/* ** This program is a debugging and analysis utility that displays ** information about an FTS3 or FTS4 index. ** ** Link this program against the SQLite3 amalgamation with the ** SQLITE_ENABLE_FTS4 compile-time option. Then run it as: ** ** fts3view DATABASE ** ** to get a list of all FTS3/4 tables in DATABASE, or do ** ** fts3view DATABASE TABLE COMMAND .... ** ** to see various aspects of the TABLE table. Type fts3view with no ** arguments for a list of available COMMANDs. */ #include <stdio.h> #include <stdarg.h> #include <stdlib.h> #include <string.h> #include <ctype.h> #include "sqlite3.h" /* ** Extra command-line arguments: */ int nExtra; char **azExtra; /* ** Look for a command-line argument. */ const char *findOption(const char *zName, int hasArg, const char *zDefault){ int i; const char *zResult = zDefault; for(i=0; i<nExtra; i++){ const char *z = azExtra[i]; while( z[0]=='-' ) z++; if( strcmp(z, zName)==0 ){ int j = 1; if( hasArg==0 || i==nExtra-1 ) j = 0; zResult = azExtra[i+j]; while( i+j<nExtra ){ azExtra[i] = azExtra[i+j+1]; i++; } break; } } return zResult; } /* ** Prepare an SQL query */ static sqlite3_stmt *prepare(sqlite3 *db, const char *zFormat, ...){ va_list ap; char *zSql; sqlite3_stmt *pStmt; int rc; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); va_end(ap); rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc ){ fprintf(stderr, "Error: %s\nSQL: %s\n", sqlite3_errmsg(db), zSql); exit(1); } sqlite3_free(zSql); return pStmt; } /* ** Run an SQL statement */ static int runSql(sqlite3 *db, const char *zFormat, ...){ va_list ap; char *zSql; int rc; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); rc = sqlite3_exec(db, zSql, 0, 0, 0); va_end(ap); return rc; } /* ** Show the table schema */ static void showSchema(sqlite3 *db, const char *zTab){ sqlite3_stmt *pStmt; pStmt = prepare(db, "SELECT sql FROM sqlite_master" " WHERE name LIKE '%q%%'" " ORDER BY 1", zTab); while( sqlite3_step(pStmt)==SQLITE_ROW ){ printf("%s;\n", sqlite3_column_text(pStmt, 0)); } sqlite3_finalize(pStmt); pStmt = prepare(db, "PRAGMA page_size"); while( sqlite3_step(pStmt)==SQLITE_ROW ){ printf("PRAGMA page_size=%s;\n", sqlite3_column_text(pStmt, 0)); } sqlite3_finalize(pStmt); pStmt = prepare(db, "PRAGMA journal_mode"); while( sqlite3_step(pStmt)==SQLITE_ROW ){ printf("PRAGMA journal_mode=%s;\n", sqlite3_column_text(pStmt, 0)); } sqlite3_finalize(pStmt); pStmt = prepare(db, "PRAGMA auto_vacuum"); while( sqlite3_step(pStmt)==SQLITE_ROW ){ const char *zType = "???"; switch( sqlite3_column_int(pStmt, 0) ){ case 0: zType = "OFF"; break; case 1: zType = "FULL"; break; case 2: zType = "INCREMENTAL"; break; } printf("PRAGMA auto_vacuum=%s;\n", zType); } sqlite3_finalize(pStmt); pStmt = prepare(db, "PRAGMA encoding"); while( sqlite3_step(pStmt)==SQLITE_ROW ){ printf("PRAGMA encoding=%s;\n", sqlite3_column_text(pStmt, 0)); } sqlite3_finalize(pStmt); } /* ** Read a 64-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read, or 0 on error. ** The value is stored in *v. */ int getVarint(const unsigned char *p, sqlite_int64 *v){ const unsigned char *q = p; sqlite_uint64 x = 0, y = 1; while( (*q&0x80)==0x80 && q-(unsigned char *)p<9 ){ x += y * (*q++ & 0x7f); y <<= 7; } x += y * (*q++); *v = (sqlite_int64) x; return (int) (q - (unsigned char *)p); } /* Show the content of the %_stat table */ static void showStat(sqlite3 *db, const char *zTab){ sqlite3_stmt *pStmt; pStmt = prepare(db, "SELECT id, value FROM '%q_stat'", zTab); while( sqlite3_step(pStmt)==SQLITE_ROW ){ printf("stat[%d] =", sqlite3_column_int(pStmt, 0)); switch( sqlite3_column_type(pStmt, 1) ){ case SQLITE_INTEGER: { printf(" %d\n", sqlite3_column_int(pStmt, 1)); break; } case SQLITE_BLOB: { unsigned char *x = (unsigned char*)sqlite3_column_blob(pStmt, 1); int len = sqlite3_column_bytes(pStmt, 1); int i = 0; sqlite3_int64 v; while( i<len ){ i += getVarint(x, &v); printf(" %lld", v); } printf("\n"); break; } } } sqlite3_finalize(pStmt); } /* ** Report on the vocabulary. This creates an fts4aux table with a random ** name, but deletes it in the end. */ static void showVocabulary(sqlite3 *db, const char *zTab){ char *zAux; sqlite3_uint64 r; sqlite3_stmt *pStmt; int nDoc = 0; int nToken = 0; int nOccurrence = 0; int nTop; int n, i; sqlite3_randomness(sizeof(r), &r); zAux = sqlite3_mprintf("viewer_%llx", zTab, r); runSql(db, "BEGIN"); pStmt = prepare(db, "SELECT count(*) FROM %Q", zTab); while( sqlite3_step(pStmt)==SQLITE_ROW ){ nDoc = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); printf("Number of documents...................... %9d\n", nDoc); runSql(db, "CREATE VIRTUAL TABLE %s USING fts4aux(%Q)", zAux, zTab); pStmt = prepare(db, "SELECT count(*), sum(occurrences) FROM %s WHERE col='*'", zAux); while( sqlite3_step(pStmt)==SQLITE_ROW ){ nToken = sqlite3_column_int(pStmt, 0); nOccurrence = sqlite3_column_int(pStmt, 1); } sqlite3_finalize(pStmt); printf("Total tokens in all documents............ %9d\n", nOccurrence); printf("Total number of distinct tokens.......... %9d\n", nToken); if( nToken==0 ) goto end_vocab; n = 0; pStmt = prepare(db, "SELECT count(*) FROM %s" " WHERE col='*' AND occurrences==1", zAux); while( sqlite3_step(pStmt)==SQLITE_ROW ){ n = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); printf("Tokens used exactly once................. %9d %5.2f%%\n", n, n*100.0/nToken); n = 0; pStmt = prepare(db, "SELECT count(*) FROM %s" " WHERE col='*' AND documents==1", zAux); while( sqlite3_step(pStmt)==SQLITE_ROW ){ n = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); printf("Tokens used in only one document......... %9d %5.2f%%\n", n, n*100.0/nToken); if( nDoc>=2000 ){ n = 0; pStmt = prepare(db, "SELECT count(*) FROM %s" " WHERE col='*' AND occurrences<=%d", zAux, nDoc/1000); while( sqlite3_step(pStmt)==SQLITE_ROW ){ n = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); printf("Tokens used in 0.1%% or less of docs...... %9d %5.2f%%\n", n, n*100.0/nToken); } if( nDoc>=200 ){ n = 0; pStmt = prepare(db, "SELECT count(*) FROM %s" " WHERE col='*' AND occurrences<=%d", zAux, nDoc/100); while( sqlite3_step(pStmt)==SQLITE_ROW ){ n = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); printf("Tokens used in 1%% or less of docs........ %9d %5.2f%%\n", n, n*100.0/nToken); } nTop = atoi(findOption("top", 1, "25")); printf("The %d most common tokens:\n", nTop); pStmt = prepare(db, "SELECT term, documents FROM %s" " WHERE col='*'" " ORDER BY documents DESC, term" " LIMIT %d", zAux, nTop); i = 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ i++; n = sqlite3_column_int(pStmt, 1); printf(" %2d. %-30s %9d docs %5.2f%%\n", i, sqlite3_column_text(pStmt, 0), n, n*100.0/nDoc); } sqlite3_finalize(pStmt); end_vocab: runSql(db, "ROLLBACK"); sqlite3_free(zAux); } /* ** Report on the number and sizes of segments */ static void showSegmentStats(sqlite3 *db, const char *zTab){ sqlite3_stmt *pStmt; int nSeg = 0; sqlite3_int64 szSeg = 0, mxSeg = 0; int nIdx = 0; sqlite3_int64 szIdx = 0, mxIdx = 0; int nRoot = 0; sqlite3_int64 szRoot = 0, mxRoot = 0; sqlite3_int64 mx; int nLeaf; int n; int pgsz; int mxLevel; int i; pStmt = prepare(db, "SELECT count(*), sum(length(block)), max(length(block))" " FROM '%q_segments'", zTab); while( sqlite3_step(pStmt)==SQLITE_ROW ){ nSeg = sqlite3_column_int(pStmt, 0); szSeg = sqlite3_column_int64(pStmt, 1); mxSeg = sqlite3_column_int64(pStmt, 2); } sqlite3_finalize(pStmt); pStmt = prepare(db, "SELECT count(*), sum(length(block)), max(length(block))" " FROM '%q_segments' a JOIN '%q_segdir' b" " WHERE a.blockid BETWEEN b.leaves_end_block+1 AND b.end_block", zTab, zTab); while( sqlite3_step(pStmt)==SQLITE_ROW ){ nIdx = sqlite3_column_int(pStmt, 0); szIdx = sqlite3_column_int64(pStmt, 1); mxIdx = sqlite3_column_int64(pStmt, 2); } sqlite3_finalize(pStmt); pStmt = prepare(db, "SELECT count(*), sum(length(root)), max(length(root))" " FROM '%q_segdir'", zTab); while( sqlite3_step(pStmt)==SQLITE_ROW ){ nRoot = sqlite3_column_int(pStmt, 0); szRoot = sqlite3_column_int64(pStmt, 1); mxRoot = sqlite3_column_int64(pStmt, 2); } sqlite3_finalize(pStmt); printf("Number of segments....................... %9d\n", nSeg+nRoot); printf("Number of leaf segments.................. %9d\n", nSeg-nIdx); printf("Number of index segments................. %9d\n", nIdx); printf("Number of root segments.................. %9d\n", nRoot); printf("Total size of all segments............... %9lld\n", szSeg+szRoot); printf("Total size of all leaf segments.......... %9lld\n", szSeg-szIdx); printf("Total size of all index segments......... %9lld\n", szIdx); printf("Total size of all root segments.......... %9lld\n", szRoot); if( nSeg>0 ){ printf("Average size of all segments............. %11.1f\n", (double)(szSeg+szRoot)/(double)(nSeg+nRoot)); printf("Average size of leaf segments............ %11.1f\n", (double)(szSeg-szIdx)/(double)(nSeg-nIdx)); } if( nIdx>0 ){ printf("Average size of index segments........... %11.1f\n", (double)szIdx/(double)nIdx); } if( nRoot>0 ){ printf("Average size of root segments............ %11.1f\n", (double)szRoot/(double)nRoot); } mx = mxSeg; if( mx<mxRoot ) mx = mxRoot; printf("Maximum segment size..................... %9lld\n", mx); printf("Maximum index segment size............... %9lld\n", mxIdx); printf("Maximum root segment size................ %9lld\n", mxRoot); pStmt = prepare(db, "PRAGMA page_size"); pgsz = 1024; while( sqlite3_step(pStmt)==SQLITE_ROW ){ pgsz = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); printf("Database page size....................... %9d\n", pgsz); pStmt = prepare(db, "SELECT count(*)" " FROM '%q_segments' a JOIN '%q_segdir' b" " WHERE a.blockid BETWEEN b.start_block AND b.leaves_end_block" " AND length(a.block)>%d", zTab, zTab, pgsz-45); n = 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ n = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); nLeaf = nSeg - nIdx; printf("Leaf segments larger than %5d bytes.... %9d %5.2f%%\n", pgsz-45, n, n*100.0/nLeaf); pStmt = prepare(db, "SELECT max(level%%1024) FROM '%q_segdir'", zTab); mxLevel = 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ mxLevel = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); for(i=0; i<=mxLevel; i++){ pStmt = prepare(db, "SELECT count(*), sum(len), avg(len), max(len), sum(len>%d)," " count(distinct idx)" " FROM (SELECT length(a.block) AS len, idx" " FROM '%q_segments' a JOIN '%q_segdir' b" " WHERE (a.blockid BETWEEN b.start_block" " AND b.leaves_end_block)" " AND (b.level%%1024)==%d)", pgsz-45, zTab, zTab, i); if( sqlite3_step(pStmt)==SQLITE_ROW && (nLeaf = sqlite3_column_int(pStmt, 0))>0 ){ int nIdx = sqlite3_column_int(pStmt, 5); sqlite3_int64 sz; printf("For level %d:\n", i); printf(" Number of indexes...................... %9d\n", nIdx); printf(" Number of leaf segments................ %9d\n", nLeaf); if( nIdx>1 ){ printf(" Average leaf segments per index........ %11.1f\n", (double)nLeaf/(double)nIdx); } printf(" Total size of all leaf segments........ %9lld\n", (sz = sqlite3_column_int64(pStmt, 1))); printf(" Average size of leaf segments.......... %11.1f\n", sqlite3_column_double(pStmt, 2)); if( nIdx>1 ){ printf(" Average leaf segment size per index.... %11.1f\n", (double)sz/(double)nIdx); } printf(" Maximum leaf segment size.............. %9lld\n", sqlite3_column_int64(pStmt, 3)); n = sqlite3_column_int(pStmt, 4); printf(" Leaf segments larger than %5d bytes.. %9d %5.2f%%\n", pgsz-45, n, n*100.0/nLeaf); } sqlite3_finalize(pStmt); } } /* ** Print a single "tree" line of the segdir map output. */ static void printTreeLine(sqlite3_int64 iLower, sqlite3_int64 iUpper){ printf(" tree %9lld", iLower); if( iUpper>iLower ){ printf(" thru %9lld (%lld blocks)", iUpper, iUpper-iLower+1); } printf("\n"); } /* ** Check to see if the block of a %_segments entry is NULL. */ static int isNullSegment(sqlite3 *db, const char *zTab, sqlite3_int64 iBlockId){ sqlite3_stmt *pStmt; int rc = 1; pStmt = prepare(db, "SELECT block IS NULL FROM '%q_segments'" " WHERE blockid=%lld", zTab, iBlockId); if( sqlite3_step(pStmt)==SQLITE_ROW ){ rc = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); return rc; } /* ** Show a map of segments derived from the %_segdir table. */ static void showSegdirMap(sqlite3 *db, const char *zTab){ int mxIndex, iIndex; sqlite3_stmt *pStmt = 0; sqlite3_stmt *pStmt2 = 0; int prevLevel; pStmt = prepare(db, "SELECT max(level/1024) FROM '%q_segdir'", zTab); if( sqlite3_step(pStmt)==SQLITE_ROW ){ mxIndex = sqlite3_column_int(pStmt, 0); }else{ mxIndex = 0; } sqlite3_finalize(pStmt); printf("Number of inverted indices............... %3d\n", mxIndex+1); pStmt = prepare(db, "SELECT level, idx, start_block, leaves_end_block, end_block, rowid" " FROM '%q_segdir'" " WHERE