
-//
-// If escaping is true, addr marks the base variable of the
-// addressable expression e as being a potentially escaping pointer
-// value. For example, in this code:
-//
-// a := A{
-// b: [1]B{B{c: 1}}
-// }
-// return &a.b[0].c
-//
-// the application of & causes a.b[0].c to have its address taken,
-// which means that ultimately the local variable a must be
-// heap-allocated. This is a simple but very conservative escape
-// analysis.
-//
-// Operations forming potentially escaping pointers include:
-// - &x, including when implicit in method call or composite literals.
-// - a[:] iff a is an array (not *array)
-// - references to variables in lexically enclosing functions.
-//
-func (b *builder) addr(fn *Function, e ast.Expr, escaping bool) lvalue {
- switch e := e.(type) {
- case *ast.Ident:
- if isBlankIdent(e) {
- return blank{}
- }
- obj := fn.Pkg.objectOf(e)
- v := fn.Prog.packageLevelValue(obj) // var (address)
- if v == nil {
- v = fn.lookup(obj, escaping)
- }
- return &address{addr: v, pos: e.Pos(), expr: e}
-
- case *ast.CompositeLit:
- t := deref(fn.Pkg.typeOf(e))
- var v *Alloc
- if escaping {
- v = emitNew(fn, t, e.Lbrace)
- } else {
- v = fn.addLocal(t, e.Lbrace)
- }
- v.Comment = "complit"
- var sb storebuf
- b.compLit(fn, v, e, true, &sb)
- sb.emit(fn)
- return &address{addr: v, pos: e.Lbrace, expr: e}
-
- case *ast.ParenExpr:
- return b.addr(fn, e.X, escaping)
-
- case *ast.SelectorExpr:
- sel, ok := fn.Pkg.info.Selections[e]
- if !ok {
- // qualified identifier
- return b.addr(fn, e.Sel, escaping)
- }
- if sel.Kind() != types.FieldVal {
- panic(sel)
- }
- wantAddr := true
- v := b.receiver(fn, e.X, wantAddr, escaping, sel)
- last := len(sel.Index()) - 1
- return &address{
- addr: emitFieldSelection(fn, v, sel.Index()[last], true, e.Sel),
- pos: e.Sel.Pos(),
- expr: e.Sel,
- }
-
- case *ast.IndexExpr:
- var x Value
- var et types.Type
- switch t := fn.Pkg.typeOf(e.X).Underlying().(type) {
- case *types.Array:
- x = b.addr(fn, e.X, escaping).address(fn)
- et = types.NewPointer(t.Elem())
- case *types.Pointer: // *array
- x = b.expr(fn, e.X)
- et = types.NewPointer(t.Elem().Underlying().(*types.Array).Elem())
- case *types.Slice:
- x = b.expr(fn, e.X)
- et = types.NewPointer(t.Elem())
- case *types.Map:
- return &element{
- m: b.expr(fn, e.X),
- k: emitConv(fn, b.expr(fn, e.Index), t.Key()),
- t: t.Elem(),
- pos: e.Lbrack,
- }
- default:
- panic("unexpected container type in IndexExpr: " + t.String())
- }
- v := &IndexAddr{
- X: x,
- Index: emitConv(fn, b.expr(fn, e.Index), tInt),
- }
- v.setPos(e.Lbrack)
- v.setType(et)
- return &address{addr: fn.emit(v), pos: e.Lbrack, expr: e}
-
- case *ast.StarExpr:
- return &address{addr: b.expr(fn, e.X), pos: e.Star, expr: e}
- }
-
- panic(fmt.Sprintf("unexpected address expression: %T", e))
-}
-
-type store struct {
- lhs lvalue
- rhs Value
-}
-
-type storebuf struct{ stores []store }
-
-func (sb *storebuf) store(lhs lvalue, rhs Value) {
- sb.stores = append(sb.stores, store{lhs, rhs})
-}
-
-func (sb *storebuf) emit(fn *Function) {
- for _, s := range sb.stores {
- s.lhs.store(fn, s.rhs)
- }
-}
-
-// assign emits to fn code to initialize the lvalue loc with the value
-// of expression e. If isZero is true, assign assumes that loc holds
-// the zero value for its type.
-//
-// This is equivalent to loc.store(fn, b.expr(fn, e)), but may generate
-// better code in some cases, e.g., for composite literals in an
-// addressable location.
-//
-// If sb is not nil, assign generates code to evaluate expression e, but
-// not to update loc. Instead, the necessary stores are appended to the
-// storebuf sb so that they can be executed later. This allows correct
-// in-place update of existing variables when the RHS is a composite
-// literal that may reference parts of the LHS.
-//
-func (b *builder) assign(fn *Function, loc lvalue, e ast.Expr, isZero bool, sb *storebuf) {
- // Can we initialize it in place?
- if e, ok := unparen(e).(*ast.CompositeLit); ok {
- // A CompositeLit never evaluates to a pointer,
- // so if the type of the location is a pointer,
- // an &-operation is implied.
- if _, ok := loc.(blank); !ok { // avoid calling blank.typ()
- if isPointer(loc.typ()) {
- ptr := b.addr(fn, e, true).address(fn)
- // copy address
- if sb != nil {
- sb.store(loc, ptr)
- } else {
- loc.store(fn, ptr)
- }
- return
- }
- }
-
- if _, ok := loc.(*address); ok {
- if isInterface(loc.typ()) {
- // e.g. var x interface{} = T{...}
- // Can't in-place initialize an interface value.
- // Fall back to copying.
- } else {
- // x = T{...} or x := T{...}
- addr := loc.address(fn)
- if sb != nil {
- b.compLit(fn, addr, e, isZero, sb)
- } else {
- var sb storebuf
- b.compLit(fn, addr, e, isZero, &sb)
- sb.emit(fn)
- }
-
- // Subtle: emit debug ref for aggregate types only;
- // slice and map are handled by store ops in compLit.
- switch loc.typ().Underlying().(type) {
- case *types.Struct, *types.Array:
- emitDebugRef(fn, e, addr, true)
- }
-
- return
- }
- }
- }
-
- // simple case: just copy
- rhs := b.expr(fn, e)
- if sb != nil {
- sb.store(loc, rhs)
- } else {
- loc.store(fn, rhs)
- }
-}
-
-// expr lowers a single-result expression e to SSA form, emitting code
-// to fn and returning the Value defined by the expression.
-//
-func (b *builder) expr(fn *Function, e ast.Expr) Value {
- e = unparen(e)
-
- tv := fn.Pkg.info.Types[e]
-
- // Is expression a constant?
- if tv.Value != nil {
- return NewConst(tv.Value, tv.Type)
- }
-
- var v Value
- if tv.Addressable() {
- // Prefer pointer arithmetic ({Index,Field}Addr) followed
- // by Load over subelement extraction (e.g. Index, Field),
- // to avoid large copies.
- v = b.addr(fn, e, false).load(fn)
- } else {
- v = b.expr0(fn, e, tv)
- }
- if fn.debugInfo() {
- emitDebugRef(fn, e, v, false)
- }
- return v
-}
-
-func (b *builder) expr0(fn *Function, e ast.Expr, tv types.TypeAndValue) Value {
- switch e := e.(type) {
- case *ast.BasicLit:
- panic("non-constant BasicLit") // unreachable
-
- case *ast.FuncLit:
- fn2 := &Function{
- name: fmt.Sprintf("%s$%d", fn.Name(), 1+len(fn.AnonFuncs)),
- Signature: fn.Pkg.typeOf(e.Type).Underlying().(*types.Signature),
- pos: e.Type.Func,
- parent: fn,
- Pkg: fn.Pkg,
- Prog: fn.Prog,
- syntax: e,
- }
- fn.AnonFuncs = append(fn.AnonFuncs, fn2)
- b.buildFunction(fn2)
- if fn2.FreeVars == nil {
- return fn2
- }
- v := &MakeClosure{Fn: fn2}
- v.setType(tv.Type)
- for _, fv := range fn2.FreeVars {
- v.Bindings = append(v.Bindings, fv.outer)
- fv.outer = nil
- }
- return fn.emit(v)
-
- case *ast.TypeAssertExpr: // single-result form only
- return emitTypeAssert(fn, b.expr(fn, e.X), tv.Type, e.Lparen)
-
- case *ast.CallExpr:
- if fn.Pkg.info.Types[e.Fun].IsType() {
- // Explicit type conversion, e.g. string(x) or big.Int(x)
- x := b.expr(fn, e.Args[0])
- y := emitConv(fn, x, tv.Type)
- if y != x {
- switch y := y.(type) {
- case *Convert:
- y.pos = e.Lparen
- case *ChangeType:
- y.pos = e.Lparen
- case *MakeInterface:
- y.pos = e.Lparen
- }
- }
- return y
- }
- // Call to "intrinsic" built-ins, e.g. new, make, panic.
