summaryrefslogtreecommitdiff
path: root/lib/glider/keys.py
blob: e2b2736b8ad7aa71d4060f453cbe6b9346735e0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

# These require PyCrypto.
import Crypto.PublicKey.RSA
import Crypto.Hash.SHA256
import Crypto.Cipher.AES

import sexp.access
import sexp.encode
import sexp.parse

import cPickle as pickle
import binascii
import os
import struct

class CryptoError(Exception):
    pass

class PubkeyFormatException(Exception):
    pass

class UnknownMethod(Exception):
    pass

class PublicKey:
    def format(self):
        raise NotImplemented()
    def sign(self, data):
        # returns a list of method,signature tuples.
        raise NotImplemented()
    def checkSignature(self, method, data, signature):
        # returns True, False, or raises UnknownMethod.
        raise NotImplemented()
    def getKeyID(self):
        raise NotImplemented()
    def getRoles(self):
        raise NotImplemented()

if hex(1L).upper() == "0X1L":
    def intToBinary(number):
        """Convert an int or long into a big-endian series of bytes.
        """
        # This "convert-to-hex, then use binascii" approach may look silly,
        # but it's over 10x faster than the Crypto.Util.number approach.
        h = hex(long(number))
        h = h[2:-1]
        if len(h)%2:
            h = "0"+h
        return binascii.a2b_hex(h)
elif hex(1L).upper() == "0X1":
    def intToBinary(number):
        h = hex(long(number))
        h = h[2:]
        if len(h)%2:
            h = "0"+h
        return binascii.a2b_hex(h)
else:
    import Crypto.Util.number
    intToBinary = Crypto.Util.number.long_to_bytes
    assert None

def binaryToInt(binary):
   """Convert a big-endian series of bytes into a long.
   """
   return long(binascii.b2a_hex(binary), 16)

def _pkcs1_padding(m, size):

    # I'd rather use OAEP+, but apparently PyCrypto barely supports
    # signature verification, and doesn't seem to support signature
    # verification with nondeterministic padding.  "argh."

    s = [ "\x00\x01", "\xff"* (size-3-len(m)), "\x00", m ]
    r = "".join(s)
    return r

def _xor(a,b):
    if a:
        return not b
    else:
        return b

class RSAKey(PublicKey):
    """
    >>> k = RSAKey.generate(bits=512)
    >>> sexpr = k.format()
    >>> sexpr[:2]
    ('pubkey', [('type', 'rsa')])
    >>> k1 = RSAKey.fromSExpression(sexpr)
    >>> k1.key.e == k.key.e
    True
    >>> k1.key.n == k.key.n
    True
    >>> k.getKeyID() == k1.getKeyID()
    True
    >>> s = ['tag1', ['foobar'], [['foop', 'bar']], 'baz']
    >>> method, sig = k.sign(sexpr=s)
    >>> k.checkSignature(method, sig, sexpr=s)
    True
    >>> s2 = [ s ]
    >>> k.checkSignature(method, sig, sexpr=s2)
    False
    """
    def __init__(self, key):
        self.key = key
        self.keyid = None

    @staticmethod
    def generate(bits=2048):
        key = Crypto.PublicKey.RSA.generate(bits=bits, randfunc=os.urandom)
        return RSAKey(key)

    @staticmethod
    def fromSExpression(sexpr):
        # sexpr must match PUBKEY_SCHEMA
        typeattr = sexp.access.s_attr(sexpr[1], "type")
        if typeattr != "rsa":
            return None
        if len(sexpr[2]) != 2:
            raise PubkeyFormatException("RSA keys must have an e,n pair")
        e,n = sexpr[2]
        key = Crypto.PublicKey.RSA.construct((binaryToInt(n), binaryToInt(e)))
        return RSAKey(key)

    def format(self):
        n = intToBinary(self.key.n)
        e = intToBinary(self.key.e)
        return ("pubkey", [("type", "rsa")], (e, n))

    def getKeyID(self):
        if self.keyid == None:
            n = intToBinary(self.key.n)
            e = intToBinary(self.key.e)
            keyval = (e,n)
            d_obj = Crypto.Hash.SHA256.new()
            sexp.encode.hash_canonical(keyval, d_obj)
            self.keyid = ("rsa", d_obj.digest())
        return self.keyid

    def _digest(self, sexpr, method=None):
        if method in (None, "sha256-pkcs1"):
            d_obj = Crypto.Hash.SHA256.new()
            sexp.encode.hash_canonical(sexpr, d_obj)
            digest = d_obj.digest()
            return ("sha256-pkcs1", digest)

        raise UnknownMethod(method)

    def sign(self, sexpr=None, digest=None):
        assert _xor(sexpr == None, digest == None)
        if digest == None:
            method, digest = self._digest(sexpr)
        m = _pkcs1_padding(digest, (self.key.size()+1) // 8)
        sig = intToBinary(self.key.sign(m, "")[0])
        return (method, sig)

    def checkSignature(self, method, sig, sexpr=None, digest=None):
        assert _xor(sexpr == None, digest == None)
        if method != "sha256-pkcs1":
            raise UnknownMethod("method")
        if digest == None:
            method, digest = self._digest(sexpr, method)
        sig = binaryToInt(sig)
        m = _pkcs1_padding(digest, (self.key.size()+1) // 8)
        return self.key.verify(m, (sig,))

