From 67f64e7564d5eea4cb71afd719786fd7977f4b98 Mon Sep 17 00:00:00 2001 From: ausiv4 Date: Fri, 24 Jul 2009 14:01:04 +0000 Subject: Merge proper-random with trunk. --- javascript/BigInt.js | 1400 -------------------------------------------------- javascript/jsbn.js | 559 ++++++++++++++++++++ javascript/jsbn2.js | 645 +++++++++++++++++++++++ javascript/prng4.js | 45 ++ javascript/rng.js | 68 +++ javascript/srp.js | 44 +- 6 files changed, 1340 insertions(+), 1421 deletions(-) delete mode 100644 javascript/BigInt.js create mode 100644 javascript/jsbn.js create mode 100644 javascript/jsbn2.js create mode 100644 javascript/prng4.js create mode 100644 javascript/rng.js (limited to 'javascript') diff --git a/javascript/BigInt.js b/javascript/BigInt.js deleted file mode 100644 index c96ab73..0000000 --- a/javascript/BigInt.js +++ /dev/null @@ -1,1400 +0,0 @@ -//////////////////////////////////////////////////////////////////////////////////////// -// Big Integer Library v. 5.1 -// Created 2000, last modified 2007 -// Leemon Baird -// www.leemon.com -// -// Version history: -// -// v 5.1 8 Oct 2007 -// - renamed inverseModInt_ to inverseModInt since it doesn't change its parameters -// - added functions GCD and randBigInt, which call GCD_ and randBigInt_ -// - fixed a bug found by Rob Visser (see comment with his name below) -// - improved comments -// -// This file is public domain. You can use it for any purpose without restriction. -// I do not guarantee that it is correct, so use it at your own risk. If you use -// it for something interesting, I'd appreciate hearing about it. If you find -// any bugs or make any improvements, I'd appreciate hearing about those too. -// It would also be nice if my name and address were left in the comments. -// But none of that is required. -// -// This code defines a bigInt library for arbitrary-precision integers. -// A bigInt is an array of integers storing the value in chunks of bpe bits, -// little endian (buff[0] is the least significant word). -// Negative bigInts are stored two's complement. -// Some functions assume their parameters have at least one leading zero element. -// Functions with an underscore at the end of the name have unpredictable behavior in case of overflow, -// so the caller must make sure the arrays must be big enough to hold the answer. -// For each function where a parameter is modified, that same -// variable must not be used as another argument too. -// So, you cannot square x by doing multMod_(x,x,n). -// You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n). -// -// These functions are designed to avoid frequent dynamic memory allocation in the inner loop. -// For most functions, if it needs a BigInt as a local variable it will actually use -// a global, and will only allocate to it only when it's not the right size. This ensures -// that when a function is called repeatedly with same-sized parameters, it only allocates -// memory on the first call. -// -// Note that for cryptographic purposes, the calls to Math.random() must -// be replaced with calls to a better pseudorandom number generator. -// -// In the following, "bigInt" means a bigInt with at least one leading zero element, -// and "integer" means a nonnegative integer less than radix. In some cases, integer -// can be negative. Negative bigInts are 2s complement. -// -// The following functions do not modify their inputs. -// Those returning a bigInt, string, or Array will dynamically allocate memory for that value. -// Those returning a boolean will return the integer 0 (false) or 1 (true). -// Those returning boolean or int will not allocate memory except possibly on the first time they're called with a given parameter size. -// -// bigInt add(x,y) //return (x+y) for bigInts x and y. -// bigInt addInt(x,n) //return (x+n) where x is a bigInt and n is an integer. -// string bigInt2str(x,base) //return a string form of bigInt x in a given base, with 2 <= base <= 95 -// int bitSize(x) //return how many bits long the bigInt x is, not counting leading zeros -// bigInt dup(x) //return a copy of bigInt x -// boolean equals(x,y) //is the bigInt x equal to the bigint y? -// boolean equalsInt(x,y) //is bigint x equal to integer y? -// bigInt expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed -// Array findPrimes(n) //return array of all primes less than integer n -// bigInt GCD(x,y) //return greatest common divisor of bigInts x and y (each with same number of elements). -// boolean greater(x,y) //is x>y? (x and y are nonnegative bigInts) -// boolean greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y? -// bigInt int2bigInt(t,n,m) //return a bigInt equal to integer t, with at least n bits and m array elements -// bigInt inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null -// int inverseModInt(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse -// boolean isZero(x) //is the bigInt x equal to zero? -// boolean millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime (as opposed to definitely composite)? -// bigInt mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n. -// int modInt(x,n) //return x mod n for bigInt x and integer n. -// bigInt mult(x,y) //return x*y for bigInts x and y. This is faster when y=1). If s=1, then the most significant of those n bits is set to 1. -// bigInt randTruePrime(k) //return a new, random, k-bit, true prime bigInt using Maurer's algorithm. -// bigInt str2bigInt(s,b,n,m) //return a bigInt for number represented in string s in base b with at least n bits and m array elements -// bigInt sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement -// bigInt trim(x,k) //return a copy of x with exactly k leading zero elements -// -// -// The following functions each have a non-underscored version, which most users should call instead. -// These functions each write to a single parameter, and the caller is responsible for ensuring the array -// passed in is large enough to hold the result. -// -// void addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer -// void add_(x,y) //do x=x+y for bigInts x and y -// void copy_(x,y) //do x=y on bigInts x and y -// void copyInt_(x,n) //do x=n on bigInt x and integer n -// void GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed). (This never overflows its array). -// boolean inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist -// void mod_(x,n) //do x=x mod n for bigInts x and n. (This never overflows its array). -// void mult_(x,y) //do x=x*y for bigInts x and y. -// void multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n. -// void powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1. -// void randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1. -// void randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb. -// void sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement. -// -// The following functions do NOT have a non-underscored version. -// They each write a bigInt result to one or more parameters. The caller is responsible for -// ensuring the arrays passed in are large enough to hold the results. -// -// void addShift_(x,y,ys) //do x=x+(y<<(ys*bpe)) -// void carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits. -// void divide_(x,y,q,r) //divide x by y giving quotient q and remainder r -// int divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder. (This never overflows its array). -// int eGCD_(x,y,d,a,b) //sets a,b,d to positive bigInts such that d = GCD_(x,y) = a*x-b*y -// void halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement. (This never overflows its array). -// void leftShift_(x,n) //left shift bigInt x by n bits. n64 multiplier, but not with JavaScript's 32*32->32) -// - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square -// followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that -// method would be slower. This is unfortunate because the code currently spends almost all of its time -// doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring -// would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded -// sentences that seem to imply it's faster to do a non-modular square followed by a single -// Montgomery reduction, but that's obviously wrong. -//////////////////////////////////////////////////////////////////////////////////////// - -//globals -bpe=0; //bits stored per array element -mask=0; //AND this with an array element to chop it down to bpe bits -radix=mask+1; //equals 2^bpe. A single 1 bit to the left of the last bit of mask. - -//the digits for converting to different bases -digitsStr='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-'; - -//initialize the global variables -for (bpe=0; (1<<(bpe+1)) > (1<>=1; //bpe=number of bits in one element of the array representing the bigInt -mask=(1<0); j--); - for (z=0,w=x[j]; w; (w>>=1),z++); - z+=bpe*j; - return z; -}; - -//return a copy of x with at least n elements, adding leading zeros if needed -function expand(x,n) { - var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0); - copy_(ans,x); - return ans; -}; - -//return a k-bit true random prime using Maurer's algorithm. -function randTruePrime(k) { - var ans=int2bigInt(0,k,0); - randTruePrime_(ans,k); - return trim(ans,1); -}; - -//return a new bigInt equal to (x mod n) for bigInts x and n. -function mod(x,n) { - var ans=dup(x); - mod_(ans,n); - return trim(ans,1); -}; - -//return (x+n) where x is a bigInt and n is an integer. -function addInt(x,n) { - var ans=expand(x,x.length+1); - addInt_(ans,n); - return trim(ans,1); -}; - -//return x*y for bigInts x and y. This is faster when yy.length ? x.length+1 : y.length+1)); - sub_(ans,y); - return trim(ans,1); -}; - -//return (x+y) for bigInts x and y. -function add(x,y) { - var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); - add_(ans,y); - return trim(ans,1); -}; - -//return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null -function inverseMod(x,n) { - var ans=expand(x,n.length); - var s; - s=inverseMod_(ans,n); - return s ? trim(ans,1) : null; -}; - -//return (x*y mod n) for bigInts x,y,n. For greater speed, let y= 2 - - if (s_i2.length!=ans.length) { - s_i2=dup(ans); - s_R =dup(ans); - s_n1=dup(ans); - s_r2=dup(ans); - s_d =dup(ans); - s_x1=dup(ans); - s_x2=dup(ans); - s_b =dup(ans); - s_n =dup(ans); - s_i =dup(ans); - s_rm=dup(ans); - s_q =dup(ans); - s_a =dup(ans); - s_aa=dup(ans); - } - - if (k <= recLimit) { //generate small random primes by trial division up to its square root - pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k) - copyInt_(ans,0); - for (dd=1;dd;) { - dd=0; - ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits - for (r=1; k-k*r<=m; ) - r=pows[Math.floor(Math.random()*512)]; //r=Math.pow(2,Math.random()-1); - else - r=.5; - - //simulation suggests the more complex algorithm using r=.333 is only slightly faster. - - recSize=Math.floor(r*k)+1; - - randTruePrime_(s_q,recSize); - copyInt_(s_i2,0); - s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2) - divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q)) - - z=bitSize(s_i); - - for (;;) { - for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1] - randBigInt_(s_R,z,0); - if (greater(s_i,s_R)) - break; - } //now s_R is in the range [0,s_i-1] - addInt_(s_R,1); //now s_R is in the range [1,s_i] - add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i] - - copy_(s_n,s_q); - mult_(s_n,s_R); - multInt_(s_n,2); - addInt_(s_n,1); //s_n=2*s_R*s_q+1 - - copy_(s_r2,s_R); - multInt_(s_r2,2); //s_r2=2*s_R - - //check s_n for divisibility by small primes up to B - for (divisible=0,j=0; (j0); j--); //strip leading zeros - for (zz=0,w=s_n[j]; w; (w>>=1),zz++); - zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros - for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1] - randBigInt_(s_a,zz,0); - if (greater(s_n,s_a)) - break; - } //now s_a is in the range [0,s_n-1] - addInt_(s_n,3); //now s_a is in the range [0,s_n-4] - addInt_(s_a,2); //now s_a is in the range [2,s_n-2] - copy_(s_b,s_a); - copy_(s_n1,s_n); - addInt_(s_n1,-1); - powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n - addInt_(s_b,-1); - if (isZero(s_b)) { - copy_(s_b,s_a); - powMod_(s_b,s_r2,s_n); - addInt_(s_b,-1); - copy_(s_aa,s_n); - copy_(s_d,s_b); - GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime - if (equalsInt(s_d,1)) { - copy_(ans,s_aa); - return; //if we've made it this far, then s_n is absolutely guaranteed to be prime - } - } - } - } -}; - -//Return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1. -function randBigInt(n,s) { - var a,b; - a=Math.floor((n-1)/bpe)+2; //# array elements to hold the BigInt with a leading 0 element - b=int2bigInt(0,0,a); - randBigInt_(b,n,s); - return b; -}; - -//Set b to an n-bit random BigInt. If s=1, then the most significant of those n bits is set to 1. -//Array b must be big enough to hold the result. Must have n>=1 -function randBigInt_(b,n,s) { - var i,a; - for (i=0;i=0;i--); //find most significant element of x - xp=x[i]; - yp=y[i]; - A=1; B=0; C=0; D=1; - while ((yp+C) && (yp+D)) { - q =Math.floor((xp+A)/(yp+C)); - qp=Math.floor((xp+B)/(yp+D)); - if (q!=qp) - break; - t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp) - t= B-q*D; B=D; D=t; - t=xp-q*yp; xp=yp; yp=t; - } - if (B) { - copy_(T,x); - linComb_(x,y,A,B); //x=A*x+B*y - linComb_(y,T,D,C); //y=D*y+C*T - } else { - mod_(x,y); - copy_(T,x); - copy_(x,y); - copy_(y,T); - } - } - if (y[0]==0) - return; - t=modInt(x,y[0]); - copyInt_(x,y[0]); - y[0]=t; - while (y[0]) { - x[0]%=y[0]; - t=x[0]; x[0]=y[0]; y[0]=t; - } -}; - -//do x=x**(-1) mod n, for bigInts x and n. -//If no inverse exists, it sets x to zero and returns 0, else it returns 1. -//The x array must be at least as large as the n array. -function inverseMod_(x,n) { - var k=1+2*Math.max(x.length,n.length); - - if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist - copyInt_(x,0); - return 0; - } - - if (eg_u.length!=k) { - eg_u=new Array(k); - eg_v=new Array(k); - eg_A=new Array(k); - eg_B=new Array(k); - eg_C=new Array(k); - eg_D=new Array(k); - } - - copy_(eg_u,x); - copy_(eg_v,n); - copyInt_(eg_A,1); - copyInt_(eg_B,0); - copyInt_(eg_C,0); - copyInt_(eg_D,1); - for (;;) { - while(!(eg_u[0]&1)) { //while eg_u is even - halve_(eg_u); - if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2 - halve_(eg_A); - halve_(eg_B); - } else { - add_(eg_A,n); halve_(eg_A); - sub_(eg_B,x); halve_(eg_B); - } - } - - while (!(eg_v[0]&1)) { //while eg_v is even - halve_(eg_v); - if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2 - halve_(eg_C); - halve_(eg_D); - } else { - add_(eg_C,n); halve_(eg_C); - sub_(eg_D,x); halve_(eg_D); - } - } - - if (!greater(eg_v,eg_u)) { //eg_v <= eg_u - sub_(eg_u,eg_v); - sub_(eg_A,eg_C); - sub_(eg_B,eg_D); - } else { //eg_v > eg_u - sub_(eg_v,eg_u); - sub_(eg_C,eg_A); - sub_(eg_D,eg_B); - } - - if (equalsInt(eg_u,0)) { - if (negative(eg_C)) //make sure answer is nonnegative - add_(eg_C,n); - copy_(x,eg_C); - - if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse - copyInt_(x,0); - return 0; - } - return 1; - } - } -}; - -//return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse -function inverseModInt(x,n) { - var a=1,b=0,t; - for (;;) { - if (x==1) return a; - if (x==0) return 0; - b-=a*Math.floor(n/x); - n%=x; - - if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to += - if (n==0) return 0; - a-=b*Math.floor(x/n); - x%=n; - } -}; - -//this deprecated function is for backward compatibility only. -function inverseModInt_(x,n) { - return inverseModInt(x,n); -}; - - -//Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that: -// v = GCD_(x,y) = a*x-b*y -//The bigInts v, a, b, must have exactly as many elements as the larger of x and y. -function eGCD_(x,y,v,a,b) { - var g=0; - var k=Math.max(x.length,y.length); - if (eg_u.length!