- if id, ok := unparen(e.Fun).(*ast.Ident); ok {
- if obj, ok := fn.Pkg.info.Uses[id].(*types.Builtin); ok {
- if v := b.builtin(fn, obj, e.Args, tv.Type, e.Lparen); v != nil {
- return v
- }
- }
- }
- // Regular function call.
- var v Call
- b.setCall(fn, e, &v.Call)
- v.setType(tv.Type)
- return fn.emit(&v)
-
- case *ast.UnaryExpr:
- switch e.Op {
- case token.AND: // &X --- potentially escaping.
- addr := b.addr(fn, e.X, true)
- if _, ok := unparen(e.X).(*ast.StarExpr); ok {
- // &*p must panic if p is nil (http://golang.org/s/go12nil).
- // For simplicity, we'll just (suboptimally) rely
- // on the side effects of a load.
- // TODO(adonovan): emit dedicated nilcheck.
- addr.load(fn)
- }
- return addr.address(fn)
- case token.ADD:
- return b.expr(fn, e.X)
- case token.NOT, token.ARROW, token.SUB, token.XOR: // ! <- - ^
- v := &UnOp{
- Op: e.Op,
- X: b.expr(fn, e.X),
- }
- v.setPos(e.OpPos)
- v.setType(tv.Type)
- return fn.emit(v)
- default:
- panic(e.Op)
- }
-
- case *ast.BinaryExpr:
- switch e.Op {
- case token.LAND, token.LOR:
- return b.logicalBinop(fn, e)
- case token.SHL, token.SHR:
- fallthrough
- case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
- return emitArith(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), tv.Type, e.OpPos)
-
- case token.EQL, token.NEQ, token.GTR, token.LSS, token.LEQ, token.GEQ:
- cmp := emitCompare(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), e.OpPos)
- // The type of x==y may be UntypedBool.
- return emitConv(fn, cmp, DefaultType(tv.Type))
- default:
- panic("illegal op in BinaryExpr: " + e.Op.String())
- }
-
- case *ast.SliceExpr:
- var low, high, max Value
- var x Value
- switch fn.Pkg.typeOf(e.X).Underlying().(type) {
- case *types.Array:
- // Potentially escaping.
- x = b.addr(fn, e.X, true).address(fn)
- case *types.Basic, *types.Slice, *types.Pointer: // *array
- x = b.expr(fn, e.X)
- default:
- panic("unreachable")
- }
- if e.High != nil {
- high = b.expr(fn, e.High)
- }
- if e.Low != nil {
- low = b.expr(fn, e.Low)
- }
- if e.Slice3 {
- max = b.expr(fn, e.Max)
- }
- v := &Slice{
- X: x,
- Low: low,
- High: high,
- Max: max,
- }
- v.setPos(e.Lbrack)
- v.setType(tv.Type)
- return fn.emit(v)
-
- case *ast.Ident:
- obj := fn.Pkg.info.Uses[e]
- // Universal built-in or nil?
- switch obj := obj.(type) {
- case *types.Builtin:
- return &Builtin{name: obj.Name(), sig: tv.Type.(*types.Signature)}
- case *types.Nil:
- return nilConst(tv.Type)
- }
- // Package-level func or var?
- if v := fn.Prog.packageLevelValue(obj); v != nil {
- if _, ok := obj.(*types.Var); ok {
- return emitLoad(fn, v) // var (address)
- }
- return v // (func)
- }
- // Local var.
- return emitLoad(fn, fn.lookup(obj, false)) // var (address)
-
- case *ast.SelectorExpr:
- sel, ok := fn.Pkg.info.Selections[e]
- if !ok {
- // qualified identifier
- return b.expr(fn, e.Sel)
- }
- switch sel.Kind() {
- case types.MethodExpr:
- // (*T).f or T.f, the method f from the method-set of type T.
- // The result is a "thunk".
- return emitConv(fn, makeThunk(fn.Prog, sel), tv.Type)
-
- case types.MethodVal:
- // e.f where e is an expression and f is a method.
- // The result is a "bound".
- obj := sel.Obj().(*types.Func)
- rt := recvType(obj)
- wantAddr := isPointer(rt)
- escaping := true
- v := b.receiver(fn, e.X, wantAddr, escaping, sel)
- if isInterface(rt) {
- // If v has interface type I,
- // we must emit a check that v is non-nil.
- // We use: typeassert v.(I).
- emitTypeAssert(fn, v, rt, token.NoPos)
- }
- c := &MakeClosure{
- Fn: makeBound(fn.Prog, obj),
- Bindings: []Value{v},
- }
- c.setPos(e.Sel.Pos())
- c.setType(tv.Type)
- return fn.emit(c)
-
- case types.FieldVal:
- indices := sel.Index()
- last := len(indices) - 1
- v := b.expr(fn, e.X)
- v = emitImplicitSelections(fn, v, indices[:last])
- v = emitFieldSelection(fn, v, indices[last], false, e.Sel)
- return v
- }
-
- panic("unexpected expression-relative selector")
-
- case *ast.IndexExpr:
- switch t := fn.Pkg.typeOf(e.X).Underlying().(type) {
- case *types.Array:
- // Non-addressable array (in a register).
- v := &Index{
- X: b.expr(fn, e.X),
- Index: emitConv(fn, b.expr(fn, e.Index), tInt),
- }
- v.setPos(e.Lbrack)
- v.setType(t.Elem())
- return fn.emit(v)
-
- case *types.Map:
- // Maps are not addressable.
- mapt := fn.Pkg.typeOf(e.X).Underlying().(*types.Map)
- v := &Lookup{
- X: b.expr(fn, e.X),
- Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()),
- }
- v.setPos(e.Lbrack)
- v.setType(mapt.Elem())
- return fn.emit(v)
-
- case *types.Basic: // => string
- // Strings are not addressable.
- v := &Lookup{
- X: b.expr(fn, e.X),
- Index: b.expr(fn, e.Index),
- }
- v.setPos(e.Lbrack)
- v.setType(tByte)
- return fn.emit(v)
-
- case *types.Slice, *types.Pointer: // *array
- // Addressable slice/array; use IndexAddr and Load.
- return b.addr(fn, e, false).load(fn)
-
- default:
- panic("unexpected container type in IndexExpr: " + t.String())
- }
-
- case *ast.CompositeLit, *ast.StarExpr:
- // Addressable types (lvalues)
- return b.addr(fn, e, false).load(fn)
- }
-
- panic(fmt.Sprintf("unexpected expr: %T", e))
-}
-
-// stmtList emits to fn code for all statements in list.
-func (b *builder) stmtList(fn *Function, list []ast.Stmt) {
- for _, s := range list {
- b.stmt(fn, s)
- }
-}
-
-// receiver emits to fn code for expression e in the "receiver"
-// position of selection e.f (where f may be a field or a method) and
-// returns the effective receiver after applying the implicit field
-// selections of sel.
-//
-// wantAddr requests that the result is an an address. If
-// !sel.Indirect(), this may require that e be built in addr() mode; it
-// must thus be addressable.
-//
-// escaping is defined as per builder.addr().
-//
-func (b *builder) receiver(fn *Function, e ast.Expr, wantAddr, escaping bool, sel *types.Selection) Value {
- var v Value
- if wantAddr && !sel.Indirect() && !isPointer(fn.Pkg.typeOf(e)) {
- v = b.addr(fn, e, escaping).address(fn)
- } else {
- v = b.expr(fn, e)
- }
-
- last := len(sel.Index()) - 1
- v = emitImplicitSelections(fn, v, sel.Index()[:last])
- if !wantAddr && isPointer(v.Type()) {
- v = emitLoad(fn, v)
- }
- return v
-}
-
-// setCallFunc populates the function parts of a CallCommon structure
-// (Func, Method, Recv, Args[0]) based on the kind of invocation
-// occurring in e.