level/1024==?" " ORDER BY level DESC, idx", zTab); pStmt2 = prepare(db, "SELECT blockid FROM '%q_segments'" " WHERE blockid BETWEEN ? AND ? ORDER BY blockid", zTab); for(iIndex=0; iIndex<=mxIndex; iIndex++){ if( mxIndex>0 ){ printf("**************************** Index %d " "****************************\n", iIndex); } sqlite3_bind_int(pStmt, 1, iIndex); prevLevel = -1; while( sqlite3_step(pStmt)==SQLITE_ROW ){ int iLevel = sqlite3_column_int(pStmt, 0)%1024; int iIdx = sqlite3_column_int(pStmt, 1); sqlite3_int64 iStart = sqlite3_column_int64(pStmt, 2); sqlite3_int64 iLEnd = sqlite3_column_int64(pStmt, 3); sqlite3_int64 iEnd = sqlite3_column_int64(pStmt, 4); char rtag[20]; if( iLevel!=prevLevel ){ printf("level %2d idx %2d", iLevel, iIdx); prevLevel = iLevel; }else{ printf(" idx %2d", iIdx); } sqlite3_snprintf(sizeof(rtag), rtag, "r%lld", sqlite3_column_int64(pStmt,5)); printf(" root %9s\n", rtag); if( iLEnd>iStart ){ sqlite3_int64 iLower, iPrev, iX; if( iLEnd+1<=iEnd ){ sqlite3_bind_int64(pStmt2, 1, iLEnd+1); sqlite3_bind_int64(pStmt2, 2, iEnd); iLower = -1; while( sqlite3_step(pStmt2)==SQLITE_ROW ){ iX = sqlite3_column_int64(pStmt2, 0); if( iLower<0 ){ iLower = iPrev = iX; }else if( iX==iPrev+1 ){ iPrev = iX; }else{ printTreeLine(iLower, iPrev); iLower = iPrev = iX; } } sqlite3_reset(pStmt2); if( iLower>=0 ){ if( iLower==iPrev && iLower==iEnd && isNullSegment(db,zTab,iLower) ){ printf(" null %9lld\n", iLower); }else{ printTreeLine(iLower, iPrev); } } } printf(" leaves %9lld thru %9lld (%lld blocks)\n", iStart, iLEnd, iLEnd - iStart + 1); } } sqlite3_reset(pStmt); } sqlite3_finalize(pStmt); sqlite3_finalize(pStmt2); } /* ** Decode a single segment block and display the results on stdout. */ static void decodeSegment( const unsigned char *aData, /* Content to print */ int nData /* Number of bytes of content */ ){ sqlite3_int64 iChild; sqlite3_int64 iPrefix; sqlite3_int64 nTerm; sqlite3_int64 n; sqlite3_int64 iDocsz; int iHeight; int i = 0; int cnt = 0; char zTerm[1000]; i += getVarint(aData, &n); iHeight = (int)n; printf("height: %d\n", iHeight); if( iHeight>0 ){ i += getVarint(aData+i, &iChild); printf("left-child: %lld\n", iChild); } while( i<nData ){ if( (cnt++)>0 ){ i += getVarint(aData+i, &iPrefix); }else{ iPrefix = 0; } i += getVarint(aData+i, &nTerm); if( iPrefix+nTerm+1 >= sizeof(zTerm) ){ fprintf(stderr, "term to long\n"); exit(1); } memcpy(zTerm+iPrefix, aData+i, nTerm); zTerm[iPrefix+nTerm] = 0; i += nTerm; if( iHeight==0 ){ i += getVarint(aData+i, &iDocsz); printf("term: %-25s doclist %7lld bytes offset %d\n", zTerm, iDocsz, i); i += iDocsz; }else{ printf("term: %-25s child %lld\n", zTerm, ++iChild); } } } /* ** Print a a blob as hex and ascii. */ static void printBlob( const unsigned char *aData, /* Content to print */ int nData /* Number of bytes of content */ ){ int i, j; const char *zOfstFmt; const int perLine = 16; if( (nData&~0xfff)==0 ){ zOfstFmt = " %03x: "; }else if( (nData&~0xffff)==0 ){ zOfstFmt = " %04x: "; }else if( (nData&~0xfffff)==0 ){ zOfstFmt = " %05x: "; }else if( (nData&~0xffffff)==0 ){ zOfstFmt = " %06x: "; }else{ zOfstFmt = " %08x: "; } for(i=0; i<nData; i += perLine){ fprintf(stdout, zOfstFmt, i); for(j=0; j<perLine; j++){ if( i+j>nData ){ fprintf(stdout, " "); }else{ fprintf(stdout,"%02x ", aData[i+j]); } } for(j=0; j<perLine; j++){ if( i+j>nData ){ fprintf(stdout, " "); }else{ fprintf(stdout,"%c", isprint(aData[i+j]) ? aData[i+j] : '.'); } } fprintf(stdout,"\n"); } } /* ** Convert text to a 64-bit integer */ static sqlite3_int64 atoi64(const char *z){ sqlite3_int64 v = 0; while( z[0]>='0' && z[0]<='9' ){ v = v*10 + z[0] - '0'; z++; } return v; } /* ** Return a prepared statement which, when stepped, will return in its ** first column the blob associated with segment zId. If zId begins with ** 'r' then it is a rowid of a %_segdir entry. Otherwise it is a ** %_segment entry. */ static sqlite3_stmt *prepareToGetSegment( sqlite3 *db, /* The database */ const char *zTab, /* The FTS3/4 table name */ const char *zId /* ID of the segment to open */ ){ sqlite3_stmt *pStmt; if( zId[0]=='r' ){ pStmt = prepare(db, "SELECT root FROM '%q_segdir' WHERE rowid=%lld", zTab, atoi64(zId+1)); }else{ pStmt = prepare(db, "SELECT block FROM '%q_segments' WHERE blockid=%lld", zTab, atoi64(zId)); } return pStmt; } /* ** Print the content of a segment or of the root of a segdir. The segment ** or root is identified by azExtra[0]. If the first character of azExtra[0] ** is 'r' then the remainder is the integer rowid of the %_segdir entry. ** If the first character of azExtra[0] is not 'r' then, then all of ** azExtra[0] is an integer which is the block number. ** ** If the --raw option is present in azExtra, then a hex dump is provided. ** Otherwise a decoding is shown. */ static void showSegment(sqlite3 *db, const char *zTab){ const unsigned char *aData; int nData; sqlite3_stmt *pStmt; pStmt = prepareToGetSegment(db, zTab, azExtra[0]); if( sqlite3_step(pStmt)!=SQLITE_ROW ){ sqlite3_finalize(pStmt); return; } nData = sqlite3_column_bytes(pStmt, 0); aData = sqlite3_column_blob(pStmt, 0); printf("Segment %s of size %d bytes:\n", azExtra[0], nData); if( findOption("raw", 0, 0)!=0 ){ printBlob(aData, nData); }else{ decodeSegment(aData, nData); } sqlite3_finalize(pStmt); } /* ** Decode a single doclist and display the results on stdout. */ static void decodeDoclist( const unsigned char *aData, /* Content to print */ int nData /* Number of bytes of content */ ){ sqlite3_int64 iPrevDocid = 0; sqlite3_int64 iDocid; sqlite3_int64 iPos; sqlite3_int64 iPrevPos = 0; sqlite3_int64 iCol; int i = 0; while( i<nData ){ i += getVarint(aData+i, &iDocid); printf("docid %lld col0", iDocid+iPrevDocid); iPrevDocid += iDocid; iPrevPos = 0; while( 1 ){ i += getVarint(aData+i, &iPos); if( iPos==1 ){ i += getVarint(aData+i, &iCol); printf(" col%lld", iCol); iPrevPos = 0; }else if( iPos==0 ){ printf("\n"); break; }else{ iPrevPos += iPos - 2; printf(" %lld", iPrevPos); } } } } /* ** Print the content of a doclist. The segment or segdir-root is ** identified by azExtra[0]. If the first character of azExtra[0] ** is 'r' then the remainder is the integer rowid of the %_segdir entry. ** If the first character of azExtra[0] is not 'r' then, then all of ** azExtra[0] is an integer which is the block number. The offset ** into the segment is identified by azExtra[1]. The size of the doclist ** is azExtra[2]. ** ** If the --raw option is present in azExtra, then a hex dump is provided. ** Otherwise a decoding is shown. */ static void showDoclist(sqlite3 *db, const char *zTab){ const unsigned char *aData; sqlite3_int64 offset, nData; sqlite3_stmt *pStmt; offset = atoi64(azExtra[1]); nData = atoi64(azExtra[2]); pStmt = prepareToGetSegment(db, zTab, azExtra[0]); if( sqlite3_step(pStmt)!