From 7bb481fda9ecb134804b49c2ce77ca28f7eea583 Mon Sep 17 00:00:00 2001 From: Hans-Christoph Steiner Date: Fri, 30 Mar 2012 20:42:12 -0400 Subject: Imported Upstream version 2.0.3 --- src/alter.c | 826 +++++ src/analyze.c | 1120 +++++++ src/attach.c | 557 ++++ src/auth.c | 249 ++ src/backup.c | 716 +++++ src/bitvec.c | 408 +++ src/btmutex.c | 287 ++ src/btree.c | 8225 ++++++++++++++++++++++++++++++++++++++++++++++++ src/btree.h | 241 ++ src/btreeInt.h | 643 ++++ src/build.c | 3818 ++++++++++++++++++++++ src/callback.c | 457 +++ src/complete.c | 283 ++ src/crypto.c | 345 ++ src/crypto.h | 157 + src/crypto_impl.c | 833 +++++ src/ctime.c | 399 +++ src/date.c | 1128 +++++++ src/delete.c | 652 ++++ src/expr.c | 3764 ++++++++++++++++++++++ src/fault.c | 87 + src/fkey.c | 1219 +++++++ src/func.c | 1611 ++++++++++ src/global.c | 221 ++ src/hash.c | 277 ++ src/hash.h | 96 + src/hwtime.h | 85 + src/insert.c | 1846 +++++++++++ src/journal.c | 238 ++ src/legacy.c | 145 + src/lempar.c | 863 +++++ src/loadext.c | 657 ++++ src/main.c | 2954 +++++++++++++++++ src/malloc.c | 777 +++++ src/mem0.c | 59 + src/mem1.c | 150 + src/mem2.c | 528 ++++ src/mem3.c | 687 ++++ src/mem5.c | 581 ++++ src/memjournal.c | 259 ++ src/mutex.c | 153 + src/mutex.h | 74 + src/mutex_noop.c | 206 ++ src/mutex_os2.c | 274 ++ src/mutex_unix.c | 351 +++ src/mutex_w32.c | 332 ++ src/notify.c | 332 ++ src/os.c | 331 ++ src/os.h | 279 ++ src/os_common.h | 115 + src/os_os2.c | 1924 +++++++++++ src/os_unix.c | 6774 +++++++++++++++++++++++++++++++++++++++ src/os_win.c | 3204 +++++++++++++++++++ src/pager.c | 6892 ++++++++++++++++++++++++++++++++++++++++ src/pager.h | 183 ++ src/parse.y | 1371 ++++++++ src/pcache.c | 594 ++++ src/pcache.h | 155 + src/pcache1.c | 972 ++++++ src/pragma.c | 1562 +++++++++ src/prepare.c | 858 +++++ src/printf.c | 970 ++++++ src/random.c | 145 + src/resolve.c | 1223 +++++++ src/rowset.c | 422 +++ src/select.c | 4591 +++++++++++++++++++++++++++ src/shell.c | 2967 +++++++++++++++++ src/sqlite.h.in | 6732 +++++++++++++++++++++++++++++++++++++++ src/sqlite3ext.h | 447 +++ src/sqliteInt.h | 3274 +++++++++++++++++++ src/sqliteLimit.h | 208 ++ src/status.c | 249 ++ src/table.c | 197 ++ src/tclsqlite.c | 3804 ++++++++++++++++++++++ src/test1.c | 6133 ++++++++++++++++++++++++++++++++++++ src/test2.c | 683 ++++ src/test3.c | 644 ++++ src/test4.c | 747 +++++ src/test5.c | 218 ++ src/test6.c | 1010 ++++++ src/test7.c | 723 +++++ src/test8.c | 1391 ++++++++ src/test9.c | 200 ++ src/test_async.c | 241 ++ src/test_autoext.c | 167 + src/test_backup.c | 148 + src/test_btree.c | 62 + src/test_config.c | 602 ++++ src/test_demovfs.c | 679 ++++ src/test_devsym.c | 398 +++ src/test_func.c | 583 ++++ src/test_fuzzer.c | 944 ++++++ src/test_hexio.c | 388 +++ src/test_init.c | 287 ++ src/test_intarray.c | 381 +++ src/test_intarray.h | 114 + src/test_journal.c | 856 +++++ src/test_loadext.c | 122 + src/test_malloc.c | 1470 +++++++++ src/test_multiplex.c | 1306 ++++++++ src/test_multiplex.h | 91 + src/test_mutex.c | 439 +++ src/test_onefile.c | 830 +++++ src/test_osinst.c | 1211 +++++++ src/test_pcache.c | 458 +++ src/test_quota.c | 1105 +++++++ src/test_rtree.c | 296 ++ src/test_schema.c | 359 +++ src/test_server.c | 490 +++ src/test_stat.c | 638 ++++ src/test_superlock.c | 356 +++ src/test_syscall.c | 674 ++++ src/test_tclvar.c | 332 ++ src/test_thread.c | 645 ++++ src/test_vfs.c | 1418 +++++++++ src/test_vfstrace.c | 867 +++++ src/test_wholenumber.c | 311 ++ src/test_wsd.c | 84 + src/tokenize.c | 526 ++++ src/trigger.c | 1123 +++++++ src/update.c | 672 ++++ src/utf.c | 560 ++++ src/util.c | 1186 +++++++ src/vacuum.c | 343 ++ src/vdbe.c | 6158 ++++++++++++++++++++++++++++++++++++ src/vdbe.h | 234 ++ src/vdbeInt.h | 449 +++ src/vdbeapi.c | 1306 ++++++++ src/vdbeaux.c | 3254 +++++++++++++++++++ src/vdbeblob.c | 469 +++ src/vdbemem.c | 1153 +++++++ src/vdbesort.c | 882 ++++++ src/vdbetrace.c | 154 + src/vtab.c | 1066 +++++++ src/wal.c | 2952 +++++++++++++++++ src/wal.h | 122 + src/walker.c | 136 + src/where.c | 5226 ++++++++++++++++++++++++++++++ 138 files changed, 149685 insertions(+) create mode 100644 src/alter.c create mode 100644 src/analyze.c create mode 100644 src/attach.c create mode 100644 src/auth.c create mode 100644 src/backup.c create mode 100644 src/bitvec.c create mode 100644 src/btmutex.c create mode 100644 src/btree.c create mode 100644 src/btree.h create mode 100644 src/btreeInt.h create mode 100644 src/build.c create mode 100644 src/callback.c create mode 100644 src/complete.c create mode 100644 src/crypto.c create mode 100644 src/crypto.h create mode 100644 src/crypto_impl.c create mode 100644 src/ctime.c create mode 100644 src/date.c create mode 100644 src/delete.c create mode 100644 src/expr.c create mode 100644 src/fault.c create mode 100644 src/fkey.c create mode 100644 src/func.c create mode 100644 src/global.c create mode 100644 src/hash.c create mode 100644 src/hash.h create mode 100644 src/hwtime.h create mode 100644 src/insert.c create mode 100644 src/journal.c create mode 100644 src/legacy.c create mode 100644 src/lempar.c create mode 100644 src/loadext.c create mode 100644 src/main.c create mode 100644 src/malloc.c create mode 100644 src/mem0.c create mode 100644 src/mem1.c create mode 100644 src/mem2.c create mode 100644 src/mem3.c create mode 100644 src/mem5.c create mode 100644 src/memjournal.c create mode 100644 src/mutex.c create mode 100644 src/mutex.h create mode 100644 src/mutex_noop.c create mode 100644 src/mutex_os2.c create mode 100644 src/mutex_unix.c create mode 100644 src/mutex_w32.c create mode 100644 src/notify.c create mode 100644 src/os.c create mode 100644 src/os.h create mode 100644 src/os_common.h create mode 100644 src/os_os2.c create mode 100644 src/os_unix.c create mode 100644 src/os_win.c create mode 100644 src/pager.c create mode 100644 src/pager.h create mode 100644 src/parse.y create mode 100644 src/pcache.c create mode 100644 src/pcache.h create mode 100644 src/pcache1.c create mode 100644 src/pragma.c create mode 100644 src/prepare.c create mode 100644 src/printf.c create mode 100644 src/random.c create mode 100644 src/resolve.c create mode 100644 src/rowset.c create mode 100644 src/select.c create mode 100644 src/shell.c create mode 100644 src/sqlite.h.in create mode 100644 src/sqlite3ext.h create mode 100644 src/sqliteInt.h create mode 100644 src/sqliteLimit.h create mode 100644 src/status.c create mode 100644 src/table.c create mode 100644 src/tclsqlite.c create mode 100644 src/test1.c create mode 100644 src/test2.c create mode 100644 src/test3.c create mode 100644 src/test4.c create mode 100644 src/test5.c create mode 100644 src/test6.c create mode 100644 src/test7.c create mode 100644 src/test8.c create mode 100644 src/test9.c create mode 100644 src/test_async.c create mode 100644 src/test_autoext.c create mode 100644 src/test_backup.c create mode 100644 src/test_btree.c create mode 100644 src/test_config.c create mode 100644 src/test_demovfs.c create mode 100644 src/test_devsym.c create mode 100644 src/test_func.c create mode 100644 src/test_fuzzer.c create mode 100644 src/test_hexio.c create mode 100644 src/test_init.c create mode 100644 src/test_intarray.c create mode 100644 src/test_intarray.h create mode 100644 src/test_journal.c create mode 100644 src/test_loadext.c create mode 100644 src/test_malloc.c create mode 100644 src/test_multiplex.c create mode 100644 src/test_multiplex.h create mode 100644 src/test_mutex.c create mode 100644 src/test_onefile.c create mode 100644 src/test_osinst.c create mode 100644 src/test_pcache.c create mode 100644 src/test_quota.c create mode 100644 src/test_rtree.c create mode 100644 src/test_schema.c create mode 100644 src/test_server.c create mode 100644 src/test_stat.c create mode 100644 src/test_superlock.c create mode 100644 src/test_syscall.c create mode 100644 src/test_tclvar.c create mode 100644 src/test_thread.c create mode 100644 src/test_vfs.c create mode 100644 src/test_vfstrace.c create mode 100644 src/test_wholenumber.c create mode 100644 src/test_wsd.c create mode 100644 src/tokenize.c create mode 100644 src/trigger.c create mode 100644 src/update.c create mode 100644 src/utf.c create mode 100644 src/util.c create mode 100644 src/vacuum.c create mode 100644 src/vdbe.c create mode 100644 src/vdbe.h create mode 100644 src/vdbeInt.h create mode 100644 src/vdbeapi.c create mode 100644 src/vdbeaux.c create mode 100644 src/vdbeblob.c create mode 100644 src/vdbemem.c create mode 100644 src/vdbesort.c create mode 100644 src/vdbetrace.c create mode 100644 src/vtab.c create mode 100644 src/wal.c create mode 100644 src/wal.h create mode 100644 src/walker.c create mode 100644 src/where.c (limited to 'src') diff --git a/src/alter.c b/src/alter.c new file mode 100644 index 0000000..fb6d89d --- /dev/null +++ b/src/alter.c @@ -0,0 +1,826 @@ +/* +** 2005 February 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that used to generate VDBE code +** that implements the ALTER TABLE command. +*/ +#include "sqliteInt.h" + +/* +** The code in this file only exists if we are not omitting the +** ALTER TABLE logic from the build. +*/ +#ifndef SQLITE_OMIT_ALTERTABLE + + +/* +** This function is used by SQL generated to implement the +** ALTER TABLE command. The first argument is the text of a CREATE TABLE or +** CREATE INDEX command. The second is a table name. The table name in +** the CREATE TABLE or CREATE INDEX statement is replaced with the third +** argument and the result returned. Examples: +** +** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def') +** -> 'CREATE TABLE def(a, b, c)' +** +** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def') +** -> 'CREATE INDEX i ON def(a, b, c)' +*/ +static void renameTableFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **argv +){ + unsigned char const *zSql = sqlite3_value_text(argv[0]); + unsigned char const *zTableName = sqlite3_value_text(argv[1]); + + int token; + Token tname; + unsigned char const *zCsr = zSql; + int len = 0; + char *zRet; + + sqlite3 *db = sqlite3_context_db_handle(context); + + UNUSED_PARAMETER(NotUsed); + + /* The principle used to locate the table name in the CREATE TABLE + ** statement is that the table name is the first non-space token that + ** is immediately followed by a TK_LP or TK_USING token. + */ + if( zSql ){ + do { + if( !*zCsr ){ + /* Ran out of input before finding an opening bracket. Return NULL. */ + return; + } + + /* Store the token that zCsr points to in tname. */ + tname.z = (char*)zCsr; + tname.n = len; + + /* Advance zCsr to the next token. Store that token type in 'token', + ** and its length in 'len' (to be used next iteration of this loop). + */ + do { + zCsr += len; + len = sqlite3GetToken(zCsr, &token); + } while( token==TK_SPACE ); + assert( len>0 ); + } while( token!=TK_LP && token!=TK_USING ); + + zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", ((u8*)tname.z) - zSql, zSql, + zTableName, tname.z+tname.n); + sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC); + } +} + +/* +** This C function implements an SQL user function that is used by SQL code +** generated by the ALTER TABLE ... RENAME command to modify the definition +** of any foreign key constraints that use the table being renamed as the +** parent table. It is passed three arguments: +** +** 1) The complete text of the CREATE TABLE statement being modified, +** 2) The old name of the table being renamed, and +** 3) The new name of the table being renamed. +** +** It returns the new CREATE TABLE statement. For example: +** +** sqlite_rename_parent('CREATE TABLE t1(a REFERENCES t2)', 't2', 't3') +** -> 'CREATE TABLE t1(a REFERENCES t3)' +*/ +#ifndef SQLITE_OMIT_FOREIGN_KEY +static void renameParentFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_context_db_handle(context); + char *zOutput = 0; + char *zResult; + unsigned char const *zInput = sqlite3_value_text(argv[0]); + unsigned char const *zOld = sqlite3_value_text(argv[1]); + unsigned char const *zNew = sqlite3_value_text(argv[2]); + + unsigned const char *z; /* Pointer to token */ + int n; /* Length of token z */ + int token; /* Type of token */ + + UNUSED_PARAMETER(NotUsed); + for(z=zInput; *z; z=z+n){ + n = sqlite3GetToken(z, &token); + if( token==TK_REFERENCES ){ + char *zParent; + do { + z += n; + n = sqlite3GetToken(z, &token); + }while( token==TK_SPACE ); + + zParent = sqlite3DbStrNDup(db, (const char *)z, n); + if( zParent==0 ) break; + sqlite3Dequote(zParent); + if( 0==sqlite3StrICmp((const char *)zOld, zParent) ){ + char *zOut = sqlite3MPrintf(db, "%s%.*s\"%w\"", + (zOutput?zOutput:""), z-zInput, zInput, (const char *)zNew + ); + sqlite3DbFree(db, zOutput); + zOutput = zOut; + zInput = &z[n]; + } + sqlite3DbFree(db, zParent); + } + } + + zResult = sqlite3MPrintf(db, "%s%s", (zOutput?zOutput:""), zInput), + sqlite3_result_text(context, zResult, -1, SQLITE_DYNAMIC); + sqlite3DbFree(db, zOutput); +} +#endif + +#ifndef SQLITE_OMIT_TRIGGER +/* This function is used by SQL generated to implement the +** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER +** statement. The second is a table name. The table name in the CREATE +** TRIGGER statement is replaced with the third argument and the result +** returned. This is analagous to renameTableFunc() above, except for CREATE +** TRIGGER, not CREATE INDEX and CREATE TABLE. +*/ +static void renameTriggerFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **argv +){ + unsigned char const *zSql = sqlite3_value_text(argv[0]); + unsigned char const *zTableName = sqlite3_value_text(argv[1]); + + int token; + Token tname; + int dist = 3; + unsigned char const *zCsr = zSql; + int len = 0; + char *zRet; + sqlite3 *db = sqlite3_context_db_handle(context); + + UNUSED_PARAMETER(NotUsed); + + /* The principle used to locate the table name in the CREATE TRIGGER + ** statement is that the table name is the first token that is immediatedly + ** preceded by either TK_ON or TK_DOT and immediatedly followed by one + ** of TK_WHEN, TK_BEGIN or TK_FOR. + */ + if( zSql ){ + do { + + if( !*zCsr ){ + /* Ran out of input before finding the table name. Return NULL. */ + return; + } + + /* Store the token that zCsr points to in tname. */ + tname.z = (char*)zCsr; + tname.n = len; + + /* Advance zCsr to the next token. Store that token type in 'token', + ** and its length in 'len' (to be used next iteration of this loop). + */ + do { + zCsr += len; + len = sqlite3GetToken(zCsr, &token); + }while( token==TK_SPACE ); + assert( len>0 ); + + /* Variable 'dist' stores the number of tokens read since the most + ** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN + ** token is read and 'dist' equals 2, the condition stated above + ** to be met. + ** + ** Note that ON cannot be a database, table or column name, so + ** there is no need to worry about syntax like + ** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc. + */ + dist++; + if( token==TK_DOT || token==TK_ON ){ + dist = 0; + } + } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) ); + + /* Variable tname now contains the token that is the old table-name + ** in the CREATE TRIGGER statement. + */ + zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", ((u8*)tname.z) - zSql, zSql, + zTableName, tname.z+tname.n); + sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC); + } +} +#endif /* !SQLITE_OMIT_TRIGGER */ + +/* +** Register built-in functions used to help implement ALTER TABLE +*/ +void sqlite3AlterFunctions(void){ + static SQLITE_WSD FuncDef aAlterTableFuncs[] = { + FUNCTION(sqlite_rename_table, 2, 0, 0, renameTableFunc), +#ifndef SQLITE_OMIT_TRIGGER + FUNCTION(sqlite_rename_trigger, 2, 0, 0, renameTriggerFunc), +#endif +#ifndef SQLITE_OMIT_FOREIGN_KEY + FUNCTION(sqlite_rename_parent, 3, 0, 0, renameParentFunc), +#endif + }; + int i; + FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); + FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAlterTableFuncs); + + for(i=0; i OR name= OR ... +** +** If argument zWhere is NULL, then a pointer string containing the text +** "name=" is returned, where is the quoted version +** of the string passed as argument zConstant. The returned buffer is +** allocated using sqlite3DbMalloc(). It is the responsibility of the +** caller to ensure that it is eventually freed. +** +** If argument zWhere is not NULL, then the string returned is +** " OR name=", where is the contents of zWhere. +** In this case zWhere is passed to sqlite3DbFree() before returning. +** +*/ +static char *whereOrName(sqlite3 *db, char *zWhere, char *zConstant){ + char *zNew; + if( !zWhere ){ + zNew = sqlite3MPrintf(db, "name=%Q", zConstant); + }else{ + zNew = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, zConstant); + sqlite3DbFree(db, zWhere); + } + return zNew; +} + +#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) +/* +** Generate the text of a WHERE expression which can be used to select all +** tables that have foreign key constraints that refer to table pTab (i.e. +** constraints for which pTab is the parent table) from the sqlite_master +** table. +*/ +static char *whereForeignKeys(Parse *pParse, Table *pTab){ + FKey *p; + char *zWhere = 0; + for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ + zWhere = whereOrName(pParse->db, zWhere, p->pFrom->zName); + } + return zWhere; +} +#endif + +/* +** Generate the text of a WHERE expression which can be used to select all +** temporary triggers on table pTab from the sqlite_temp_master table. If +** table pTab has no temporary triggers, or is itself stored in the +** temporary database, NULL is returned. +*/ +static char *whereTempTriggers(Parse *pParse, Table *pTab){ + Trigger *pTrig; + char *zWhere = 0; + const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */ + + /* If the table is not located in the temp-db (in which case NULL is + ** returned, loop through the tables list of triggers. For each trigger + ** that is not part of the temp-db schema, add a clause to the WHERE + ** expression being built up in zWhere. + */ + if( pTab->pSchema!=pTempSchema ){ + sqlite3 *db = pParse->db; + for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){ + if( pTrig->pSchema==pTempSchema ){ + zWhere = whereOrName(db, zWhere, pTrig->zName); + } + } + } + if( zWhere ){ + char *zNew = sqlite3MPrintf(pParse->db, "type='trigger' AND (%s)", zWhere); + sqlite3DbFree(pParse->db, zWhere); + zWhere = zNew; + } + return zWhere; +} + +/* +** Generate code to drop and reload the internal representation of table +** pTab from the database, including triggers and temporary triggers. +** Argument zName is the name of the table in the database schema at +** the time the generated code is executed. This can be different from +** pTab->zName if this function is being called to code part of an +** "ALTER TABLE RENAME TO" statement. +*/ +static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){ + Vdbe *v; + char *zWhere; + int iDb; /* Index of database containing pTab */ +#ifndef SQLITE_OMIT_TRIGGER + Trigger *pTrig; +#endif + + v = sqlite3GetVdbe(pParse); + if( NEVER(v==0) ) return; + assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + assert( iDb>=0 ); + +#ifndef SQLITE_OMIT_TRIGGER + /* Drop any table triggers from the internal schema. */ + for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){ + int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); + assert( iTrigDb==iDb || iTrigDb==1 ); + sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->zName, 0); + } +#endif + + /* Drop the table and index from the internal schema. */ + sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); + + /* Reload the table, index and permanent trigger schemas. */ + zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName); + if( !zWhere ) return; + sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); + +#ifndef SQLITE_OMIT_TRIGGER + /* Now, if the table is not stored in the temp database, reload any temp + ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. + */ + if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){ + sqlite3VdbeAddParseSchemaOp(v, 1, zWhere); + } +#endif +} + +/* +** Parameter zName is the name of a table that is about to be altered +** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN). +** If the table is a system table, this function leaves an error message +** in pParse->zErr (system tables may not be altered) and returns non-zero. +** +** Or, if zName is not a system table, zero is returned. +*/ +static int isSystemTable(Parse *pParse, const char *zName){ + if( sqlite3Strlen30(zName)>6 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ + sqlite3ErrorMsg(pParse, "table %s may not be altered", zName); + return 1; + } + return 0; +} + +/* +** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" +** command. +*/ +void sqlite3AlterRenameTable( + Parse *pParse, /* Parser context. */ + SrcList *pSrc, /* The table to rename. */ + Token *pName /* The new table name. */ +){ + int iDb; /* Database that contains the table */ + char *zDb; /* Name of database iDb */ + Table *pTab; /* Table being renamed */ + char *zName = 0; /* NULL-terminated version of pName */ + sqlite3 *db = pParse->db; /* Database connection */ + int nTabName; /* Number of UTF-8 characters in zTabName */ + const char *zTabName; /* Original name of the table */ + Vdbe *v; +#ifndef SQLITE_OMIT_TRIGGER + char *zWhere = 0; /* Where clause to locate temp triggers */ +#endif + VTable *pVTab = 0; /* Non-zero if this is a v-tab with an xRename() */ + int savedDbFlags; /* Saved value of db->flags */ + + savedDbFlags = db->flags; + if( NEVER(db->mallocFailed) ) goto exit_rename_table; + assert( pSrc->nSrc==1 ); + assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); + + pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase); + if( !pTab ) goto exit_rename_table; + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + zDb = db->aDb[iDb].zName; + db->flags |= SQLITE_PreferBuiltin; + + /* Get a NULL terminated version of the new table name. */ + zName = sqlite3NameFromToken(db, pName); + if( !zName ) goto exit_rename_table; + + /* Check that a table or index named 'zName' does not already exist + ** in database iDb. If so, this is an error. + */ + if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){ + sqlite3ErrorMsg(pParse, + "there is already another table or index with this name: %s", zName); + goto exit_rename_table; + } + + /* Make sure it is not a system table being altered, or a reserved name + ** that the table is being renamed to. + */ + if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){ + goto exit_rename_table; + } + if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto + exit_rename_table; + } + +#ifndef SQLITE_OMIT_VIEW + if( pTab->pSelect ){ + sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName); + goto exit_rename_table; + } +#endif + +#ifndef SQLITE_OMIT_AUTHORIZATION + /* Invoke the authorization callback. */ + if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ + goto exit_rename_table; + } +#endif + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto exit_rename_table; + } + if( IsVirtual(pTab) ){ + pVTab = sqlite3GetVTable(db, pTab); + if( pVTab->pVtab->pModule->xRename==0 ){ + pVTab = 0; + } + } +#endif + + /* Begin a transaction and code the VerifyCookie for database iDb. + ** Then modify the schema cookie (since the ALTER TABLE modifies the + ** schema). Open a statement transaction if the table is a virtual + ** table. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ){ + goto exit_rename_table; + } + sqlite3BeginWriteOperation(pParse, pVTab!=0, iDb); + sqlite3ChangeCookie(pParse, iDb); + + /* If this is a virtual table, invoke the xRename() function if + ** one is defined. The xRename() callback will modify the names + ** of any resources used by the v-table implementation (including other + ** SQLite tables) that are identified by the name of the virtual table. + */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pVTab ){ + int i = ++pParse->nMem; + sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0); + sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB); + sqlite3MayAbort(pParse); + } +#endif + + /* figure out how many UTF-8 characters are in zName */ + zTabName = pTab->zName; + nTabName = sqlite3Utf8CharLen(zTabName, -1); + +#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) + if( db->flags&SQLITE_ForeignKeys ){ + /* If foreign-key support is enabled, rewrite the CREATE TABLE + ** statements corresponding to all child tables of foreign key constraints + ** for which the renamed table is the parent table. */ + if( (zWhere=whereForeignKeys(pParse, pTab))!=0 ){ + sqlite3NestedParse(pParse, + "UPDATE \"%w\".%s SET " + "sql = sqlite_rename_parent(sql, %Q, %Q) " + "WHERE %s;", zDb, SCHEMA_TABLE(iDb), zTabName, zName, zWhere); + sqlite3DbFree(db, zWhere); + } + } +#endif + + /* Modify the sqlite_master table to use the new table name. */ + sqlite3NestedParse(pParse, + "UPDATE %Q.%s SET " +#ifdef SQLITE_OMIT_TRIGGER + "sql = sqlite_rename_table(sql, %Q), " +#else + "sql = CASE " + "WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)" + "ELSE sqlite_rename_table(sql, %Q) END, " +#endif + "tbl_name = %Q, " + "name = CASE " + "WHEN type='table' THEN %Q " + "WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN " + "'sqlite_autoindex_' || %Q || substr(name,%d+18) " + "ELSE name END " + "WHERE tbl_name=%Q AND " + "(type='table' OR type='index' OR type='trigger');", + zDb, SCHEMA_TABLE(iDb), zName, zName, zName, +#ifndef SQLITE_OMIT_TRIGGER + zName, +#endif + zName, nTabName, zTabName + ); + +#ifndef SQLITE_OMIT_AUTOINCREMENT + /* If the sqlite_sequence table exists in this database, then update + ** it with the new table name. + */ + if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){ + sqlite3NestedParse(pParse, + "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q", + zDb, zName, pTab->zName); + } +#endif + +#ifndef SQLITE_OMIT_TRIGGER + /* If there are TEMP triggers on this table, modify the sqlite_temp_master + ** table. Don't do this if the table being ALTERed is itself located in + ** the temp database. + */ + if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){ + sqlite3NestedParse(pParse, + "UPDATE sqlite_temp_master SET " + "sql = sqlite_rename_trigger(sql, %Q), " + "tbl_name = %Q " + "WHERE %s;", zName, zName, zWhere); + sqlite3DbFree(db, zWhere); + } +#endif + +#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) + if( db->flags&SQLITE_ForeignKeys ){ + FKey *p; + for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ + Table *pFrom = p->pFrom; + if( pFrom!=pTab ){ + reloadTableSchema(pParse, p->pFrom, pFrom->zName); + } + } + } +#endif + + /* Drop and reload the internal table schema. */ + reloadTableSchema(pParse, pTab, zName); + +exit_rename_table: + sqlite3SrcListDelete(db, pSrc); + sqlite3DbFree(db, zName); + db->flags = savedDbFlags; +} + + +/* +** Generate code to make sure the file format number is at least minFormat. +** The generated code will increase the file format number if necessary. +*/ +void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ + Vdbe *v; + v = sqlite3GetVdbe(pParse); + /* The VDBE should have been allocated before this routine is called. + ** If that allocation failed, we would have quit before reaching this + ** point */ + if( ALWAYS(v) ){ + int r1 = sqlite3GetTempReg(pParse); + int r2 = sqlite3GetTempReg(pParse); + int j1; + sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT); + sqlite3VdbeUsesBtree(v, iDb); + sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); + j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2); + sqlite3VdbeJumpHere(v, j1); + sqlite3ReleaseTempReg(pParse, r1); + sqlite3ReleaseTempReg(pParse, r2); + } +} + +/* +** This function is called after an "ALTER TABLE ... ADD" statement +** has been parsed. Argument pColDef contains the text of the new +** column definition. +** +** The Table structure pParse->pNewTable was extended to include +** the new column during parsing. +*/ +void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){ + Table *pNew; /* Copy of pParse->pNewTable */ + Table *pTab; /* Table being altered */ + int iDb; /* Database number */ + const char *zDb; /* Database name */ + const char *zTab; /* Table name */ + char *zCol; /* Null-terminated column definition */ + Column *pCol; /* The new column */ + Expr *pDflt; /* Default value for the new column */ + sqlite3 *db; /* The database connection; */ + + db = pParse->db; + if( pParse->nErr || db->mallocFailed ) return; + pNew = pParse->pNewTable; + assert( pNew ); + + assert( sqlite3BtreeHoldsAllMutexes(db) ); + iDb = sqlite3SchemaToIndex(db, pNew->pSchema); + zDb = db->aDb[iDb].zName; + zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */ + pCol = &pNew->aCol[pNew->nCol-1]; + pDflt = pCol->pDflt; + pTab = sqlite3FindTable(db, zTab, zDb); + assert( pTab ); + +#ifndef SQLITE_OMIT_AUTHORIZATION + /* Invoke the authorization callback. */ + if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ + return; + } +#endif + + /* If the default value for the new column was specified with a + ** literal NULL, then set pDflt to 0. This simplifies checking + ** for an SQL NULL default below. + */ + if( pDflt && pDflt->op==TK_NULL ){ + pDflt = 0; + } + + /* Check that the new column is not specified as PRIMARY KEY or UNIQUE. + ** If there is a NOT NULL constraint, then the default value for the + ** column must not be NULL. + */ + if( pCol->isPrimKey ){ + sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column"); + return; + } + if( pNew->pIndex ){ + sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column"); + return; + } + if( (db->flags&SQLITE_ForeignKeys) && pNew->pFKey && pDflt ){ + sqlite3ErrorMsg(pParse, + "Cannot add a REFERENCES column with non-NULL default value"); + return; + } + if( pCol->notNull && !pDflt ){ + sqlite3ErrorMsg(pParse, + "Cannot add a NOT NULL column with default value NULL"); + return; + } + + /* Ensure the default expression is something that sqlite3ValueFromExpr() + ** can handle (i.e. not CURRENT_TIME etc.) + */ + if( pDflt ){ + sqlite3_value *pVal; + if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){ + db->mallocFailed = 1; + return; + } + if( !pVal ){ + sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default"); + return; + } + sqlite3ValueFree(pVal); + } + + /* Modify the CREATE TABLE statement. */ + zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n); + if( zCol ){ + char *zEnd = &zCol[pColDef->n-1]; + int savedDbFlags = db->flags; + while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){ + *zEnd-- = '\0'; + } + db->flags |= SQLITE_PreferBuiltin; + sqlite3NestedParse(pParse, + "UPDATE \"%w\".%s SET " + "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) " + "WHERE type = 'table' AND name = %Q", + zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1, + zTab + ); + sqlite3DbFree(db, zCol); + db->flags = savedDbFlags; + } + + /* If the default value of the new column is NULL, then set the file + ** format to 2. If the default value of the new column is not NULL, + ** the file format becomes 3. + */ + sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2); + + /* Reload the schema of the modified table. */ + reloadTableSchema(pParse, pTab, pTab->zName); +} + +/* +** This function is called by the parser after the table-name in +** an "ALTER TABLE ADD" statement is parsed. Argument +** pSrc is the full-name of the table being altered. +** +** This routine makes a (partial) copy of the Table structure +** for the table being altered and sets Parse.pNewTable to point +** to it. Routines called by the parser as the column definition +** is parsed (i.e. sqlite3AddColumn()) add the new Column data to +** the copy. The copy of the Table structure is deleted by tokenize.c +** after parsing is finished. +** +** Routine sqlite3AlterFinishAddColumn() will be called to complete +** coding the "ALTER TABLE ... ADD" statement. +*/ +void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){ + Table *pNew; + Table *pTab; + Vdbe *v; + int iDb; + int i; + int nAlloc; + sqlite3 *db = pParse->db; + + /* Look up the table being altered. */ + assert( pParse->pNewTable==0 ); + assert( sqlite3BtreeHoldsAllMutexes(db) ); + if( db->mallocFailed ) goto exit_begin_add_column; + pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase); + if( !pTab ) goto exit_begin_add_column; + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + sqlite3ErrorMsg(pParse, "virtual tables may not be altered"); + goto exit_begin_add_column; + } +#endif + + /* Make sure this is not an attempt to ALTER a view. */ + if( pTab->pSelect ){ + sqlite3ErrorMsg(pParse, "Cannot add a column to a view"); + goto exit_begin_add_column; + } + if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){ + goto exit_begin_add_column; + } + + assert( pTab->addColOffset>0 ); + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + + /* Put a copy of the Table struct in Parse.pNewTable for the + ** sqlite3AddColumn() function and friends to modify. But modify + ** the name by adding an "sqlite_altertab_" prefix. By adding this + ** prefix, we insure that the name will not collide with an existing + ** table because user table are not allowed to have the "sqlite_" + ** prefix on their name. + */ + pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table)); + if( !pNew ) goto exit_begin_add_column; + pParse->pNewTable = pNew; + pNew->nRef = 1; + pNew->nCol = pTab->nCol; + assert( pNew->nCol>0 ); + nAlloc = (((pNew->nCol-1)/8)*8)+8; + assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 ); + pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc); + pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName); + if( !pNew->aCol || !pNew->zName ){ + db->mallocFailed = 1; + goto exit_begin_add_column; + } + memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol); + for(i=0; inCol; i++){ + Column *pCol = &pNew->aCol[i]; + pCol->zName = sqlite3DbStrDup(db, pCol->zName); + pCol->zColl = 0; + pCol->zType = 0; + pCol->pDflt = 0; + pCol->zDflt = 0; + } + pNew->pSchema = db->aDb[iDb].pSchema; + pNew->addColOffset = pTab->addColOffset; + pNew->nRef = 1; + + /* Begin a transaction and increment the schema cookie. */ + sqlite3BeginWriteOperation(pParse, 0, iDb); + v = sqlite3GetVdbe(pParse); + if( !v ) goto exit_begin_add_column; + sqlite3ChangeCookie(pParse, iDb); + +exit_begin_add_column: + sqlite3SrcListDelete(db, pSrc); + return; +} +#endif /* SQLITE_ALTER_TABLE */ diff --git a/src/analyze.c b/src/analyze.c new file mode 100644 index 0000000..b6a987a --- /dev/null +++ b/src/analyze.c @@ -0,0 +1,1120 @@ +/* +** 2005 July 8 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code associated with the ANALYZE command. +** +** The ANALYZE command gather statistics about the content of tables +** and indices. These statistics are made available to the query planner +** to help it make better decisions about how to perform queries. +** +** The following system tables are or have been supported: +** +** CREATE TABLE sqlite_stat1(tbl, idx, stat); +** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); +** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); +** +** Additional tables might be added in future releases of SQLite. +** The sqlite_stat2 table is not created or used unless the SQLite version +** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled +** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. +** The sqlite_stat2 table is superceded by sqlite_stat3, which is only +** created and used by SQLite versions 3.7.9 and later and with +** SQLITE_ENABLE_STAT3 defined. The fucntionality of sqlite_stat3 +** is a superset of sqlite_stat2. +** +** Format of sqlite_stat1: +** +** There is normally one row per index, with the index identified by the +** name in the idx column. The tbl column is the name of the table to +** which the index belongs. In each such row, the stat column will be +** a string consisting of a list of integers. The first integer in this +** list is the number of rows in the index and in the table. The second +** integer is the average number of rows in the index that have the same +** value in the first column of the index. The third integer is the average +** number of rows in the index that have the same value for the first two +** columns. The N-th integer (for N>1) is the average number of rows in +** the index which have the same value for the first N-1 columns. For +** a K-column index, there will be K+1 integers in the stat column. If +** the index is unique, then the last integer will be 1. +** +** The list of integers in the stat column can optionally be followed +** by the keyword "unordered". The "unordered" keyword, if it is present, +** must be separated from the last integer by a single space. If the +** "unordered" keyword is present, then the query planner assumes that +** the index is unordered and will not use the index for a range query. +** +** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat +** column contains a single integer which is the (estimated) number of +** rows in the table identified by sqlite_stat1.tbl. +** +** Format of sqlite_stat2: +** +** The sqlite_stat2 is only created and is only used if SQLite is compiled +** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between +** 3.6.18 and 3.7.8. The "stat2" table contains additional information +** about the distribution of keys within an index. The index is identified by +** the "idx" column and the "tbl" column is the name of the table to which +** the index belongs. There are usually 10 rows in the sqlite_stat2 +** table for each index. +** +** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 +** inclusive are samples of the left-most key value in the index taken at +** evenly spaced points along the index. Let the number of samples be S +** (10 in the standard build) and let C be the number of rows in the index. +** Then the sampled rows are given by: +** +** rownumber = (i*C*2 + C)/(S*2) +** +** For i between 0 and S-1. Conceptually, the index space is divided into +** S uniform buckets and the samples are the middle row from each bucket. +** +** The format for sqlite_stat2 is recorded here for legacy reference. This +** version of SQLite does not support sqlite_stat2. It neither reads nor +** writes the sqlite_stat2 table. This version of SQLite only supports +** sqlite_stat3. +** +** Format for sqlite_stat3: +** +** The sqlite_stat3 is an enhancement to sqlite_stat2. A new name is +** used to avoid compatibility problems. +** +** The format of the sqlite_stat3 table is similar to the format of +** the sqlite_stat2 table. There are multiple entries for each index. +** The idx column names the index and the tbl column is the table of the +** index. If the idx and tbl columns are the same, then the sample is +** of the INTEGER PRIMARY KEY. The sample column is a value taken from +** the left-most column of the index. The nEq column is the approximate +** number of entires in the index whose left-most column exactly matches +** the sample. nLt is the approximate number of entires whose left-most +** column is less than the sample. The nDLt column is the approximate +** number of distinct left-most entries in the index that are less than +** the sample. +** +** Future versions of SQLite might change to store a string containing +** multiple integers values in the nDLt column of sqlite_stat3. The first +** integer will be the number of prior index entires that are distinct in +** the left-most column. The second integer will be the number of prior index +** entries that are distinct in the first two columns. The third integer +** will be the number of prior index entries that are distinct in the first +** three columns. And so forth. With that extension, the nDLt field is +** similar in function to the sqlite_stat1.stat field. +** +** There can be an arbitrary number of sqlite_stat3 entries per index. +** The ANALYZE command will typically generate sqlite_stat3 tables +** that contain between 10 and 40 samples which are distributed across +** the key space, though not uniformly, and which include samples with +** largest possible nEq values. +*/ +#ifndef SQLITE_OMIT_ANALYZE +#include "sqliteInt.h" + +/* +** This routine generates code that opens the sqlite_stat1 table for +** writing with cursor iStatCur. If the library was built with the +** SQLITE_ENABLE_STAT3 macro defined, then the sqlite_stat3 table is +** opened for writing using cursor (iStatCur+1) +** +** If the sqlite_stat1 tables does not previously exist, it is created. +** Similarly, if the sqlite_stat3 table does not exist and the library +** is compiled with SQLITE_ENABLE_STAT3 defined, it is created. +** +** Argument zWhere may be a pointer to a buffer containing a table name, +** or it may be a NULL pointer. If it is not NULL, then all entries in +** the sqlite_stat1 and (if applicable) sqlite_stat3 tables associated +** with the named table are deleted. If zWhere==0, then code is generated +** to delete all stat table entries. +*/ +static void openStatTable( + Parse *pParse, /* Parsing context */ + int iDb, /* The database we are looking in */ + int iStatCur, /* Open the sqlite_stat1 table on this cursor */ + const char *zWhere, /* Delete entries for this table or index */ + const char *zWhereType /* Either "tbl" or "idx" */ +){ + static const struct { + const char *zName; + const char *zCols; + } aTable[] = { + { "sqlite_stat1", "tbl,idx,stat" }, +#ifdef SQLITE_ENABLE_STAT3 + { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, +#endif + }; + + int aRoot[] = {0, 0}; + u8 aCreateTbl[] = {0, 0}; + + int i; + sqlite3 *db = pParse->db; + Db *pDb; + Vdbe *v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + assert( sqlite3BtreeHoldsAllMutexes(db) ); + assert( sqlite3VdbeDb(v)==db ); + pDb = &db->aDb[iDb]; + + /* Create new statistic tables if they do not exist, or clear them + ** if they do already exist. + */ + for(i=0; izName))==0 ){ + /* The sqlite_stat[12] table does not exist. Create it. Note that a + ** side-effect of the CREATE TABLE statement is to leave the rootpage + ** of the new table in register pParse->regRoot. This is important + ** because the OpenWrite opcode below will be needing it. */ + sqlite3NestedParse(pParse, + "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols + ); + aRoot[i] = pParse->regRoot; + aCreateTbl[i] = 1; + }else{ + /* The table already exists. If zWhere is not NULL, delete all entries + ** associated with the table zWhere. If zWhere is NULL, delete the + ** entire contents of the table. */ + aRoot[i] = pStat->tnum; + sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); + if( zWhere ){ + sqlite3NestedParse(pParse, + "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere + ); + }else{ + /* The sqlite_stat[12] table already exists. Delete all rows. */ + sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); + } + } + } + + /* Open the sqlite_stat[13] tables for writing. */ + for(i=0; ia[0])*mxSample; + p = sqlite3_malloc( n ); + if( p==0 ){ + sqlite3_result_error_nomem(context); + return; + } + memset(p, 0, n); + p->a = (struct Stat3Sample*)&p[1]; + p->nRow = nRow; + p->mxSample = mxSample; + p->nPSample = p->nRow/(mxSample/3+1) + 1; + sqlite3_randomness(sizeof(p->iPrn), &p->iPrn); + sqlite3_result_blob(context, p, sizeof(p), sqlite3_free); +} +static const FuncDef stat3InitFuncdef = { + 2, /* nArg */ + SQLITE_UTF8, /* iPrefEnc */ + 0, /* flags */ + 0, /* pUserData */ + 0, /* pNext */ + stat3Init, /* xFunc */ + 0, /* xStep */ + 0, /* xFinalize */ + "stat3_init", /* zName */ + 0, /* pHash */ + 0 /* pDestructor */ +}; + + +/* +** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function. The +** arguments describe a single key instance. This routine makes the +** decision about whether or not to retain this key for the sqlite_stat3 +** table. +** +** The return value is NULL. +*/ +static void stat3Push( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[4]); + tRowcnt nEq = sqlite3_value_int64(argv[0]); + tRowcnt nLt = sqlite3_value_int64(argv[1]); + tRowcnt nDLt = sqlite3_value_int64(argv[2]); + i64 rowid = sqlite3_value_int64(argv[3]); + u8 isPSample = 0; + u8 doInsert = 0; + int iMin = p->iMin; + struct Stat3Sample *pSample; + int i; + u32 h; + + UNUSED_PARAMETER(context); + UNUSED_PARAMETER(argc); + if( nEq==0 ) return; + h = p->iPrn = p->iPrn*1103515245 + 12345; + if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){ + doInsert = isPSample = 1; + }else if( p->nSamplemxSample ){ + doInsert = 1; + }else{ + if( nEq>p->a[iMin].nEq || (nEq==p->a[iMin].nEq && h>p->a[iMin].iHash) ){ + doInsert = 1; + } + } + if( !doInsert ) return; + if( p->nSample==p->mxSample ){ + assert( p->nSample - iMin - 1 >= 0 ); + memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1)); + pSample = &p->a[p->nSample-1]; + }else{ + pSample = &p->a[p->nSample++]; + } + pSample->iRowid = rowid; + pSample->nEq = nEq; + pSample->nLt = nLt; + pSample->nDLt = nDLt; + pSample->iHash = h; + pSample->isPSample = isPSample; + + /* Find the new minimum */ + if( p->nSample==p->mxSample ){ + pSample = p->a; + i = 0; + while( pSample->isPSample ){ + i++; + pSample++; + assert( inSample ); + } + nEq = pSample->nEq; + h = pSample->iHash; + iMin = i; + for(i++, pSample++; inSample; i++, pSample++){ + if( pSample->isPSample ) continue; + if( pSample->nEqnEq==nEq && pSample->iHashnEq; + h = pSample->iHash; + } + } + p->iMin = iMin; + } +} +static const FuncDef stat3PushFuncdef = { + 5, /* nArg */ + SQLITE_UTF8, /* iPrefEnc */ + 0, /* flags */ + 0, /* pUserData */ + 0, /* pNext */ + stat3Push, /* xFunc */ + 0, /* xStep */ + 0, /* xFinalize */ + "stat3_push", /* zName */ + 0, /* pHash */ + 0 /* pDestructor */ +}; + +/* +** Implementation of the stat3_get(P,N,...) SQL function. This routine is +** used to query the results. Content is returned for the Nth sqlite_stat3 +** row where N is between 0 and S-1 and S is the number of samples. The +** value returned depends on the number of arguments. +** +** argc==2 result: rowid +** argc==3 result: nEq +** argc==4 result: nLt +** argc==5 result: nDLt +*/ +static void stat3Get( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int n = sqlite3_value_int(argv[1]); + Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[0]); + + assert( p!=0 ); + if( p->nSample<=n ) return; + switch( argc ){ + case 2: sqlite3_result_int64(context, p->a[n].iRowid); break; + case 3: sqlite3_result_int64(context, p->a[n].nEq); break; + case 4: sqlite3_result_int64(context, p->a[n].nLt); break; + default: sqlite3_result_int64(context, p->a[n].nDLt); break; + } +} +static const FuncDef stat3GetFuncdef = { + -1, /* nArg */ + SQLITE_UTF8, /* iPrefEnc */ + 0, /* flags */ + 0, /* pUserData */ + 0, /* pNext */ + stat3Get, /* xFunc */ + 0, /* xStep */ + 0, /* xFinalize */ + "stat3_get", /* zName */ + 0, /* pHash */ + 0 /* pDestructor */ +}; +#endif /* SQLITE_ENABLE_STAT3 */ + + + + +/* +** Generate code to do an analysis of all indices associated with +** a single table. +*/ +static void analyzeOneTable( + Parse *pParse, /* Parser context */ + Table *pTab, /* Table whose indices are to be analyzed */ + Index *pOnlyIdx, /* If not NULL, only analyze this one index */ + int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ + int iMem /* Available memory locations begin here */ +){ + sqlite3 *db = pParse->db; /* Database handle */ + Index *pIdx; /* An index to being analyzed */ + int iIdxCur; /* Cursor open on index being analyzed */ + Vdbe *v; /* The virtual machine being built up */ + int i; /* Loop counter */ + int topOfLoop; /* The top of the loop */ + int endOfLoop; /* The end of the loop */ + int jZeroRows = -1; /* Jump from here if number of rows is zero */ + int iDb; /* Index of database containing pTab */ + int regTabname = iMem++; /* Register containing table name */ + int regIdxname = iMem++; /* Register containing index name */ + int regStat1 = iMem++; /* The stat column of sqlite_stat1 */ +#ifdef SQLITE_ENABLE_STAT3 + int regNumEq = regStat1; /* Number of instances. Same as regStat1 */ + int regNumLt = iMem++; /* Number of keys less than regSample */ + int regNumDLt = iMem++; /* Number of distinct keys less than regSample */ + int regSample = iMem++; /* The next sample value */ + int regRowid = regSample; /* Rowid of a sample */ + int regAccum = iMem++; /* Register to hold Stat3Accum object */ + int regLoop = iMem++; /* Loop counter */ + int regCount = iMem++; /* Number of rows in the table or index */ + int regTemp1 = iMem++; /* Intermediate register */ + int regTemp2 = iMem++; /* Intermediate register */ + int once = 1; /* One-time initialization */ + int shortJump = 0; /* Instruction address */ + int iTabCur = pParse->nTab++; /* Table cursor */ +#endif + int regCol = iMem++; /* Content of a column in analyzed table */ + int regRec = iMem++; /* Register holding completed record */ + int regTemp = iMem++; /* Temporary use register */ + int regNewRowid = iMem++; /* Rowid for the inserted record */ + + + v = sqlite3GetVdbe(pParse); + if( v==0 || NEVER(pTab==0) ){ + return; + } + if( pTab->tnum==0 ){ + /* Do not gather statistics on views or virtual tables */ + return; + } + if( memcmp(pTab->zName, "sqlite_", 7)==0 ){ + /* Do not gather statistics on system tables */ + return; + } + assert( sqlite3BtreeHoldsAllMutexes(db) ); + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( iDb>=0 ); + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); +#ifndef SQLITE_OMIT_AUTHORIZATION + if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, + db->aDb[iDb].zName ) ){ + return; + } +#endif + + /* Establish a read-lock on the table at the shared-cache level. */ + sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); + + iIdxCur = pParse->nTab++; + sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + int nCol; + KeyInfo *pKey; + int addrIfNot = 0; /* address of OP_IfNot */ + int *aChngAddr; /* Array of jump instruction addresses */ + + if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; + VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName)); + nCol = pIdx->nColumn; + aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol); + if( aChngAddr==0 ) continue; + pKey = sqlite3IndexKeyinfo(pParse, pIdx); + if( iMem+1+(nCol*2)>pParse->nMem ){ + pParse->nMem = iMem+1+(nCol*2); + } + + /* Open a cursor to the index to be analyzed. */ + assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); + sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb, + (char *)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pIdx->zName)); + + /* Populate the register containing the index name. */ + sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0); + +#ifdef SQLITE_ENABLE_STAT3 + if( once ){ + once = 0; + sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); + } + sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount); + sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1); + sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq); + sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt); + sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt); + sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum, + (char*)&stat3InitFuncdef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, 2); +#endif /* SQLITE_ENABLE_STAT3 */ + + /* The block of memory cells initialized here is used as follows. + ** + ** iMem: + ** The total number of rows in the table. + ** + ** iMem+1 .. iMem+nCol: + ** Number of distinct entries in index considering the + ** left-most N columns only, where N is between 1 and nCol, + ** inclusive. + ** + ** iMem+nCol+1 .. Mem+2*nCol: + ** Previous value of indexed columns, from left to right. + ** + ** Cells iMem through iMem+nCol are initialized to 0. The others are + ** initialized to contain an SQL NULL. + */ + for(i=0; i<=nCol; i++){ + sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i); + } + for(i=0; iazColl!=0 ); + assert( pIdx->azColl[i]!=0 ); + pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); + aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1, + (char*)pColl, P4_COLLSEQ); + sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); + VdbeComment((v, "jump if column %d changed", i)); +#ifdef SQLITE_ENABLE_STAT3 + if( i==0 ){ + sqlite3VdbeAddOp2(v, OP_AddImm, regNumEq, 1); + VdbeComment((v, "incr repeat count")); + } +#endif + } + sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop); + for(i=0; inColumn, regRowid); + sqlite3VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt); + sqlite3VdbeAddOp2(v, OP_AddImm, regNumDLt, 1); + sqlite3VdbeAddOp2(v, OP_Integer, 1, regNumEq); +#endif + } + sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1); + sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1); + } + sqlite3DbFree(db, aChngAddr); + + /* Always jump here after updating the iMem+1...iMem+1+nCol counters */ + sqlite3VdbeResolveLabel(v, endOfLoop); + + sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop); + sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); +#ifdef SQLITE_ENABLE_STAT3 + sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2, + (char*)&stat3PushFuncdef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, 5); + sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop); + shortJump = + sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1); + sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1, + (char*)&stat3GetFuncdef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, 2); + sqlite3VdbeAddOp1(v, OP_IsNull, regTemp1); + sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1); + sqlite3VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample); + sqlite3ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample); + sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq, + (char*)&stat3GetFuncdef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, 3); + sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt, + (char*)&stat3GetFuncdef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, 4); + sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt, + (char*)&stat3GetFuncdef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, 5); + sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0); + sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); + sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid); + sqlite3VdbeAddOp2(v, OP_Goto, 0, shortJump); + sqlite3VdbeJumpHere(v, shortJump+2); +#endif + + /* Store the results in sqlite_stat1. + ** + ** The result is a single row of the sqlite_stat1 table. The first + ** two columns are the names of the table and index. The third column + ** is a string composed of a list of integer statistics about the + ** index. The first integer in the list is the total number of entries + ** in the index. There is one additional integer in the list for each + ** column of the table. This additional integer is a guess of how many + ** rows of the table the index will select. If D is the count of distinct + ** values and K is the total number of rows, then the integer is computed + ** as: + ** + ** I = (K+D-1)/D + ** + ** If K==0 then no entry is made into the sqlite_stat1 table. + ** If K>0 then it is always the case the D>0 so division by zero + ** is never possible. + */ + sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1); + if( jZeroRows<0 ){ + jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem); + } + for(i=0; ipIndex==0 ){ + sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb); + VdbeComment((v, "%s", pTab->zName)); + sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1); + sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); + jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); + }else{ + sqlite3VdbeJumpHere(v, jZeroRows); + jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto); + } + sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); + sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); + sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); + sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + if( pParse->nMemnMem = regRec; + sqlite3VdbeJumpHere(v, jZeroRows); +} + + +/* +** Generate code that will cause the most recent index analysis to +** be loaded into internal hash tables where is can be used. +*/ +static void loadAnalysis(Parse *pParse, int iDb){ + Vdbe *v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); + } +} + +/* +** Generate code that will do an analysis of an entire database +*/ +static void analyzeDatabase(Parse *pParse, int iDb){ + sqlite3 *db = pParse->db; + Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ + HashElem *k; + int iStatCur; + int iMem; + + sqlite3BeginWriteOperation(pParse, 0, iDb); + iStatCur = pParse->nTab; + pParse->nTab += 3; + openStatTable(pParse, iDb, iStatCur, 0, 0); + iMem = pParse->nMem+1; + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ + Table *pTab = (Table*)sqliteHashData(k); + analyzeOneTable(pParse, pTab, 0, iStatCur, iMem); + } + loadAnalysis(pParse, iDb); +} + +/* +** Generate code that will do an analysis of a single table in +** a database. If pOnlyIdx is not NULL then it is a single index +** in pTab that should be analyzed. +*/ +static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ + int iDb; + int iStatCur; + + assert( pTab!=0 ); + assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + sqlite3BeginWriteOperation(pParse, 0, iDb); + iStatCur = pParse->nTab; + pParse->nTab += 3; + if( pOnlyIdx ){ + openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); + }else{ + openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); + } + analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1); + loadAnalysis(pParse, iDb); +} + +/* +** Generate code for the ANALYZE command. The parser calls this routine +** when it recognizes an ANALYZE command. +** +** ANALYZE -- 1 +** ANALYZE -- 2 +** ANALYZE ?.? -- 3 +** +** Form 1 causes all indices in all attached databases to be analyzed. +** Form 2 analyzes all indices the single database named. +** Form 3 analyzes all indices associated with the named table. +*/ +void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ + sqlite3 *db = pParse->db; + int iDb; + int i; + char *z, *zDb; + Table *pTab; + Index *pIdx; + Token *pTableName; + + /* Read the database schema. If an error occurs, leave an error message + ** and code in pParse and return NULL. */ + assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + return; + } + + assert( pName2!=0 || pName1==0 ); + if( pName1==0 ){ + /* Form 1: Analyze everything */ + for(i=0; inDb; i++){ + if( i==1 ) continue; /* Do not analyze the TEMP database */ + analyzeDatabase(pParse, i); + } + }else if( pName2->n==0 ){ + /* Form 2: Analyze the database or table named */ + iDb = sqlite3FindDb(db, pName1); + if( iDb>=0 ){ + analyzeDatabase(pParse, iDb); + }else{ + z = sqlite3NameFromToken(db, pName1); + if( z ){ + if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ + analyzeTable(pParse, pIdx->pTable, pIdx); + }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ + analyzeTable(pParse, pTab, 0); + } + sqlite3DbFree(db, z); + } + } + }else{ + /* Form 3: Analyze the fully qualified table name */ + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); + if( iDb>=0 ){ + zDb = db->aDb[iDb].zName; + z = sqlite3NameFromToken(db, pTableName); + if( z ){ + if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ + analyzeTable(pParse, pIdx->pTable, pIdx); + }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ + analyzeTable(pParse, pTab, 0); + } + sqlite3DbFree(db, z); + } + } + } +} + +/* +** Used to pass information from the analyzer reader through to the +** callback routine. +*/ +typedef struct analysisInfo analysisInfo; +struct analysisInfo { + sqlite3 *db; + const char *zDatabase; +}; + +/* +** This callback is invoked once for each index when reading the +** sqlite_stat1 table. +** +** argv[0] = name of the table +** argv[1] = name of the index (might be NULL) +** argv[2] = results of analysis - on integer for each column +** +** Entries for which argv[1]==NULL simply record the number of rows in +** the table. +*/ +static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ + analysisInfo *pInfo = (analysisInfo*)pData; + Index *pIndex; + Table *pTable; + int i, c, n; + tRowcnt v; + const char *z; + + assert( argc==3 ); + UNUSED_PARAMETER2(NotUsed, argc); + + if( argv==0 || argv[0]==0 || argv[2]==0 ){ + return 0; + } + pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); + if( pTable==0 ){ + return 0; + } + if( argv[1] ){ + pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); + }else{ + pIndex = 0; + } + n = pIndex ? pIndex->nColumn : 0; + z = argv[2]; + for(i=0; *z && i<=n; i++){ + v = 0; + while( (c=z[0])>='0' && c<='9' ){ + v = v*10 + c - '0'; + z++; + } + if( i==0 ) pTable->nRowEst = v; + if( pIndex==0 ) break; + pIndex->aiRowEst[i] = v; + if( *z==' ' ) z++; + if( memcmp(z, "unordered", 10)==0 ){ + pIndex->bUnordered = 1; + break; + } + } + return 0; +} + +/* +** If the Index.aSample variable is not NULL, delete the aSample[] array +** and its contents. +*/ +void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ +#ifdef SQLITE_ENABLE_STAT3 + if( pIdx->aSample ){ + int j; + for(j=0; jnSample; j++){ + IndexSample *p = &pIdx->aSample[j]; + if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){ + sqlite3DbFree(db, p->u.z); + } + } + sqlite3DbFree(db, pIdx->aSample); + } + if( db && db->pnBytesFreed==0 ){ + pIdx->nSample = 0; + pIdx->aSample = 0; + } +#else + UNUSED_PARAMETER(db); + UNUSED_PARAMETER(pIdx); +#endif +} + +#ifdef SQLITE_ENABLE_STAT3 +/* +** Load content from the sqlite_stat3 table into the Index.aSample[] +** arrays of all indices. +*/ +static int loadStat3(sqlite3 *db, const char *zDb){ + int rc; /* Result codes from subroutines */ + sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ + char *zSql; /* Text of the SQL statement */ + Index *pPrevIdx = 0; /* Previous index in the loop */ + int idx = 0; /* slot in pIdx->aSample[] for next sample */ + int eType; /* Datatype of a sample */ + IndexSample *pSample; /* A slot in pIdx->aSample[] */ + + if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){ + return SQLITE_OK; + } + + zSql = sqlite3MPrintf(db, + "SELECT idx,count(*) FROM %Q.sqlite_stat3" + " GROUP BY idx", zDb); + if( !zSql ){ + return SQLITE_NOMEM; + } + rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); + sqlite3DbFree(db, zSql); + if( rc ) return rc; + + while( sqlite3_step(pStmt)==SQLITE_ROW ){ + char *zIndex; /* Index name */ + Index *pIdx; /* Pointer to the index object */ + int nSample; /* Number of samples */ + + zIndex = (char *)sqlite3_column_text(pStmt, 0); + if( zIndex==0 ) continue; + nSample = sqlite3_column_int(pStmt, 1); + pIdx = sqlite3FindIndex(db, zIndex, zDb); + if( pIdx==0 ) continue; + assert( pIdx->nSample==0 ); + pIdx->nSample = nSample; + pIdx->aSample = sqlite3MallocZero( nSample*sizeof(IndexSample) ); + pIdx->avgEq = pIdx->aiRowEst[1]; + if( pIdx->aSample==0 ){ + db->mallocFailed = 1; + sqlite3_finalize(pStmt); + return SQLITE_NOMEM; + } + } + rc = sqlite3_finalize(pStmt); + if( rc ) return rc; + + zSql = sqlite3MPrintf(db, + "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb); + if( !zSql ){ + return SQLITE_NOMEM; + } + rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); + sqlite3DbFree(db, zSql); + if( rc ) return rc; + + while( sqlite3_step(pStmt)==SQLITE_ROW ){ + char *zIndex; /* Index name */ + Index *pIdx; /* Pointer to the index object */ + int i; /* Loop counter */ + tRowcnt sumEq; /* Sum of the nEq values */ + + zIndex = (char *)sqlite3_column_text(pStmt, 0); + if( zIndex==0 ) continue; + pIdx = sqlite3FindIndex(db, zIndex, zDb); + if( pIdx==0 ) continue; + if( pIdx==pPrevIdx ){ + idx++; + }else{ + pPrevIdx = pIdx; + idx = 0; + } + assert( idxnSample ); + pSample = &pIdx->aSample[idx]; + pSample->nEq = (tRowcnt)sqlite3_column_int64(pStmt, 1); + pSample->nLt = (tRowcnt)sqlite3_column_int64(pStmt, 2); + pSample->nDLt = (tRowcnt)sqlite3_column_int64(pStmt, 3); + if( idx==pIdx->nSample-1 ){ + if( pSample->nDLt>0 ){ + for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq; + pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt; + } + if( pIdx->avgEq<=0 ) pIdx->avgEq = 1; + } + eType = sqlite3_column_type(pStmt, 4); + pSample->eType = (u8)eType; + switch( eType ){ + case SQLITE_INTEGER: { + pSample->u.i = sqlite3_column_int64(pStmt, 4); + break; + } + case SQLITE_FLOAT: { + pSample->u.r = sqlite3_column_double(pStmt, 4); + break; + } + case SQLITE_NULL: { + break; + } + default: assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); { + const char *z = (const char *)( + (eType==SQLITE_BLOB) ? + sqlite3_column_blob(pStmt, 4): + sqlite3_column_text(pStmt, 4) + ); + int n = z ? sqlite3_column_bytes(pStmt, 4) : 0; + pSample->nByte = n; + if( n < 1){ + pSample->u.z = 0; + }else{ + pSample->u.z = sqlite3Malloc(n); + if( pSample->u.z==0 ){ + db->mallocFailed = 1; + sqlite3_finalize(pStmt); + return SQLITE_NOMEM; + } + memcpy(pSample->u.z, z, n); + } + } + } + } + return sqlite3_finalize(pStmt); +} +#endif /* SQLITE_ENABLE_STAT3 */ + +/* +** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The +** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] +** arrays. The contents of sqlite_stat3 are used to populate the +** Index.aSample[] arrays. +** +** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR +** is returned. In this case, even if SQLITE_ENABLE_STAT3 was defined +** during compilation and the sqlite_stat3 table is present, no data is +** read from it. +** +** If SQLITE_ENABLE_STAT3 was defined during compilation and the +** sqlite_stat3 table is not present in the database, SQLITE_ERROR is +** returned. However, in this case, data is read from the sqlite_stat1 +** table (if it is present) before returning. +** +** If an OOM error occurs, this function always sets db->mallocFailed. +** This means if the caller does not care about other errors, the return +** code may be ignored. +*/ +int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ + analysisInfo sInfo; + HashElem *i; + char *zSql; + int rc; + + assert( iDb>=0 && iDbnDb ); + assert( db->aDb[iDb].pBt!