diff options
author | Azul <azul@leap.se> | 2012-07-20 10:56:36 +0200 |
---|---|---|
committer | Azul <azul@leap.se> | 2012-07-20 10:56:36 +0200 |
commit | 50de80c5e817476ac95a096c718a66f5555fcd05 (patch) | |
tree | e05a25868a999557e2788a91f41da3a5a8a1a0b0 /javascript/jsbn.js | |
parent | 07fe2d8976db0ec267bd57ded90778f0d7695478 (diff) |
INCOMPATIBLE: major restructuring of the repository
* removed Django code - we're keeping the tests - so I hope the two can still be used together
* removed js packer - everyone has their own packaging strategy these days
* cleaned up the repository - we only have js so javascript directory does not make much sense
Diffstat (limited to 'javascript/jsbn.js')
-rw-r--r-- | javascript/jsbn.js | 586 |
1 files changed, 0 insertions, 586 deletions
diff --git a/javascript/jsbn.js b/javascript/jsbn.js deleted file mode 100644 index f557d12..0000000 --- a/javascript/jsbn.js +++ /dev/null @@ -1,586 +0,0 @@ -/* - * Copyright (c) 2003-2005 Tom Wu - * All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining - * a copy of this software and associated documentation files (the - * "Software"), to deal in the Software without restriction, including - * without limitation the rights to use, copy, modify, merge, publish, - * distribute, sublicense, and/or sell copies of the Software, and to - * permit persons to whom the Software is furnished to do so, subject to - * the following conditions: - * - * The above copyright notice and this permission notice shall be - * included in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, - * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY - * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. - * - * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, - * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER - * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF - * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT - * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - * - * In addition, the following condition applies: - * - * All redistributions must retain an intact copy of this copyright notice - * and disclaimer. - */ - -// Basic JavaScript BN library - subset useful for RSA encryption. - -// Bits per digit -var dbits; - -// JavaScript engine analysis -var canary = 0xdeadbeefcafe; -var j_lm = ((canary&0xffffff)==0xefcafe); - -// (public) Constructor -function BigInteger(a,b,c) { - if(a != null) - if("number" == typeof a) this.fromNumber(a,b,c); - else if(b == null && "string" != typeof a) this.fromString(a,256); - else this.fromString(a,b); -} - -// return new, unset BigInteger -function nbi() { return new BigInteger(null); } - -// am: Compute w_j += (x*this_i), propagate carries, -// c is initial carry, returns final carry. -// c < 3*dvalue, x < 2*dvalue, this_i < dvalue -// We need to select the fastest one that works in this environment. - -// am1: use a single mult and divide to get the high bits, -// max digit bits should be 26 because -// max internal value = 2*dvalue^2-2*dvalue (< 2^53) -function am1(i,x,w,j,c,n) { - while(--n >= 0) { - var v = x*this[i++]+w[j]+c; - c = Math.floor(v/0x4000000); - w[j++] = v&0x3ffffff; - } - return c; -} -// am2 avoids a big mult-and-extract completely. -// Max digit bits should be <= 30 because we do bitwise ops -// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) -function am2(i,x,w,j,c,n) { - var xl = x&0x7fff, xh = x>>15; - while(--n >= 0) { - var l = this[i]&0x7fff; - var h = this[i++]>>15; - var m = xh*l+h*xl; - l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); - c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); - w[j++] = l&0x3fffffff; - } - return c; -} -// Alternately, set max digit bits to 28 since some -// browsers slow down when dealing with 32-bit numbers. -function am3(i,x,w,j,c,n) { - var xl = x&0x3fff, xh = x>>14; - while(--n >= 0) { - var l = this[i]&0x3fff; - var h = this[i++]>>14; - var m = xh*l+h*xl; - l = xl*l+((m&0x3fff)<<14)+w[j]+c; - c = (l>>28)+(m>>14)+xh*h; - w[j++] = l&0xfffffff; - } - return c; -} -if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { - BigInteger.prototype.am = am2; - dbits = 30; -} -else if(j_lm && (navigator.appName != "Netscape")) { - BigInteger.prototype.am = am1; - dbits = 26; -} -else { // Mozilla/Netscape seems to