summaryrefslogtreecommitdiff
path: root/lib/thandy/keys.py
blob: 9eb98d0d5fba939fee6f87b8843ce90048fe5a62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# Copyright 2008 The Tor Project, Inc.  See LICENSE for licensing information.

"""thandy.keys --

   This module defines functionality for public keys, and for a simple
   encrypted keystore.
"""

# These imports require PyCrypto.
import Crypto.PublicKey.RSA
import Crypto.Hash.SHA256
import Crypto.Cipher.AES

import binascii
import logging
import os
import struct
import sys
import getpass

import thandy.formats
import thandy.util

json = thandy.util.importJSON()

class PublicKey:
    """An abstract base class for public keys.  A public key object
       always implements some kind of public key, and may also contain
       the corresponding private key data."""
    ## Fields:
    # _roles: a list of (rolename, path) tuples that indicates which
    #     roles we consider this public key to have.
    def __init__(self):
        """Constructor: Initialize a public key."""
        self._roles = []
    def format(self):
        """Return this public key converted into a JSon object"""
        raise NotImplemented()
    def sign(self, obj=None, digest=None):
        """Sign either a JSon object provided in 'obj', or a digest provided
           in 'digest'.  Return a list of (method name, base64-encoded
           signature) tuples.

           Requires that this is a private key."""
        raise NotImplemented()
    def checkSignature(self, method, signature, obj=None, digest=None):
        """Check the base64-encoded signature in 'signature', which was
           generating using the method with the name 'method', to see
           if it is a correct signature made with this key for either
           a JSon object provided in 'obj' or a digest provided in 'digest'.

           Returns True if the signature is value; False if it's invalid, and
           UnknownMethod if we don't recognize 'method'.
        """
        # returns True, False, or raises UnknownMethod.
        raise NotImplemented()
    def getKeyID(self):
        """Return a base-64-encoded key ID for this key.  No two distinct
           keys may share the same key ID.
        """
        raise NotImplemented()
    def getRoles(self):
        """Return a list of all roles supported by this key.  A role is
           a doctype,pathPattern tuple.
        """
        return self._roles[:]
    def addRole(self, role, path):
        """Add a role to the list of roles supported by this key.
           A role is a permission to sign a given kind of document
           (one of thandy.format.ALL_ROLES) at a given set of relative
           paths.
        """
        assert role in thandy.formats.ALL_ROLES
        if (role, path) not in self._roles:
            self._roles.append((role, path))
    def clearRoles(self):
        """Remove all roles from this key."""
        del self._roles[:]
    def hasRole(self, role, path):
        """Return true iff this key has a role that allows it to sign
           a document of type 'role' at location in the repository 'path'.
        """
        for r, p in self._roles:
            if r == role and thandy.formats.rolePathMatches(p, path):
                return True
        return False

if hex(1L).upper() == "0X1L":
    # It looks like integers and longs aren't unified in this version
    # of Python: converting a long to a hex string means there's a trailing
    # 'L' we need to remove.
    def intToBinary(number):
        """Convert an int or long into a big-endian series of bytes.

           >>> intToBinary(92807287956601L)
           'Thandy'
        """
        # This "convert-to-hex, then use binascii" approach may look silly,
        # but it's over 10x faster than the Crypto.Util.number approach.
        h = hex(long(number))
        h = h[2:-1]
        if len(h)%2:
            h = "0"+h
        return binascii.a2b_hex(h)
elif hex(1L).upper() == "0X1":
    # It looks like integers and longs _are_ unified.  Maybe this is Python 3?
    # In any case, we don't need to remove the trailing L.
    def intToBinary(number):
        "Variant for future versions of pythons that don't append 'L'."
        h = hex(long(number))
        h = h[2:]
        if len(h)%2:
            h = "0"+h
        return binascii.a2b_hex(h)
else:
    import Crypto.Util.number
    intToBinary = Crypto.Util.number.long_to_bytes
    assert None

def binaryToInt(binary):
   """Convert a big-endian series of bytes into a long.

      >>> binaryToInt('Hi')
      18537L
   """
   return long(binascii.b2a_hex(binary), 16)

def intToBase64(number):
    """Convert an int or long to a big-endian base64-encoded value.

        >>> intToBase64(0x4e16a777)
        'Thandw'
    """
    return thandy.formats.formatBase64(intToBinary(number))

def base64ToInt(number):
    """Convert a big-endian base64-encoded value to a long.