=0 ); + + /* Clear any prior statistics */ + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ + Index *pIdx = sqliteHashData(i); + sqlite3DefaultRowEst(pIdx); +#ifdef SQLITE_ENABLE_STAT3 + sqlite3DeleteIndexSamples(db, pIdx); + pIdx->aSample = 0; +#endif + } + + /* Check to make sure the sqlite_stat1 table exists */ + sInfo.db = db; + sInfo.zDatabase = db->aDb[iDb].zName; + if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ + return SQLITE_ERROR; + } + + /* Load new statistics out of the sqlite_stat1 table */ + zSql = sqlite3MPrintf(db, + "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); + if( zSql==0 ){ + rc = SQLITE_NOMEM; + }else{ + rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); + sqlite3DbFree(db, zSql); + } + + + /* Load the statistics from the sqlite_stat3 table. */ +#ifdef SQLITE_ENABLE_STAT3 + if( rc==SQLITE_OK ){ + rc = loadStat3(db, sInfo.zDatabase); + } +#endif + + if( rc==SQLITE_NOMEM ){ + db->mallocFailed = 1; + } + return rc; +} + + +#endif /* SQLITE_OMIT_ANALYZE */ diff --git a/src/attach.c b/src/attach.c new file mode 100644 index 0000000..18f8823 --- /dev/null +++ b/src/attach.c @@ -0,0 +1,557 @@ +/* +** 2003 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the ATTACH and DETACH commands. +*/ +#include "sqliteInt.h" + +#ifndef SQLITE_OMIT_ATTACH +/* +** Resolve an expression that was part of an ATTACH or DETACH statement. This +** is slightly different from resolving a normal SQL expression, because simple +** identifiers are treated as strings, not possible column names or aliases. +** +** i.e. if the parser sees: +** +** ATTACH DATABASE abc AS def +** +** it treats the two expressions as literal strings 'abc' and 'def' instead of +** looking for columns of the same name. +** +** This only applies to the root node of pExpr, so the statement: +** +** ATTACH DATABASE abc||def AS 'db2' +** +** will fail because neither abc or def can be resolved. +*/ +static int resolveAttachExpr(NameContext *pName, Expr *pExpr) +{ + int rc = SQLITE_OK; + if( pExpr ){ + if( pExpr->op!=TK_ID ){ + rc = sqlite3ResolveExprNames(pName, pExpr); + if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){ + sqlite3ErrorMsg(pName->pParse, "invalid name: \"%s\"", pExpr->u.zToken); + return SQLITE_ERROR; + } + }else{ + pExpr->op = TK_STRING; + } + } + return rc; +} + +/* +** An SQL user-function registered to do the work of an ATTACH statement. The +** three arguments to the function come directly from an attach statement: +** +** ATTACH DATABASE x AS y KEY z +** +** SELECT sqlite_attach(x, y, z) +** +** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the +** third argument. +*/ +static void attachFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **argv +){ + int i; + int rc = 0; + sqlite3 *db = sqlite3_context_db_handle(context); + const char *zName; + const char *zFile; + char *zPath = 0; + char *zErr = 0; + unsigned int flags; + Db *aNew; + char *zErrDyn = 0; + sqlite3_vfs *pVfs; + + UNUSED_PARAMETER(NotUsed); + + zFile = (const char *)sqlite3_value_text(argv[0]); + zName = (const char *)sqlite3_value_text(argv[1]); + if( zFile==0 ) zFile = ""; + if( zName==0 ) zName = ""; + + /* Check for the following errors: + ** + ** * Too many attached databases, + ** * Transaction currently open + ** * Specified database name already being used. + */ + if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){ + zErrDyn = sqlite3MPrintf(db, "too many attached databases - max %d", + db->aLimit[SQLITE_LIMIT_ATTACHED] + ); + goto attach_error; + } + if( !db->autoCommit ){ + zErrDyn = sqlite3MPrintf(db, "cannot ATTACH database within transaction"); + goto attach_error; + } + for(i=0; inDb; i++){ + char *z = db->aDb[i].zName; + assert( z && zName ); + if( sqlite3StrICmp(z, zName)==0 ){ + zErrDyn = sqlite3MPrintf(db, "database %s is already in use", zName); + goto attach_error; + } + } + + /* Allocate the new entry in the db->aDb[] array and initialise the schema + ** hash tables. + */ + if( db->aDb==db->aDbStatic ){ + aNew = sqlite3DbMallocRaw(db, sizeof(db->aDb[0])*3 ); + if( aNew==0 ) return; + memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2); + }else{ + aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) ); + if( aNew==0 ) return; + } + db->aDb = aNew; + aNew = &db->aDb[db->nDb]; + memset(aNew, 0, sizeof(*aNew)); + + /* Open the database file. If the btree is successfully opened, use + ** it to obtain the database schema. At this point the schema may + ** or may not be initialised. + */ + flags = db->openFlags; + rc = sqlite3ParseUri(db->pVfs->zName, zFile, &flags, &pVfs, &zPath, &zErr); + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; + sqlite3_result_error(context, zErr, -1); + sqlite3_free(zErr); + return; + } + assert( pVfs ); + flags |= SQLITE_OPEN_MAIN_DB; + rc = sqlite3BtreeOpen(pVfs, zPath, db, &aNew->pBt, 0, flags); + sqlite3_free( zPath ); + db->nDb++; + if( rc==SQLITE_CONSTRAINT ){ + rc = SQLITE_ERROR; + zErrDyn = sqlite3MPrintf(db, "database is already attached"); + }else if( rc==SQLITE_OK ){ + Pager *pPager; + aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt); + if( !aNew->pSchema ){ + rc = SQLITE_NOMEM; + }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){ + zErrDyn = sqlite3MPrintf(db, + "attached databases must use the same text encoding as main database"); + rc = SQLITE_ERROR; + } + pPager = sqlite3BtreePager(aNew->pBt); + sqlite3PagerLockingMode(pPager, db->dfltLockMode); + sqlite3BtreeSecureDelete(aNew->pBt, + sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) ); + } + aNew->safety_level = 3; + aNew->zName = sqlite3DbStrDup(db, zName); + if( rc==SQLITE_OK && aNew->zName==0 ){ + rc = SQLITE_NOMEM; + } + + +#ifdef SQLITE_HAS_CODEC + if( rc==SQLITE_OK ){ + extern int sqlite3CodecAttach(sqlite3*, int, const void*, int); + extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); + int nKey; + char *zKey; + int t = sqlite3_value_type(argv[2]); + switch( t ){ + case SQLITE_INTEGER: + case SQLITE_FLOAT: + zErrDyn = sqlite3DbStrDup(db, "Invalid key value"); + rc = SQLITE_ERROR; + break; + + case SQLITE_TEXT: + case SQLITE_BLOB: + nKey = sqlite3_value_bytes(argv[2]); + zKey = (char *)sqlite3_value_blob(argv[2]); + rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); + break; + + case SQLITE_NULL: + /* No key specified. Use the key from the main database */ + sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); + if( nKey>0 || sqlite3BtreeGetReserve(db->aDb[0].pBt)>0 ){ + rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); + } + break; + } + } +#endif + + /* If the file was opened successfully, read the schema for the new database. + ** If this fails, or if opening the file failed, then close the file and + ** remove the entry from the db->aDb[] array. i.e. put everything back the way + ** we found it. + */ + if( rc==SQLITE_OK ){ + sqlite3BtreeEnterAll(db); + rc = sqlite3Init(db, &zErrDyn); + sqlite3BtreeLeaveAll(db); + } + if( rc ){ + int iDb = db->nDb - 1; + assert( iDb>=2 ); + if( db->aDb[iDb].pBt ){ + sqlite3BtreeClose(db->aDb[iDb].pBt); + db->aDb[iDb].pBt = 0; + db->aDb[iDb].pSchema = 0; + } + sqlite3ResetInternalSchema(db, -1); + db->nDb = iDb; + if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ + db->mallocFailed = 1; + sqlite3DbFree(db, zErrDyn); + zErrDyn = sqlite3MPrintf(db, "out of memory"); + }else if( zErrDyn==0 ){ + zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile); + } + goto attach_error; + } + + return; + +attach_error: + /* Return an error if we get here */ + if( zErrDyn ){ + sqlite3_result_error(context, zErrDyn, -1); + sqlite3DbFree(db, zErrDyn); + } + if( rc ) sqlite3_result_error_code(context, rc); +} + +/* +** An SQL user-function registered to do the work of an DETACH statement. The +** three arguments to the function come directly from a detach statement: +** +** DETACH DATABASE x +** +** SELECT sqlite_detach(x) +*/ +static void detachFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **argv +){ + const char *zName = (const char *)sqlite3_value_text(argv[0]); + sqlite3 *db = sqlite3_context_db_handle(context); + int i; + Db *pDb = 0; + char zErr[128]; + + UNUSED_PARAMETER(NotUsed); + + if( zName==0 ) zName = ""; + for(i=0; inDb; i++){ + pDb = &db->aDb[i]; + if( pDb->pBt==0 ) continue; + if( sqlite3StrICmp(pDb->zName, zName)==0 ) break; + } + + if( i>=db->nDb ){ + sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName); + goto detach_error; + } + if( i<2 ){ + sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName); + goto detach_error; + } + if( !db->autoCommit ){ + sqlite3_snprintf(sizeof(zErr), zErr, + "cannot DETACH database within transaction"); + goto detach_error; + } + if( sqlite3BtreeIsInReadTrans(pDb->pBt) || sqlite3BtreeIsInBackup(pDb->pBt) ){ + sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName); + goto detach_error; + } + + sqlite3BtreeClose(pDb->pBt); + pDb->pBt = 0; + pDb->pSchema = 0; + sqlite3ResetInternalSchema(db, -1); + return; + +detach_error: + sqlite3_result_error(context, zErr, -1); +} + +/* +** This procedure generates VDBE code for a single invocation of either the +** sqlite_detach() or sqlite_attach() SQL user functions. +*/ +static void codeAttach( + Parse *pParse, /* The parser context */ + int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */ + FuncDef const *pFunc,/* FuncDef wrapper for detachFunc() or attachFunc() */ + Expr *pAuthArg, /* Expression to pass to authorization callback */ + Expr *pFilename, /* Name of database file */ + Expr *pDbname, /* Name of the database to use internally */ + Expr *pKey /* Database key for encryption extension */ +){ + int rc; + NameContext sName; + Vdbe *v; + sqlite3* db = pParse->db; + int regArgs; + + memset(&sName, 0, sizeof(NameContext)); + sName.pParse = pParse; + + if( + SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) || + SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) || + SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey)) + ){ + pParse->nErr++; + goto attach_end; + } + +#ifndef SQLITE_OMIT_AUTHORIZATION + if( pAuthArg ){ + char *zAuthArg; + if( pAuthArg->op==TK_STRING ){ + zAuthArg = pAuthArg->u.zToken; + }else{ + zAuthArg = 0; + } + rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0); + if(rc!=SQLITE_OK ){ + goto attach_end; + } + } +#endif /* SQLITE_OMIT_AUTHORIZATION */ + + + v = sqlite3GetVdbe(pParse); + regArgs = sqlite3GetTempRange(pParse, 4); + sqlite3ExprCode(pParse, pFilename, regArgs); + sqlite3ExprCode(pParse, pDbname, regArgs+1); + sqlite3ExprCode(pParse, pKey, regArgs+2); + + assert( v || db->mallocFailed ); + if( v ){ + sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-pFunc->nArg, regArgs+3); + assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg ); + sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg)); + sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF); + + /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this + ** statement only). For DETACH, set it to false (expire all existing + ** statements). + */ + sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH)); + } + +attach_end: + sqlite3ExprDelete(db, pFilename); + sqlite3ExprDelete(db, pDbname); + sqlite3ExprDelete(db, pKey); +} + +/* +** Called by the parser to compile a DETACH statement. +** +** DETACH pDbname +*/ +void sqlite3Detach(Parse *pParse, Expr *pDbname){ + static const FuncDef detach_func = { + 1, /* nArg */ + SQLITE_UTF8, /* iPrefEnc */ + 0, /* flags */ + 0, /* pUserData */ + 0, /* pNext */ + detachFunc, /* xFunc */ + 0, /* xStep */ + 0, /* xFinalize */ + "sqlite_detach", /* zName */ + 0, /* pHash */ + 0 /* pDestructor */ + }; + codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname); +} + +/* +** Called by the parser to compile an ATTACH statement. +** +** ATTACH p AS pDbname KEY pKey +*/ +void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){ + static const FuncDef attach_func = { + 3, /* nArg */ + SQLITE_UTF8, /* iPrefEnc */ + 0, /* flags */ + 0, /* pUserData */ + 0, /* pNext */ + attachFunc, /* xFunc */ + 0, /* xStep */ + 0, /* xFinalize */ + "sqlite_attach", /* zName */ + 0, /* pHash */ + 0 /* pDestructor */ + }; + codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey); +} +#endif /* SQLITE_OMIT_ATTACH */ + +/* +** Initialize a DbFixer structure. This routine must be called prior +** to passing the structure to one of the sqliteFixAAAA() routines below. +** +** The return value indicates whether or not fixation is required. TRUE +** means we do need to fix the database references, FALSE means we do not. +*/ +int sqlite3FixInit( + DbFixer *pFix, /* The fixer to be initialized */ + Parse *pParse, /* Error messages will be written here */ + int iDb, /* This is the database that must be used */ + const char *zType, /* "view", "trigger", or "index" */ + const Token *pName /* Name of the view, trigger, or index */ +){ + sqlite3 *db; + + if( NEVER(iDb<0) || iDb==1 ) return 0; + db = pParse->db; + assert( db->nDb>iDb ); + pFix->pParse = pParse; + pFix->zDb = db->aDb[iDb].zName; + pFix->zType = zType; + pFix->pName = pName; + return 1; +} + +/* +** The following set of routines walk through the parse tree and assign +** a specific database to all table references where the database name +** was left unspecified in the original SQL statement. The pFix structure +** must have been initialized by a prior call to sqlite3FixInit(). +** +** These routines are used to make sure that an index, trigger, or +** view in one database does not refer to objects in a different database. +** (Exception: indices, triggers, and views in the TEMP database are +** allowed to refer to anything.) If a reference is explicitly made +** to an object in a different database, an error message is added to +** pParse->zErrMsg and these routines return non-zero. If everything +** checks out, these routines return 0. +*/ +int sqlite3FixSrcList( + DbFixer *pFix, /* Context of the fixation */ + SrcList *pList /* The Source list to check and modify */ +){ + int i; + const char *zDb; + struct SrcList_item *pItem; + + if( NEVER(pList==0) ) return 0; + zDb = pFix->zDb; + for(i=0, pItem=pList->a; inSrc; i++, pItem++){ + if( pItem->zDatabase==0 ){ + pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb); + }else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){ + sqlite3ErrorMsg(pFix->pParse, + "%s %T cannot reference objects in database %s", + pFix->zType, pFix->pName, pItem->zDatabase); + return 1; + } +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) + if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1; + if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1; +#endif + } + return 0; +} +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) +int sqlite3FixSelect( + DbFixer *pFix, /* Context of the fixation */ + Select *pSelect /* The SELECT statement to be fixed to one database */ +){ + while( pSelect ){ + if( sqlite3FixExprList(pFix, pSelect->pEList) ){ + return 1; + } + if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pSelect->pWhere) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pSelect->pHaving) ){ + return 1; + } + pSelect = pSelect->pPrior; + } + return 0; +} +int sqlite3FixExpr( + DbFixer *pFix, /* Context of the fixation */ + Expr *pExpr /* The expression to be fixed to one database */ +){ + while( pExpr ){ + if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ) break; + if( ExprHasProperty(pExpr, EP_xIsSelect) ){ + if( sqlite3FixSelect(pFix, pExpr->x.pSelect) ) return 1; + }else{ + if( sqlite3FixExprList(pFix, pExpr->x.pList) ) return 1; + } + if( sqlite3FixExpr(pFix, pExpr->pRight) ){ + return 1; + } + pExpr = pExpr->pLeft; + } + return 0; +} +int sqlite3FixExprList( + DbFixer *pFix, /* Context of the fixation */ + ExprList *pList /* The expression to be fixed to one database */ +){ + int i; + struct ExprList_item *pItem; + if( pList==0 ) return 0; + for(i=0, pItem=pList->a; inExpr; i++, pItem++){ + if( sqlite3FixExpr(pFix, pItem->pExpr) ){ + return 1; + } + } + return 0; +} +#endif + +#ifndef SQLITE_OMIT_TRIGGER +int sqlite3FixTriggerStep( + DbFixer *pFix, /* Context of the fixation */ + TriggerStep *pStep /* The trigger step be fixed to one database */ +){ + while( pStep ){ + if( sqlite3FixSelect(pFix, pStep->pSelect) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pStep->pWhere) ){ + return 1; + } + if( sqlite3FixExprList(pFix, pStep->pExprList) ){ + return 1; + } + pStep = pStep->pNext; + } + return 0; +} +#endif diff --git a/src/auth.c b/src/auth.c new file mode 100644 index 0000000..d38bb83 --- /dev/null +++ b/src/auth.c @@ -0,0 +1,249 @@ +/* +** 2003 January 11 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the sqlite3_set_authorizer() +** API. This facility is an optional feature of the library. Embedded +** systems that do not need this facility may omit it by recompiling +** the library with -DSQLITE_OMIT_AUTHORIZATION=1 +*/ +#include "sqliteInt.h" + +/* +** All of the code in this file may be omitted by defining a single +** macro. +*/ +#ifndef SQLITE_OMIT_AUTHORIZATION + +/* +** Set or clear the access authorization function. +** +** The access authorization function is be called during the compilation +** phase to verify that the user has read and/or write access permission on +** various fields of the database. The first argument to the auth function +** is a copy of the 3rd argument to this routine. The second argument +** to the auth function is one of these constants: +** +** SQLITE_CREATE_INDEX +** SQLITE_CREATE_TABLE +** SQLITE_CREATE_TEMP_INDEX +** SQLITE_CREATE_TEMP_TABLE +** SQLITE_CREATE_TEMP_TRIGGER +** SQLITE_CREATE_TEMP_VIEW +** SQLITE_CREATE_TRIGGER +** SQLITE_CREATE_VIEW +** SQLITE_DELETE +** SQLITE_DROP_INDEX +** SQLITE_DROP_TABLE +** SQLITE_DROP_TEMP_INDEX +** SQLITE_DROP_TEMP_TABLE +** SQLITE_DROP_TEMP_TRIGGER +** SQLITE_DROP_TEMP_VIEW +** SQLITE_DROP_TRIGGER +** SQLITE_DROP_VIEW +** SQLITE_INSERT +** SQLITE_PRAGMA +** SQLITE_READ +** SQLITE_SELECT +** SQLITE_TRANSACTION +** SQLITE_UPDATE +** +** The third and fourth arguments to the auth function are the name of +** the table and the column that are being accessed. The auth function +** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If +** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY +** means that the SQL statement will never-run - the sqlite3_exec() call +** will return with an error. SQLITE_IGNORE means that the SQL statement +** should run but attempts to read the specified column will return NULL +** and attempts to write the column will be ignored. +** +** Setting the auth function to NULL disables this hook. The default +** setting of the auth function is NULL. +*/ +int sqlite3_set_authorizer( + sqlite3 *db, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pArg +){ + sqlite3_mutex_enter(db->mutex); + db->xAuth = xAuth; + db->pAuthArg = pArg; + sqlite3ExpirePreparedStatements(db); + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} + +/* +** Write an error message into pParse->zErrMsg that explains that the +** user-supplied authorization function returned an illegal value. +*/ +static void sqliteAuthBadReturnCode(Parse *pParse){ + sqlite3ErrorMsg(pParse, "authorizer malfunction"); + pParse->rc = SQLITE_ERROR; +} + +/* +** Invoke the authorization callback for permission to read column zCol from +** table zTab in database zDb. This function assumes that an authorization +** callback has been registered (i.e. that sqlite3.xAuth is not NULL). +** +** If SQLITE_IGNORE is returned and pExpr is not NULL, then pExpr is changed +** to an SQL NULL expression. Otherwise, if pExpr is NULL, then SQLITE_IGNORE +** is treated as SQLITE_DENY. In this case an error is left in pParse. +*/ +int sqlite3AuthReadCol( + Parse *pParse, /* The parser context */ + const char *zTab, /* Table name */ + const char *zCol, /* Column name */ + int iDb /* Index of containing database. */ +){ + sqlite3 *db = pParse->db; /* Database handle */ + char *zDb = db->aDb[iDb].zName; /* Name of attached database */ + int rc; /* Auth callback return code */ + + rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext); + if( rc==SQLITE_DENY ){ + if( db->nDb>2 || iDb!=0 ){ + sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",zDb,zTab,zCol); + }else{ + sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited", zTab, zCol); + } + pParse->rc = SQLITE_AUTH; + }else if( rc!=SQLITE_IGNORE && rc!=SQLITE_OK ){ + sqliteAuthBadReturnCode(pParse); + } + return rc; +} + +/* +** The pExpr should be a TK_COLUMN expression. The table referred to +** is in pTabList or else it is the NEW or OLD table of a trigger. +** Check to see if it is OK to read this particular column. +** +** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN +** instruction into a TK_NULL. If the auth function returns SQLITE_DENY, +** then generate an error. +*/ +void sqlite3AuthRead( + Parse *pParse, /* The parser context */ + Expr *pExpr, /* The expression to check authorization on */ + Schema *pSchema, /* The schema of the expression */ + SrcList *pTabList /* All table that pExpr might refer to */ +){ + sqlite3 *db = pParse->db; + Table *pTab = 0; /* The table being read */ + const char *zCol; /* Name of the column of the table */ + int iSrc; /* Index in pTabList->a[] of table being read */ + int iDb; /* The index of the database the expression refers to */ + int iCol; /* Index of column in table */ + + if( db->xAuth==0 ) return; + iDb = sqlite3SchemaToIndex(pParse->db, pSchema); + if( iDb<0 ){ + /* An attempt to read a column out of a subquery or other + ** temporary table. */ + return; + } + + assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER ); + if( pExpr->op==TK_TRIGGER ){ + pTab = pParse->pTriggerTab; + }else{ + assert( pTabList ); + for(iSrc=0; ALWAYS(iSrcnSrc); iSrc++){ + if( pExpr->iTable==pTabList->a[iSrc].iCursor ){ + pTab = pTabList->a[iSrc].pTab; + break; + } + } + } + iCol = pExpr->iColumn; + if( NEVER(pTab==0) ) return; + + if( iCol>=0 ){ + assert( iColnCol ); + zCol = pTab->aCol[iCol].zName; + }else if( pTab->iPKey>=0 ){ + assert( pTab->iPKeynCol ); + zCol = pTab->aCol[pTab->iPKey].zName; + }else{ + zCol = "ROWID"; + } + assert( iDb>=0 && iDbnDb ); + if( SQLITE_IGNORE==sqlite3AuthReadCol(pParse, pTab->zName, zCol, iDb) ){ + pExpr->op = TK_NULL; + } +} + +/* +** Do an authorization check using the code and arguments given. Return +** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY +** is returned, then the error count and error message in pParse are +** modified appropriately. +*/ +int sqlite3AuthCheck( + Parse *pParse, + int code, + const char *zArg1, + const char *zArg2, + const char *zArg3 +){ + sqlite3 *db = pParse->db; + int rc; + + /* Don't do any authorization checks if the database is initialising + ** or if the parser is being invoked from within sqlite3_declare_vtab. + */ + if( db->init.busy || IN_DECLARE_VTAB ){ + return SQLITE_OK; + } + + if( db->xAuth==0 ){ + return SQLITE_OK; + } + rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext); + if( rc==SQLITE_DENY ){ + sqlite3ErrorMsg(pParse, "not authorized"); + pParse->rc = SQLITE_AUTH; + }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){ + rc = SQLITE_DENY; + sqliteAuthBadReturnCode(pParse); + } + return rc; +} + +/* +** Push an authorization context. After this routine is called, the +** zArg3 argument to authorization callbacks will be zContext until +** popped. Or if pParse==0, this routine is a no-op. +*/ +void sqlite3AuthContextPush( + Parse *pParse, + AuthContext *pContext, + const char *zContext +){ + assert( pParse ); + pContext->pParse = pParse; + pContext->zAuthContext = pParse->zAuthContext; + pParse->zAuthContext = zContext; +} + +/* +** Pop an authorization context that was previously pushed +** by sqlite3AuthContextPush +*/ +void sqlite3AuthContextPop(AuthContext *pContext){ + if( pContext->pParse ){ + pContext->pParse->zAuthContext = pContext->zAuthContext; + pContext->pParse = 0; + } +} + +#endif /* SQLITE_OMIT_AUTHORIZATION */ diff --git a/src/backup.c b/src/backup.c new file mode 100644 index 0000000..bdf96bd --- /dev/null +++ b/src/backup.c @@ -0,0 +1,716 @@ +/* +** 2009 January 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the implementation of the sqlite3_backup_XXX() +** API functions and the related features. +*/ +#include "sqliteInt.h" +#include "btreeInt.h" + +/* Macro to find the minimum of two numeric values. +*/ +#ifndef MIN +# define MIN(x,y) ((x)<(y)?(x):(y)) +#endif + +/* +** Structure allocated for each backup operation. +*/ +struct sqlite3_backup { + sqlite3* pDestDb; /* Destination database handle */ + Btree *pDest; /* Destination b-tree file */ + u32 iDestSchema; /* Original schema cookie in destination */ + int bDestLocked; /* True once a write-transaction is open on pDest */ + + Pgno iNext; /* Page number of the next source page to copy */ + sqlite3* pSrcDb; /* Source database handle */ + Btree *pSrc; /* Source b-tree file */ + + int rc; /* Backup process error code */ + + /* These two variables are set by every call to backup_step(). They are + ** read by calls to backup_remaining() and backup_pagecount(). + */ + Pgno nRemaining; /* Number of pages left to copy */ + Pgno nPagecount; /* Total number of pages to copy */ + + int isAttached; /* True once backup has been registered with pager */ + sqlite3_backup *pNext; /* Next backup associated with source pager */ +}; + +/* +** THREAD SAFETY NOTES: +** +** Once it has been created using backup_init(), a single sqlite3_backup +** structure may be accessed via two groups of thread-safe entry points: +** +** * Via the sqlite3_backup_XXX() API function backup_step() and +** backup_finish(). Both these functions obtain the source database +** handle mutex and the mutex associated with the source BtShared +** structure, in that order. +** +** * Via the BackupUpdate() and BackupRestart() functions, which are +** invoked by the pager layer to report various state changes in +** the page cache associated with the source database. The mutex +** associated with the source database BtShared structure will always +** be held when either of these functions are invoked. +** +** The other sqlite3_backup_XXX() API functions, backup_remaining() and +** backup_pagecount() are not thread-safe functions. If they are called +** while some other thread is calling backup_step() or backup_finish(), +** the values returned may be invalid. There is no way for a call to +** BackupUpdate() or BackupRestart() to interfere with backup_remaining() +** or backup_pagecount(). +** +** Depending on the SQLite configuration, the database handles and/or +** the Btree objects may have their own mutexes that require locking. +** Non-sharable Btrees (in-memory databases for example), do not have +** associated mutexes. +*/ + +/* +** Return a pointer corresponding to database zDb (i.e. "main", "temp") +** in connection handle pDb. If such a database cannot be found, return +** a NULL pointer and write an error message to pErrorDb. +** +** If the "temp" database is requested, it may need to be opened by this +** function. If an error occurs while doing so, return 0 and write an +** error message to pErrorDb. +*/ +static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){ + int i = sqlite3FindDbName(pDb, zDb); + + if( i==1 ){ + Parse *pParse; + int rc = 0; + pParse = sqlite3StackAllocZero(pErrorDb, sizeof(*pParse)); + if( pParse==0 ){ + sqlite3Error(pErrorDb, SQLITE_NOMEM, "out of memory"); + rc = SQLITE_NOMEM; + }else{ + pParse->db = pDb; + if( sqlite3OpenTempDatabase(pParse) ){ + sqlite3Error(pErrorDb, pParse->rc, "%s", pParse->zErrMsg); + rc = SQLITE_ERROR; + } + sqlite3DbFree(pErrorDb, pParse->zErrMsg); + sqlite3StackFree(pErrorDb, pParse); + } + if( rc ){ + return 0; + } + } + + if( i<0 ){ + sqlite3Error(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb); + return 0; + } + + return pDb->aDb[i].pBt; +} + +/* +** Attempt to set the page size of the destination to match the page size +** of the source. +*/ +static int setDestPgsz(sqlite3_backup *p){ + int rc; + rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0); + return rc; +} + +/* +** Create an sqlite3_backup process to copy the contents of zSrcDb from +** connection handle pSrcDb to zDestDb in pDestDb. If successful, return +** a pointer to the new sqlite3_backup object. +** +** If an error occurs, NULL is returned and an error code and error message +** stored in database handle pDestDb. +*/ +sqlite3_backup *sqlite3_backup_init( + sqlite3* pDestDb, /* Database to write to */ + const char *zDestDb, /* Name of database within pDestDb */ + sqlite3* pSrcDb, /* Database connection to read from */ + const char *zSrcDb /* Name of database within pSrcDb */ +){ + sqlite3_backup *p; /* Value to return */ + + /* Lock the source database handle. The destination database + ** handle is not locked in this routine, but it is locked in + ** sqlite3_backup_step(). The user is required to ensure that no + ** other thread accesses the destination handle for the duration + ** of the backup operation. Any attempt to use the destination + ** database connection while a backup is in progress may cause + ** a malfunction or a deadlock. + */ + sqlite3_mutex_enter(pSrcDb->mutex); + sqlite3_mutex_enter(pDestDb->mutex); + + if( pSrcDb==pDestDb ){ + sqlite3Error( + pDestDb, SQLITE_ERROR, "source and destination must be distinct" + ); + p = 0; + }else { + /* Allocate space for a new sqlite3_backup object... + ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a + ** call to sqlite3_backup_init() and is destroyed by a call to + ** sqlite3_backup_finish(). */ + p = (sqlite3_backup *)sqlite3_malloc(sizeof(sqlite3_backup)); + if( !p ){ + sqlite3Error(pDestDb, SQLITE_NOMEM, 0); + } + } + + /* If the allocation succeeded, populate the new object. */ + if( p ){ + memset(p, 0, sizeof(sqlite3_backup)); + p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb); + p->pDest = findBtree(pDestDb, pDestDb, zDestDb); + p->pDestDb = pDestDb; + p->pSrcDb = pSrcDb; + p->iNext = 1; + p->isAttached = 0; + + if( 0==p->pSrc || 0==p->pDest || setDestPgsz(p)==SQLITE_NOMEM ){ + /* One (or both) of the named databases did not exist or an OOM + ** error was hit. The error has already been written into the + ** pDestDb handle. All that is left to do here is free the + ** sqlite3_backup structure. + */ + sqlite3_free(p); + p = 0; + } + } + if( p ){ + p->pSrc->nBackup++; + } + + sqlite3_mutex_leave(pDestDb->mutex); + sqlite3_mutex_leave(pSrcDb->mutex); + return p; +} + +/* +** Argument rc is an SQLite error code. Return true if this error is +** considered fatal if encountered during a backup operation. All errors +** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED. +*/ +static int isFatalError(int rc){ + return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED)); +} + +/* +** Parameter zSrcData points to a buffer containing the data for +** page iSrcPg from the source database. Copy this data into the +** destination database. +*/ +static int backupOnePage(sqlite3_backup *p, Pgno iSrcPg, const u8 *zSrcData){ + Pager * const pDestPager = sqlite3BtreePager(p->pDest); + const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc); + int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest); + const int nCopy = MIN(nSrcPgsz, nDestPgsz); + const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz; +#ifdef SQLITE_HAS_CODEC + int nSrcReserve = sqlite3BtreeGetReserve(p->pSrc); + int nDestReserve = sqlite3BtreeGetReserve(p->pDest); +#endif + + int rc = SQLITE_OK; + i64 iOff; + + assert( p->bDestLocked ); + assert( !isFatalError(p->rc) ); + assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ); + assert( zSrcData ); + + /* Catch the case where the destination is an in-memory database and the + ** page sizes of the source and destination differ. + */ + if( nSrcPgsz!=nDestPgsz && sqlite3PagerIsMemdb(pDestPager) ){ + rc = SQLITE_READONLY; + } + +#ifdef SQLITE_HAS_CODEC + /* Backup is not possible if the page size of the destination is changing + ** and a codec is in use. + */ + if( nSrcPgsz!=nDestPgsz && sqlite3PagerGetCodec(pDestPager)!=0 ){ + rc = SQLITE_READONLY; + } + + /* Backup is not possible if the number of bytes of reserve space differ + ** between source and destination. If there is a difference, try to + ** fix the destination to agree with the source. If that is not possible, + ** then the backup cannot proceed. + */ + if( nSrcReserve!=nDestReserve ){ + u32 newPgsz = nSrcPgsz; + rc = sqlite3PagerSetPagesize(pDestPager, &newPgsz, nSrcReserve); + if( rc==SQLITE_OK && newPgsz!=nSrcPgsz ) rc = SQLITE_READONLY; + } +#endif + + /* This loop runs once for each destination page spanned by the source + ** page. For each iteration, variable iOff is set to the byte offset + ** of the destination page. + */ + for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOffpDest->pBt) ) continue; + if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg)) + && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg)) + ){ + const u8 *zIn = &zSrcData[iOff%nSrcPgsz]; + u8 *zDestData = sqlite3PagerGetData(pDestPg); + u8 *zOut = &zDestData[iOff%nDestPgsz]; + + /* Copy the data from the source page into the destination page. + ** Then clear the Btree layer MemPage.isInit flag. Both this module + ** and the pager code use this trick (clearing the first byte + ** of the page 'extra' space to invalidate the Btree layers + ** cached parse of the page). MemPage.isInit is marked + ** "MUST BE FIRST" for this purpose. + */ + memcpy(zOut, zIn, nCopy); + ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0; + } + sqlite3PagerUnref(pDestPg); + } + + return rc; +} + +/* +** If pFile is currently larger than iSize bytes, then truncate it to +** exactly iSize bytes. If pFile is not larger than iSize bytes, then +** this function is a no-op. +** +** Return SQLITE_OK if everything is successful, or an SQLite error +** code if an error occurs. +*/ +static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){ + i64 iCurrent; + int rc = sqlite3OsFileSize(pFile, &iCurrent); + if( rc==SQLITE_OK && iCurrent>iSize ){ + rc = sqlite3OsTruncate(pFile, iSize); + } + return rc; +} + +/* +** Register this backup object with the associated source pager for +** callbacks when pages are changed or the cache invalidated. +*/ +static void attachBackupObject(sqlite3_backup *p){ + sqlite3_backup **pp; + assert( sqlite3BtreeHoldsMutex(p->pSrc) ); + pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc)); + p->pNext = *pp; + *pp = p; + p->isAttached = 1; +} + +/* +** Copy nPage pages from the source b-tree to the destination. +*/ +int sqlite3_backup_step(sqlite3_backup *p, int nPage){ + int rc; + int destMode; /* Destination journal mode */ + int pgszSrc = 0; /* Source page size */ + int pgszDest = 0; /* Destination page size */ + + sqlite3_mutex_enter(p->pSrcDb->mutex); + sqlite3BtreeEnter(p->pSrc); + if( p->pDestDb ){ + sqlite3_mutex_enter(p->pDestDb->mutex); + } + + rc = p->rc; + if( !isFatalError(rc) ){ + Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */ + Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */ + int ii; /* Iterator variable */ + int nSrcPage = -1; /* Size of source db in pages */ + int bCloseTrans = 0; /* True if src db requires unlocking */ + + /* If the source pager is currently in a write-transaction, return + ** SQLITE_BUSY immediately. + */ + if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){ + rc = SQLITE_BUSY; + }else{ + rc = SQLITE_OK; + } + + /* Lock the destination database, if it is not locked already. */ + if( SQLITE_OK==rc && p->bDestLocked==0 + && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2)) + ){ + p->bDestLocked = 1; + sqlite3BtreeGetMeta(p->pDest, BTREE_SCHEMA_VERSION, &p->iDestSchema); + } + + /* If there is no open read-transaction on the source database, open + ** one now. If a transaction is opened here, then it will be closed + ** before this function exits. + */ + if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){ + rc = sqlite3BtreeBeginTrans(p->pSrc, 0); + bCloseTrans = 1; + } + + /* Do not allow backup if the destination database is in WAL mode + ** and the page sizes are different between source and destination */ + pgszSrc = sqlite3BtreeGetPageSize(p->pSrc); + pgszDest = sqlite3BtreeGetPageSize(p->pDest); + destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest)); + if( SQLITE_OK==rc && destMode==PAGER_JOURNALMODE_WAL && pgszSrc!=pgszDest ){ + rc = SQLITE_READONLY; + } + + /* Now that there is a read-lock on the source database, query the + ** source pager for the number of pages in the database. + */ + nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc); + assert( nSrcPage>=0 ); + for(ii=0; (nPage<0 || iiiNext<=(Pgno)nSrcPage && !rc; ii++){ + const Pgno iSrcPg = p->iNext; /* Source page number */ + if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){ + DbPage *pSrcPg; /* Source page object */ + rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg); + if( rc==SQLITE_OK ){ + rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg)); + sqlite3PagerUnref(pSrcPg); + } + } + p->iNext++; + } + if( rc==SQLITE_OK ){ + p->nPagecount = nSrcPage; + p->nRemaining = nSrcPage+1-p->iNext; + if( p->iNext>(Pgno)nSrcPage ){ + rc = SQLITE_DONE; + }else if( !p->isAttached ){ + attachBackupObject(p); + } + } + + /* Update the schema version field in the destination database. This + ** is to make sure that the schema-version really does change in + ** the case where the source and destination databases have the + ** same schema version. + */ + if( rc==SQLITE_DONE ){ + rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1); + if( rc==SQLITE_OK ){ + if( p->pDestDb ){ + sqlite3ResetInternalSchema(p->pDestDb, -1); + } + if( destMode==PAGER_JOURNALMODE_WAL ){ + rc = sqlite3BtreeSetVersion(p->pDest, 2); + } + } + if( rc==SQLITE_OK ){ + int nDestTruncate; + /* Set nDestTruncate to the final number of pages in the destination + ** database. The complication here is that the destination page + ** size may be different to the source page size. + ** + ** If the source page size is smaller than the destination page size, + ** round up. In this case the call to sqlite3OsTruncate() below will + ** fix the size of the file. However it is important to call + ** sqlite3PagerTruncateImage() here so that any pages in the + ** destination file that lie beyond the nDestTruncate page mark are + ** journalled by PagerCommitPhaseOne() before they are destroyed + ** by the file truncation. + */ + assert( pgszSrc==sqlite3BtreeGetPageSize(p->pSrc) ); + assert( pgszDest==sqlite3BtreeGetPageSize(p->pDest) ); + if( pgszSrcpDest->pBt) ){ + nDestTruncate--; + } + }else{ + nDestTruncate = nSrcPage * (pgszSrc/pgszDest); + } + sqlite3PagerTruncateImage(pDestPager, nDestTruncate); + + if( pgszSrc= iSize || ( + nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1) + && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest + )); + + /* This call ensures that all data required to recreate the original + ** database has been stored in the journal for pDestPager and the + ** journal synced to disk. So at this point we may safely modify + ** the database file in any way, knowing that if a power failure + ** occurs, the original database will be reconstructed from the + ** journal file. */ + rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1); + + /* Write the extra pages and truncate the database file as required */ + iEnd = MIN(PENDING_BYTE + pgszDest, iSize); + for( + iOff=PENDING_BYTE+pgszSrc; + rc==SQLITE_OK && iOffpDest, 0)) + ){ + rc = SQLITE_DONE; + } + } + } + + /* If bCloseTrans is true, then this function opened a read transaction + ** on the source database. Close the read transaction here. There is + ** no need to check the return values of the btree methods here, as + ** "committing" a read-only transaction cannot fail. + */ + if( bCloseTrans ){ + TESTONLY( int rc2 ); + TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0); + TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0); + assert( rc2==SQLITE_OK ); + } + + if( rc==SQLITE_IOERR_NOMEM ){ + rc = SQLITE_NOMEM; + } + p->rc = rc; + } + if( p->pDestDb ){ + sqlite3_mutex_leave(p->pDestDb->mutex); + } + sqlite3BtreeLeave(p->pSrc); + sqlite3_mutex_leave(p->pSrcDb->mutex); + return rc; +} + +/* +** Release all resources associated with an sqlite3_backup* handle. +*/ +int sqlite3_backup_finish(sqlite3_backup *p){ + sqlite3_backup **pp; /* Ptr to head of pagers backup list */ + MUTEX_LOGIC( sqlite3_mutex *mutex; ) /* Mutex to protect source database */ + int rc; /* Value to return */ + + /* Enter the mutexes */ + if( p==0 ) return SQLITE_OK; + sqlite3_mutex_enter(p->pSrcDb->mutex); + sqlite3BtreeEnter(p->pSrc); + MUTEX_LOGIC( mutex = p->pSrcDb->mutex; ) + if( p->pDestDb ){ + sqlite3_mutex_enter(p->pDestDb->mutex); + } + + /* Detach this backup from the source pager. */ + if( p->pDestDb ){ + p->pSrc->nBackup--; + } + if( p->isAttached ){ + pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc)); + while( *pp!=p ){ + pp = &(*pp)->pNext; + } + *pp = p->pNext; + } + + /* If a transaction is still open on the Btree, roll it back. */ + sqlite3BtreeRollback(p->pDest); + + /* Set the error code of the destination database handle. */ + rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc; + sqlite3Error(p->pDestDb, rc, 0); + + /* Exit the mutexes and free the backup context structure. */ + if( p->pDestDb ){ + sqlite3_mutex_leave(p->pDestDb->mutex); + } + sqlite3BtreeLeave(p->pSrc); + if( p->pDestDb ){ + /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a + ** call to sqlite3_backup_init() and is destroyed by a call to + ** sqlite3_backup_finish(). */ + sqlite3_free(p); + } + sqlite3_mutex_leave(mutex); + return rc; +} + +/* +** Return the number of pages still to be backed up as of the most recent +** call to sqlite3_backup_step(). +*/ +int sqlite3_backup_remaining(sqlite3_backup *p){ + return p->nRemaining; +} + +/* +** Return the total number of pages in the source database as of the most +** recent call to sqlite3_backup_step(). +*/ +int sqlite3_backup_pagecount(sqlite3_backup *p){ + return p->nPagecount; +} + +/* +** This function is called after the contents of page iPage of the +** source database have been modified. If page iPage has already been +** copied into the destination database, then the data written to the +** destination is now invalidated. The destination copy of iPage needs +** to be updated with the new data before the backup operation is +** complete. +** +** It is assumed that the mutex associated with the BtShared object +** corresponding to the source database is held when this function is +** called. +*/ +void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){ + sqlite3_backup *p; /* Iterator variable */ + for(p=pBackup; p; p=p->pNext){ + assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); + if( !isFatalError(p->rc) && iPageiNext ){ + /* The backup process p has already copied page iPage. But now it + ** has been modified by a transaction on the source pager. Copy + ** the new data into the backup. + */ + int rc; + assert( p->pDestDb ); + sqlite3_mutex_enter(p->pDestDb->mutex); + rc = backupOnePage(p, iPage, aData); + sqlite3_mutex_leave(p->pDestDb->mutex); + assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED ); + if( rc!=SQLITE_OK ){ + p->rc = rc; + } + } + } +} + +/* +** Restart the backup process. This is called when the pager layer +** detects that the database has been modified by an external database +** connection. In this case there is no way of knowing which of the +** pages that have been copied into the destination database are still +** valid and which are not, so the entire process needs to be restarted. +** +** It is assumed that the mutex associated with the BtShared object +** corresponding to the source database is held when this function is +** called. +*/ +void sqlite3BackupRestart(sqlite3_backup *pBackup){ + sqlite3_backup *p; /* Iterator variable */ + for(p=pBackup; p; p=p->pNext){ + assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); + p->iNext = 1; + } +} + +#ifndef SQLITE_OMIT_VACUUM +/* +** Copy the complete content of pBtFrom into pBtTo. A transaction +** must be active for both files. +** +** The size of file pTo may be reduced by this operation. If anything +** goes wrong, the transaction on pTo is rolled back. If successful, the +** transaction is committed before returning. +*/ +int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ + int rc; + sqlite3_file *pFd; /* File descriptor for database pTo */ + sqlite3_backup b; + sqlite3BtreeEnter(pTo); + sqlite3BtreeEnter(pFrom); + + assert( sqlite3BtreeIsInTrans(pTo) ); + pFd = sqlite3PagerFile(sqlite3BtreePager(pTo)); + if( pFd->pMethods ){ + i64 nByte = sqlite3BtreeGetPageSize(pFrom)*(i64)sqlite3BtreeLastPage(pFrom); + sqlite3OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte); + } + + /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set + ** to 0. This is used by the implementations of sqlite3_backup_step() + ** and sqlite3_backup_finish() to detect that they are being called + ** from this function, not directly by the user. + */ + memset(&b, 0, sizeof(b)); + b.pSrcDb = pFrom->db; + b.pSrc = pFrom; + b.pDest = pTo; + b.iNext = 1; + + /* 0x7FFFFFFF is the hard limit for the number of pages in a database + ** file. By passing this as the number of pages to copy to + ** sqlite3_backup_step(), we can guarantee that the copy finishes + ** within a single call (unless an error occurs). The assert() statement + ** checks this assumption - (p->rc) should be set to either SQLITE_DONE + ** or an error code. + */ + sqlite3_backup_step(&b, 0x7FFFFFFF); + assert( b.rc!=SQLITE_OK ); + rc = sqlite3_backup_finish(&b); + if( rc==SQLITE_OK ){ + pTo->pBt->pageSizeFixed = 0; + }else{ + sqlite3PagerClearCache(sqlite3BtreePager(b.pDest)); + } + + assert( sqlite3BtreeIsInTrans(pTo)==0 ); + sqlite3BtreeLeave(pFrom); + sqlite3BtreeLeave(pTo); + return rc; +} +#endif /* SQLITE_OMIT_VACUUM */ diff --git a/src/bitvec.c b/src/bitvec.c new file mode 100644 index 0000000..47d33ea --- /dev/null +++ b/src/bitvec.c @@ -0,0 +1,408 @@ +/* +** 2008 February 16 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file implements an object that represents a fixed-length +** bitmap. Bits are numbered starting with 1. +** +** A bitmap is used to record which pages of a database file have been +** journalled during a transaction, or which pages have the "dont-write" +** property. Usually only a few pages are meet either condition. +** So the bitmap is usually sparse and has low cardinality. +** But sometimes (for example when during a DROP of a large table) most +** or all of the pages in a database can get journalled. In those cases, +** the bitmap becomes dense with high cardinality. The algorithm needs +** to handle both cases well. +** +** The size of the bitmap is fixed when the object is created. +** +** All bits are clear when the bitmap is created. Individual bits +** may be set or cleared one at a time. +** +** Test operations are about 100 times more common that set operations. +** Clear operations are exceedingly rare. There are usually between +** 5 and 500 set operations per Bitvec object, though the number of sets can +** sometimes grow into tens of thousands or larger. The size of the +** Bitvec object is the number of pages in the database file at the +** start of a transaction, and is thus usually less than a few thousand, +** but can be as large as 2 billion for a really big database. +*/ +#include "sqliteInt.h" + +/* Size of the Bitvec structure in bytes. */ +#define BITVEC_SZ 512 + +/* Round the union size down to the nearest pointer boundary, since that's how +** it will be aligned within the Bitvec struct. */ +#define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) + +/* Type of the array "element" for the bitmap representation. +** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. +** Setting this to the "natural word" size of your CPU may improve +** performance. */ +#define BITVEC_TELEM u8 +/* Size, in bits, of the bitmap element. */ +#define BITVEC_SZELEM 8 +/* Number of elements in a bitmap array. */ +#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) +/* Number of bits in the bitmap array. */ +#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) + +/* Number of u32 values in hash table. */ +#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) +/* Maximum number of entries in hash table before +** sub-dividing and re-hashing. */ +#define BITVEC_MXHASH (BITVEC_NINT/2) +/* Hashing function for the aHash representation. +** Empirical testing showed that the *37 multiplier +** (an arbitrary prime)in the hash function provided +** no fewer collisions than the no-op *1. */ +#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) + +#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) + + +/* +** A bitmap is an instance of the following structure. +** +** This bitmap records the existance of zero or more bits +** with values between 1 and iSize, inclusive. +** +** There are three possible representations of the bitmap. +** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight +** bitmap. The least significant bit is bit 1. +** +** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is +** a hash table that will hold up to BITVEC_MXHASH distinct values. +** +** Otherwise, the value i is redirected into one of BITVEC_NPTR +** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap +** handles up to iDivisor separate values of i. apSub[0] holds +** values between 1 and iDivisor. apSub[1] holds values between +** iDivisor+1 and 2*iDivisor. apSub[N] holds values between +** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized +** to hold deal with values between 1 and iDivisor. +*/ +struct Bitvec { + u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ + u32 nSet; /* Number of bits that are set - only valid for aHash + ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, + ** this would be 125. */ + u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ + /* Should >=0 for apSub element. */ + /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ + /* For a BITVEC_SZ of 512, this would be 34,359,739. */ + union { + BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ + u32 aHash[BITVEC_NINT]; /* Hash table representation */ + Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ + } u; +}; + +/* +** Create a new bitmap object able to handle bits between 0 and iSize, +** inclusive. Return a pointer to the new object. Return NULL if +** malloc fails. +*/ +Bitvec *sqlite3BitvecCreate(u32 iSize){ + Bitvec *p; + assert( sizeof(*p)==BITVEC_SZ ); + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ + p->iSize = iSize; + } + return p; +} + +/* +** Check to see if the i-th bit is set. Return true or false. +** If p is NULL (if the bitmap has not been created) or if +** i is out of range, then return false. +*/ +int sqlite3BitvecTest(Bitvec *p, u32 i){ + if( p==0 ) return 0; + if( i>p->iSize || i==0 ) return 0; + i--; + while( p->iDivisor ){ + u32 bin = i/p->iDivisor; + i = i%p->iDivisor; + p = p->u.apSub[bin]; + if (!p) { + return 0; + } + } + if( p->iSize<=BITVEC_NBIT ){ + return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; + } else{ + u32 h = BITVEC_HASH(i++); + while( p->u.aHash[h] ){ + if( p->u.aHash[h]==i ) return 1; + h = (h+1) % BITVEC_NINT; + } + return 0; + } +} + +/* +** Set the i-th bit. Return 0 on success and an error code if +** anything goes wrong. +** +** This routine might cause sub-bitmaps to be allocated. Failing +** to get the memory needed to hold the sub-bitmap is the only +** that can go wrong with an insert, assuming p and i are valid. +** +** The calling function must ensure that p is a valid Bitvec object +** and that the value for "i" is within range of the Bitvec object. +** Otherwise the behavior is undefined. +*/ +int sqlite3BitvecSet(Bitvec *p, u32 i){ + u32 h; + if( p==0 ) return SQLITE_OK; + assert( i>0 ); + assert( i<=p->iSize ); + i--; + while((p->iSize > BITVEC_NBIT) && p->iDivisor) { + u32 bin = i/p->iDivisor; + i = i%p->iDivisor; + if( p->u.apSub[bin]==0 ){ + p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); + if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; + } + p = p->u.apSub[bin]; + } + if( p->iSize<=BITVEC_NBIT ){ + p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); + return SQLITE_OK; + } + h = BITVEC_HASH(i++); + /* if there wasn't a hash collision, and this doesn't */ + /* completely fill the hash, then just add it without */ + /* worring about sub-dividing and re-hashing. */ + if( !p->u.aHash[h] ){ + if (p->nSet<(BITVEC_NINT-1)) { + goto bitvec_set_end; + } else { + goto bitvec_set_rehash; + } + } + /* there was a collision, check to see if it's already */ + /* in hash, if not, try to find a spot for it */ + do { + if( p->u.aHash[h]==i ) return SQLITE_OK; + h++; + if( h>=BITVEC_NINT ) h = 0; + } while( p->u.aHash[h] ); + /* we didn't find it in the hash. h points to the first */ + /* available free spot. check to see if this is going to */ + /* make our hash too "full". */ +bitvec_set_rehash: + if( p->nSet>=BITVEC_MXHASH ){ + unsigned int j; + int rc; + u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); + if( aiValues==0 ){ + return SQLITE_NOMEM; + }else{ + memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); + memset(p->u.apSub, 0, sizeof(p->u.apSub)); + p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; + rc = sqlite3BitvecSet(p, i); + for(j=0; jnSet++; + p->u.aHash[h] = i; + return SQLITE_OK; +} + +/* +** Clear the i-th bit. +** +** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage +** that BitvecClear can use to rebuilt its hash table. +*/ +void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ + if( p==0 ) return; + assert( i>0 ); + i--; + while( p->iDivisor ){ + u32 bin = i/p->iDivisor; + i = i%p->iDivisor; + p = p->u.apSub[bin]; + if (!p) { + return; + } + } + if( p->iSize<=BITVEC_NBIT ){ + p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); + }else{ + unsigned int j; + u32 *aiValues = pBuf; + memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); + memset(p->u.aHash, 0, sizeof(p->u.aHash)); + p->nSet = 0; + for(j=0; jnSet++; + while( p->u.aHash[h] ){ + h++; + if( h>=BITVEC_NINT ) h = 0; + } + p->u.aHash[h] = aiValues[j]; + } + } + } +} + +/* +** Destroy a bitmap object. Reclaim all memory used. +*/ +void sqlite3BitvecDestroy(Bitvec *p){ + if( p==0 ) return; + if( p->iDivisor ){ + unsigned int i; + for(i=0; iu.apSub[i]); + } + } + sqlite3_free(p); +} + +/* +** Return the value of the iSize parameter specified when Bitvec *p +** was created. +*/ +u32 sqlite3BitvecSize(Bitvec *p){ + return p->iSize; +} + +#ifndef SQLITE_OMIT_BUILTIN_TEST +/* +** Let V[] be an array of unsigned characters sufficient to hold +** up to N bits. Let I be an integer between 0 and N. 0<=I>3] |= (1<<(I&7)) +#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) +#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 + +/* +** This routine runs an extensive test of the Bitvec code. +** +** The input is an array of integers that acts as a program +** to test the Bitvec. The integers are opcodes followed +** by 0, 1, or 3 operands, depending on the opcode. Another +** opcode follows immediately after the last operand. +** +** There are 6 opcodes numbered from 0 through 5. 0 is the +** "halt" opcode and causes the test to end. +** +** 0 Halt and return the number of errors +** 1 N S X Set N bits beginning with S and incrementing by X +** 2 N S X Clear N bits beginning with S and incrementing by X +** 3 N Set N randomly chosen bits +** 4 N Clear N randomly chosen bits +** 5 N S X Set N bits from S increment X in array only, not in bitvec +** +** The opcodes 1 through 4 perform set and clear operations are performed +** on both a Bitvec object and on a linear array of bits obtained from malloc. +** Opcode 5 works on the linear array only, not on the Bitvec. +** Opcode 5 is used to deliberately induce a fault in order to +** confirm that error detection works. +** +** At the conclusion of the test the linear array is compared +** against the Bitvec object. If there are any differences, +** an error is returned. If they are the same, zero is returned. +** +** If a memory allocation error occurs, return -1. +*/ +int sqlite3BitvecBuiltinTest(int sz, int *aOp){ + Bitvec *pBitvec = 0; + unsigned char *pV = 0; + int rc = -1; + int i, nx, pc, op; + void *pTmpSpace; + + /* Allocate the Bitvec to be tested and a linear array of + ** bits to act as the reference */ + pBitvec = sqlite3BitvecCreate( sz ); + pV = sqlite3_malloc( (sz+7)/8 + 1 ); + pTmpSpace = sqlite3_malloc(BITVEC_SZ); + if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; + memset(pV, 0, (sz+7)/8 + 1); + + /* NULL pBitvec tests */ + sqlite3BitvecSet(0, 1); + sqlite3BitvecClear(0, 1, pTmpSpace); + + /* Run the program */ + pc = 0; + while( (op = aOp[pc])!=0 ){ + switch( op ){ + case 1: + case 2: + case 5: { + nx = 4; + i = aOp[pc+2] - 1; + aOp[pc+2] += aOp[pc+3]; + break; + } + case 3: + case 4: + default: { + nx = 2; + sqlite3_randomness(sizeof(i), &i); + break; + } + } + if( (--aOp[pc+1]) > 0 ) nx = 0; + pc += nx; + i = (i & 0x7fffffff)%sz; + if( (op & 1)!=0 ){ + SETBIT(pV, (i+1)); + if( op!=5 ){ + if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; + } + }else{ + CLEARBIT(pV, (i+1)); + sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); + } + } + + /* Test to make sure the linear array exactly matches the + ** Bitvec object. Start with the assumption that they do + ** match (rc==0). Change rc to non-zero if a discrepancy + ** is found. + */ + rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) + + sqlite3BitvecTest(pBitvec, 0) + + (sqlite3BitvecSize(pBitvec) - sz); + for(i=1; i<=sz; i++){ + if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ + rc = i; + break; + } + } + + /* Free allocated structure */ +bitvec_end: + sqlite3_free(pTmpSpace); + sqlite3_free(pV); + sqlite3BitvecDestroy(pBitvec); + return rc; +} +#endif /* SQLITE_OMIT_BUILTIN_TEST */ diff --git a/src/btmutex.c b/src/btmutex.c new file mode 100644 index 0000000..d87d4d5 --- /dev/null +++ b/src/btmutex.c @@ -0,0 +1,287 @@ +/* +** 2007 August 27 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains code used to implement mutexes on Btree objects. +** This code really belongs in btree.c. But btree.c is getting too +** big and we want to break it down some. This packaged seemed like +** a good breakout. +*/ +#include "btreeInt.h" +#ifndef SQLITE_OMIT_SHARED_CACHE +#if SQLITE_THREADSAFE + +/* +** Obtain the BtShared mutex associated with B-Tree handle p. Also, +** set BtShared.db to the database handle associated with p and the +** p->locked boolean to true. +*/ +static void lockBtreeMutex(Btree *p){ + assert( p->locked==0 ); + assert( sqlite3_mutex_notheld(p->pBt->mutex) ); + assert( sqlite3_mutex_held(p->db->mutex) ); + + sqlite3_mutex_enter(p->pBt->mutex); + p->pBt->db = p->db; + p->locked = 1; +} + +/* +** Release the BtShared mutex associated with B-Tree handle p and +** clear the p->locked boolean. +*/ +static void unlockBtreeMutex(Btree *p){ + BtShared *pBt = p->pBt; + assert( p->locked==1 ); + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( sqlite3_mutex_held(p->db->mutex) ); + assert( p->db==pBt->db ); + + sqlite3_mutex_leave(pBt->mutex); + p->locked = 0; +} + +/* +** Enter a mutex on the given BTree object. +** +** If the object is not sharable, then no mutex is ever required +** and this routine is a no-op. The underlying mutex is non-recursive. +** But we keep a reference count in Btree.wantToLock so the behavior +** of this interface is recursive. +** +** To avoid deadlocks, multiple Btrees are locked in the same order +** by all database connections. The p->pNext is a list of other +** Btrees belonging to the same database connection as the p Btree +** which need to be locked after p. If we cannot get a lock on +** p, then first unlock all of the others on p->pNext, then wait +** for the lock to become available on p, then relock all of the +** subsequent Btrees that desire a lock. +*/ +void sqlite3BtreeEnter(Btree *p){ + Btree *pLater; + + /* Some basic sanity checking on the Btree. The list of Btrees + ** connected by pNext and pPrev should be in sorted order by + ** Btree.pBt value. All elements of the list should belong to + ** the same connection. Only shared Btrees are on the list. */ + assert( p->pNext==0 || p->pNext->pBt>p->pBt ); + assert( p->pPrev==0 || p->pPrev->pBtpBt ); + assert( p->pNext==0 || p->pNext->db==p->db ); + assert( p->pPrev==0 || p->pPrev->db==p->db ); + assert( p->sharable || (p->pNext==0 && p->pPrev==0) ); + + /* Check for locking consistency */ + assert( !p->locked || p->wantToLock>0 ); + assert( p->sharable || p->wantToLock==0 ); + + /* We should already hold a lock on the database connection */ + assert( sqlite3_mutex_held(p->db->mutex) ); + + /* Unless the database is sharable and unlocked, then BtShared.db + ** should already be set correctly. */ + assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db ); + + if( !p->sharable ) return; + p->wantToLock++; + if( p->locked ) return; + + /* In most cases, we should be able to acquire the lock we + ** want without having to go throught the ascending lock + ** procedure that follows. Just be sure not to block. + */ + if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){ + p->pBt->db = p->db; + p->locked = 1; + return; + } + + /* To avoid deadlock, first release all locks with a larger + ** BtShared address. Then acquire our lock. Then reacquire + ** the other BtShared locks that we used to hold in ascending + ** order. + */ + for(pLater=p->pNext; pLater; pLater=pLater->pNext){ + assert( pLater->sharable ); + assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt ); + assert( !pLater->locked || pLater->wantToLock>0 ); + if( pLater->locked ){ + unlockBtreeMutex(pLater); + } + } + lockBtreeMutex(p); + for(pLater=p->pNext; pLater; pLater=pLater->pNext){ + if( pLater->wantToLock ){ + lockBtreeMutex(pLater); + } + } +} + +/* +** Exit the recursive mutex on a Btree. +*/ +void sqlite3BtreeLeave(Btree *p){ + if( p->sharable ){ + assert( p->wantToLock>0 ); + p->wantToLock--; + if( p->wantToLock==0 ){ + unlockBtreeMutex(p); + } + } +} + +#ifndef NDEBUG +/* +** Return true if the BtShared mutex is held on the btree, or if the +** B-Tree is not marked as sharable. +** +** This routine is used only from within assert() statements. +*/ +int sqlite3BtreeHoldsMutex(Btree *p){ + assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 ); + assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db ); + assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) ); + assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) ); + + return (p->sharable==0 || p->locked); +} +#endif + + +#ifndef SQLITE_OMIT_INCRBLOB +/* +** Enter and leave a mutex on a Btree given a cursor owned by that +** Btree. These entry points are used by incremental I/O and can be +** omitted if that module is not used. +*/ +void sqlite3BtreeEnterCursor(BtCursor *pCur){ + sqlite3BtreeEnter(pCur->pBtree); +} +void sqlite3BtreeLeaveCursor(BtCursor *pCur){ + sqlite3BtreeLeave(pCur->pBtree); +} +#endif /* SQLITE_OMIT_INCRBLOB */ + + +/* +** Enter the mutex on every Btree associated with a database +** connection. This is needed (for example) prior to parsing +** a statement since we will be comparing table and column names +** against all schemas and we do not want those schemas being +** reset out from under us. +** +** There is a corresponding leave-all procedures. +** +** Enter the mutexes in accending order by BtShared pointer address +** to avoid the possibility of deadlock when two threads with +** two or more btrees in common both try to lock all their btrees +** at the same instant. +*/ +void sqlite3BtreeEnterAll(sqlite3 *db){ + int i; + Btree *p; + assert( sqlite3_mutex_held(db->mutex) ); + for(i=0; inDb; i++){ + p = db->aDb[i].pBt; + if( p ) sqlite3BtreeEnter(p); + } +} +void sqlite3BtreeLeaveAll(sqlite3 *db){ + int i; + Btree *p; + assert( sqlite3_mutex_held(db->mutex) ); + for(i=0; inDb; i++){ + p = db->aDb[i].pBt; + if( p ) sqlite3BtreeLeave(p); + } +} + +/* +** Return true if a particular Btree requires a lock. Return FALSE if +** no lock is ever required since it is not sharable. +*/ +int sqlite3BtreeSharable(Btree *p){ + return p->sharable; +} + +#ifndef NDEBUG +/* +** Return true if the current thread holds the database connection +** mutex and all required BtShared mutexes. +** +** This routine is used inside assert() statements only. +*/ +int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){ + int i; + if( !sqlite3_mutex_held(db->mutex) ){ + return 0; + } + for(i=0; inDb; i++){ + Btree *p; + p = db->aDb[i].pBt; + if( p && p->sharable && + (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){ + return 0; + } + } + return 1; +} +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* +** Return true if the correct mutexes are held for accessing the +** db->aDb[iDb].pSchema structure. The mutexes required for schema +** access are: +** +** (1) The mutex on db +** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt. +** +** If pSchema is not NULL, then iDb is computed from pSchema and +** db using sqlite3SchemaToIndex(). +*/ +int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){ + Btree *p; + assert( db!