SALTLEN=16

def secretToKey(salt, secret):
    """Convert 'secret' to a 32-byte key, using a version of the algorithm
       from RFC2440.  The salt must be SALTLEN+1 bytes long, and should
       be random, except for the last byte, which encodes how time-
       consuming the computation should be.

       (The goal is to make offline password-guessing attacks harder by
       increasing the time required to convert a password to a key, and to
       make precomputed password tables impossible to generate by )
    """
    assert len(salt) == SALTLEN+1

    # The algorithm is basically, 'call the last byte of the salt the
    # "difficulty", and all other bytes of the salt S.  Now make
    # an infinite stream of S|secret|S|secret|..., and hash the
    # first N bytes of that, where N is determined by the difficulty.
    #
    # Obviously, this wants a hash algorithm that's tricky to
    # parallelize.
    #
    # Unlike RFC2440, we use a 16-byte salt.  Because CPU times
    # have improved, we start at 16 times the previous minimum.

    difficulty = ord(salt[-1])
    count = (16L+(difficulty & 15)) << ((difficulty >> 4) + 10)

    # Make 'data' nice and long, so that we don't need to call update()
    # a zillion times.
    data = salt[:-1]+secret
    if len(data)<1024:
        data *= (1024 // len(data))+1

    d = Crypto.Hash.SHA256.new()
    iters, leftover = divmod(count, len(data))
    for _ in xrange(iters):
        d.update(data)
        #count -= len(data)
    if leftover:
        d.update(data[:leftover])
        #count -= leftover
    #assert count == 0

    return d.digest()

def encryptSecret(secret, password, difficulty=0x80):
    """Encrypt the secret 'secret' using the password 'password',
       and return the encrypted result."""
    # The encrypted format is:
    #    "GKEY1"  -- 5 octets, fixed, denotes data format.
    #    SALT     -- 17 bytes, used to hash password
    #    IV       -- 16 bytes; salt for encryption
    #    ENCRYPTED IN AES256-OFB, using a key=s2k(password, salt) and IV=IV:
    #       SLEN   -- 4 bytes; length of secret, big-endian.
    #       SECRET -- len(secret) bytes
    #       D      -- 32 bytes; SHA256 hash of (salt|secret|salt).
    #
    # This format leaks the secret length, obviously.
    assert 0 <= difficulty < 256
    salt = os.urandom(SALTLEN)+chr(difficulty)
    key = secretToKey(salt, password)

    d_obj = Crypto.Hash.SHA256.new()
    d_obj.update(salt)
    d_obj.update(secret)
    d_obj.update(salt)
    d = d_obj.digest()

    iv = os.urandom(16)
    e = Crypto.Cipher.AES.new(key, Crypto.Cipher.AES.MODE_OFB, iv)

    # Stupidly, pycrypto doesn't accept that stream ciphers don't need to
    # take their input in blocks.  So pad it, then ignore the padded output.

    padlen = 16-((len(secret)+len(d)+4) % 16)
    if padlen == 16: padlen = 0
    pad = '\x00' * padlen

    slen = struct.pack("!L",len(secret))
    encrypted = e.encrypt("%s%s%s%s" % (slen, secret, d, pad))[:-padlen]
    return "GKEY1%s%s%s"%(salt, iv, encrypted)

def decryptSecret(encrypted, password):
    if encrypted[:5] != "GKEY1":
        raise UnknownFormat()
    encrypted = encrypted[5:]
    if len(encrypted) < SALTLEN+1+16:
        raise FormatError()

    salt = encrypted[:SALTLEN+1]
    iv = encrypted[SALTLEN+1:SALTLEN+1+16]
    encrypted = encrypted[SALTLEN+1+16:]

    key = secretToKey(salt, password)

    e = Crypto.Cipher.AES.new(key, Crypto.Cipher.AES.MODE_OFB, iv)
    padlen = 16-(len(encrypted) % 16)
    if padlen == 16: padlen = 0
    pad = '\x00' * padlen

    decrypted = e.decrypt("%s%s"%(encrypted,pad))
    slen = struct.unpack("!L", decrypted[:4])[0]
    secret = decrypted[4:4+slen]
    hash = decrypted[4+slen:4+slen+Crypto.Hash.SHA256.digest_size]

    d = Crypto.Hash.SHA256.new()
    d.update(salt)
    d.update(secret)
    d.update(salt)

    if d.digest() != hash:
        print repr(decrypted)
        raise BadPassword()

    return secret