-//
-func (b *builder) setCallFunc(fn *Function, e *ast.CallExpr, c *CallCommon) {
- c.pos = e.Lparen
-
- // Is this a method call?
- if selector, ok := unparen(e.Fun).(*ast.SelectorExpr); ok {
- sel, ok := fn.Pkg.info.Selections[selector]
- if ok && sel.Kind() == types.MethodVal {
- obj := sel.Obj().(*types.Func)
- recv := recvType(obj)
- wantAddr := isPointer(recv)
- escaping := true
- v := b.receiver(fn, selector.X, wantAddr, escaping, sel)
- if isInterface(recv) {
- // Invoke-mode call.
- c.Value = v
- c.Method = obj
- } else {
- // "Call"-mode call.
- c.Value = fn.Prog.declaredFunc(obj)
- c.Args = append(c.Args, v)
- }
- return
- }
-
- // sel.Kind()==MethodExpr indicates T.f() or (*T).f():
- // a statically dispatched call to the method f in the
- // method-set of T or *T. T may be an interface.
- //
- // e.Fun would evaluate to a concrete method, interface
- // wrapper function, or promotion wrapper.
- //
- // For now, we evaluate it in the usual way.
- //
- // TODO(adonovan): opt: inline expr() here, to make the
- // call static and to avoid generation of wrappers.
- // It's somewhat tricky as it may consume the first
- // actual parameter if the call is "invoke" mode.
- //
- // Examples:
- // type T struct{}; func (T) f() {} // "call" mode
- // type T interface { f() } // "invoke" mode
- //
- // type S struct{ T }
- //
- // var s S
- // S.f(s)
- // (*S).f(&s)
- //
- // Suggested approach:
- // - consume the first actual parameter expression
- // and build it with b.expr().
- // - apply implicit field selections.
- // - use MethodVal logic to populate fields of c.
- }
-
- // Evaluate the function operand in the usual way.
- c.Value = b.expr(fn, e.Fun)
-}
-
-// emitCallArgs emits to f code for the actual parameters of call e to
-// a (possibly built-in) function of effective type sig.
-// The argument values are appended to args, which is then returned.
-//
-func (b *builder) emitCallArgs(fn *Function, sig *types.Signature, e *ast.CallExpr, args []Value) []Value {
- // f(x, y, z...): pass slice z straight through.
- if e.Ellipsis != 0 {
- for i, arg := range e.Args {
- v := emitConv(fn, b.expr(fn, arg), sig.Params().At(i).Type())
- args = append(args, v)
- }
- return args
- }
-
- offset := len(args) // 1 if call has receiver, 0 otherwise
-
- // Evaluate actual parameter expressions.
- //
- // If this is a chained call of the form f(g()) where g has
- // multiple return values (MRV), they are flattened out into
- // args; a suffix of them may end up in a varargs slice.
- for _, arg := range e.Args {
- v := b.expr(fn, arg)
- if ttuple, ok := v.Type().(*types.Tuple); ok { // MRV chain
- for i, n := 0, ttuple.Len(); i < n; i++ {
- args = append(args, emitExtract(fn, v, i))
- }
- } else {
- args = append(args, v)
- }
- }
-
- // Actual->formal assignability conversions for normal parameters.
- np := sig.Params().Len() // number of normal parameters
- if sig.Variadic() {
- np--
- }
- for i := 0; i < np; i++ {
- args[offset+i] = emitConv(fn, args[offset+i], sig.Params().At(i).Type())
- }
-
- // Actual->formal assignability conversions for variadic parameter,
- // and construction of slice.
- if sig.Variadic() {
- varargs := args[offset+np:]
- st := sig.Params().At(np).Type().(*types.Slice)
- vt := st.Elem()
- if len(varargs) == 0 {
- args = append(args, nilConst(st))
- } else {
- // Replace a suffix of args with a slice containing it.
- at := types.NewArray(vt, int64(len(varargs)))
- a := emitNew(fn, at, token.NoPos)
- a.setPos(e.Rparen)
- a.Comment = "varargs"
- for i, arg := range varargs {
- iaddr := &IndexAddr{
- X: a,
- Index: intConst(int64(i)),
- }
- iaddr.setType(types.NewPointer(vt))
- fn.emit(iaddr)
- emitStore(fn, iaddr, arg, arg.Pos())
- }
- s := &Slice{X: a}
- s.setType(st)
- args[offset+np] = fn.emit(s)
- args = args[:offset+np+1]
- }
- }
- return args
-}
-
-// setCall emits to fn code to evaluate all the parameters of a function
-// call e, and populates *c with those values.
-//
-func (b *builder) setCall(fn *Function, e *ast.CallExpr, c *CallCommon) {
- // First deal with the f(...) part and optional receiver.
- b.setCallFunc(fn, e, c)
-
- // Then append the other actual parameters.
- sig, _ := fn.Pkg.typeOf(e.Fun).Underlying().(*types.Signature)
- if sig == nil {
- panic(fmt.Sprintf("no signature for call of %s", e.Fun))
- }
- c.Args = b.emitCallArgs(fn, sig, e, c.Args)
-}
-
-// assignOp emits to fn code to perform loc += incr or loc -= incr.
-func (b *builder) assignOp(fn *Function, loc lvalue, incr Value, op token.Token) {
- oldv := loc.load(fn)
- loc.store(fn, emitArith(fn, op, oldv, emitConv(fn, incr, oldv.Type()), loc.typ(), token.NoPos))
-}
-
-// localValueSpec emits to fn code to define all of the vars in the
-// function-local ValueSpec, spec.
-//
-func (b *builder) localValueSpec(fn *Function, spec *ast.ValueSpec) {
- switch {
- case len(spec.Values) == len(spec.Names):
- // e.g. var x, y = 0, 1
- // 1:1 assignment
- for i, id := range spec.Names {
- if !isBlankIdent(id) {
- fn.addLocalForIdent(id)
- }
- lval := b.addr(fn, id, false) // non-escaping
- b.assign(fn, lval, spec.Values[i], true, nil)
- }
-
- case len(spec.Values) == 0:
- // e.g. var x, y int
- // Locals are implicitly zero-initialized.
- for _, id := range spec.Names {
- if !isBlankIdent(id) {
- lhs := fn.addLocalForIdent(id)
- if fn.debugInfo() {
- emitDebugRef(fn, id, lhs, true)
- }
- }
- }
-
- default:
- // e.g. var x, y = pos()
- tuple := b.exprN(fn, spec.Values[0])
- for i, id := range spec.Names {
- if !isBlankIdent(id) {
- fn.addLocalForIdent(id)
- lhs := b.addr(fn, id, false) // non-escaping
- lhs.store(fn, emitExtract(fn, tuple, i))
- }
- }
- }
-}
-
-// assignStmt emits code to fn for a parallel assignment of rhss to lhss.
-// isDef is true if this is a short variable declaration (:=).
-//
-// Note the similarity with localValueSpec.
-//
-func (b *builder) assignStmt(fn *Function, lhss, rhss []ast.Expr, isDef bool) {
- // Side effects of all LHSs and RHSs must occur in left-to-right order.
- lvals := make([]lvalue, len(lhss))
- isZero := make([]bool, len(lhss))
- for i, lhs := range lhss {
- var lval lvalue = blank{}
- if !isBlankIdent(lhs) {
- if isDef {
- if obj := fn.Pkg.info.Defs[lhs.(*ast.Ident)]; obj != nil {
- fn.addNamedLocal(obj)
- isZero[i] = true
- }
- }
- lval = b.addr(fn, lhs, false) // non-escaping
- }
- lvals[i] = lval
- }
- if len(lhss) == len(rhss) {
- // Simple assignment: x = f() (!isDef)
- // Parallel assignment: x, y = f(), g() (!isDef)
- // or short var decl: x, y := f(), g() (isDef)
- //
- // In all cases, the RHSs may refer to the LHSs,
- // so we need a storebuf.