=0 ); + if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema); + assert( iDb>=0 && iDbnDb ); + if( !sqlite3_mutex_held(db->mutex) ) return 0; + if( iDb==1 ) return 1; + p = db->aDb[iDb].pBt; + assert( p!=0 ); + return p->sharable==0 || p->locked==1; +} +#endif /* NDEBUG */ + +#else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */ +/* +** The following are special cases for mutex enter routines for use +** in single threaded applications that use shared cache. Except for +** these two routines, all mutex operations are no-ops in that case and +** are null #defines in btree.h. +** +** If shared cache is disabled, then all btree mutex routines, including +** the ones below, are no-ops and are null #defines in btree.h. +*/ + +void sqlite3BtreeEnter(Btree *p){ + p->pBt->db = p->db; +} +void sqlite3BtreeEnterAll(sqlite3 *db){ + int i; + for(i=0; inDb; i++){ + Btree *p = db->aDb[i].pBt; + if( p ){ + p->pBt->db = p->db; + } + } +} +#endif /* if SQLITE_THREADSAFE */ +#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */ diff --git a/src/btree.c b/src/btree.c new file mode 100644 index 0000000..d64e172 --- /dev/null +++ b/src/btree.c @@ -0,0 +1,8225 @@ +/* +** 2004 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file implements a external (disk-based) database using BTrees. +** See the header comment on "btreeInt.h" for additional information. +** Including a description of file format and an overview of operation. +*/ +#include "btreeInt.h" + +/* +** The header string that appears at the beginning of every +** SQLite database. +*/ +static const char zMagicHeader[] = SQLITE_FILE_HEADER; + +/* +** Set this global variable to 1 to enable tracing using the TRACE +** macro. +*/ +#if 0 +int sqlite3BtreeTrace=1; /* True to enable tracing */ +# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} +#else +# define TRACE(X) +#endif + +/* +** Extract a 2-byte big-endian integer from an array of unsigned bytes. +** But if the value is zero, make it 65536. +** +** This routine is used to extract the "offset to cell content area" value +** from the header of a btree page. If the page size is 65536 and the page +** is empty, the offset should be 65536, but the 2-byte value stores zero. +** This routine makes the necessary adjustment to 65536. +*/ +#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** A list of BtShared objects that are eligible for participation +** in shared cache. This variable has file scope during normal builds, +** but the test harness needs to access it so we make it global for +** test builds. +** +** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. +*/ +#ifdef SQLITE_TEST +BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; +#else +static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; +#endif +#endif /* SQLITE_OMIT_SHARED_CACHE */ + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** Enable or disable the shared pager and schema features. +** +** This routine has no effect on existing database connections. +** The shared cache setting effects only future calls to +** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). +*/ +int sqlite3_enable_shared_cache(int enable){ + sqlite3GlobalConfig.sharedCacheEnabled = enable; + return SQLITE_OK; +} +#endif + + + +#ifdef SQLITE_OMIT_SHARED_CACHE + /* + ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), + ** and clearAllSharedCacheTableLocks() + ** manipulate entries in the BtShared.pLock linked list used to store + ** shared-cache table level locks. If the library is compiled with the + ** shared-cache feature disabled, then there is only ever one user + ** of each BtShared structure and so this locking is not necessary. + ** So define the lock related functions as no-ops. + */ + #define querySharedCacheTableLock(a,b,c) SQLITE_OK + #define setSharedCacheTableLock(a,b,c) SQLITE_OK + #define clearAllSharedCacheTableLocks(a) + #define downgradeAllSharedCacheTableLocks(a) + #define hasSharedCacheTableLock(a,b,c,d) 1 + #define hasReadConflicts(a, b) 0 +#endif + +#ifndef SQLITE_OMIT_SHARED_CACHE + +#ifdef SQLITE_DEBUG +/* +**** This function is only used as part of an assert() statement. *** +** +** Check to see if pBtree holds the required locks to read or write to the +** table with root page iRoot. Return 1 if it does and 0 if not. +** +** For example, when writing to a table with root-page iRoot via +** Btree connection pBtree: +** +** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); +** +** When writing to an index that resides in a sharable database, the +** caller should have first obtained a lock specifying the root page of +** the corresponding table. This makes things a bit more complicated, +** as this module treats each table as a separate structure. To determine +** the table corresponding to the index being written, this +** function has to search through the database schema. +** +** Instead of a lock on the table/index rooted at page iRoot, the caller may +** hold a write-lock on the schema table (root page 1). This is also +** acceptable. +*/ +static int hasSharedCacheTableLock( + Btree *pBtree, /* Handle that must hold lock */ + Pgno iRoot, /* Root page of b-tree */ + int isIndex, /* True if iRoot is the root of an index b-tree */ + int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ +){ + Schema *pSchema = (Schema *)pBtree->pBt->pSchema; + Pgno iTab = 0; + BtLock *pLock; + + /* If this database is not shareable, or if the client is reading + ** and has the read-uncommitted flag set, then no lock is required. + ** Return true immediately. + */ + if( (pBtree->sharable==0) + || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted)) + ){ + return 1; + } + + /* If the client is reading or writing an index and the schema is + ** not loaded, then it is too difficult to actually check to see if + ** the correct locks are held. So do not bother - just return true. + ** This case does not come up very often anyhow. + */ + if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){ + return 1; + } + + /* Figure out the root-page that the lock should be held on. For table + ** b-trees, this is just the root page of the b-tree being read or + ** written. For index b-trees, it is the root page of the associated + ** table. */ + if( isIndex ){ + HashElem *p; + for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ + Index *pIdx = (Index *)sqliteHashData(p); + if( pIdx->tnum==(int)iRoot ){ + iTab = pIdx->pTable->tnum; + } + } + }else{ + iTab = iRoot; + } + + /* Search for the required lock. Either a write-lock on root-page iTab, a + ** write-lock on the schema table, or (if the client is reading) a + ** read-lock on iTab will suffice. Return 1 if any of these are found. */ + for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ + if( pLock->pBtree==pBtree + && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) + && pLock->eLock>=eLockType + ){ + return 1; + } + } + + /* Failed to find the required lock. */ + return 0; +} +#endif /* SQLITE_DEBUG */ + +#ifdef SQLITE_DEBUG +/* +**** This function may be used as part of assert() statements only. **** +** +** Return true if it would be illegal for pBtree to write into the +** table or index rooted at iRoot because other shared connections are +** simultaneously reading that same table or index. +** +** It is illegal for pBtree to write if some other Btree object that +** shares the same BtShared object is currently reading or writing +** the iRoot table. Except, if the other Btree object has the +** read-uncommitted flag set, then it is OK for the other object to +** have a read cursor. +** +** For example, before writing to any part of the table or index +** rooted at page iRoot, one should call: +** +** assert( !hasReadConflicts(pBtree, iRoot) ); +*/ +static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ + BtCursor *p; + for(p=pBtree->pBt->pCursor; p; p=p->pNext){ + if( p->pgnoRoot==iRoot + && p->pBtree!=pBtree + && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted) + ){ + return 1; + } + } + return 0; +} +#endif /* #ifdef SQLITE_DEBUG */ + +/* +** Query to see if Btree handle p may obtain a lock of type eLock +** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return +** SQLITE_OK if the lock may be obtained (by calling +** setSharedCacheTableLock()), or SQLITE_LOCKED if not. +*/ +static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ + BtShared *pBt = p->pBt; + BtLock *pIter; + + assert( sqlite3BtreeHoldsMutex(p) ); + assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); + assert( p->db!=0 ); + assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 ); + + /* If requesting a write-lock, then the Btree must have an open write + ** transaction on this file. And, obviously, for this to be so there + ** must be an open write transaction on the file itself. + */ + assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); + assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); + + /* This routine is a no-op if the shared-cache is not enabled */ + if( !p->sharable ){ + return SQLITE_OK; + } + + /* If some other connection is holding an exclusive lock, the + ** requested lock may not be obtained. + */ + if( pBt->pWriter!=p && pBt->isExclusive ){ + sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); + return SQLITE_LOCKED_SHAREDCACHE; + } + + for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ + /* The condition (pIter->eLock!=eLock) in the following if(...) + ** statement is a simplification of: + ** + ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) + ** + ** since we know that if eLock==WRITE_LOCK, then no other connection + ** may hold a WRITE_LOCK on any table in this file (since there can + ** only be a single writer). + */ + assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); + assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); + if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ + sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); + if( eLock==WRITE_LOCK ){ + assert( p==pBt->pWriter ); + pBt->isPending = 1; + } + return SQLITE_LOCKED_SHAREDCACHE; + } + } + return SQLITE_OK; +} +#endif /* !SQLITE_OMIT_SHARED_CACHE */ + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** Add a lock on the table with root-page iTable to the shared-btree used +** by Btree handle p. Parameter eLock must be either READ_LOCK or +** WRITE_LOCK. +** +** This function assumes the following: +** +** (a) The specified Btree object p is connected to a sharable +** database (one with the BtShared.sharable flag set), and +** +** (b) No other Btree objects hold a lock that conflicts +** with the requested lock (i.e. querySharedCacheTableLock() has +** already been called and returned SQLITE_OK). +** +** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM +** is returned if a malloc attempt fails. +*/ +static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ + BtShared *pBt = p->pBt; + BtLock *pLock = 0; + BtLock *pIter; + + assert( sqlite3BtreeHoldsMutex(p) ); + assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); + assert( p->db!=0 ); + + /* A connection with the read-uncommitted flag set will never try to + ** obtain a read-lock using this function. The only read-lock obtained + ** by a connection in read-uncommitted mode is on the sqlite_master + ** table, and that lock is obtained in BtreeBeginTrans(). */ + assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK ); + + /* This function should only be called on a sharable b-tree after it + ** has been determined that no other b-tree holds a conflicting lock. */ + assert( p->sharable ); + assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); + + /* First search the list for an existing lock on this table. */ + for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ + if( pIter->iTable==iTable && pIter->pBtree==p ){ + pLock = pIter; + break; + } + } + + /* If the above search did not find a BtLock struct associating Btree p + ** with table iTable, allocate one and link it into the list. + */ + if( !pLock ){ + pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); + if( !pLock ){ + return SQLITE_NOMEM; + } + pLock->iTable = iTable; + pLock->pBtree = p; + pLock->pNext = pBt->pLock; + pBt->pLock = pLock; + } + + /* Set the BtLock.eLock variable to the maximum of the current lock + ** and the requested lock. This means if a write-lock was already held + ** and a read-lock requested, we don't incorrectly downgrade the lock. + */ + assert( WRITE_LOCK>READ_LOCK ); + if( eLock>pLock->eLock ){ + pLock->eLock = eLock; + } + + return SQLITE_OK; +} +#endif /* !SQLITE_OMIT_SHARED_CACHE */ + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** Release all the table locks (locks obtained via calls to +** the setSharedCacheTableLock() procedure) held by Btree object p. +** +** This function assumes that Btree p has an open read or write +** transaction. If it does not, then the BtShared.isPending variable +** may be incorrectly cleared. +*/ +static void clearAllSharedCacheTableLocks(Btree *p){ + BtShared *pBt = p->pBt; + BtLock **ppIter = &pBt->pLock; + + assert( sqlite3BtreeHoldsMutex(p) ); + assert( p->sharable || 0==*ppIter ); + assert( p->inTrans>0 ); + + while( *ppIter ){ + BtLock *pLock = *ppIter; + assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree ); + assert( pLock->pBtree->inTrans>=pLock->eLock ); + if( pLock->pBtree==p ){ + *ppIter = pLock->pNext; + assert( pLock->iTable!=1 || pLock==&p->lock ); + if( pLock->iTable!=1 ){ + sqlite3_free(pLock); + } + }else{ + ppIter = &pLock->pNext; + } + } + + assert( pBt->isPending==0 || pBt->pWriter ); + if( pBt->pWriter==p ){ + pBt->pWriter = 0; + pBt->isExclusive = 0; + pBt->isPending = 0; + }else if( pBt->nTransaction==2 ){ + /* This function is called when Btree p is concluding its + ** transaction. If there currently exists a writer, and p is not + ** that writer, then the number of locks held by connections other + ** than the writer must be about to drop to zero. In this case + ** set the isPending flag to 0. + ** + ** If there is not currently a writer, then BtShared.isPending must + ** be zero already. So this next line is harmless in that case. + */ + pBt->isPending = 0; + } +} + +/* +** This function changes all write-locks held by Btree p into read-locks. +*/ +static void downgradeAllSharedCacheTableLocks(Btree *p){ + BtShared *pBt = p->pBt; + if( pBt->pWriter==p ){ + BtLock *pLock; + pBt->pWriter = 0; + pBt->isExclusive = 0; + pBt->isPending = 0; + for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ + assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); + pLock->eLock = READ_LOCK; + } + } +} + +#endif /* SQLITE_OMIT_SHARED_CACHE */ + +static void releasePage(MemPage *pPage); /* Forward reference */ + +/* +***** This routine is used inside of assert() only **** +** +** Verify that the cursor holds the mutex on its BtShared +*/ +#ifdef SQLITE_DEBUG +static int cursorHoldsMutex(BtCursor *p){ + return sqlite3_mutex_held(p->pBt->mutex); +} +#endif + + +#ifndef SQLITE_OMIT_INCRBLOB +/* +** Invalidate the overflow page-list cache for cursor pCur, if any. +*/ +static void invalidateOverflowCache(BtCursor *pCur){ + assert( cursorHoldsMutex(pCur) ); + sqlite3_free(pCur->aOverflow); + pCur->aOverflow = 0; +} + +/* +** Invalidate the overflow page-list cache for all cursors opened +** on the shared btree structure pBt. +*/ +static void invalidateAllOverflowCache(BtShared *pBt){ + BtCursor *p; + assert( sqlite3_mutex_held(pBt->mutex) ); + for(p=pBt->pCursor; p; p=p->pNext){ + invalidateOverflowCache(p); + } +} + +/* +** This function is called before modifying the contents of a table +** to invalidate any incrblob cursors that are open on the +** row or one of the rows being modified. +** +** If argument isClearTable is true, then the entire contents of the +** table is about to be deleted. In this case invalidate all incrblob +** cursors open on any row within the table with root-page pgnoRoot. +** +** Otherwise, if argument isClearTable is false, then the row with +** rowid iRow is being replaced or deleted. In this case invalidate +** only those incrblob cursors open on that specific row. +*/ +static void invalidateIncrblobCursors( + Btree *pBtree, /* The database file to check */ + i64 iRow, /* The rowid that might be changing */ + int isClearTable /* True if all rows are being deleted */ +){ + BtCursor *p; + BtShared *pBt = pBtree->pBt; + assert( sqlite3BtreeHoldsMutex(pBtree) ); + for(p=pBt->pCursor; p; p=p->pNext){ + if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){ + p->eState = CURSOR_INVALID; + } + } +} + +#else + /* Stub functions when INCRBLOB is omitted */ + #define invalidateOverflowCache(x) + #define invalidateAllOverflowCache(x) + #define invalidateIncrblobCursors(x,y,z) +#endif /* SQLITE_OMIT_INCRBLOB */ + +/* +** Set bit pgno of the BtShared.pHasContent bitvec. This is called +** when a page that previously contained data becomes a free-list leaf +** page. +** +** The BtShared.pHasContent bitvec exists to work around an obscure +** bug caused by the interaction of two useful IO optimizations surrounding +** free-list leaf pages: +** +** 1) When all data is deleted from a page and the page becomes +** a free-list leaf page, the page is not written to the database +** (as free-list leaf pages contain no meaningful data). Sometimes +** such a page is not even journalled (as it will not be modified, +** why bother journalling it?). +** +** 2) When a free-list leaf page is reused, its content is not read +** from the database or written to the journal file (why should it +** be, if it is not at all meaningful?). +** +** By themselves, these optimizations work fine and provide a handy +** performance boost to bulk delete or insert operations. However, if +** a page is moved to the free-list and then reused within the same +** transaction, a problem comes up. If the page is not journalled when +** it is moved to the free-list and it is also not journalled when it +** is extracted from the free-list and reused, then the original data +** may be lost. In the event of a rollback, it may not be possible +** to restore the database to its original configuration. +** +** The solution is the BtShared.pHasContent bitvec. Whenever a page is +** moved to become a free-list leaf page, the corresponding bit is +** set in the bitvec. Whenever a leaf page is extracted from the free-list, +** optimization 2 above is omitted if the corresponding bit is already +** set in BtShared.pHasContent. The contents of the bitvec are cleared +** at the end of every transaction. +*/ +static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ + int rc = SQLITE_OK; + if( !pBt->pHasContent ){ + assert( pgno<=pBt->nPage ); + pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); + if( !pBt->pHasContent ){ + rc = SQLITE_NOMEM; + } + } + if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ + rc = sqlite3BitvecSet(pBt->pHasContent, pgno); + } + return rc; +} + +/* +** Query the BtShared.pHasContent vector. +** +** This function is called when a free-list leaf page is removed from the +** free-list for reuse. It returns false if it is safe to retrieve the +** page from the pager layer with the 'no-content' flag set. True otherwise. +*/ +static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ + Bitvec *p = pBt->pHasContent; + return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); +} + +/* +** Clear (destroy) the BtShared.pHasContent bitvec. This should be +** invoked at the conclusion of each write-transaction. +*/ +static void btreeClearHasContent(BtShared *pBt){ + sqlite3BitvecDestroy(pBt->pHasContent); + pBt->pHasContent = 0; +} + +/* +** Save the current cursor position in the variables BtCursor.nKey +** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. +** +** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) +** prior to calling this routine. +*/ +static int saveCursorPosition(BtCursor *pCur){ + int rc; + + assert( CURSOR_VALID==pCur->eState ); + assert( 0==pCur->pKey ); + assert( cursorHoldsMutex(pCur) ); + + rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); + assert( rc==SQLITE_OK ); /* KeySize() cannot fail */ + + /* If this is an intKey table, then the above call to BtreeKeySize() + ** stores the integer key in pCur->nKey. In this case this value is + ** all that is required. Otherwise, if pCur is not open on an intKey + ** table, then malloc space for and store the pCur->nKey bytes of key + ** data. + */ + if( 0==pCur->apPage[0]->intKey ){ + void *pKey = sqlite3Malloc( (int)pCur->nKey ); + if( pKey ){ + rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey); + if( rc==SQLITE_OK ){ + pCur->pKey = pKey; + }else{ + sqlite3_free(pKey); + } + }else{ + rc = SQLITE_NOMEM; + } + } + assert( !pCur->apPage[0]->intKey || !pCur->pKey ); + + if( rc==SQLITE_OK ){ + int i; + for(i=0; i<=pCur->iPage; i++){ + releasePage(pCur->apPage[i]); + pCur->apPage[i] = 0; + } + pCur->iPage = -1; + pCur->eState = CURSOR_REQUIRESEEK; + } + + invalidateOverflowCache(pCur); + return rc; +} + +/* +** Save the positions of all cursors (except pExcept) that are open on +** the table with root-page iRoot. Usually, this is called just before cursor +** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()). +*/ +static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ + BtCursor *p; + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( pExcept==0 || pExcept->pBt==pBt ); + for(p=pBt->pCursor; p; p=p->pNext){ + if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && + p->eState==CURSOR_VALID ){ + int rc = saveCursorPosition(p); + if( SQLITE_OK!=rc ){ + return rc; + } + } + } + return SQLITE_OK; +} + +/* +** Clear the current cursor position. +*/ +void sqlite3BtreeClearCursor(BtCursor *pCur){ + assert( cursorHoldsMutex(pCur) ); + sqlite3_free(pCur->pKey); + pCur->pKey = 0; + pCur->eState = CURSOR_INVALID; +} + +/* +** In this version of BtreeMoveto, pKey is a packed index record +** such as is generated by the OP_MakeRecord opcode. Unpack the +** record and then call BtreeMovetoUnpacked() to do the work. +*/ +static int btreeMoveto( + BtCursor *pCur, /* Cursor open on the btree to be searched */ + const void *pKey, /* Packed key if the btree is an index */ + i64 nKey, /* Integer key for tables. Size of pKey for indices */ + int bias, /* Bias search to the high end */ + int *pRes /* Write search results here */ +){ + int rc; /* Status code */ + UnpackedRecord *pIdxKey; /* Unpacked index key */ + char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */ + char *pFree = 0; + + if( pKey ){ + assert( nKey==(i64)(int)nKey ); + pIdxKey = sqlite3VdbeAllocUnpackedRecord( + pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree + ); + if( pIdxKey==0 ) return SQLITE_NOMEM; + sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); + }else{ + pIdxKey = 0; + } + rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); + if( pFree ){ + sqlite3DbFree(pCur->pKeyInfo->db, pFree); + } + return rc; +} + +/* +** Restore the cursor to the position it was in (or as close to as possible) +** when saveCursorPosition() was called. Note that this call deletes the +** saved position info stored by saveCursorPosition(), so there can be +** at most one effective restoreCursorPosition() call after each +** saveCursorPosition(). +*/ +static int btreeRestoreCursorPosition(BtCursor *pCur){ + int rc; + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState>=CURSOR_REQUIRESEEK ); + if( pCur->eState==CURSOR_FAULT ){ + return pCur->skipNext; + } + pCur->eState = CURSOR_INVALID; + rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext); + if( rc==SQLITE_OK ){ + sqlite3_free(pCur->pKey); + pCur->pKey = 0; + assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); + } + return rc; +} + +#define restoreCursorPosition(p) \ + (p->eState>=CURSOR_REQUIRESEEK ? \ + btreeRestoreCursorPosition(p) : \ + SQLITE_OK) + +/* +** Determine whether or not a cursor has moved from the position it +** was last placed at. Cursors can move when the row they are pointing +** at is deleted out from under them. +** +** This routine returns an error code if something goes wrong. The +** integer *pHasMoved is set to one if the cursor has moved and 0 if not. +*/ +int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){ + int rc; + + rc = restoreCursorPosition(pCur); + if( rc ){ + *pHasMoved = 1; + return rc; + } + if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){ + *pHasMoved = 1; + }else{ + *pHasMoved = 0; + } + return SQLITE_OK; +} + +#ifndef SQLITE_OMIT_AUTOVACUUM +/* +** Given a page number of a regular database page, return the page +** number for the pointer-map page that contains the entry for the +** input page number. +** +** Return 0 (not a valid page) for pgno==1 since there is +** no pointer map associated with page 1. The integrity_check logic +** requires that ptrmapPageno(*,1)!=1. +*/ +static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ + int nPagesPerMapPage; + Pgno iPtrMap, ret; + assert( sqlite3_mutex_held(pBt->mutex) ); + if( pgno<2 ) return 0; + nPagesPerMapPage = (pBt->usableSize/5)+1; + iPtrMap = (pgno-2)/nPagesPerMapPage; + ret = (iPtrMap*nPagesPerMapPage) + 2; + if( ret==PENDING_BYTE_PAGE(pBt) ){ + ret++; + } + return ret; +} + +/* +** Write an entry into the pointer map. +** +** This routine updates the pointer map entry for page number 'key' +** so that it maps to type 'eType' and parent page number 'pgno'. +** +** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is +** a no-op. If an error occurs, the appropriate error code is written +** into *pRC. +*/ +static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ + DbPage *pDbPage; /* The pointer map page */ + u8 *pPtrmap; /* The pointer map data */ + Pgno iPtrmap; /* The pointer map page number */ + int offset; /* Offset in pointer map page */ + int rc; /* Return code from subfunctions */ + + if( *pRC ) return; + + assert( sqlite3_mutex_held(pBt->mutex) ); + /* The master-journal page number must never be used as a pointer map page */ + assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); + + assert( pBt->autoVacuum ); + if( key==0 ){ + *pRC = SQLITE_CORRUPT_BKPT; + return; + } + iPtrmap = PTRMAP_PAGENO(pBt, key); + rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); + if( rc!=SQLITE_OK ){ + *pRC = rc; + return; + } + offset = PTRMAP_PTROFFSET(iPtrmap, key); + if( offset<0 ){ + *pRC = SQLITE_CORRUPT_BKPT; + goto ptrmap_exit; + } + assert( offset <= (int)pBt->usableSize-5 ); + pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); + + if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ + TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); + *pRC= rc = sqlite3PagerWrite(pDbPage); + if( rc==SQLITE_OK ){ + pPtrmap[offset] = eType; + put4byte(&pPtrmap[offset+1], parent); + } + } + +ptrmap_exit: + sqlite3PagerUnref(pDbPage); +} + +/* +** Read an entry from the pointer map. +** +** This routine retrieves the pointer map entry for page 'key', writing +** the type and parent page number to *pEType and *pPgno respectively. +** An error code is returned if something goes wrong, otherwise SQLITE_OK. +*/ +static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ + DbPage *pDbPage; /* The pointer map page */ + int iPtrmap; /* Pointer map page index */ + u8 *pPtrmap; /* Pointer map page data */ + int offset; /* Offset of entry in pointer map */ + int rc; + + assert( sqlite3_mutex_held(pBt->mutex) ); + + iPtrmap = PTRMAP_PAGENO(pBt, key); + rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); + if( rc!=0 ){ + return rc; + } + pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); + + offset = PTRMAP_PTROFFSET(iPtrmap, key); + if( offset<0 ){ + sqlite3PagerUnref(pDbPage); + return SQLITE_CORRUPT_BKPT; + } + assert( offset <= (int)pBt->usableSize-5 ); + assert( pEType!=0 ); + *pEType = pPtrmap[offset]; + if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); + + sqlite3PagerUnref(pDbPage); + if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; + return SQLITE_OK; +} + +#else /* if defined SQLITE_OMIT_AUTOVACUUM */ + #define ptrmapPut(w,x,y,z,rc) + #define ptrmapGet(w,x,y,z) SQLITE_OK + #define ptrmapPutOvflPtr(x, y, rc) +#endif + +/* +** Given a btree page and a cell index (0 means the first cell on +** the page, 1 means the second cell, and so forth) return a pointer +** to the cell content. +** +** This routine works only for pages that do not contain overflow cells. +*/ +#define findCell(P,I) \ + ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)]))) +#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I))))) + + +/* +** This a more complex version of findCell() that works for +** pages that do contain overflow cells. +*/ +static u8 *findOverflowCell(MemPage *pPage, int iCell){ + int i; + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + for(i=pPage->nOverflow-1; i>=0; i--){ + int k; + struct _OvflCell *pOvfl; + pOvfl = &pPage->aOvfl[i]; + k = pOvfl->idx; + if( k<=iCell ){ + if( k==iCell ){ + return pOvfl->pCell; + } + iCell--; + } + } + return findCell(pPage, iCell); +} + +/* +** Parse a cell content block and fill in the CellInfo structure. There +** are two versions of this function. btreeParseCell() takes a +** cell index as the second argument and btreeParseCellPtr() +** takes a pointer to the body of the cell as its second argument. +** +** Within this file, the parseCell() macro can be called instead of +** btreeParseCellPtr(). Using some compilers, this will be faster. +*/ +static void btreeParseCellPtr( + MemPage *pPage, /* Page containing the cell */ + u8 *pCell, /* Pointer to the cell text. */ + CellInfo *pInfo /* Fill in this structure */ +){ + u16 n; /* Number bytes in cell content header */ + u32 nPayload; /* Number of bytes of cell payload */ + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + + pInfo->pCell = pCell; + assert( pPage->leaf==0 || pPage->leaf==1 ); + n = pPage->childPtrSize; + assert( n==4-4*pPage->leaf ); + if( pPage->intKey ){ + if( pPage->hasData ){ + n += getVarint32(&pCell[n], nPayload); + }else{ + nPayload = 0; + } + n += getVarint(&pCell[n], (u64*)&pInfo->nKey); + pInfo->nData = nPayload; + }else{ + pInfo->nData = 0; + n += getVarint32(&pCell[n], nPayload); + pInfo->nKey = nPayload; + } + pInfo->nPayload = nPayload; + pInfo->nHeader = n; + testcase( nPayload==pPage->maxLocal ); + testcase( nPayload==pPage->maxLocal+1 ); + if( likely(nPayload<=pPage->maxLocal) ){ + /* This is the (easy) common case where the entire payload fits + ** on the local page. No overflow is required. + */ + if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4; + pInfo->nLocal = (u16)nPayload; + pInfo->iOverflow = 0; + }else{ + /* If the payload will not fit completely on the local page, we have + ** to decide how much to store locally and how much to spill onto + ** overflow pages. The strategy is to minimize the amount of unused + ** space on overflow pages while keeping the amount of local storage + ** in between minLocal and maxLocal. + ** + ** Warning: changing the way overflow payload is distributed in any + ** way will result in an incompatible file format. + */ + int minLocal; /* Minimum amount of payload held locally */ + int maxLocal; /* Maximum amount of payload held locally */ + int surplus; /* Overflow payload available for local storage */ + + minLocal = pPage->minLocal; + maxLocal = pPage->maxLocal; + surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); + testcase( surplus==maxLocal ); + testcase( surplus==maxLocal+1 ); + if( surplus <= maxLocal ){ + pInfo->nLocal = (u16)surplus; + }else{ + pInfo->nLocal = (u16)minLocal; + } + pInfo->iOverflow = (u16)(pInfo->nLocal + n); + pInfo->nSize = pInfo->iOverflow + 4; + } +} +#define parseCell(pPage, iCell, pInfo) \ + btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo)) +static void btreeParseCell( + MemPage *pPage, /* Page containing the cell */ + int iCell, /* The cell index. First cell is 0 */ + CellInfo *pInfo /* Fill in this structure */ +){ + parseCell(pPage, iCell, pInfo); +} + +/* +** Compute the total number of bytes that a Cell needs in the cell +** data area of the btree-page. The return number includes the cell +** data header and the local payload, but not any overflow page or +** the space used by the cell pointer. +*/ +static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ + u8 *pIter = &pCell[pPage->childPtrSize]; + u32 nSize; + +#ifdef SQLITE_DEBUG + /* The value returned by this function should always be the same as + ** the (CellInfo.nSize) value found by doing a full parse of the + ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of + ** this function verifies that this invariant is not violated. */ + CellInfo debuginfo; + btreeParseCellPtr(pPage, pCell, &debuginfo); +#endif + + if( pPage->intKey ){ + u8 *pEnd; + if( pPage->hasData ){ + pIter += getVarint32(pIter, nSize); + }else{ + nSize = 0; + } + + /* pIter now points at the 64-bit integer key value, a variable length + ** integer. The following block moves pIter to point at the first byte + ** past the end of the key value. */ + pEnd = &pIter[9]; + while( (*pIter++)&0x80 && pItermaxLocal ); + testcase( nSize==pPage->maxLocal+1 ); + if( nSize>pPage->maxLocal ){ + int minLocal = pPage->minLocal; + nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); + testcase( nSize==pPage->maxLocal ); + testcase( nSize==pPage->maxLocal+1 ); + if( nSize>pPage->maxLocal ){ + nSize = minLocal; + } + nSize += 4; + } + nSize += (u32)(pIter - pCell); + + /* The minimum size of any cell is 4 bytes. */ + if( nSize<4 ){ + nSize = 4; + } + + assert( nSize==debuginfo.nSize ); + return (u16)nSize; +} + +#ifdef SQLITE_DEBUG +/* This variation on cellSizePtr() is used inside of assert() statements +** only. */ +static u16 cellSize(MemPage *pPage, int iCell){ + return cellSizePtr(pPage, findCell(pPage, iCell)); +} +#endif + +#ifndef SQLITE_OMIT_AUTOVACUUM +/* +** If the cell pCell, part of page pPage contains a pointer +** to an overflow page, insert an entry into the pointer-map +** for the overflow page. +*/ +static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ + CellInfo info; + if( *pRC ) return; + assert( pCell!=0 ); + btreeParseCellPtr(pPage, pCell, &info); + assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload ); + if( info.iOverflow ){ + Pgno ovfl = get4byte(&pCell[info.iOverflow]); + ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); + } +} +#endif + + +/* +** Defragment the page given. All Cells are moved to the +** end of the page and all free space is collected into one +** big FreeBlk that occurs in between the header and cell +** pointer array and the cell content area. +*/ +static int defragmentPage(MemPage *pPage){ + int i; /* Loop counter */ + int pc; /* Address of a i-th cell */ + int hdr; /* Offset to the page header */ + int size; /* Size of a cell */ + int usableSize; /* Number of usable bytes on a page */ + int cellOffset; /* Offset to the cell pointer array */ + int cbrk; /* Offset to the cell content area */ + int nCell; /* Number of cells on the page */ + unsigned char *data; /* The page data */ + unsigned char *temp; /* Temp area for cell content */ + int iCellFirst; /* First allowable cell index */ + int iCellLast; /* Last possible cell index */ + + + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + assert( pPage->pBt!=0 ); + assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); + assert( pPage->nOverflow==0 ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + temp = sqlite3PagerTempSpace(pPage->pBt->pPager); + data = pPage->aData; + hdr = pPage->hdrOffset; + cellOffset = pPage->cellOffset; + nCell = pPage->nCell; + assert( nCell==get2byte(&data[hdr+3]) ); + usableSize = pPage->pBt->usableSize; + cbrk = get2byte(&data[hdr+5]); + memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk); + cbrk = usableSize; + iCellFirst = cellOffset + 2*nCell; + iCellLast = usableSize - 4; + for(i=0; iiCellLast ){ + return SQLITE_CORRUPT_BKPT; + } +#endif + assert( pc>=iCellFirst && pc<=iCellLast ); + size = cellSizePtr(pPage, &temp[pc]); + cbrk -= size; +#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) + if( cbrkusableSize ){ + return SQLITE_CORRUPT_BKPT; + } +#endif + assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); + testcase( cbrk+size==usableSize ); + testcase( pc+size==usableSize ); + memcpy(&data[cbrk], &temp[pc], size); + put2byte(pAddr, cbrk); + } + assert( cbrk>=iCellFirst ); + put2byte(&data[hdr+5], cbrk); + data[hdr+1] = 0; + data[hdr+2] = 0; + data[hdr+7] = 0; + memset(&data[iCellFirst], 0, cbrk-iCellFirst); + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + if( cbrk-iCellFirst!=pPage->nFree ){ + return SQLITE_CORRUPT_BKPT; + } + return SQLITE_OK; +} + +/* +** Allocate nByte bytes of space from within the B-Tree page passed +** as the first argument. Write into *pIdx the index into pPage->aData[] +** of the first byte of allocated space. Return either SQLITE_OK or +** an error code (usually SQLITE_CORRUPT). +** +** The caller guarantees that there is sufficient space to make the +** allocation. This routine might need to defragment in order to bring +** all the space together, however. This routine will avoid using +** the first two bytes past the cell pointer area since presumably this +** allocation is being made in order to insert a new cell, so we will +** also end up needing a new cell pointer. +*/ +static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ + const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ + u8 * const data = pPage->aData; /* Local cache of pPage->aData */ + int nFrag; /* Number of fragmented bytes on pPage */ + int top; /* First byte of cell content area */ + int gap; /* First byte of gap between cell pointers and cell content */ + int rc; /* Integer return code */ + int usableSize; /* Usable size of the page */ + + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + assert( pPage->pBt ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + assert( nByte>=0 ); /* Minimum cell size is 4 */ + assert( pPage->nFree>=nByte ); + assert( pPage->nOverflow==0 ); + usableSize = pPage->pBt->usableSize; + assert( nByte < usableSize-8 ); + + nFrag = data[hdr+7]; + assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); + gap = pPage->cellOffset + 2*pPage->nCell; + top = get2byteNotZero(&data[hdr+5]); + if( gap>top ) return SQLITE_CORRUPT_BKPT; + testcase( gap+2==top ); + testcase( gap+1==top ); + testcase( gap==top ); + + if( nFrag>=60 ){ + /* Always defragment highly fragmented pages */ + rc = defragmentPage(pPage); + if( rc ) return rc; + top = get2byteNotZero(&data[hdr+5]); + }else if( gap+2<=top ){ + /* Search the freelist looking for a free slot big enough to satisfy + ** the request. The allocation is made from the first free slot in + ** the list that is large enough to accomadate it. + */ + int pc, addr; + for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){ + int size; /* Size of the free slot */ + if( pc>usableSize-4 || pc=nByte ){ + int x = size - nByte; + testcase( x==4 ); + testcase( x==3 ); + if( x<4 ){ + /* Remove the slot from the free-list. Update the number of + ** fragmented bytes within the page. */ + memcpy(&data[addr], &data[pc], 2); + data[hdr+7] = (u8)(nFrag + x); + }else if( size+pc > usableSize ){ + return SQLITE_CORRUPT_BKPT; + }else{ + /* The slot remains on the free-list. Reduce its size to account + ** for the portion used by the new allocation. */ + put2byte(&data[pc+2], x); + } + *pIdx = pc + x; + return SQLITE_OK; + } + } + } + + /* Check to make sure there is enough space in the gap to satisfy + ** the allocation. If not, defragment. + */ + testcase( gap+2+nByte==top ); + if( gap+2+nByte>top ){ + rc = defragmentPage(pPage); + if( rc ) return rc; + top = get2byteNotZero(&data[hdr+5]); + assert( gap+nByte<=top ); + } + + + /* Allocate memory from the gap in between the cell pointer array + ** and the cell content area. The btreeInitPage() call has already + ** validated the freelist. Given that the freelist is valid, there + ** is no way that the allocation can extend off the end of the page. + ** The assert() below verifies the previous sentence. + */ + top -= nByte; + put2byte(&data[hdr+5], top); + assert( top+nByte <= (int)pPage->pBt->usableSize ); + *pIdx = top; + return SQLITE_OK; +} + +/* +** Return a section of the pPage->aData to the freelist. +** The first byte of the new free block is pPage->aDisk[start] +** and the size of the block is "size" bytes. +** +** Most of the effort here is involved in coalesing adjacent +** free blocks into a single big free block. +*/ +static int freeSpace(MemPage *pPage, int start, int size){ + int addr, pbegin, hdr; + int iLast; /* Largest possible freeblock offset */ + unsigned char *data = pPage->aData; + + assert( pPage->pBt!=0 ); + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + assert( start>=pPage->hdrOffset+6+pPage->childPtrSize ); + assert( (start + size) <= (int)pPage->pBt->usableSize ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + assert( size>=0 ); /* Minimum cell size is 4 */ + + if( pPage->pBt->secureDelete ){ + /* Overwrite deleted information with zeros when the secure_delete + ** option is enabled */ + memset(&data[start], 0, size); + } + + /* Add the space back into the linked list of freeblocks. Note that + ** even though the freeblock list was checked by btreeInitPage(), + ** btreeInitPage() did not detect overlapping cells or + ** freeblocks that overlapped cells. Nor does it detect when the + ** cell content area exceeds the value in the page header. If these + ** situations arise, then subsequent insert operations might corrupt + ** the freelist. So we do need to check for corruption while scanning + ** the freelist. + */ + hdr = pPage->hdrOffset; + addr = hdr + 1; + iLast = pPage->pBt->usableSize - 4; + assert( start<=iLast ); + while( (pbegin = get2byte(&data[addr]))0 ){ + if( pbeginiLast ){ + return SQLITE_CORRUPT_BKPT; + } + assert( pbegin>addr || pbegin==0 ); + put2byte(&data[addr], start); + put2byte(&data[start], pbegin); + put2byte(&data[start+2], size); + pPage->nFree = pPage->nFree + (u16)size; + + /* Coalesce adjacent free blocks */ + addr = hdr + 1; + while( (pbegin = get2byte(&data[addr]))>0 ){ + int pnext, psize, x; + assert( pbegin>addr ); + assert( pbegin <= (int)pPage->pBt->usableSize-4 ); + pnext = get2byte(&data[pbegin]); + psize = get2byte(&data[pbegin+2]); + if( pbegin + psize + 3 >= pnext && pnext>0 ){ + int frag = pnext - (pbegin+psize); + if( (frag<0) || (frag>(int)data[hdr+7]) ){ + return SQLITE_CORRUPT_BKPT; + } + data[hdr+7] -= (u8)frag; + x = get2byte(&data[pnext]); + put2byte(&data[pbegin], x); + x = pnext + get2byte(&data[pnext+2]) - pbegin; + put2byte(&data[pbegin+2], x); + }else{ + addr = pbegin; + } + } + + /* If the cell content area begins with a freeblock, remove it. */ + if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){ + int top; + pbegin = get2byte(&data[hdr+1]); + memcpy(&data[hdr+1], &data[pbegin], 2); + top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]); + put2byte(&data[hdr+5], top); + } + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + return SQLITE_OK; +} + +/* +** Decode the flags byte (the first byte of the header) for a page +** and initialize fields of the MemPage structure accordingly. +** +** Only the following combinations are supported. Anything different +** indicates a corrupt database files: +** +** PTF_ZERODATA +** PTF_ZERODATA | PTF_LEAF +** PTF_LEAFDATA | PTF_INTKEY +** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF +*/ +static int decodeFlags(MemPage *pPage, int flagByte){ + BtShared *pBt; /* A copy of pPage->pBt */ + + assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); + flagByte &= ~PTF_LEAF; + pPage->childPtrSize = 4-4*pPage->leaf; + pBt = pPage->pBt; + if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ + pPage->intKey = 1; + pPage->hasData = pPage->leaf; + pPage->maxLocal = pBt->maxLeaf; + pPage->minLocal = pBt->minLeaf; + }else if( flagByte==PTF_ZERODATA ){ + pPage->intKey = 0; + pPage->hasData = 0; + pPage->maxLocal = pBt->maxLocal; + pPage->minLocal = pBt->minLocal; + }else{ + return SQLITE_CORRUPT_BKPT; + } + return SQLITE_OK; +} + +/* +** Initialize the auxiliary information for a disk block. +** +** Return SQLITE_OK on success. If we see that the page does +** not contain a well-formed database page, then return +** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not +** guarantee that the page is well-formed. It only shows that +** we failed to detect any corruption. +*/ +static int btreeInitPage(MemPage *pPage){ + + assert( pPage->pBt!=0 ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); + assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); + assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); + + if( !pPage->isInit ){ + u16 pc; /* Address of a freeblock within pPage->aData[] */ + u8 hdr; /* Offset to beginning of page header */ + u8 *data; /* Equal to pPage->aData */ + BtShared *pBt; /* The main btree structure */ + int usableSize; /* Amount of usable space on each page */ + u16 cellOffset; /* Offset from start of page to first cell pointer */ + int nFree; /* Number of unused bytes on the page */ + int top; /* First byte of the cell content area */ + int iCellFirst; /* First allowable cell or freeblock offset */ + int iCellLast; /* Last possible cell or freeblock offset */ + + pBt = pPage->pBt; + + hdr = pPage->hdrOffset; + data = pPage->aData; + if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; + assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); + pPage->maskPage = (u16)(pBt->pageSize - 1); + pPage->nOverflow = 0; + usableSize = pBt->usableSize; + pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; + top = get2byteNotZero(&data[hdr+5]); + pPage->nCell = get2byte(&data[hdr+3]); + if( pPage->nCell>MX_CELL(pBt) ){ + /* To many cells for a single page. The page must be corrupt */ + return SQLITE_CORRUPT_BKPT; + } + testcase( pPage->nCell==MX_CELL(pBt) ); + + /* A malformed database page might cause us to read past the end + ** of page when parsing a cell. + ** + ** The following block of code checks early to see if a cell extends + ** past the end of a page boundary and causes SQLITE_CORRUPT to be + ** returned if it does. + */ + iCellFirst = cellOffset + 2*pPage->nCell; + iCellLast = usableSize - 4; +#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) + { + int i; /* Index into the cell pointer array */ + int sz; /* Size of a cell */ + + if( !pPage->leaf ) iCellLast--; + for(i=0; inCell; i++){ + pc = get2byte(&data[cellOffset+i*2]); + testcase( pc==iCellFirst ); + testcase( pc==iCellLast ); + if( pciCellLast ){ + return SQLITE_CORRUPT_BKPT; + } + sz = cellSizePtr(pPage, &data[pc]); + testcase( pc+sz==usableSize ); + if( pc+sz>usableSize ){ + return SQLITE_CORRUPT_BKPT; + } + } + if( !pPage->leaf ) iCellLast++; + } +#endif + + /* Compute the total free space on the page */ + pc = get2byte(&data[hdr+1]); + nFree = data[hdr+7] + top; + while( pc>0 ){ + u16 next, size; + if( pciCellLast ){ + /* Start of free block is off the page */ + return SQLITE_CORRUPT_BKPT; + } + next = get2byte(&data[pc]); + size = get2byte(&data[pc+2]); + if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){ + /* Free blocks must be in ascending order. And the last byte of + ** the free-block must lie on the database page. */ + return SQLITE_CORRUPT_BKPT; + } + nFree = nFree + size; + pc = next; + } + + /* At this point, nFree contains the sum of the offset to the start + ** of the cell-content area plus the number of free bytes within + ** the cell-content area. If this is greater than the usable-size + ** of the page, then the page must be corrupted. This check also + ** serves to verify that the offset to the start of the cell-content + ** area, according to the page header, lies within the page. + */ + if( nFree>usableSize ){ + return SQLITE_CORRUPT_BKPT; + } + pPage->nFree = (u16)(nFree - iCellFirst); + pPage->isInit = 1; + } + return SQLITE_OK; +} + +/* +** Set up a raw page so that it looks like a database page holding +** no entries. +*/ +static void zeroPage(MemPage *pPage, int flags){ + unsigned char *data = pPage->aData; + BtShared *pBt = pPage->pBt; + u8 hdr = pPage->hdrOffset; + u16 first; + + assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); + assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); + assert( sqlite3PagerGetData(pPage->pDbPage) == data ); + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + assert( sqlite3_mutex_held(pBt->mutex) ); + if( pBt->secureDelete ){ + memset(&data[hdr], 0, pBt->usableSize - hdr); + } + data[hdr] = (char)flags; + first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0); + memset(&data[hdr+1], 0, 4); + data[hdr+7] = 0; + put2byte(&data[hdr+5], pBt->usableSize); + pPage->nFree = (u16)(pBt->usableSize - first); + decodeFlags(pPage, flags); + pPage->hdrOffset = hdr; + pPage->cellOffset = first; + pPage->nOverflow = 0; + assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); + pPage->maskPage = (u16)(pBt->pageSize - 1); + pPage->nCell = 0; + pPage->isInit = 1; +} + + +/* +** Convert a DbPage obtained from the pager into a MemPage used by +** the btree layer. +*/ +static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ + MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); + pPage->aData = sqlite3PagerGetData(pDbPage); + pPage->pDbPage = pDbPage; + pPage->pBt = pBt; + pPage->pgno = pgno; + pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; + return pPage; +} + +/* +** Get a page from the pager. Initialize the MemPage.pBt and +** MemPage.aData elements if needed. +** +** If the noContent flag is set, it means that we do not care about +** the content of the page at this time. So do not go to the disk +** to fetch the content. Just fill in the content with zeros for now. +** If in the future we call sqlite3PagerWrite() on this page, that +** means we have started to be concerned about content and the disk +** read should occur at that point. +*/ +static int btreeGetPage( + BtShared *pBt, /* The btree */ + Pgno pgno, /* Number of the page to fetch */ + MemPage **ppPage, /* Return the page in this parameter */ + int noContent /* Do not load page content if true */ +){ + int rc; + DbPage *pDbPage; + + assert( sqlite3_mutex_held(pBt->mutex) ); + rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent); + if( rc ) return rc; + *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); + return SQLITE_OK; +} + +/* +** Retrieve a page from the pager cache. If the requested page is not +** already in the pager cache return NULL. Initialize the MemPage.pBt and +** MemPage.aData elements if needed. +*/ +static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ + DbPage *pDbPage; + assert( sqlite3_mutex_held(pBt->mutex) ); + pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); + if( pDbPage ){ + return btreePageFromDbPage(pDbPage, pgno, pBt); + } + return 0; +} + +/* +** Return the size of the database file in pages. If there is any kind of +** error, return ((unsigned int)-1). +*/ +static Pgno btreePagecount(BtShared *pBt){ + return pBt->nPage; +} +u32 sqlite3BtreeLastPage(Btree *p){ + assert( sqlite3BtreeHoldsMutex(p) ); + assert( ((p->pBt->nPage)&0x8000000)==0 ); + return (int)btreePagecount(p->pBt); +} + +/* +** Get a page from the pager and initialize it. This routine is just a +** convenience wrapper around separate calls to btreeGetPage() and +** btreeInitPage(). +** +** If an error occurs, then the value *ppPage is set to is undefined. It +** may remain unchanged, or it may be set to an invalid value. +*/ +static int getAndInitPage( + BtShared *pBt, /* The database file */ + Pgno pgno, /* Number of the page to get */ + MemPage **ppPage /* Write the page pointer here */ +){ + int rc; + assert( sqlite3_mutex_held(pBt->mutex) ); + + if( pgno>btreePagecount(pBt) ){ + rc = SQLITE_CORRUPT_BKPT; + }else{ + rc = btreeGetPage(pBt, pgno, ppPage, 0); + if( rc==SQLITE_OK ){ + rc = btreeInitPage(*ppPage); + if( rc!=SQLITE_OK ){ + releasePage(*ppPage); + } + } + } + + testcase( pgno==0 ); + assert( pgno!=0 || rc==SQLITE_CORRUPT ); + return rc; +} + +/* +** Release a MemPage. This should be called once for each prior +** call to btreeGetPage. +*/ +static void releasePage(MemPage *pPage){ + if( pPage ){ + assert( pPage->aData ); + assert( pPage->pBt ); + assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); + assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + sqlite3PagerUnref(pPage->pDbPage); + } +} + +/* +** During a rollback, when the pager reloads information into the cache +** so that the cache is restored to its original state at the start of +** the transaction, for each page restored this routine is called. +** +** This routine needs to reset the extra data section at the end of the +** page to agree with the restored data. +*/ +static void pageReinit(DbPage *pData){ + MemPage *pPage; + pPage = (MemPage *)sqlite3PagerGetExtra(pData); + assert( sqlite3PagerPageRefcount(pData)>0 ); + if( pPage->isInit ){ + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + pPage->isInit = 0; + if( sqlite3PagerPageRefcount(pData)>1 ){ + /* pPage might not be a btree page; it might be an overflow page + ** or ptrmap page or a free page. In those cases, the following + ** call to btreeInitPage() will likely return SQLITE_CORRUPT. + ** But no harm is done by this. And it is very important that + ** btreeInitPage() be called on every btree page so we make + ** the call for every page that comes in for re-initing. */ + btreeInitPage(pPage); + } + } +} + +/* +** Invoke the busy handler for a btree. +*/ +static int btreeInvokeBusyHandler(void *pArg){ + BtShared *pBt = (BtShared*)pArg; + assert( pBt->db ); + assert( sqlite3_mutex_held(pBt->db->mutex) ); + return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); +} + +/* +** Open a database file. +** +** zFilename is the name of the database file. If zFilename is NULL +** then an ephemeral database is created. The ephemeral database might +** be exclusively in memory, or it might use a disk-based memory cache. +** Either way, the ephemeral database will be automatically deleted +** when sqlite3BtreeClose() is called. +** +** If zFilename is ":memory:" then an in-memory database is created +** that is automatically destroyed when it is closed. +** +** The "flags" parameter is a bitmask that might contain bits +** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK +** bit is also set if the SQLITE_NoReadlock flags is set in db->flags. +** These flags are passed through into sqlite3PagerOpen() and must +** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK. +** +** If the database is already opened in the same database connection +** and we are in shared cache mode, then the open will fail with an +** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared +** objects in the same database connection since doing so will lead +** to problems with locking. +*/ +int sqlite3BtreeOpen( + sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ + const char *zFilename, /* Name of the file containing the BTree database */ + sqlite3 *db, /* Associated database handle */ + Btree **ppBtree, /* Pointer to new Btree object written here */ + int flags, /* Options */ + int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ +){ + BtShared *pBt = 0; /* Shared part of btree structure */ + Btree *p; /* Handle to return */ + sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ + int rc = SQLITE_OK; /* Result code from this function */ + u8 nReserve; /* Byte of unused space on each page */ + unsigned char zDbHeader[100]; /* Database header content */ + + /* True if opening an ephemeral, temporary database */ + const int isTempDb = zFilename==0 || zFilename[0]==0; + + /* Set the variable isMemdb to true for an in-memory database, or + ** false for a file-based database. + */ +#ifdef SQLITE_OMIT_MEMORYDB + const int isMemdb = 0; +#else + const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) + || (isTempDb && sqlite3TempInMemory(db)); +#endif + + assert( db!=0 ); + assert( pVfs!=0 ); + assert( sqlite3_mutex_held(db->mutex) ); + assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ + + /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ + assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); + + /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ + assert( (flags & BTREE_SINGLE)==0 || isTempDb ); + + if( db->flags & SQLITE_NoReadlock ){ + flags |= BTREE_NO_READLOCK; + } + if( isMemdb ){ + flags |= BTREE_MEMORY; + } + if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ + vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; + } + p = sqlite3MallocZero(sizeof(Btree)); + if( !p ){ + return SQLITE_NOMEM; + } + p->inTrans = TRANS_NONE; + p->db = db; +#ifndef SQLITE_OMIT_SHARED_CACHE + p->lock.pBtree = p; + p->lock.iTable = 1; +#endif + +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) + /* + ** If this Btree is a candidate for shared cache, try to find an + ** existing BtShared object that we can share with + */ + if( isMemdb==0 && isTempDb==0 ){ + if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ + int nFullPathname = pVfs->mxPathname+1; + char *zFullPathname = sqlite3Malloc(nFullPathname); + MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) + p->sharable = 1; + if( !zFullPathname ){ + sqlite3_free(p); + return SQLITE_NOMEM; + } + sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname); +#if SQLITE_THREADSAFE + mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); + sqlite3_mutex_enter(mutexOpen); + mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); + sqlite3_mutex_enter(mutexShared); +#endif + for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ + assert( pBt->nRef>0 ); + if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager)) + && sqlite3PagerVfs(pBt->pPager)==pVfs ){ + int iDb; + for(iDb=db->nDb-1; iDb>=0; iDb--){ + Btree *pExisting = db->aDb[iDb].pBt; + if( pExisting && pExisting->pBt==pBt ){ + sqlite3_mutex_leave(mutexShared); + sqlite3_mutex_leave(mutexOpen); + sqlite3_free(zFullPathname); + sqlite3_free(p); + return SQLITE_CONSTRAINT; + } + } + p->pBt = pBt; + pBt->nRef++; + break; + } + } + sqlite3_mutex_leave(mutexShared); + sqlite3_free(zFullPathname); + } +#ifdef SQLITE_DEBUG + else{ + /* In debug mode, we mark all persistent databases as sharable + ** even when they are not. This exercises the locking code and + ** gives more opportunity for asserts(sqlite3_mutex_held()) + ** statements to find locking problems. + */ + p->sharable = 1; + } +#endif + } +#endif + if( pBt==0 ){ + /* + ** The following asserts make sure that structures used by the btree are + ** the right size. This is to guard against size changes that result + ** when compiling on a different architecture. + */ + assert( sizeof(i64)==8 || sizeof(i64)==4 ); + assert( sizeof(u64)==8 || sizeof(u64)==4 ); + assert( sizeof(u32)==4 ); + assert( sizeof(u16)==2 ); + assert( sizeof(Pgno)==4 ); + + pBt = sqlite3MallocZero( sizeof(*pBt) ); + if( pBt==0 ){ + rc = SQLITE_NOMEM; + goto btree_open_out; + } + rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, + EXTRA_SIZE, flags, vfsFlags, pageReinit); + if( rc==SQLITE_OK ){ + rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); + } + if( rc!=SQLITE_OK ){ + goto btree_open_out; + } + pBt->openFlags = (u8)flags; + pBt->db = db; + sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt); + p->pBt = pBt; + + pBt->pCursor = 0; + pBt->pPage1 = 0; + pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager); +#ifdef SQLITE_SECURE_DELETE + pBt->secureDelete = 1; +#endif + pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); + if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE + || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ + pBt->pageSize = 0; +#ifndef SQLITE_OMIT_AUTOVACUUM + /* If the magic name ":memory:" will create an in-memory database, then + ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if + ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if + ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a + ** regular file-name. In this case the auto-vacuum applies as per normal. + */ + if( zFilename && !isMemdb ){ + pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); + pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); + } +#endif + nReserve = 0; + }else{ + nReserve = zDbHeader[20]; + pBt->pageSizeFixed = 1; +#ifndef SQLITE_OMIT_AUTOVACUUM + pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); + pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); +#endif + } + rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); + if( rc ) goto btree_open_out; + pBt->usableSize = pBt->pageSize - nReserve; + assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ + +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) + /* Add the new BtShared object to the linked list sharable BtShareds. + */ + if( p->sharable ){ + MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) + pBt->nRef = 1; + MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) + if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ + pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); + if( pBt->mutex==0 ){ + rc = SQLITE_NOMEM; + db->mallocFailed = 0; + goto btree_open_out; + } + } + sqlite3_mutex_enter(mutexShared); + pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); + GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; + sqlite3_mutex_leave(mutexShared); + } +#endif + } + +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) + /* If the new Btree uses a sharable pBtShared, then link the new + ** Btree into the list of all sharable Btrees for the same connection. + ** The list is kept in ascending order by pBt address. + */ + if( p->sharable ){ + int i; + Btree *pSib; + for(i=0; inDb; i++){ + if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ + while( pSib->pPrev ){ pSib = pSib->pPrev; } + if( p->pBtpBt ){ + p->pNext = pSib; + p->pPrev = 0; + pSib->pPrev = p; + }else{ + while( pSib->pNext && pSib->pNext->pBtpBt ){ + pSib = pSib->pNext; + } + p->pNext = pSib->pNext; + p->pPrev = pSib; + if( p->pNext ){ + p->pNext->pPrev = p; + } + pSib->pNext = p; + } + break; + } + } + } +#endif + *ppBtree = p; + +btree_open_out: + if( rc!=SQLITE_OK ){ + if( pBt && pBt->pPager ){ + sqlite3PagerClose(pBt->pPager); + } + sqlite3_free(pBt); + sqlite3_free(p); + *ppBtree = 0; + }else{ + /* If the B-Tree was successfully opened, set the pager-cache size to the + ** default value. Except, when opening on an existing shared pager-cache, + ** do not change the pager-cache size. + */ + if( sqlite3BtreeSchema(p, 0, 0)==0 ){ + sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); + } + } + if( mutexOpen ){ + assert( sqlite3_mutex_held(mutexOpen) ); + sqlite3_mutex_leave(mutexOpen); + } + return rc; +} + +/* +** Decrement the BtShared.nRef counter. When it reaches zero, +** remove the BtShared structure from the sharing list. Return +** true if the BtShared.nRef counter reaches zero and return +** false if it is still positive. +*/ +static int removeFromSharingList(BtShared *pBt){ +#ifndef SQLITE_OMIT_SHARED_CACHE + MUTEX_LOGIC( sqlite3_mutex *pMaster; ) + BtShared *pList; + int removed = 0; + + assert( sqlite3_mutex_notheld(pBt->mutex) ); + MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) + sqlite3_mutex_enter(pMaster); + pBt->nRef--; + if( pBt->nRef<=0 ){ + if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ + GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; + }else{ + pList = GLOBAL(BtShared*,sqlite3SharedCacheList); + while( ALWAYS(pList) && pList->pNext!