=k) { - eg_u=new Array(k); - eg_A=new Array(k); - eg_B=new Array(k); - eg_C=new Array(k); - eg_D=new Array(k); - } - while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even - halve_(x); - halve_(y); - g++; - } - copy_(eg_u,x); - copy_(v,y); - copyInt_(eg_A,1); - copyInt_(eg_B,0); - copyInt_(eg_C,0); - copyInt_(eg_D,1); - for (;;) { - while(!(eg_u[0]&1)) { //while u is even - halve_(eg_u); - if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2 - halve_(eg_A); - halve_(eg_B); - } else { - add_(eg_A,y); halve_(eg_A); - sub_(eg_B,x); halve_(eg_B); - } - } - - while (!(v[0]&1)) { //while v is even - halve_(v); - if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2 - halve_(eg_C); - halve_(eg_D); - } else { - add_(eg_C,y); halve_(eg_C); - sub_(eg_D,x); halve_(eg_D); - } - } - - if (!greater(v,eg_u)) { //v<=u - sub_(eg_u,v); - sub_(eg_A,eg_C); - sub_(eg_B,eg_D); - } else { //v>u - sub_(v,eg_u); - sub_(eg_C,eg_A); - sub_(eg_D,eg_B); - } - if (equalsInt(eg_u,0)) { - if (negative(eg_C)) { //make sure a (C)is nonnegative - add_(eg_C,y); - sub_(eg_D,x); - } - multInt_(eg_D,-1); ///make sure b (D) is nonnegative - copy_(a,eg_C); - copy_(b,eg_D); - leftShift_(v,g); - return; - } - } -}; - - -//is bigInt x negative? -function negative(x) { - return ((x[x.length-1]>>(bpe-1))&1); -}; - - -//is (x << (shift*bpe)) > y? -//x and y are nonnegative bigInts -//shift is a nonnegative integer -function greaterShift(x,y,shift) { - var kx=x.length, ky=y.length; - k=((kx+shift)=0; i++) - if (x[i]>0) - return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger - for (i=kx-1+shift; i0) - return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger - for (i=k-1; i>=shift; i--) - if (x[i-shift]>y[i]) return 1; - else if (x[i-shift] y? (x and y both nonnegative) -function greater(x,y) { - var i; - var k=(x.length=0;i--) - if (x[i]>y[i]) - return 1; - else if (x[i]= y.length >= 2. -function divide_(x,y,q,r) { - var kx, ky; - var i,j,y1,y2,c,a,b; - copy_(r,x); - for (ky=y.length;y[ky-1]==0;ky--); //ky is number of elements in y, not including leading zeros - - //normalize: ensure the most significant element of y has its highest bit set - b=y[ky-1]; - for (a=0; b; a++) - b>>=1; - a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element - leftShift_(y,a); //multiply both by 1<ky;kx--); //kx is number of elements in normalized x, not including leading zeros - - copyInt_(q,0); // q=0 - while (!greaterShift(y,r,kx-ky)) { // while (leftShift_(y,kx-ky) <= r) { - subShift_(r,y,kx-ky); // r=r-leftShift_(y,kx-ky) - q[kx-ky]++; // q[kx-ky]++; - } // } - - for (i=kx-1; i>=ky; i--) { - if (r[i]==y[ky-1]) - q[i-ky]=mask; - else - q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]); - - //The following for(;;) loop is equivalent to the commented while loop, - //except that the uncommented version avoids overflow. - //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0 - // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2]) - // q[i-ky]--; - for (;;) { - y2=(ky>1 ? y[ky-2] : 0)*q[i-ky]; - c=y2>>bpe; - y2=y2 & mask; - y1=c+q[i-ky]*y[ky-1]; - c=y1>>bpe; - y1=y1 & mask; - - if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]) - q[i-ky]--; - else - break; - } - - linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky) - if (negative(r)) { - addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky) - q[i-ky]--; - } - } - - rightShift_(y,a); //undo the normalization step - rightShift_(r,a); //undo the normalization step -}; - -//do carries and borrows so each element of the bigInt x fits in bpe bits. -function carry_(x) { - var i,k,c,b; - k=x.length; - c=0; - for (i=0;i>bpe); - c+=b*radix; - } - x[i]=c & mask; - c=(c>>bpe)-b; - } -}; - -//return x mod n for bigInt x and integer n. -function modInt(x,n) { - var i,c=0; - for (i=x.length-1; i>=0; i--) - c=(c*radix+x[i])%n; - return c; -}; - -//convert the integer t into a bigInt with at least the given number of bits. -//the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word) -//Pad the array with leading zeros so that it has at least minSize elements. -//There will always be at least one leading 0 element. -function int2bigInt(t,bits,minSize) { - var i,k; - k=Math.ceil(bits/bpe)+1; - k=minSize>k ? minSize : k; - buff=new Array(k); - copyInt_(buff,t); - return buff; -}; - -//return the bigInt given a string representation in a given base. -//Pad the array with leading zeros so that it has at least minSize elements. -//If base=-1, then it reads in a space-separated list of array elements in decimal. -//The array will always have at least one leading zero, unless base=-1. -function str2bigInt(s,base,minSize) { - var d, i, j, x, y, kk; - var k=s.length; - if (base==-1) { //comma-separated list of array elements in decimal - x=new Array(0); - for (;;) { - y=new Array(x.length+1); - for (i=0;i=36) //convert lowercase to uppercase if base<=36 - d-=26; - if (d=0) { //ignore illegal characters - multInt_(x,base); - addInt_(x,d); - } - } - - for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros - k=minSize>k+1 ? minSize : k+1; - y=new Array(k); - kk=ky.length) { - for (;i0;i--) - s+=x[i]+','; - s+=x[0]; - } - else { //return it in the given base - while (!isZero(s6)) { - t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base); - s=digitsStr.substring(t,t+1)+s; - } - } - if (s.length==0) - s="0"; - return s.toLowerCase(); -}; - -//returns a duplicate of bigInt x -function dup(x) { - var i; - buff=new Array(x.length); - copy_(buff,x); - return buff; -}; - -//do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y). -function copy_(x,y) { - var i; - var k=x.length>=bpe; - } -}; - -//do x=x+n where x is a bigInt and n is an integer. -//x must be large enough to hold the result. -function addInt_(x,n) { - var i,k,c,b; - x[0]+=n; - k=x.length; - c=0; - for (i=0;i>bpe); - c+=b*radix; - } - x[i]=c & mask; - c=(c>>bpe)-b; - if (!c) return; //stop carrying as soon as the carry_ is zero - } -}; - -//right shift bigInt x by n bits. 0 <= n < bpe. -function rightShift_(x,n) { - var i; - var k=Math.floor(n/bpe); - if (k) { - for (i=0;i>n)); - } - x[i]>>=n; -}; - -//do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement -function halve_(x) { - var i; - for (i=0;i>1)); - } - x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same -}; - -//left shift bigInt x by n bits. -function leftShift_(x,n) { - var i; - var k=Math.floor(n/bpe); - if (k) { - for (i=x.length; i>=k; i--) //left shift x by k elements - x[i]=x[i-k]; - for (;i>=0;i--) - x[i]=0; - n%=bpe; - } - if (!n) - return; - for (i=x.length-1;i>0;i--) { - x[i]=mask & ((x[i]<>(bpe-n))); - } - x[i]=mask & (x[i]<>bpe); - c+=b*radix; - } - x[i]=c & mask; - c=(c>>bpe)-b; - } -}; - -//do x=floor(x/n) for bigInt x and integer n, and return the remainder -function divInt_(x,n) { - var i,r=0,s; - for (i=x.length-1;i>=0;i--) { - s=r*radix+x[i]; - x[i]=Math.floor(s/n); - r=s%n; - } - return r; -}; - -//do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b. -//x must be large enough to hold the answer. -function linComb_(x,y,a,b) { - var i,c,k,kk; - k=x.length>=bpe; - } - for (i=k;i>=bpe; - } -}; - -//do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys. -//x must be large enough to hold the answer. -function linCombShift_(x,y,b,ys) { - var i,c,k,kk; - k=x.length>=bpe; - } - for (i=k;c && i>=bpe; - } -}; - -//do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. -//x must be large enough to hold the answer. -function addShift_(x,y,ys) { - var i,c,k,kk; - k=x.length>=bpe; - } - for (i=k;c && i>=bpe; - } -}; - -//do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. -//x must be large enough to hold the answer. -function subShift_(x,y,ys) { - var i,c,k,kk; - k=x.length>=bpe; - } - for (i=k;c && i>=bpe; - } -}; - -//do x=x-y for bigInts x and y. -//x must be large enough to hold the answer. -//negative answers will be 2s complement -function sub_(x,y) { - var i,c,k,kk; - k=x.length>=bpe; - } - for (i=k;c && i>=bpe; - } -}; - -//do x=x+y for bigInts x and y. -//x must be large enough to hold the answer. -function add_(x,y) { - var i,c,k,kk; - k=x.length>=bpe; - } - for (i=k;c && i>=bpe; - } -}; - -//do x=x*y for bigInts x and y. This is faster when y0 && !x[kx-1]; kx--); //ignore leading zeros in x - k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n - if (s0.length!