- var sb storebuf
- for i := range rhss {
- b.assign(fn, lvals[i], rhss[i], isZero[i], &sb)
- }
- sb.emit(fn)
- } else {
- // e.g. x, y = pos()
- tuple := b.exprN(fn, rhss[0])
- emitDebugRef(fn, rhss[0], tuple, false)
- for i, lval := range lvals {
- lval.store(fn, emitExtract(fn, tuple, i))
- }
- }
-}
-
-// arrayLen returns the length of the array whose composite literal elements are elts.
-func (b *builder) arrayLen(fn *Function, elts []ast.Expr) int64 {
- var max int64 = -1
- var i int64 = -1
- for _, e := range elts {
- if kv, ok := e.(*ast.KeyValueExpr); ok {
- i = b.expr(fn, kv.Key).(*Const).Int64()
- } else {
- i++
- }
- if i > max {
- max = i
- }
- }
- return max + 1
-}
-
-// compLit emits to fn code to initialize a composite literal e at
-// address addr with type typ.
-//
-// Nested composite literals are recursively initialized in place
-// where possible. If isZero is true, compLit assumes that addr
-// holds the zero value for typ.
-//
-// Because the elements of a composite literal may refer to the
-// variables being updated, as in the second line below,
-// x := T{a: 1}
-// x = T{a: x.a}
-// all the reads must occur before all the writes. Thus all stores to
-// loc are emitted to the storebuf sb for later execution.
-//
-// A CompositeLit may have pointer type only in the recursive (nested)
-// case when the type name is implicit. e.g. in []*T{{}}, the inner
-// literal has type *T behaves like &T{}.
-// In that case, addr must hold a T, not a *T.
-//
-func (b *builder) compLit(fn *Function, addr Value, e *ast.CompositeLit, isZero bool, sb *storebuf) {
- typ := deref(fn.Pkg.typeOf(e))
- switch t := typ.Underlying().(type) {
- case *types.Struct:
- if !isZero && len(e.Elts) != t.NumFields() {
- // memclear
- sb.store(&address{addr, e.Lbrace, nil},
- zeroValue(fn, deref(addr.Type())))
- isZero = true
- }
- for i, e := range e.Elts {
- fieldIndex := i
- pos := e.Pos()
- if kv, ok := e.(*ast.KeyValueExpr); ok {
- fname := kv.Key.(*ast.Ident).Name
- for i, n := 0, t.NumFields(); i < n; i++ {
- sf := t.Field(i)
- if sf.Name() == fname {
- fieldIndex = i
- pos = kv.Colon
- e = kv.Value
- break
- }
- }
- }
- sf := t.Field(fieldIndex)
- faddr := &FieldAddr{
- X: addr,
- Field: fieldIndex,
- }
- faddr.setType(types.NewPointer(sf.Type()))
- fn.emit(faddr)
- b.assign(fn, &address{addr: faddr, pos: pos, expr: e}, e, isZero, sb)
- }
-
- case *types.Array, *types.Slice:
- var at *types.Array
- var array Value
- switch t := t.(type) {
- case *types.Slice:
- at = types.NewArray(t.Elem(), b.arrayLen(fn, e.Elts))
- alloc := emitNew(fn, at, e.Lbrace)
- alloc.Comment = "slicelit"
- array = alloc
- case *types.Array:
- at = t
- array = addr
-
- if !isZero && int64(len(e.Elts)) != at.Len() {
- // memclear
- sb.store(&address{array, e.Lbrace, nil},
- zeroValue(fn, deref(array.Type())))
- }
- }
-
- var idx *Const
- for _, e := range e.Elts {
- pos := e.Pos()
- if kv, ok := e.(*ast.KeyValueExpr); ok {
- idx = b.expr(fn, kv.Key).(*Const)
- pos = kv.Colon
- e = kv.Value
- } else {
- var idxval int64
- if idx != nil {
- idxval = idx.Int64() + 1
- }
- idx = intConst(idxval)
- }
- iaddr := &IndexAddr{
- X: array,
- Index: idx,
- }
- iaddr.setType(types.NewPointer(at.Elem()))
- fn.emit(iaddr)
- if t != at { // slice
- // backing array is unaliased => storebuf not needed.
- b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, nil)
- } else {
- b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, sb)
- }
- }
-
- if t != at { // slice
- s := &Slice{X: array}
- s.setPos(e.Lbrace)
- s.setType(typ)
- sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, fn.emit(s))
- }
-
- case *types.Map:
- m := &MakeMap{Reserve: intConst(int64(len(e.Elts)))}
- m.setPos(e.Lbrace)
- m.setType(typ)
- fn.emit(m)
- for _, e := range e.Elts {
- e := e.(*ast.KeyValueExpr)
-
- // If a key expression in a map literal is itself a
- // composite literal, the type may be omitted.
- // For example:
- // map[*struct{}]bool{{}: true}
- // An &-operation may be implied:
- // map[*struct{}]bool{&struct{}{}: true}
- var key Value
- if _, ok := unparen(e.Key).(*ast.CompositeLit); ok && isPointer(t.Key()) {
- // A CompositeLit never evaluates to a pointer,
- // so if the type of the location is a pointer,
- // an &-operation is implied.
- key = b.addr(fn, e.Key, true).address(fn)
- } else {
- key = b.expr(fn, e.Key)
- }
-
- loc := element{
- m: m,
- k: emitConv(fn, key, t.Key()),
- t: t.Elem(),
- pos: e.Colon,
- }
-
- // We call assign() only because it takes care
- // of any &-operation required in the recursive
- // case, e.g.,
- // map[int]*struct{}{0: {}} implies &struct{}{}.
- // In-place update is of course impossible,
- // and no storebuf is needed.
- b.assign(fn, &loc, e.Value, true, nil)
- }
- sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, m)
-
- default:
- panic("unexpected CompositeLit type: " + t.String())
- }
-}
-
-// switchStmt emits to fn code for the switch statement s, optionally
-// labelled by label.
-//
-func (b *builder) switchStmt(fn *Function, s *ast.SwitchStmt, label *lblock) {
- // We treat SwitchStmt like a sequential if-else chain.
- // Multiway dispatch can be recovered later by ssautil.Switches()
- // to those cases that are free of side effects.
- if s.Init != nil {
- b.stmt(fn, s.Init)
- }
- var tag Value = vTrue
- if s.Tag != nil {
- tag = b.expr(fn, s.Tag)
- }
- done := fn.newBasicBlock("switch.done")
- if label != nil {
- label._break = done
- }
- // We pull the default case (if present) down to the end.
- // But each fallthrough label must point to the next
- // body block in source order, so we preallocate a
- // body block (fallthru) for the next case.
- // Unfortunately this makes for a confusing block order.
- var dfltBody *[]ast.Stmt
- var dfltFallthrough *BasicBlock
- var fallthru, dfltBlock *BasicBlock
- ncases := len(s.Body.List)
- for i, clause := range s.Body.List {
- body := fallthru
- if body == nil {
- body = fn.newBasicBlock("switch.body") // first case only
- }
-
- // Preallocate body block for the next case.
- fallthru = done
- if i+1 < ncases {
- fallthru = fn.newBasicBlock("switch.body")
- }
-
- cc := clause.(*ast.CaseClause)
- if cc.List == nil {
- // Default case.
- dfltBody = &cc.Body
- dfltFallthrough = fallthru
- dfltBlock = body
- continue
- }
-
- var nextCond *BasicBlock
- for _, cond := range cc.List {
- nextCond = fn.newBasicBlock("switch.next")
- // TODO(adonovan): opt: when tag==vTrue, we'd
- // get better code if we use b.cond(cond)
- // instead of BinOp(EQL, tag, b.expr(cond))
- // followed by If. Don't forget conversions
- // though.