=pBt ){ + pList=pList->pNext; + } + if( ALWAYS(pList) ){ + pList->pNext = pBt->pNext; + } + } + if( SQLITE_THREADSAFE ){ + sqlite3_mutex_free(pBt->mutex); + } + removed = 1; + } + sqlite3_mutex_leave(pMaster); + return removed; +#else + return 1; +#endif +} + +/* +** Make sure pBt->pTmpSpace points to an allocation of +** MX_CELL_SIZE(pBt) bytes. +*/ +static void allocateTempSpace(BtShared *pBt){ + if( !pBt->pTmpSpace ){ + pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); + } +} + +/* +** Free the pBt->pTmpSpace allocation +*/ +static void freeTempSpace(BtShared *pBt){ + sqlite3PageFree( pBt->pTmpSpace); + pBt->pTmpSpace = 0; +} + +/* +** Close an open database and invalidate all cursors. +*/ +int sqlite3BtreeClose(Btree *p){ + BtShared *pBt = p->pBt; + BtCursor *pCur; + + /* Close all cursors opened via this handle. */ + assert( sqlite3_mutex_held(p->db->mutex) ); + sqlite3BtreeEnter(p); + pCur = pBt->pCursor; + while( pCur ){ + BtCursor *pTmp = pCur; + pCur = pCur->pNext; + if( pTmp->pBtree==p ){ + sqlite3BtreeCloseCursor(pTmp); + } + } + + /* Rollback any active transaction and free the handle structure. + ** The call to sqlite3BtreeRollback() drops any table-locks held by + ** this handle. + */ + sqlite3BtreeRollback(p); + sqlite3BtreeLeave(p); + + /* If there are still other outstanding references to the shared-btree + ** structure, return now. The remainder of this procedure cleans + ** up the shared-btree. + */ + assert( p->wantToLock==0 && p->locked==0 ); + if( !p->sharable || removeFromSharingList(pBt) ){ + /* The pBt is no longer on the sharing list, so we can access + ** it without having to hold the mutex. + ** + ** Clean out and delete the BtShared object. + */ + assert( !pBt->pCursor ); + sqlite3PagerClose(pBt->pPager); + if( pBt->xFreeSchema && pBt->pSchema ){ + pBt->xFreeSchema(pBt->pSchema); + } + sqlite3DbFree(0, pBt->pSchema); + freeTempSpace(pBt); + sqlite3_free(pBt); + } + +#ifndef SQLITE_OMIT_SHARED_CACHE + assert( p->wantToLock==0 ); + assert( p->locked==0 ); + if( p->pPrev ) p->pPrev->pNext = p->pNext; + if( p->pNext ) p->pNext->pPrev = p->pPrev; +#endif + + sqlite3_free(p); + return SQLITE_OK; +} + +/* +** Change the limit on the number of pages allowed in the cache. +** +** The maximum number of cache pages is set to the absolute +** value of mxPage. If mxPage is negative, the pager will +** operate asynchronously - it will not stop to do fsync()s +** to insure data is written to the disk surface before +** continuing. Transactions still work if synchronous is off, +** and the database cannot be corrupted if this program +** crashes. But if the operating system crashes or there is +** an abrupt power failure when synchronous is off, the database +** could be left in an inconsistent and unrecoverable state. +** Synchronous is on by default so database corruption is not +** normally a worry. +*/ +int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ + BtShared *pBt = p->pBt; + assert( sqlite3_mutex_held(p->db->mutex) ); + sqlite3BtreeEnter(p); + sqlite3PagerSetCachesize(pBt->pPager, mxPage); + sqlite3BtreeLeave(p); + return SQLITE_OK; +} + +/* +** Change the way data is synced to disk in order to increase or decrease +** how well the database resists damage due to OS crashes and power +** failures. Level 1 is the same as asynchronous (no syncs() occur and +** there is a high probability of damage) Level 2 is the default. There +** is a very low but non-zero probability of damage. Level 3 reduces the +** probability of damage to near zero but with a write performance reduction. +*/ +#ifndef SQLITE_OMIT_PAGER_PRAGMAS +int sqlite3BtreeSetSafetyLevel( + Btree *p, /* The btree to set the safety level on */ + int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */ + int fullSync, /* PRAGMA fullfsync. */ + int ckptFullSync /* PRAGMA checkpoint_fullfync */ +){ + BtShared *pBt = p->pBt; + assert( sqlite3_mutex_held(p->db->mutex) ); + assert( level>=1 && level<=3 ); + sqlite3BtreeEnter(p); + sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync); + sqlite3BtreeLeave(p); + return SQLITE_OK; +} +#endif + +/* +** Return TRUE if the given btree is set to safety level 1. In other +** words, return TRUE if no sync() occurs on the disk files. +*/ +int sqlite3BtreeSyncDisabled(Btree *p){ + BtShared *pBt = p->pBt; + int rc; + assert( sqlite3_mutex_held(p->db->mutex) ); + sqlite3BtreeEnter(p); + assert( pBt && pBt->pPager ); + rc = sqlite3PagerNosync(pBt->pPager); + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Change the default pages size and the number of reserved bytes per page. +** Or, if the page size has already been fixed, return SQLITE_READONLY +** without changing anything. +** +** The page size must be a power of 2 between 512 and 65536. If the page +** size supplied does not meet this constraint then the page size is not +** changed. +** +** Page sizes are constrained to be a power of two so that the region +** of the database file used for locking (beginning at PENDING_BYTE, +** the first byte past the 1GB boundary, 0x40000000) needs to occur +** at the beginning of a page. +** +** If parameter nReserve is less than zero, then the number of reserved +** bytes per page is left unchanged. +** +** If the iFix!=0 then the pageSizeFixed flag is set so that the page size +** and autovacuum mode can no longer be changed. +*/ +int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ + int rc = SQLITE_OK; + BtShared *pBt = p->pBt; + assert( nReserve>=-1 && nReserve<=255 ); + sqlite3BtreeEnter(p); + if( pBt->pageSizeFixed ){ + sqlite3BtreeLeave(p); + return SQLITE_READONLY; + } + if( nReserve<0 ){ + nReserve = pBt->pageSize - pBt->usableSize; + } + assert( nReserve>=0 && nReserve<=255 ); + if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && + ((pageSize-1)&pageSize)==0 ){ + assert( (pageSize & 7)==0 ); + assert( !pBt->pPage1 && !pBt->pCursor ); + pBt->pageSize = (u32)pageSize; + freeTempSpace(pBt); + } + rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); + pBt->usableSize = pBt->pageSize - (u16)nReserve; + if( iFix ) pBt->pageSizeFixed = 1; + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Return the currently defined page size +*/ +int sqlite3BtreeGetPageSize(Btree *p){ + return p->pBt->pageSize; +} + +#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) +/* +** Return the number of bytes of space at the end of every page that +** are intentually left unused. This is the "reserved" space that is +** sometimes used by extensions. +*/ +int sqlite3BtreeGetReserve(Btree *p){ + int n; + sqlite3BtreeEnter(p); + n = p->pBt->pageSize - p->pBt->usableSize; + sqlite3BtreeLeave(p); + return n; +} + +/* +** Set the maximum page count for a database if mxPage is positive. +** No changes are made if mxPage is 0 or negative. +** Regardless of the value of mxPage, return the maximum page count. +*/ +int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ + int n; + sqlite3BtreeEnter(p); + n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); + sqlite3BtreeLeave(p); + return n; +} + +/* +** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1, +** then make no changes. Always return the value of the secureDelete +** setting after the change. +*/ +int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ + int b; + if( p==0 ) return 0; + sqlite3BtreeEnter(p); + if( newFlag>=0 ){ + p->pBt->secureDelete = (newFlag!=0) ? 1 : 0; + } + b = p->pBt->secureDelete; + sqlite3BtreeLeave(p); + return b; +} +#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ + +/* +** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' +** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it +** is disabled. The default value for the auto-vacuum property is +** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. +*/ +int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ +#ifdef SQLITE_OMIT_AUTOVACUUM + return SQLITE_READONLY; +#else + BtShared *pBt = p->pBt; + int rc = SQLITE_OK; + u8 av = (u8)autoVacuum; + + sqlite3BtreeEnter(p); + if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){ + rc = SQLITE_READONLY; + }else{ + pBt->autoVacuum = av ?1:0; + pBt->incrVacuum = av==2 ?1:0; + } + sqlite3BtreeLeave(p); + return rc; +#endif +} + +/* +** Return the value of the 'auto-vacuum' property. If auto-vacuum is +** enabled 1 is returned. Otherwise 0. +*/ +int sqlite3BtreeGetAutoVacuum(Btree *p){ +#ifdef SQLITE_OMIT_AUTOVACUUM + return BTREE_AUTOVACUUM_NONE; +#else + int rc; + sqlite3BtreeEnter(p); + rc = ( + (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: + (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: + BTREE_AUTOVACUUM_INCR + ); + sqlite3BtreeLeave(p); + return rc; +#endif +} + + +/* +** Get a reference to pPage1 of the database file. This will +** also acquire a readlock on that file. +** +** SQLITE_OK is returned on success. If the file is not a +** well-formed database file, then SQLITE_CORRUPT is returned. +** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM +** is returned if we run out of memory. +*/ +static int lockBtree(BtShared *pBt){ + int rc; /* Result code from subfunctions */ + MemPage *pPage1; /* Page 1 of the database file */ + int nPage; /* Number of pages in the database */ + int nPageFile = 0; /* Number of pages in the database file */ + int nPageHeader; /* Number of pages in the database according to hdr */ + + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( pBt->pPage1==0 ); + rc = sqlite3PagerSharedLock(pBt->pPager); + if( rc!=SQLITE_OK ) return rc; + rc = btreeGetPage(pBt, 1, &pPage1, 0); + if( rc!=SQLITE_OK ) return rc; + + /* Do some checking to help insure the file we opened really is + ** a valid database file. + */ + nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); + sqlite3PagerPagecount(pBt->pPager, &nPageFile); + if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ + nPage = nPageFile; + } + if( nPage>0 ){ + u32 pageSize; + u32 usableSize; + u8 *page1 = pPage1->aData; + rc = SQLITE_NOTADB; + if( memcmp(page1, zMagicHeader, 16)!=0 ){ + goto page1_init_failed; + } + +#ifdef SQLITE_OMIT_WAL + if( page1[18]>1 ){ + pBt->readOnly = 1; + } + if( page1[19]>1 ){ + goto page1_init_failed; + } +#else + if( page1[18]>2 ){ + pBt->readOnly = 1; + } + if( page1[19]>2 ){ + goto page1_init_failed; + } + + /* If the write version is set to 2, this database should be accessed + ** in WAL mode. If the log is not already open, open it now. Then + ** return SQLITE_OK and return without populating BtShared.pPage1. + ** The caller detects this and calls this function again. This is + ** required as the version of page 1 currently in the page1 buffer + ** may not be the latest version - there may be a newer one in the log + ** file. + */ + if( page1[19]==2 && pBt->doNotUseWAL==0 ){ + int isOpen = 0; + rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); + if( rc!=SQLITE_OK ){ + goto page1_init_failed; + }else if( isOpen==0 ){ + releasePage(pPage1); + return SQLITE_OK; + } + rc = SQLITE_NOTADB; + } +#endif + + /* The maximum embedded fraction must be exactly 25%. And the minimum + ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data. + ** The original design allowed these amounts to vary, but as of + ** version 3.6.0, we require them to be fixed. + */ + if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ + goto page1_init_failed; + } + pageSize = (page1[16]<<8) | (page1[17]<<16); + if( ((pageSize-1)&pageSize)!=0 + || pageSize>SQLITE_MAX_PAGE_SIZE + || pageSize<=256 + ){ + goto page1_init_failed; + } + assert( (pageSize & 7)==0 ); + usableSize = pageSize - page1[20]; + if( (u32)pageSize!=pBt->pageSize ){ + /* After reading the first page of the database assuming a page size + ** of BtShared.pageSize, we have discovered that the page-size is + ** actually pageSize. Unlock the database, leave pBt->pPage1 at + ** zero and return SQLITE_OK. The caller will call this function + ** again with the correct page-size. + */ + releasePage(pPage1); + pBt->usableSize = usableSize; + pBt->pageSize = pageSize; + freeTempSpace(pBt); + rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, + pageSize-usableSize); + return rc; + } + if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){ + rc = SQLITE_CORRUPT_BKPT; + goto page1_init_failed; + } + if( usableSize<480 ){ + goto page1_init_failed; + } + pBt->pageSize = pageSize; + pBt->usableSize = usableSize; +#ifndef SQLITE_OMIT_AUTOVACUUM + pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); + pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); +#endif + } + + /* maxLocal is the maximum amount of payload to store locally for + ** a cell. Make sure it is small enough so that at least minFanout + ** cells can will fit on one page. We assume a 10-byte page header. + ** Besides the payload, the cell must store: + ** 2-byte pointer to the cell + ** 4-byte child pointer + ** 9-byte nKey value + ** 4-byte nData value + ** 4-byte overflow page pointer + ** So a cell consists of a 2-byte pointer, a header which is as much as + ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow + ** page pointer. + */ + pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); + pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); + pBt->maxLeaf = (u16)(pBt->usableSize - 35); + pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); + assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); + pBt->pPage1 = pPage1; + pBt->nPage = nPage; + return SQLITE_OK; + +page1_init_failed: + releasePage(pPage1); + pBt->pPage1 = 0; + return rc; +} + +/* +** If there are no outstanding cursors and we are not in the middle +** of a transaction but there is a read lock on the database, then +** this routine unrefs the first page of the database file which +** has the effect of releasing the read lock. +** +** If there is a transaction in progress, this routine is a no-op. +*/ +static void unlockBtreeIfUnused(BtShared *pBt){ + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE ); + if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ + assert( pBt->pPage1->aData ); + assert( sqlite3PagerRefcount(pBt->pPager)==1 ); + assert( pBt->pPage1->aData ); + releasePage(pBt->pPage1); + pBt->pPage1 = 0; + } +} + +/* +** If pBt points to an empty file then convert that empty file +** into a new empty database by initializing the first page of +** the database. +*/ +static int newDatabase(BtShared *pBt){ + MemPage *pP1; + unsigned char *data; + int rc; + + assert( sqlite3_mutex_held(pBt->mutex) ); + if( pBt->nPage>0 ){ + return SQLITE_OK; + } + pP1 = pBt->pPage1; + assert( pP1!=0 ); + data = pP1->aData; + rc = sqlite3PagerWrite(pP1->pDbPage); + if( rc ) return rc; + memcpy(data, zMagicHeader, sizeof(zMagicHeader)); + assert( sizeof(zMagicHeader)==16 ); + data[16] = (u8)((pBt->pageSize>>8)&0xff); + data[17] = (u8)((pBt->pageSize>>16)&0xff); + data[18] = 1; + data[19] = 1; + assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); + data[20] = (u8)(pBt->pageSize - pBt->usableSize); + data[21] = 64; + data[22] = 32; + data[23] = 32; + memset(&data[24], 0, 100-24); + zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); + pBt->pageSizeFixed = 1; +#ifndef SQLITE_OMIT_AUTOVACUUM + assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); + assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); + put4byte(&data[36 + 4*4], pBt->autoVacuum); + put4byte(&data[36 + 7*4], pBt->incrVacuum); +#endif + pBt->nPage = 1; + data[31] = 1; + return SQLITE_OK; +} + +/* +** Attempt to start a new transaction. A write-transaction +** is started if the second argument is nonzero, otherwise a read- +** transaction. If the second argument is 2 or more and exclusive +** transaction is started, meaning that no other process is allowed +** to access the database. A preexisting transaction may not be +** upgraded to exclusive by calling this routine a second time - the +** exclusivity flag only works for a new transaction. +** +** A write-transaction must be started before attempting any +** changes to the database. None of the following routines +** will work unless a transaction is started first: +** +** sqlite3BtreeCreateTable() +** sqlite3BtreeCreateIndex() +** sqlite3BtreeClearTable() +** sqlite3BtreeDropTable() +** sqlite3BtreeInsert() +** sqlite3BtreeDelete() +** sqlite3BtreeUpdateMeta() +** +** If an initial attempt to acquire the lock fails because of lock contention +** and the database was previously unlocked, then invoke the busy handler +** if there is one. But if there was previously a read-lock, do not +** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is +** returned when there is already a read-lock in order to avoid a deadlock. +** +** Suppose there are two processes A and B. A has a read lock and B has +** a reserved lock. B tries to promote to exclusive but is blocked because +** of A's read lock. A tries to promote to reserved but is blocked by B. +** One or the other of the two processes must give way or there can be +** no progress. By returning SQLITE_BUSY and not invoking the busy callback +** when A already has a read lock, we encourage A to give up and let B +** proceed. +*/ +int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ + sqlite3 *pBlock = 0; + BtShared *pBt = p->pBt; + int rc = SQLITE_OK; + + sqlite3BtreeEnter(p); + btreeIntegrity(p); + + /* If the btree is already in a write-transaction, or it + ** is already in a read-transaction and a read-transaction + ** is requested, this is a no-op. + */ + if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ + goto trans_begun; + } + + /* Write transactions are not possible on a read-only database */ + if( pBt->readOnly && wrflag ){ + rc = SQLITE_READONLY; + goto trans_begun; + } + +#ifndef SQLITE_OMIT_SHARED_CACHE + /* If another database handle has already opened a write transaction + ** on this shared-btree structure and a second write transaction is + ** requested, return SQLITE_LOCKED. + */ + if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){ + pBlock = pBt->pWriter->db; + }else if( wrflag>1 ){ + BtLock *pIter; + for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ + if( pIter->pBtree!=p ){ + pBlock = pIter->pBtree->db; + break; + } + } + } + if( pBlock ){ + sqlite3ConnectionBlocked(p->db, pBlock); + rc = SQLITE_LOCKED_SHAREDCACHE; + goto trans_begun; + } +#endif + + /* Any read-only or read-write transaction implies a read-lock on + ** page 1. So if some other shared-cache client already has a write-lock + ** on page 1, the transaction cannot be opened. */ + rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); + if( SQLITE_OK!=rc ) goto trans_begun; + + pBt->initiallyEmpty = (u8)(pBt->nPage==0); + do { + /* Call lockBtree() until either pBt->pPage1 is populated or + ** lockBtree() returns something other than SQLITE_OK. lockBtree() + ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after + ** reading page 1 it discovers that the page-size of the database + ** file is not pBt->pageSize. In this case lockBtree() will update + ** pBt->pageSize to the page-size of the file on disk. + */ + while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); + + if( rc==SQLITE_OK && wrflag ){ + if( pBt->readOnly ){ + rc = SQLITE_READONLY; + }else{ + rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); + if( rc==SQLITE_OK ){ + rc = newDatabase(pBt); + } + } + } + + if( rc!=SQLITE_OK ){ + unlockBtreeIfUnused(pBt); + } + }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && + btreeInvokeBusyHandler(pBt) ); + + if( rc==SQLITE_OK ){ + if( p->inTrans==TRANS_NONE ){ + pBt->nTransaction++; +#ifndef SQLITE_OMIT_SHARED_CACHE + if( p->sharable ){ + assert( p->lock.pBtree==p && p->lock.iTable==1 ); + p->lock.eLock = READ_LOCK; + p->lock.pNext = pBt->pLock; + pBt->pLock = &p->lock; + } +#endif + } + p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); + if( p->inTrans>pBt->inTransaction ){ + pBt->inTransaction = p->inTrans; + } + if( wrflag ){ + MemPage *pPage1 = pBt->pPage1; +#ifndef SQLITE_OMIT_SHARED_CACHE + assert( !pBt->pWriter ); + pBt->pWriter = p; + pBt->isExclusive = (u8)(wrflag>1); +#endif + + /* If the db-size header field is incorrect (as it may be if an old + ** client has been writing the database file), update it now. Doing + ** this sooner rather than later means the database size can safely + ** re-read the database size from page 1 if a savepoint or transaction + ** rollback occurs within the transaction. + */ + if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ + rc = sqlite3PagerWrite(pPage1->pDbPage); + if( rc==SQLITE_OK ){ + put4byte(&pPage1->aData[28], pBt->nPage); + } + } + } + } + + +trans_begun: + if( rc==SQLITE_OK && wrflag ){ + /* This call makes sure that the pager has the correct number of + ** open savepoints. If the second parameter is greater than 0 and + ** the sub-journal is not already open, then it will be opened here. + */ + rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); + } + + btreeIntegrity(p); + sqlite3BtreeLeave(p); + return rc; +} + +#ifndef SQLITE_OMIT_AUTOVACUUM + +/* +** Set the pointer-map entries for all children of page pPage. Also, if +** pPage contains cells that point to overflow pages, set the pointer +** map entries for the overflow pages as well. +*/ +static int setChildPtrmaps(MemPage *pPage){ + int i; /* Counter variable */ + int nCell; /* Number of cells in page pPage */ + int rc; /* Return code */ + BtShared *pBt = pPage->pBt; + u8 isInitOrig = pPage->isInit; + Pgno pgno = pPage->pgno; + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + rc = btreeInitPage(pPage); + if( rc!=SQLITE_OK ){ + goto set_child_ptrmaps_out; + } + nCell = pPage->nCell; + + for(i=0; ileaf ){ + Pgno childPgno = get4byte(pCell); + ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); + } + } + + if( !pPage->leaf ){ + Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); + ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); + } + +set_child_ptrmaps_out: + pPage->isInit = isInitOrig; + return rc; +} + +/* +** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so +** that it points to iTo. Parameter eType describes the type of pointer to +** be modified, as follows: +** +** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child +** page of pPage. +** +** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow +** page pointed to by one of the cells on pPage. +** +** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next +** overflow page in the list. +*/ +static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + if( eType==PTRMAP_OVERFLOW2 ){ + /* The pointer is always the first 4 bytes of the page in this case. */ + if( get4byte(pPage->aData)!=iFrom ){ + return SQLITE_CORRUPT_BKPT; + } + put4byte(pPage->aData, iTo); + }else{ + u8 isInitOrig = pPage->isInit; + int i; + int nCell; + + btreeInitPage(pPage); + nCell = pPage->nCell; + + for(i=0; iaData+pPage->maskPage + && iFrom==get4byte(&pCell[info.iOverflow]) + ){ + put4byte(&pCell[info.iOverflow], iTo); + break; + } + }else{ + if( get4byte(pCell)==iFrom ){ + put4byte(pCell, iTo); + break; + } + } + } + + if( i==nCell ){ + if( eType!=PTRMAP_BTREE || + get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ + return SQLITE_CORRUPT_BKPT; + } + put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); + } + + pPage->isInit = isInitOrig; + } + return SQLITE_OK; +} + + +/* +** Move the open database page pDbPage to location iFreePage in the +** database. The pDbPage reference remains valid. +** +** The isCommit flag indicates that there is no need to remember that +** the journal needs to be sync()ed before database page pDbPage->pgno +** can be written to. The caller has already promised not to write to that +** page. +*/ +static int relocatePage( + BtShared *pBt, /* Btree */ + MemPage *pDbPage, /* Open page to move */ + u8 eType, /* Pointer map 'type' entry for pDbPage */ + Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ + Pgno iFreePage, /* The location to move pDbPage to */ + int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ +){ + MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ + Pgno iDbPage = pDbPage->pgno; + Pager *pPager = pBt->pPager; + int rc; + + assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || + eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( pDbPage->pBt==pBt ); + + /* Move page iDbPage from its current location to page number iFreePage */ + TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", + iDbPage, iFreePage, iPtrPage, eType)); + rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); + if( rc!=SQLITE_OK ){ + return rc; + } + pDbPage->pgno = iFreePage; + + /* If pDbPage was a btree-page, then it may have child pages and/or cells + ** that point to overflow pages. The pointer map entries for all these + ** pages need to be changed. + ** + ** If pDbPage is an overflow page, then the first 4 bytes may store a + ** pointer to a subsequent overflow page. If this is the case, then + ** the pointer map needs to be updated for the subsequent overflow page. + */ + if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ + rc = setChildPtrmaps(pDbPage); + if( rc!=SQLITE_OK ){ + return rc; + } + }else{ + Pgno nextOvfl = get4byte(pDbPage->aData); + if( nextOvfl!=0 ){ + ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); + if( rc!=SQLITE_OK ){ + return rc; + } + } + } + + /* Fix the database pointer on page iPtrPage that pointed at iDbPage so + ** that it points at iFreePage. Also fix the pointer map entry for + ** iPtrPage. + */ + if( eType!=PTRMAP_ROOTPAGE ){ + rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = sqlite3PagerWrite(pPtrPage->pDbPage); + if( rc!=SQLITE_OK ){ + releasePage(pPtrPage); + return rc; + } + rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); + releasePage(pPtrPage); + if( rc==SQLITE_OK ){ + ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); + } + } + return rc; +} + +/* Forward declaration required by incrVacuumStep(). */ +static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); + +/* +** Perform a single step of an incremental-vacuum. If successful, +** return SQLITE_OK. If there is no work to do (and therefore no +** point in calling this function again), return SQLITE_DONE. +** +** More specificly, this function attempts to re-organize the +** database so that the last page of the file currently in use +** is no longer in use. +** +** If the nFin parameter is non-zero, this function assumes +** that the caller will keep calling incrVacuumStep() until +** it returns SQLITE_DONE or an error, and that nFin is the +** number of pages the database file will contain after this +** process is complete. If nFin is zero, it is assumed that +** incrVacuumStep() will be called a finite amount of times +** which may or may not empty the freelist. A full autovacuum +** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0. +*/ +static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){ + Pgno nFreeList; /* Number of pages still on the free-list */ + int rc; + + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( iLastPg>nFin ); + + if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ + u8 eType; + Pgno iPtrPage; + + nFreeList = get4byte(&pBt->pPage1->aData[36]); + if( nFreeList==0 ){ + return SQLITE_DONE; + } + + rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); + if( rc!=SQLITE_OK ){ + return rc; + } + if( eType==PTRMAP_ROOTPAGE ){ + return SQLITE_CORRUPT_BKPT; + } + + if( eType==PTRMAP_FREEPAGE ){ + if( nFin==0 ){ + /* Remove the page from the files free-list. This is not required + ** if nFin is non-zero. In that case, the free-list will be + ** truncated to zero after this function returns, so it doesn't + ** matter if it still contains some garbage entries. + */ + Pgno iFreePg; + MemPage *pFreePg; + rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1); + if( rc!=SQLITE_OK ){ + return rc; + } + assert( iFreePg==iLastPg ); + releasePage(pFreePg); + } + } else { + Pgno iFreePg; /* Index of free page to move pLastPg to */ + MemPage *pLastPg; + + rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + + /* If nFin is zero, this loop runs exactly once and page pLastPg + ** is swapped with the first free page pulled off the free list. + ** + ** On the other hand, if nFin is greater than zero, then keep + ** looping until a free-page located within the first nFin pages + ** of the file is found. + */ + do { + MemPage *pFreePg; + rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0); + if( rc!=SQLITE_OK ){ + releasePage(pLastPg); + return rc; + } + releasePage(pFreePg); + }while( nFin!=0 && iFreePg>nFin ); + assert( iFreePgpDbPage); + if( rc==SQLITE_OK ){ + rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0); + } + releasePage(pLastPg); + if( rc!=SQLITE_OK ){ + return rc; + } + } + } + + if( nFin==0 ){ + iLastPg--; + while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){ + if( PTRMAP_ISPAGE(pBt, iLastPg) ){ + MemPage *pPg; + rc = btreeGetPage(pBt, iLastPg, &pPg, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = sqlite3PagerWrite(pPg->pDbPage); + releasePage(pPg); + if( rc!=SQLITE_OK ){ + return rc; + } + } + iLastPg--; + } + sqlite3PagerTruncateImage(pBt->pPager, iLastPg); + pBt->nPage = iLastPg; + } + return SQLITE_OK; +} + +/* +** A write-transaction must be opened before calling this function. +** It performs a single unit of work towards an incremental vacuum. +** +** If the incremental vacuum is finished after this function has run, +** SQLITE_DONE is returned. If it is not finished, but no error occurred, +** SQLITE_OK is returned. Otherwise an SQLite error code. +*/ +int sqlite3BtreeIncrVacuum(Btree *p){ + int rc; + BtShared *pBt = p->pBt; + + sqlite3BtreeEnter(p); + assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); + if( !pBt->autoVacuum ){ + rc = SQLITE_DONE; + }else{ + invalidateAllOverflowCache(pBt); + rc = incrVacuumStep(pBt, 0, btreePagecount(pBt)); + if( rc==SQLITE_OK ){ + rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); + put4byte(&pBt->pPage1->aData[28], pBt->nPage); + } + } + sqlite3BtreeLeave(p); + return rc; +} + +/* +** This routine is called prior to sqlite3PagerCommit when a transaction +** is commited for an auto-vacuum database. +** +** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages +** the database file should be truncated to during the commit process. +** i.e. the database has been reorganized so that only the first *pnTrunc +** pages are in use. +*/ +static int autoVacuumCommit(BtShared *pBt){ + int rc = SQLITE_OK; + Pager *pPager = pBt->pPager; + VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) ); + + assert( sqlite3_mutex_held(pBt->mutex) ); + invalidateAllOverflowCache(pBt); + assert(pBt->autoVacuum); + if( !pBt->incrVacuum ){ + Pgno nFin; /* Number of pages in database after autovacuuming */ + Pgno nFree; /* Number of pages on the freelist initially */ + Pgno nPtrmap; /* Number of PtrMap pages to be freed */ + Pgno iFree; /* The next page to be freed */ + int nEntry; /* Number of entries on one ptrmap page */ + Pgno nOrig; /* Database size before freeing */ + + nOrig = btreePagecount(pBt); + if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ + /* It is not possible to create a database for which the final page + ** is either a pointer-map page or the pending-byte page. If one + ** is encountered, this indicates corruption. + */ + return SQLITE_CORRUPT_BKPT; + } + + nFree = get4byte(&pBt->pPage1->aData[36]); + nEntry = pBt->usableSize/5; + nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; + nFin = nOrig - nFree - nPtrmap; + if( nOrig>PENDING_BYTE_PAGE(pBt) && nFinnOrig ) return SQLITE_CORRUPT_BKPT; + + for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ + rc = incrVacuumStep(pBt, nFin, iFree); + } + if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ + rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); + put4byte(&pBt->pPage1->aData[32], 0); + put4byte(&pBt->pPage1->aData[36], 0); + put4byte(&pBt->pPage1->aData[28], nFin); + sqlite3PagerTruncateImage(pBt->pPager, nFin); + pBt->nPage = nFin; + } + if( rc!=SQLITE_OK ){ + sqlite3PagerRollback(pPager); + } + } + + assert( nRef==sqlite3PagerRefcount(pPager) ); + return rc; +} + +#else /* ifndef SQLITE_OMIT_AUTOVACUUM */ +# define setChildPtrmaps(x) SQLITE_OK +#endif + +/* +** This routine does the first phase of a two-phase commit. This routine +** causes a rollback journal to be created (if it does not already exist) +** and populated with enough information so that if a power loss occurs +** the database can be restored to its original state by playing back +** the journal. Then the contents of the journal are flushed out to +** the disk. After the journal is safely on oxide, the changes to the +** database are written into the database file and flushed to oxide. +** At the end of this call, the rollback journal still exists on the +** disk and we are still holding all locks, so the transaction has not +** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the +** commit process. +** +** This call is a no-op if no write-transaction is currently active on pBt. +** +** Otherwise, sync the database file for the btree pBt. zMaster points to +** the name of a master journal file that should be written into the +** individual journal file, or is NULL, indicating no master journal file +** (single database transaction). +** +** When this is called, the master journal should already have been +** created, populated with this journal pointer and synced to disk. +** +** Once this is routine has returned, the only thing required to commit +** the write-transaction for this database file is to delete the journal. +*/ +int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ + int rc = SQLITE_OK; + if( p->inTrans==TRANS_WRITE ){ + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + rc = autoVacuumCommit(pBt); + if( rc!=SQLITE_OK ){ + sqlite3BtreeLeave(p); + return rc; + } + } +#endif + rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); + sqlite3BtreeLeave(p); + } + return rc; +} + +/* +** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() +** at the conclusion of a transaction. +*/ +static void btreeEndTransaction(Btree *p){ + BtShared *pBt = p->pBt; + assert( sqlite3BtreeHoldsMutex(p) ); + + btreeClearHasContent(pBt); + if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){ + /* If there are other active statements that belong to this database + ** handle, downgrade to a read-only transaction. The other statements + ** may still be reading from the database. */ + downgradeAllSharedCacheTableLocks(p); + p->inTrans = TRANS_READ; + }else{ + /* If the handle had any kind of transaction open, decrement the + ** transaction count of the shared btree. If the transaction count + ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() + ** call below will unlock the pager. */ + if( p->inTrans!=TRANS_NONE ){ + clearAllSharedCacheTableLocks(p); + pBt->nTransaction--; + if( 0==pBt->nTransaction ){ + pBt->inTransaction = TRANS_NONE; + } + } + + /* Set the current transaction state to TRANS_NONE and unlock the + ** pager if this call closed the only read or write transaction. */ + p->inTrans = TRANS_NONE; + unlockBtreeIfUnused(pBt); + } + + btreeIntegrity(p); +} + +/* +** Commit the transaction currently in progress. +** +** This routine implements the second phase of a 2-phase commit. The +** sqlite3BtreeCommitPhaseOne() routine does the first phase and should +** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() +** routine did all the work of writing information out to disk and flushing the +** contents so that they are written onto the disk platter. All this +** routine has to do is delete or truncate or zero the header in the +** the rollback journal (which causes the transaction to commit) and +** drop locks. +** +** Normally, if an error occurs while the pager layer is attempting to +** finalize the underlying journal file, this function returns an error and +** the upper layer will attempt a rollback. However, if the second argument +** is non-zero then this b-tree transaction is part of a multi-file +** transaction. In this case, the transaction has already been committed +** (by deleting a master journal file) and the caller will ignore this +** functions return code. So, even if an error occurs in the pager layer, +** reset the b-tree objects internal state to indicate that the write +** transaction has been closed. This is quite safe, as the pager will have +** transitioned to the error state. +** +** This will release the write lock on the database file. If there +** are no active cursors, it also releases the read lock. +*/ +int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ + + if( p->inTrans==TRANS_NONE ) return SQLITE_OK; + sqlite3BtreeEnter(p); + btreeIntegrity(p); + + /* If the handle has a write-transaction open, commit the shared-btrees + ** transaction and set the shared state to TRANS_READ. + */ + if( p->inTrans==TRANS_WRITE ){ + int rc; + BtShared *pBt = p->pBt; + assert( pBt->inTransaction==TRANS_WRITE ); + assert( pBt->nTransaction>0 ); + rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); + if( rc!=SQLITE_OK && bCleanup==0 ){ + sqlite3BtreeLeave(p); + return rc; + } + pBt->inTransaction = TRANS_READ; + } + + btreeEndTransaction(p); + sqlite3BtreeLeave(p); + return SQLITE_OK; +} + +/* +** Do both phases of a commit. +*/ +int sqlite3BtreeCommit(Btree *p){ + int rc; + sqlite3BtreeEnter(p); + rc = sqlite3BtreeCommitPhaseOne(p, 0); + if( rc==SQLITE_OK ){ + rc = sqlite3BtreeCommitPhaseTwo(p, 0); + } + sqlite3BtreeLeave(p); + return rc; +} + +#ifndef NDEBUG +/* +** Return the number of write-cursors open on this handle. This is for use +** in assert() expressions, so it is only compiled if NDEBUG is not +** defined. +** +** For the purposes of this routine, a write-cursor is any cursor that +** is capable of writing to the databse. That means the cursor was +** originally opened for writing and the cursor has not be disabled +** by having its state changed to CURSOR_FAULT. +*/ +static int countWriteCursors(BtShared *pBt){ + BtCursor *pCur; + int r = 0; + for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ + if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; + } + return r; +} +#endif + +/* +** This routine sets the state to CURSOR_FAULT and the error +** code to errCode for every cursor on BtShared that pBtree +** references. +** +** Every cursor is tripped, including cursors that belong +** to other database connections that happen to be sharing +** the cache with pBtree. +** +** This routine gets called when a rollback occurs. +** All cursors using the same cache must be tripped +** to prevent them from trying to use the btree after +** the rollback. The rollback may have deleted tables +** or moved root pages, so it is not sufficient to +** save the state of the cursor. The cursor must be +** invalidated. +*/ +void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){ + BtCursor *p; + sqlite3BtreeEnter(pBtree); + for(p=pBtree->pBt->pCursor; p; p=p->pNext){ + int i; + sqlite3BtreeClearCursor(p); + p->eState = CURSOR_FAULT; + p->skipNext = errCode; + for(i=0; i<=p->iPage; i++){ + releasePage(p->apPage[i]); + p->apPage[i] = 0; + } + } + sqlite3BtreeLeave(pBtree); +} + +/* +** Rollback the transaction in progress. All cursors will be +** invalided by this operation. Any attempt to use a cursor +** that was open at the beginning of this operation will result +** in an error. +** +** This will release the write lock on the database file. If there +** are no active cursors, it also releases the read lock. +*/ +int sqlite3BtreeRollback(Btree *p){ + int rc; + BtShared *pBt = p->pBt; + MemPage *pPage1; + + sqlite3BtreeEnter(p); + rc = saveAllCursors(pBt, 0, 0); +#ifndef SQLITE_OMIT_SHARED_CACHE + if( rc!=SQLITE_OK ){ + /* This is a horrible situation. An IO or malloc() error occurred whilst + ** trying to save cursor positions. If this is an automatic rollback (as + ** the result of a constraint, malloc() failure or IO error) then + ** the cache may be internally inconsistent (not contain valid trees) so + ** we cannot simply return the error to the caller. Instead, abort + ** all queries that may be using any of the cursors that failed to save. + */ + sqlite3BtreeTripAllCursors(p, rc); + } +#endif + btreeIntegrity(p); + + if( p->inTrans==TRANS_WRITE ){ + int rc2; + + assert( TRANS_WRITE==pBt->inTransaction ); + rc2 = sqlite3PagerRollback(pBt->pPager); + if( rc2!=SQLITE_OK ){ + rc = rc2; + } + + /* The rollback may have destroyed the pPage1->aData value. So + ** call btreeGetPage() on page 1 again to make + ** sure pPage1->aData is set correctly. */ + if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ + int nPage = get4byte(28+(u8*)pPage1->aData); + testcase( nPage==0 ); + if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); + testcase( pBt->nPage!=nPage ); + pBt->nPage = nPage; + releasePage(pPage1); + } + assert( countWriteCursors(pBt)==0 ); + pBt->inTransaction = TRANS_READ; + } + + btreeEndTransaction(p); + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Start a statement subtransaction. The subtransaction can can be rolled +** back independently of the main transaction. You must start a transaction +** before starting a subtransaction. The subtransaction is ended automatically +** if the main transaction commits or rolls back. +** +** Statement subtransactions are used around individual SQL statements +** that are contained within a BEGIN...COMMIT block. If a constraint +** error occurs within the statement, the effect of that one statement +** can be rolled back without having to rollback the entire transaction. +** +** A statement sub-transaction is implemented as an anonymous savepoint. The +** value passed as the second parameter is the total number of savepoints, +** including the new anonymous savepoint, open on the B-Tree. i.e. if there +** are no active savepoints and no other statement-transactions open, +** iStatement is 1. This anonymous savepoint can be released or rolled back +** using the sqlite3BtreeSavepoint() function. +*/ +int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ + int rc; + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); + assert( p->inTrans==TRANS_WRITE ); + assert( pBt->readOnly==0 ); + assert( iStatement>0 ); + assert( iStatement>p->db->nSavepoint ); + assert( pBt->inTransaction==TRANS_WRITE ); + /* At the pager level, a statement transaction is a savepoint with + ** an index greater than all savepoints created explicitly using + ** SQL statements. It is illegal to open, release or rollback any + ** such savepoints while the statement transaction savepoint is active. + */ + rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); + sqlite3BtreeLeave(p); + return rc; +} + +/* +** The second argument to this function, op, is always SAVEPOINT_ROLLBACK +** or SAVEPOINT_RELEASE. This function either releases or rolls back the +** savepoint identified by parameter iSavepoint, depending on the value +** of op. +** +** Normally, iSavepoint is greater than or equal to zero. However, if op is +** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the +** contents of the entire transaction are rolled back. This is different +** from a normal transaction rollback, as no locks are released and the +** transaction remains open. +*/ +int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ + int rc = SQLITE_OK; + if( p && p->inTrans==TRANS_WRITE ){ + BtShared *pBt = p->pBt; + assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); + assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); + sqlite3BtreeEnter(p); + rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); + if( rc==SQLITE_OK ){ + if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0; + rc = newDatabase(pBt); + pBt->nPage = get4byte(28 + pBt->pPage1->aData); + + /* The database size was written into the offset 28 of the header + ** when the transaction started, so we know that the value at offset + ** 28 is nonzero. */ + assert( pBt->nPage>0 ); + } + sqlite3BtreeLeave(p); + } + return rc; +} + +/* +** Create a new cursor for the BTree whose root is on the page +** iTable. If a read-only cursor is requested, it is assumed that +** the caller already has at least a read-only transaction open +** on the database already. If a write-cursor is requested, then +** the caller is assumed to have an open write transaction. +** +** If wrFlag==0, then the cursor can only be used for reading. +** If wrFlag==1, then the cursor can be used for reading or for +** writing if other conditions for writing are also met. These +** are the conditions that must be met in order for writing to +** be allowed: +** +** 1: The cursor must have been opened with wrFlag==1 +** +** 2: Other database connections that share the same pager cache +** but which are not in the READ_UNCOMMITTED state may not have +** cursors open with wrFlag==0 on the same table. Otherwise +** the changes made by this write cursor would be visible to +** the read cursors in the other database connection. +** +** 3: The database must be writable (not on read-only media) +** +** 4: There must be an active transaction. +** +** No checking is done to make sure that page iTable really is the +** root page of a b-tree. If it is not, then the cursor acquired +** will not work correctly. +** +** It is assumed that the sqlite3BtreeCursorZero() has been called +** on pCur to initialize the memory space prior to invoking this routine. +*/ +static int btreeCursor( + Btree *p, /* The btree */ + int iTable, /* Root page of table to open */ + int wrFlag, /* 1 to write. 0 read-only */ + struct KeyInfo *pKeyInfo, /* First arg to comparison function */ + BtCursor *pCur /* Space for new cursor */ +){ + BtShared *pBt = p->pBt; /* Shared b-tree handle */ + + assert( sqlite3BtreeHoldsMutex(p) ); + assert( wrFlag==0 || wrFlag==1 ); + + /* The following assert statements verify that if this is a sharable + ** b-tree database, the connection is holding the required table locks, + ** and that no other connection has any open cursor that conflicts with + ** this lock. */ + assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) ); + assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); + + /* Assert that the caller has opened the required transaction. */ + assert( p->inTrans>TRANS_NONE ); + assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); + assert( pBt->pPage1 && pBt->pPage1->aData ); + + if( NEVER(wrFlag && pBt->readOnly) ){ + return SQLITE_READONLY; + } + if( iTable==1 && btreePagecount(pBt)==0 ){ + assert( wrFlag==0 ); + iTable = 0; + } + + /* Now that no other errors can occur, finish filling in the BtCursor + ** variables and link the cursor into the BtShared list. */ + pCur->pgnoRoot = (Pgno)iTable; + pCur->iPage = -1; + pCur->pKeyInfo = pKeyInfo; + pCur->pBtree = p; + pCur->pBt = pBt; + pCur->wrFlag = (u8)wrFlag; + pCur->pNext = pBt->pCursor; + if( pCur->pNext ){ + pCur->pNext->pPrev = pCur; + } + pBt->pCursor = pCur; + pCur->eState = CURSOR_INVALID; + pCur->cachedRowid = 0; + return SQLITE_OK; +} +int sqlite3BtreeCursor( + Btree *p, /* The btree */ + int iTable, /* Root page of table to open */ + int wrFlag, /* 1 to write. 0 read-only */ + struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ + BtCursor *pCur /* Write new cursor here */ +){ + int rc; + sqlite3BtreeEnter(p); + rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Return the size of a BtCursor object in bytes. +** +** This interfaces is needed so that users of cursors can preallocate +** sufficient storage to hold a cursor. The BtCursor object is opaque +** to users so they cannot do the sizeof() themselves - they must call +** this routine. +*/ +int sqlite3BtreeCursorSize(void){ + return ROUND8(sizeof(BtCursor)); +} + +/* +** Initialize memory that will be converted into a BtCursor object. +** +** The simple approach here would be to memset() the entire object +** to zero. But it turns out that the apPage[] and aiIdx[] arrays +** do not need to be zeroed and they are large, so we can save a lot +** of run-time by skipping the initialization of those elements. +*/ +void sqlite3BtreeCursorZero(BtCursor *p){ + memset(p, 0, offsetof(BtCursor, iPage)); +} + +/* +** Set the cached rowid value of every cursor in the same database file +** as pCur and having the same root page number as pCur. The value is +** set to iRowid. +** +** Only positive rowid values are considered valid for this cache. +** The cache is initialized to zero, indicating an invalid cache. +** A btree will work fine with zero or negative rowids. We just cannot +** cache zero or negative rowids, which means tables that use zero or +** negative rowids might run a little slower. But in practice, zero +** or negative rowids are very uncommon so this should not be a problem. +*/ +void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){ + BtCursor *p; + for(p=pCur->pBt->pCursor; p; p=p->pNext){ + if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid; + } + assert( pCur->cachedRowid==iRowid ); +} + +/* +** Return the cached rowid for the given cursor. A negative or zero +** return value indicates that the rowid cache is invalid and should be +** ignored. If the rowid cache has never before been set, then a +** zero is returned. +*/ +sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){ + return pCur->cachedRowid; +} + +/* +** Close a cursor. The read lock on the database file is released +** when the last cursor is closed. +*/ +int sqlite3BtreeCloseCursor(BtCursor *pCur){ + Btree *pBtree = pCur->pBtree; + if( pBtree ){ + int i; + BtShared *pBt = pCur->pBt; + sqlite3BtreeEnter(pBtree); + sqlite3BtreeClearCursor(pCur); + if( pCur->pPrev ){ + pCur->pPrev->pNext = pCur->pNext; + }else{ + pBt->pCursor = pCur->pNext; + } + if( pCur->pNext ){ + pCur->pNext->pPrev = pCur->pPrev; + } + for(i=0; i<=pCur->iPage; i++){ + releasePage(pCur->apPage[i]); + } + unlockBtreeIfUnused(pBt); + invalidateOverflowCache(pCur); + /* sqlite3_free(pCur); */ + sqlite3BtreeLeave(pBtree); + } + return SQLITE_OK; +} + +/* +** Make sure the BtCursor* given in the argument has a valid +** BtCursor.info structure. If it is not already valid, call +** btreeParseCell() to fill it in. +** +** BtCursor.info is a cache of the information in the current cell. +** Using this cache reduces the number of calls to btreeParseCell(). +** +** 2007-06-25: There is a bug in some versions of MSVC that cause the +** compiler to crash when getCellInfo() is implemented as a macro. +** But there is a measureable speed advantage to using the macro on gcc +** (when less compiler optimizations like -Os or -O0 are used and the +** compiler is not doing agressive inlining.) So we use a real function +** for MSVC and a macro for everything else. Ticket #2457. +*/ +#ifndef NDEBUG + static void assertCellInfo(BtCursor *pCur){ + CellInfo info; + int iPage = pCur->iPage; + memset(&info, 0, sizeof(info)); + btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); + assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); + } +#else + #define assertCellInfo(x) +#endif +#ifdef _MSC_VER + /* Use a real function in MSVC to work around bugs in that compiler. */ + static void getCellInfo(BtCursor *pCur){ + if( pCur->info.nSize==0 ){ + int iPage = pCur->iPage; + btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); + pCur->validNKey = 1; + }else{ + assertCellInfo(pCur); + } + } +#else /* if not _MSC_VER */ + /* Use a macro in all other compilers so that the function is inlined */ +#define getCellInfo(pCur) \ + if( pCur->info.nSize==0 ){ \ + int iPage = pCur->iPage; \ + btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \ + pCur->validNKey = 1; \ + }else{ \ + assertCellInfo(pCur); \ + } +#endif /* _MSC_VER */ + +#ifndef NDEBUG /* The next routine used only within assert() statements */ +/* +** Return true if the given BtCursor is valid. A valid cursor is one +** that is currently pointing to a row in a (non-empty) table. +** This is a verification routine is used only within assert() statements. +*/ +int sqlite3BtreeCursorIsValid(BtCursor *pCur){ + return pCur && pCur->eState==CURSOR_VALID; +} +#endif /* NDEBUG */ + +/* +** Set *pSize to the size of the buffer needed to hold the value of +** the key for the current entry. If the cursor is not pointing +** to a valid entry, *pSize is set to 0. +** +** For a table with the INTKEY flag set, this routine returns the key +** itself, not the number of bytes in the key. +** +** The caller must position the cursor prior to invoking this routine. +** +** This routine cannot fail. It always returns SQLITE_OK. +*/ +int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); + if( pCur->eState!=CURSOR_VALID ){ + *pSize = 0; + }else{ + getCellInfo(pCur); + *pSize = pCur->info.nKey; + } + return SQLITE_OK; +} + +/* +** Set *pSize to the number of bytes of data in the entry the +** cursor currently points to. +** +** The caller must guarantee that the cursor is pointing to a non-NULL +** valid entry. In other words, the calling procedure must guarantee +** that the cursor has Cursor.eState==CURSOR_VALID. +** +** Failure is not possible. This function always returns SQLITE_OK. +** It might just as well be a procedure (returning void) but we continue +** to return an integer result code for historical reasons. +*/ +int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_VALID ); + getCellInfo(pCur); + *pSize = pCur->info.nData; + return SQLITE_OK; +} + +/* +** Given the page number of an overflow page in the database (parameter +** ovfl), this function finds the page number of the next page in the +** linked list of overflow pages. If possible, it uses the auto-vacuum +** pointer-map data instead of reading the content of page ovfl to do so. +** +** If an error occurs an SQLite error code is returned. Otherwise: +** +** The page number of the next overflow page in the linked list is +** written to *pPgnoNext. If page ovfl is the last page in its linked +** list, *pPgnoNext is set to zero. +** +** If ppPage is not NULL, and a reference to the MemPage object corresponding +** to page number pOvfl was obtained, then *ppPage is set to point to that +** reference. It is the responsibility of the caller to call releasePage() +** on *ppPage to free the reference. In no reference was obtained (because +** the pointer-map was used to obtain the value for *pPgnoNext), then +** *ppPage is set to zero. +*/ +static int getOverflowPage( + BtShared *pBt, /* The database file */ + Pgno ovfl, /* Current overflow page number */ + MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ + Pgno *pPgnoNext /* OUT: Next overflow page number */ +){ + Pgno next = 0; + MemPage *pPage = 0; + int rc = SQLITE_OK; + + assert( sqlite3_mutex_held(pBt->mutex) ); + assert(pPgnoNext); + +#ifndef SQLITE_OMIT_AUTOVACUUM + /* Try to find the next page in the overflow list using the + ** autovacuum pointer-map pages. Guess that the next page in + ** the overflow list is page number (ovfl+1). If that guess turns + ** out to be wrong, fall back to loading the data of page + ** number ovfl to determine the next page number. + */ + if( pBt->autoVacuum ){ + Pgno pgno; + Pgno iGuess = ovfl+1; + u8 eType; + + while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ + iGuess++; + } + + if( iGuess<=btreePagecount(pBt) ){ + rc = ptrmapGet(pBt, iGuess, &eType, &pgno); + if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ + next = iGuess; + rc = SQLITE_DONE; + } + } + } +#endif + + assert( next==0 || rc==SQLITE_DONE ); + if( rc==SQLITE_OK ){ + rc = btreeGetPage(pBt, ovfl, &pPage, 0); + assert( rc==SQLITE_OK || pPage==0 ); + if( rc==SQLITE_OK ){ + next = get4byte(pPage->aData); + } + } + + *pPgnoNext = next; + if( ppPage ){ + *ppPage = pPage; + }else{ + releasePage(pPage); + } + return (rc==SQLITE_DONE ? SQLITE_OK : rc); +} + +/* +** Copy data from a buffer to a page, or from a page to a buffer. +** +** pPayload is a pointer to data stored on database page pDbPage. +** If argument eOp is false, then nByte bytes of data are copied +** from pPayload to the buffer pointed at by pBuf. If eOp is true, +** then sqlite3PagerWrite() is called on pDbPage and nByte bytes +** of data are copied from the buffer pBuf to pPayload. +** +** SQLITE_OK is returned on success, otherwise an error code. +*/ +static int copyPayload( + void *pPayload, /* Pointer to page data */ + void *pBuf, /* Pointer to buffer */ + int nByte, /* Number of bytes to copy */ + int eOp, /* 0 -> copy from page, 1 -> copy to page */ + DbPage *pDbPage /* Page containing pPayload */ +){ + if( eOp ){ + /* Copy data from buffer to page (a write operation) */ + int rc = sqlite3PagerWrite(pDbPage); + if( rc!=SQLITE_OK ){ + return rc; + } + memcpy(pPayload, pBuf, nByte); + }else{ + /* Copy data from page to buffer (a read operation) */ + memcpy(pBuf, pPayload, nByte); + } + return SQLITE_OK; +} + +/* +** This function is used to read or overwrite payload information +** for the entry that the pCur cursor is pointing to. If the eOp +** parameter is 0, this is a read operation (data copied into +** buffer pBuf). If it is non-zero, a write (data copied from +** buffer pBuf). +** +** A total of "amt" bytes are read or written beginning at "offset". +** Data is read to or from the buffer pBuf. +** +** The content being read or written might appear on the main page +** or be scattered out on multiple overflow pages. +** +** If the BtCursor.isIncrblobHandle flag is set, and the current +** cursor entry uses one or more overflow pages, this function +** allocates space for and lazily popluates the overflow page-list +** cache array (BtCursor.aOverflow). Subsequent calls use this +** cache to make seeking to the supplied offset more efficient. +** +** Once an overflow page-list cache has been allocated, it may be +** invalidated if some other cursor writes to the same table, or if +** the cursor is moved to a different row. Additionally, in auto-vacuum +** mode, the following events may invalidate an overflow page-list cache. +** +** * An incremental vacuum, +** * A commit in auto_vacuum="full" mode, +** * Creating a table (may require moving an overflow page). +*/ +static int accessPayload( + BtCursor *pCur, /* Cursor pointing to entry to read from */ + u32 offset, /* Begin reading this far into payload */ + u32 amt, /* Read this many bytes */ + unsigned char *pBuf, /* Write the bytes into this buffer */ + int eOp /* zero to read. non-zero to write. */ +){ + unsigned char *aPayload; + int rc = SQLITE_OK; + u32 nKey; + int iIdx = 0; + MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ + BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ + + assert( pPage ); + assert( pCur->eState==CURSOR_VALID ); + assert( pCur->aiIdx[pCur->iPage]nCell ); + assert( cursorHoldsMutex(pCur) ); + + getCellInfo(pCur); + aPayload = pCur->info.pCell + pCur->info.nHeader; + nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey); + + if( NEVER(offset+amt > nKey+pCur->info.nData) + || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] + ){ + /* Trying to read or write past the end of the data is an error */ + return SQLITE_CORRUPT_BKPT; + } + + /* Check if data must be read/written to/from the btree page itself. */ + if( offsetinfo.nLocal ){ + int a = amt; + if( a+offset>pCur->info.nLocal ){ + a = pCur->info.nLocal - offset; + } + rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); + offset = 0; + pBuf += a; + amt -= a; + }else{ + offset -= pCur->info.nLocal; + } + + if( rc==SQLITE_OK && amt>0 ){ + const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ + Pgno nextPage; + + nextPage = get4byte(&aPayload[pCur->info.nLocal]); + +#ifndef SQLITE_OMIT_INCRBLOB + /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[] + ** has not been allocated, allocate it now. The array is sized at + ** one entry for each overflow page in the overflow chain. The + ** page number of the first overflow page is stored in aOverflow[0], + ** etc. A value of 0 in the aOverflow[] array means "not yet known" + ** (the cache is lazily populated). + */ + if( pCur->isIncrblobHandle && !pCur->aOverflow ){ + int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; + pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl); + /* nOvfl is always positive. If it were zero, fetchPayload would have + ** been used instead of this routine. */ + if( ALWAYS(nOvfl) && !pCur->aOverflow ){ + rc = SQLITE_NOMEM; + } + } + + /* If the overflow page-list cache has been allocated and the + ** entry for the first required overflow page is valid, skip + ** directly to it. + */ + if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){ + iIdx = (offset/ovflSize); + nextPage = pCur->aOverflow[iIdx]; + offset = (offset%ovflSize); + } +#endif + + for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ + +#ifndef SQLITE_OMIT_INCRBLOB + /* If required, populate the overflow page-list cache. */ + if( pCur->aOverflow ){ + assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage); + pCur->aOverflow[iIdx] = nextPage; + } +#endif + + if( offset>=ovflSize ){ + /* The only reason to read this page is to obtain the page + ** number for the next page in the overflow chain. The page + ** data is not required. So first try to lookup the overflow + ** page-list cache, if any, then fall back to the getOverflowPage() + ** function. + */ +#ifndef SQLITE_OMIT_INCRBLOB + if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){ + nextPage = pCur->aOverflow[iIdx+1]; + } else +#endif + rc = getOverflowPage(pBt, nextPage, 0, &nextPage); + offset -= ovflSize; + }else{ + /* Need to read this page properly. It contains some of the + ** range of data that is being read (eOp==0) or written (eOp!=0). + */ +#ifdef SQLITE_DIRECT_OVERFLOW_READ + sqlite3_file *fd; +#endif + int a = amt; + if( a + offset > ovflSize ){ + a = ovflSize - offset; + } + +#ifdef SQLITE_DIRECT_OVERFLOW_READ + /* If all the following are true: + ** + ** 1) this is a read operation, and + ** 2) data is required from the start of this overflow page, and + ** 3) the database is file-backed, and + ** 4) there is no open write-transaction, and + ** 5) the database is not a WAL database, + ** + ** then data can be read directly from the database file into the + ** output buffer, bypassing the page-cache altogether. This speeds + ** up loading large records that span many overflow pages. + */ + if( eOp==0 /* (1) */ + && offset==0 /* (2) */ + && pBt->inTransaction==TRANS_READ /* (4) */ + && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */ + && pBt->pPage1->aData[19]==0x01 /* (5) */ + ){ + u8 aSave[4]; + u8 *aWrite = &pBuf[-4]; + memcpy(aSave, aWrite, 4); + rc = sqlite3OsRead(fd, aWrite, a+4, pBt->pageSize * (nextPage-1)); + nextPage = get4byte(aWrite); + memcpy(aWrite, aSave, 4); + }else +#endif + + { + DbPage *pDbPage; + rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage); + if( rc==SQLITE_OK ){ + aPayload = sqlite3PagerGetData(pDbPage); + nextPage = get4byte(aPayload); + rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); + sqlite3PagerUnref(pDbPage); + offset = 0; + } + } + amt -= a; + pBuf += a; + } + } + } + + if( rc==SQLITE_OK && amt>0 ){ + return SQLITE_CORRUPT_BKPT; + } + return rc; +} + +/* +** Read part of the key associated with cursor pCur. Exactly +** "amt" bytes will be transfered into pBuf[]. The transfer +** begins at "offset". +** +** The caller must ensure that pCur is pointing to a valid row +** in the table. +** +** Return SQLITE_OK on success or an error code if anything goes +** wrong. An error is returned if "offset+amt" is larger than +** the available payload. +*/ +int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_VALID ); + assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); + assert( pCur->aiIdx[pCur->iPage]apPage[pCur->iPage]->nCell ); + return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); +} + +/* +** Read part of the data associated with cursor pCur. Exactly +** "amt" bytes will be transfered into pBuf[]. The transfer +** begins at "offset". +** +** Return SQLITE_OK on success or an error code if anything goes +** wrong. An error is returned if "offset+amt" is larger than +** the available payload. +*/ +int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ + int rc; + +#ifndef SQLITE_OMIT_INCRBLOB + if ( pCur->eState==CURSOR_INVALID ){ + return SQLITE_ABORT; + } +#endif + + assert( cursorHoldsMutex(pCur) ); + rc = restoreCursorPosition(pCur); + if( rc==SQLITE_OK ){ + assert( pCur->eState==CURSOR_VALID ); + assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); + assert( pCur->aiIdx[pCur->iPage]apPage[pCur->iPage]->nCell ); + rc = accessPayload(pCur, offset, amt, pBuf, 0); + } + return rc; +} + +/* +** Return a pointer to payload information from the entry that the +** pCur cursor is pointing to. The pointer is to the beginning of +** the key if skipKey==0 and it points to the beginning of data if +** skipKey==1. The number of bytes of available key/data is written +** into *pAmt. If *pAmt==0, then the value returned will not be +** a valid pointer. +** +** This routine is an optimization. It is common for the entire key +** and data to fit on the local page and for there to be no overflow +** pages. When that is so, this routine can be used to access the +** key and data without making a copy. If the key and/or data spills +** onto overflow pages, then accessPayload() must be used to reassemble +** the key/data and copy it into a preallocated buffer. +** +** The pointer returned by this routine looks directly into the cached +** page of the database. The data might change or move the next time +** any btree routine is called. +*/ +static const unsigned char *fetchPayload( + BtCursor *pCur, /* Cursor pointing to entry to read from */ + int *pAmt, /* Write the number of available bytes here */ + int skipKey /* read beginning at data if this is true */ +){ + unsigned char *aPayload; + MemPage *pPage; + u32 nKey; + u32 nLocal; + + assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); + assert( pCur->eState==CURSOR_VALID ); + assert( cursorHoldsMutex(pCur) ); + pPage = pCur->apPage[pCur->iPage]; + assert( pCur->aiIdx[pCur->iPage]nCell ); + if( NEVER(pCur->info.nSize==0) ){ + btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage], + &pCur->info); + } + aPayload = pCur->info.pCell; + aPayload += pCur->info.nHeader; + if( pPage->intKey ){ + nKey = 0; + }else{ + nKey = (int)pCur->info.nKey; + } + if( skipKey ){ + aPayload += nKey; + nLocal = pCur->info.nLocal - nKey; + }else{ + nLocal = pCur->info.nLocal; + assert( nLocal<=nKey ); + } + *pAmt = nLocal; + return aPayload; +} + + +/* +** For the entry that cursor pCur is point to, return as +** many bytes of the key or data as are available on the local +** b-tree page. Write the number of available bytes into *pAmt. +** +** The pointer returned is ephemeral. The key/data may move +** or be destroyed on the next call to any Btree routine, +** including calls from other threads against the same cache. +** Hence, a mutex on the BtShared should be held prior to calling +** this routine. +** +** These routines is used to get quick access to key and data +** in the common case where no overflow pages are used. +*/ +const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ + const void *p = 0; + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + assert( cursorHoldsMutex(pCur) ); + if( ALWAYS(pCur->eState==CURSOR_VALID) ){ + p = (const void*)fetchPayload(pCur, pAmt, 0); + } + return p; +} +const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ + const void *p = 0; + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + assert( cursorHoldsMutex(pCur) ); + if( ALWAYS(pCur->eState==CURSOR_VALID) ){ + p = (const void*)fetchPayload(pCur, pAmt, 1); + } + return p; +} + + +/* +** Move the cursor down to a new child page. The newPgno argument is the +** page number of the child page to move to. +** +** This function returns SQLITE_CORRUPT if the page-header flags field of +** the new child page does not match the flags field of the parent (i.e. +** if an intkey page appears to be the parent of a non-intkey page, or +** vice-versa). +*/ +static int moveToChild(BtCursor *pCur, u32 newPgno){ + int rc; + int i = pCur->iPage; + MemPage *pNewPage; + BtShared *pBt = pCur->pBt; + + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_VALID ); + assert( pCur->iPageiPage>=(BTCURSOR_MAX_DEPTH-1) ){ + return SQLITE_CORRUPT_BKPT; + } + rc = getAndInitPage(pBt, newPgno, &pNewPage); + if( rc ) return rc; + pCur->apPage[i+1] = pNewPage; + pCur->aiIdx[i+1] = 0; + pCur->iPage++; + + pCur->info.nSize = 0; + pCur->validNKey = 0; + if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){ + return SQLITE_CORRUPT_BKPT; + } + return SQLITE_OK; +} + +#ifndef NDEBUG +/* +** Page pParent is an internal (non-leaf) tree page. This function +** asserts that page number iChild is the left-child if the iIdx'th +** cell in page pParent. Or, if iIdx is equal to the total number of +** cells in pParent, that page number iChild is the right-child of +** the page. +*/ +static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ + assert( iIdx<=pParent->nCell ); + if( iIdx==pParent->nCell ){ + assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); + }else{ + assert( get4byte(findCell(pParent, iIdx))==iChild ); + } +} +#else +# define assertParentIndex(x,y,z) +#endif + +/* +** Move the cursor up to the parent page. +** +** pCur->idx is set to the cell index that contains the pointer +** to the page we are coming from. If we are coming from the +** right-most child page then pCur->idx is set to one more than +** the largest cell index. +*/ +static void moveToParent(BtCursor *pCur){ + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_VALID ); + assert( pCur->iPage>0 ); + assert( pCur->apPage[pCur->iPage] ); + assertParentIndex( + pCur->apPage[pCur->iPage-1], + pCur->aiIdx[pCur->iPage-1], + pCur->apPage[pCur->iPage]->pgno + ); + releasePage(pCur->apPage[pCur->iPage]); + pCur->iPage--; + pCur->info.nSize = 0; + pCur->validNKey = 0; +} + +/* +** Move the cursor to point to the root page of its b-tree structure. +** +** If the table has a virtual root page, then the cursor is moved to point +** to the virtual root page instead of the actual root page. A table has a +** virtual root page when the actual root page contains no cells and a +** single child page. This can only happen with the table rooted at page 1. +** +** If the b-tree structure is empty, the cursor state is set to +** CURSOR_INVALID. Otherwise, the cursor is set to point to the first +** cell located on the root (or virtual root) page and the cursor state +** is set to CURSOR_VALID. +** +** If this function returns successfully, it may be assumed that the +** page-header flags indicate that the [virtual] root-page is the expected +** kind of b-tree page (i.e. if when opening the cursor the caller did not +** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, +** indicating a table b-tree, or if the caller did specify a KeyInfo +** structure the flags byte is set to 0x02 or 0x0A, indicating an index +** b-tree). +*/ +static int moveToRoot(BtCursor *pCur){ + MemPage *pRoot; + int rc = SQLITE_OK; + Btree *p = pCur->pBtree; + BtShared *pBt = p->pBt; + + assert( cursorHoldsMutex(pCur) ); + assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); + assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); + assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); + if( pCur->eState>=CURSOR_REQUIRESEEK ){ + if( pCur->eState==CURSOR_FAULT ){ + assert( pCur->skipNext!