        >>> base64ToInt('Thandy')
        1310107511L
    """
    return binaryToInt(thandy.formats.parseBase64(number))

def _pkcs1_padding(m, size):
    """Add PKCS padding to the message 'm', so that it's appropriate for
       use with a public key of 'size' bytes."""
    # I'd rather use OAEP+, but apparently PyCrypto barely supports
    # signature verification, and doesn't seem to support signature
    # verification with nondeterministic padding.  "argh."

    s = [ "\x00\x01", "\xff"* (size-3-len(m)), "\x00", m ]
    r = "".join(s)
    return r

def _xor(a,b):
    """Return true iff exactly one of and b are true.  Used to check
       some conditions."""
    return bool(a) ^ bool(b)

class RSAKey(PublicKey):
    """
    An RSAKey is an implementation of the abstract class 'PublicKey' that
    can sign documents and check signatures using RSA keys of arbitrary
    size.

    >>> k = RSAKey.generate(bits=512)
    >>> obj = k.format()
    >>> obj['_keytype']
    'rsa'
    >>> base64ToInt(obj['e'])
    65537L
    >>> k1 = RSAKey.fromJSon(obj)
    >>> k1.key.e == k.key.e
    True
    >>> k1.key.n == k.key.n
    True
    >>> k.getKeyID() == k1.getKeyID()
    True
    >>> s = { 'A B C' : "D", "E" : [ "F", "g", 99] }
    >>> method, sig = k.sign(obj=s)[0]
    >>> k.checkSignature(method, sig, obj=s)
    True
    >>> s2 = [ s ]
    >>> k.checkSignature(method, sig, obj=s2)
    False
    """
    ## Fields: (beyond those inherited from PublicKey)
    # key -- a PyCrypto RSA key, public or private.  See Crypto.PublicKey.RSA.
    # keyid -- the base64 key ID for this key, or 'None' if we haven't
    #   generated one yet.
    def __init__(self, key):
        """Constructure: Initialize a new RSAKey from a PyCrypto RSA key."""
        PublicKey.__init__(self)
        self.key = key
        self.keyid = None

    @staticmethod
    def generate(bits=2048):
        """Generate and return a new RSA key, with modulus length 'bits'."""
        key = Crypto.PublicKey.RSA.generate(bits=bits, randfunc=os.urandom)
        return RSAKey(key)

    @staticmethod
    def fromJSon(obj):
        """Construct and return a RSAKey from the JSon object output of the
           RSAKey.format() method.  May raise thandy.FormatException.
        """
        # obj must match RSAKEY_SCHEMA

        thandy.formats.RSAKEY_SCHEMA.checkMatch(obj)
        n = base64ToInt(obj['n'])
        e = base64ToInt(obj['e'])
        if thandy.formats.RSAKEY_PRIVATE_SCHEMA.matches(obj):
            d = base64ToInt(obj['d'])
            p = base64ToInt(obj['p'])
            q = base64ToInt(obj['q'])
            u = base64ToInt(obj['u'])
            key = Crypto.PublicKey.RSA.construct((n, e, d, p, q, u))
        else:
            key = Crypto.PublicKey.RSA.construct((n, e))

        result = RSAKey(key)
        if obj.has_key('roles'):
            for r, p in obj['roles']:
                result.addRole(r,p)

        return result

    def isPrivateKey(self):
        """Return True iff this key has private-key components"""
        return hasattr(self.key, 'd')

    def format(self, private=False, includeRoles=False):
        """Return a new json object to represent this key in json format.
           If 'private', include private-key data.  If 'includeRoles',
           include role information.
        """
        n = intToBase64(self.key.n)
        e = intToBase64(self.key.e)
        result = { '_keytype' : 'rsa',
                   'e' : e,
                   'n' : n }
        if private:
            result['d'] = intToBase64(self.key.d)
            result['p'] = intToBase64(self.key.p)
            result['q'] = intToBase64(self.key.q)
            result['u'] = intToBase64(self.key.u)
        if includeRoles:
            result['roles'] = self.getRoles()
        return result

    def getKeyID(self):
        """Return the KeyID for this key.
        """
        if self.keyid == None:
            d_obj = Crypto.Hash.SHA256.new()
            thandy.formats.getDigest(self.format(), d_obj)
            self.keyid = thandy.formats.formatHash(d_obj.digest())
        return self.keyid

    def sign(self, obj=None, digest=None):
        # See PublicKey.sign for documentation
        assert _xor(obj == None, digest == None)
        method = "sha256-pkcs1"
        if digest == None:
            digest = thandy.formats.getDigest(obj)
        m = _pkcs1_padding(digest, (self.key.size()+1) // 8)
        sig = intToBase64(self.key.sign(m, "")[0])
        return [ (method, sig) ]

    def checkSignature(self, method, sig, obj=None, digest=None):
        # See PublicKey.checkSignature for documentation
        assert _xor(obj == None, digest == None)
        if method != "sha256-pkcs1":
            raise thandy.UnknownMethod(method)
        if digest == None:
            digest = thandy.formats.getDigest(obj)
        sig = base64ToInt(sig)
        m = _pkcs1_padding(digest, (self.key.size()+1) // 8)
        return bool(self.key.verify(m, (sig,)))