=SQLITE_ROW ){ sqlite3_finalize(pStmt); return; } aData = sqlite3_column_blob(pStmt, 0); printf("Doclist at %s offset %lld of size %lld bytes:\n", azExtra[0], offset, nData); if( findOption("raw", 0, 0)!=0 ){ printBlob(aData+offset, nData); }else{ decodeDoclist(aData+offset, nData); } sqlite3_finalize(pStmt); } /* ** Show the top N largest segments */ static void listBigSegments(sqlite3 *db, const char *zTab){ int nTop, i; sqlite3_stmt *pStmt; sqlite3_int64 sz; sqlite3_int64 id; nTop = atoi(findOption("top", 1, "25")); printf("The %d largest segments:\n", nTop); pStmt = prepare(db, "SELECT blockid, length(block) AS len FROM '%q_segments'" " ORDER BY 2 DESC, 1" " LIMIT %d", zTab, nTop); i = 0; while( sqlite3_step(pStmt)==SQLITE_ROW ){ i++; id = sqlite3_column_int64(pStmt, 0); sz = sqlite3_column_int64(pStmt, 1); printf(" %2d. %9lld size %lld\n", i, id, sz); } sqlite3_finalize(pStmt); } static void usage(const char *argv0){ fprintf(stderr, "Usage: %s DATABASE\n" " or: %s DATABASE FTS3TABLE ARGS...\n", argv0, argv0); fprintf(stderr, "ARGS:\n" " big-segments [--top N] show the largest segments\n" " doclist BLOCKID OFFSET SIZE [--raw] Decode a doclist\n" " schema FTS table schema\n" " segdir directory of segments\n" " segment BLOCKID [--raw] content of a segment\n" " segment-stats info on segment sizes\n" " stat the %%_stat table\n" " vocabulary [--top N] document vocabulary\n" ); exit(1); } int main(int argc, char **argv){ sqlite3 *db; int rc; const char *zTab; const char *zCmd; if( argc<2 ) usage(argv[0]); rc = sqlite3_open(argv[1], &db); if( rc ){ fprintf(stderr, "Cannot open %s\n", argv[1]); exit(1); } if( argc==2 ){ sqlite3_stmt *pStmt; int cnt = 0; pStmt = prepare(db, "SELECT b.sql" " FROM sqlite_master a, sqlite_master b" " WHERE a.name GLOB '*_segdir'" " AND b.name=substr(a.name,1,length(a.name)-7)" " ORDER BY 1"); while( sqlite3_step(pStmt)==SQLITE_ROW ){ cnt++; printf("%s;\n", sqlite3_column_text(pStmt, 0)); } sqlite3_finalize(pStmt); if( cnt==0 ){ printf("/* No FTS3/4 tables found in database %s */\n", argv[1]); } return 0; } if( argc<4 ) usage(argv[0]); zTab = argv[2]; zCmd = argv[3]; nExtra = argc-4; azExtra = argv+4; if( strcmp(zCmd,"big-segments")==0 ){ listBigSegments(db, zTab); }else if( strcmp(zCmd,"doclist")==0 ){ if( argc<7 ) usage(argv[0]); showDoclist(db, zTab); }else if( strcmp(zCmd,"schema")==0 ){ showSchema(db, zTab); }else if( strcmp(zCmd,"segdir")==0 ){ showSegdirMap(db, zTab); }else if( strcmp(zCmd,"segment")==0 ){ if( argc<5 ) usage(argv[0]); showSegment(db, zTab); }else if( strcmp(zCmd,"segment-stats")==0 ){ showSegmentStats(db, zTab); }else if( strcmp(zCmd,"stat")==0 ){ showStat(db, zTab); }else if( strcmp(zCmd,"vocabulary")==0 ){ showVocabulary(db, zTab); }else{ usage(argv[0]); } return 0; }