=SQLITE_OK ); + return pCur->skipNext; + } + sqlite3BtreeClearCursor(pCur); + } + + if( pCur->iPage>=0 ){ + int i; + for(i=1; i<=pCur->iPage; i++){ + releasePage(pCur->apPage[i]); + } + pCur->iPage = 0; + }else if( pCur->pgnoRoot==0 ){ + pCur->eState = CURSOR_INVALID; + return SQLITE_OK; + }else{ + rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]); + if( rc!=SQLITE_OK ){ + pCur->eState = CURSOR_INVALID; + return rc; + } + pCur->iPage = 0; + + /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor + ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is + ** NULL, the caller expects a table b-tree. If this is not the case, + ** return an SQLITE_CORRUPT error. */ + assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 ); + if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){ + return SQLITE_CORRUPT_BKPT; + } + } + + /* Assert that the root page is of the correct type. This must be the + ** case as the call to this function that loaded the root-page (either + ** this call or a previous invocation) would have detected corruption + ** if the assumption were not true, and it is not possible for the flags + ** byte to have been modified while this cursor is holding a reference + ** to the page. */ + pRoot = pCur->apPage[0]; + assert( pRoot->pgno==pCur->pgnoRoot ); + assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey ); + + pCur->aiIdx[0] = 0; + pCur->info.nSize = 0; + pCur->atLast = 0; + pCur->validNKey = 0; + + if( pRoot->nCell==0 && !pRoot->leaf ){ + Pgno subpage; + if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; + subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); + pCur->eState = CURSOR_VALID; + rc = moveToChild(pCur, subpage); + }else{ + pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID); + } + return rc; +} + +/* +** Move the cursor down to the left-most leaf entry beneath the +** entry to which it is currently pointing. +** +** The left-most leaf is the one with the smallest key - the first +** in ascending order. +*/ +static int moveToLeftmost(BtCursor *pCur){ + Pgno pgno; + int rc = SQLITE_OK; + MemPage *pPage; + + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_VALID ); + while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ + assert( pCur->aiIdx[pCur->iPage]nCell ); + pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage])); + rc = moveToChild(pCur, pgno); + } + return rc; +} + +/* +** Move the cursor down to the right-most leaf entry beneath the +** page to which it is currently pointing. Notice the difference +** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() +** finds the left-most entry beneath the *entry* whereas moveToRightmost() +** finds the right-most entry beneath the *page*. +** +** The right-most entry is the one with the largest key - the last +** key in ascending order. +*/ +static int moveToRightmost(BtCursor *pCur){ + Pgno pgno; + int rc = SQLITE_OK; + MemPage *pPage = 0; + + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_VALID ); + while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ + pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); + pCur->aiIdx[pCur->iPage] = pPage->nCell; + rc = moveToChild(pCur, pgno); + } + if( rc==SQLITE_OK ){ + pCur->aiIdx[pCur->iPage] = pPage->nCell-1; + pCur->info.nSize = 0; + pCur->validNKey = 0; + } + return rc; +} + +/* Move the cursor to the first entry in the table. Return SQLITE_OK +** on success. Set *pRes to 0 if the cursor actually points to something +** or set *pRes to 1 if the table is empty. +*/ +int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ + int rc; + + assert( cursorHoldsMutex(pCur) ); + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + rc = moveToRoot(pCur); + if( rc==SQLITE_OK ){ + if( pCur->eState==CURSOR_INVALID ){ + assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); + *pRes = 1; + }else{ + assert( pCur->apPage[pCur->iPage]->nCell>0 ); + *pRes = 0; + rc = moveToLeftmost(pCur); + } + } + return rc; +} + +/* Move the cursor to the last entry in the table. Return SQLITE_OK +** on success. Set *pRes to 0 if the cursor actually points to something +** or set *pRes to 1 if the table is empty. +*/ +int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ + int rc; + + assert( cursorHoldsMutex(pCur) ); + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + + /* If the cursor already points to the last entry, this is a no-op. */ + if( CURSOR_VALID==pCur->eState && pCur->atLast ){ +#ifdef SQLITE_DEBUG + /* This block serves to assert() that the cursor really does point + ** to the last entry in the b-tree. */ + int ii; + for(ii=0; iiiPage; ii++){ + assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); + } + assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 ); + assert( pCur->apPage[pCur->iPage]->leaf ); +#endif + return SQLITE_OK; + } + + rc = moveToRoot(pCur); + if( rc==SQLITE_OK ){ + if( CURSOR_INVALID==pCur->eState ){ + assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); + *pRes = 1; + }else{ + assert( pCur->eState==CURSOR_VALID ); + *pRes = 0; + rc = moveToRightmost(pCur); + pCur->atLast = rc==SQLITE_OK ?1:0; + } + } + return rc; +} + +/* Move the cursor so that it points to an entry near the key +** specified by pIdxKey or intKey. Return a success code. +** +** For INTKEY tables, the intKey parameter is used. pIdxKey +** must be NULL. For index tables, pIdxKey is used and intKey +** is ignored. +** +** If an exact match is not found, then the cursor is always +** left pointing at a leaf page which would hold the entry if it +** were present. The cursor might point to an entry that comes +** before or after the key. +** +** An integer is written into *pRes which is the result of +** comparing the key with the entry to which the cursor is +** pointing. The meaning of the integer written into +** *pRes is as follows: +** +** *pRes<0 The cursor is left pointing at an entry that +** is smaller than intKey/pIdxKey or if the table is empty +** and the cursor is therefore left point to nothing. +** +** *pRes==0 The cursor is left pointing at an entry that +** exactly matches intKey/pIdxKey. +** +** *pRes>0 The cursor is left pointing at an entry that +** is larger than intKey/pIdxKey. +** +*/ +int sqlite3BtreeMovetoUnpacked( + BtCursor *pCur, /* The cursor to be moved */ + UnpackedRecord *pIdxKey, /* Unpacked index key */ + i64 intKey, /* The table key */ + int biasRight, /* If true, bias the search to the high end */ + int *pRes /* Write search results here */ +){ + int rc; + + assert( cursorHoldsMutex(pCur) ); + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + assert( pRes ); + assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); + + /* If the cursor is already positioned at the point we are trying + ** to move to, then just return without doing any work */ + if( pCur->eState==CURSOR_VALID && pCur->validNKey + && pCur->apPage[0]->intKey + ){ + if( pCur->info.nKey==intKey ){ + *pRes = 0; + return SQLITE_OK; + } + if( pCur->atLast && pCur->info.nKeypgnoRoot==0 || pCur->apPage[pCur->iPage] ); + assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); + assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); + if( pCur->eState==CURSOR_INVALID ){ + *pRes = -1; + assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); + return SQLITE_OK; + } + assert( pCur->apPage[0]->intKey || pIdxKey ); + for(;;){ + int lwr, upr, idx; + Pgno chldPg; + MemPage *pPage = pCur->apPage[pCur->iPage]; + int c; + + /* pPage->nCell must be greater than zero. If this is the root-page + ** the cursor would have been INVALID above and this for(;;) loop + ** not run. If this is not the root-page, then the moveToChild() routine + ** would have already detected db corruption. Similarly, pPage must + ** be the right kind (index or table) of b-tree page. Otherwise + ** a moveToChild() or moveToRoot() call would have detected corruption. */ + assert( pPage->nCell>0 ); + assert( pPage->intKey==(pIdxKey==0) ); + lwr = 0; + upr = pPage->nCell-1; + if( biasRight ){ + pCur->aiIdx[pCur->iPage] = (u16)(idx = upr); + }else{ + pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2); + } + for(;;){ + u8 *pCell; /* Pointer to current cell in pPage */ + + assert( idx==pCur->aiIdx[pCur->iPage] ); + pCur->info.nSize = 0; + pCell = findCell(pPage, idx) + pPage->childPtrSize; + if( pPage->intKey ){ + i64 nCellKey; + if( pPage->hasData ){ + u32 dummy; + pCell += getVarint32(pCell, dummy); + } + getVarint(pCell, (u64*)&nCellKey); + if( nCellKey==intKey ){ + c = 0; + }else if( nCellKeyintKey ); + c = +1; + } + pCur->validNKey = 1; + pCur->info.nKey = nCellKey; + }else{ + /* The maximum supported page-size is 65536 bytes. This means that + ** the maximum number of record bytes stored on an index B-Tree + ** page is less than 16384 bytes and may be stored as a 2-byte + ** varint. This information is used to attempt to avoid parsing + ** the entire cell by checking for the cases where the record is + ** stored entirely within the b-tree page by inspecting the first + ** 2 bytes of the cell. + */ + int nCell = pCell[0]; + if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){ + /* This branch runs if the record-size field of the cell is a + ** single byte varint and the record fits entirely on the main + ** b-tree page. */ + c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey); + }else if( !(pCell[1] & 0x80) + && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal + ){ + /* The record-size field is a 2 byte varint and the record + ** fits entirely on the main b-tree page. */ + c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey); + }else{ + /* The record flows over onto one or more overflow pages. In + ** this case the whole cell needs to be parsed, a buffer allocated + ** and accessPayload() used to retrieve the record into the + ** buffer before VdbeRecordCompare() can be called. */ + void *pCellKey; + u8 * const pCellBody = pCell - pPage->childPtrSize; + btreeParseCellPtr(pPage, pCellBody, &pCur->info); + nCell = (int)pCur->info.nKey; + pCellKey = sqlite3Malloc( nCell ); + if( pCellKey==0 ){ + rc = SQLITE_NOMEM; + goto moveto_finish; + } + rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); + if( rc ){ + sqlite3_free(pCellKey); + goto moveto_finish; + } + c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); + sqlite3_free(pCellKey); + } + } + if( c==0 ){ + if( pPage->intKey && !pPage->leaf ){ + lwr = idx; + break; + }else{ + *pRes = 0; + rc = SQLITE_OK; + goto moveto_finish; + } + } + if( c<0 ){ + lwr = idx+1; + }else{ + upr = idx-1; + } + if( lwr>upr ){ + break; + } + pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2); + } + assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); + assert( pPage->isInit ); + if( pPage->leaf ){ + chldPg = 0; + }else if( lwr>=pPage->nCell ){ + chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); + }else{ + chldPg = get4byte(findCell(pPage, lwr)); + } + if( chldPg==0 ){ + assert( pCur->aiIdx[pCur->iPage]apPage[pCur->iPage]->nCell ); + *pRes = c; + rc = SQLITE_OK; + goto moveto_finish; + } + pCur->aiIdx[pCur->iPage] = (u16)lwr; + pCur->info.nSize = 0; + pCur->validNKey = 0; + rc = moveToChild(pCur, chldPg); + if( rc ) goto moveto_finish; + } +moveto_finish: + return rc; +} + + +/* +** Return TRUE if the cursor is not pointing at an entry of the table. +** +** TRUE will be returned after a call to sqlite3BtreeNext() moves +** past the last entry in the table or sqlite3BtreePrev() moves past +** the first entry. TRUE is also returned if the table is empty. +*/ +int sqlite3BtreeEof(BtCursor *pCur){ + /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries + ** have been deleted? This API will need to change to return an error code + ** as well as the boolean result value. + */ + return (CURSOR_VALID!=pCur->eState); +} + +/* +** Advance the cursor to the next entry in the database. If +** successful then set *pRes=0. If the cursor +** was already pointing to the last entry in the database before +** this routine was called, then set *pRes=1. +*/ +int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ + int rc; + int idx; + MemPage *pPage; + + assert( cursorHoldsMutex(pCur) ); + rc = restoreCursorPosition(pCur); + if( rc!=SQLITE_OK ){ + return rc; + } + assert( pRes!=0 ); + if( CURSOR_INVALID==pCur->eState ){ + *pRes = 1; + return SQLITE_OK; + } + if( pCur->skipNext>0 ){ + pCur->skipNext = 0; + *pRes = 0; + return SQLITE_OK; + } + pCur->skipNext = 0; + + pPage = pCur->apPage[pCur->iPage]; + idx = ++pCur->aiIdx[pCur->iPage]; + assert( pPage->isInit ); + assert( idx<=pPage->nCell ); + + pCur->info.nSize = 0; + pCur->validNKey = 0; + if( idx>=pPage->nCell ){ + if( !pPage->leaf ){ + rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); + if( rc ) return rc; + rc = moveToLeftmost(pCur); + *pRes = 0; + return rc; + } + do{ + if( pCur->iPage==0 ){ + *pRes = 1; + pCur->eState = CURSOR_INVALID; + return SQLITE_OK; + } + moveToParent(pCur); + pPage = pCur->apPage[pCur->iPage]; + }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); + *pRes = 0; + if( pPage->intKey ){ + rc = sqlite3BtreeNext(pCur, pRes); + }else{ + rc = SQLITE_OK; + } + return rc; + } + *pRes = 0; + if( pPage->leaf ){ + return SQLITE_OK; + } + rc = moveToLeftmost(pCur); + return rc; +} + + +/* +** Step the cursor to the back to the previous entry in the database. If +** successful then set *pRes=0. If the cursor +** was already pointing to the first entry in the database before +** this routine was called, then set *pRes=1. +*/ +int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ + int rc; + MemPage *pPage; + + assert( cursorHoldsMutex(pCur) ); + rc = restoreCursorPosition(pCur); + if( rc!=SQLITE_OK ){ + return rc; + } + pCur->atLast = 0; + if( CURSOR_INVALID==pCur->eState ){ + *pRes = 1; + return SQLITE_OK; + } + if( pCur->skipNext<0 ){ + pCur->skipNext = 0; + *pRes = 0; + return SQLITE_OK; + } + pCur->skipNext = 0; + + pPage = pCur->apPage[pCur->iPage]; + assert( pPage->isInit ); + if( !pPage->leaf ){ + int idx = pCur->aiIdx[pCur->iPage]; + rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); + if( rc ){ + return rc; + } + rc = moveToRightmost(pCur); + }else{ + while( pCur->aiIdx[pCur->iPage]==0 ){ + if( pCur->iPage==0 ){ + pCur->eState = CURSOR_INVALID; + *pRes = 1; + return SQLITE_OK; + } + moveToParent(pCur); + } + pCur->info.nSize = 0; + pCur->validNKey = 0; + + pCur->aiIdx[pCur->iPage]--; + pPage = pCur->apPage[pCur->iPage]; + if( pPage->intKey && !pPage->leaf ){ + rc = sqlite3BtreePrevious(pCur, pRes); + }else{ + rc = SQLITE_OK; + } + } + *pRes = 0; + return rc; +} + +/* +** Allocate a new page from the database file. +** +** The new page is marked as dirty. (In other words, sqlite3PagerWrite() +** has already been called on the new page.) The new page has also +** been referenced and the calling routine is responsible for calling +** sqlite3PagerUnref() on the new page when it is done. +** +** SQLITE_OK is returned on success. Any other return value indicates +** an error. *ppPage and *pPgno are undefined in the event of an error. +** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned. +** +** If the "nearby" parameter is not 0, then a (feeble) effort is made to +** locate a page close to the page number "nearby". This can be used in an +** attempt to keep related pages close to each other in the database file, +** which in turn can make database access faster. +** +** If the "exact" parameter is not 0, and the page-number nearby exists +** anywhere on the free-list, then it is guarenteed to be returned. This +** is only used by auto-vacuum databases when allocating a new table. +*/ +static int allocateBtreePage( + BtShared *pBt, + MemPage **ppPage, + Pgno *pPgno, + Pgno nearby, + u8 exact +){ + MemPage *pPage1; + int rc; + u32 n; /* Number of pages on the freelist */ + u32 k; /* Number of leaves on the trunk of the freelist */ + MemPage *pTrunk = 0; + MemPage *pPrevTrunk = 0; + Pgno mxPage; /* Total size of the database file */ + + assert( sqlite3_mutex_held(pBt->mutex) ); + pPage1 = pBt->pPage1; + mxPage = btreePagecount(pBt); + n = get4byte(&pPage1->aData[36]); + testcase( n==mxPage-1 ); + if( n>=mxPage ){ + return SQLITE_CORRUPT_BKPT; + } + if( n>0 ){ + /* There are pages on the freelist. Reuse one of those pages. */ + Pgno iTrunk; + u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ + + /* If the 'exact' parameter was true and a query of the pointer-map + ** shows that the page 'nearby' is somewhere on the free-list, then + ** the entire-list will be searched for that page. + */ +#ifndef SQLITE_OMIT_AUTOVACUUM + if( exact && nearby<=mxPage ){ + u8 eType; + assert( nearby>0 ); + assert( pBt->autoVacuum ); + rc = ptrmapGet(pBt, nearby, &eType, 0); + if( rc ) return rc; + if( eType==PTRMAP_FREEPAGE ){ + searchList = 1; + } + *pPgno = nearby; + } +#endif + + /* Decrement the free-list count by 1. Set iTrunk to the index of the + ** first free-list trunk page. iPrevTrunk is initially 1. + */ + rc = sqlite3PagerWrite(pPage1->pDbPage); + if( rc ) return rc; + put4byte(&pPage1->aData[36], n-1); + + /* The code within this loop is run only once if the 'searchList' variable + ** is not true. Otherwise, it runs once for each trunk-page on the + ** free-list until the page 'nearby' is located. + */ + do { + pPrevTrunk = pTrunk; + if( pPrevTrunk ){ + iTrunk = get4byte(&pPrevTrunk->aData[0]); + }else{ + iTrunk = get4byte(&pPage1->aData[32]); + } + testcase( iTrunk==mxPage ); + if( iTrunk>mxPage ){ + rc = SQLITE_CORRUPT_BKPT; + }else{ + rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); + } + if( rc ){ + pTrunk = 0; + goto end_allocate_page; + } + assert( pTrunk!=0 ); + assert( pTrunk->aData!=0 ); + + k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */ + if( k==0 && !searchList ){ + /* The trunk has no leaves and the list is not being searched. + ** So extract the trunk page itself and use it as the newly + ** allocated page */ + assert( pPrevTrunk==0 ); + rc = sqlite3PagerWrite(pTrunk->pDbPage); + if( rc ){ + goto end_allocate_page; + } + *pPgno = iTrunk; + memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); + *ppPage = pTrunk; + pTrunk = 0; + TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); + }else if( k>(u32)(pBt->usableSize/4 - 2) ){ + /* Value of k is out of range. Database corruption */ + rc = SQLITE_CORRUPT_BKPT; + goto end_allocate_page; +#ifndef SQLITE_OMIT_AUTOVACUUM + }else if( searchList && nearby==iTrunk ){ + /* The list is being searched and this trunk page is the page + ** to allocate, regardless of whether it has leaves. + */ + assert( *pPgno==iTrunk ); + *ppPage = pTrunk; + searchList = 0; + rc = sqlite3PagerWrite(pTrunk->pDbPage); + if( rc ){ + goto end_allocate_page; + } + if( k==0 ){ + if( !pPrevTrunk ){ + memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); + }else{ + rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); + if( rc!=SQLITE_OK ){ + goto end_allocate_page; + } + memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); + } + }else{ + /* The trunk page is required by the caller but it contains + ** pointers to free-list leaves. The first leaf becomes a trunk + ** page in this case. + */ + MemPage *pNewTrunk; + Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); + if( iNewTrunk>mxPage ){ + rc = SQLITE_CORRUPT_BKPT; + goto end_allocate_page; + } + testcase( iNewTrunk==mxPage ); + rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0); + if( rc!=SQLITE_OK ){ + goto end_allocate_page; + } + rc = sqlite3PagerWrite(pNewTrunk->pDbPage); + if( rc!=SQLITE_OK ){ + releasePage(pNewTrunk); + goto end_allocate_page; + } + memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); + put4byte(&pNewTrunk->aData[4], k-1); + memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); + releasePage(pNewTrunk); + if( !pPrevTrunk ){ + assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); + put4byte(&pPage1->aData[32], iNewTrunk); + }else{ + rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); + if( rc ){ + goto end_allocate_page; + } + put4byte(&pPrevTrunk->aData[0], iNewTrunk); + } + } + pTrunk = 0; + TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); +#endif + }else if( k>0 ){ + /* Extract a leaf from the trunk */ + u32 closest; + Pgno iPage; + unsigned char *aData = pTrunk->aData; + if( nearby>0 ){ + u32 i; + int dist; + closest = 0; + dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); + for(i=1; imxPage ){ + rc = SQLITE_CORRUPT_BKPT; + goto end_allocate_page; + } + testcase( iPage==mxPage ); + if( !searchList || iPage==nearby ){ + int noContent; + *pPgno = iPage; + TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" + ": %d more free pages\n", + *pPgno, closest+1, k, pTrunk->pgno, n-1)); + rc = sqlite3PagerWrite(pTrunk->pDbPage); + if( rc ) goto end_allocate_page; + if( closestpDbPage); + if( rc!=SQLITE_OK ){ + releasePage(*ppPage); + } + } + searchList = 0; + } + } + releasePage(pPrevTrunk); + pPrevTrunk = 0; + }while( searchList ); + }else{ + /* There are no pages on the freelist, so create a new page at the + ** end of the file */ + rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); + if( rc ) return rc; + pBt->nPage++; + if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; + +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ + /* If *pPgno refers to a pointer-map page, allocate two new pages + ** at the end of the file instead of one. The first allocated page + ** becomes a new pointer-map page, the second is used by the caller. + */ + MemPage *pPg = 0; + TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); + assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); + rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1); + if( rc==SQLITE_OK ){ + rc = sqlite3PagerWrite(pPg->pDbPage); + releasePage(pPg); + } + if( rc ) return rc; + pBt->nPage++; + if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } + } +#endif + put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); + *pPgno = pBt->nPage; + + assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); + rc = btreeGetPage(pBt, *pPgno, ppPage, 1); + if( rc ) return rc; + rc = sqlite3PagerWrite((*ppPage)->pDbPage); + if( rc!=SQLITE_OK ){ + releasePage(*ppPage); + } + TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); + } + + assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); + +end_allocate_page: + releasePage(pTrunk); + releasePage(pPrevTrunk); + if( rc==SQLITE_OK ){ + if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ + releasePage(*ppPage); + return SQLITE_CORRUPT_BKPT; + } + (*ppPage)->isInit = 0; + }else{ + *ppPage = 0; + } + assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) ); + return rc; +} + +/* +** This function is used to add page iPage to the database file free-list. +** It is assumed that the page is not already a part of the free-list. +** +** The value passed as the second argument to this function is optional. +** If the caller happens to have a pointer to the MemPage object +** corresponding to page iPage handy, it may pass it as the second value. +** Otherwise, it may pass NULL. +** +** If a pointer to a MemPage object is passed as the second argument, +** its reference count is not altered by this function. +*/ +static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ + MemPage *pTrunk = 0; /* Free-list trunk page */ + Pgno iTrunk = 0; /* Page number of free-list trunk page */ + MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ + MemPage *pPage; /* Page being freed. May be NULL. */ + int rc; /* Return Code */ + int nFree; /* Initial number of pages on free-list */ + + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( iPage>1 ); + assert( !pMemPage || pMemPage->pgno==iPage ); + + if( pMemPage ){ + pPage = pMemPage; + sqlite3PagerRef(pPage->pDbPage); + }else{ + pPage = btreePageLookup(pBt, iPage); + } + + /* Increment the free page count on pPage1 */ + rc = sqlite3PagerWrite(pPage1->pDbPage); + if( rc ) goto freepage_out; + nFree = get4byte(&pPage1->aData[36]); + put4byte(&pPage1->aData[36], nFree+1); + + if( pBt->secureDelete ){ + /* If the secure_delete option is enabled, then + ** always fully overwrite deleted information with zeros. + */ + if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) + || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) + ){ + goto freepage_out; + } + memset(pPage->aData, 0, pPage->pBt->pageSize); + } + + /* If the database supports auto-vacuum, write an entry in the pointer-map + ** to indicate that the page is free. + */ + if( ISAUTOVACUUM ){ + ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); + if( rc ) goto freepage_out; + } + + /* Now manipulate the actual database free-list structure. There are two + ** possibilities. If the free-list is currently empty, or if the first + ** trunk page in the free-list is full, then this page will become a + ** new free-list trunk page. Otherwise, it will become a leaf of the + ** first trunk page in the current free-list. This block tests if it + ** is possible to add the page as a new free-list leaf. + */ + if( nFree!=0 ){ + u32 nLeaf; /* Initial number of leaf cells on trunk page */ + + iTrunk = get4byte(&pPage1->aData[32]); + rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); + if( rc!=SQLITE_OK ){ + goto freepage_out; + } + + nLeaf = get4byte(&pTrunk->aData[4]); + assert( pBt->usableSize>32 ); + if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ + rc = SQLITE_CORRUPT_BKPT; + goto freepage_out; + } + if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ + /* In this case there is room on the trunk page to insert the page + ** being freed as a new leaf. + ** + ** Note that the trunk page is not really full until it contains + ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have + ** coded. But due to a coding error in versions of SQLite prior to + ** 3.6.0, databases with freelist trunk pages holding more than + ** usableSize/4 - 8 entries will be reported as corrupt. In order + ** to maintain backwards compatibility with older versions of SQLite, + ** we will continue to restrict the number of entries to usableSize/4 - 8 + ** for now. At some point in the future (once everyone has upgraded + ** to 3.6.0 or later) we should consider fixing the conditional above + ** to read "usableSize/4-2" instead of "usableSize/4-8". + */ + rc = sqlite3PagerWrite(pTrunk->pDbPage); + if( rc==SQLITE_OK ){ + put4byte(&pTrunk->aData[4], nLeaf+1); + put4byte(&pTrunk->aData[8+nLeaf*4], iPage); + if( pPage && !pBt->secureDelete ){ + sqlite3PagerDontWrite(pPage->pDbPage); + } + rc = btreeSetHasContent(pBt, iPage); + } + TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); + goto freepage_out; + } + } + + /* If control flows to this point, then it was not possible to add the + ** the page being freed as a leaf page of the first trunk in the free-list. + ** Possibly because the free-list is empty, or possibly because the + ** first trunk in the free-list is full. Either way, the page being freed + ** will become the new first trunk page in the free-list. + */ + if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ + goto freepage_out; + } + rc = sqlite3PagerWrite(pPage->pDbPage); + if( rc!=SQLITE_OK ){ + goto freepage_out; + } + put4byte(pPage->aData, iTrunk); + put4byte(&pPage->aData[4], 0); + put4byte(&pPage1->aData[32], iPage); + TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); + +freepage_out: + if( pPage ){ + pPage->isInit = 0; + } + releasePage(pPage); + releasePage(pTrunk); + return rc; +} +static void freePage(MemPage *pPage, int *pRC){ + if( (*pRC)==SQLITE_OK ){ + *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); + } +} + +/* +** Free any overflow pages associated with the given Cell. +*/ +static int clearCell(MemPage *pPage, unsigned char *pCell){ + BtShared *pBt = pPage->pBt; + CellInfo info; + Pgno ovflPgno; + int rc; + int nOvfl; + u32 ovflPageSize; + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + btreeParseCellPtr(pPage, pCell, &info); + if( info.iOverflow==0 ){ + return SQLITE_OK; /* No overflow pages. Return without doing anything */ + } + if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){ + return SQLITE_CORRUPT; /* Cell extends past end of page */ + } + ovflPgno = get4byte(&pCell[info.iOverflow]); + assert( pBt->usableSize > 4 ); + ovflPageSize = pBt->usableSize - 4; + nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; + assert( ovflPgno==0 || nOvfl>0 ); + while( nOvfl-- ){ + Pgno iNext = 0; + MemPage *pOvfl = 0; + if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ + /* 0 is not a legal page number and page 1 cannot be an + ** overflow page. Therefore if ovflPgno<2 or past the end of the + ** file the database must be corrupt. */ + return SQLITE_CORRUPT_BKPT; + } + if( nOvfl ){ + rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); + if( rc ) return rc; + } + + if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) + && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 + ){ + /* There is no reason any cursor should have an outstanding reference + ** to an overflow page belonging to a cell that is being deleted/updated. + ** So if there exists more than one reference to this page, then it + ** must not really be an overflow page and the database must be corrupt. + ** It is helpful to detect this before calling freePage2(), as + ** freePage2() may zero the page contents if secure-delete mode is + ** enabled. If this 'overflow' page happens to be a page that the + ** caller is iterating through or using in some other way, this + ** can be problematic. + */ + rc = SQLITE_CORRUPT_BKPT; + }else{ + rc = freePage2(pBt, pOvfl, ovflPgno); + } + + if( pOvfl ){ + sqlite3PagerUnref(pOvfl->pDbPage); + } + if( rc ) return rc; + ovflPgno = iNext; + } + return SQLITE_OK; +} + +/* +** Create the byte sequence used to represent a cell on page pPage +** and write that byte sequence into pCell[]. Overflow pages are +** allocated and filled in as necessary. The calling procedure +** is responsible for making sure sufficient space has been allocated +** for pCell[]. +** +** Note that pCell does not necessary need to point to the pPage->aData +** area. pCell might point to some temporary storage. The cell will +** be constructed in this temporary area then copied into pPage->aData +** later. +*/ +static int fillInCell( + MemPage *pPage, /* The page that contains the cell */ + unsigned char *pCell, /* Complete text of the cell */ + const void *pKey, i64 nKey, /* The key */ + const void *pData,int nData, /* The data */ + int nZero, /* Extra zero bytes to append to pData */ + int *pnSize /* Write cell size here */ +){ + int nPayload; + const u8 *pSrc; + int nSrc, n, rc; + int spaceLeft; + MemPage *pOvfl = 0; + MemPage *pToRelease = 0; + unsigned char *pPrior; + unsigned char *pPayload; + BtShared *pBt = pPage->pBt; + Pgno pgnoOvfl = 0; + int nHeader; + CellInfo info; + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + + /* pPage is not necessarily writeable since pCell might be auxiliary + ** buffer space that is separate from the pPage buffer area */ + assert( pCellaData || pCell>=&pPage->aData[pBt->pageSize] + || sqlite3PagerIswriteable(pPage->pDbPage) ); + + /* Fill in the header. */ + nHeader = 0; + if( !pPage->leaf ){ + nHeader += 4; + } + if( pPage->hasData ){ + nHeader += putVarint(&pCell[nHeader], nData+nZero); + }else{ + nData = nZero = 0; + } + nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); + btreeParseCellPtr(pPage, pCell, &info); + assert( info.nHeader==nHeader ); + assert( info.nKey==nKey ); + assert( info.nData==(u32)(nData+nZero) ); + + /* Fill in the payload */ + nPayload = nData + nZero; + if( pPage->intKey ){ + pSrc = pData; + nSrc = nData; + nData = 0; + }else{ + if( NEVER(nKey>0x7fffffff || pKey==0) ){ + return SQLITE_CORRUPT_BKPT; + } + nPayload += (int)nKey; + pSrc = pKey; + nSrc = (int)nKey; + } + *pnSize = info.nSize; + spaceLeft = info.nLocal; + pPayload = &pCell[nHeader]; + pPrior = &pCell[info.iOverflow]; + + while( nPayload>0 ){ + if( spaceLeft==0 ){ +#ifndef SQLITE_OMIT_AUTOVACUUM + Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ + if( pBt->autoVacuum ){ + do{ + pgnoOvfl++; + } while( + PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) + ); + } +#endif + rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); +#ifndef SQLITE_OMIT_AUTOVACUUM + /* If the database supports auto-vacuum, and the second or subsequent + ** overflow page is being allocated, add an entry to the pointer-map + ** for that page now. + ** + ** If this is the first overflow page, then write a partial entry + ** to the pointer-map. If we write nothing to this pointer-map slot, + ** then the optimistic overflow chain processing in clearCell() + ** may misinterpret the uninitialised values and delete the + ** wrong pages from the database. + */ + if( pBt->autoVacuum && rc==SQLITE_OK ){ + u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); + ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); + if( rc ){ + releasePage(pOvfl); + } + } +#endif + if( rc ){ + releasePage(pToRelease); + return rc; + } + + /* If pToRelease is not zero than pPrior points into the data area + ** of pToRelease. Make sure pToRelease is still writeable. */ + assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); + + /* If pPrior is part of the data area of pPage, then make sure pPage + ** is still writeable */ + assert( pPrioraData || pPrior>=&pPage->aData[pBt->pageSize] + || sqlite3PagerIswriteable(pPage->pDbPage) ); + + put4byte(pPrior, pgnoOvfl); + releasePage(pToRelease); + pToRelease = pOvfl; + pPrior = pOvfl->aData; + put4byte(pPrior, 0); + pPayload = &pOvfl->aData[4]; + spaceLeft = pBt->usableSize - 4; + } + n = nPayload; + if( n>spaceLeft ) n = spaceLeft; + + /* If pToRelease is not zero than pPayload points into the data area + ** of pToRelease. Make sure pToRelease is still writeable. */ + assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); + + /* If pPayload is part of the data area of pPage, then make sure pPage + ** is still writeable */ + assert( pPayloadaData || pPayload>=&pPage->aData[pBt->pageSize] + || sqlite3PagerIswriteable(pPage->pDbPage) ); + + if( nSrc>0 ){ + if( n>nSrc ) n = nSrc; + assert( pSrc ); + memcpy(pPayload, pSrc, n); + }else{ + memset(pPayload, 0, n); + } + nPayload -= n; + pPayload += n; + pSrc += n; + nSrc -= n; + spaceLeft -= n; + if( nSrc==0 ){ + nSrc = nData; + pSrc = pData; + } + } + releasePage(pToRelease); + return SQLITE_OK; +} + +/* +** Remove the i-th cell from pPage. This routine effects pPage only. +** The cell content is not freed or deallocated. It is assumed that +** the cell content has been copied someplace else. This routine just +** removes the reference to the cell from pPage. +** +** "sz" must be the number of bytes in the cell. +*/ +static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ + u32 pc; /* Offset to cell content of cell being deleted */ + u8 *data; /* pPage->aData */ + u8 *ptr; /* Used to move bytes around within data[] */ + u8 *endPtr; /* End of loop */ + int rc; /* The return code */ + int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ + + if( *pRC ) return; + + assert( idx>=0 && idxnCell ); + assert( sz==cellSize(pPage, idx) ); + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + data = pPage->aData; + ptr = &data[pPage->cellOffset + 2*idx]; + pc = get2byte(ptr); + hdr = pPage->hdrOffset; + testcase( pc==get2byte(&data[hdr+5]) ); + testcase( pc+sz==pPage->pBt->usableSize ); + if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ + *pRC = SQLITE_CORRUPT_BKPT; + return; + } + rc = freeSpace(pPage, pc, sz); + if( rc ){ + *pRC = rc; + return; + } + endPtr = &data[pPage->cellOffset + 2*pPage->nCell - 2]; + assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */ + while( ptrnCell--; + put2byte(&data[hdr+3], pPage->nCell); + pPage->nFree += 2; +} + +/* +** Insert a new cell on pPage at cell index "i". pCell points to the +** content of the cell. +** +** If the cell content will fit on the page, then put it there. If it +** will not fit, then make a copy of the cell content into pTemp if +** pTemp is not null. Regardless of pTemp, allocate a new entry +** in pPage->aOvfl[] and make it point to the cell content (either +** in pTemp or the original pCell) and also record its index. +** Allocating a new entry in pPage->aCell[] implies that +** pPage->nOverflow is incremented. +** +** If nSkip is non-zero, then do not copy the first nSkip bytes of the +** cell. The caller will overwrite them after this function returns. If +** nSkip is non-zero, then pCell may not point to an invalid memory location +** (but pCell+nSkip is always valid). +*/ +static void insertCell( + MemPage *pPage, /* Page into which we are copying */ + int i, /* New cell becomes the i-th cell of the page */ + u8 *pCell, /* Content of the new cell */ + int sz, /* Bytes of content in pCell */ + u8 *pTemp, /* Temp storage space for pCell, if needed */ + Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ + int *pRC /* Read and write return code from here */ +){ + int idx = 0; /* Where to write new cell content in data[] */ + int j; /* Loop counter */ + int end; /* First byte past the last cell pointer in data[] */ + int ins; /* Index in data[] where new cell pointer is inserted */ + int cellOffset; /* Address of first cell pointer in data[] */ + u8 *data; /* The content of the whole page */ + u8 *ptr; /* Used for moving information around in data[] */ + u8 *endPtr; /* End of the loop */ + + int nSkip = (iChild ? 4 : 0); + + if( *pRC ) return; + + assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); + assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 ); + assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + /* The cell should normally be sized correctly. However, when moving a + ** malformed cell from a leaf page to an interior page, if the cell size + ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size + ** might be less than 8 (leaf-size + pointer) on the interior node. Hence + ** the term after the || in the following assert(). */ + assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) ); + if( pPage->nOverflow || sz+2>pPage->nFree ){ + if( pTemp ){ + memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip); + pCell = pTemp; + } + if( iChild ){ + put4byte(pCell, iChild); + } + j = pPage->nOverflow++; + assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) ); + pPage->aOvfl[j].pCell = pCell; + pPage->aOvfl[j].idx = (u16)i; + }else{ + int rc = sqlite3PagerWrite(pPage->pDbPage); + if( rc!=SQLITE_OK ){ + *pRC = rc; + return; + } + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + data = pPage->aData; + cellOffset = pPage->cellOffset; + end = cellOffset + 2*pPage->nCell; + ins = cellOffset + 2*i; + rc = allocateSpace(pPage, sz, &idx); + if( rc ){ *pRC = rc; return; } + /* The allocateSpace() routine guarantees the following two properties + ** if it returns success */ + assert( idx >= end+2 ); + assert( idx+sz <= (int)pPage->pBt->usableSize ); + pPage->nCell++; + pPage->nFree -= (u16)(2 + sz); + memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip); + if( iChild ){ + put4byte(&data[idx], iChild); + } + ptr = &data[end]; + endPtr = &data[ins]; + assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */ + while( ptr>endPtr ){ + *(u16*)ptr = *(u16*)&ptr[-2]; + ptr -= 2; + } + put2byte(&data[ins], idx); + put2byte(&data[pPage->hdrOffset+3], pPage->nCell); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pPage->pBt->autoVacuum ){ + /* The cell may contain a pointer to an overflow page. If so, write + ** the entry for the overflow page into the pointer map. + */ + ptrmapPutOvflPtr(pPage, pCell, pRC); + } +#endif + } +} + +/* +** Add a list of cells to a page. The page should be initially empty. +** The cells are guaranteed to fit on the page. +*/ +static void assemblePage( + MemPage *pPage, /* The page to be assemblied */ + int nCell, /* The number of cells to add to this page */ + u8 **apCell, /* Pointers to cell bodies */ + u16 *aSize /* Sizes of the cells */ +){ + int i; /* Loop counter */ + u8 *pCellptr; /* Address of next cell pointer */ + int cellbody; /* Address of next cell body */ + u8 * const data = pPage->aData; /* Pointer to data for pPage */ + const int hdr = pPage->hdrOffset; /* Offset of header on pPage */ + const int nUsable = pPage->pBt->usableSize; /* Usable size of page */ + + assert( pPage->nOverflow==0 ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt) + && (int)MX_CELL(pPage->pBt)<=10921); + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + + /* Check that the page has just been zeroed by zeroPage() */ + assert( pPage->nCell==0 ); + assert( get2byteNotZero(&data[hdr+5])==nUsable ); + + pCellptr = &data[pPage->cellOffset + nCell*2]; + cellbody = nUsable; + for(i=nCell-1; i>=0; i--){ + u16 sz = aSize[i]; + pCellptr -= 2; + cellbody -= sz; + put2byte(pCellptr, cellbody); + memcpy(&data[cellbody], apCell[i], sz); + } + put2byte(&data[hdr+3], nCell); + put2byte(&data[hdr+5], cellbody); + pPage->nFree -= (nCell*2 + nUsable - cellbody); + pPage->nCell = (u16)nCell; +} + +/* +** The following parameters determine how many adjacent pages get involved +** in a balancing operation. NN is the number of neighbors on either side +** of the page that participate in the balancing operation. NB is the +** total number of pages that participate, including the target page and +** NN neighbors on either side. +** +** The minimum value of NN is 1 (of course). Increasing NN above 1 +** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance +** in exchange for a larger degradation in INSERT and UPDATE performance. +** The value of NN appears to give the best results overall. +*/ +#define NN 1 /* Number of neighbors on either side of pPage */ +#define NB (NN*2+1) /* Total pages involved in the balance */ + + +#ifndef SQLITE_OMIT_QUICKBALANCE +/* +** This version of balance() handles the common special case where +** a new entry is being inserted on the extreme right-end of the +** tree, in other words, when the new entry will become the largest +** entry in the tree. +** +** Instead of trying to balance the 3 right-most leaf pages, just add +** a new page to the right-hand side and put the one new entry in +** that page. This leaves the right side of the tree somewhat +** unbalanced. But odds are that we will be inserting new entries +** at the end soon afterwards so the nearly empty page will quickly +** fill up. On average. +** +** pPage is the leaf page which is the right-most page in the tree. +** pParent is its parent. pPage must have a single overflow entry +** which is also the right-most entry on the page. +** +** The pSpace buffer is used to store a temporary copy of the divider +** cell that will be inserted into pParent. Such a cell consists of a 4 +** byte page number followed by a variable length integer. In other +** words, at most 13 bytes. Hence the pSpace buffer must be at +** least 13 bytes in size. +*/ +static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ + BtShared *const pBt = pPage->pBt; /* B-Tree Database */ + MemPage *pNew; /* Newly allocated page */ + int rc; /* Return Code */ + Pgno pgnoNew; /* Page number of pNew */ + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + assert( sqlite3PagerIswriteable(pParent->pDbPage) ); + assert( pPage->nOverflow==1 ); + + /* This error condition is now caught prior to reaching this function */ + if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT; + + /* Allocate a new page. This page will become the right-sibling of + ** pPage. Make the parent page writable, so that the new divider cell + ** may be inserted. If both these operations are successful, proceed. + */ + rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); + + if( rc==SQLITE_OK ){ + + u8 *pOut = &pSpace[4]; + u8 *pCell = pPage->aOvfl[0].pCell; + u16 szCell = cellSizePtr(pPage, pCell); + u8 *pStop; + + assert( sqlite3PagerIswriteable(pNew->pDbPage) ); + assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); + zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); + assemblePage(pNew, 1, &pCell, &szCell); + + /* If this is an auto-vacuum database, update the pointer map + ** with entries for the new page, and any pointer from the + ** cell on the page to an overflow page. If either of these + ** operations fails, the return code is set, but the contents + ** of the parent page are still manipulated by thh code below. + ** That is Ok, at this point the parent page is guaranteed to + ** be marked as dirty. Returning an error code will cause a + ** rollback, undoing any changes made to the parent page. + */ + if( ISAUTOVACUUM ){ + ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); + if( szCell>pNew->minLocal ){ + ptrmapPutOvflPtr(pNew, pCell, &rc); + } + } + + /* Create a divider cell to insert into pParent. The divider cell + ** consists of a 4-byte page number (the page number of pPage) and + ** a variable length key value (which must be the same value as the + ** largest key on pPage). + ** + ** To find the largest key value on pPage, first find the right-most + ** cell on pPage. The first two fields of this cell are the + ** record-length (a variable length integer at most 32-bits in size) + ** and the key value (a variable length integer, may have any value). + ** The first of the while(...) loops below skips over the record-length + ** field. The second while(...) loop copies the key value from the + ** cell on pPage into the pSpace buffer. + */ + pCell = findCell(pPage, pPage->nCell-1); + pStop = &pCell[9]; + while( (*(pCell++)&0x80) && pCellnCell, pSpace, (int)(pOut-pSpace), + 0, pPage->pgno, &rc); + + /* Set the right-child pointer of pParent to point to the new page. */ + put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); + + /* Release the reference to the new page. */ + releasePage(pNew); + } + + return rc; +} +#endif /* SQLITE_OMIT_QUICKBALANCE */ + +#if 0 +/* +** This function does not contribute anything to the operation of SQLite. +** it is sometimes activated temporarily while debugging code responsible +** for setting pointer-map entries. +*/ +static int ptrmapCheckPages(MemPage **apPage, int nPage){ + int i, j; + for(i=0; ipBt; + assert( pPage->isInit ); + + for(j=0; jnCell; j++){ + CellInfo info; + u8 *z; + + z = findCell(pPage, j); + btreeParseCellPtr(pPage, z, &info); + if( info.iOverflow ){ + Pgno ovfl = get4byte(&z[info.iOverflow]); + ptrmapGet(pBt, ovfl, &e, &n); + assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); + } + if( !pPage->leaf ){ + Pgno child = get4byte(z); + ptrmapGet(pBt, child, &e, &n); + assert( n==pPage->pgno && e==PTRMAP_BTREE ); + } + } + if( !pPage->leaf ){ + Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); + ptrmapGet(pBt, child, &e, &n); + assert( n==pPage->pgno && e==PTRMAP_BTREE ); + } + } + return 1; +} +#endif + +/* +** This function is used to copy the contents of the b-tree node stored +** on page pFrom to page pTo. If page pFrom was not a leaf page, then +** the pointer-map entries for each child page are updated so that the +** parent page stored in the pointer map is page pTo. If pFrom contained +** any cells with overflow page pointers, then the corresponding pointer +** map entries are also updated so that the parent page is page pTo. +** +** If pFrom is currently carrying any overflow cells (entries in the +** MemPage.aOvfl[] array), they are not copied to pTo. +** +** Before returning, page pTo is reinitialized using btreeInitPage(). +** +** The performance of this function is not critical. It is only used by +** the balance_shallower() and balance_deeper() procedures, neither of +** which are called often under normal circumstances. +*/ +static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ + if( (*pRC)==SQLITE_OK ){ + BtShared * const pBt = pFrom->pBt; + u8 * const aFrom = pFrom->aData; + u8 * const aTo = pTo->aData; + int const iFromHdr = pFrom->hdrOffset; + int const iToHdr = ((pTo->pgno==1) ? 100 : 0); + int rc; + int iData; + + + assert( pFrom->isInit ); + assert( pFrom->nFree>=iToHdr ); + assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); + + /* Copy the b-tree node content from page pFrom to page pTo. */ + iData = get2byte(&aFrom[iFromHdr+5]); + memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); + memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); + + /* Reinitialize page pTo so that the contents of the MemPage structure + ** match the new data. The initialization of pTo can actually fail under + ** fairly obscure circumstances, even though it is a copy of initialized + ** page pFrom. + */ + pTo->isInit = 0; + rc = btreeInitPage(pTo); + if( rc!=SQLITE_OK ){ + *pRC = rc; + return; + } + + /* If this is an auto-vacuum database, update the pointer-map entries + ** for any b-tree or overflow pages that pTo now contains the pointers to. + */ + if( ISAUTOVACUUM ){ + *pRC = setChildPtrmaps(pTo); + } + } +} + +/* +** This routine redistributes cells on the iParentIdx'th child of pParent +** (hereafter "the page") and up to 2 siblings so that all pages have about the +** same amount of free space. Usually a single sibling on either side of the +** page are used in the balancing, though both siblings might come from one +** side if the page is the first or last child of its parent. If the page +** has fewer than 2 siblings (something which can only happen if the page +** is a root page or a child of a root page) then all available siblings +** participate in the balancing. +** +** The number of siblings of the page might be increased or decreased by +** one or two in an effort to keep pages nearly full but not over full. +** +** Note that when this routine is called, some of the cells on the page +** might not actually be stored in MemPage.aData[]. This can happen +** if the page is overfull. This routine ensures that all cells allocated +** to the page and its siblings fit into MemPage.aData[] before returning. +** +** In the course of balancing the page and its siblings, cells may be +** inserted into or removed from the parent page (pParent). Doing so +** may cause the parent page to become overfull or underfull. If this +** happens, it is the responsibility of the caller to invoke the correct +** balancing routine to fix this problem (see the balance() routine). +** +** If this routine fails for any reason, it might leave the database +** in a corrupted state. So if this routine fails, the database should +** be rolled back. +** +** The third argument to this function, aOvflSpace, is a pointer to a +** buffer big enough to hold one page. If while inserting cells into the parent +** page (pParent) the parent page becomes overfull, this buffer is +** used to store the parent's overflow cells. Because this function inserts +** a maximum of four divider cells into the parent page, and the maximum +** size of a cell stored within an internal node is always less than 1/4 +** of the page-size, the aOvflSpace[] buffer is guaranteed to be large +** enough for all overflow cells. +** +** If aOvflSpace is set to a null pointer, this function returns +** SQLITE_NOMEM. +*/ +static int balance_nonroot( + MemPage *pParent, /* Parent page of siblings being balanced */ + int iParentIdx, /* Index of "the page" in pParent */ + u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ + int isRoot /* True if pParent is a root-page */ +){ + BtShared *pBt; /* The whole database */ + int nCell = 0; /* Number of cells in apCell[] */ + int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ + int nNew = 0; /* Number of pages in apNew[] */ + int nOld; /* Number of pages in apOld[] */ + int i, j, k; /* Loop counters */ + int nxDiv; /* Next divider slot in pParent->aCell[] */ + int rc = SQLITE_OK; /* The return code */ + u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ + int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ + int usableSpace; /* Bytes in pPage beyond the header */ + int pageFlags; /* Value of pPage->aData[0] */ + int subtotal; /* Subtotal of bytes in cells on one page */ + int iSpace1 = 0; /* First unused byte of aSpace1[] */ + int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ + int szScratch; /* Size of scratch memory requested */ + MemPage *apOld[NB]; /* pPage and up to two siblings */ + MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ + MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ + u8 *pRight; /* Location in parent of right-sibling pointer */ + u8 *apDiv[NB-1]; /* Divider cells in pParent */ + int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ + int szNew[NB+2]; /* Combined size of cells place on i-th page */ + u8 **apCell = 0; /* All cells begin balanced */ + u16 *szCell; /* Local size of all cells in apCell[] */ + u8 *aSpace1; /* Space for copies of dividers cells */ + Pgno pgno; /* Temp var to store a page number in */ + + pBt = pParent->pBt; + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( sqlite3PagerIswriteable(pParent->pDbPage) ); + +#if 0 + TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); +#endif + + /* At this point pParent may have at most one overflow cell. And if + ** this overflow cell is present, it must be the cell with + ** index iParentIdx. This scenario comes about when this function + ** is called (indirectly) from sqlite3BtreeDelete(). + */ + assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); + assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx ); + + if( !aOvflSpace ){ + return SQLITE_NOMEM; + } + + /* Find the sibling pages to balance. Also locate the cells in pParent + ** that divide the siblings. An attempt is made to find NN siblings on + ** either side of pPage. More siblings are taken from one side, however, + ** if there are fewer than NN siblings on the other side. If pParent + ** has NB or fewer children then all children of pParent are taken. + ** + ** This loop also drops the divider cells from the parent page. This + ** way, the remainder of the function does not have to deal with any + ** overflow cells in the parent page, since if any existed they will + ** have already been removed. + */ + i = pParent->nOverflow + pParent->nCell; + if( i<2 ){ + nxDiv = 0; + nOld = i+1; + }else{ + nOld = 3; + if( iParentIdx==0 ){ + nxDiv = 0; + }else if( iParentIdx==i ){ + nxDiv = i-2; + }else{ + nxDiv = iParentIdx-1; + } + i = 2; + } + if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ + pRight = &pParent->aData[pParent->hdrOffset+8]; + }else{ + pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); + } + pgno = get4byte(pRight); + while( 1 ){ + rc = getAndInitPage(pBt, pgno, &apOld[i]); + if( rc ){ + memset(apOld, 0, (i+1)*sizeof(MemPage*)); + goto balance_cleanup; + } + nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; + if( (i--)==0 ) break; + + if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){ + apDiv[i] = pParent->aOvfl[0].pCell; + pgno = get4byte(apDiv[i]); + szNew[i] = cellSizePtr(pParent, apDiv[i]); + pParent->nOverflow = 0; + }else{ + apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); + pgno = get4byte(apDiv[i]); + szNew[i] = cellSizePtr(pParent, apDiv[i]); + + /* Drop the cell from the parent page. apDiv[i] still points to + ** the cell within the parent, even though it has been dropped. + ** This is safe because dropping a cell only overwrites the first + ** four bytes of it, and this function does not need the first + ** four bytes of the divider cell. So the pointer is safe to use + ** later on. + ** + ** But not if we are in secure-delete mode. In secure-delete mode, + ** the dropCell() routine will overwrite the entire cell with zeroes. + ** In this case, temporarily copy the cell into the aOvflSpace[] + ** buffer. It will be copied out again as soon as the aSpace[] buffer + ** is allocated. */ + if( pBt->secureDelete ){ + int iOff; + + iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); + if( (iOff+szNew[i])>(int)pBt->usableSize ){ + rc = SQLITE_CORRUPT_BKPT; + memset(apOld, 0, (i+1)*sizeof(MemPage*)); + goto balance_cleanup; + }else{ + memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); + apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; + } + } + dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); + } + } + + /* Make nMaxCells a multiple of 4 in order to preserve 8-byte + ** alignment */ + nMaxCells = (nMaxCells + 3)&~3; + + /* + ** Allocate space for memory structures + */ + k = pBt->pageSize + ROUND8(sizeof(MemPage)); + szScratch = + nMaxCells*sizeof(u8*) /* apCell */ + + nMaxCells*sizeof(u16) /* szCell */ + + pBt->pageSize /* aSpace1 */ + + k*nOld; /* Page copies (apCopy) */ + apCell = sqlite3ScratchMalloc( szScratch ); + if( apCell==0 ){ + rc = SQLITE_NOMEM; + goto balance_cleanup; + } + szCell = (u16*)&apCell[nMaxCells]; + aSpace1 = (u8*)&szCell[nMaxCells]; + assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); + + /* + ** Load pointers to all cells on sibling pages and the divider cells + ** into the local apCell[] array. Make copies of the divider cells + ** into space obtained from aSpace1[] and remove the the divider Cells + ** from pParent. + ** + ** If the siblings are on leaf pages, then the child pointers of the + ** divider cells are stripped from the cells before they are copied + ** into aSpace1[]. In this way, all cells in apCell[] are without + ** child pointers. If siblings are not leaves, then all cell in + ** apCell[] include child pointers. Either way, all cells in apCell[] + ** are alike. + ** + ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. + ** leafData: 1 if pPage holds key+data and pParent holds only keys. + */ + leafCorrection = apOld[0]->leaf*4; + leafData = apOld[0]->hasData; + for(i=0; ipageSize + k*i]; + memcpy(pOld, apOld[i], sizeof(MemPage)); + pOld->aData = (void*)&pOld[1]; + memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize); + + limit = pOld->nCell+pOld->nOverflow; + if( pOld->nOverflow>0 ){ + for(j=0; jaData; + u16 maskPage = pOld->maskPage; + u16 cellOffset = pOld->cellOffset; + for(j=0; jmaxLocal+23 ); + assert( iSpace1 <= (int)pBt->pageSize ); + memcpy(pTemp, apDiv[i], sz); + apCell[nCell] = pTemp+leafCorrection; + assert( leafCorrection==0 || leafCorrection==4 ); + szCell[nCell] = szCell[nCell] - leafCorrection; + if( !pOld->leaf ){ + assert( leafCorrection==0 ); + assert( pOld->hdrOffset==0 ); + /* The right pointer of the child page pOld becomes the left + ** pointer of the divider cell */ + memcpy(apCell[nCell], &pOld->aData[8], 4); + }else{ + assert( leafCorrection==4 ); + if( szCell[nCell]<4 ){ + /* Do not allow any cells smaller than 4 bytes. */ + szCell[nCell] = 4; + } + } + nCell++; + } + } + + /* + ** Figure out the number of pages needed to hold all nCell cells. + ** Store this number in "k". Also compute szNew[] which is the total + ** size of all cells on the i-th page and cntNew[] which is the index + ** in apCell[] of the cell that divides page i from page i+1. + ** cntNew[k] should equal nCell. + ** + ** Values computed by this block: + ** + ** k: The total number of sibling pages + ** szNew[i]: Spaced used on the i-th sibling page. + ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to + ** the right of the i-th sibling page. + ** usableSpace: Number of bytes of space available on each sibling. + ** + */ + usableSpace = pBt->usableSize - 12 + leafCorrection; + for(subtotal=k=i=0; i usableSpace ){ + szNew[k] = subtotal - szCell[i]; + cntNew[k] = i; + if( leafData ){ i--; } + subtotal = 0; + k++; + if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } + } + } + szNew[k] = subtotal; + cntNew[k] = nCell; + k++; + + /* + ** The packing computed by the previous block is biased toward the siblings + ** on the left side. The left siblings are always nearly full, while the + ** right-most sibling might be nearly empty. This block of code attempts + ** to adjust the packing of siblings to get a better balance. + ** + ** This adjustment is more than an optimization. The packing above might + ** be so out of balance as to be illegal. For example, the right-most + ** sibling might be completely empty. This adjustment is not optional. + */ + for(i=k-1; i>0; i--){ + int szRight = szNew[i]; /* Size of sibling on the right */ + int szLeft = szNew[i-1]; /* Size of sibling on the left */ + int r; /* Index of right-most cell in left sibling */ + int d; /* Index of first cell to the left of right sibling */ + + r = cntNew[i-1] - 1; + d = r + 1 - leafData; + assert( d0) or pPage is + ** a virtual root page. A virtual root page is when the real root + ** page is page 1 and we are the only child of that page. + */ + assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); + + TRACE(("BALANCE: old: %d %d %d ", + apOld[0]->pgno, + nOld>=2 ? apOld[1]->pgno : 0, + nOld>=3 ? apOld[2]->pgno : 0 + )); + + /* + ** Allocate k new pages. Reuse old pages where possible. + */ + if( apOld[0]->pgno<=1 ){ + rc = SQLITE_CORRUPT_BKPT; + goto balance_cleanup; + } + pageFlags = apOld[0]->aData[0]; + for(i=0; ipDbPage); + nNew++; + if( rc ) goto balance_cleanup; + }else{ + assert( i>0 ); + rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0); + if( rc ) goto balance_cleanup; + apNew[i] = pNew; + nNew++; + + /* Set the pointer-map entry for the new sibling page. */ + if( ISAUTOVACUUM ){ + ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); + if( rc!