- cond := emitCompare(fn, token.EQL, tag, b.expr(fn, cond), token.NoPos)
- emitIf(fn, cond, body, nextCond)
- fn.currentBlock = nextCond
- }
- fn.currentBlock = body
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- _fallthrough: fallthru,
- }
- b.stmtList(fn, cc.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, done)
- fn.currentBlock = nextCond
- }
- if dfltBlock != nil {
- emitJump(fn, dfltBlock)
- fn.currentBlock = dfltBlock
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- _fallthrough: dfltFallthrough,
- }
- b.stmtList(fn, *dfltBody)
- fn.targets = fn.targets.tail
- }
- emitJump(fn, done)
- fn.currentBlock = done
-}
-
-// typeSwitchStmt emits to fn code for the type switch statement s, optionally
-// labelled by label.
-//
-func (b *builder) typeSwitchStmt(fn *Function, s *ast.TypeSwitchStmt, label *lblock) {
- // We treat TypeSwitchStmt like a sequential if-else chain.
- // Multiway dispatch can be recovered later by ssautil.Switches().
-
- // Typeswitch lowering:
- //
- // var x X
- // switch y := x.(type) {
- // case T1, T2: S1 // >1 (y := x)
- // case nil: SN // nil (y := x)
- // default: SD // 0 types (y := x)
- // case T3: S3 // 1 type (y := x.(T3))
- // }
- //
- // ...s.Init...
- // x := eval x
- // .caseT1:
- // t1, ok1 := typeswitch,ok x <T1>
- // if ok1 then goto S1 else goto .caseT2
- // .caseT2:
- // t2, ok2 := typeswitch,ok x <T2>
- // if ok2 then goto S1 else goto .caseNil
- // .S1:
- // y := x
- // ...S1...
- // goto done
- // .caseNil:
- // if t2, ok2 := typeswitch,ok x <T2>
- // if x == nil then goto SN else goto .caseT3
- // .SN:
- // y := x
- // ...SN...
- // goto done
- // .caseT3:
- // t3, ok3 := typeswitch,ok x <T3>
- // if ok3 then goto S3 else goto default
- // .S3:
- // y := t3
- // ...S3...
- // goto done
- // .default:
- // y := x
- // ...SD...
- // goto done
- // .done:
-
- if s.Init != nil {
- b.stmt(fn, s.Init)
- }
-
- var x Value
- switch ass := s.Assign.(type) {
- case *ast.ExprStmt: // x.(type)
- x = b.expr(fn, unparen(ass.X).(*ast.TypeAssertExpr).X)
- case *ast.AssignStmt: // y := x.(type)
- x = b.expr(fn, unparen(ass.Rhs[0]).(*ast.TypeAssertExpr).X)
- }
-
- done := fn.newBasicBlock("typeswitch.done")
- if label != nil {
- label._break = done
- }
- var default_ *ast.CaseClause
- for _, clause := range s.Body.List {
- cc := clause.(*ast.CaseClause)
- if cc.List == nil {
- default_ = cc
- continue
- }
- body := fn.newBasicBlock("typeswitch.body")
- var next *BasicBlock
- var casetype types.Type
- var ti Value // ti, ok := typeassert,ok x <Ti>
- for _, cond := range cc.List {
- next = fn.newBasicBlock("typeswitch.next")
- casetype = fn.Pkg.typeOf(cond)
- var condv Value
- if casetype == tUntypedNil {
- condv = emitCompare(fn, token.EQL, x, nilConst(x.Type()), token.NoPos)
- ti = x
- } else {
- yok := emitTypeTest(fn, x, casetype, cc.Case)
- ti = emitExtract(fn, yok, 0)
- condv = emitExtract(fn, yok, 1)
- }
- emitIf(fn, condv, body, next)
- fn.currentBlock = next
- }
- if len(cc.List) != 1 {
- ti = x
- }
- fn.currentBlock = body
- b.typeCaseBody(fn, cc, ti, done)
- fn.currentBlock = next
- }
- if default_ != nil {
- b.typeCaseBody(fn, default_, x, done)
- } else {
- emitJump(fn, done)
- }
- fn.currentBlock = done
-}
-
-func (b *builder) typeCaseBody(fn *Function, cc *ast.CaseClause, x Value, done *BasicBlock) {
- if obj := fn.Pkg.info.Implicits[cc]; obj != nil {
- // In a switch y := x.(type), each case clause
- // implicitly declares a distinct object y.
- // In a single-type case, y has that type.
- // In multi-type cases, 'case nil' and default,
- // y has the same type as the interface operand.
- emitStore(fn, fn.addNamedLocal(obj), x, obj.Pos())
- }
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- }
- b.stmtList(fn, cc.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, done)
-}
-
-// selectStmt emits to fn code for the select statement s, optionally
-// labelled by label.
-//
-func (b *builder) selectStmt(fn *Function, s *ast.SelectStmt, label *lblock) {
- // A blocking select of a single case degenerates to a
- // simple send or receive.
- // TODO(adonovan): opt: is this optimization worth its weight?
- if len(s.Body.List) == 1 {
- clause := s.Body.List[0].(*ast.CommClause)
- if clause.Comm != nil {
- b.stmt(fn, clause.Comm)
- done := fn.newBasicBlock("select.done")
- if label != nil {
- label._break = done
- }
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- }
- b.stmtList(fn, clause.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, done)
- fn.currentBlock = done
- return
- }
- }
-
- // First evaluate all channels in all cases, and find
- // the directions of each state.
- var states []*SelectState
- blocking := true
- debugInfo := fn.debugInfo()
- for _, clause := range s.Body.List {
- var st *SelectState
- switch comm := clause.(*ast.CommClause).Comm.(type) {
- case nil: // default case
- blocking = false
- continue
-
- case *ast.SendStmt: // ch<- i
- ch := b.expr(fn, comm.Chan)
- st = &SelectState{
- Dir: types.SendOnly,
- Chan: ch,
- Send: emitConv(fn, b.expr(fn, comm.Value),
- ch.Type().Underlying().(*types.Chan).Elem()),
- Pos: comm.Arrow,
- }
- if debugInfo {
- st.DebugNode = comm
- }
-
- case *ast.AssignStmt: // x := <-ch
- recv := unparen(comm.Rhs[0]).(*ast.UnaryExpr)
- st = &SelectState{
- Dir: types.RecvOnly,
- Chan: b.expr(fn, recv.X),
- Pos: recv.OpPos,
- }
- if debugInfo {
- st.DebugNode = recv
- }
-
- case *ast.ExprStmt: // <-ch
- recv := unparen(comm.X).(*ast.UnaryExpr)
- st = &SelectState{
- Dir: types.RecvOnly,
- Chan: b.expr(fn, recv.X),
- Pos: recv.OpPos,
- }
- if debugInfo {
- st.DebugNode = recv
- }
- }
- states = append(states, st)
- }
-
- // We dispatch on the (fair) result of Select using a
- // sequential if-else chain, in effect:
- //
- // idx, recvOk, r0...r_n-1 := select(...)
- // if idx == 0 { // receive on channel 0 (first receive => r0)
- // x, ok := r0, recvOk
- // ...state0...
- // } else if v == 1 { // send on channel 1
- // ...state1...
- // } else {
- // ...default...
- // }
- sel := &Select{
- States: states,
- Blocking: blocking,
- }
- sel.setPos(s.Select)
- var vars []*types.Var
- vars = append(vars, varIndex, varOk)
- for _, st := range states {
- if st.Dir == types.RecvOnly {
- tElem := st.Chan.Type().Underlying().(*types.Chan).Elem()
- vars = append(vars, anonVar(tElem))
- }
- }
- sel.setType(types.NewTuple(vars...))
-
- fn.emit(sel)
- idx := emitExtract(fn, sel, 0)
-
- done := fn.newBasicBlock("select.done")
- if label != nil {
- label._break = done
- }
-
- var defaultBody *[]ast.Stmt
- state := 0
- r := 2 // index in 'sel' tuple of value; increments if st.Dir==RECV
- for _, cc := range s.Body.List {
- clause := cc.(*ast.CommClause)
- if clause.Comm == nil {
- defaultBody = &clause.Body
- continue
- }
- body := fn.newBasicBlock("select.body")
- next := fn.newBasicBlock("select.next")
- emitIf(fn, emitCompare(fn, token.EQL, idx, intConst(int64(state)), token.NoPos), body, next)
- fn.currentBlock = body
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- }
- switch comm := clause.Comm.(type) {
- case *ast.ExprStmt: // <-ch
- if debugInfo {
- v := emitExtract(fn, sel, r)
- emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false)
- }
- r++
-
- case *ast.AssignStmt: // x := <-states[state].Chan
- if comm.Tok == token.DEFINE {
- fn.addLocalForIdent(comm.Lhs[0].(*ast.Ident))
- }
- x := b.addr(fn, comm.Lhs[0], false) // non-escaping
- v := emitExtract(fn, sel, r)
- if debugInfo {
- emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false)
- }
- x.store(fn, v)
-
- if len(comm.Lhs) == 2 { // x, ok := ...