# Length of salt to pass to secretToKey
SALTLEN=16

def secretToKey(salt, secret):
    """Convert 'secret' to a 32-byte key, using a version of the algorithm
       from RFC2440.  The salt must be SALTLEN+1 bytes long, and should
       be random, except for the last byte, which encodes how time-
       consuming the computation should be.

       (The goal is to make offline password-guessing attacks harder by
       increasing the time required to convert a password to a key, and to
       make precomputed password tables impossible to generate by using
       a really huge salt.)
    """
    assert len(salt) == SALTLEN+1

    # The algorithm is basically, 'call the last byte of the salt the
    # "difficulty", and all other bytes of the salt S.  Now make
    # an infinite stream of S|secret|S|secret|..., and hash the
    # first N bytes of that, where N is determined by the difficulty.'
    #
    # Obviously, this wants a hash algorithm that's tricky to
    # parallelize.
    #
    # Unlike RFC2440, we use a 16-byte salt.  Because CPU times
    # have improved, we start at 16 times the previous minimum.

    difficulty = ord(salt[-1])
    count = (16L+(difficulty & 15)) << ((difficulty >> 4) + 10)

    # Make 'data' nice and long, so that we don't need to call update()
    # a zillion times.
    data = salt[:-1]+secret
    if len(data)<1024:
        data *= (1024 // len(data))+1

    d = Crypto.Hash.SHA256.new()
    iters, leftover = divmod(count, len(data))
    for _ in xrange(iters):
        d.update(data)
        #count -= len(data)
    if leftover:
        d.update(data[:leftover])
        #count -= leftover
    #assert count == 0

    return d.digest()

def encryptSecret(secret, password, difficulty=0x80):
    """Encrypt the secret 'secret' using the password 'password', and
       return the encrypted result.  The 'difficulty' parameter is a
       one-byte value determining how hard to make the password-to-key
       derivation"""
    # The encrypted format is:
    #    "GKEY1"  -- 5 octets, fixed, denotes data format.
    #    SALT     -- 17 bytes, used to hash password
    #    IV       -- 16 bytes; salt for encryption
    #    ENCRYPTED IN AES256-OFB, using a key=s2k(password, salt) and IV=IV:
    #       SLEN   -- 4 bytes; length of secret, big-endian.
    #       SECRET -- len(secret) bytes
    #       D      -- 32 bytes; SHA256 hash of (salt|secret|salt).
    #
    # This format leaks the secret length, obviously.
    #
    # If the secret started out in unicode, we encode it using UTF-8
    # and prepend the string "utf-8:" before we begin encryption.
    assert 0 <= difficulty < 256
    salt = os.urandom(SALTLEN)+chr(difficulty)
    key = secretToKey(salt, password)
    if isinstance(secret, unicode):
        secret = "utf-8:"+secret.encode("utf-8")

    d_obj = Crypto.Hash.SHA256.new()
    d_obj.update(salt)
    d_obj.update(secret)
    d_obj.update(salt)
    d = d_obj.digest()

    iv = os.urandom(16)
    e = Crypto.Cipher.AES.new(key, Crypto.Cipher.AES.MODE_OFB, iv)

    # Stupidly, pycrypto doesn't accept that stream ciphers don't need to
    # take their input in blocks.  So pad it, then ignore the padded output.