=k) - s0=new Array(k); - copyInt_(s0,0); - for (i=0;i>=bpe; - for (j=i+1;j>=bpe; - } - s0[i+kx]=c; - } - mod_(s0,n); - copy_(x,s0); -}; - -//return x with exactly k leading zero elements -function trim(x,k) { - var i,y; - for (i=x.length; i>0 && !x[i-1]; i--); - y=new Array(i+k); - copy_(y,x); - return y; -}; - -//do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1. -//this is faster when n is odd. x usually needs to have as many elements as n. -function powMod_(x,y,n) { - var k1,k2,kn,np; - if(s7.length!=n.length) - s7=dup(n); - - //for even modulus, use a simple square-and-multiply algorithm, - //rather than using the more complex Montgomery algorithm. - if ((n[0]&1)==0) { - copy_(s7,x); - copyInt_(x,1); - while(!equalsInt(y,0)) { - if (y[0]&1) - multMod_(x,s7,n); - divInt_(y,2); - squareMod_(s7,n); - } - return; - } - - //calculate np from n for the Montgomery multiplications - copyInt_(s7,0); - for (kn=n.length;kn>0 && !n[kn-1];kn--); - np=radix-inverseModInt(modInt(n,radix),radix); - s7[kn]=1; - multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n - - if (s3.length!=x.length) - s3=dup(x); - else - copy_(s3,x); - - for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y - if (y[k1]==0) { //anything to the 0th power is 1 - copyInt_(x,1); - return; - } - for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1] - for (;;) { - if (!(k2>>=1)) { //look at next bit of y - k1--; - if (k1<0) { - mont_(x,one,n,np); - return; - } - k2=1<<(bpe-1); - } - mont_(x,x,n,np); - - if (k2 & y[k1]) //if next bit is a 1 - mont_(x,s3,n,np); - } -}; - -//do x=x*y*Ri mod n for bigInts x,y,n, -// where Ri = 2**(-kn*bpe) mod n, and kn is the -// number of elements in the n array, not -// counting leading zeros. -//x must be large enough to hold the answer. -//It's OK if x and y are the same variable. -//must have: -// x,y < n -// n is odd -// np = -(n^(-1)) mod radix -function mont_(x,y,n,np) { - var i,j,c,ui,t; - var kn=n.length; - var ky=y.length; - - if (sa.length!=kn) - sa=new Array(kn); - - for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n - //this function sometimes gives wrong answers when the next line is uncommented - //for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y - - copyInt_(sa,0); - - //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large keys - for (i=0; i> bpe; - t=x[i]; - - //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe - for (j=1;j>=bpe; - } - for (;j>=bpe; - } - sa[j-1]=c & mask; - } - - if (!greater(n,sa)) - sub_(sa,n); - copy_(x,sa); -}; - - diff --git a/javascript/jsbn.js b/javascript/jsbn.js new file mode 100644 index 0000000..928cc4f --- /dev/null +++ b/javascript/jsbn.js @@ -0,0 +1,559 @@ +// Copyright (c) 2005 Tom Wu +// All Rights Reserved. +// See "LICENSE" for details. + +// Basic JavaScript BN library - subset useful for RSA encryption. + +// Bits per digit +var dbits; + +// JavaScript engine analysis +var canary = 0xdeadbeefcafe; +var j_lm = ((canary&0xffffff)==0xefcafe); + +// (public) Constructor +function BigInteger(a,b,c) { + if(a != null) + if("number" == typeof a) this.fromNumber(a,b,c); + else if(b == null && "string" != typeof a) this.fromString(a,256); + else this.fromString(a,b); +} + +// return new, unset BigInteger +function nbi() { return new BigInteger(null); } + +// am: Compute w_j += (x*this_i), propagate carries, +// c is initial carry, returns final carry. +// c < 3*dvalue, x < 2*dvalue, this_i < dvalue +// We need to select the fastest one that works in this environment. + +// am1: use a single mult and divide to get the high bits, +// max digit bits should be 26 because +// max internal value = 2*dvalue^2-2*dvalue (< 2^53) +function am1(i,x,w,j,c,n) { + while(--n >= 0) { + var v = x*this[i++]+w[j]+c; + c = Math.floor(v/0x4000000); + w[j++] = v&0x3ffffff; + } + return c; +} +// am2 avoids a big mult-and-extract completely. +// Max digit bits should be <= 30 because we do bitwise ops +// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) +function am2(i,x,w,j,c,n) { + var xl = x&0x7fff, xh = x>>15; + while(--n >= 0) { + var l = this[i]&0x7fff; + var h = this[i++]>>15; + var m = xh*l+h*xl; + l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); + c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); + w[j++] = l&0x3fffffff; + } + return c; +} +// Alternately, set max digit bits to 28 since some +// browsers slow down when dealing with 32-bit numbers. +function am3(i,x,w,j,c,n) { + var xl = x&0x3fff, xh = x>>14; + while(--n >= 0) { + var l = this[i]&0x3fff; + var h = this[i++]>>14; + var m = xh*l+h*xl; + l = xl*l+((m&0x3fff)<<14)+w[j]+c; + c = (l>>28)+(m>>14)+xh*h; + w[j++] = l&0xfffffff; + } + return c; +} +if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { + BigInteger.prototype.am = am2; + dbits = 30; +} +else if(j_lm && (navigator.appName != "Netscape")) { + BigInteger.prototype.am = am1; + dbits = 26; +} +else { // Mozilla/Netscape seems to prefer am3 + BigInteger.prototype.am = am3; + dbits = 28; +} + +BigInteger.prototype.DB = dbits; +BigInteger.prototype.DM = ((1<= 0; --i) r[i] = this[i]; + r.t = this.t; + r.s = this.s; +} + +// (protected) set from integer value x, -DV <= x < DV +function bnpFromInt(x) { + this.t = 1; + this.s = (x<0)?-1:0; + if(x > 0) this[0] = x; + else if(x < -1) this[0] = x+DV; + else this.t = 0; +} + +// return bigint initialized to value +function nbv(i) { var r = nbi(); r.fromInt(i); return r; } + +// (protected) set from string and radix +function bnpFromString(s,b) { + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 256) k = 8; // byte array + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else { this.fromRadix(s,b); return; } + this.t = 0; + this.s = 0; + var i = s.length, mi = false, sh = 0; + while(--i >= 0) { + var x = (k==8)?s[i]&0xff:intAt(s,i); + if(x < 0) { + if(s.charAt(i) == "-") mi = true; + continue; + } + mi = false; + if(sh == 0) + this[this.t++] = x; + else if(sh+k > this.DB) { + this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<>(this.DB-sh)); + } + else + this[this.t-1] |= x<= this.DB) sh -= this.DB; + } + if(k == 8 && (s[0]&0x80) != 0) { + this.s = -1; + if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)< 0 && this[this.t-1] == c) --this.t; +} + +// (public) return string representation in given radix +function bnToString(b) { + if(this.s < 0) return "-"+this.negate().toString(b); + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else return this.toRadix(b); + var km = (1< 0) { + if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } + while(i >= 0) { + if(p < k) { + d = (this[i]&((1<>(p+=this.DB-k); + } + else { + d = (this[i]>>(p-=k))&km; + if(p <= 0) { p += this.DB; --i; } + } + if(d > 0) m = true; + if(m) r += int2char(d); + } + } + return m?r:"0"; +} + +// (public) -this +function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } + +// (public) |this| +function bnAbs() { return (this.s<0)?this.negate():this; } + +// (public) return + if this > a, - if this < a, 0 if equal +function bnCompareTo(a) { + var r = this.s-a.s; + if(r != 0) return r; + var i = this.t; + r = i-a.t; + if(r != 0) return