=SQLITE_OK ){ + goto balance_cleanup; + } + } + } + } + + /* Free any old pages that were not reused as new pages. + */ + while( ipgno; + int minI = i; + for(j=i+1; jpgno<(unsigned)minV ){ + minI = j; + minV = apNew[j]->pgno; + } + } + if( minI>i ){ + MemPage *pT; + pT = apNew[i]; + apNew[i] = apNew[minI]; + apNew[minI] = pT; + } + } + TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", + apNew[0]->pgno, szNew[0], + nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, + nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, + nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, + nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0)); + + assert( sqlite3PagerIswriteable(pParent->pDbPage) ); + put4byte(pRight, apNew[nNew-1]->pgno); + + /* + ** Evenly distribute the data in apCell[] across the new pages. + ** Insert divider cells into pParent as necessary. + */ + j = 0; + for(i=0; inCell>0 || (nNew==1 && cntNew[0]==0) ); + assert( pNew->nOverflow==0 ); + + j = cntNew[i]; + + /* If the sibling page assembled above was not the right-most sibling, + ** insert a divider cell into the parent page. + */ + assert( ileaf ){ + memcpy(&pNew->aData[8], pCell, 4); + }else if( leafData ){ + /* If the tree is a leaf-data tree, and the siblings are leaves, + ** then there is no divider cell in apCell[]. Instead, the divider + ** cell consists of the integer key for the right-most cell of + ** the sibling-page assembled above only. + */ + CellInfo info; + j--; + btreeParseCellPtr(pNew, apCell[j], &info); + pCell = pTemp; + sz = 4 + putVarint(&pCell[4], info.nKey); + pTemp = 0; + }else{ + pCell -= 4; + /* Obscure case for non-leaf-data trees: If the cell at pCell was + ** previously stored on a leaf node, and its reported size was 4 + ** bytes, then it may actually be smaller than this + ** (see btreeParseCellPtr(), 4 bytes is the minimum size of + ** any cell). But it is important to pass the correct size to + ** insertCell(), so reparse the cell now. + ** + ** Note that this can never happen in an SQLite data file, as all + ** cells are at least 4 bytes. It only happens in b-trees used + ** to evaluate "IN (SELECT ...)" and similar clauses. + */ + if( szCell[j]==4 ){ + assert(leafCorrection==4); + sz = cellSizePtr(pParent, pCell); + } + } + iOvflSpace += sz; + assert( sz<=pBt->maxLocal+23 ); + assert( iOvflSpace <= (int)pBt->pageSize ); + insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc); + if( rc!=SQLITE_OK ) goto balance_cleanup; + assert( sqlite3PagerIswriteable(pParent->pDbPage) ); + + j++; + nxDiv++; + } + } + assert( j==nCell ); + assert( nOld>0 ); + assert( nNew>0 ); + if( (pageFlags & PTF_LEAF)==0 ){ + u8 *zChild = &apCopy[nOld-1]->aData[8]; + memcpy(&apNew[nNew-1]->aData[8], zChild, 4); + } + + if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ + /* The root page of the b-tree now contains no cells. The only sibling + ** page is the right-child of the parent. Copy the contents of the + ** child page into the parent, decreasing the overall height of the + ** b-tree structure by one. This is described as the "balance-shallower" + ** sub-algorithm in some documentation. + ** + ** If this is an auto-vacuum database, the call to copyNodeContent() + ** sets all pointer-map entries corresponding to database image pages + ** for which the pointer is stored within the content being copied. + ** + ** The second assert below verifies that the child page is defragmented + ** (it must be, as it was just reconstructed using assemblePage()). This + ** is important if the parent page happens to be page 1 of the database + ** image. */ + assert( nNew==1 ); + assert( apNew[0]->nFree == + (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) + ); + copyNodeContent(apNew[0], pParent, &rc); + freePage(apNew[0], &rc); + }else if( ISAUTOVACUUM ){ + /* Fix the pointer-map entries for all the cells that were shifted around. + ** There are several different types of pointer-map entries that need to + ** be dealt with by this routine. Some of these have been set already, but + ** many have not. The following is a summary: + ** + ** 1) The entries associated with new sibling pages that were not + ** siblings when this function was called. These have already + ** been set. We don't need to worry about old siblings that were + ** moved to the free-list - the freePage() code has taken care + ** of those. + ** + ** 2) The pointer-map entries associated with the first overflow + ** page in any overflow chains used by new divider cells. These + ** have also already been taken care of by the insertCell() code. + ** + ** 3) If the sibling pages are not leaves, then the child pages of + ** cells stored on the sibling pages may need to be updated. + ** + ** 4) If the sibling pages are not internal intkey nodes, then any + ** overflow pages used by these cells may need to be updated + ** (internal intkey nodes never contain pointers to overflow pages). + ** + ** 5) If the sibling pages are not leaves, then the pointer-map + ** entries for the right-child pages of each sibling may need + ** to be updated. + ** + ** Cases 1 and 2 are dealt with above by other code. The next + ** block deals with cases 3 and 4 and the one after that, case 5. Since + ** setting a pointer map entry is a relatively expensive operation, this + ** code only sets pointer map entries for child or overflow pages that have + ** actually moved between pages. */ + MemPage *pNew = apNew[0]; + MemPage *pOld = apCopy[0]; + int nOverflow = pOld->nOverflow; + int iNextOld = pOld->nCell + nOverflow; + int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1); + j = 0; /* Current 'old' sibling page */ + k = 0; /* Current 'new' sibling page */ + for(i=0; inCell + pOld->nOverflow; + if( pOld->nOverflow ){ + nOverflow = pOld->nOverflow; + iOverflow = i + !leafData + pOld->aOvfl[0].idx; + } + isDivider = !leafData; + } + + assert(nOverflow>0 || iOverflowaOvfl[0].idx==pOld->aOvfl[1].idx-1); + assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1); + if( i==iOverflow ){ + isDivider = 1; + if( (--nOverflow)>0 ){ + iOverflow++; + } + } + + if( i==cntNew[k] ){ + /* Cell i is the cell immediately following the last cell on new + ** sibling page k. If the siblings are not leaf pages of an + ** intkey b-tree, then cell i is a divider cell. */ + pNew = apNew[++k]; + if( !leafData ) continue; + } + assert( jpgno!=pNew->pgno ){ + if( !leafCorrection ){ + ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc); + } + if( szCell[i]>pNew->minLocal ){ + ptrmapPutOvflPtr(pNew, apCell[i], &rc); + } + } + } + + if( !leafCorrection ){ + for(i=0; iaData[8]); + ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); + } + } + +#if 0 + /* The ptrmapCheckPages() contains assert() statements that verify that + ** all pointer map pages are set correctly. This is helpful while + ** debugging. This is usually disabled because a corrupt database may + ** cause an assert() statement to fail. */ + ptrmapCheckPages(apNew, nNew); + ptrmapCheckPages(&pParent, 1); +#endif + } + + assert( pParent->isInit ); + TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", + nOld, nNew, nCell)); + + /* + ** Cleanup before returning. + */ +balance_cleanup: + sqlite3ScratchFree(apCell); + for(i=0; ipBt; /* The BTree */ + + assert( pRoot->nOverflow>0 ); + assert( sqlite3_mutex_held(pBt->mutex) ); + + /* Make pRoot, the root page of the b-tree, writable. Allocate a new + ** page that will become the new right-child of pPage. Copy the contents + ** of the node stored on pRoot into the new child page. + */ + rc = sqlite3PagerWrite(pRoot->pDbPage); + if( rc==SQLITE_OK ){ + rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); + copyNodeContent(pRoot, pChild, &rc); + if( ISAUTOVACUUM ){ + ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); + } + } + if( rc ){ + *ppChild = 0; + releasePage(pChild); + return rc; + } + assert( sqlite3PagerIswriteable(pChild->pDbPage) ); + assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); + assert( pChild->nCell==pRoot->nCell ); + + TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); + + /* Copy the overflow cells from pRoot to pChild */ + memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0])); + pChild->nOverflow = pRoot->nOverflow; + + /* Zero the contents of pRoot. Then install pChild as the right-child. */ + zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); + put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); + + *ppChild = pChild; + return SQLITE_OK; +} + +/* +** The page that pCur currently points to has just been modified in +** some way. This function figures out if this modification means the +** tree needs to be balanced, and if so calls the appropriate balancing +** routine. Balancing routines are: +** +** balance_quick() +** balance_deeper() +** balance_nonroot() +*/ +static int balance(BtCursor *pCur){ + int rc = SQLITE_OK; + const int nMin = pCur->pBt->usableSize * 2 / 3; + u8 aBalanceQuickSpace[13]; + u8 *pFree = 0; + + TESTONLY( int balance_quick_called = 0 ); + TESTONLY( int balance_deeper_called = 0 ); + + do { + int iPage = pCur->iPage; + MemPage *pPage = pCur->apPage[iPage]; + + if( iPage==0 ){ + if( pPage->nOverflow ){ + /* The root page of the b-tree is overfull. In this case call the + ** balance_deeper() function to create a new child for the root-page + ** and copy the current contents of the root-page to it. The + ** next iteration of the do-loop will balance the child page. + */ + assert( (balance_deeper_called++)==0 ); + rc = balance_deeper(pPage, &pCur->apPage[1]); + if( rc==SQLITE_OK ){ + pCur->iPage = 1; + pCur->aiIdx[0] = 0; + pCur->aiIdx[1] = 0; + assert( pCur->apPage[1]->nOverflow ); + } + }else{ + break; + } + }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ + break; + }else{ + MemPage * const pParent = pCur->apPage[iPage-1]; + int const iIdx = pCur->aiIdx[iPage-1]; + + rc = sqlite3PagerWrite(pParent->pDbPage); + if( rc==SQLITE_OK ){ +#ifndef SQLITE_OMIT_QUICKBALANCE + if( pPage->hasData + && pPage->nOverflow==1 + && pPage->aOvfl[0].idx==pPage->nCell + && pParent->pgno!=1 + && pParent->nCell==iIdx + ){ + /* Call balance_quick() to create a new sibling of pPage on which + ** to store the overflow cell. balance_quick() inserts a new cell + ** into pParent, which may cause pParent overflow. If this + ** happens, the next interation of the do-loop will balance pParent + ** use either balance_nonroot() or balance_deeper(). Until this + ** happens, the overflow cell is stored in the aBalanceQuickSpace[] + ** buffer. + ** + ** The purpose of the following assert() is to check that only a + ** single call to balance_quick() is made for each call to this + ** function. If this were not verified, a subtle bug involving reuse + ** of the aBalanceQuickSpace[] might sneak in. + */ + assert( (balance_quick_called++)==0 ); + rc = balance_quick(pParent, pPage, aBalanceQuickSpace); + }else +#endif + { + /* In this case, call balance_nonroot() to redistribute cells + ** between pPage and up to 2 of its sibling pages. This involves + ** modifying the contents of pParent, which may cause pParent to + ** become overfull or underfull. The next iteration of the do-loop + ** will balance the parent page to correct this. + ** + ** If the parent page becomes overfull, the overflow cell or cells + ** are stored in the pSpace buffer allocated immediately below. + ** A subsequent iteration of the do-loop will deal with this by + ** calling balance_nonroot() (balance_deeper() may be called first, + ** but it doesn't deal with overflow cells - just moves them to a + ** different page). Once this subsequent call to balance_nonroot() + ** has completed, it is safe to release the pSpace buffer used by + ** the previous call, as the overflow cell data will have been + ** copied either into the body of a database page or into the new + ** pSpace buffer passed to the latter call to balance_nonroot(). + */ + u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); + rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1); + if( pFree ){ + /* If pFree is not NULL, it points to the pSpace buffer used + ** by a previous call to balance_nonroot(). Its contents are + ** now stored either on real database pages or within the + ** new pSpace buffer, so it may be safely freed here. */ + sqlite3PageFree(pFree); + } + + /* The pSpace buffer will be freed after the next call to + ** balance_nonroot(), or just before this function returns, whichever + ** comes first. */ + pFree = pSpace; + } + } + + pPage->nOverflow = 0; + + /* The next iteration of the do-loop balances the parent page. */ + releasePage(pPage); + pCur->iPage--; + } + }while( rc==SQLITE_OK ); + + if( pFree ){ + sqlite3PageFree(pFree); + } + return rc; +} + + +/* +** Insert a new record into the BTree. The key is given by (pKey,nKey) +** and the data is given by (pData,nData). The cursor is used only to +** define what table the record should be inserted into. The cursor +** is left pointing at a random location. +** +** For an INTKEY table, only the nKey value of the key is used. pKey is +** ignored. For a ZERODATA table, the pData and nData are both ignored. +** +** If the seekResult parameter is non-zero, then a successful call to +** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already +** been performed. seekResult is the search result returned (a negative +** number if pCur points at an entry that is smaller than (pKey, nKey), or +** a positive value if pCur points at an etry that is larger than +** (pKey, nKey)). +** +** If the seekResult parameter is non-zero, then the caller guarantees that +** cursor pCur is pointing at the existing copy of a row that is to be +** overwritten. If the seekResult parameter is 0, then cursor pCur may +** point to any entry or to no entry at all and so this function has to seek +** the cursor before the new key can be inserted. +*/ +int sqlite3BtreeInsert( + BtCursor *pCur, /* Insert data into the table of this cursor */ + const void *pKey, i64 nKey, /* The key of the new record */ + const void *pData, int nData, /* The data of the new record */ + int nZero, /* Number of extra 0 bytes to append to data */ + int appendBias, /* True if this is likely an append */ + int seekResult /* Result of prior MovetoUnpacked() call */ +){ + int rc; + int loc = seekResult; /* -1: before desired location +1: after */ + int szNew = 0; + int idx; + MemPage *pPage; + Btree *p = pCur->pBtree; + BtShared *pBt = p->pBt; + unsigned char *oldCell; + unsigned char *newCell = 0; + + if( pCur->eState==CURSOR_FAULT ){ + assert( pCur->skipNext!=SQLITE_OK ); + return pCur->skipNext; + } + + assert( cursorHoldsMutex(pCur) ); + assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly ); + assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); + + /* Assert that the caller has been consistent. If this cursor was opened + ** expecting an index b-tree, then the caller should be inserting blob + ** keys with no associated data. If the cursor was opened expecting an + ** intkey table, the caller should be inserting integer keys with a + ** blob of associated data. */ + assert( (pKey==0)==(pCur->pKeyInfo==0) ); + + /* If this is an insert into a table b-tree, invalidate any incrblob + ** cursors open on the row being replaced (assuming this is a replace + ** operation - if it is not, the following is a no-op). */ + if( pCur->pKeyInfo==0 ){ + invalidateIncrblobCursors(p, nKey, 0); + } + + /* Save the positions of any other cursors open on this table. + ** + ** In some cases, the call to btreeMoveto() below is a no-op. For + ** example, when inserting data into a table with auto-generated integer + ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the + ** integer key to use. It then calls this function to actually insert the + ** data into the intkey B-Tree. In this case btreeMoveto() recognizes + ** that the cursor is already where it needs to be and returns without + ** doing any work. To avoid thwarting these optimizations, it is important + ** not to clear the cursor here. + */ + rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); + if( rc ) return rc; + if( !loc ){ + rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); + if( rc ) return rc; + } + assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); + + pPage = pCur->apPage[pCur->iPage]; + assert( pPage->intKey || nKey>=0 ); + assert( pPage->leaf || !pPage->intKey ); + + TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", + pCur->pgnoRoot, nKey, nData, pPage->pgno, + loc==0 ? "overwrite" : "new entry")); + assert( pPage->isInit ); + allocateTempSpace(pBt); + newCell = pBt->pTmpSpace; + if( newCell==0 ) return SQLITE_NOMEM; + rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); + if( rc ) goto end_insert; + assert( szNew==cellSizePtr(pPage, newCell) ); + assert( szNew <= MX_CELL_SIZE(pBt) ); + idx = pCur->aiIdx[pCur->iPage]; + if( loc==0 ){ + u16 szOld; + assert( idxnCell ); + rc = sqlite3PagerWrite(pPage->pDbPage); + if( rc ){ + goto end_insert; + } + oldCell = findCell(pPage, idx); + if( !pPage->leaf ){ + memcpy(newCell, oldCell, 4); + } + szOld = cellSizePtr(pPage, oldCell); + rc = clearCell(pPage, oldCell); + dropCell(pPage, idx, szOld, &rc); + if( rc ) goto end_insert; + }else if( loc<0 && pPage->nCell>0 ){ + assert( pPage->leaf ); + idx = ++pCur->aiIdx[pCur->iPage]; + }else{ + assert( pPage->leaf ); + } + insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); + assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); + + /* If no error has occured and pPage has an overflow cell, call balance() + ** to redistribute the cells within the tree. Since balance() may move + ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey + ** variables. + ** + ** Previous versions of SQLite called moveToRoot() to move the cursor + ** back to the root page as balance() used to invalidate the contents + ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, + ** set the cursor state to "invalid". This makes common insert operations + ** slightly faster. + ** + ** There is a subtle but important optimization here too. When inserting + ** multiple records into an intkey b-tree using a single cursor (as can + ** happen while processing an "INSERT INTO ... SELECT" statement), it + ** is advantageous to leave the cursor pointing to the last entry in + ** the b-tree if possible. If the cursor is left pointing to the last + ** entry in the table, and the next row inserted has an integer key + ** larger than the largest existing key, it is possible to insert the + ** row without seeking the cursor. This can be a big performance boost. + */ + pCur->info.nSize = 0; + pCur->validNKey = 0; + if( rc==SQLITE_OK && pPage->nOverflow ){ + rc = balance(pCur); + + /* Must make sure nOverflow is reset to zero even if the balance() + ** fails. Internal data structure corruption will result otherwise. + ** Also, set the cursor state to invalid. This stops saveCursorPosition() + ** from trying to save the current position of the cursor. */ + pCur->apPage[pCur->iPage]->nOverflow = 0; + pCur->eState = CURSOR_INVALID; + } + assert( pCur->apPage[pCur->iPage]->nOverflow==0 ); + +end_insert: + return rc; +} + +/* +** Delete the entry that the cursor is pointing to. The cursor +** is left pointing at a arbitrary location. +*/ +int sqlite3BtreeDelete(BtCursor *pCur){ + Btree *p = pCur->pBtree; + BtShared *pBt = p->pBt; + int rc; /* Return code */ + MemPage *pPage; /* Page to delete cell from */ + unsigned char *pCell; /* Pointer to cell to delete */ + int iCellIdx; /* Index of cell to delete */ + int iCellDepth; /* Depth of node containing pCell */ + + assert( cursorHoldsMutex(pCur) ); + assert( pBt->inTransaction==TRANS_WRITE ); + assert( !pBt->readOnly ); + assert( pCur->wrFlag ); + assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); + assert( !hasReadConflicts(p, pCur->pgnoRoot) ); + + if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell) + || NEVER(pCur->eState!=CURSOR_VALID) + ){ + return SQLITE_ERROR; /* Something has gone awry. */ + } + + /* If this is a delete operation to remove a row from a table b-tree, + ** invalidate any incrblob cursors open on the row being deleted. */ + if( pCur->pKeyInfo==0 ){ + invalidateIncrblobCursors(p, pCur->info.nKey, 0); + } + + iCellDepth = pCur->iPage; + iCellIdx = pCur->aiIdx[iCellDepth]; + pPage = pCur->apPage[iCellDepth]; + pCell = findCell(pPage, iCellIdx); + + /* If the page containing the entry to delete is not a leaf page, move + ** the cursor to the largest entry in the tree that is smaller than + ** the entry being deleted. This cell will replace the cell being deleted + ** from the internal node. The 'previous' entry is used for this instead + ** of the 'next' entry, as the previous entry is always a part of the + ** sub-tree headed by the child page of the cell being deleted. This makes + ** balancing the tree following the delete operation easier. */ + if( !pPage->leaf ){ + int notUsed; + rc = sqlite3BtreePrevious(pCur, ¬Used); + if( rc ) return rc; + } + + /* Save the positions of any other cursors open on this table before + ** making any modifications. Make the page containing the entry to be + ** deleted writable. Then free any overflow pages associated with the + ** entry and finally remove the cell itself from within the page. + */ + rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); + if( rc ) return rc; + rc = sqlite3PagerWrite(pPage->pDbPage); + if( rc ) return rc; + rc = clearCell(pPage, pCell); + dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc); + if( rc ) return rc; + + /* If the cell deleted was not located on a leaf page, then the cursor + ** is currently pointing to the largest entry in the sub-tree headed + ** by the child-page of the cell that was just deleted from an internal + ** node. The cell from the leaf node needs to be moved to the internal + ** node to replace the deleted cell. */ + if( !pPage->leaf ){ + MemPage *pLeaf = pCur->apPage[pCur->iPage]; + int nCell; + Pgno n = pCur->apPage[iCellDepth+1]->pgno; + unsigned char *pTmp; + + pCell = findCell(pLeaf, pLeaf->nCell-1); + nCell = cellSizePtr(pLeaf, pCell); + assert( MX_CELL_SIZE(pBt) >= nCell ); + + allocateTempSpace(pBt); + pTmp = pBt->pTmpSpace; + + rc = sqlite3PagerWrite(pLeaf->pDbPage); + insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); + dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); + if( rc ) return rc; + } + + /* Balance the tree. If the entry deleted was located on a leaf page, + ** then the cursor still points to that page. In this case the first + ** call to balance() repairs the tree, and the if(...) condition is + ** never true. + ** + ** Otherwise, if the entry deleted was on an internal node page, then + ** pCur is pointing to the leaf page from which a cell was removed to + ** replace the cell deleted from the internal node. This is slightly + ** tricky as the leaf node may be underfull, and the internal node may + ** be either under or overfull. In this case run the balancing algorithm + ** on the leaf node first. If the balance proceeds far enough up the + ** tree that we can be sure that any problem in the internal node has + ** been corrected, so be it. Otherwise, after balancing the leaf node, + ** walk the cursor up the tree to the internal node and balance it as + ** well. */ + rc = balance(pCur); + if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ + while( pCur->iPage>iCellDepth ){ + releasePage(pCur->apPage[pCur->iPage--]); + } + rc = balance(pCur); + } + + if( rc==SQLITE_OK ){ + moveToRoot(pCur); + } + return rc; +} + +/* +** Create a new BTree table. Write into *piTable the page +** number for the root page of the new table. +** +** The type of type is determined by the flags parameter. Only the +** following values of flags are currently in use. Other values for +** flags might not work: +** +** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys +** BTREE_ZERODATA Used for SQL indices +*/ +static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ + BtShared *pBt = p->pBt; + MemPage *pRoot; + Pgno pgnoRoot; + int rc; + int ptfFlags; /* Page-type flage for the root page of new table */ + + assert( sqlite3BtreeHoldsMutex(p) ); + assert( pBt->inTransaction==TRANS_WRITE ); + assert( !pBt->readOnly ); + +#ifdef SQLITE_OMIT_AUTOVACUUM + rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); + if( rc ){ + return rc; + } +#else + if( pBt->autoVacuum ){ + Pgno pgnoMove; /* Move a page here to make room for the root-page */ + MemPage *pPageMove; /* The page to move to. */ + + /* Creating a new table may probably require moving an existing database + ** to make room for the new tables root page. In case this page turns + ** out to be an overflow page, delete all overflow page-map caches + ** held by open cursors. + */ + invalidateAllOverflowCache(pBt); + + /* Read the value of meta[3] from the database to determine where the + ** root page of the new table should go. meta[3] is the largest root-page + ** created so far, so the new root-page is (meta[3]+1). + */ + sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); + pgnoRoot++; + + /* The new root-page may not be allocated on a pointer-map page, or the + ** PENDING_BYTE page. + */ + while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || + pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ + pgnoRoot++; + } + assert( pgnoRoot>=3 ); + + /* Allocate a page. The page that currently resides at pgnoRoot will + ** be moved to the allocated page (unless the allocated page happens + ** to reside at pgnoRoot). + */ + rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1); + if( rc!=SQLITE_OK ){ + return rc; + } + + if( pgnoMove!=pgnoRoot ){ + /* pgnoRoot is the page that will be used for the root-page of + ** the new table (assuming an error did not occur). But we were + ** allocated pgnoMove. If required (i.e. if it was not allocated + ** by extending the file), the current page at position pgnoMove + ** is already journaled. + */ + u8 eType = 0; + Pgno iPtrPage = 0; + + releasePage(pPageMove); + + /* Move the page currently at pgnoRoot to pgnoMove. */ + rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); + if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ + rc = SQLITE_CORRUPT_BKPT; + } + if( rc!=SQLITE_OK ){ + releasePage(pRoot); + return rc; + } + assert( eType!=PTRMAP_ROOTPAGE ); + assert( eType!=PTRMAP_FREEPAGE ); + rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); + releasePage(pRoot); + + /* Obtain the page at pgnoRoot */ + if( rc!=SQLITE_OK ){ + return rc; + } + rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = sqlite3PagerWrite(pRoot->pDbPage); + if( rc!=SQLITE_OK ){ + releasePage(pRoot); + return rc; + } + }else{ + pRoot = pPageMove; + } + + /* Update the pointer-map and meta-data with the new root-page number. */ + ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); + if( rc ){ + releasePage(pRoot); + return rc; + } + + /* When the new root page was allocated, page 1 was made writable in + ** order either to increase the database filesize, or to decrement the + ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. + */ + assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); + rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); + if( NEVER(rc) ){ + releasePage(pRoot); + return rc; + } + + }else{ + rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); + if( rc ) return rc; + } +#endif + assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); + if( createTabFlags & BTREE_INTKEY ){ + ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; + }else{ + ptfFlags = PTF_ZERODATA | PTF_LEAF; + } + zeroPage(pRoot, ptfFlags); + sqlite3PagerUnref(pRoot->pDbPage); + assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); + *piTable = (int)pgnoRoot; + return SQLITE_OK; +} +int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ + int rc; + sqlite3BtreeEnter(p); + rc = btreeCreateTable(p, piTable, flags); + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Erase the given database page and all its children. Return +** the page to the freelist. +*/ +static int clearDatabasePage( + BtShared *pBt, /* The BTree that contains the table */ + Pgno pgno, /* Page number to clear */ + int freePageFlag, /* Deallocate page if true */ + int *pnChange /* Add number of Cells freed to this counter */ +){ + MemPage *pPage; + int rc; + unsigned char *pCell; + int i; + + assert( sqlite3_mutex_held(pBt->mutex) ); + if( pgno>btreePagecount(pBt) ){ + return SQLITE_CORRUPT_BKPT; + } + + rc = getAndInitPage(pBt, pgno, &pPage); + if( rc ) return rc; + for(i=0; inCell; i++){ + pCell = findCell(pPage, i); + if( !pPage->leaf ){ + rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); + if( rc ) goto cleardatabasepage_out; + } + rc = clearCell(pPage, pCell); + if( rc ) goto cleardatabasepage_out; + } + if( !pPage->leaf ){ + rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange); + if( rc ) goto cleardatabasepage_out; + }else if( pnChange ){ + assert( pPage->intKey ); + *pnChange += pPage->nCell; + } + if( freePageFlag ){ + freePage(pPage, &rc); + }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ + zeroPage(pPage, pPage->aData[0] | PTF_LEAF); + } + +cleardatabasepage_out: + releasePage(pPage); + return rc; +} + +/* +** Delete all information from a single table in the database. iTable is +** the page number of the root of the table. After this routine returns, +** the root page is empty, but still exists. +** +** This routine will fail with SQLITE_LOCKED if there are any open +** read cursors on the table. Open write cursors are moved to the +** root of the table. +** +** If pnChange is not NULL, then table iTable must be an intkey table. The +** integer value pointed to by pnChange is incremented by the number of +** entries in the table. +*/ +int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ + int rc; + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); + assert( p->inTrans==TRANS_WRITE ); + + /* Invalidate all incrblob cursors open on table iTable (assuming iTable + ** is the root of a table b-tree - if it is not, the following call is + ** a no-op). */ + invalidateIncrblobCursors(p, 0, 1); + + rc = saveAllCursors(pBt, (Pgno)iTable, 0); + if( SQLITE_OK==rc ){ + rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); + } + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Erase all information in a table and add the root of the table to +** the freelist. Except, the root of the principle table (the one on +** page 1) is never added to the freelist. +** +** This routine will fail with SQLITE_LOCKED if there are any open +** cursors on the table. +** +** If AUTOVACUUM is enabled and the page at iTable is not the last +** root page in the database file, then the last root page +** in the database file is moved into the slot formerly occupied by +** iTable and that last slot formerly occupied by the last root page +** is added to the freelist instead of iTable. In this say, all +** root pages are kept at the beginning of the database file, which +** is necessary for AUTOVACUUM to work right. *piMoved is set to the +** page number that used to be the last root page in the file before +** the move. If no page gets moved, *piMoved is set to 0. +** The last root page is recorded in meta[3] and the value of +** meta[3] is updated by this procedure. +*/ +static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ + int rc; + MemPage *pPage = 0; + BtShared *pBt = p->pBt; + + assert( sqlite3BtreeHoldsMutex(p) ); + assert( p->inTrans==TRANS_WRITE ); + + /* It is illegal to drop a table if any cursors are open on the + ** database. This is because in auto-vacuum mode the backend may + ** need to move another root-page to fill a gap left by the deleted + ** root page. If an open cursor was using this page a problem would + ** occur. + ** + ** This error is caught long before control reaches this point. + */ + if( NEVER(pBt->pCursor) ){ + sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db); + return SQLITE_LOCKED_SHAREDCACHE; + } + + rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); + if( rc ) return rc; + rc = sqlite3BtreeClearTable(p, iTable, 0); + if( rc ){ + releasePage(pPage); + return rc; + } + + *piMoved = 0; + + if( iTable>1 ){ +#ifdef SQLITE_OMIT_AUTOVACUUM + freePage(pPage, &rc); + releasePage(pPage); +#else + if( pBt->autoVacuum ){ + Pgno maxRootPgno; + sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); + + if( iTable==maxRootPgno ){ + /* If the table being dropped is the table with the largest root-page + ** number in the database, put the root page on the free list. + */ + freePage(pPage, &rc); + releasePage(pPage); + if( rc!=SQLITE_OK ){ + return rc; + } + }else{ + /* The table being dropped does not have the largest root-page + ** number in the database. So move the page that does into the + ** gap left by the deleted root-page. + */ + MemPage *pMove; + releasePage(pPage); + rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); + releasePage(pMove); + if( rc!=SQLITE_OK ){ + return rc; + } + pMove = 0; + rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); + freePage(pMove, &rc); + releasePage(pMove); + if( rc!=SQLITE_OK ){ + return rc; + } + *piMoved = maxRootPgno; + } + + /* Set the new 'max-root-page' value in the database header. This + ** is the old value less one, less one more if that happens to + ** be a root-page number, less one again if that is the + ** PENDING_BYTE_PAGE. + */ + maxRootPgno--; + while( maxRootPgno==PENDING_BYTE_PAGE(pBt) + || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ + maxRootPgno--; + } + assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); + + rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); + }else{ + freePage(pPage, &rc); + releasePage(pPage); + } +#endif + }else{ + /* If sqlite3BtreeDropTable was called on page 1. + ** This really never should happen except in a corrupt + ** database. + */ + zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); + releasePage(pPage); + } + return rc; +} +int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ + int rc; + sqlite3BtreeEnter(p); + rc = btreeDropTable(p, iTable, piMoved); + sqlite3BtreeLeave(p); + return rc; +} + + +/* +** This function may only be called if the b-tree connection already +** has a read or write transaction open on the database. +** +** Read the meta-information out of a database file. Meta[0] +** is the number of free pages currently in the database. Meta[1] +** through meta[15] are available for use by higher layers. Meta[0] +** is read-only, the others are read/write. +** +** The schema layer numbers meta values differently. At the schema +** layer (and the SetCookie and ReadCookie opcodes) the number of +** free pages is not visible. So Cookie[0] is the same as Meta[1]. +*/ +void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ + BtShared *pBt = p->pBt; + + sqlite3BtreeEnter(p); + assert( p->inTrans>TRANS_NONE ); + assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); + assert( pBt->pPage1 ); + assert( idx>=0 && idx<=15 ); + + *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); + + /* If auto-vacuum is disabled in this build and this is an auto-vacuum + ** database, mark the database as read-only. */ +#ifdef SQLITE_OMIT_AUTOVACUUM + if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1; +#endif + + sqlite3BtreeLeave(p); +} + +/* +** Write meta-information back into the database. Meta[0] is +** read-only and may not be written. +*/ +int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ + BtShared *pBt = p->pBt; + unsigned char *pP1; + int rc; + assert( idx>=1 && idx<=15 ); + sqlite3BtreeEnter(p); + assert( p->inTrans==TRANS_WRITE ); + assert( pBt->pPage1!=0 ); + pP1 = pBt->pPage1->aData; + rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); + if( rc==SQLITE_OK ){ + put4byte(&pP1[36 + idx*4], iMeta); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( idx==BTREE_INCR_VACUUM ){ + assert( pBt->autoVacuum || iMeta==0 ); + assert( iMeta==0 || iMeta==1 ); + pBt->incrVacuum = (u8)iMeta; + } +#endif + } + sqlite3BtreeLeave(p); + return rc; +} + +#ifndef SQLITE_OMIT_BTREECOUNT +/* +** The first argument, pCur, is a cursor opened on some b-tree. Count the +** number of entries in the b-tree and write the result to *pnEntry. +** +** SQLITE_OK is returned if the operation is successfully executed. +** Otherwise, if an error is encountered (i.e. an IO error or database +** corruption) an SQLite error code is returned. +*/ +int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ + i64 nEntry = 0; /* Value to return in *pnEntry */ + int rc; /* Return code */ + + if( pCur->pgnoRoot==0 ){ + *pnEntry = 0; + return SQLITE_OK; + } + rc = moveToRoot(pCur); + + /* Unless an error occurs, the following loop runs one iteration for each + ** page in the B-Tree structure (not including overflow pages). + */ + while( rc==SQLITE_OK ){ + int iIdx; /* Index of child node in parent */ + MemPage *pPage; /* Current page of the b-tree */ + + /* If this is a leaf page or the tree is not an int-key tree, then + ** this page contains countable entries. Increment the entry counter + ** accordingly. + */ + pPage = pCur->apPage[pCur->iPage]; + if( pPage->leaf || !pPage->intKey ){ + nEntry += pPage->nCell; + } + + /* pPage is a leaf node. This loop navigates the cursor so that it + ** points to the first interior cell that it points to the parent of + ** the next page in the tree that has not yet been visited. The + ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell + ** of the page, or to the number of cells in the page if the next page + ** to visit is the right-child of its parent. + ** + ** If all pages in the tree have been visited, return SQLITE_OK to the + ** caller. + */ + if( pPage->leaf ){ + do { + if( pCur->iPage==0 ){ + /* All pages of the b-tree have been visited. Return successfully. */ + *pnEntry = nEntry; + return SQLITE_OK; + } + moveToParent(pCur); + }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell ); + + pCur->aiIdx[pCur->iPage]++; + pPage = pCur->apPage[pCur->iPage]; + } + + /* Descend to the child node of the cell that the cursor currently + ** points at. This is the right-child if (iIdx==pPage->nCell). + */ + iIdx = pCur->aiIdx[pCur->iPage]; + if( iIdx==pPage->nCell ){ + rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); + }else{ + rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); + } + } + + /* An error has occurred. Return an error code. */ + return rc; +} +#endif + +/* +** Return the pager associated with a BTree. This routine is used for +** testing and debugging only. +*/ +Pager *sqlite3BtreePager(Btree *p){ + return p->pBt->pPager; +} + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK +/* +** Append a message to the error message string. +*/ +static void checkAppendMsg( + IntegrityCk *pCheck, + char *zMsg1, + const char *zFormat, + ... +){ + va_list ap; + if( !pCheck->mxErr ) return; + pCheck->mxErr--; + pCheck->nErr++; + va_start(ap, zFormat); + if( pCheck->errMsg.nChar ){ + sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1); + } + if( zMsg1 ){ + sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1); + } + sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap); + va_end(ap); + if( pCheck->errMsg.mallocFailed ){ + pCheck->mallocFailed = 1; + } +} +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK +/* +** Add 1 to the reference count for page iPage. If this is the second +** reference to the page, add an error message to pCheck->zErrMsg. +** Return 1 if there are 2 ore more references to the page and 0 if +** if this is the first reference to the page. +** +** Also check that the page number is in bounds. +*/ +static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){ + if( iPage==0 ) return 1; + if( iPage>pCheck->nPage ){ + checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage); + return 1; + } + if( pCheck->anRef[iPage]==1 ){ + checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage); + return 1; + } + return (pCheck->anRef[iPage]++)>1; +} + +#ifndef SQLITE_OMIT_AUTOVACUUM +/* +** Check that the entry in the pointer-map for page iChild maps to +** page iParent, pointer type ptrType. If not, append an error message +** to pCheck. +*/ +static void checkPtrmap( + IntegrityCk *pCheck, /* Integrity check context */ + Pgno iChild, /* Child page number */ + u8 eType, /* Expected pointer map type */ + Pgno iParent, /* Expected pointer map parent page number */ + char *zContext /* Context description (used for error msg) */ +){ + int rc; + u8 ePtrmapType; + Pgno iPtrmapParent; + + rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; + checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild); + return; + } + + if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ + checkAppendMsg(pCheck, zContext, + "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", + iChild, eType, iParent, ePtrmapType, iPtrmapParent); + } +} +#endif + +/* +** Check the integrity of the freelist or of an overflow page list. +** Verify that the number of pages on the list is N. +*/ +static void checkList( + IntegrityCk *pCheck, /* Integrity checking context */ + int isFreeList, /* True for a freelist. False for overflow page list */ + int iPage, /* Page number for first page in the list */ + int N, /* Expected number of pages in the list */ + char *zContext /* Context for error messages */ +){ + int i; + int expected = N; + int iFirst = iPage; + while( N-- > 0 && pCheck->mxErr ){ + DbPage *pOvflPage; + unsigned char *pOvflData; + if( iPage<1 ){ + checkAppendMsg(pCheck, zContext, + "%d of %d pages missing from overflow list starting at %d", + N+1, expected, iFirst); + break; + } + if( checkRef(pCheck, iPage, zContext) ) break; + if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){ + checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage); + break; + } + pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); + if( isFreeList ){ + int n = get4byte(&pOvflData[4]); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pCheck->pBt->autoVacuum ){ + checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext); + } +#endif + if( n>(int)pCheck->pBt->usableSize/4-2 ){ + checkAppendMsg(pCheck, zContext, + "freelist leaf count too big on page %d", iPage); + N--; + }else{ + for(i=0; ipBt->autoVacuum ){ + checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext); + } +#endif + checkRef(pCheck, iFreePage, zContext); + } + N -= n; + } + } +#ifndef SQLITE_OMIT_AUTOVACUUM + else{ + /* If this database supports auto-vacuum and iPage is not the last + ** page in this overflow list, check that the pointer-map entry for + ** the following page matches iPage. + */ + if( pCheck->pBt->autoVacuum && N>0 ){ + i = get4byte(pOvflData); + checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext); + } + } +#endif + iPage = get4byte(pOvflData); + sqlite3PagerUnref(pOvflPage); + } +} +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK +/* +** Do various sanity checks on a single page of a tree. Return +** the tree depth. Root pages return 0. Parents of root pages +** return 1, and so forth. +** +** These checks are done: +** +** 1. Make sure that cells and freeblocks do not overlap +** but combine to completely cover the page. +** NO 2. Make sure cell keys are in order. +** NO 3. Make sure no key is less than or equal to zLowerBound. +** NO 4. Make sure no key is greater than or equal to zUpperBound. +** 5. Check the integrity of overflow pages. +** 6. Recursively call checkTreePage on all children. +** 7. Verify that the depth of all children is the same. +** 8. Make sure this page is at least 33% full or else it is +** the root of the tree. +*/ +static int checkTreePage( + IntegrityCk *pCheck, /* Context for the sanity check */ + int iPage, /* Page number of the page to check */ + char *zParentContext, /* Parent context */ + i64 *pnParentMinKey, + i64 *pnParentMaxKey +){ + MemPage *pPage; + int i, rc, depth, d2, pgno, cnt; + int hdr, cellStart; + int nCell; + u8 *data; + BtShared *pBt; + int usableSize; + char zContext[100]; + char *hit = 0; + i64 nMinKey = 0; + i64 nMaxKey = 0; + + sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage); + + /* Check that the page exists + */ + pBt = pCheck->pBt; + usableSize = pBt->usableSize; + if( iPage==0 ) return 0; + if( checkRef(pCheck, iPage, zParentContext) ) return 0; + if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ + checkAppendMsg(pCheck, zContext, + "unable to get the page. error code=%d", rc); + return 0; + } + + /* Clear MemPage.isInit to make sure the corruption detection code in + ** btreeInitPage() is executed. */ + pPage->isInit = 0; + if( (rc = btreeInitPage(pPage))!=0 ){ + assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ + checkAppendMsg(pCheck, zContext, + "btreeInitPage() returns error code %d", rc); + releasePage(pPage); + return 0; + } + + /* Check out all the cells. + */ + depth = 0; + for(i=0; inCell && pCheck->mxErr; i++){ + u8 *pCell; + u32 sz; + CellInfo info; + + /* Check payload overflow pages + */ + sqlite3_snprintf(sizeof(zContext), zContext, + "On tree page %d cell %d: ", iPage, i); + pCell = findCell(pPage,i); + btreeParseCellPtr(pPage, pCell, &info); + sz = info.nData; + if( !pPage->intKey ) sz += (int)info.nKey; + /* For intKey pages, check that the keys are in order. + */ + else if( i==0 ) nMinKey = nMaxKey = info.nKey; + else{ + if( info.nKey <= nMaxKey ){ + checkAppendMsg(pCheck, zContext, + "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey); + } + nMaxKey = info.nKey; + } + assert( sz==info.nPayload ); + if( (sz>info.nLocal) + && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize]) + ){ + int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); + Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext); + } +#endif + checkList(pCheck, 0, pgnoOvfl, nPage, zContext); + } + + /* Check sanity of left child page. + */ + if( !pPage->leaf ){ + pgno = get4byte(pCell); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); + } +#endif + d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey); + if( i>0 && d2!=depth ){ + checkAppendMsg(pCheck, zContext, "Child page depth differs"); + } + depth = d2; + } + } + + if( !pPage->leaf ){ + pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); + sqlite3_snprintf(sizeof(zContext), zContext, + "On page %d at right child: ", iPage); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); + } +#endif + checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey); + } + + /* For intKey leaf pages, check that the min/max keys are in order + ** with any left/parent/right pages. + */ + if( pPage->leaf && pPage->intKey ){ + /* if we are a left child page */ + if( pnParentMinKey ){ + /* if we are the left most child page */ + if( !pnParentMaxKey ){ + if( nMaxKey > *pnParentMinKey ){ + checkAppendMsg(pCheck, zContext, + "Rowid %lld out of order (max larger than parent min of %lld)", + nMaxKey, *pnParentMinKey); + } + }else{ + if( nMinKey <= *pnParentMinKey ){ + checkAppendMsg(pCheck, zContext, + "Rowid %lld out of order (min less than parent min of %lld)", + nMinKey, *pnParentMinKey); + } + if( nMaxKey > *pnParentMaxKey ){ + checkAppendMsg(pCheck, zContext, + "Rowid %lld out of order (max larger than parent max of %lld)", + nMaxKey, *pnParentMaxKey); + } + *pnParentMinKey = nMaxKey; + } + /* else if we're a right child page */ + } else if( pnParentMaxKey ){ + if( nMinKey <= *pnParentMaxKey ){ + checkAppendMsg(pCheck, zContext, + "Rowid %lld out of order (min less than parent max of %lld)", + nMinKey, *pnParentMaxKey); + } + } + } + + /* Check for complete coverage of the page + */ + data = pPage->aData; + hdr = pPage->hdrOffset; + hit = sqlite3PageMalloc( pBt->pageSize ); + if( hit==0 ){ + pCheck->mallocFailed = 1; + }else{ + int contentOffset = get2byteNotZero(&data[hdr+5]); + assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ + memset(hit+contentOffset, 0, usableSize-contentOffset); + memset(hit, 1, contentOffset); + nCell = get2byte(&data[hdr+3]); + cellStart = hdr + 12 - 4*pPage->leaf; + for(i=0; i=usableSize ){ + checkAppendMsg(pCheck, 0, + "Corruption detected in cell %d on page %d",i,iPage); + }else{ + for(j=pc+size-1; j>=pc; j--) hit[j]++; + } + } + i = get2byte(&data[hdr+1]); + while( i>0 ){ + int size, j; + assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */ + size = get2byte(&data[i+2]); + assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */ + for(j=i+size-1; j>=i; j--) hit[j]++; + j = get2byte(&data[i]); + assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ + assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */ + i = j; + } + for(i=cnt=0; i1 ){ + checkAppendMsg(pCheck, 0, + "Multiple uses for byte %d of page %d", i, iPage); + break; + } + } + if( cnt!=data[hdr+7] ){ + checkAppendMsg(pCheck, 0, + "Fragmentation of %d bytes reported as %d on page %d", + cnt, data[hdr+7], iPage); + } + } + sqlite3PageFree(hit); + releasePage(pPage); + return depth+1; +} +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK +/* +** This routine does a complete check of the given BTree file. aRoot[] is +** an array of pages numbers were each page number is the root page of +** a table. nRoot is the number of entries in aRoot. +** +** A read-only or read-write transaction must be opened before calling +** this function. +** +** Write the number of error seen in *pnErr. Except for some memory +** allocation errors, an error message held in memory obtained from +** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is +** returned. If a memory allocation error occurs, NULL is returned. +*/ +char *sqlite3BtreeIntegrityCheck( + Btree *p, /* The btree to be checked */ + int *aRoot, /* An array of root pages numbers for individual trees */ + int nRoot, /* Number of entries in aRoot[] */ + int mxErr, /* Stop reporting errors after this many */ + int *pnErr /* Write number of errors seen to this variable */ +){ + Pgno i; + int nRef; + IntegrityCk sCheck; + BtShared *pBt = p->pBt; + char zErr[100]; + + sqlite3BtreeEnter(p); + assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); + nRef = sqlite3PagerRefcount(pBt->pPager); + sCheck.pBt = pBt; + sCheck.pPager = pBt->pPager; + sCheck.nPage = btreePagecount(sCheck.pBt); + sCheck.mxErr = mxErr; + sCheck.nErr = 0; + sCheck.mallocFailed = 0; + *pnErr = 0; + if( sCheck.nPage==0 ){ + sqlite3BtreeLeave(p); + return 0; + } + sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); + if( !sCheck.anRef ){ + *pnErr = 1; + sqlite3BtreeLeave(p); + return 0; + } + for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } + i = PENDING_BYTE_PAGE(pBt); + if( i<=sCheck.nPage ){ + sCheck.anRef[i] = 1; + } + sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000); + sCheck.errMsg.useMalloc = 2; + + /* Check the integrity of the freelist + */ + checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), + get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); + + /* Check all the tables. + */ + for(i=0; (int)iautoVacuum && aRoot[i]>1 ){ + checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0); + } +#endif + checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL); + } + + /* Make sure every page in the file is referenced + */ + for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ +#ifdef SQLITE_OMIT_AUTOVACUUM + if( sCheck.anRef[i]==0 ){ + checkAppendMsg(&sCheck, 0, "Page %d is never used", i); + } +#else + /* If the database supports auto-vacuum, make sure no tables contain + ** references to pointer-map pages. + */ + if( sCheck.anRef[i]==0 && + (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ + checkAppendMsg(&sCheck, 0, "Page %d is never used", i); + } + if( sCheck.anRef[i]!=0 && + (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ + checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i); + } +#endif + } + + /* Make sure this analysis did not leave any unref() pages. + ** This is an internal consistency check; an integrity check + ** of the integrity check. + */ + if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){ + checkAppendMsg(&sCheck, 0, + "Outstanding page count goes from %d to %d during this analysis", + nRef, sqlite3PagerRefcount(pBt->pPager) + ); + } + + /* Clean up and report errors. + */ + sqlite3BtreeLeave(p); + sqlite3_free(sCheck.anRef); + if( sCheck.mallocFailed ){ + sqlite3StrAccumReset(&sCheck.errMsg); + *pnErr = sCheck.nErr+1; + return 0; + } + *pnErr = sCheck.nErr; + if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); + return sqlite3StrAccumFinish(&sCheck.errMsg); +} +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +/* +** Return the full pathname of the underlying database file. +** +** The pager filename is invariant as long as the pager is +** open so it is safe to access without the BtShared mutex. +*/ +const char *sqlite3BtreeGetFilename(Btree *p){ + assert( p->pBt->pPager!=0 ); + return sqlite3PagerFilename(p->pBt->pPager); +} + +/* +** Return the pathname of the journal file for this database. The return +** value of this routine is the same regardless of whether the journal file +** has been created or not. +** +** The pager journal filename is invariant as long as the pager is +** open so it is safe to access without the BtShared mutex. +*/ +const char *sqlite3BtreeGetJournalname(Btree *p){ + assert( p->pBt->pPager!=0 ); + return sqlite3PagerJournalname(p->pBt->pPager); +} + +/* +** Return non-zero if a transaction is active. +*/ +int sqlite3BtreeIsInTrans(Btree *p){ + assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); + return (p && (p->inTrans==TRANS_WRITE)); +} + +#ifndef SQLITE_OMIT_WAL +/* +** Run a checkpoint on the Btree passed as the first argument. +** +** Return SQLITE_LOCKED if this or any other connection has an open +** transaction on the shared-cache the argument Btree is connected to. +** +** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. +*/ +int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ + int rc = SQLITE_OK; + if( p ){ + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); + if( pBt->inTransaction!=TRANS_NONE ){ + rc = SQLITE_LOCKED; + }else{ + rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt); + } + sqlite3BtreeLeave(p); + } + return rc; +} +#endif + +/* +** Return non-zero if a read (or write) transaction is active. +*/ +int sqlite3BtreeIsInReadTrans(Btree *p){ + assert( p ); + assert( sqlite3_mutex_held(p->db->mutex) ); + return p->inTrans!=TRANS_NONE; +} + +int sqlite3BtreeIsInBackup(Btree *p){ + assert( p ); + assert( sqlite3_mutex_held(p->db->mutex) ); + return p->nBackup!=0; +} + +/* +** This function returns a pointer to a blob of memory associated with +** a single shared-btree. The memory is used by client code for its own +** purposes (for example, to store a high-level schema associated with +** the shared-btree). The btree layer manages reference counting issues. +** +** The first time this is called on a shared-btree, nBytes bytes of memory +** are allocated, zeroed, and returned to the caller. For each subsequent +** call the nBytes parameter is ignored and a pointer to the same blob +** of memory returned. +** +** If the nBytes parameter is 0 and the blob of memory has not yet been +** allocated, a null pointer is returned. If the blob has already been +** allocated, it is returned as normal. +** +** Just before the shared-btree is closed, the function passed as the +** xFree argument when the memory allocation was made is invoked on the +** blob of allocated memory. The xFree function should not call sqlite3_free() +** on the memory, the btree layer does that. +*/ +void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); + if( !pBt->pSchema && nBytes ){ + pBt->pSchema = sqlite3DbMallocZero(0, nBytes); + pBt->xFreeSchema = xFree; + } + sqlite3BtreeLeave(p); + return pBt->pSchema; +} + +/* +** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared +** btree as the argument handle holds an exclusive lock on the +** sqlite_master table. Otherwise SQLITE_OK. +*/ +int sqlite3BtreeSchemaLocked(Btree *p){ + int rc; + assert( sqlite3_mutex_held(p->db->mutex) ); + sqlite3BtreeEnter(p); + rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); + assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); + sqlite3BtreeLeave(p); + return rc; +} + + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** Obtain a lock on the table whose root page is iTab. The +** lock is a write lock if isWritelock is true or a read lock +** if it is false. +*/ +int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ + int rc = SQLITE_OK; + assert( p->inTrans!=TRANS_NONE ); + if( p->sharable ){ + u8 lockType = READ_LOCK + isWriteLock; + assert( READ_LOCK+1==WRITE_LOCK ); + assert( isWriteLock==0 || isWriteLock==1 ); + + sqlite3BtreeEnter(p); + rc = querySharedCacheTableLock(p, iTab, lockType); + if( rc==SQLITE_OK ){ + rc = setSharedCacheTableLock(p, iTab, lockType); + } + sqlite3BtreeLeave(p); + } + return rc; +} +#endif + +#ifndef SQLITE_OMIT_INCRBLOB +/* +** Argument pCsr must be a cursor opened for writing on an +** INTKEY table currently pointing at a valid table entry. +** This function modifies the data stored as part of that entry. +** +** Only the data content may only be modified, it is not possible to +** change the length of the data stored. If this function is called with +** parameters that attempt to write past the end of the existing data, +** no modifications are made and SQLITE_CORRUPT is returned. +*/ +int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ + int rc; + assert( cursorHoldsMutex(pCsr) ); + assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); + assert( pCsr->isIncrblobHandle ); + + rc = restoreCursorPosition(pCsr); + if( rc!=SQLITE_OK ){ + return rc; + } + assert( pCsr->eState!=CURSOR_REQUIRESEEK ); + if( pCsr->eState!=CURSOR_VALID ){ + return SQLITE_ABORT; + } + + /* Check some assumptions: + ** (a) the cursor is open for writing, + ** (b) there is a read/write transaction open, + ** (c) the connection holds a write-lock on the table (if required), + ** (d) there are no conflicting read-locks, and + ** (e) the cursor points at a valid row of an intKey table. + */ + if( !pCsr->wrFlag ){ + return SQLITE_READONLY; + } + assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE ); + assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); + assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); + assert( pCsr->apPage[pCsr->iPage]->intKey ); + + return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); +} + +/* +** Set a flag on this cursor to cache the locations of pages from the +** overflow list for the current row. This is used by cursors opened +** for incremental blob IO only. +** +** This function sets a flag only. The actual page location cache +** (stored in BtCursor.aOverflow[]) is allocated and used by function +** accessPayload() (the worker function for sqlite3BtreeData() and +** sqlite3BtreePutData()). +*/ +void sqlite3BtreeCacheOverflow(BtCursor *pCur){ + assert( cursorHoldsMutex(pCur) ); + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + invalidateOverflowCache(pCur); + pCur->isIncrblobHandle = 1; +} +#endif + +/* +** Set both the "read version" (single byte at byte offset 18) and +** "write version" (single byte at byte offset 19) fields in the database +** header to iVersion. +*/ +int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ + BtShared *pBt = pBtree->pBt; + int rc; /* Return code */ + + assert( iVersion==1 || iVersion==2 ); + + /* If setting the version fields to 1, do not automatically open the + ** WAL connection, even if the version fields are currently set to 2. + */ + pBt->doNotUseWAL = (u8)(iVersion==1); + + rc = sqlite3BtreeBeginTrans(pBtree, 0); + if( rc==SQLITE_OK ){ + u8 *aData = pBt->pPage1->aData; + if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ + rc = sqlite3BtreeBeginTrans(pBtree, 2); + if( rc==SQLITE_OK ){ + rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); + if( rc==SQLITE_OK ){ + aData[18] = (u8)iVersion; + aData[19] = (u8)iVersion; + } + } + } + } + + pBt->doNotUseWAL = 0; + return rc; +} diff --git a/src/btree.h b/src/btree.h new file mode 100644 index 0000000..9e3a73b --- /dev/null +++ b/src/btree.h @@ -0,0 +1,241 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite B-Tree file +** subsystem. See comments in the source code for a detailed description +** of what each interface routine does. +*/ +#ifndef _BTREE_H_ +#define _BTREE_H_ + +/* TODO: This definition is just included so other modules compile. It +** needs to be revisited. +*/ +#define SQLITE_N_BTREE_META 10 + +/* +** If defined as non-zero, auto-vacuum is enabled by default. Otherwise +** it must be turned on for each database using "PRAGMA auto_vacuum = 1". +*/ +#ifndef SQLITE_DEFAULT_AUTOVACUUM + #define SQLITE_DEFAULT_AUTOVACUUM 0 +#endif + +#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */ +#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */ +#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */ + +/* +** Forward declarations of structure +*/ +typedef struct Btree Btree; +typedef struct BtCursor BtCursor; +typedef struct BtShared BtShared; + + +int sqlite3BtreeOpen( + sqlite3_vfs *pVfs, /* VFS to use with this b-tree */ + const char *zFilename, /* Name of database file to open */ + sqlite3 *db, /* Associated database connection */ + Btree **ppBtree, /* Return open Btree* here */ + int flags, /* Flags */ + int vfsFlags /* Flags passed through to VFS open */ +); + +/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the +** following values. +** +** NOTE: These values must match the corresponding PAGER_ values in +** pager.h. +*/ +#define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */ +#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */ +#define BTREE_MEMORY 4 /* This is an in-memory DB */ +#define BTREE_SINGLE 8 /* The file contains at most 1 b-tree */ +#define BTREE_UNORDERED 16 /* Use of a hash implementation is OK */ + +int sqlite3BtreeClose(Btree*); +int sqlite3BtreeSetCacheSize(Btree*,int); +int sqlite3BtreeSetSafetyLevel(Btree*,int,int,int); +int sqlite3BtreeSyncDisabled(Btree*); +int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix); +int sqlite3BtreeGetPageSize(Btree*); +int sqlite3BtreeMaxPageCount(Btree*,int); +u32 sqlite3BtreeLastPage(Btree*); +int sqlite3BtreeSecureDelete(Btree*,int); +int sqlite3BtreeGetReserve(Btree*); +int sqlite3BtreeSetAutoVacuum(Btree *, int); +int sqlite3BtreeGetAutoVacuum(Btree *); +int sqlite3BtreeBeginTrans(Btree*,int); +int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); +int sqlite3BtreeCommitPhaseTwo(Btree*, int); +int sqlite3BtreeCommit(Btree*); +int sqlite3BtreeRollback(Btree*); +int sqlite3BtreeBeginStmt(Btree*,int); +int sqlite3BtreeCreateTable(Btree*, int*, int flags); +int sqlite3BtreeIsInTrans(Btree*); +int sqlite3BtreeIsInReadTrans(Btree*); +int sqlite3BtreeIsInBackup(Btree*); +void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); +int sqlite3BtreeSchemaLocked(Btree *pBtree); +int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock); +int sqlite3BtreeSavepoint(Btree *, int, int); + +const char *sqlite3BtreeGetFilename(Btree *); +const char *sqlite3BtreeGetJournalname(Btree *); +int sqlite3BtreeCopyFile(Btree *, Btree *); + +int sqlite3BtreeIncrVacuum(Btree *); + +/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR +** of the flags shown below. +** +** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set. +** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data +** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With +** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored +** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL +** indices.) +*/ +#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ +#define BTREE_BLOBKEY 2 /* Table has keys only - no data */ + +int sqlite3BtreeDropTable(Btree*, int, int*); +int sqlite3BtreeClearTable(Btree*, int, int*); +void sqlite3BtreeTripAllCursors(Btree*, int); + +void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue); +int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); + +/* +** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta +** should be one of the following values. The integer values are assigned +** to constants so that the offset of the corresponding field in an +** SQLite database header may be found using the following formula: +** +** offset = 36 + (idx * 4) +** +** For example, the free-page-count field is located at byte offset 36 of +** the database file header. The incr-vacuum-flag field is located at +** byte offset 64 (== 36+4*7). +*/ +#define BTREE_FREE_PAGE_COUNT 0 +#define BTREE_SCHEMA_VERSION 1 +#define BTREE_FILE_FORMAT 2 +#define BTREE_DEFAULT_CACHE_SIZE 3 +#define BTREE_LARGEST_ROOT_PAGE 4 +#define BTREE_TEXT_ENCODING 5 +#define BTREE_USER_VERSION 6 +#define BTREE_INCR_VACUUM 7 + +int sqlite3BtreeCursor( + Btree*, /* BTree containing table to open */ + int iTable, /* Index of root page */ + int wrFlag, /* 1 for writing. 