    padlen = 16-((len(secret)+len(d)+4) % 16)
    if padlen == 16: padlen = 0
    pad = '\x00' * padlen

    slen = struct.pack("!L",len(secret))
    encrypted = e.encrypt("%s%s%s%s" % (slen, secret, d, pad))
    if padlen:
        encrypted = encrypted[:-padlen]
    return "GKEY1%s%s%s"%(salt, iv, encrypted)

def decryptSecret(encrypted, password):
    """Decrypt a value encrypted with encryptSecret.  Raises UnknownFormat
       or FormatError if 'encrypted' was not generated with encryptSecret.
       Raises BadPassword if the password was not correct.
    """
    if encrypted[:5] != "GKEY1":
        raise thandy.UnknownFormat()
    encrypted = encrypted[5:]
    if len(encrypted) < SALTLEN+1+16:
        raise thandy.FormatException()

    salt = encrypted[:SALTLEN+1]
    iv = encrypted[SALTLEN+1:SALTLEN+1+16]
    encrypted = encrypted[SALTLEN+1+16:]

    key = secretToKey(salt, password)

    e = Crypto.Cipher.AES.new(key, Crypto.Cipher.AES.MODE_OFB, iv)
    padlen = 16-(len(encrypted) % 16)
    if padlen == 16: padlen = 0
    pad = '\x00' * padlen

    decrypted = e.decrypt("%s%s"%(encrypted,pad))
    slen = struct.unpack("!L", decrypted[:4])[0]
    secret = decrypted[4:4+slen]
    hash = decrypted[4+slen:4+slen+Crypto.Hash.SHA256.digest_size]

    d = Crypto.Hash.SHA256.new()
    d.update(salt)
    d.update(secret)
    d.update(salt)

    if d.digest() != hash:
        raise thandy.BadPassword()

    if secret.startswith("utf-8:"):
        secret = secret[6:].decode("utf-8")

    return secret

class KeyStore(thandy.formats.KeyDB):
    """Helper class used to store private keys in a (usually) encrypted file.

       It implements thandy.formats.KeyDB, so you can add keys to it
       and get keys from it in a useful indexed way.
    """
    ## Fields:
    # _loaded -- boolean: Have we loaded the keys from disk yet?
    # _fname -- The filename that we use to store the keys.
    # _passwd -- The password used to encrypt the keystore, or None if we
    #    haven't asked for it yet.
    # _encrypted -- boolean: Should we treat this as an encrypted keystore?
    #
    # File format:
    #   A JSon object containing a single field, "keys", which in turn
    #   contains a list of json-encoded keys.  This object is stored encrypted
    #   with encryptSecret.
    def __init__(self, fname, encrypted=True):
        thandy.formats.KeyDB.__init__(self)

        self._loaded = False
        self._fname = fname
        self._passwd = None
        self._encrypted = encrypted

    def getpass(self, reprompt=False):
        """If we have already asked for the passphrase, return it.
           If 'reprompt' is true, ask for the password twice,  to make sure
           the user didn't mistype.  Otherwise, only ask once.
        """
        if self._passwd != None:
            return self._passwd
        while 1:
            sys.stderr.write("Passphrase: ")
            pwd = getpass.getpass("")
            if not reprompt:
                return pwd

            sys.stderr.write("   Confirm: ")
            pwd2 = getpass.getpass("")
            if pwd == pwd2:
                return pwd
            else:
                print "Mismatch; try again."

    def load(self, password=None):
        """Load the keyring into memory, decrypting as needed.

           May raise various exceptions on failure.
        """
        logging.info("Loading private keys from %r...", self._fname)
        if not os.path.exists(self._fname):
            logging.info("...no such file.")
            self._loaded = True
            return

        if password is None and self._encrypted:
            password = self.getpass()

        contents = open(self._fname, 'rb').read()
        if self._encrypted:
            contents = decryptSecret(contents, password)

        listOfKeys = json.loads(contents)
        self._passwd = password # It worked.
        if not listOfKeys.has_key('keys'):
            listOfKeys['keys'] = []
        for obj in listOfKeys['keys']:
            key = RSAKey.fromJSon(obj)
            self.addKey(key)
            logging.info("Loaded key %s", key.getKeyID())

        self._loaded = True

    def setPassword(self, passwd):
        """Set the cached password to 'passwd'."""
        self._passwd = passwd

    def clearPassword(self):
        """Clear the cached password."""
        self._passwd = None

    def save(self, password=None):
        """Save the keyring to disk.  Note that you must call this method,
           or changes will not be persistent.
        """
        if not self._loaded and self._encrypted:
            self.load(password)

        if password is None:
            password = self.getpass(True)

        logging.info("Saving private keys into %r...", self._fname)
        listOfKeys = { 'keys' :
                       [ key.format(private=True, includeRoles=True) for key in
                         self._keys.values() ]
                       }
        contents = json.dumps(listOfKeys)
        if self._encrypted:
            contents = encryptSecret(contents, password)
        thandy.util.replaceFile(self._fname, contents)
        self._passwd = password # It worked.
        logging.info("Done.")