r; + while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; + return 0; +} + +// returns bit length of the integer x +function nbits(x) { + var r = 1, t; + if((t=x>>>16) != 0) { x = t; r += 16; } + if((t=x>>8) != 0) { x = t; r += 8; } + if((t=x>>4) != 0) { x = t; r += 4; } + if((t=x>>2) != 0) { x = t; r += 2; } + if((t=x>>1) != 0) { x = t; r += 1; } + return r; +} + +// (public) return the number of bits in "this" +function bnBitLength() { + if(this.t <= 0) return 0; + return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); +} + +// (protected) r = this << n*DB +function bnpDLShiftTo(n,r) { + var i; + for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; + for(i = n-1; i >= 0; --i) r[i] = 0; + r.t = this.t+n; + r.s = this.s; +} + +// (protected) r = this >> n*DB +function bnpDRShiftTo(n,r) { + for(var i = n; i < this.t; ++i) r[i-n] = this[i]; + r.t = Math.max(this.t-n,0); + r.s = this.s; +} + +// (protected) r = this << n +function bnpLShiftTo(n,r) { + var bs = n%this.DB; + var cbs = this.DB-bs; + var bm = (1<= 0; --i) { + r[i+ds+1] = (this[i]>>cbs)|c; + c = (this[i]&bm)<= 0; --i) r[i] = 0; + r[ds] = c; + r.t = this.t+ds+1; + r.s = this.s; + r.clamp(); +} + +// (protected) r = this >> n +function bnpRShiftTo(n,r) { + r.s = this.s; + var ds = Math.floor(n/this.DB); + if(ds >= this.t) { r.t = 0; return; } + var bs = n%this.DB; + var cbs = this.DB-bs; + var bm = (1<>bs; + for(var i = ds+1; i < this.t; ++i) { + r[i-ds-1] |= (this[i]&bm)<>bs; + } + if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<>= this.DB; + } + if(a.t < this.t) { + c -= a.s; + while(i < this.t) { + c += this[i]; + r[i++] = c&this.DM; + c >>= this.DB; + } + c += this.s; + } + else { + c += this.s; + while(i < a.t) { + c -= a[i]; + r[i++] = c&this.DM; + c >>= this.DB; + } + c -= a.s; + } + r.s = (c<0)?-1:0; + if(c < -1) r[i++] = this.DV+c; + else if(c > 0) r[i++] = c; + r.t = i; + r.clamp(); +} + +// (protected) r = this * a, r != this,a (HAC 14.12) +// "this" should be the larger one if appropriate. +function bnpMultiplyTo(a,r) { + var x = this.abs(), y = a.abs(); + var i = x.t; + r.t = i+y.t; + while(--i >= 0) r[i] = 0; + for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); + r.s = 0; + r.clamp(); + if(this.s != a.s) BigInteger.ZERO.subTo(r,r); +} + +// (protected) r = this^2, r != this (HAC 14.16) +function bnpSquareTo(r) { + var x = this.abs(); + var i = r.t = 2*x.t; + while(--i >= 0) r[i] = 0; + for(i = 0; i < x.t-1; ++i) { + var c = x.am(i,x[i],r,2*i,0,1); + if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { + r[i+x.t] -= x.DV; + r[i+x.t+1] = 1; + } + } + if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); + r.s = 0; + r.clamp(); +} + +// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) +// r != q, this != m. q or r may be null. +function bnpDivRemTo(m,q,r) { + var pm = m.abs(); + if(pm.t <= 0) return; + var pt = this.abs(); + if(pt.t < pm.t) { + if(q != null) q.fromInt(0); + if(r != null) this.copyTo(r); + return; + } + if(r == null) r = nbi(); + var y = nbi(), ts = this.s, ms = m.s; + var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus + if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } + else { pm.copyTo(y); pt.copyTo(r); } + var ys = y.t; + var y0 = y[ys-1]; + if(y0 == 0) return; + var yt = y0*(1<1)?y[ys-2]>>this.F2:0); + var d1 = this.FV/yt, d2 = (1<= 0) { + r[r.t++] = 1; + r.subTo(t,r); + } + BigInteger.ONE.dlShiftTo(ys,t); + t.subTo(y,y); // "negative" y so we can replace sub with am later + while(y.t < ys) y[y.t++] = 0; + while(--j >= 0) { + // Estimate quotient digit + var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); + if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out + y.dlShiftTo(j,t); + r.subTo(t,r); + while(r[i] < --qd) r.subTo(t,r); + } + } + if(q != null) { + r.drShiftTo(ys,q); + if(ts != ms) BigInteger.ZERO.subTo(q,q); + } + r.t = ys; + r.clamp(); + if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder + if(ts < 0) BigInteger.ZERO.subTo(r,r); +} + +// (public) this mod a +function bnMod(a) { + var r = nbi(); + this.abs().divRemTo(a,null,r); + if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); + return r; +} + +// Modular reduction using "classic" algorithm +function Classic(m) { this.m = m; } +function cConvert(x) { + if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); + else return x; +} +function cRevert(x) { return x; } +function cReduce(x) { x.divRemTo(this.m,null,x); } +function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } +function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +Classic.prototype.convert = cConvert; +Classic.prototype.revert = cRevert; +Classic.prototype.reduce = cReduce; +Classic.prototype.mulTo = cMulTo; +Classic.prototype.sqrTo = cSqrTo; + +// (protected) return "-1/this % 2^DB"; useful for Mont. reduction +// justification: +// xy == 1 (mod m) +// xy = 1+km +// xy(2-xy) = (1+km)(1-km) +// x[y(2-xy)] = 1-k^2m^2 +// x[y(2-xy)] == 1 (mod m^2) +// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 +// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. +// JS multiply "overflows" differently from C/C++, so care is needed here. +function bnpInvDigit() { + if(this.t < 1) return 0; + var x = this[0]; + if((x&1) == 0) return 0; + var y = x&3; // y == 1/x mod 2^2 + y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 + y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 + y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 + // last step - calculate inverse mod DV directly; + // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints + y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits + // we really want the negative inverse, and -DV < y < DV + return (y>0)?this.DV-y:-y; +} + +// Montgomery reduction +function Montgomery(m) { + this.m = m; + this.mp = m.invDigit(); + this.mpl = this.mp&0x7fff; + this.mph = this.mp>>15; + this.um = (1<<(m.DB-15))-1; + this.mt2 = 2*m.t; +} + +// xR mod m +function montConvert(x) { + var r = nbi(); + x.abs().dlShiftTo(this.m.t,r); + r.divRemTo(this.m,null,r); + if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); + return r; +} + +// x/R mod m +function montRevert(x) { + var r = nbi(); + x.copyTo(r); + this.reduce(r); + return r; +} + +// x = x/R mod m (HAC 14.32) +function montReduce(x) { + while(x.t <= this.mt2) // pad x so am has enough room later + x[x.t++] = 0; + for(var i = 0; i < this.m.t; ++i) { + // faster way of calculating u0 = x[i]*mp mod DV + var j = x[i]&0x7fff; + var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; + // use am to combine the multiply-shift-add into one call + j = i+this.m.t; + x[j] += this.m.am(0,u0,x,i,0,this.m.t); + // propagate carry + while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } + } + x.clamp(); + x.drShiftTo(this.m.t,x); + if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); +} + +// r = "x^2/R mod m"; x != r +function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +// r = "xy/R mod m"; x,y != r +function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } + +Montgomery.prototype.convert = montConvert; +Montgomery.prototype.revert = montRevert; +Montgomery.prototype.reduce = montReduce; +Montgomery.prototype.mulTo = montMulTo; +Montgomery.prototype.sqrTo = montSqrTo; + +// (protected) true iff this is even +function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } + +// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) +function bnpExp(e,z) { + if(e > 0xffffffff || e < 1) return BigInteger.ONE; + var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; + g.copyTo(r); + while(--i >= 0) { + z.sqrTo(r,r2); + if((e&(1< 0) z.mulTo(r2,g,r); + else { var t = r; r = r2; r2 = t; } + } + return z.revert(r); +} + +// (public) this^e % m, 0 <= e < 2^32 +function bnModPowInt(e,m) { + var z; + if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); + return