0 for read-only */ + struct KeyInfo*, /* First argument to compare function */ + BtCursor *pCursor /* Space to write cursor structure */ +); +int sqlite3BtreeCursorSize(void); +void sqlite3BtreeCursorZero(BtCursor*); + +int sqlite3BtreeCloseCursor(BtCursor*); +int sqlite3BtreeMovetoUnpacked( + BtCursor*, + UnpackedRecord *pUnKey, + i64 intKey, + int bias, + int *pRes +); +int sqlite3BtreeCursorHasMoved(BtCursor*, int*); +int sqlite3BtreeDelete(BtCursor*); +int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey, + const void *pData, int nData, + int nZero, int bias, int seekResult); +int sqlite3BtreeFirst(BtCursor*, int *pRes); +int sqlite3BtreeLast(BtCursor*, int *pRes); +int sqlite3BtreeNext(BtCursor*, int *pRes); +int sqlite3BtreeEof(BtCursor*); +int sqlite3BtreePrevious(BtCursor*, int *pRes); +int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); +int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); +const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt); +const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt); +int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); +int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); +void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64); +sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*); + +char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); +struct Pager *sqlite3BtreePager(Btree*); + +int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); +void sqlite3BtreeCacheOverflow(BtCursor *); +void sqlite3BtreeClearCursor(BtCursor *); + +int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); + +#ifndef NDEBUG +int sqlite3BtreeCursorIsValid(BtCursor*); +#endif + +#ifndef SQLITE_OMIT_BTREECOUNT +int sqlite3BtreeCount(BtCursor *, i64 *); +#endif + +#ifdef SQLITE_TEST +int sqlite3BtreeCursorInfo(BtCursor*, int*, int); +void sqlite3BtreeCursorList(Btree*); +#endif + +#ifndef SQLITE_OMIT_WAL + int sqlite3BtreeCheckpoint(Btree*, int, int *, int *); +#endif + +/* +** If we are not using shared cache, then there is no need to +** use mutexes to access the BtShared structures. So make the +** Enter and Leave procedures no-ops. +*/ +#ifndef SQLITE_OMIT_SHARED_CACHE + void sqlite3BtreeEnter(Btree*); + void sqlite3BtreeEnterAll(sqlite3*); +#else +# define sqlite3BtreeEnter(X) +# define sqlite3BtreeEnterAll(X) +#endif + +#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE + int sqlite3BtreeSharable(Btree*); + void sqlite3BtreeLeave(Btree*); + void sqlite3BtreeEnterCursor(BtCursor*); + void sqlite3BtreeLeaveCursor(BtCursor*); + void sqlite3BtreeLeaveAll(sqlite3*); +#ifndef NDEBUG + /* These routines are used inside assert() statements only. */ + int sqlite3BtreeHoldsMutex(Btree*); + int sqlite3BtreeHoldsAllMutexes(sqlite3*); + int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*); +#endif +#else + +# define sqlite3BtreeSharable(X) 0 +# define sqlite3BtreeLeave(X) +# define sqlite3BtreeEnterCursor(X) +# define sqlite3BtreeLeaveCursor(X) +# define sqlite3BtreeLeaveAll(X) + +# define sqlite3BtreeHoldsMutex(X) 1 +# define sqlite3BtreeHoldsAllMutexes(X) 1 +# define sqlite3SchemaMutexHeld(X,Y,Z) 1 +#endif + + +#endif /* _BTREE_H_ */ diff --git a/src/btreeInt.h b/src/btreeInt.h new file mode 100644 index 0000000..55469cf --- /dev/null +++ b/src/btreeInt.h @@ -0,0 +1,643 @@ +/* +** 2004 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file implements a external (disk-based) database using BTrees. +** For a detailed discussion of BTrees, refer to +** +** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: +** "Sorting And Searching", pages 473-480. Addison-Wesley +** Publishing Company, Reading, Massachusetts. +** +** The basic idea is that each page of the file contains N database +** entries and N+1 pointers to subpages. +** +** ---------------------------------------------------------------- +** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) | +** ---------------------------------------------------------------- +** +** All of the keys on the page that Ptr(0) points to have values less +** than Key(0). All of the keys on page Ptr(1) and its subpages have +** values greater than Key(0) and less than Key(1). All of the keys +** on Ptr(N) and its subpages have values greater than Key(N-1). And +** so forth. +** +** Finding a particular key requires reading O(log(M)) pages from the +** disk where M is the number of entries in the tree. +** +** In this implementation, a single file can hold one or more separate +** BTrees. Each BTree is identified by the index of its root page. The +** key and data for any entry are combined to form the "payload". A +** fixed amount of payload can be carried directly on the database +** page. If the payload is larger than the preset amount then surplus +** bytes are stored on overflow pages. The payload for an entry +** and the preceding pointer are combined to form a "Cell". Each +** page has a small header which contains the Ptr(N) pointer and other +** information such as the size of key and data. +** +** FORMAT DETAILS +** +** The file is divided into pages. The first page is called page 1, +** the second is page 2, and so forth. A page number of zero indicates +** "no such page". The page size can be any power of 2 between 512 and 65536. +** Each page can be either a btree page, a freelist page, an overflow +** page, or a pointer-map page. +** +** The first page is always a btree page. The first 100 bytes of the first +** page contain a special header (the "file header") that describes the file. +** The format of the file header is as follows: +** +** OFFSET SIZE DESCRIPTION +** 0 16 Header string: "SQLite format 3\000" +** 16 2 Page size in bytes. +** 18 1 File format write version +** 19 1 File format read version +** 20 1 Bytes of unused space at the end of each page +** 21 1 Max embedded payload fraction +** 22 1 Min embedded payload fraction +** 23 1 Min leaf payload fraction +** 24 4 File change counter +** 28 4 Reserved for future use +** 32 4 First freelist page +** 36 4 Number of freelist pages in the file +** 40 60 15 4-byte meta values passed to higher layers +** +** 40 4 Schema cookie +** 44 4 File format of schema layer +** 48 4 Size of page cache +** 52 4 Largest root-page (auto/incr_vacuum) +** 56 4 1=UTF-8 2=UTF16le 3=UTF16be +** 60 4 User version +** 64 4 Incremental vacuum mode +** 68 4 unused +** 72 4 unused +** 76 4 unused +** +** All of the integer values are big-endian (most significant byte first). +** +** The file change counter is incremented when the database is changed +** This counter allows other processes to know when the file has changed +** and thus when they need to flush their cache. +** +** The max embedded payload fraction is the amount of the total usable +** space in a page that can be consumed by a single cell for standard +** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default +** is to limit the maximum cell size so that at least 4 cells will fit +** on one page. Thus the default max embedded payload fraction is 64. +** +** If the payload for a cell is larger than the max payload, then extra +** payload is spilled to overflow pages. Once an overflow page is allocated, +** as many bytes as possible are moved into the overflow pages without letting +** the cell size drop below the min embedded payload fraction. +** +** The min leaf payload fraction is like the min embedded payload fraction +** except that it applies to leaf nodes in a LEAFDATA tree. The maximum +** payload fraction for a LEAFDATA tree is always 100% (or 255) and it +** not specified in the header. +** +** Each btree pages is divided into three sections: The header, the +** cell pointer array, and the cell content area. Page 1 also has a 100-byte +** file header that occurs before the page header. +** +** |----------------| +** | file header | 100 bytes. Page 1 only. +** |----------------| +** | page header | 8 bytes for leaves. 12 bytes for interior nodes +** |----------------| +** | cell pointer | | 2 bytes per cell. Sorted order. +** | array | | Grows downward +** | | v +** |----------------| +** | unallocated | +** | space | +** |----------------| ^ Grows upwards +** | cell content | | Arbitrary order interspersed with freeblocks. +** | area | | and free space fragments. +** |----------------| +** +** The page headers looks like this: +** +** OFFSET SIZE DESCRIPTION +** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf +** 1 2 byte offset to the first freeblock +** 3 2 number of cells on this page +** 5 2 first byte of the cell content area +** 7 1 number of fragmented free bytes +** 8 4 Right child (the Ptr(N) value). Omitted on leaves. +** +** The flags define the format of this btree page. The leaf flag means that +** this page has no children. The zerodata flag means that this page carries +** only keys and no data. The intkey flag means that the key is a integer +** which is stored in the key size entry of the cell header rather than in +** the payload area. +** +** The cell pointer array begins on the first byte after the page header. +** The cell pointer array contains zero or more 2-byte numbers which are +** offsets from the beginning of the page to the cell content in the cell +** content area. The cell pointers occur in sorted order. The system strives +** to keep free space after the last cell pointer so that new cells can +** be easily added without having to defragment the page. +** +** Cell content is stored at the very end of the page and grows toward the +** beginning of the page. +** +** Unused space within the cell content area is collected into a linked list of +** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset +** to the first freeblock is given in the header. Freeblocks occur in +** increasing order. Because a freeblock must be at least 4 bytes in size, +** any group of 3 or fewer unused bytes in the cell content area cannot +** exist on the freeblock chain. A group of 3 or fewer free bytes is called +** a fragment. The total number of bytes in all fragments is recorded. +** in the page header at offset 7. +** +** SIZE DESCRIPTION +** 2 Byte offset of the next freeblock +** 2 Bytes in this freeblock +** +** Cells are of variable length. Cells are stored in the cell content area at +** the end of the page. Pointers to the cells are in the cell pointer array +** that immediately follows the page header. Cells is not necessarily +** contiguous or in order, but cell pointers are contiguous and in order. +** +** Cell content makes use of variable length integers. A variable +** length integer is 1 to 9 bytes where the lower 7 bits of each +** byte are used. The integer consists of all bytes that have bit 8 set and +** the first byte with bit 8 clear. The most significant byte of the integer +** appears first. A variable-length integer may not be more than 9 bytes long. +** As a special case, all 8 bytes of the 9th byte are used as data. This +** allows a 64-bit integer to be encoded in 9 bytes. +** +** 0x00 becomes 0x00000000 +** 0x7f becomes 0x0000007f +** 0x81 0x00 becomes 0x00000080 +** 0x82 0x00 becomes 0x00000100 +** 0x80 0x7f becomes 0x0000007f +** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 +** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 +** +** Variable length integers are used for rowids and to hold the number of +** bytes of key and data in a btree cell. +** +** The content of a cell looks like this: +** +** SIZE DESCRIPTION +** 4 Page number of the left child. Omitted if leaf flag is set. +** var Number of bytes of data. Omitted if the zerodata flag is set. +** var Number of bytes of key. Or the key itself if intkey flag is set. +** * Payload +** 4 First page of the overflow chain. Omitted if no overflow +** +** Overflow pages form a linked list. Each page except the last is completely +** filled with data (pagesize - 4 bytes). The last page can have as little +** as 1 byte of data. +** +** SIZE DESCRIPTION +** 4 Page number of next overflow page +** * Data +** +** Freelist pages come in two subtypes: trunk pages and leaf pages. The +** file header points to the first in a linked list of trunk page. Each trunk +** page points to multiple leaf pages. The content of a leaf page is +** unspecified. A trunk page looks like this: +** +** SIZE DESCRIPTION +** 4 Page number of next trunk page +** 4 Number of leaf pointers on this page +** * zero or more pages numbers of leaves +*/ +#include "sqliteInt.h" + + +/* The following value is the maximum cell size assuming a maximum page +** size give above. +*/ +#define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8)) + +/* The maximum number of cells on a single page of the database. This +** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself +** plus 2 bytes for the index to the cell in the page header). Such +** small cells will be rare, but they are possible. +*/ +#define MX_CELL(pBt) ((pBt->pageSize-8)/6) + +/* Forward declarations */ +typedef struct MemPage MemPage; +typedef struct BtLock BtLock; + +/* +** This is a magic string that appears at the beginning of every +** SQLite database in order to identify the file as a real database. +** +** You can change this value at compile-time by specifying a +** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The +** header must be exactly 16 bytes including the zero-terminator so +** the string itself should be 15 characters long. If you change +** the header, then your custom library will not be able to read +** databases generated by the standard tools and the standard tools +** will not be able to read databases created by your custom library. +*/ +#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */ +# define SQLITE_FILE_HEADER "SQLite format 3" +#endif + +/* +** Page type flags. An ORed combination of these flags appear as the +** first byte of on-disk image of every BTree page. +*/ +#define PTF_INTKEY 0x01 +#define PTF_ZERODATA 0x02 +#define PTF_LEAFDATA 0x04 +#define PTF_LEAF 0x08 + +/* +** As each page of the file is loaded into memory, an instance of the following +** structure is appended and initialized to zero. This structure stores +** information about the page that is decoded from the raw file page. +** +** The pParent field points back to the parent page. This allows us to +** walk up the BTree from any leaf to the root. Care must be taken to +** unref() the parent page pointer when this page is no longer referenced. +** The pageDestructor() routine handles that chore. +** +** Access to all fields of this structure is controlled by the mutex +** stored in MemPage.pBt->mutex. +*/ +struct MemPage { + u8 isInit; /* True if previously initialized. MUST BE FIRST! */ + u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ + u8 intKey; /* True if intkey flag is set */ + u8 leaf; /* True if leaf flag is set */ + u8 hasData; /* True if this page stores data */ + u8 hdrOffset; /* 100 for page 1. 0 otherwise */ + u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ + u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */ + u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */ + u16 cellOffset; /* Index in aData of first cell pointer */ + u16 nFree; /* Number of free bytes on the page */ + u16 nCell; /* Number of cells on this page, local and ovfl */ + u16 maskPage; /* Mask for page offset */ + struct _OvflCell { /* Cells that will not fit on aData[] */ + u8 *pCell; /* Pointers to the body of the overflow cell */ + u16 idx; /* Insert this cell before idx-th non-overflow cell */ + } aOvfl[5]; + BtShared *pBt; /* Pointer to BtShared that this page is part of */ + u8 *aData; /* Pointer to disk image of the page data */ + DbPage *pDbPage; /* Pager page handle */ + Pgno pgno; /* Page number for this page */ +}; + +/* +** The in-memory image of a disk page has the auxiliary information appended +** to the end. EXTRA_SIZE is the number of bytes of space needed to hold +** that extra information. +*/ +#define EXTRA_SIZE sizeof(MemPage) + +/* +** A linked list of the following structures is stored at BtShared.pLock. +** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor +** is opened on the table with root page BtShared.iTable. Locks are removed +** from this list when a transaction is committed or rolled back, or when +** a btree handle is closed. +*/ +struct BtLock { + Btree *pBtree; /* Btree handle holding this lock */ + Pgno iTable; /* Root page of table */ + u8 eLock; /* READ_LOCK or WRITE_LOCK */ + BtLock *pNext; /* Next in BtShared.pLock list */ +}; + +/* Candidate values for BtLock.eLock */ +#define READ_LOCK 1 +#define WRITE_LOCK 2 + +/* A Btree handle +** +** A database connection contains a pointer to an instance of +** this object for every database file that it has open. This structure +** is opaque to the database connection. The database connection cannot +** see the internals of this structure and only deals with pointers to +** this structure. +** +** For some database files, the same underlying database cache might be +** shared between multiple connections. In that case, each connection +** has it own instance of this object. But each instance of this object +** points to the same BtShared object. The database cache and the +** schema associated with the database file are all contained within +** the BtShared object. +** +** All fields in this structure are accessed under sqlite3.mutex. +** The pBt pointer itself may not be changed while there exists cursors +** in the referenced BtShared that point back to this Btree since those +** cursors have to go through this Btree to find their BtShared and +** they often do so without holding sqlite3.mutex. +*/ +struct Btree { + sqlite3 *db; /* The database connection holding this btree */ + BtShared *pBt; /* Sharable content of this btree */ + u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ + u8 sharable; /* True if we can share pBt with another db */ + u8 locked; /* True if db currently has pBt locked */ + int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */ + int nBackup; /* Number of backup operations reading this btree */ + Btree *pNext; /* List of other sharable Btrees from the same db */ + Btree *pPrev; /* Back pointer of the same list */ +#ifndef SQLITE_OMIT_SHARED_CACHE + BtLock lock; /* Object used to lock page 1 */ +#endif +}; + +/* +** Btree.inTrans may take one of the following values. +** +** If the shared-data extension is enabled, there may be multiple users +** of the Btree structure. At most one of these may open a write transaction, +** but any number may have active read transactions. +*/ +#define TRANS_NONE 0 +#define TRANS_READ 1 +#define TRANS_WRITE 2 + +/* +** An instance of this object represents a single database file. +** +** A single database file can be in use as the same time by two +** or more database connections. When two or more connections are +** sharing the same database file, each connection has it own +** private Btree object for the file and each of those Btrees points +** to this one BtShared object. BtShared.nRef is the number of +** connections currently sharing this database file. +** +** Fields in this structure are accessed under the BtShared.mutex +** mutex, except for nRef and pNext which are accessed under the +** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field +** may not be modified once it is initially set as long as nRef>0. +** The pSchema field may be set once under BtShared.mutex and +** thereafter is unchanged as long as nRef>0. +** +** isPending: +** +** If a BtShared client fails to obtain a write-lock on a database +** table (because there exists one or more read-locks on the table), +** the shared-cache enters 'pending-lock' state and isPending is +** set to true. +** +** The shared-cache leaves the 'pending lock' state when either of +** the following occur: +** +** 1) The current writer (BtShared.pWriter) concludes its transaction, OR +** 2) The number of locks held by other connections drops to zero. +** +** while in the 'pending-lock' state, no connection may start a new +** transaction. +** +** This feature is included to help prevent writer-starvation. +*/ +struct BtShared { + Pager *pPager; /* The page cache */ + sqlite3 *db; /* Database connection currently using this Btree */ + BtCursor *pCursor; /* A list of all open cursors */ + MemPage *pPage1; /* First page of the database */ + u8 readOnly; /* True if the underlying file is readonly */ + u8 pageSizeFixed; /* True if the page size can no longer be changed */ + u8 secureDelete; /* True if secure_delete is enabled */ + u8 initiallyEmpty; /* Database is empty at start of transaction */ + u8 openFlags; /* Flags to sqlite3BtreeOpen() */ +#ifndef SQLITE_OMIT_AUTOVACUUM + u8 autoVacuum; /* True if auto-vacuum is enabled */ + u8 incrVacuum; /* True if incr-vacuum is enabled */ +#endif + u8 inTransaction; /* Transaction state */ + u8 doNotUseWAL; /* If true, do not open write-ahead-log file */ + u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */ + u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */ + u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */ + u16 minLeaf; /* Minimum local payload in a LEAFDATA table */ + u32 pageSize; /* Total number of bytes on a page */ + u32 usableSize; /* Number of usable bytes on each page */ + int nTransaction; /* Number of open transactions (read + write) */ + u32 nPage; /* Number of pages in the database */ + void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ + void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ + sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */ + Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */ +#ifndef SQLITE_OMIT_SHARED_CACHE + int nRef; /* Number of references to this structure */ + BtShared *pNext; /* Next on a list of sharable BtShared structs */ + BtLock *pLock; /* List of locks held on this shared-btree struct */ + Btree *pWriter; /* Btree with currently open write transaction */ + u8 isExclusive; /* True if pWriter has an EXCLUSIVE lock on the db */ + u8 isPending; /* If waiting for read-locks to clear */ +#endif + u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */ +}; + +/* +** An instance of the following structure is used to hold information +** about a cell. The parseCellPtr() function fills in this structure +** based on information extract from the raw disk page. +*/ +typedef struct CellInfo CellInfo; +struct CellInfo { + i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ + u8 *pCell; /* Pointer to the start of cell content */ + u32 nData; /* Number of bytes of data */ + u32 nPayload; /* Total amount of payload */ + u16 nHeader; /* Size of the cell content header in bytes */ + u16 nLocal; /* Amount of payload held locally */ + u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ + u16 nSize; /* Size of the cell content on the main b-tree page */ +}; + +/* +** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than +** this will be declared corrupt. This value is calculated based on a +** maximum database size of 2^31 pages a minimum fanout of 2 for a +** root-node and 3 for all other internal nodes. +** +** If a tree that appears to be taller than this is encountered, it is +** assumed that the database is corrupt. +*/ +#define BTCURSOR_MAX_DEPTH 20 + +/* +** A cursor is a pointer to a particular entry within a particular +** b-tree within a database file. +** +** The entry is identified by its MemPage and the index in +** MemPage.aCell[] of the entry. +** +** A single database file can shared by two more database connections, +** but cursors cannot be shared. Each cursor is associated with a +** particular database connection identified BtCursor.pBtree.db. +** +** Fields in this structure are accessed under the BtShared.mutex +** found at self->pBt->mutex. +*/ +struct BtCursor { + Btree *pBtree; /* The Btree to which this cursor belongs */ + BtShared *pBt; /* The BtShared this cursor points to */ + BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ + struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ + Pgno pgnoRoot; /* The root page of this tree */ + sqlite3_int64 cachedRowid; /* Next rowid cache. 0 means not valid */ + CellInfo info; /* A parse of the cell we are pointing at */ + i64 nKey; /* Size of pKey, or last integer key */ + void *pKey; /* Saved key that was cursor's last known position */ + int skipNext; /* Prev() is noop if negative. Next() is noop if positive */ + u8 wrFlag; /* True if writable */ + u8 atLast; /* Cursor pointing to the last entry */ + u8 validNKey; /* True if info.nKey is valid */ + u8 eState; /* One of the CURSOR_XXX constants (see below) */ +#ifndef SQLITE_OMIT_INCRBLOB + Pgno *aOverflow; /* Cache of overflow page locations */ + u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */ +#endif + i16 iPage; /* Index of current page in apPage */ + u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ + MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ +}; + +/* +** Potential values for BtCursor.eState. +** +** CURSOR_VALID: +** Cursor points to a valid entry. getPayload() etc. may be called. +** +** CURSOR_INVALID: +** Cursor does not point to a valid entry. This can happen (for example) +** because the table is empty or because BtreeCursorFirst() has not been +** called. +** +** CURSOR_REQUIRESEEK: +** The table that this cursor was opened on still exists, but has been +** modified since the cursor was last used. The cursor position is saved +** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in +** this state, restoreCursorPosition() can be called to attempt to +** seek the cursor to the saved position. +** +** CURSOR_FAULT: +** A unrecoverable error (an I/O error or a malloc failure) has occurred +** on a different connection that shares the BtShared cache with this +** cursor. The error has left the cache in an inconsistent state. +** Do nothing else with this cursor. Any attempt to use the cursor +** should return the error code stored in BtCursor.skip +*/ +#define CURSOR_INVALID 0 +#define CURSOR_VALID 1 +#define CURSOR_REQUIRESEEK 2 +#define CURSOR_FAULT 3 + +/* +** The database page the PENDING_BYTE occupies. This page is never used. +*/ +# define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt) + +/* +** These macros define the location of the pointer-map entry for a +** database page. The first argument to each is the number of usable +** bytes on each page of the database (often 1024). The second is the +** page number to look up in the pointer map. +** +** PTRMAP_PAGENO returns the database page number of the pointer-map +** page that stores the required pointer. PTRMAP_PTROFFSET returns +** the offset of the requested map entry. +** +** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page, +** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be +** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements +** this test. +*/ +#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno) +#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1)) +#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno)) + +/* +** The pointer map is a lookup table that identifies the parent page for +** each child page in the database file. The parent page is the page that +** contains a pointer to the child. Every page in the database contains +** 0 or 1 parent pages. (In this context 'database page' refers +** to any page that is not part of the pointer map itself.) Each pointer map +** entry consists of a single byte 'type' and a 4 byte parent page number. +** The PTRMAP_XXX identifiers below are the valid types. +** +** The purpose of the pointer map is to facility moving pages from one +** position in the file to another as part of autovacuum. When a page +** is moved, the pointer in its parent must be updated to point to the +** new location. The pointer map is used to locate the parent page quickly. +** +** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not +** used in this case. +** +** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number +** is not used in this case. +** +** PTRMAP_OVERFLOW1: The database page is the first page in a list of +** overflow pages. The page number identifies the page that +** contains the cell with a pointer to this overflow page. +** +** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of +** overflow pages. The page-number identifies the previous +** page in the overflow page list. +** +** PTRMAP_BTREE: The database page is a non-root btree page. The page number +** identifies the parent page in the btree. +*/ +#define PTRMAP_ROOTPAGE 1 +#define PTRMAP_FREEPAGE 2 +#define PTRMAP_OVERFLOW1 3 +#define PTRMAP_OVERFLOW2 4 +#define PTRMAP_BTREE 5 + +/* A bunch of assert() statements to check the transaction state variables +** of handle p (type Btree*) are internally consistent. +*/ +#define btreeIntegrity(p) \ + assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ + assert( p->pBt->inTransaction>=p->inTrans ); + + +/* +** The ISAUTOVACUUM macro is used within balance_nonroot() to determine +** if the database supports auto-vacuum or not. Because it is used +** within an expression that is an argument to another macro +** (sqliteMallocRaw), it is not possible to use conditional compilation. +** So, this macro is defined instead. +*/ +#ifndef SQLITE_OMIT_AUTOVACUUM +#define ISAUTOVACUUM (pBt->autoVacuum) +#else +#define ISAUTOVACUUM 0 +#endif + + +/* +** This structure is passed around through all the sanity checking routines +** in order to keep track of some global state information. +*/ +typedef struct IntegrityCk IntegrityCk; +struct IntegrityCk { + BtShared *pBt; /* The tree being checked out */ + Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ + Pgno nPage; /* Number of pages in the database */ + int *anRef; /* Number of times each page is referenced */ + int mxErr; /* Stop accumulating errors when this reaches zero */ + int nErr; /* Number of messages written to zErrMsg so far */ + int mallocFailed; /* A memory allocation error has occurred */ + StrAccum errMsg; /* Accumulate the error message text here */ +}; + +/* +** Read or write a two- and four-byte big-endian integer values. +*/ +#define get2byte(x) ((x)[0]<<8 | (x)[1]) +#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) +#define get4byte sqlite3Get4byte +#define put4byte sqlite3Put4byte diff --git a/src/build.c b/src/build.c new file mode 100644 index 0000000..e23aab6 --- /dev/null +++ b/src/build.c @@ -0,0 +1,3818 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the SQLite parser +** when syntax rules are reduced. The routines in this file handle the +** following kinds of SQL syntax: +** +** CREATE TABLE +** DROP TABLE +** CREATE INDEX +** DROP INDEX +** creating ID lists +** BEGIN TRANSACTION +** COMMIT +** ROLLBACK +*/ +#include "sqliteInt.h" + +/* +** This routine is called when a new SQL statement is beginning to +** be parsed. Initialize the pParse structure as needed. +*/ +void sqlite3BeginParse(Parse *pParse, int explainFlag){ + pParse->explain = (u8)explainFlag; + pParse->nVar = 0; +} + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** The TableLock structure is only used by the sqlite3TableLock() and +** codeTableLocks() functions. +*/ +struct TableLock { + int iDb; /* The database containing the table to be locked */ + int iTab; /* The root page of the table to be locked */ + u8 isWriteLock; /* True for write lock. False for a read lock */ + const char *zName; /* Name of the table */ +}; + +/* +** Record the fact that we want to lock a table at run-time. +** +** The table to be locked has root page iTab and is found in database iDb. +** A read or a write lock can be taken depending on isWritelock. +** +** This routine just records the fact that the lock is desired. The +** code to make the lock occur is generated by a later call to +** codeTableLocks() which occurs during sqlite3FinishCoding(). +*/ +void sqlite3TableLock( + Parse *pParse, /* Parsing context */ + int iDb, /* Index of the database containing the table to lock */ + int iTab, /* Root page number of the table to be locked */ + u8 isWriteLock, /* True for a write lock */ + const char *zName /* Name of the table to be locked */ +){ + Parse *pToplevel = sqlite3ParseToplevel(pParse); + int i; + int nBytes; + TableLock *p; + assert( iDb>=0 ); + + for(i=0; inTableLock; i++){ + p = &pToplevel->aTableLock[i]; + if( p->iDb==iDb && p->iTab==iTab ){ + p->isWriteLock = (p->isWriteLock || isWriteLock); + return; + } + } + + nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); + pToplevel->aTableLock = + sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); + if( pToplevel->aTableLock ){ + p = &pToplevel->aTableLock[pToplevel->nTableLock++]; + p->iDb = iDb; + p->iTab = iTab; + p->isWriteLock = isWriteLock; + p->zName = zName; + }else{ + pToplevel->nTableLock = 0; + pToplevel->db->mallocFailed = 1; + } +} + +/* +** Code an OP_TableLock instruction for each table locked by the +** statement (configured by calls to sqlite3TableLock()). +*/ +static void codeTableLocks(Parse *pParse){ + int i; + Vdbe *pVdbe; + + pVdbe = sqlite3GetVdbe(pParse); + assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ + + for(i=0; inTableLock; i++){ + TableLock *p = &pParse->aTableLock[i]; + int p1 = p->iDb; + sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, + p->zName, P4_STATIC); + } +} +#else + #define codeTableLocks(x) +#endif + +/* +** This routine is called after a single SQL statement has been +** parsed and a VDBE program to execute that statement has been +** prepared. This routine puts the finishing touches on the +** VDBE program and resets the pParse structure for the next +** parse. +** +** Note that if an error occurred, it might be the case that +** no VDBE code was generated. +*/ +void sqlite3FinishCoding(Parse *pParse){ + sqlite3 *db; + Vdbe *v; + + db = pParse->db; + if( db->mallocFailed ) return; + if( pParse->nested ) return; + if( pParse->nErr ) return; + + /* Begin by generating some termination code at the end of the + ** vdbe program + */ + v = sqlite3GetVdbe(pParse); + assert( !pParse->isMultiWrite + || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); + if( v ){ + sqlite3VdbeAddOp0(v, OP_Halt); + + /* The cookie mask contains one bit for each database file open. + ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are + ** set for each database that is used. Generate code to start a + ** transaction on each used database and to verify the schema cookie + ** on each used database. + */ + if( pParse->cookieGoto>0 ){ + yDbMask mask; + int iDb; + sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); + for(iDb=0, mask=1; iDbnDb; mask<<=1, iDb++){ + if( (mask & pParse->cookieMask)==0 ) continue; + sqlite3VdbeUsesBtree(v, iDb); + sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); + if( db->init.busy==0 ){ + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + sqlite3VdbeAddOp3(v, OP_VerifyCookie, + iDb, pParse->cookieValue[iDb], + db->aDb[iDb].pSchema->iGeneration); + } + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + { + int i; + for(i=0; inVtabLock; i++){ + char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); + sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); + } + pParse->nVtabLock = 0; + } +#endif + + /* Once all the cookies have been verified and transactions opened, + ** obtain the required table-locks. This is a no-op unless the + ** shared-cache feature is enabled. + */ + codeTableLocks(pParse); + + /* Initialize any AUTOINCREMENT data structures required. + */ + sqlite3AutoincrementBegin(pParse); + + /* Finally, jump back to the beginning of the executable code. */ + sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); + } + } + + + /* Get the VDBE program ready for execution + */ + if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ +#ifdef SQLITE_DEBUG + FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; + sqlite3VdbeTrace(v, trace); +#endif + assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ + /* A minimum of one cursor is required if autoincrement is used + * See ticket [a696379c1f08866] */ + if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; + sqlite3VdbeMakeReady(v, pParse); + pParse->rc = SQLITE_DONE; + pParse->colNamesSet = 0; + }else{ + pParse->rc = SQLITE_ERROR; + } + pParse->nTab = 0; + pParse->nMem = 0; + pParse->nSet = 0; + pParse->nVar = 0; + pParse->cookieMask = 0; + pParse->cookieGoto = 0; +} + +/* +** Run the parser and code generator recursively in order to generate +** code for the SQL statement given onto the end of the pParse context +** currently under construction. When the parser is run recursively +** this way, the final OP_Halt is not appended and other initialization +** and finalization steps are omitted because those are handling by the +** outermost parser. +** +** Not everything is nestable. This facility is designed to permit +** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use +** care if you decide to try to use this routine for some other purposes. +*/ +void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ + va_list ap; + char *zSql; + char *zErrMsg = 0; + sqlite3 *db = pParse->db; +# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) + char saveBuf[SAVE_SZ]; + + if( pParse->nErr ) return; + assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ + va_start(ap, zFormat); + zSql = sqlite3VMPrintf(db, zFormat, ap); + va_end(ap); + if( zSql==0 ){ + return; /* A malloc must have failed */ + } + pParse->nested++; + memcpy(saveBuf, &pParse->nVar, SAVE_SZ); + memset(&pParse->nVar, 0, SAVE_SZ); + sqlite3RunParser(pParse, zSql, &zErrMsg); + sqlite3DbFree(db, zErrMsg); + sqlite3DbFree(db, zSql); + memcpy(&pParse->nVar, saveBuf, SAVE_SZ); + pParse->nested--; +} + +/* +** Locate the in-memory structure that describes a particular database +** table given the name of that table and (optionally) the name of the +** database containing the table. Return NULL if not found. +** +** If zDatabase is 0, all databases are searched for the table and the +** first matching table is returned. (No checking for duplicate table +** names is done.) The search order is TEMP first, then MAIN, then any +** auxiliary databases added using the ATTACH command. +** +** See also sqlite3LocateTable(). +*/ +Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ + Table *p = 0; + int i; + int nName; + assert( zName!=0 ); + nName = sqlite3Strlen30(zName); + /* All mutexes are required for schema access. Make sure we hold them. */ + assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); + for(i=OMIT_TEMPDB; inDb; i++){ + int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ + if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; + assert( sqlite3SchemaMutexHeld(db, j, 0) ); + p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); + if( p ) break; + } + return p; +} + +/* +** Locate the in-memory structure that describes a particular database +** table given the name of that table and (optionally) the name of the +** database containing the table. Return NULL if not found. Also leave an +** error message in pParse->zErrMsg. +** +** The difference between this routine and sqlite3FindTable() is that this +** routine leaves an error message in pParse->zErrMsg where +** sqlite3FindTable() does not. +*/ +Table *sqlite3LocateTable( + Parse *pParse, /* context in which to report errors */ + int isView, /* True if looking for a VIEW rather than a TABLE */ + const char *zName, /* Name of the table we are looking for */ + const char *zDbase /* Name of the database. Might be NULL */ +){ + Table *p; + + /* Read the database schema. If an error occurs, leave an error message + ** and code in pParse and return NULL. */ + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + return 0; + } + + p = sqlite3FindTable(pParse->db, zName, zDbase); + if( p==0 ){ + const char *zMsg = isView ? "no such view" : "no such table"; + if( zDbase ){ + sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); + }else{ + sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); + } + pParse->checkSchema = 1; + } + return p; +} + +/* +** Locate the in-memory structure that describes +** a particular index given the name of that index +** and the name of the database that contains the index. +** Return NULL if not found. +** +** If zDatabase is 0, all databases are searched for the +** table and the first matching index is returned. (No checking +** for duplicate index names is done.) The search order is +** TEMP first, then MAIN, then any auxiliary databases added +** using the ATTACH command. +*/ +Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ + Index *p = 0; + int i; + int nName = sqlite3Strlen30(zName); + /* All mutexes are required for schema access. Make sure we hold them. */ + assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); + for(i=OMIT_TEMPDB; inDb; i++){ + int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ + Schema *pSchema = db->aDb[j].pSchema; + assert( pSchema ); + if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; + assert( sqlite3SchemaMutexHeld(db, j, 0) ); + p = sqlite3HashFind(&pSchema->idxHash, zName, nName); + if( p ) break; + } + return p; +} + +/* +** Reclaim the memory used by an index +*/ +static void freeIndex(sqlite3 *db, Index *p){ +#ifndef SQLITE_OMIT_ANALYZE + sqlite3DeleteIndexSamples(db, p); +#endif + sqlite3DbFree(db, p->zColAff); + sqlite3DbFree(db, p); +} + +/* +** For the index called zIdxName which is found in the database iDb, +** unlike that index from its Table then remove the index from +** the index hash table and free all memory structures associated +** with the index. +*/ +void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ + Index *pIndex; + int len; + Hash *pHash; + + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + pHash = &db->aDb[iDb].pSchema->idxHash; + len = sqlite3Strlen30(zIdxName); + pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); + if( ALWAYS(pIndex) ){ + if( pIndex->pTable->pIndex==pIndex ){ + pIndex->pTable->pIndex = pIndex->pNext; + }else{ + Index *p; + /* Justification of ALWAYS(); The index must be on the list of + ** indices. */ + p = pIndex->pTable->pIndex; + while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } + if( ALWAYS(p && p->pNext==pIndex) ){ + p->pNext = pIndex->pNext; + } + } + freeIndex(db, pIndex); + } + db->flags |= SQLITE_InternChanges; +} + +/* +** Erase all schema information from the in-memory hash tables of +** a single database. This routine is called to reclaim memory +** before the database closes. It is also called during a rollback +** if there were schema changes during the transaction or if a +** schema-cookie mismatch occurs. +** +** If iDb<0 then reset the internal schema tables for all database +** files. If iDb>=0 then reset the internal schema for only the +** single file indicated. +*/ +void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ + int i, j; + assert( iDbnDb ); + + if( iDb>=0 ){ + /* Case 1: Reset the single schema identified by iDb */ + Db *pDb = &db->aDb[iDb]; + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + assert( pDb->pSchema!=0 ); + sqlite3SchemaClear(pDb->pSchema); + + /* If any database other than TEMP is reset, then also reset TEMP + ** since TEMP might be holding triggers that reference tables in the + ** other database. + */ + if( iDb!=1 ){ + pDb = &db->aDb[1]; + assert( pDb->pSchema!=0 ); + sqlite3SchemaClear(pDb->pSchema); + } + return; + } + /* Case 2 (from here to the end): Reset all schemas for all attached + ** databases. */ + assert( iDb<0 ); + sqlite3BtreeEnterAll(db); + for(i=0; inDb; i++){ + Db *pDb = &db->aDb[i]; + if( pDb->pSchema ){ + sqlite3SchemaClear(pDb->pSchema); + } + } + db->flags &= ~SQLITE_InternChanges; + sqlite3VtabUnlockList(db); + sqlite3BtreeLeaveAll(db); + + /* If one or more of the auxiliary database files has been closed, + ** then remove them from the auxiliary database list. We take the + ** opportunity to do this here since we have just deleted all of the + ** schema hash tables and therefore do not have to make any changes + ** to any of those tables. + */ + for(i=j=2; inDb; i++){ + struct Db *pDb = &db->aDb[i]; + if( pDb->pBt==0 ){ + sqlite3DbFree(db, pDb->zName); + pDb->zName = 0; + continue; + } + if( jaDb[j] = db->aDb[i]; + } + j++; + } + memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); + db->nDb = j; + if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ + memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); + sqlite3DbFree(db, db->aDb); + db->aDb = db->aDbStatic; + } +} + +/* +** This routine is called when a commit occurs. +*/ +void sqlite3CommitInternalChanges(sqlite3 *db){ + db->flags &= ~SQLITE_InternChanges; +} + +/* +** Delete memory allocated for the column names of a table or view (the +** Table.aCol[] array). +*/ +static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ + int i; + Column *pCol; + assert( pTable!=0 ); + if( (pCol = pTable->aCol)!=0 ){ + for(i=0; inCol; i++, pCol++){ + sqlite3DbFree(db, pCol->zName); + sqlite3ExprDelete(db, pCol->pDflt); + sqlite3DbFree(db, pCol->zDflt); + sqlite3DbFree(db, pCol->zType); + sqlite3DbFree(db, pCol->zColl); + } + sqlite3DbFree(db, pTable->aCol); + } +} + +/* +** Remove the memory data structures associated with the given +** Table. No changes are made to disk by this routine. +** +** This routine just deletes the data structure. It does not unlink +** the table data structure from the hash table. But it does destroy +** memory structures of the indices and foreign keys associated with +** the table. +*/ +void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ + Index *pIndex, *pNext; + + assert( !pTable || pTable->nRef>0 ); + + /* Do not delete the table until the reference count reaches zero. */ + if( !pTable ) return; + if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; + + /* Delete all indices associated with this table. */ + for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ + pNext = pIndex->pNext; + assert( pIndex->pSchema==pTable->pSchema ); + if( !db || db->pnBytesFreed==0 ){ + char *zName = pIndex->zName; + TESTONLY ( Index *pOld = ) sqlite3HashInsert( + &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 + ); + assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); + assert( pOld==pIndex || pOld==0 ); + } + freeIndex(db, pIndex); + } + + /* Delete any foreign keys attached to this table. */ + sqlite3FkDelete(db, pTable); + + /* Delete the Table structure itself. + */ + sqliteDeleteColumnNames(db, pTable); + sqlite3DbFree(db, pTable->zName); + sqlite3DbFree(db, pTable->zColAff); + sqlite3SelectDelete(db, pTable->pSelect); +#ifndef SQLITE_OMIT_CHECK + sqlite3ExprDelete(db, pTable->pCheck); +#endif +#ifndef SQLITE_OMIT_VIRTUALTABLE + sqlite3VtabClear(db, pTable); +#endif + sqlite3DbFree(db, pTable); +} + +/* +** Unlink the given table from the hash tables and the delete the +** table structure with all its indices and foreign keys. +*/ +void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ + Table *p; + Db *pDb; + + assert( db!=0 ); + assert( iDb>=0 && iDbnDb ); + assert( zTabName ); + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ + pDb = &db->aDb[iDb]; + p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, + sqlite3Strlen30(zTabName),0); + sqlite3DeleteTable(db, p); + db->flags |= SQLITE_InternChanges; +} + +/* +** Given a token, return a string that consists of the text of that +** token. Space to hold the returned string +** is obtained from sqliteMalloc() and must be freed by the calling +** function. +** +** Any quotation marks (ex: "name", 'name', [name], or `name`) that +** surround the body of the token are removed. +** +** Tokens are often just pointers into the original SQL text and so +** are not \000 terminated and are not persistent. The returned string +** is \000 terminated and is persistent. +*/ +char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ + char *zName; + if( pName ){ + zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); + sqlite3Dequote(zName); + }else{ + zName = 0; + } + return zName; +} + +/* +** Open the sqlite_master table stored in database number iDb for +** writing. The table is opened using cursor 0. +*/ +void sqlite3OpenMasterTable(Parse *p, int iDb){ + Vdbe *v = sqlite3GetVdbe(p); + sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); + sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); + sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ + if( p->nTab==0 ){ + p->nTab = 1; + } +} + +/* +** Parameter zName points to a nul-terminated buffer containing the name +** of a database ("main", "temp" or the name of an attached db). This +** function returns the index of the named database in db->aDb[], or +** -1 if the named db cannot be found. +*/ +int sqlite3FindDbName(sqlite3 *db, const char *zName){ + int i = -1; /* Database number */ + if( zName ){ + Db *pDb; + int n = sqlite3Strlen30(zName); + for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ + if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && + 0==sqlite3StrICmp(pDb->zName, zName) ){ + break; + } + } + } + return i; +} + +/* +** The token *pName contains the name of a database (either "main" or +** "temp" or the name of an attached db). This routine returns the +** index of the named database in db->aDb[], or -1 if the named db +** does not exist. +*/ +int sqlite3FindDb(sqlite3 *db, Token *pName){ + int i; /* Database number */ + char *zName; /* Name we are searching for */ + zName = sqlite3NameFromToken(db, pName); + i = sqlite3FindDbName(db, zName); + sqlite3DbFree(db, zName); + return i; +} + +/* The table or view or trigger name is passed to this routine via tokens +** pName1 and pName2. If the table name was fully qualified, for example: +** +** CREATE TABLE xxx.yyy (...); +** +** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if +** the table name is not fully qualified, i.e.: +** +** CREATE TABLE yyy(...); +** +** Then pName1 is set to "yyy" and pName2 is "". +** +** This routine sets the *ppUnqual pointer to point at the token (pName1 or +** pName2) that stores the unqualified table name. The index of the +** database "xxx" is returned. +*/ +int sqlite3TwoPartName( + Parse *pParse, /* Parsing and code generating context */ + Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ + Token *pName2, /* The "yyy" in the name "xxx.yyy" */ + Token **pUnqual /* Write the unqualified object name here */ +){ + int iDb; /* Database holding the object */ + sqlite3 *db = pParse->db; + + if( ALWAYS(pName2!=0) && pName2->n>0 ){ + if( db->init.busy ) { + sqlite3ErrorMsg(pParse, "corrupt database"); + pParse->nErr++; + return -1; + } + *pUnqual = pName2; + iDb = sqlite3FindDb(db, pName1); + if( iDb<0 ){ + sqlite3ErrorMsg(pParse, "unknown database %T", pName1); + pParse->nErr++; + return -1; + } + }else{ + assert( db->init.iDb==0 || db->init.busy ); + iDb = db->init.iDb; + *pUnqual = pName1; + } + return iDb; +} + +/* +** This routine is used to check if the UTF-8 string zName is a legal +** unqualified name for a new schema object (table, index, view or +** trigger). All names are legal except those that begin with the string +** "sqlite_" (in upper, lower or mixed case). This portion of the namespace +** is reserved for internal use. +*/ +int sqlite3CheckObjectName(Parse *pParse, const char *zName){ + if( !pParse->db->init.busy && pParse->nested==0 + && (pParse->db->flags & SQLITE_WriteSchema)==0 + && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ + sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); + return SQLITE_ERROR; + } + return SQLITE_OK; +} + +/* +** Begin constructing a new table representation in memory. This is +** the first of several action routines that get called in response +** to a CREATE TABLE statement. In particular, this routine is called +** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp +** flag is true if the table should be stored in the auxiliary database +** file instead of in the main database file. This is normally the case +** when the "TEMP" or "TEMPORARY" keyword occurs in between +** CREATE and TABLE. +** +** The new table record is initialized and put in pParse->pNewTable. +** As more of the CREATE TABLE statement is parsed, additional action +** routines will be called to add more information to this record. +** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine +** is called to complete the construction of the new table record. +*/ +void sqlite3StartTable( + Parse *pParse, /* Parser context */ + Token *pName1, /* First part of the name of the table or view */ + Token *pName2, /* Second part of the name of the table or view */ + int isTemp, /* True if this is a TEMP table */ + int isView, /* True if this is a VIEW */ + int isVirtual, /* True if this is a VIRTUAL table */ + int noErr /* Do nothing if table already exists */ +){ + Table *pTable; + char *zName = 0; /* The name of the new table */ + sqlite3 *db = pParse->db; + Vdbe *v; + int iDb; /* Database number to create the table in */ + Token *pName; /* Unqualified name of the table to create */ + + /* The table or view name to create is passed to this routine via tokens + ** pName1 and pName2. If the table name was fully qualified, for example: + ** + ** CREATE TABLE xxx.yyy (...); + ** + ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if + ** the table name is not fully qualified, i.e.: + ** + ** CREATE TABLE yyy(...); + ** + ** Then pName1 is set to "yyy" and pName2 is "". + ** + ** The call below sets the pName pointer to point at the token (pName1 or + ** pName2) that stores the unqualified table name. The variable iDb is + ** set to the index of the database that the table or view is to be + ** created in. + */ + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); + if( iDb<0 ) return; + if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ + /* If creating a temp table, the name may not be qualified. Unless + ** the database name is "temp" anyway. */ + sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); + return; + } + if( !OMIT_TEMPDB && isTemp ) iDb = 1; + + pParse->sNameToken = *pName; + zName = sqlite3NameFromToken(db, pName); + if( zName==0 ) return; + if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ + goto begin_table_error; + } + if( db->init.iDb==1 ) isTemp = 1; +#ifndef SQLITE_OMIT_AUTHORIZATION + assert( (isTemp & 1)==isTemp ); + { + int code; + char *zDb = db->aDb[iDb].zName; + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ + goto begin_table_error; + } + if( isView ){ + if( !OMIT_TEMPDB && isTemp ){ + code = SQLITE_CREATE_TEMP_VIEW; + }else{ + code = SQLITE_CREATE_VIEW; + } + }else{ + if( !OMIT_TEMPDB && isTemp ){ + code = SQLITE_CREATE_TEMP_TABLE; + }else{ + code = SQLITE_CREATE_TABLE; + } + } + if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ + goto begin_table_error; + } + } +#endif + + /* Make sure the new table name does not collide with an existing + ** index or table name in the same database. Issue an error message if + ** it does. The exception is if the statement being parsed was passed + ** to an sqlite3_declare_vtab() call. In that case only the column names + ** and types will be used, so there is no need to test for namespace + ** collisions. + */ + if( !IN_DECLARE_VTAB ){ + char *zDb = db->aDb[iDb].zName; + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + goto begin_table_error; + } + pTable = sqlite3FindTable(db, zName, zDb); + if( pTable ){ + if( !noErr ){ + sqlite3ErrorMsg(pParse, "table %T already exists", pName); + }else{ + assert( !db->init.busy ); + sqlite3CodeVerifySchema(pParse, iDb); + } + goto begin_table_error; + } + if( sqlite3FindIndex(db, zName, zDb)!=0 ){ + sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); + goto begin_table_error; + } + } + + pTable = sqlite3DbMallocZero(db, sizeof(Table)); + if( pTable==0 ){ + db->mallocFailed = 1; + pParse->rc = SQLITE_NOMEM; + pParse->nErr++; + goto begin_table_error; + } + pTable->zName = zName; + pTable->iPKey = -1; + pTable->pSchema = db->aDb[iDb].pSchema; + pTable->nRef = 1; + pTable->nRowEst = 1000000; + assert( pParse->pNewTable==0 ); + pParse->pNewTable = pTable; + + /* If this is the magic sqlite_sequence table used by autoincrement, + ** then record a pointer to this table in the main database structure + ** so that INSERT can find the table easily. + */ +#ifndef SQLITE_OMIT_AUTOINCREMENT + if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + pTable->pSchema->pSeqTab = pTable; + } +#endif + + /* Begin generating the code that will insert the table record into + ** the SQLITE_MASTER table. Note in particular that we must go ahead + ** and allocate the record number for the table entry now. Before any + ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause + ** indices to be created and the table record must come before the + ** indices. Hence, the record number for the table must be allocated + ** now. + */ + if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ + int j1; + int fileFormat; + int reg1, reg2, reg3; + sqlite3BeginWriteOperation(pParse, 0, iDb); + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( isVirtual ){ + sqlite3VdbeAddOp0(v, OP_VBegin); + } +#endif + + /* If the file format and encoding in the database have not been set, + ** set them now. + */ + reg1 = pParse->regRowid = ++pParse->nMem; + reg2 = pParse->regRoot = ++pParse->nMem; + reg3 = ++pParse->nMem; + sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); + sqlite3VdbeUsesBtree(v, iDb); + j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); + fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? + 1 : SQLITE_MAX_FILE_FORMAT; + sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); + sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); + sqlite3VdbeJumpHere(v, j1); + + /* This just creates a place-holder record in the sqlite_master table. + ** The record created does not contain anything yet. It will be replaced + ** by the real entry in code generated at sqlite3EndTable(). + ** + ** The rowid for the new entry is left in register pParse->regRowid. + ** The root page number of the new table is left in reg pParse->regRoot. + ** The rowid and root page number values are needed by the code that + ** sqlite3EndTable will generate. + */ +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) + if( isView || isVirtual ){ + sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); + }else +#endif + { + sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); + } + sqlite3OpenMasterTable(pParse, iDb); + sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); + sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); + sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + sqlite3VdbeAddOp0(v, OP_Close); + } + + /* Normal (non-error) return. */ + return; + + /* If an error occurs, we jump here */ +begin_table_error: + sqlite3DbFree(db, zName); + return; +} + +/* +** This macro is used to compare two strings in a case-insensitive manner. +** It is slightly faster than calling sqlite3StrICmp() directly, but +** produces larger code. +** +** WARNING: This macro is not compatible with the strcmp() family. It +** returns true if the two strings are equal, otherwise false. +*/ +#define STRICMP(x, y) (\ +sqlite3UpperToLower[*(unsigned char *)(x)]== \ +sqlite3UpperToLower[*(unsigned char *)(y)] \ +&& sqlite3StrICmp((x)+1,(y)+1)==0 ) + +/* +** Add a new column to the table currently being constructed. +** +** The parser calls this routine once for each column declaration +** in a CREATE TABLE statement. sqlite3StartTable() gets called +** first to get things going. Then this routine is called for each +** column. +*/ +void sqlite3AddColumn(Parse *pParse, Token *pName){ + Table *p; + int i; + char *z; + Column *pCol; + sqlite3 *db = pParse->db; + if( (p = pParse->pNewTable)==0 ) return; +#if SQLITE_MAX_COLUMN + if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ + sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); + return; + } +#endif + z = sqlite3NameFromToken(db, pName); + if( z==0 ) return; + for(i=0; inCol; i++){ + if( STRICMP(z, p->aCol[i].zName) ){ + sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); + sqlite3DbFree(db, z); + return; + } + } + if( (p->nCol & 0x7)==0 ){ + Column *aNew; + aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); + if( aNew==0 ){ + sqlite3DbFree(db, z); + return; + } + p->aCol = aNew; + } + pCol = &p->aCol[p->nCol]; + memset(pCol, 0, sizeof(p->aCol[0])); + pCol->zName = z; + + /* If there is no type specified, columns have the default affinity + ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will + ** be called next to set pCol->affinity correctly. + */ + pCol->affinity = SQLITE_AFF_NONE; + p->nCol++; +} + +/* +** This routine is called by the parser while in the middle of +** parsing a CREATE TABLE statement. A "NOT NULL" constraint has +** been seen on a column. This routine sets the notNull flag on +** the column currently under construction. +*/ +void sqlite3AddNotNull(Parse *pParse, int onError){ + Table *p; + p = pParse->pNewTable; + if( p==0 || NEVER(p->nCol<1) ) return; + p->aCol[p->nCol-1].notNull = (u8)onError; +} + +/* +** Scan the column type name zType (length nType) and return the +** associated affinity type. +** +** This routine does a case-independent search of zType for the +** substrings in the following table. If one of the substrings is +** found, the corresponding affinity is returned. If zType contains +** more than one of the substrings, entries toward the top of +** the table take priority. For example, if zType is 'BLOBINT', +** SQLITE_AFF_INTEGER is returned. +** +** Substring | Affinity +** -------------------------------- +** 'INT' | SQLITE_AFF_INTEGER +** 'CHAR' | SQLITE_AFF_TEXT +** 'CLOB' | SQLITE_AFF_TEXT +** 'TEXT' | SQLITE_AFF_TEXT +** 'BLOB' | SQLITE_AFF_NONE +** 'REAL' | SQLITE_AFF_REAL +** 'FLOA' | SQLITE_AFF_REAL +** 'DOUB' | SQLITE_AFF_REAL +** +** If none of the substrings in the above table are found, +** SQLITE_AFF_NUMERIC is returned. +*/ +char sqlite3AffinityType(const char *zIn){ + u32 h = 0; + char aff = SQLITE_AFF_NUMERIC; + + if( zIn ) while( zIn[0] ){ + h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; + zIn++; + if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ + aff = SQLITE_AFF_TEXT; + }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ + aff = SQLITE_AFF_TEXT; + }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ + aff = SQLITE_AFF_TEXT; + }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ + && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ + aff = SQLITE_AFF_NONE; +#ifndef SQLITE_OMIT_FLOATING_POINT + }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ + && aff==SQLITE_AFF_NUMERIC ){ + aff = SQLITE_AFF_REAL; + }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ + && aff==SQLITE_AFF_NUMERIC ){ + aff = SQLITE_AFF_REAL; + }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ + && aff==SQLITE_AFF_NUMERIC ){ + aff = SQLITE_AFF_REAL; +#endif + }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ + aff = SQLITE_AFF_INTEGER; + break; + } + } + + return aff; +} + +/* +** This routine is called by the parser while in the middle of +** parsing a CREATE TABLE statement. The pFirst token is the first +** token in the sequence of tokens that describe the type of the +** column currently under construction. pLast is the last token +** in the sequence. Use this information to construct a string +** that contains the typename of the column and store that string +** in zType. +*/ +void sqlite3AddColumnType(Parse *pParse, Token *pType){ + Table *p; + Column *pCol; + + p = pParse->pNewTable; + if( p==0 || NEVER(p->nCol<1) ) return; + pCol = &p->aCol[p->nCol-1]; + assert( pCol->zType==0 ); + pCol->zType = sqlite3NameFromToken(pParse->db, pType); + pCol->affinity = sqlite3AffinityType(pCol->zType); +} + +/* +** The expression is the default value for the most recently added column +** of the table currently under construction. +** +** Default value expressions must be constant. Raise an exception if this +** is not the case. +** +** This routine is called by the parser while in the middle of +** parsing a CREATE TABLE statement. +*/ +void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ + Table *p; + Column *pCol; + sqlite3 *db = pParse->db; + p = pParse->pNewTable; + if( p!