- if comm.Tok == token.DEFINE {
- fn.addLocalForIdent(comm.Lhs[1].(*ast.Ident))
- }
- ok := b.addr(fn, comm.Lhs[1], false) // non-escaping
- ok.store(fn, emitExtract(fn, sel, 1))
- }
- r++
- }
- b.stmtList(fn, clause.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, done)
- fn.currentBlock = next
- state++
- }
- if defaultBody != nil {
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- }
- b.stmtList(fn, *defaultBody)
- fn.targets = fn.targets.tail
- } else {
- // A blocking select must match some case.
- // (This should really be a runtime.errorString, not a string.)
- fn.emit(&Panic{
- X: emitConv(fn, stringConst("blocking select matched no case"), tEface),
- })
- fn.currentBlock = fn.newBasicBlock("unreachable")
- }
- emitJump(fn, done)
- fn.currentBlock = done
-}
-
-// forStmt emits to fn code for the for statement s, optionally
-// labelled by label.
-//
-func (b *builder) forStmt(fn *Function, s *ast.ForStmt, label *lblock) {
- // ...init...
- // jump loop
- // loop:
- // if cond goto body else done
- // body:
- // ...body...
- // jump post
- // post: (target of continue)
- // ...post...
- // jump loop
- // done: (target of break)
- if s.Init != nil {
- b.stmt(fn, s.Init)
- }
- body := fn.newBasicBlock("for.body")
- done := fn.newBasicBlock("for.done") // target of 'break'
- loop := body // target of back-edge
- if s.Cond != nil {
- loop = fn.newBasicBlock("for.loop")
- }
- cont := loop // target of 'continue'
- if s.Post != nil {
- cont = fn.newBasicBlock("for.post")
- }
- if label != nil {
- label._break = done
- label._continue = cont
- }
- emitJump(fn, loop)
- fn.currentBlock = loop
- if loop != body {
- b.cond(fn, s.Cond, body, done)
- fn.currentBlock = body
- }
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- _continue: cont,
- }
- b.stmt(fn, s.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, cont)
-
- if s.Post != nil {
- fn.currentBlock = cont
- b.stmt(fn, s.Post)
- emitJump(fn, loop) // back-edge
- }
- fn.currentBlock = done
-}
-
-// rangeIndexed emits to fn the header for an integer-indexed loop
-// over array, *array or slice value x.
-// The v result is defined only if tv is non-nil.
-// forPos is the position of the "for" token.
-//
-func (b *builder) rangeIndexed(fn *Function, x Value, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) {
- //
- // length = len(x)
- // index = -1
- // loop: (target of continue)
- // index++
- // if index < length goto body else done
- // body:
- // k = index
- // v = x[index]
- // ...body...
- // jump loop
- // done: (target of break)
-
- // Determine number of iterations.
- var length Value
- if arr, ok := deref(x.Type()).Underlying().(*types.Array); ok {
- // For array or *array, the number of iterations is
- // known statically thanks to the type. We avoid a
- // data dependence upon x, permitting later dead-code
- // elimination if x is pure, static unrolling, etc.
- // Ranging over a nil *array may have >0 iterations.
- // We still generate code for x, in case it has effects.
- length = intConst(arr.Len())
- } else {
- // length = len(x).
- var c Call
- c.Call.Value = makeLen(x.Type())
- c.Call.Args = []Value{x}
- c.setType(tInt)
- length = fn.emit(&c)
- }
-
- index := fn.addLocal(tInt, token.NoPos)
- emitStore(fn, index, intConst(-1), pos)
-
- loop = fn.newBasicBlock("rangeindex.loop")
- emitJump(fn, loop)
- fn.currentBlock = loop
-
- incr := &BinOp{
- Op: token.ADD,
- X: emitLoad(fn, index),
- Y: vOne,
- }
- incr.setType(tInt)
- emitStore(fn, index, fn.emit(incr), pos)
-
- body := fn.newBasicBlock("rangeindex.body")
- done = fn.newBasicBlock("rangeindex.done")
- emitIf(fn, emitCompare(fn, token.LSS, incr, length, token.NoPos), body, done)
- fn.currentBlock = body
-
- k = emitLoad(fn, index)
- if tv != nil {
- switch t := x.Type().Underlying().(type) {
- case *types.Array:
- instr := &Index{
- X: x,
- Index: k,
- }
- instr.setType(t.Elem())
- v = fn.emit(instr)
-
- case *types.Pointer: // *array
- instr := &IndexAddr{
- X: x,
- Index: k,
- }
- instr.setType(types.NewPointer(t.Elem().Underlying().(*types.Array).Elem()))
- v = emitLoad(fn, fn.emit(instr))
-
- case *types.Slice:
- instr := &IndexAddr{
- X: x,
- Index: k,
- }
- instr.setType(types.NewPointer(t.Elem()))
- v = emitLoad(fn, fn.emit(instr))
-
- default:
- panic("rangeIndexed x:" + t.String())
- }
- }
- return
-}
-
-// rangeIter emits to fn the header for a loop using
-// Range/Next/Extract to iterate over map or string value x.
-// tk and tv are the types of the key/value results k and v, or nil
-// if the respective component is not wanted.
-//
-func (b *builder) rangeIter(fn *Function, x Value, tk, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) {
- //
- // it = range x
- // loop: (target of continue)
- // okv = next it (ok, key, value)
- // ok = extract okv #0
- // if ok goto body else done
- // body:
- // k = extract okv #1
- // v = extract okv #2
- // ...body...
- // jump loop
- // done: (target of break)
- //
-
- if tk == nil {
- tk = tInvalid
- }
- if tv == nil {
- tv = tInvalid
- }
-
- rng := &Range{X: x}
- rng.setPos(pos)
- rng.setType(tRangeIter)
- it := fn.emit(rng)
-
- loop = fn.newBasicBlock("rangeiter.loop")
- emitJump(fn, loop)
- fn.currentBlock = loop
-
- _, isString := x.Type().Underlying().(*types.Basic)
-
- okv := &Next{
- Iter: it,
- IsString: isString,
- }
- okv.setType(types.NewTuple(
- varOk,
- newVar("k", tk),
- newVar("v", tv),
- ))
- fn.emit(okv)
-
- body := fn.newBasicBlock("rangeiter.body")
- done = fn.newBasicBlock("rangeiter.done")
- emitIf(fn, emitExtract(fn, okv, 0), body, done)
- fn.currentBlock = body
-
- if tk != tInvalid {
- k = emitExtract(fn, okv, 1)
- }
- if tv != tInvalid {
- v = emitExtract(fn, okv, 2)
- }
- return
-}
-
-// rangeChan emits to fn the header for a loop that receives from
-// channel x until it fails.
-// tk is the channel's element type, or nil if the k result is
-// not wanted
-// pos is the position of the '=' or ':=' token.
-//
-func (b *builder) rangeChan(fn *Function, x Value, tk types.Type, pos token.Pos) (k Value, loop, done *BasicBlock) {
- //
- // loop: (target of continue)
- // ko = <-x (key, ok)
- // ok = extract ko #1
- // if ok goto body else done
- // body:
- // k = extract ko #0
- // ...