this.exp(e,z); +} + +// protected +BigInteger.prototype.copyTo = bnpCopyTo; +BigInteger.prototype.fromInt = bnpFromInt; +BigInteger.prototype.fromString = bnpFromString; +BigInteger.prototype.clamp = bnpClamp; +BigInteger.prototype.dlShiftTo = bnpDLShiftTo; +BigInteger.prototype.drShiftTo = bnpDRShiftTo; +BigInteger.prototype.lShiftTo = bnpLShiftTo; +BigInteger.prototype.rShiftTo = bnpRShiftTo; +BigInteger.prototype.subTo = bnpSubTo; +BigInteger.prototype.multiplyTo = bnpMultiplyTo; +BigInteger.prototype.squareTo = bnpSquareTo; +BigInteger.prototype.divRemTo = bnpDivRemTo; +BigInteger.prototype.invDigit = bnpInvDigit; +BigInteger.prototype.isEven = bnpIsEven; +BigInteger.prototype.exp = bnpExp; + +// public +BigInteger.prototype.toString = bnToString; +BigInteger.prototype.negate = bnNegate; +BigInteger.prototype.abs = bnAbs; +BigInteger.prototype.compareTo = bnCompareTo; +BigInteger.prototype.bitLength = bnBitLength; +BigInteger.prototype.mod = bnMod; +BigInteger.prototype.modPowInt = bnModPowInt; + +// "constants" +BigInteger.ZERO = nbv(0); +BigInteger.ONE = nbv(1); diff --git a/javascript/jsbn2.js b/javascript/jsbn2.js new file mode 100644 index 0000000..cad0d7b --- /dev/null +++ b/javascript/jsbn2.js @@ -0,0 +1,645 @@ +// Copyright (c) 2005 Tom Wu +// All Rights Reserved. +// See "LICENSE" for details. + +// Extended JavaScript BN functions, required for RSA private ops. + +// (public) +function bnClone() { var r = nbi(); this.copyTo(r); return r; } + +// (public) return value as integer +function bnIntValue() { + if(this.s < 0) { + if(this.t == 1) return this[0]-this.DV; + else if(this.t == 0) return -1; + } + else if(this.t == 1) return this[0]; + else if(this.t == 0) return 0; + // assumes 16 < DB < 32 + return ((this[1]&((1<<(32-this.DB))-1))<>24; } + +// (public) return value as short (assumes DB>=16) +function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } + +// (protected) return x s.t. r^x < DV +function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } + +// (public) 0 if this == 0, 1 if this > 0 +function bnSigNum() { + if(this.s < 0) return -1; + else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; + else return 1; +} + +// (protected) convert to radix string +function bnpToRadix(b) { + if(b == null) b = 10; + if(this.signum() == 0 || b < 2 || b > 36) return "0"; + var cs = this.chunkSize(b); + var a = Math.pow(b,cs); + var d = nbv(a), y = nbi(), z = nbi(), r = ""; + this.divRemTo(d,y,z); + while(y.signum() > 0) { + r = (a+z.intValue()).toString(b).substr(1) + r; + y.divRemTo(d,y,z); + } + return z.intValue().toString(b) + r; +} + +// (protected) convert from radix string +function bnpFromRadix(s,b) { + this.fromInt(0); + if(b == null) b = 10; + var cs = this.chunkSize(b); + var d = Math.pow(b,cs), mi = false, j = 0, w = 0; + for(var i = 0; i < s.length; ++i) { + var x = intAt(s,i); + if(x < 0) { + if(s.charAt(i) == "-" && this.signum() == 0) mi = true; + continue; + } + w = b*w+x; + if(++j >= cs) { + this.dMultiply(d); + this.dAddOffset(w,0); + j = 0; + w = 0; + } + } + if(j > 0) { + this.dMultiply(Math.pow(b,j)); + this.dAddOffset(w,0); + } + if(mi) BigInteger.ZERO.subTo(this,this); +} + +// (protected) alternate constructor +function bnpFromNumber(a,b,c) { + if("number" == typeof b) { + // new BigInteger(int,int,RNG) + if(a < 2) this.fromInt(1); + else { + this.fromNumber(a,c); + if(!this.testBit(a-1)) // force MSB set + this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); + if(this.isEven()) this.dAddOffset(1,0); // force odd + while(!this.isProbablePrime(b)) { + this.dAddOffset(2,0); + if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); + } + } + } + else { + // new BigInteger(int,RNG) + var x = new Array(), t = a&7; + x.length = (a>>3)+1; + b.nextBytes(x); + if(t > 0) x[0] &= ((1< 0) { + if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) + r[k++] = d|(this.s<<(this.DB-p)); + while(i >= 0) { + if(p < 8) { + d = (this[i]&((1<>(p+=this.DB-8); + } + else { + d = (this[i]>>(p-=8))&0xff; + if(p <= 0) { p += this.DB; --i; } + } + if((d&0x80) != 0) d |= -256; + if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; + if(k > 0 || d != this.s) r[k++] = d; + } + } + return r; +} + +function bnEquals(a) { return(this.compareTo(a)==0); } +function bnMin(a) { return(this.compareTo(a)<0)?this:a; } +function bnMax(a) { return(this.compareTo(a)>0)?this:a; } + +// (protected) r = this op a (bitwise) +function bnpBitwiseTo(a,op,r) { + var i, f, m = Math.min(a.t,this.t); + for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); + if(a.t < this.t) { + f = a.s&this.DM; + for(i = m; i < this.t; ++i) r[i] = op(this[i],f); + r.t = this.t; + } + else { + f = this.s&this.DM; + for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); + r.t = a.t; + } + r.s = op(this.s,a.s); + r.clamp(); +} + +// (public) this & a +function op_and(x,y) { return x&y; } +function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } + +// (public) this | a +function op_or(x,y) { return x|y; } +function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } + +// (public) this ^ a +function op_xor(x,y) { return x^y; } +function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } + +// (public) this & ~a +function op_andnot(x,y) { return x&~y; } +function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } + +// (public) ~this +function bnNot() { + var r = nbi(); + for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; + r.t = this.t; + r.s = ~this.s; + return r; +} + +// (public) this << n +function bnShiftLeft(n) { + var r = nbi(); + if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); + return r; +} + +// (public) this >> n +function bnShiftRight(n) { + var r = nbi(); + if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); + return r; +} + +// return index of lowest 1-bit in x, x < 2^31 +function lbit(x) { + if(x == 0) return -1; + var r = 0; + if((x&0xffff) == 0) { x >>= 16; r += 16; } + if((x&0xff) == 0) { x >>= 8; r += 8; } + if((x&0xf) == 0) { x >>= 4; r += 4; } + if((x&3) == 0) { x >>= 2; r += 2; } + if((x&1) == 0) ++r; + return r; +} + +// (public) returns index of lowest 1-bit (or -1 if none) +function bnGetLowestSetBit() { + for(var i = 0; i < this.t; ++i) + if(this[i] != 0) return i*this.DB+lbit(this[i]); + if(this.s < 0) return this.t*this.DB; + return -1; +} + +// return number of 1 bits in x +function cbit(x) { + var r = 0; + while(x != 0) { x &= x-1; ++r; } + return r; +} + +// (public) return number of set bits +function bnBitCount() { + var r = 0, x = this.s&this.DM; + for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); + return r; +} + +// (public) true iff nth bit is set +function bnTestBit(n) { + var j = Math.floor(n/this.DB); + if(j >= this.t) return(this.s!=0); + return((this[j]&(1<<(n%this.DB)))!=0); +} + +// (protected) this op (1<>= this.DB; + } + if(a.t < this.t) { + c += a.s; + while(i < this.t) { + c += this[i]; + r[i++] = c&this.DM; + c >>= this.DB; + } + c += this.s; + } + else { + c += this.s; + while(i < a.t) { + c += a[i]; + r[i++] = c&this.DM; + c >>= this.DB; + } + c += a.s; + } + r.s = (c<0)?