prefer am3 - BigInteger.prototype.am = am3; - dbits = 28; -} - -BigInteger.prototype.DB = dbits; -BigInteger.prototype.DM = ((1<<dbits)-1); -BigInteger.prototype.DV = (1<<dbits); - -var BI_FP = 52; -BigInteger.prototype.FV = Math.pow(2,BI_FP); -BigInteger.prototype.F1 = BI_FP-dbits; -BigInteger.prototype.F2 = 2*dbits-BI_FP; - -// Digit conversions -var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; -var BI_RC = new Array(); -var rr,vv; -rr = "0".charCodeAt(0); -for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; -rr = "a".charCodeAt(0); -for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; -rr = "A".charCodeAt(0); -for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; - -function int2char(n) { return BI_RM.charAt(n); } -function intAt(s,i) { - var c = BI_RC[s.charCodeAt(i)]; - return (c==null)?-1:c; -} - -// (protected) copy this to r -function bnpCopyTo(r) { - for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; - r.t = this.t; - r.s = this.s; -} - -// (protected) set from integer value x, -DV <= x < DV -function bnpFromInt(x) { - this.t = 1; - this.s = (x<0)?-1:0; - if(x > 0) this[0] = x; - else if(x < -1) this[0] = x+DV; - else this.t = 0; -} - -// return bigint initialized to value -function nbv(i) { var r = nbi(); r.fromInt(i); return r; } - -// (protected) set from string and radix -function bnpFromString(s,b) { - var k; - if(b == 16) k = 4; - else if(b == 8) k = 3; - else if(b == 256) k = 8; // byte array - else if(b == 2) k = 1; - else if(b == 32) k = 5; - else if(b == 4) k = 2; - else { this.fromRadix(s,b); return; } - this.t = 0; - this.s = 0; - var i = s.length, mi = false, sh = 0; - while(--i >= 0) { - var x = (k==8)?s[i]&0xff:intAt(s,i); - if(x < 0) { - if(s.charAt(i) == "-") mi = true; - continue; - } - mi = false; - if(sh == 0) - this[this.t++] = x; - else if(sh+k > this.DB) { - this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; - this[this.t++] = (x>>(this.DB-sh)); - } - else - this[this.t-1] |= x<<sh; - sh += k; - if(sh >= this.DB) sh -= this.DB; - } - if(k == 8 && (s[0]&0x80) != 0) { - this.s = -1; - if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; - } - this.clamp(); - if(mi) BigInteger.ZERO.subTo(this,this); -} - -// (protected) clamp off excess high words -function bnpClamp() { - var c = this.s&this.DM; - while(this.t > 0 && this[this.t-1] == c) --this.t; -} - -// (public) return string representation in given radix -function bnToString(b) { - if(this.s < 0) return "-"+this.negate().toString(b); - var k; - if(b == 16) k = 4; - else if(b == 8) k = 3; - else if(b == 2) k = 1; - else if(b == 32) k = 5; - else if(b == 4) k = 2; - else return this.toRadix(b); - var km = (1<<k)-1, d, m = false, r = "", i = this.t; - var p = this.DB-(i*this.DB)%k; - if(i-- > 0) { - if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } - while(i >= 0) { - if(p < k) { - d = (this[i]&((1<<p)-1))<<(k-p); - d |= this[--i]>>(p+=this.DB-k); - } - else { - d = (this[i]>>(p-=k))&km; - if(p <= 0) { p += this.DB; --i; } - } - if(d > 0) m = true; - if(m) r += int2char(d); - } - } - return m?r:"0"; -} - -// (public) -this -function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } - -// (public) |this| -function bnAbs() { return (this.s<0)?this.negate():this; } - -// (public) return + if this > a, - if this < a, 0 if equal -function bnCompareTo(a) { - var r = this.s-a.s; - if(r != 0) return r; - var i = this.t; - r = i-a.t; - if(r != 0) return r; - while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; - return 0; -} - -// returns bit length of the integer x -function nbits(x) { - var r = 1, t; - if((t=x>>>16) != 0) { x = t; r += 16; } - if((t=x>>8) != 0) { x = t; r += 8; } - if((t=x>>4) != 0) { x = t; r += 4; } - if((t=x>>2) != 0) { x = t; r += 2; } - if((t=x>>1) != 0) { x = t; r += 1; } - return r; -} - -// (public) return the number of bits in "this" -function bnBitLength() { - if(this.t <= 0) return 0; - return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); -} - -// (protected) r = this << n*DB -function bnpDLShiftTo(n,r) { - var i; - for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; - for(i = n-1; i >= 0; --i) r[i] = 0; - r.t = this.t+n; - r.s = this.s; -} - -// (protected) r = this >> n*DB -function bnpDRShiftTo(n,r) { - for(var i = n; i < this.t; ++i) r[i-n] = this[i]; - r.t = Math.max(this.t-n,0); - r.s = this.s; -} - -// (protected) r = this << n -function bnpLShiftTo(n,r) { - var bs = n%this.DB; - var cbs = this.DB-bs; - var bm = (1<<cbs)-1; - var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; - for(i = this.t-1; i >= 0; --i) { - r[i+ds+1] = (this[i]>>cbs)|c; - c = (this[i]&bm)<<bs; - } - for(i = ds-1; i >= 0; --i) r[i] = 0; - r[ds] = c; - r.t = this.t+ds+1; - r.s = this.s; - r.clamp(); -} - -// (protected) r = this >> n -function bnpRShiftTo(n,r) { - r.s = this.s; - var ds = Math.floor(n/this.DB); - if(ds >= this.t) { r.t = 0; return; } - var bs = n%this.DB; - var cbs = this.DB-bs; - var bm = (1<<bs)-1; - r[0] = this[ds]>>bs; - for(var i = ds+1; i < this.t; ++i) { - r[i-ds-1] |= (this[i]&bm)<<cbs; - r[i-ds] = this[i]>>bs; - } - if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; - r.t = this.t-ds; - r.clamp(); -} - -// (protected) r = this - a -function bnpSubTo(a,r) { - var i = 0, c = 0, m = Math.min(a.t,this.t); - while(i < m) { - c += this[i]-a[i]; - r[i++] = c&this.DM; - c >>= this.DB; - } - if(a.t < this.t) { - c -= a.s; - while(i < this.t) { - c += this[i]; - r[i++] = c&this.DM; - c >>= this.DB; - } - c += this.s; - } - else { - c += this.s; - while(i < a.t) { - c -= a[i]; - r[i++] = c&this.DM; - c >>= this.DB; - } - c -= a.s; - } - r.s = (c<0)?-1:0; - if(c < -1) r[i++] = this.DV+c; - else if(c > 0) r[i++] = c; - r.t = i; - r.clamp(); -} - -// (protected) r = this * a, r != this,a (HAC 14.12) -// "this" should be the larger one if appropriate. -function bnpMultiplyTo(a,r) { - var x = this.abs(), y = a.abs(); - var i = x.t; - r.t = i+y.t; - while(--i >= 0) r[i] = 0; - for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); - r.s = 0; - r.clamp(); - if(this.s != a.s) BigInteger.ZERO.subTo(r,r); -} - -// (protected) r = this^2, r != this (HAC 14.16) -function bnpSquareTo(r) { - var x = this.abs(); - var i = r.t = 2*x.t; - while(--i >= 0) r[i] = 0; - for(i = 0; i < x.t-1; ++i) { - var c = x.am(i,x[i],r,2*i,0,1); - if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { - r[i+x.t] -= x.DV; - r[i+x.t+1] = 1; - } - } - if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); - r.s = 0; - r.clamp(); -} - -// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) -// r != q, this != m. q or r may be null. -function bnpDivRemTo(m,q,r) { - var pm = m.abs(); - if(pm.t <= 0) return; - var pt = this.abs(); - if(pt.t < pm.t) { - if(q != null) q.fromInt(0); - if(r != null) this.copyTo(r); - return; - } - if(r == null) r = nbi(); - var y = nbi(), ts = this.s, ms = m.s; - var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus - if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } - else { pm.copyTo(y); pt.copyTo(r); } - var ys = y.t; - var y0 = y[ys-1]; - if(y0 == 0) return; - var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); - var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; - var i = r.t, j = i-ys, t = (q==null)?nbi():q; - y.dlShiftTo(j,t); - if(r.compareTo(t) >= 0) { - r[r.t++] = 1; - r.subTo(t,r); - } - BigInteger.ONE.dlShiftTo(ys,t); - t.subTo(y,y); // "negative" y so we can replace sub with am later - while(y.t < ys) y[y.t++] = 0; - while(--j >= 0) { - // Estimate quotient digit - var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); - if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out - y.dlShiftTo(j,t); - r.subTo(t,r); - while(r[i] < --qd) r.subTo(t,r); - } - } - if(q != null) { - r.drShiftTo(ys,q); - if(ts != ms) BigInteger.ZERO.subTo(q,q); - } - r.t = ys; - r.clamp(); - if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder - if(ts < 0) BigInteger.ZERO.subTo(r,r); -} - -// (public) this mod a -function bnMod(a) { - var r = nbi(); - this.abs().divRemTo(a,null,r); - if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); - return r; -} - -// Modular reduction using "classic" algorithm -function Classic(m) { this.m = m; } -function cConvert(x) { - if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); - else return x; -} -function cRevert(x) { return x; } -function cReduce(x) { x.divRemTo(this.m,null,x); } -function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } -function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - -Classic.prototype.convert = cConvert; -Classic.prototype.revert = cRevert; -Classic.prototype.reduce = cReduce; -Classic.prototype.mulTo = cMulTo; -Classic.prototype.sqrTo = cSqrTo; - -// (protected) return "-1/this % 2^DB"; useful for Mont. reduction -// justification: -// xy == 1 (mod m) -// xy = 1+km -// xy(2-xy) = (1+km)(1-km) -// x[y(2-xy)] = 1-k^2m^2 -// x[y(2-xy)] == 1 (mod m^2) -// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 -// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. -// JS multiply "overflows" differently from C/C++, so care is needed here. -function bnpInvDigit() { - if(this.t < 1) return 0; - var x = this[0]; - if((x&1) == 0) return 0; - var y = x&3; // y == 1/x mod 2^2 - y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 - y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 - y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 - // last step - calculate inverse mod DV directly; - // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints - y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits - // we really want the negative inverse, and -DV < y < DV - return (y>0)?this.DV-y:-y; -} - -// Montgomery reduction -function Montgomery(m) { - this.m = m; - this.mp = m.invDigit(); - this.mpl = this.mp&0x7fff; - this.mph = this.mp>>15; - this.um = (1<<(m.DB-15))-1; - this.mt2 = 2*m.t; -} - -// xR mod m -function montConvert(x) { - var r = nbi(); - x.abs().dlShiftTo(this.m.t,r); - r.divRemTo(this.m,null,r); - if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); - return r; -} - -// x/R mod m -function montRevert(x) { - var r = nbi(); - x.copyTo(r); - this.reduce(r); - return r; -} - -// x = x/R mod m (HAC 14.32) -function montReduce(x) { - while(x.t <= this.mt2) // pad x so am has enough room later - x[x.t++] = 0; - for(var i = 0; i < this.m.t; ++i) { - // faster way of calculating u0 = x[i]*mp mod DV - var j = x[i]&0x7fff; - var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; - // use am to combine the multiply-shift-add into one call - j = i+this.m.t; - x[j] += this.m.am(0,u0,x,i,0,this.m.t); - // propagate carry - while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } - } - x.clamp(); - x.drShiftTo(this.m.t,x); - if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); -} - -// r = "x^2/R mod m"; x != r -function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - -// r = "xy/R mod m"; x,y != r -function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } - -Montgomery.prototype.convert = montConvert; -Montgomery.prototype.revert = montRevert; -Montgomery.prototype.reduce = montReduce; -Montgomery.prototype.mulTo = montMulTo; -Montgomery.prototype.sqrTo = montSqrTo; - -// (protected) true iff this is even -function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } - -// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) -function bnpExp(e,z) { - if(e > 0xffffffff || e < 1) return BigInteger.ONE; - var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; - g.copyTo(r); - while(--i >= 0) { - z.sqrTo(r,r2); - if((e&(1<<i)) > 0) z.mulTo(r2,g,r); - else { var t = r; r = r2; r2 = t; } - } - return z.revert(r); -} - -// (public) this^e % m, 0 <= e < 2^32 -function bnModPowInt(e,m) { - var z; - if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); - return this.exp(e,z); -} - -// protected -BigInteger.prototype.copyTo = bnpCopyTo; -BigInteger.prototype.fromInt = bnpFromInt; -BigInteger.prototype.fromString = bnpFromString; -BigInteger.prototype.clamp = bnpClamp; -BigInteger.prototype.dlShiftTo = bnpDLShiftTo; -BigInteger.prototype.drShiftTo = bnpDRShiftTo; -BigInteger.prototype.lShiftTo = bnpLShiftTo; -BigInteger.prototype.rShiftTo = bnpRShiftTo; -BigInteger.prototype.subTo = bnpSubTo; -BigInteger.prototype.multiplyTo = bnpMultiplyTo; -BigInteger.prototype.squareTo = bnpSquareTo; -BigInteger.prototype.divRemTo = bnpDivRemTo; -BigInteger.prototype.invDigit = bnpInvDigit; -BigInteger.prototype.isEven = bnpIsEven; -BigInteger.prototype.exp = bnpExp; - -// public -BigInteger.prototype.toString = bnToString; -BigInteger.prototype.negate = bnNegate; -BigInteger.prototype.abs = bnAbs; -BigInteger.prototype.compareTo = bnCompareTo; -BigInteger.prototype.bitLength = bnBitLength; -BigInteger.prototype.mod = bnMod; -BigInteger.prototype.modPowInt = bnModPowInt; - -// "constants" -BigInteger.ZERO = nbv(0); -BigInteger.ONE = nbv(1); |