- // goto loop
- // done: (target of break)
-
- loop = fn.newBasicBlock("rangechan.loop")
- emitJump(fn, loop)
- fn.currentBlock = loop
- recv := &UnOp{
- Op: token.ARROW,
- X: x,
- CommaOk: true,
- }
- recv.setPos(pos)
- recv.setType(types.NewTuple(
- newVar("k", x.Type().Underlying().(*types.Chan).Elem()),
- varOk,
- ))
- ko := fn.emit(recv)
- body := fn.newBasicBlock("rangechan.body")
- done = fn.newBasicBlock("rangechan.done")
- emitIf(fn, emitExtract(fn, ko, 1), body, done)
- fn.currentBlock = body
- if tk != nil {
- k = emitExtract(fn, ko, 0)
- }
- return
-}
-
-// rangeStmt emits to fn code for the range statement s, optionally
-// labelled by label.
-//
-func (b *builder) rangeStmt(fn *Function, s *ast.RangeStmt, label *lblock) {
- var tk, tv types.Type
- if s.Key != nil && !isBlankIdent(s.Key) {
- tk = fn.Pkg.typeOf(s.Key)
- }
- if s.Value != nil && !isBlankIdent(s.Value) {
- tv = fn.Pkg.typeOf(s.Value)
- }
-
- // If iteration variables are defined (:=), this
- // occurs once outside the loop.
- //
- // Unlike a short variable declaration, a RangeStmt
- // using := never redeclares an existing variable; it
- // always creates a new one.
- if s.Tok == token.DEFINE {
- if tk != nil {
- fn.addLocalForIdent(s.Key.(*ast.Ident))
- }
- if tv != nil {
- fn.addLocalForIdent(s.Value.(*ast.Ident))
- }
- }
-
- x := b.expr(fn, s.X)
-
- var k, v Value
- var loop, done *BasicBlock
- switch rt := x.Type().Underlying().(type) {
- case *types.Slice, *types.Array, *types.Pointer: // *array
- k, v, loop, done = b.rangeIndexed(fn, x, tv, s.For)
-
- case *types.Chan:
- k, loop, done = b.rangeChan(fn, x, tk, s.For)
-
- case *types.Map, *types.Basic: // string
- k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For)
-
- default:
- panic("Cannot range over: " + rt.String())
- }
-
- // Evaluate both LHS expressions before we update either.
- var kl, vl lvalue
- if tk != nil {
- kl = b.addr(fn, s.Key, false) // non-escaping
- }
- if tv != nil {
- vl = b.addr(fn, s.Value, false) // non-escaping
- }
- if tk != nil {
- kl.store(fn, k)
- }
- if tv != nil {
- vl.store(fn, v)
- }
-
- if label != nil {
- label._break = done
- label._continue = loop
- }
-
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- _continue: loop,
- }
- b.stmt(fn, s.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, loop) // back-edge
- fn.currentBlock = done
-}
-
-// stmt lowers statement s to SSA form, emitting code to fn.
-func (b *builder) stmt(fn *Function, _s ast.Stmt) {
- // The label of the current statement. If non-nil, its _goto
- // target is always set; its _break and _continue are set only
- // within the body of switch/typeswitch/select/for/range.
- // It is effectively an additional default-nil parameter of stmt().
- var label *lblock
-start:
- switch s := _s.(type) {
- case *ast.EmptyStmt:
- // ignore. (Usually removed by gofmt.)
-
- case *ast.DeclStmt: // Con, Var or Typ
- d := s.Decl.(*ast.GenDecl)
- if d.Tok == token.VAR {
- for _, spec := range d.Specs {
- if vs, ok := spec.(*ast.ValueSpec); ok {
- b.localValueSpec(fn, vs)
- }
- }
- }
-
- case *ast.LabeledStmt:
- label = fn.labelledBlock(s.Label)
- emitJump(fn, label._goto)
- fn.currentBlock = label._goto
- _s = s.Stmt
- goto start // effectively: tailcall stmt(fn, s.Stmt, label)
-
- case *ast.ExprStmt:
- b.expr(fn, s.X)
-
- case *ast.SendStmt:
- fn.emit(&Send{
- Chan: b.expr(fn, s.Chan),
- X: emitConv(fn, b.expr(fn, s.Value),
- fn.Pkg.typeOf(s.Chan).Underlying().(*types.Chan).Elem()),
- pos: s.Arrow,
- })
-
- case *ast.IncDecStmt:
- op := token.ADD
- if s.Tok == token.DEC {
- op = token.SUB
- }
- loc := b.addr(fn, s.X, false)
- b.assignOp(fn, loc, NewConst(exact.MakeInt64(1), loc.typ()), op)
-
- case *ast.AssignStmt:
- switch s.Tok {
- case token.ASSIGN, token.DEFINE:
- b.assignStmt(fn, s.Lhs, s.Rhs, s.Tok == token.DEFINE)
-
- default: // +=, etc.
- op := s.Tok + token.ADD - token.ADD_ASSIGN
- b.assignOp(fn, b.addr(fn, s.Lhs[0], false), b.expr(fn, s.Rhs[0]), op)
- }
-
- case *ast.GoStmt:
- // The "intrinsics" new/make/len/cap are forbidden here.
- // panic is treated like an ordinary function call.
- v := Go{pos: s.Go}
- b.setCall(fn, s.Call, &v.Call)
- fn.emit(&v)
-
- case *ast.DeferStmt:
- // The "intrinsics" new/make/len/cap are forbidden here.
- // panic is treated like an ordinary function call.
- v := Defer{pos: s.Defer}
- b.setCall(fn, s.Call, &v.Call)
- fn.emit(&v)
-
- // A deferred call can cause recovery from panic,
- // and control resumes at the Recover block.
- createRecoverBlock(fn)
-
- case *ast.ReturnStmt:
- var results []Value
- if len(s.Results) == 1 && fn.Signature.Results().Len() > 1 {
- // Return of one expression in a multi-valued function.
- tuple := b.exprN(fn, s.Results[0])
- ttuple := tuple.Type().(*types.Tuple)
- for i, n := 0, ttuple.Len(); i < n; i++ {
- results = append(results,
- emitConv(fn, emitExtract(fn, tuple, i),
- fn.Signature.Results().At(i).Type()))
- }
- } else {
- // 1:1 return, or no-arg return in non-void function.
- for i, r := range s.Results {
- v := emitConv(fn, b.expr(fn, r), fn.Signature.Results().At(i).Type())
- results = append(results, v)
- }
- }
- if fn.namedResults != nil {
- // Function has named result parameters (NRPs).
- // Perform parallel assignment of return operands to NRPs.
- for i, r := range results {
- emitStore(fn, fn.namedResults[i], r, s.Return)
- }
- }
- // Run function calls deferred in this
- // function when explicitly returning from it.
- fn.emit(new(RunDefers))
- if fn.namedResults != nil {
- // Reload NRPs to form the result tuple.
- results = results[:0]
- for _, r := range fn.namedResults {
- results = append(results, emitLoad(fn, r))
- }
- }
- fn.emit(&Return{Results: results, pos: s.Return})
- fn.currentBlock = fn.newBasicBlock("unreachable")
-
- case *ast.BranchStmt:
- var block *BasicBlock
- switch s.Tok {
- case token.BREAK:
- if s.Label != nil {
- block = fn.labelledBlock(s.Label)._break
- } else {
- for t := fn.targets; t != nil && block == nil; t = t.tail {
- block = t._break
- }
- }
-
- case token.CONTINUE:
- if s.Label != nil {
- block = fn.labelledBlock(s.Label)._continue
- } else {
- for t := fn.targets; t != nil && block == nil; t = t.tail {
- block = t._continue
- }
- }
-
- case token.FALLTHROUGH:
- for t := fn.targets; t != nil && block == nil; t = t.tail {
- block = t._fallthrough
- }
-
- case token.GOTO:
- block = fn.labelledBlock(s.Label)._goto
- }
- emitJump(fn, block)
- fn.currentBlock = fn.newBasicBlock("unreachable")
-
- case *ast.BlockStmt:
- b.stmtList(fn, s.List)
-
- case *ast.IfStmt:
- if s.Init != nil {
- b.stmt(fn, s.Init)
- }
- then := fn.newBasicBlock("if.then")
- done := fn.newBasicBlock("if.done")
- els := done
- if s.Else != nil {
- els = fn.newBasicBlock("if.else")
- }
- b.cond(fn, s.Cond, then, els)
- fn.currentBlock = then
- b.stmt(fn, s.Body)
- emitJump(fn, done)
-
- if s.Else != nil {
- fn.currentBlock = els
- b.stmt(fn, s.Else)
- emitJump(fn, done)
- }
-
- fn.currentBlock = done
-
- case *ast.SwitchStmt:
- b.switchStmt(fn, s, label)
-
- case *ast.TypeSwitchStmt:
- b.typeSwitchStmt(fn, s, label)
-
- case *ast.SelectStmt:
- b.selectStmt(fn, s, label)
-
- case *ast.ForStmt:
- b.forStmt(fn, s, label)
-
- case *ast.RangeStmt:
- b.rangeStmt(fn, s, label)
-
- default:
- panic(fmt.Sprintf("unexpected statement kind: %T", s))
- }
-}
-
-// buildFunction builds SSA code for the body of function fn. Idempotent.