-1:0; + if(c > 0) r[i++] = c; + else if(c < -1) r[i++] = this.DV+c; + r.t = i; + r.clamp(); +} + +// (public) this + a +function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } + +// (public) this - a +function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } + +// (public) this * a +function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } + +// (public) this / a +function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } + +// (public) this % a +function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } + +// (public) [this/a,this%a] +function bnDivideAndRemainder(a) { + var q = nbi(), r = nbi(); + this.divRemTo(a,q,r); + return new Array(q,r); +} + +// (protected) this *= n, this >= 0, 1 < n < DV +function bnpDMultiply(n) { + this[this.t] = this.am(0,n-1,this,0,0,this.t); + ++this.t; + this.clamp(); +} + +// (protected) this += n << w words, this >= 0 +function bnpDAddOffset(n,w) { + while(this.t <= w) this[this.t++] = 0; + this[w] += n; + while(this[w] >= this.DV) { + this[w] -= this.DV; + if(++w >= this.t) this[this.t++] = 0; + ++this[w]; + } +} + +// A "null" reducer +function NullExp() {} +function nNop(x) { return x; } +function nMulTo(x,y,r) { x.multiplyTo(y,r); } +function nSqrTo(x,r) { x.squareTo(r); } + +NullExp.prototype.convert = nNop; +NullExp.prototype.revert = nNop; +NullExp.prototype.mulTo = nMulTo; +NullExp.prototype.sqrTo = nSqrTo; + +// (public) this^e +function bnPow(e) { return this.exp(e,new NullExp()); } + +// (protected) r = lower n words of "this * a", a.t <= n +// "this" should be the larger one if appropriate. +function bnpMultiplyLowerTo(a,n,r) { + var i = Math.min(this.t+a.t,n); + r.s = 0; // assumes a,this >= 0 + r.t = i; + while(i > 0) r[--i] = 0; + var j; + for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); + for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); + r.clamp(); +} + +// (protected) r = "this * a" without lower n words, n > 0 +// "this" should be the larger one if appropriate. +function bnpMultiplyUpperTo(a,n,r) { + --n; + var i = r.t = this.t+a.t-n; + r.s = 0; // assumes a,this >= 0 + while(--i >= 0) r[i] = 0; + for(i = Math.max(n-this.t,0); i < a.t; ++i) + r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); + r.clamp(); + r.drShiftTo(1,r); +} + +// Barrett modular reduction +function Barrett(m) { + // setup Barrett + this.r2 = nbi(); + this.q3 = nbi(); + BigInteger.ONE.dlShiftTo(2*m.t,this.r2); + this.mu = this.r2.divide(m); + this.m = m; +} + +function barrettConvert(x) { + if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); + else if(x.compareTo(this.m) < 0) return x; + else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } +} + +function barrettRevert(x) { return x; } + +// x = x mod m (HAC 14.42) +function barrettReduce(x) { + x.drShiftTo(this.m.t-1,this.r2); + if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } + this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); + this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); + while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); + x.subTo(this.r2,x); + while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); +} + +// r = x^2 mod m; x != r +function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +// r = x*y mod m; x,y != r +function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } + +Barrett.prototype.convert = barrettConvert; +Barrett.prototype.revert = barrettRevert; +Barrett.prototype.reduce = barrettReduce; +Barrett.prototype.mulTo = barrettMulTo; +Barrett.prototype.sqrTo = barrettSqrTo; + +// (public) this^e % m (HAC 14.85) +function bnModPow(e,m) { + var i = e.bitLength(), k, r = nbv(1), z; + if(i <= 0) return r; + else if(i < 18) k = 1; + else if(i < 48) k = 3; + else if(i < 144) k = 4; + else if(i < 768) k = 5; + else k = 6; + if(i < 8) + z = new Classic(m); + else if(m.isEven()) + z = new Barrett(m); + else + z = new Montgomery(m); + + // precomputation + var g = new Array(), n = 3, k1 = k-1, km = (1< 1) { + var g2 = nbi(); + z.sqrTo(g[1],g2); + while(n <= km) { + g[n] = nbi(); + z.mulTo(g2,g[n-2],g[n]); + n += 2; + } + } + + var j = e.t-1, w, is1 = true, r2 = nbi(), t; + i = nbits(e[j])-1; + while(j >= 0) { + if(i >= k1) w = (e[j]>>(i-k1))&km; + else { + w = (e[j]&((1<<(i+1))-1))<<(k1-i); + if(j > 0) w |= e[j-1]>>(this.DB+i-k1); + } + + n = k; + while((w&1) == 0) { w >>= 1; --n; } + if((i -= n) < 0) { i += this.DB; --j; } + if(is1) { // ret == 1, don't bother squaring or multiplying it + g[w].copyTo(r); + is1 = false; + } + else { + while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } + if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } + z.mulTo(r2,g[w],r); + } + + while(j >= 0 && (e[j]&(1< 0) { + x.rShiftTo(g,x); + y.rShiftTo(g,y); + } + while(x.signum() > 0) { + if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); + if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); + if(x.compareTo(y) >= 0) { + x.subTo(y,x); + x.rShiftTo(1,x); + } + else { + y.subTo(x,y); + y.rShiftTo(1,y); + } + } + if(g > 0) y.lShiftTo(g,y); + return y; +} + +// (protected) this % n, n < 2^26 +function bnpModInt(n) { + if(n <= 0) return 0; + var d = this.DV%n, r = (this.s<0)?n-1:0; + if(this.t > 0) + if(d == 0) r = this[0]%n; + else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; + return r; +} + +// (public) 1/this % m (HAC 14.61) +function bnModInverse(m) { + var ac = m.isEven(); + if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; + var u = m.clone(), v = this.clone(); + var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); + while(u.signum() != 0) { + while(u.isEven()) { + u.rShiftTo(1,u); + if(ac) { + if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } + a.rShiftTo(1,a); + } + else if(!b.isEven()) b.subTo(m,b); + b.rShiftTo(1,b); + } + while(v.isEven()) { + v.rShiftTo(1,v); + if(ac) { + if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } + c.rShiftTo(1,c); + } + else if(!d.isEven()) d.subTo(m,d); + d.rShiftTo(1,d); + } + if(u.compareTo(v) >= 0) { + u.subTo(v,u); + if(ac) a.subTo(c,a); + b.subTo(d,b); + } + else { + v.subTo(u,v); + if(ac) c.subTo(a,c); + d.subTo(b,d); + } + } + if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; + if(d.compareTo(m) >= 0) return d.subtract(m); + if(d.signum() < 0) d.addTo(m,d); else return d; + if(d.signum() < 0) return d.add(m); else return d; +} + +var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; +var lplim = (1<<26)/lowprimes[lowprimes.length-1]; + +// (public) test primality with certainty >= 1-.5^t +function bnIsProbablePrime(t) { + var i, x = this.abs(); + if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { + for(i = 0; i < lowprimes.length; ++i) + if(x[0] == lowprimes[i]) return true; + return false; + } + if(x.isEven()) return false; + i = 1; + while(i < lowprimes.length) { + var m = lowprimes[i], j = i+1; + while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; + m = x.modInt(m); + while(i < j) if(m%lowprimes[i++] == 0) return false; + } + return x.millerRabin(t); +} + +// (protected) true if probably prime (HAC 4.24, Miller-Rabin) +function bnpMillerRabin(t) { + var n1 = this.subtract(BigInteger.ONE); + var k = n1.getLowestSetBit(); + if(k <= 0) return false; + var r = n1.shiftRight(k); + t = (t+1)>>1; + if(t > lowprimes.length) t = lowprimes.length; + var a = nbi(); + for(var i = 0; i < t; ++i) { + a.fromInt(lowprimes[i]); + var y = a.modPow(r,this); + if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { + var j = 1; + while(j++ < k && y.compareTo(n1) != 0) { + y = y.modPowInt(2,this); + if(y.compareTo(BigInteger.ONE) == 0) return false; + } + if(y.compareTo(n1) != 0) return false; + } + } + return true; +} + +// protected +BigInteger.prototype.chunkSize = bnpChunkSize; +BigInteger.prototype.toRadix = bnpToRadix; +BigInteger.prototype.fromRadix = bnpFromRadix; +BigInteger.prototype.fromNumber = bnpFromNumber; +BigInteger.prototype.bitwiseTo = bnpBitwiseTo; +BigInteger.prototype.changeBit = bnpChangeBit; +BigInteger.prototype.addTo = bnpAddTo; +BigInteger.prototype.dMultiply = bnpDMultiply; +BigInteger.prototype.dAddOffset = bnpDAddOffset; +BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; +BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; +BigInteger.prototype.modInt = bnpModInt; +BigInteger.prototype.millerRabin = bnpMillerRabin; + +// public +BigInteger.prototype.clone = bnClone; +BigInteger.prototype.intValue = bnIntValue; +BigInteger.prototype.byteValue = bnByteValue; +BigInteger.prototype.shortValue = bnShortValue; +BigInteger.prototype.signum = bnSigNum; +BigInteger.prototype.toByteArray = bnToByteArray; +BigInteger.prototype.equals = bnEquals; +BigInteger.prototype.min = bnMin; +BigInteger.prototype.max = bnMax; +BigInteger.prototype.and = bnAnd; +BigInteger.prototype.or = bnOr; +BigInteger.prototype.xor = bnXor; +BigInteger.prototype.andNot = bnAndNot; +BigInteger.prototype.not = bnNot; +BigInteger.prototype.shiftLeft = bnShiftLeft; +BigInteger.prototype.shiftRight = bnShiftRight; +BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; +BigInteger.prototype.bitCount = bnBitCount; +BigInteger.prototype.testBit = bnTestBit; +BigInteger.prototype.setBit = bnSetBit; +BigInteger.prototype.clearBit = bnClearBit; +BigInteger.prototype.flipBit = bnFlipBit; +BigInteger.prototype.add = bnAdd; +BigInteger.prototype.subtract = bnSubtract; +BigInteger.prototype.multiply = bnMultiply; +BigInteger.prototype.divide = bnDivide; +BigInteger.prototype.remainder = bnRemainder; +BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; +BigInteger.prototype.modPow = bnModPow; +BigInteger.prototype.modInverse = bnModInverse; +BigInteger.prototype.pow = bnPow; +BigInteger.prototype.gcd = bnGCD; +BigInteger.prototype.isProbablePrime = bnIsProbablePrime; + +// BigInteger interfaces not implemented in jsbn: + +// BigInteger(int signum, byte[] magnitude) +// double doubleValue() +// float floatValue() +// int hashCode() +// long longValue() +// static BigInteger valueOf(long val) diff --git a/javascript/prng4.js b/javascript/prng4.js new file mode 100644 index 0000000..3034f3f --- /dev/null +++ b/javascript/prng4.js @@ -0,0 +1,45 @@ +// prng4.js - uses Arcfour as a PRNG + +function Arcfour() { + this.i = 0; + this.j = 0; + this.S = new Array(); +} + +// Initialize arcfour context from key, an array of ints, each from [0..255] +function ARC4init(key) { + var i, j, t; + for(i = 0; i < 256; ++i) + this.S[i] = i; + j = 0; + for(i = 0; i < 256; ++i) { + j = (j + this.S[i] + key[i % key.length]) & 255; + t = this.S[i]; + this.S[i] = this.S[j]; + this.S[j] = t; + } + this.i = 0; + this.j = 0; +} + +function ARC4next() { + var t; + this.i = (this.i + 1) & 255; + this.j = (this.j + this.S[this.i]) & 255; + t = this.S[this.i]; + this.S[this.i] = this.S[this.j]; + this.S[this.j] = t; + return this.S[(t + this.S[this.i]) & 255]; +} + +Arcfour.prototype.init = ARC4init; +Arcfour.prototype.next = ARC4next; + +// Plug in your RNG constructor here +function prng_newstate() { + return new Arcfour(); +} + +// Pool size must be a multiple of 4 and greater than 32. +// An array of bytes the size of the pool will be passed to init() +var rng_psize = 256; diff --git a/javascript/rng.js b/javascript/rng.js new file mode 100644 index 0000000..03afc3a --- /dev/null +++ b/javascript/rng.js @@ -0,0 +1,68 @@ +// Random number generator - requires a PRNG backend, e.g. prng4.js + +// For best results, put code like +// +// in your main HTML document. + +var rng_state; +var rng_pool; +var rng_pptr; + +// Mix in a 32-bit integer into the pool +function rng_seed_int(x) { + rng_pool[rng_pptr++] ^= x & 255; + rng_pool[rng_pptr++] ^= (x >> 8) & 255; + rng_pool[rng_pptr++] ^= (x >> 16) & 255; + rng_pool[rng_pptr++] ^= (x >> 24) & 255; + if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; +} + +// Mix in the current time (w/milliseconds) into the pool +function rng_seed_time() { + rng_seed_int(new Date().getTime()); +} + +// Initialize the pool with junk if needed. +if(rng_pool == null) { + rng_pool = new Array(); + rng_pptr = 0; + var t; + if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) { + // Extract entropy (256 bits) from NS4 RNG if available + var z = window.crypto.random(32); + for(t = 0; t < z.length; ++t) + rng_pool[rng_pptr++] = z.charCodeAt(t) & 255; + } + while(rng_pptr < rng_psize) { // extract some randomness from Math.random() + t = Math.floor(65536 * Math.random()); + rng_pool[rng_pptr++] = t >>> 8; + rng_pool[rng_pptr++] = t & 255; + } + rng_pptr = 0; + rng_seed_time(); + //rng_seed_int(window.screenX); + //rng_seed_int(window.screenY); +} + +function rng_get_byte() { + if(rng_state == null) { + rng_seed_time(); + rng_state = prng_newstate(); + rng_state.init(rng_pool); + for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) + rng_pool[rng_pptr] = 0; + rng_pptr = 0; + //rng_pool = null; + } + // TODO: allow reseeding after first request + return rng_state.next(); +} + +function rng_get_bytes(ba) { + var i; + for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); +} + +function SecureRandom() {} + +SecureRandom.prototype.nextBytes = rng_get_bytes; diff --git a/javascript/srp.js b/javascript/srp.js index 9c84aa9..4fcc1c9 100644 --- a/javascript/srp.js +++ b/javascript/srp.js @@ -17,12 +17,14 @@ var srp_K = null; var srp_M = null; var srp_M2 = null; var xhr; +var rng; + var srp_url = window.location.protocol+"//"+window.location.host+"/srp/"; function srp_register() { - srp_N = str2bigInt(srp_Nstr, 16, 0); - srp_g = str2bigInt("2", 10, 0); - srp_k = str2bigInt("c46d46600d87fef149bd79b81119842f3c20241fda67d06ef412d8f6d9479c58", 16, 0); + srp_N = new BigInteger(srp_Nstr, 16); + srp_g = new BigInteger("2"); + srp_k = new BigInteger("c46d46600d87fef149bd79b81119842f3c20241fda67d06ef412d8f6d9479c58", 16); srp_I = document.getElementById("srp_username").value; srp_register_salt(srp_I); return false; @@ -64,8 +66,8 @@ function srp_register_receive_salt() { s = innerxml(xhr.responseXML.getElementsByTagName("salt")[0]); srp_x = srp_calculate_x(s); - v = powMod(srp_g, srp_x, srp_N); - srp_register_send_verifier(bigInt2str(v, 16)); + v = srp_g.modPow(srp_x, srp_N); + srp_register_send_verifier(v.toString(16)); } else if(xhr.responseXML.getElementsByTagName("error").length > 0) { @@ -115,15 +117,16 @@ function srp_register_user() }; function srp_identify() { - srp_N = str2bigInt(srp_Nstr, 16, 0); - srp_g = str2bigInt("2", 10, 0); - srp_k = str2bigInt("c46d46600d87fef149bd79b81119842f3c20241fda67d06ef412d8f6d9479c58", 16, 0); - srp_a = randBigInt(32, 1); + srp_N = new BigInteger(srp_Nstr, 16); + srp_g = new BigInteger("2"); + srp_k = new BigInteger("c46d46600d87fef149bd79b81119842f3c20241fda67d06ef412d8f6d9479c58", 16); + rng = new SecureRandom(); + srp_a = new BigInteger(32, rng); // A = g**a % N - srp_A = powMod(srp_g,srp_a,srp_N); + srp_A = srp_g.modPow(srp_a, srp_N); srp_I = document.getElementById("srp_username").value; - srp_Astr = bigInt2str(srp_A, 16) + srp_Astr = srp_A.toString(16); // C -> S: A | I srp_send_identity(srp_Astr, srp_I); return false; @@ -178,29 +181,28 @@ function srp_receive_salts() function srp_calculate_x(s) { var p = document.getElementById("srp_password").value; - return str2bigInt(SHA256(s + SHA256(srp_I + ":" + p)), 16, 0); + return new BigInteger(SHA256(s + SHA256(srp_I + ":" + p)), 16); }; function srp_calculations(s, B) -{ - +{ //S -> C: s | B - srp_B = str2bigInt(B, 16, 0); + srp_B = new BigInteger(B, 16); srp_Bstr = B; // u = H(A,B) - srp_u = str2bigInt(SHA256(srp_Astr + srp_Bstr), 16, 0); + srp_u = new BigInteger(SHA256(srp_Astr + srp_Bstr), 16); // x = H(s, H(I:p)) srp_x = srp_calculate_x(s); //S = (B - kg^x) ^ (a + ux) - var kgx = mult(srp_k, powMod(srp_g, srp_x, srp_N)); - var aux = add(srp_a, mult(srp_u, srp_x)); - srp_S = powMod(sub(srp_B, kgx), aux, srp_N); + var kgx = srp_k.multiply(srp_g.modPow(srp_x, srp_N)); + var aux = srp_a.add(srp_u.multiply(srp_x)); + srp_S = srp_B.subtract(kgx).modPow(aux, srp_N); // M = H(H(N) xor H(g), H(I), s, A, B, K) - var Mstr = bigInt2str(srp_A, 16) + bigInt2str(srp_B,16) + bigInt2str(srp_S,16); + var Mstr = srp_A.toString(16) + srp_B.toString(16) + srp_S.toString(16); srp_M = SHA256(Mstr); srp_send_hash(srp_M); //M2 = H(A, M, K) - srp_M2 = SHA256(bigInt2str(srp_A, 16)+srp_M+bigInt2str(srp_S, 16)); + srp_M2 = SHA256(srp_A.toString(16) + srp_M + srp_S.toString(16)); }; -- cgit v1.2.3