-func (b *builder) buildFunction(fn *Function) {
- if fn.Blocks != nil {
- return // building already started
- }
-
- var recvField *ast.FieldList
- var body *ast.BlockStmt
- var functype *ast.FuncType
- switch n := fn.syntax.(type) {
- case nil:
- return // not a Go source function. (Synthetic, or from object file.)
- case *ast.FuncDecl:
- functype = n.Type
- recvField = n.Recv
- body = n.Body
- case *ast.FuncLit:
- functype = n.Type
- body = n.Body
- default:
- panic(n)
- }
-
- if body == nil {
- // External function.
- if fn.Params == nil {
- // This condition ensures we add a non-empty
- // params list once only, but we may attempt
- // the degenerate empty case repeatedly.
- // TODO(adonovan): opt: don't do that.
-
- // We set Function.Params even though there is no body
- // code to reference them. This simplifies clients.
- if recv := fn.Signature.Recv(); recv != nil {
- fn.addParamObj(recv)
- }
- params := fn.Signature.Params()
- for i, n := 0, params.Len(); i < n; i++ {
- fn.addParamObj(params.At(i))
- }
- }
- return
- }
- if fn.Prog.mode&LogSource != 0 {
- defer logStack("build function %s @ %s", fn, fn.Prog.Fset.Position(fn.pos))()
- }
- fn.startBody()
- fn.createSyntacticParams(recvField, functype)
- b.stmt(fn, body)
- if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb == fn.Recover || cb.Preds != nil) {
- // Control fell off the end of the function's body block.
- //
- // Block optimizations eliminate the current block, if
- // unreachable. It is a builder invariant that
- // if this no-arg return is ill-typed for
- // fn.Signature.Results, this block must be
- // unreachable. The sanity checker checks this.
- fn.emit(new(RunDefers))
- fn.emit(new(Return))
- }
- fn.finishBody()
-}
-
-// buildFuncDecl builds SSA code for the function or method declared
-// by decl in package pkg.
-//
-func (b *builder) buildFuncDecl(pkg *Package, decl *ast.FuncDecl) {
- id := decl.Name
- if isBlankIdent(id) {
- return // discard
- }
- fn := pkg.values[pkg.info.Defs[id]].(*Function)
- if decl.Recv == nil && id.Name == "init" {
- var v Call
- v.Call.Value = fn
- v.setType(types.NewTuple())
- pkg.init.emit(&v)
- }
- b.buildFunction(fn)
-}
-
-// Build calls Package.Build for each package in prog.
-// Building occurs in parallel unless the BuildSerially mode flag was set.
-//
-// Build is intended for whole-program analysis; a typical compiler
-// need only build a single package.
-//
-// Build is idempotent and thread-safe.
-//
-func (prog *Program) Build() {
- var wg sync.WaitGroup
- for _, p := range prog.packages {
- if prog.mode&BuildSerially != 0 {
- p.Build()
- } else {
- wg.Add(1)
- go func(p *Package) {
- p.Build()
- wg.Done()
- }(p)
- }
- }
- wg.Wait()
-}
-
-// Build builds SSA code for all functions and vars in package p.
-//
-// Precondition: CreatePackage must have been called for all of p's
-// direct imports (and hence its direct imports must have been
-// error-free).
-//
-// Build is idempotent and thread-safe.
-//
-func (p *Package) Build() { p.buildOnce.Do(p.build) }
-
-func (p *Package) build() {
- if p.info == nil {
- return // synthetic package, e.g. "testmain"
- }
-
- // Ensure we have runtime type info for all exported members.
- // TODO(adonovan): ideally belongs in memberFromObject, but
- // that would require package creation in topological order.
- for name, mem := range p.Members {
- if ast.IsExported(name) {
- p.Prog.needMethodsOf(mem.Type())
- }
- }
- if p.Prog.mode&LogSource != 0 {
- defer logStack("build %s", p)()
- }
- init := p.init
- init.startBody()
-
- var done *BasicBlock
-
- if p.Prog.mode&BareInits == 0 {
- // Make init() skip if package is already initialized.
- initguard := p.Var("init$guard")
- doinit := init.newBasicBlock("init.start")
- done = init.newBasicBlock("init.done")
- emitIf(init, emitLoad(init, initguard), done, doinit)
- init.currentBlock = doinit
- emitStore(init, initguard, vTrue, token.NoPos)
-
- // Call the init() function of each package we import.
- for _, pkg := range p.Pkg.Imports() {
- prereq := p.Prog.packages[pkg]
- if prereq == nil {
- panic(fmt.Sprintf("Package(%q).Build(): unsatisfied import: Program.CreatePackage(%q) was not called", p.Pkg.Path(), pkg.Path()))
- }
- var v Call
- v.Call.Value = prereq.init
- v.Call.pos = init.pos
- v.setType(types.NewTuple())
- init.emit(&v)
- }
- }
-
- var b builder
-
- // Initialize package-level vars in correct order.
- for _, varinit := range p.info.InitOrder {
- if init.Prog.mode&LogSource != 0 {
- fmt.Fprintf(os.Stderr, "build global initializer %v @ %s\n",
- varinit.Lhs, p.Prog.Fset.Position(varinit.Rhs.Pos()))
- }
- if len(varinit.Lhs) == 1 {
- // 1:1 initialization: var x, y = a(), b()
- var lval lvalue
- if v := varinit.Lhs[0]; v.Name() != "_" {
- lval = &address{addr: p.values[v].(*Global), pos: v.Pos()}
- } else {
- lval = blank{}
- }
- b.assign(init, lval, varinit.Rhs, true, nil)
- } else {
- // n:1 initialization: var x, y := f()
- tuple := b.exprN(init, varinit.Rhs)
- for i, v := range varinit.Lhs {
- if v.Name() == "_" {
- continue
- }
- emitStore(init, p.values[v].(*Global), emitExtract(init, tuple, i), v.Pos())
- }
- }
- }
-
- // Build all package-level functions, init functions
- // and methods, including unreachable/blank ones.
- // We build them in source order, but it's not significant.
- for _, file := range p.files {
- for _, decl := range file.Decls {
- if decl, ok := decl.(*ast.FuncDecl); ok {
- b.buildFuncDecl(p, decl)
- }
- }
- }
-
- // Finish up init().
- if p.Prog.mode&BareInits == 0 {
- emitJump(init, done)
- init.currentBlock = done
- }
- init.emit(new(Return))
- init.finishBody()
-
- p.info = nil // We no longer need ASTs or go/types deductions.
-
- if p.Prog.mode&SanityCheckFunctions != 0 {
- sanityCheckPackage(p)
- }
-}
-
-// Like ObjectOf, but panics instead of returning nil.
-// Only valid during p's create and build phases.
-func (p *Package) objectOf(id *ast.Ident) types.Object {
- if o := p.info.ObjectOf(id); o != nil {
- return o
- }
- panic(fmt.Sprintf("no types.Object for ast.Ident %s @ %s",
- id.Name, p.Prog.Fset.Position(id.Pos())))
-}
-
-// Like TypeOf, but panics instead of returning nil.
-// Only valid during p's create and build phases.
-func (p *Package) typeOf(e ast.Expr) types.Type {
- if T := p.info.TypeOf(e); T != nil {
- return T
- }
- panic(fmt.Sprintf("no type for %T @ %s",
- e, p.Prog.Fset.Position(e.Pos())))
-}