=0 ){ + pCol = &(p->aCol[p->nCol-1]); + if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ + sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", + pCol->zName); + }else{ + /* A copy of pExpr is used instead of the original, as pExpr contains + ** tokens that point to volatile memory. The 'span' of the expression + ** is required by pragma table_info. + */ + sqlite3ExprDelete(db, pCol->pDflt); + pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); + sqlite3DbFree(db, pCol->zDflt); + pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, + (int)(pSpan->zEnd - pSpan->zStart)); + } + } + sqlite3ExprDelete(db, pSpan->pExpr); +} + +/* +** Designate the PRIMARY KEY for the table. pList is a list of names +** of columns that form the primary key. If pList is NULL, then the +** most recently added column of the table is the primary key. +** +** A table can have at most one primary key. If the table already has +** a primary key (and this is the second primary key) then create an +** error. +** +** If the PRIMARY KEY is on a single column whose datatype is INTEGER, +** then we will try to use that column as the rowid. Set the Table.iPKey +** field of the table under construction to be the index of the +** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is +** no INTEGER PRIMARY KEY. +** +** If the key is not an INTEGER PRIMARY KEY, then create a unique +** index for the key. No index is created for INTEGER PRIMARY KEYs. +*/ +void sqlite3AddPrimaryKey( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* List of field names to be indexed */ + int onError, /* What to do with a uniqueness conflict */ + int autoInc, /* True if the AUTOINCREMENT keyword is present */ + int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ +){ + Table *pTab = pParse->pNewTable; + char *zType = 0; + int iCol = -1, i; + if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; + if( pTab->tabFlags & TF_HasPrimaryKey ){ + sqlite3ErrorMsg(pParse, + "table \"%s\" has more than one primary key", pTab->zName); + goto primary_key_exit; + } + pTab->tabFlags |= TF_HasPrimaryKey; + if( pList==0 ){ + iCol = pTab->nCol - 1; + pTab->aCol[iCol].isPrimKey = 1; + }else{ + for(i=0; inExpr; i++){ + for(iCol=0; iColnCol; iCol++){ + if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ + break; + } + } + if( iColnCol ){ + pTab->aCol[iCol].isPrimKey = 1; + } + } + if( pList->nExpr>1 ) iCol = -1; + } + if( iCol>=0 && iColnCol ){ + zType = pTab->aCol[iCol].zType; + } + if( zType && sqlite3StrICmp(zType, "INTEGER")==0 + && sortOrder==SQLITE_SO_ASC ){ + pTab->iPKey = iCol; + pTab->keyConf = (u8)onError; + assert( autoInc==0 || autoInc==1 ); + pTab->tabFlags |= autoInc*TF_Autoincrement; + }else if( autoInc ){ +#ifndef SQLITE_OMIT_AUTOINCREMENT + sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " + "INTEGER PRIMARY KEY"); +#endif + }else{ + Index *p; + p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); + if( p ){ + p->autoIndex = 2; + } + pList = 0; + } + +primary_key_exit: + sqlite3ExprListDelete(pParse->db, pList); + return; +} + +/* +** Add a new CHECK constraint to the table currently under construction. +*/ +void sqlite3AddCheckConstraint( + Parse *pParse, /* Parsing context */ + Expr *pCheckExpr /* The check expression */ +){ + sqlite3 *db = pParse->db; +#ifndef SQLITE_OMIT_CHECK + Table *pTab = pParse->pNewTable; + if( pTab && !IN_DECLARE_VTAB ){ + pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr); + }else +#endif + { + sqlite3ExprDelete(db, pCheckExpr); + } +} + +/* +** Set the collation function of the most recently parsed table column +** to the CollSeq given. +*/ +void sqlite3AddCollateType(Parse *pParse, Token *pToken){ + Table *p; + int i; + char *zColl; /* Dequoted name of collation sequence */ + sqlite3 *db; + + if( (p = pParse->pNewTable)==0 ) return; + i = p->nCol-1; + db = pParse->db; + zColl = sqlite3NameFromToken(db, pToken); + if( !zColl ) return; + + if( sqlite3LocateCollSeq(pParse, zColl) ){ + Index *pIdx; + p->aCol[i].zColl = zColl; + + /* If the column is declared as " PRIMARY KEY COLLATE ", + ** then an index may have been created on this column before the + ** collation type was added. Correct this if it is the case. + */ + for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ + assert( pIdx->nColumn==1 ); + if( pIdx->aiColumn[0]==i ){ + pIdx->azColl[0] = p->aCol[i].zColl; + } + } + }else{ + sqlite3DbFree(db, zColl); + } +} + +/* +** This function returns the collation sequence for database native text +** encoding identified by the string zName, length nName. +** +** If the requested collation sequence is not available, or not available +** in the database native encoding, the collation factory is invoked to +** request it. If the collation factory does not supply such a sequence, +** and the sequence is available in another text encoding, then that is +** returned instead. +** +** If no versions of the requested collations sequence are available, or +** another error occurs, NULL is returned and an error message written into +** pParse. +** +** This routine is a wrapper around sqlite3FindCollSeq(). This routine +** invokes the collation factory if the named collation cannot be found +** and generates an error message. +** +** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() +*/ +CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ + sqlite3 *db = pParse->db; + u8 enc = ENC(db); + u8 initbusy = db->init.busy; + CollSeq *pColl; + + pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); + if( !initbusy && (!pColl || !pColl->xCmp) ){ + pColl = sqlite3GetCollSeq(db, enc, pColl, zName); + if( !pColl ){ + sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); + } + } + + return pColl; +} + + +/* +** Generate code that will increment the schema cookie. +** +** The schema cookie is used to determine when the schema for the +** database changes. After each schema change, the cookie value +** changes. When a process first reads the schema it records the +** cookie. Thereafter, whenever it goes to access the database, +** it checks the cookie to make sure the schema has not changed +** since it was last read. +** +** This plan is not completely bullet-proof. It is possible for +** the schema to change multiple times and for the cookie to be +** set back to prior value. But schema changes are infrequent +** and the probability of hitting the same cookie value is only +** 1 chance in 2^32. So we're safe enough. +*/ +void sqlite3ChangeCookie(Parse *pParse, int iDb){ + int r1 = sqlite3GetTempReg(pParse); + sqlite3 *db = pParse->db; + Vdbe *v = pParse->pVdbe; + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); + sqlite3ReleaseTempReg(pParse, r1); +} + +/* +** Measure the number of characters needed to output the given +** identifier. The number returned includes any quotes used +** but does not include the null terminator. +** +** The estimate is conservative. It might be larger that what is +** really needed. +*/ +static int identLength(const char *z){ + int n; + for(n=0; *z; n++, z++){ + if( *z=='"' ){ n++; } + } + return n + 2; +} + +/* +** The first parameter is a pointer to an output buffer. The second +** parameter is a pointer to an integer that contains the offset at +** which to write into the output buffer. This function copies the +** nul-terminated string pointed to by the third parameter, zSignedIdent, +** to the specified offset in the buffer and updates *pIdx to refer +** to the first byte after the last byte written before returning. +** +** If the string zSignedIdent consists entirely of alpha-numeric +** characters, does not begin with a digit and is not an SQL keyword, +** then it is copied to the output buffer exactly as it is. Otherwise, +** it is quoted using double-quotes. +*/ +static void identPut(char *z, int *pIdx, char *zSignedIdent){ + unsigned char *zIdent = (unsigned char*)zSignedIdent; + int i, j, needQuote; + i = *pIdx; + + for(j=0; zIdent[j]; j++){ + if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; + } + needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; + if( !needQuote ){ + needQuote = zIdent[j]; + } + + if( needQuote ) z[i++] = '"'; + for(j=0; zIdent[j]; j++){ + z[i++] = zIdent[j]; + if( zIdent[j]=='"' ) z[i++] = '"'; + } + if( needQuote ) z[i++] = '"'; + z[i] = 0; + *pIdx = i; +} + +/* +** Generate a CREATE TABLE statement appropriate for the given +** table. Memory to hold the text of the statement is obtained +** from sqliteMalloc() and must be freed by the calling function. +*/ +static char *createTableStmt(sqlite3 *db, Table *p){ + int i, k, n; + char *zStmt; + char *zSep, *zSep2, *zEnd; + Column *pCol; + n = 0; + for(pCol = p->aCol, i=0; inCol; i++, pCol++){ + n += identLength(pCol->zName) + 5; + } + n += identLength(p->zName); + if( n<50 ){ + zSep = ""; + zSep2 = ","; + zEnd = ")"; + }else{ + zSep = "\n "; + zSep2 = ",\n "; + zEnd = "\n)"; + } + n += 35 + 6*p->nCol; + zStmt = sqlite3DbMallocRaw(0, n); + if( zStmt==0 ){ + db->mallocFailed = 1; + return 0; + } + sqlite3_snprintf(n, zStmt, "CREATE TABLE "); + k = sqlite3Strlen30(zStmt); + identPut(zStmt, &k, p->zName); + zStmt[k++] = '('; + for(pCol=p->aCol, i=0; inCol; i++, pCol++){ + static const char * const azType[] = { + /* SQLITE_AFF_TEXT */ " TEXT", + /* SQLITE_AFF_NONE */ "", + /* SQLITE_AFF_NUMERIC */ " NUM", + /* SQLITE_AFF_INTEGER */ " INT", + /* SQLITE_AFF_REAL */ " REAL" + }; + int len; + const char *zType; + + sqlite3_snprintf(n-k, &zStmt[k], zSep); + k += sqlite3Strlen30(&zStmt[k]); + zSep = zSep2; + identPut(zStmt, &k, pCol->zName); + assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); + assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); + testcase( pCol->affinity==SQLITE_AFF_TEXT ); + testcase( pCol->affinity==SQLITE_AFF_NONE ); + testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); + testcase( pCol->affinity==SQLITE_AFF_INTEGER ); + testcase( pCol->affinity==SQLITE_AFF_REAL ); + + zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; + len = sqlite3Strlen30(zType); + assert( pCol->affinity==SQLITE_AFF_NONE + || pCol->affinity==sqlite3AffinityType(zType) ); + memcpy(&zStmt[k], zType, len); + k += len; + assert( k<=n ); + } + sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); + return zStmt; +} + +/* +** This routine is called to report the final ")" that terminates +** a CREATE TABLE statement. +** +** The table structure that other action routines have been building +** is added to the internal hash tables, assuming no errors have +** occurred. +** +** An entry for the table is made in the master table on disk, unless +** this is a temporary table or db->init.busy==1. When db->init.busy==1 +** it means we are reading the sqlite_master table because we just +** connected to the database or because the sqlite_master table has +** recently changed, so the entry for this table already exists in +** the sqlite_master table. We do not want to create it again. +** +** If the pSelect argument is not NULL, it means that this routine +** was called to create a table generated from a +** "CREATE TABLE ... AS SELECT ..." statement. The column names of +** the new table will match the result set of the SELECT. +*/ +void sqlite3EndTable( + Parse *pParse, /* Parse context */ + Token *pCons, /* The ',' token after the last column defn. */ + Token *pEnd, /* The final ')' token in the CREATE TABLE */ + Select *pSelect /* Select from a "CREATE ... AS SELECT" */ +){ + Table *p; + sqlite3 *db = pParse->db; + int iDb; + + if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ + return; + } + p = pParse->pNewTable; + if( p==0 ) return; + + assert( !db->init.busy || !pSelect ); + + iDb = sqlite3SchemaToIndex(db, p->pSchema); + +#ifndef SQLITE_OMIT_CHECK + /* Resolve names in all CHECK constraint expressions. + */ + if( p->pCheck ){ + SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ + NameContext sNC; /* Name context for pParse->pNewTable */ + + memset(&sNC, 0, sizeof(sNC)); + memset(&sSrc, 0, sizeof(sSrc)); + sSrc.nSrc = 1; + sSrc.a[0].zName = p->zName; + sSrc.a[0].pTab = p; + sSrc.a[0].iCursor = -1; + sNC.pParse = pParse; + sNC.pSrcList = &sSrc; + sNC.isCheck = 1; + if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){ + return; + } + } +#endif /* !defined(SQLITE_OMIT_CHECK) */ + + /* If the db->init.busy is 1 it means we are reading the SQL off the + ** "sqlite_master" or "sqlite_temp_master" table on the disk. + ** So do not write to the disk again. Extract the root page number + ** for the table from the db->init.newTnum field. (The page number + ** should have been put there by the sqliteOpenCb routine.) + */ + if( db->init.busy ){ + p->tnum = db->init.newTnum; + } + + /* If not initializing, then create a record for the new table + ** in the SQLITE_MASTER table of the database. + ** + ** If this is a TEMPORARY table, write the entry into the auxiliary + ** file instead of into the main database file. + */ + if( !db->init.busy ){ + int n; + Vdbe *v; + char *zType; /* "view" or "table" */ + char *zType2; /* "VIEW" or "TABLE" */ + char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ + + v = sqlite3GetVdbe(pParse); + if( NEVER(v==0) ) return; + + sqlite3VdbeAddOp1(v, OP_Close, 0); + + /* + ** Initialize zType for the new view or table. + */ + if( p->pSelect==0 ){ + /* A regular table */ + zType = "table"; + zType2 = "TABLE"; +#ifndef SQLITE_OMIT_VIEW + }else{ + /* A view */ + zType = "view"; + zType2 = "VIEW"; +#endif + } + + /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT + ** statement to populate the new table. The root-page number for the + ** new table is in register pParse->regRoot. + ** + ** Once the SELECT has been coded by sqlite3Select(), it is in a + ** suitable state to query for the column names and types to be used + ** by the new table. + ** + ** A shared-cache write-lock is not required to write to the new table, + ** as a schema-lock must have already been obtained to create it. Since + ** a schema-lock excludes all other database users, the write-lock would + ** be redundant. + */ + if( pSelect ){ + SelectDest dest; + Table *pSelTab; + + assert(pParse->nTab==1); + sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); + sqlite3VdbeChangeP5(v, 1); + pParse->nTab = 2; + sqlite3SelectDestInit(&dest, SRT_Table, 1); + sqlite3Select(pParse, pSelect, &dest); + sqlite3VdbeAddOp1(v, OP_Close, 1); + if( pParse->nErr==0 ){ + pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); + if( pSelTab==0 ) return; + assert( p->aCol==0 ); + p->nCol = pSelTab->nCol; + p->aCol = pSelTab->aCol; + pSelTab->nCol = 0; + pSelTab->aCol = 0; + sqlite3DeleteTable(db, pSelTab); + } + } + + /* Compute the complete text of the CREATE statement */ + if( pSelect ){ + zStmt = createTableStmt(db, p); + }else{ + n = (int)(pEnd->z - pParse->sNameToken.z) + 1; + zStmt = sqlite3MPrintf(db, + "CREATE %s %.*s", zType2, n, pParse->sNameToken.z + ); + } + + /* A slot for the record has already been allocated in the + ** SQLITE_MASTER table. We just need to update that slot with all + ** the information we've collected. + */ + sqlite3NestedParse(pParse, + "UPDATE %Q.%s " + "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " + "WHERE rowid=#%d", + db->aDb[iDb].zName, SCHEMA_TABLE(iDb), + zType, + p->zName, + p->zName, + pParse->regRoot, + zStmt, + pParse->regRowid + ); + sqlite3DbFree(db, zStmt); + sqlite3ChangeCookie(pParse, iDb); + +#ifndef SQLITE_OMIT_AUTOINCREMENT + /* Check to see if we need to create an sqlite_sequence table for + ** keeping track of autoincrement keys. + */ + if( p->tabFlags & TF_Autoincrement ){ + Db *pDb = &db->aDb[iDb]; + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + if( pDb->pSchema->pSeqTab==0 ){ + sqlite3NestedParse(pParse, + "CREATE TABLE %Q.sqlite_sequence(name,seq)", + pDb->zName + ); + } + } +#endif + + /* Reparse everything to update our internal data structures */ + sqlite3VdbeAddParseSchemaOp(v, iDb, + sqlite3MPrintf(db, "tbl_name='%q'", p->zName)); + } + + + /* Add the table to the in-memory representation of the database. + */ + if( db->init.busy ){ + Table *pOld; + Schema *pSchema = p->pSchema; + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, + sqlite3Strlen30(p->zName),p); + if( pOld ){ + assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ + db->mallocFailed = 1; + return; + } + pParse->pNewTable = 0; + db->nTable++; + db->flags |= SQLITE_InternChanges; + +#ifndef SQLITE_OMIT_ALTERTABLE + if( !p->pSelect ){ + const char *zName = (const char *)pParse->sNameToken.z; + int nName; + assert( !pSelect && pCons && pEnd ); + if( pCons->z==0 ){ + pCons = pEnd; + } + nName = (int)((const char *)pCons->z - zName); + p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); + } +#endif + } +} + +#ifndef SQLITE_OMIT_VIEW +/* +** The parser calls this routine in order to create a new VIEW +*/ +void sqlite3CreateView( + Parse *pParse, /* The parsing context */ + Token *pBegin, /* The CREATE token that begins the statement */ + Token *pName1, /* The token that holds the name of the view */ + Token *pName2, /* The token that holds the name of the view */ + Select *pSelect, /* A SELECT statement that will become the new view */ + int isTemp, /* TRUE for a TEMPORARY view */ + int noErr /* Suppress error messages if VIEW already exists */ +){ + Table *p; + int n; + const char *z; + Token sEnd; + DbFixer sFix; + Token *pName = 0; + int iDb; + sqlite3 *db = pParse->db; + + if( pParse->nVar>0 ){ + sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); + sqlite3SelectDelete(db, pSelect); + return; + } + sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); + p = pParse->pNewTable; + if( p==0 || pParse->nErr ){ + sqlite3SelectDelete(db, pSelect); + return; + } + sqlite3TwoPartName(pParse, pName1, pName2, &pName); + iDb = sqlite3SchemaToIndex(db, p->pSchema); + if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) + && sqlite3FixSelect(&sFix, pSelect) + ){ + sqlite3SelectDelete(db, pSelect); + return; + } + + /* Make a copy of the entire SELECT statement that defines the view. + ** This will force all the Expr.token.z values to be dynamically + ** allocated rather than point to the input string - which means that + ** they will persist after the current sqlite3_exec() call returns. + */ + p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); + sqlite3SelectDelete(db, pSelect); + if( db->mallocFailed ){ + return; + } + if( !db->init.busy ){ + sqlite3ViewGetColumnNames(pParse, p); + } + + /* Locate the end of the CREATE VIEW statement. Make sEnd point to + ** the end. + */ + sEnd = pParse->sLastToken; + if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ + sEnd.z += sEnd.n; + } + sEnd.n = 0; + n = (int)(sEnd.z - pBegin->z); + z = pBegin->z; + while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } + sEnd.z = &z[n-1]; + sEnd.n = 1; + + /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ + sqlite3EndTable(pParse, 0, &sEnd, 0); + return; +} +#endif /* SQLITE_OMIT_VIEW */ + +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) +/* +** The Table structure pTable is really a VIEW. Fill in the names of +** the columns of the view in the pTable structure. Return the number +** of errors. If an error is seen leave an error message in pParse->zErrMsg. +*/ +int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ + Table *pSelTab; /* A fake table from which we get the result set */ + Select *pSel; /* Copy of the SELECT that implements the view */ + int nErr = 0; /* Number of errors encountered */ + int n; /* Temporarily holds the number of cursors assigned */ + sqlite3 *db = pParse->db; /* Database connection for malloc errors */ + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); + + assert( pTable ); + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( sqlite3VtabCallConnect(pParse, pTable) ){ + return SQLITE_ERROR; + } + if( IsVirtual(pTable) ) return 0; +#endif + +#ifndef SQLITE_OMIT_VIEW + /* A positive nCol means the columns names for this view are + ** already known. + */ + if( pTable->nCol>0 ) return 0; + + /* A negative nCol is a special marker meaning that we are currently + ** trying to compute the column names. If we enter this routine with + ** a negative nCol, it means two or more views form a loop, like this: + ** + ** CREATE VIEW one AS SELECT * FROM two; + ** CREATE VIEW two AS SELECT * FROM one; + ** + ** Actually, the error above is now caught prior to reaching this point. + ** But the following test is still important as it does come up + ** in the following: + ** + ** CREATE TABLE main.ex1(a); + ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; + ** SELECT * FROM temp.ex1; + */ + if( pTable->nCol<0 ){ + sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); + return 1; + } + assert( pTable->nCol>=0 ); + + /* If we get this far, it means we need to compute the table names. + ** Note that the call to sqlite3ResultSetOfSelect() will expand any + ** "*" elements in the results set of the view and will assign cursors + ** to the elements of the FROM clause. But we do not want these changes + ** to be permanent. So the computation is done on a copy of the SELECT + ** statement that defines the view. + */ + assert( pTable->pSelect ); + pSel = sqlite3SelectDup(db, pTable->pSelect, 0); + if( pSel ){ + u8 enableLookaside = db->lookaside.bEnabled; + n = pParse->nTab; + sqlite3SrcListAssignCursors(pParse, pSel->pSrc); + pTable->nCol = -1; + db->lookaside.bEnabled = 0; +#ifndef SQLITE_OMIT_AUTHORIZATION + xAuth = db->xAuth; + db->xAuth = 0; + pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); + db->xAuth = xAuth; +#else + pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); +#endif + db->lookaside.bEnabled = enableLookaside; + pParse->nTab = n; + if( pSelTab ){ + assert( pTable->aCol==0 ); + pTable->nCol = pSelTab->nCol; + pTable->aCol = pSelTab->aCol; + pSelTab->nCol = 0; + pSelTab->aCol = 0; + sqlite3DeleteTable(db, pSelTab); + assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); + pTable->pSchema->flags |= DB_UnresetViews; + }else{ + pTable->nCol = 0; + nErr++; + } + sqlite3SelectDelete(db, pSel); + } else { + nErr++; + } +#endif /* SQLITE_OMIT_VIEW */ + return nErr; +} +#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ + +#ifndef SQLITE_OMIT_VIEW +/* +** Clear the column names from every VIEW in database idx. +*/ +static void sqliteViewResetAll(sqlite3 *db, int idx){ + HashElem *i; + assert( sqlite3SchemaMutexHeld(db, idx, 0) ); + if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; + for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ + Table *pTab = sqliteHashData(i); + if( pTab->pSelect ){ + sqliteDeleteColumnNames(db, pTab); + pTab->aCol = 0; + pTab->nCol = 0; + } + } + DbClearProperty(db, idx, DB_UnresetViews); +} +#else +# define sqliteViewResetAll(A,B) +#endif /* SQLITE_OMIT_VIEW */ + +/* +** This function is called by the VDBE to adjust the internal schema +** used by SQLite when the btree layer moves a table root page. The +** root-page of a table or index in database iDb has changed from iFrom +** to iTo. +** +** Ticket #1728: The symbol table might still contain information +** on tables and/or indices that are the process of being deleted. +** If you are unlucky, one of those deleted indices or tables might +** have the same rootpage number as the real table or index that is +** being moved. So we cannot stop searching after the first match +** because the first match might be for one of the deleted indices +** or tables and not the table/index that is actually being moved. +** We must continue looping until all tables and indices with +** rootpage==iFrom have been converted to have a rootpage of iTo +** in order to be certain that we got the right one. +*/ +#ifndef SQLITE_OMIT_AUTOVACUUM +void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ + HashElem *pElem; + Hash *pHash; + Db *pDb; + + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + pDb = &db->aDb[iDb]; + pHash = &pDb->pSchema->tblHash; + for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ + Table *pTab = sqliteHashData(pElem); + if( pTab->tnum==iFrom ){ + pTab->tnum = iTo; + } + } + pHash = &pDb->pSchema->idxHash; + for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ + Index *pIdx = sqliteHashData(pElem); + if( pIdx->tnum==iFrom ){ + pIdx->tnum = iTo; + } + } +} +#endif + +/* +** Write code to erase the table with root-page iTable from database iDb. +** Also write code to modify the sqlite_master table and internal schema +** if a root-page of another table is moved by the btree-layer whilst +** erasing iTable (this can happen with an auto-vacuum database). +*/ +static void destroyRootPage(Parse *pParse, int iTable, int iDb){ + Vdbe *v = sqlite3GetVdbe(pParse); + int r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); + sqlite3MayAbort(pParse); +#ifndef SQLITE_OMIT_AUTOVACUUM + /* OP_Destroy stores an in integer r1. If this integer + ** is non-zero, then it is the root page number of a table moved to + ** location iTable. The following code modifies the sqlite_master table to + ** reflect this. + ** + ** The "#NNN" in the SQL is a special constant that means whatever value + ** is in register NNN. See grammar rules associated with the TK_REGISTER + ** token for additional information. + */ + sqlite3NestedParse(pParse, + "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", + pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); +#endif + sqlite3ReleaseTempReg(pParse, r1); +} + +/* +** Write VDBE code to erase table pTab and all associated indices on disk. +** Code to update the sqlite_master tables and internal schema definitions +** in case a root-page belonging to another table is moved by the btree layer +** is also added (this can happen with an auto-vacuum database). +*/ +static void destroyTable(Parse *pParse, Table *pTab){ +#ifdef SQLITE_OMIT_AUTOVACUUM + Index *pIdx; + int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + destroyRootPage(pParse, pTab->tnum, iDb); + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + destroyRootPage(pParse, pIdx->tnum, iDb); + } +#else + /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM + ** is not defined), then it is important to call OP_Destroy on the + ** table and index root-pages in order, starting with the numerically + ** largest root-page number. This guarantees that none of the root-pages + ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the + ** following were coded: + ** + ** OP_Destroy 4 0 + ** ... + ** OP_Destroy 5 0 + ** + ** and root page 5 happened to be the largest root-page number in the + ** database, then root page 5 would be moved to page 4 by the + ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit + ** a free-list page. + */ + int iTab = pTab->tnum; + int iDestroyed = 0; + + while( 1 ){ + Index *pIdx; + int iLargest = 0; + + if( iDestroyed==0 || iTabpIndex; pIdx; pIdx=pIdx->pNext){ + int iIdx = pIdx->tnum; + assert( pIdx->pSchema==pTab->pSchema ); + if( (iDestroyed==0 || (iIdxiLargest ){ + iLargest = iIdx; + } + } + if( iLargest==0 ){ + return; + }else{ + int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + destroyRootPage(pParse, iLargest, iDb); + iDestroyed = iLargest; + } + } +#endif +} + +/* +** Remove entries from the sqlite_statN tables (for N in (1,2,3)) +** after a DROP INDEX or DROP TABLE command. +*/ +static void sqlite3ClearStatTables( + Parse *pParse, /* The parsing context */ + int iDb, /* The database number */ + const char *zType, /* "idx" or "tbl" */ + const char *zName /* Name of index or table */ +){ + int i; + const char *zDbName = pParse->db->aDb[iDb].zName; + for(i=1; i<=3; i++){ + char zTab[24]; + sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); + if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ + sqlite3NestedParse(pParse, + "DELETE FROM %Q.%s WHERE %s=%Q", + zDbName, zTab, zType, zName + ); + } + } +} + +/* +** Generate code to drop a table. +*/ +void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ + Vdbe *v; + sqlite3 *db = pParse->db; + Trigger *pTrigger; + Db *pDb = &db->aDb[iDb]; + + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + sqlite3BeginWriteOperation(pParse, 1, iDb); + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + sqlite3VdbeAddOp0(v, OP_VBegin); + } +#endif + + /* Drop all triggers associated with the table being dropped. Code + ** is generated to remove entries from sqlite_master and/or + ** sqlite_temp_master if required. + */ + pTrigger = sqlite3TriggerList(pParse, pTab); + while( pTrigger ){ + assert( pTrigger->pSchema==pTab->pSchema || + pTrigger->pSchema==db->aDb[1].pSchema ); + sqlite3DropTriggerPtr(pParse, pTrigger); + pTrigger = pTrigger->pNext; + } + +#ifndef SQLITE_OMIT_AUTOINCREMENT + /* Remove any entries of the sqlite_sequence table associated with + ** the table being dropped. This is done before the table is dropped + ** at the btree level, in case the sqlite_sequence table needs to + ** move as a result of the drop (can happen in auto-vacuum mode). + */ + if( pTab->tabFlags & TF_Autoincrement ){ + sqlite3NestedParse(pParse, + "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", + pDb->zName, pTab->zName + ); + } +#endif + + /* Drop all SQLITE_MASTER table and index entries that refer to the + ** table. The program name loops through the master table and deletes + ** every row that refers to a table of the same name as the one being + ** dropped. Triggers are handled seperately because a trigger can be + ** created in the temp database that refers to a table in another + ** database. + */ + sqlite3NestedParse(pParse, + "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", + pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); + if( !isView && !IsVirtual(pTab) ){ + destroyTable(pParse, pTab); + } + + /* Remove the table entry from SQLite's internal schema and modify + ** the schema cookie. + */ + if( IsVirtual(pTab) ){ + sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); + } + sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); + sqlite3ChangeCookie(pParse, iDb); + sqliteViewResetAll(db, iDb); +} + +/* +** This routine is called to do the work of a DROP TABLE statement. +** pName is the name of the table to be dropped. +*/ +void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ + Table *pTab; + Vdbe *v; + sqlite3 *db = pParse->db; + int iDb; + + if( db->mallocFailed ){ + goto exit_drop_table; + } + assert( pParse->nErr==0 ); + assert( pName->nSrc==1 ); + if( noErr ) db->suppressErr++; + pTab = sqlite3LocateTable(pParse, isView, + pName->a[0].zName, pName->a[0].zDatabase); + if( noErr ) db->suppressErr--; + + if( pTab==0 ){ + if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); + goto exit_drop_table; + } + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( iDb>=0 && iDbnDb ); + + /* If pTab is a virtual table, call ViewGetColumnNames() to ensure + ** it is initialized. + */ + if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto exit_drop_table; + } +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int code; + const char *zTab = SCHEMA_TABLE(iDb); + const char *zDb = db->aDb[iDb].zName; + const char *zArg2 = 0; + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ + goto exit_drop_table; + } + if( isView ){ + if( !OMIT_TEMPDB && iDb==1 ){ + code = SQLITE_DROP_TEMP_VIEW; + }else{ + code = SQLITE_DROP_VIEW; + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + }else if( IsVirtual(pTab) ){ + code = SQLITE_DROP_VTABLE; + zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; +#endif + }else{ + if( !OMIT_TEMPDB && iDb==1 ){ + code = SQLITE_DROP_TEMP_TABLE; + }else{ + code = SQLITE_DROP_TABLE; + } + } + if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ + goto exit_drop_table; + } + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ + goto exit_drop_table; + } + } +#endif + if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 + && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ + sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); + goto exit_drop_table; + } + +#ifndef SQLITE_OMIT_VIEW + /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used + ** on a table. + */ + if( isView && pTab->pSelect==0 ){ + sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); + goto exit_drop_table; + } + if( !isView && pTab->pSelect ){ + sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); + goto exit_drop_table; + } +#endif + + /* Generate code to remove the table from the master table + ** on disk. + */ + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3BeginWriteOperation(pParse, 1, iDb); + sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); + sqlite3FkDropTable(pParse, pName, pTab); + sqlite3CodeDropTable(pParse, pTab, iDb, isView); + } + +exit_drop_table: + sqlite3SrcListDelete(db, pName); +} + +/* +** This routine is called to create a new foreign key on the table +** currently under construction. pFromCol determines which columns +** in the current table point to the foreign key. If pFromCol==0 then +** connect the key to the last column inserted. pTo is the name of +** the table referred to. pToCol is a list of tables in the other +** pTo table that the foreign key points to. flags contains all +** information about the conflict resolution algorithms specified +** in the ON DELETE, ON UPDATE and ON INSERT clauses. +** +** An FKey structure is created and added to the table currently +** under construction in the pParse->pNewTable field. +** +** The foreign key is set for IMMEDIATE processing. A subsequent call +** to sqlite3DeferForeignKey() might change this to DEFERRED. +*/ +void sqlite3CreateForeignKey( + Parse *pParse, /* Parsing context */ + ExprList *pFromCol, /* Columns in this table that point to other table */ + Token *pTo, /* Name of the other table */ + ExprList *pToCol, /* Columns in the other table */ + int flags /* Conflict resolution algorithms. */ +){ + sqlite3 *db = pParse->db; +#ifndef SQLITE_OMIT_FOREIGN_KEY + FKey *pFKey = 0; + FKey *pNextTo; + Table *p = pParse->pNewTable; + int nByte; + int i; + int nCol; + char *z; + + assert( pTo!=0 ); + if( p==0 || IN_DECLARE_VTAB ) goto fk_end; + if( pFromCol==0 ){ + int iCol = p->nCol-1; + if( NEVER(iCol<0) ) goto fk_end; + if( pToCol && pToCol->nExpr!=1 ){ + sqlite3ErrorMsg(pParse, "foreign key on %s" + " should reference only one column of table %T", + p->aCol[iCol].zName, pTo); + goto fk_end; + } + nCol = 1; + }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ + sqlite3ErrorMsg(pParse, + "number of columns in foreign key does not match the number of " + "columns in the referenced table"); + goto fk_end; + }else{ + nCol = pFromCol->nExpr; + } + nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; + if( pToCol ){ + for(i=0; inExpr; i++){ + nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; + } + } + pFKey = sqlite3DbMallocZero(db, nByte ); + if( pFKey==0 ){ + goto fk_end; + } + pFKey->pFrom = p; + pFKey->pNextFrom = p->pFKey; + z = (char*)&pFKey->aCol[nCol]; + pFKey->zTo = z; + memcpy(z, pTo->z, pTo->n); + z[pTo->n] = 0; + sqlite3Dequote(z); + z += pTo->n+1; + pFKey->nCol = nCol; + if( pFromCol==0 ){ + pFKey->aCol[0].iFrom = p->nCol-1; + }else{ + for(i=0; inCol; j++){ + if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ + pFKey->aCol[i].iFrom = j; + break; + } + } + if( j>=p->nCol ){ + sqlite3ErrorMsg(pParse, + "unknown column \"%s\" in foreign key definition", + pFromCol->a[i].zName); + goto fk_end; + } + } + } + if( pToCol ){ + for(i=0; ia[i].zName); + pFKey->aCol[i].zCol = z; + memcpy(z, pToCol->a[i].zName, n); + z[n] = 0; + z += n+1; + } + } + pFKey->isDeferred = 0; + pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ + pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ + + assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); + pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, + pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey + ); + if( pNextTo==pFKey ){ + db->mallocFailed = 1; + goto fk_end; + } + if( pNextTo ){ + assert( pNextTo->pPrevTo==0 ); + pFKey->pNextTo = pNextTo; + pNextTo->pPrevTo = pFKey; + } + + /* Link the foreign key to the table as the last step. + */ + p->pFKey = pFKey; + pFKey = 0; + +fk_end: + sqlite3DbFree(db, pFKey); +#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ + sqlite3ExprListDelete(db, pFromCol); + sqlite3ExprListDelete(db, pToCol); +} + +/* +** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED +** clause is seen as part of a foreign key definition. The isDeferred +** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. +** The behavior of the most recently created foreign key is adjusted +** accordingly. +*/ +void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ +#ifndef SQLITE_OMIT_FOREIGN_KEY + Table *pTab; + FKey *pFKey; + if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; + assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ + pFKey->isDeferred = (u8)isDeferred; +#endif +} + +/* +** Generate code that will erase and refill index *pIdx. This is +** used to initialize a newly created index or to recompute the +** content of an index in response to a REINDEX command. +** +** if memRootPage is not negative, it means that the index is newly +** created. The register specified by memRootPage contains the +** root page number of the index. If memRootPage is negative, then +** the index already exists and must be cleared before being refilled and +** the root page number of the index is taken from pIndex->tnum. +*/ +static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ + Table *pTab = pIndex->pTable; /* The table that is indexed */ + int iTab = pParse->nTab++; /* Btree cursor used for pTab */ + int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ + int iSorter; /* Cursor opened by OpenSorter (if in use) */ + int addr1; /* Address of top of loop */ + int addr2; /* Address to jump to for next iteration */ + int tnum; /* Root page of index */ + Vdbe *v; /* Generate code into this virtual machine */ + KeyInfo *pKey; /* KeyInfo for index */ +#ifdef SQLITE_OMIT_MERGE_SORT + int regIdxKey; /* Registers containing the index key */ +#endif + int regRecord; /* Register holding assemblied index record */ + sqlite3 *db = pParse->db; /* The database connection */ + int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); + +#ifndef SQLITE_OMIT_AUTHORIZATION + if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, + db->aDb[iDb].zName ) ){ + return; + } +#endif + + /* Require a write-lock on the table to perform this operation */ + sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); + + v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + if( memRootPage>=0 ){ + tnum = memRootPage; + }else{ + tnum = pIndex->tnum; + sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); + } + pKey = sqlite3IndexKeyinfo(pParse, pIndex); + sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, + (char *)pKey, P4_KEYINFO_HANDOFF); + if( memRootPage>=0 ){ + sqlite3VdbeChangeP5(v, 1); + } + +#ifndef SQLITE_OMIT_MERGE_SORT + /* Open the sorter cursor if we are to use one. */ + iSorter = pParse->nTab++; + sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO); +#else + iSorter = iTab; +#endif + + /* Open the table. Loop through all rows of the table, inserting index + ** records into the sorter. */ + sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); + regRecord = sqlite3GetTempReg(pParse); + +#ifndef SQLITE_OMIT_MERGE_SORT + sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); + sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); + sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); + sqlite3VdbeJumpHere(v, addr1); + addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); + if( pIndex->onError!=OE_None ){ + int j2 = sqlite3VdbeCurrentAddr(v) + 3; + sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); + addr2 = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord); + sqlite3HaltConstraint( + pParse, OE_Abort, "indexed columns are not unique", P4_STATIC + ); + }else{ + addr2 = sqlite3VdbeCurrentAddr(v); + } + sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); + sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); + sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); +#else + regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); + addr2 = addr1 + 1; + if( pIndex->onError!=OE_None ){ + const int regRowid = regIdxKey + pIndex->nColumn; + const int j2 = sqlite3VdbeCurrentAddr(v) + 2; + void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); + + /* The registers accessed by the OP_IsUnique opcode were allocated + ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() + ** call above. Just before that function was freed they were released + ** (made available to the compiler for reuse) using + ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique + ** opcode use the values stored within seems dangerous. However, since + ** we can be sure that no other temp registers have been allocated + ** since sqlite3ReleaseTempRange() was called, it is safe to do so. + */ + sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); + sqlite3HaltConstraint( + pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); + } + sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); + sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); +#endif + sqlite3ReleaseTempReg(pParse, regRecord); + sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); + sqlite3VdbeJumpHere(v, addr1); + + sqlite3VdbeAddOp1(v, OP_Close, iTab); + sqlite3VdbeAddOp1(v, OP_Close, iIdx); + sqlite3VdbeAddOp1(v, OP_Close, iSorter); +} + +/* +** Create a new index for an SQL table. pName1.pName2 is the name of the index +** and pTblList is the name of the table that is to be indexed. Both will +** be NULL for a primary key or an index that is created to satisfy a +** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable +** as the table to be indexed. pParse->pNewTable is a table that is +** currently being constructed by a CREATE TABLE statement. +** +** pList is a list of columns to be indexed. pList will be NULL if this +** is a primary key or unique-constraint on the most recent column added +** to the table currently under construction. +** +** If the index is created successfully, return a pointer to the new Index +** structure. This is used by sqlite3AddPrimaryKey() to mark the index +** as the tables primary key (Index.autoIndex==2). +*/ +Index *sqlite3CreateIndex( + Parse *pParse, /* All information about this parse */ + Token *pName1, /* First part of index name. May be NULL */ + Token *pName2, /* Second part of index name. May be NULL */ + SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ + ExprList *pList, /* A list of columns to be indexed */ + int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ + Token *pStart, /* The CREATE token that begins this statement */ + Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ + int sortOrder, /* Sort order of primary key when pList==NULL */ + int ifNotExist /* Omit error if index already exists */ +){ + Index *pRet = 0; /* Pointer to return */ + Table *pTab = 0; /* Table to be indexed */ + Index *pIndex = 0; /* The index to be created */ + char *zName = 0; /* Name of the index */ + int nName; /* Number of characters in zName */ + int i, j; + Token nullId; /* Fake token for an empty ID list */ + DbFixer sFix; /* For assigning database names to pTable */ + int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ + sqlite3 *db = pParse->db; + Db *pDb; /* The specific table containing the indexed database */ + int iDb; /* Index of the database that is being written */ + Token *pName = 0; /* Unqualified name of the index to create */ + struct ExprList_item *pListItem; /* For looping over pList */ + int nCol; + int nExtra = 0; + char *zExtra; + + assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ + assert( pParse->nErr==0 ); /* Never called with prior errors */ + if( db->mallocFailed || IN_DECLARE_VTAB ){ + goto exit_create_index; + } + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + goto exit_create_index; + } + + /* + ** Find the table that is to be indexed. Return early if not found. + */ + if( pTblName!=0 ){ + + /* Use the two-part index name to determine the database + ** to search for the table. 'Fix' the table name to this db + ** before looking up the table. + */ + assert( pName1 && pName2 ); + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); + if( iDb<0 ) goto exit_create_index; + assert( pName && pName->z ); + +#ifndef SQLITE_OMIT_TEMPDB + /* If the index name was unqualified, check if the the table + ** is a temp table. If so, set the database to 1. Do not do this + ** if initialising a database schema. + */ + if( !db->init.busy ){ + pTab = sqlite3SrcListLookup(pParse, pTblName); + if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ + iDb = 1; + } + } +#endif + + if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && + sqlite3FixSrcList(&sFix, pTblName) + ){ + /* Because the parser constructs pTblName from a single identifier, + ** sqlite3FixSrcList can never fail. */ + assert(0); + } + pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, + pTblName->a[0].zDatabase); + if( !pTab || db->mallocFailed ) goto exit_create_index; + assert( db->aDb[iDb].pSchema==pTab->pSchema ); + }else{ + assert( pName==0 ); + assert( pStart==0 ); + pTab = pParse->pNewTable; + if( !pTab ) goto exit_create_index; + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + } + pDb = &db->aDb[iDb]; + + assert( pTab!=0 ); + assert( pParse->nErr==0 ); + if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 + && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){ + sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); + goto exit_create_index; + } +#ifndef SQLITE_OMIT_VIEW + if( pTab->pSelect ){ + sqlite3ErrorMsg(pParse, "views may not be indexed"); + goto exit_create_index; + } +#endif +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); + goto exit_create_index; + } +#endif + + /* + ** Find the name of the index. Make sure there is not already another + ** index or table with the same name. + ** + ** Exception: If we are reading the names of permanent indices from the + ** sqlite_master table (because some other process changed the schema) and + ** one of the index names collides with the name of a temporary table or + ** index, then we will continue to process this index. + ** + ** If pName==0 it means that we are + ** dealing with a primary key or UNIQUE constraint. We have to invent our + ** own name. + */ + if( pName ){ + zName = sqlite3NameFromToken(db, pName); + if( zName==0 ) goto exit_create_index; + assert( pName->z!=0 ); + if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ + goto exit_create_index; + } + if( !db->init.busy ){ + if( sqlite3FindTable(db, zName, 0)!=0 ){ + sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); + goto exit_create_index; + } + } + if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ + if( !ifNotExist ){ + sqlite3ErrorMsg(pParse, "index %s already exists", zName); + }else{ + assert( !db->init.busy ); + sqlite3CodeVerifySchema(pParse, iDb); + } + goto exit_create_index; + } + }else{ + int n; + Index *pLoop; + for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} + zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); + if( zName==0 ){ + goto exit_create_index; + } + } + + /* Check for authorization to create an index. + */ +#ifndef SQLITE_OMIT_AUTHORIZATION + { + const char *zDb = pDb->zName; + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ + goto exit_create_index; + } + i = SQLITE_CREATE_INDEX; + if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; + if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ + goto exit_create_index; + } + } +#endif + + /* If pList==0, it means this routine was called to make a primary + ** key out of the last column added to the table under construction. + ** So create a fake list to simulate this. + */ + if( pList==0 ){ + nullId.z = pTab->aCol[pTab->nCol-1].zName; + nullId.n = sqlite3Strlen30((char*)nullId.z); + pList = sqlite3ExprListAppend(pParse, 0, 0); + if( pList==0 ) goto exit_create_index; + sqlite3ExprListSetName(pParse, pList, &nullId, 0); + pList->a[0].sortOrder = (u8)sortOrder; + } + + /* Figure out how many bytes of space are required to store explicitly + ** specified collation sequence names. + */ + for(i=0; inExpr; i++){ + Expr *pExpr = pList->a[i].pExpr; + if( pExpr ){ + CollSeq *pColl = pExpr->pColl; + /* Either pColl!=0 or there was an OOM failure. But if an OOM + ** failure we have quit before reaching this point. */ + if( ALWAYS(pColl) ){ + nExtra += (1 + sqlite3Strlen30(pColl->zName)); + } + } + } + + /* + ** Allocate the index structure. + */ + nName = sqlite3Strlen30(zName); + nCol = pList->nExpr; + pIndex = sqlite3DbMallocZero(db, + sizeof(Index) + /* Index structure */ + sizeof(tRowcnt)*(nCol+1) + /* Index.aiRowEst */ + sizeof(int)*nCol + /* Index.aiColumn */ + sizeof(char *)*nCol + /* Index.azColl */ + sizeof(u8)*nCol + /* Index.aSortOrder */ + nName + 1 + /* Index.zName */ + nExtra /* Collation sequence names */ + ); + if( db->mallocFailed ){ + goto exit_create_index; + } + pIndex->aiRowEst = (tRowcnt*)(&pIndex[1]); + pIndex->azColl = (char**)(&pIndex->aiRowEst[nCol+1]); + pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); + pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]); + pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); + zExtra = (char *)(&pIndex->zName[nName+1]); + memcpy(pIndex->zName, zName, nName+1); + pIndex->pTable = pTab; + pIndex->nColumn = pList->nExpr; + pIndex->onError = (u8)onError; + pIndex->autoIndex = (u8)(pName==0); + pIndex->pSchema = db->aDb[iDb].pSchema; + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + + /* Check to see if we should honor DESC requests on index columns + */ + if( pDb->pSchema->file_format>=4 ){ + sortOrderMask = -1; /* Honor DESC */ + }else{ + sortOrderMask = 0; /* Ignore DESC */ + } + + /* Scan the names of the columns of the table to be indexed and + ** load the column indices into the Index structure. Report an error + ** if any column is not found. + ** + ** TODO: Add a test to make sure that the same column is not named + ** more than once within the same index. Only the first instance of + ** the column will ever be used by the optimizer. Note that using the + ** same column more than once cannot be an error because that would + ** break backwards compatibility - it needs to be a warning. + */ + for(i=0, pListItem=pList->a; inExpr; i++, pListItem++){ + const char *zColName = pListItem->zName; + Column *pTabCol; + int requestedSortOrder; + char *zColl; /* Collation sequence name */ + + for(j=0, pTabCol=pTab->aCol; jnCol; j++, pTabCol++){ + if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; + } + if( j>=pTab->nCol ){ + sqlite3ErrorMsg(pParse, "table %s has no column named %s", + pTab->zName, zColName); + pParse->checkSchema = 1; + goto exit_create_index; + } + pIndex->aiColumn[i] = j; + /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of + ** the way the "idxlist" non-terminal is constructed by the parser, + ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl + ** must exist or else there must have been an OOM error. But if there + ** was an OOM error, we would never reach this point. */ + if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){ + int nColl; + zColl = pListItem->pExpr->pColl->zName; + nColl = sqlite3Strlen30(zColl) + 1; + assert( nExtra>=nColl ); + memcpy(zExtra, zColl, nColl); + zColl = zExtra; + zExtra += nColl; + nExtra -= nColl; + }else{ + zColl = pTab->aCol[j].zColl; + if( !zColl ){ + zColl = db->pDfltColl->zName; + } + } + if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ + goto exit_create_index; + } + pIndex->azColl[i] = zColl; + requestedSortOrder = pListItem->sortOrder & sortOrderMask; + pIndex->aSortOrder[i] = (u8)requestedSortOrder; + } + sqlite3DefaultRowEst(pIndex); + + if( pTab==pParse->pNewTable ){ + /* This routine has been called to create an automatic index as a + ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or + ** a PRIMARY KEY or UNIQUE clause following the column definitions. + ** i.e. one of: + ** + ** CREATE TABLE t(x PRIMARY KEY, y); + ** CREATE TABLE t(x, y, UNIQUE(x, y)); + ** + ** Either way, check to see if the table already has such an index. If + ** so, don't bother creating this one. This only applies to + ** automatically created indices. Users can do as they wish with + ** explicit indices. + ** + ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent + ** (and thus suppressing the second one) even if they have different + ** sort orders. + ** + ** If there are different collating sequences or if the columns of + ** the constraint occur in different orders, then the constraints are + ** considered distinct and both result in separate indices. + */ + Index *pIdx; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + int k; + assert( pIdx->onError!=OE_None ); + assert( pIdx->autoIndex ); + assert( pIndex->onError!=OE_None ); + + if( pIdx->nColumn!=pIndex->nColumn ) continue; + for(k=0; knColumn; k++){ + const char *z1; + const char *z2; + if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; + z1 = pIdx->azColl[k]; + z2 = pIndex->azColl[k]; + if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; + } + if( k==pIdx->nColumn ){ + if( pIdx->onError!=pIndex->onError ){ + /* This constraint creates the same index as a previous + ** constraint specified somewhere in the CREATE TABLE statement. + ** However the ON CONFLICT clauses are different. If both this + ** constraint and the previous equivalent constraint have explicit + ** ON CONFLICT clauses this is an error. Otherwise, use the + ** explicitly specified behaviour for the index. + */ + if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ + sqlite3ErrorMsg(pParse, + "conflicting ON CONFLICT clauses specified", 0); + } + if( pIdx->onError==OE_Default ){ + pIdx->onError = pIndex->onError; + } + } + goto exit_create_index; + } + } + } + + /* Link the new Index structure to its table and to the other + ** in-memory database structures. + */ + if( db->init.busy ){ + Index *p; + assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); + p = sqlite3HashInsert(&pIndex->pSchema->idxHash, + pIndex->zName, sqlite3Strlen30(pIndex->zName), + pIndex); + if( p ){ + assert( p==pIndex ); /* Malloc must have failed */ + db->mallocFailed = 1; + goto exit_create_index; + } + db->flags |= SQLITE_InternChanges; + if( pTblName!=0 ){ + pIndex->tnum = db->init.newTnum; + } + } + + /* If the db->init.busy is 0 then create the index on disk. This + ** involves writing the index into the master table and filling in the + ** index with the current table contents. + ** + ** The db->init.busy is 0 when the user first enters a CREATE INDEX + ** command. db->init.busy is 1 when a database is opened and + ** CREATE INDEX statements are read out of the master table. In + ** the latter case the index already exists on disk, which is why + ** we don't want to recreate it. + ** + ** If pTblName==0 it means this index is generated as a primary key + ** or UNIQUE constraint of a CREATE TABLE statement. Since the table + ** has just been created, it contains no data and the index initialization + ** step can be skipped. + */ + else{ /* if( db->init.busy==0 ) */ + Vdbe *v; + char *zStmt; + int iMem = ++pParse->nMem; + + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto exit_create_index; + + + /* Create the rootpage for the index + */ + sqlite3BeginWriteOperation(pParse, 1, iDb); + sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); + + /* Gather the complete text of the CREATE INDEX statement into + ** the zStmt variable + */ + if( pStart ){ + assert( pEnd!=0 ); + /* A named index with an explicit CREATE INDEX statement */ + zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", + onError==OE_None ? "" : " UNIQUE", + (int)(pEnd->z - pName->z) + 1, + pName->z); + }else{ + /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ + /* zStmt = sqlite3MPrintf(""); */ + zStmt = 0; + } + + /* Add an entry in sqlite_master for this index + */ + sqlite3NestedParse(pParse, + "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", + db->aDb[iDb].zName, SCHEMA_TABLE(iDb), + pIndex->zName, + pTab->zName, + iMem, + zStmt + ); + sqlite3DbFree(db, zStmt); + + /* Fill the index with data and reparse the schema. Code an OP_Expire + ** to invalidate all pre-compiled statements. + */ + if( pTblName ){ + sqlite3RefillIndex(pParse, pIndex, iMem); + sqlite3ChangeCookie(pParse, iDb); + sqlite3VdbeAddParseSchemaOp(v, iDb, + sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); + sqlite3VdbeAddOp1(v, OP_Expire, 0); + } + } + + /* When adding an index to the list of indices for a table, make + ** sure all indices labeled OE_Replace come after all those labeled + ** OE_Ignore. This is necessary for the correct constraint check + ** processing (in sqlite3GenerateConstraintChecks()) as part of + ** UPDATE and INSERT statements. + */ + if( db->init.busy || pTblName==0 ){ + if( onError!=OE_Replace || pTab->pIndex==0 + || pTab->pIndex->onError==OE_Replace){ + pIndex->pNext = pTab->pIndex; + pTab->pIndex = pIndex; + }else{ + Index *pOther = pTab->pIndex; + while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ + pOther = pOther->pNext; + } + pIndex->pNext = pOther->pNext; + pOther->pNext = pIndex; + } + pRet = pIndex; + pIndex = 0; + } + + /* Clean up before exiting */ +exit_create_index: + if( pIndex ){ + sqlite3DbFree(db, pIndex->zColAff); + sqlite3DbFree(db, pIndex); + } + sqlite3ExprListDelete(db, pList); + sqlite3SrcListDelete(db, pTblName); + sqlite3DbFree(db, zName); + return pRet; +} + +/* +** Fill the Index.aiRowEst[] array with default information - information +** to be used when we have not run the ANALYZE command. +** +** aiRowEst[0] is suppose to contain the number of elements in the index. +** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the +** number of rows in the table that match any particular value of the +** first column of the index. aiRowEst[2] is an estimate of the number +** of rows that match any particular combiniation of the first 2 columns +** of the index. And so forth. It must always be the case that +* +** aiRowEst[N]<=aiRowEst[N-1] +** aiRowEst[N]>=1 +** +** Apart from that, we have little to go on besides intuition as to +** how aiRowEst[] should be initialized. The numbers generated here +** are based on typical values found in actual indices. +*/ +void sqlite3DefaultRowEst(Index *pIdx){ + tRowcnt *a = pIdx->aiRowEst; + int i; + tRowcnt n; + assert( a!=0 ); + a[0] = pIdx->pTable->nRowEst; + if( a[0]<10 ) a[0] = 10; + n = 10; + for(i=1; i<=pIdx->nColumn; i++){ + a[i] = n; + if( n>5 ) n--; + } + if( pIdx->onError!=OE_None ){ + a[pIdx->nColumn] = 1; + } +} + +/* +** This routine will drop an existing named index. This routine +** implements the DROP INDEX statement. +*/ +void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ + Index *pIndex; + Vdbe *v; + sqlite3 *db = pParse->db; + int iDb; + + assert( pParse->nErr==0 ); /* Never called with prior errors */ + if( db->mallocFailed ){ + goto exit_drop_index; + } + assert( pName->nSrc==1 ); + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + goto exit_drop_index; + } + pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); + if( pIndex==0 ){ + if( !ifExists ){ + sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); + }else{ + sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); + } + pParse->checkSchema = 1; + goto exit_drop_index; + } + if( pIndex->autoIndex ){ + sqlite3ErrorMsg(pParse, "index associated with UNIQUE " + "or PRIMARY KEY constraint cannot be dropped", 0); + goto exit_drop_index; + } + iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int code = SQLITE_DROP_INDEX; + Table *pTab = pIndex->pTable; + const char *zDb = db->aDb[iDb].zName; + const char *zTab = SCHEMA_TABLE(iDb); + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ + goto exit_drop_index; + } + if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; + if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ + goto exit_drop_index; + } + } +#endif + + /* Generate code to remove the index and from the master table */ + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3BeginWriteOperation(pParse, 1, iDb); + sqlite3NestedParse(pParse, + "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", + db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName + ); + sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); + sqlite3ChangeCookie(pParse, iDb); + destroyRootPage(pParse, pIndex->tnum, iDb); + sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); + } + +exit_drop_index: + sqlite3SrcListDelete(db, pName); +} + +/* +** pArray is a pointer to an array of objects. Each object in the +** array is szEntry bytes in size. This routine allocates a new +** object on the end of the array. +** +** *pnEntry is the number of entries already in use. *pnAlloc is +** the previously allocated size of the array. initSize is the +** suggested initial array size allocation. +** +** The index of the new entry is returned in *pIdx. +** +** This routine returns a pointer to the array of objects. This +** might be the same as the pArray parameter or it might be a different +** pointer if the array was resized. +*/ +void *sqlite3ArrayAllocate( + sqlite3 *db, /* Connection to notify of malloc failures */ + void *pArray, /* Array of objects. Might be reallocated */ + int szEntry, /* Size of each object in the array */ + int initSize, /* Suggested initial allocation, in elements */ + int *pnEntry, /* Number of objects currently in use */ + int *pnAlloc, /* Current size of the allocation, in elements */ + int *pIdx /* Write the index of a new slot here */ +){ + char *z; + if( *pnEntry >= *pnAlloc ){ + void *pNew; + int newSize; + newSize = (*pnAlloc)*2 + initSize; + pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); + if( pNew==0 ){ + *pIdx = -1; + return pArray; + } + *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry; + pArray = pNew; + } + z = (char*)pArray; + memset(&z[*pnEntry * szEntry], 0, szEntry); + *pIdx = *pnEntry; + ++*pnEntry; + return pArray; +} + +/* +** Append a new element to the given IdList. Create a new IdList if +** need be. +** +** A new IdList is returned, or NULL if malloc() fails. +*/ +IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ + int i; + if( pList==0 ){ + pList = sqlite3DbMallocZero(db, sizeof(IdList) ); + if( pList==0 ) return 0; + pList->nAlloc = 0; + } + pList->a = sqlite3ArrayAllocate( + db, + pList->a, + sizeof(pList->a[0]), + 5, + &pList->nId, + &pList->nAlloc, + &i + ); + if( i<0 ){ + sqlite3IdListDelete(db, pList); + return 0; + } + pList->a[i].zName = sqlite3NameFromToken(db, pToken); + return pList; +} + +/* +** Delete an IdList. +*/ +void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ + int i; + if( pList==0 ) return; + for(i=0; inId; i++){ + sqlite3DbFree(db, pList->a[i].zName); + } + sqlite3DbFree(db, pList->a); + sqlite3DbFree(db, pList); +} + +/* +** Return the index in pList of the identifier named zId. Return -1 +** if not found. +*/ +int sqlite3IdListIndex(IdList *pList, const char *zName){ + int i; + if( pList==0 ) return -1; + for(i=0; inId; i++){ + if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; + } + return -1; +} + +/* +** Expand the space allocated for the given SrcList object by +** creating nExtra new slots beginning at iStart. iStart is zero based. +** New slots are zeroed. +** +** For example, suppose a SrcList initially contains two entries: A,B. +** To append 3 new entries onto the end, do this: +** +** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); +** +** After the call above it would contain: A, B, nil, nil, nil. +** If the iStart argument had been 1 instead of 2, then the result +** would have been: A, nil, nil, nil, B. To prepend the new slots, +** the iStart value would be 0. The result then would +** be: nil, nil, nil, A, B. +** +** If a memory allocation fails the SrcList is unchanged. The +** db->mallocFailed flag will be set to true. +*/ +SrcList *sqlite3SrcListEnlarge( + sqlite3 *db, /* Database connection to notify of OOM errors */ + SrcList *pSrc, /* The SrcList to be enlarged */ + int nExtra, /* Number of new slots to add to pSrc->a[] */ + int iStart /* Index in pSrc->a[] of first new slot */ +){ + int i; + + /* Sanity checking on calling parameters */ + assert( iStart>=0 ); + assert( nExtra>=1 ); + assert( pSrc!=0 ); + assert( iStart<=pSrc->nSrc ); + + /* Allocate additional space if needed */ + if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ + SrcList *pNew; + int nAlloc = pSrc->nSrc+nExtra; + int nGot; + pNew = sqlite3DbRealloc(db, pSrc, + sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); + if( pNew==0 ){ + assert( db->mallocFailed ); + return pSrc; + } + pSrc = pNew; + nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; + pSrc->nAlloc = (u16)nGot; + } + + /* Move existing slots that come after the newly inserted slots + ** out of the way */ + for(i=pSrc->nSrc-1; i>=iStart; i--){ + pSrc->a[i+nExtra] = pSrc->a[i]; + } + pSrc->nSrc += (i16)nExtra; + + /* Zero the newly allocated slots */ + memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); + for(i=iStart; ia[i].iCursor = -1; + } + + /* Return a pointer to the enlarged SrcList */ + return pSrc; +} + + +/* +** Append a new table name to the given SrcList. Create a new SrcList if +** need be. A new entry is created in the SrcList even if pTable is NULL. +** +** A SrcList is returned, or NULL if there is an OOM error. The returned +** SrcList might be the same as the SrcList that was input or it might be +** a new one. If an OOM error does occurs, then the prior value of pList +** that is input to this routine is automatically freed. +** +** If pDatabase is not null, it means that the table has an optional +** database name prefix. Like this: "database.table". The pDatabase +** points to the table name and the pTable points to the database name. +** The SrcList.a[].zName field is filled with the table name which might +** come from pTable (if pDatabase is NULL) or from pDatabase. +** SrcList.a[].zDatabase is filled with the database name from pTable, +** or with NULL if no database is specified. +** +** In other words, if call like this: +** +** sqlite3SrcListAppend(D,A,B,0); +** +** Then B is a table name and the database name is unspecified. If called +** like this: +** +** sqlite3SrcListAppend(D,A,B,C); +** +** Then C is the table name and B is the database name. If C is defined +** then so is B. In other words, we never have a case where: +** +** sqlite3SrcListAppend(D,A,0,C); +** +** Both pTable and pDatabase are assumed to be quoted. They are dequoted +** before being added to the SrcList. +*/ +SrcList *sqlite3SrcListAppend( + sqlite3 *db, /* Connection to notify of malloc failures */ + SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ + Token *pTable, /* Table to append */ + Token *pDatabase /* Database of the table */ +){ + struct SrcList_item *pItem; + assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ + if( pList==0 ){ + pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); + if( pList==0 ) return 0; + pList->nAlloc = 1; + } + pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); + if( db->mallocFailed ){ + sqlite3SrcListDelete(db, pList); + return 0; + } + pItem = &pList->a[pList->nSrc-1]; + if( pDatabase && pDatabase->z==0 ){ + pDatabase = 0; + } + if( pDatabase ){ + Token *pTemp = pDatabase; + pDatabase = pTable; + pTable = pTemp; + } + pItem->zName = sqlite3NameFromToken(db, pTable); + pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); + return pList; +} + +/* +** Assign VdbeCursor index numbers to all tables in a SrcList +*/ +void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ + int i; + struct SrcList_item *pItem; + assert(pList || pParse->db->mallocFailed ); + if( pList ){ + for(i=0, pItem=pList->a; inSrc; i++, pItem++){ + if( pItem->iCursor>=0 ) break; + pItem->iCursor = pParse->nTab++; + if( pItem->pSelect ){ + sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); + } + } + } +} + +/* +** Delete an entire SrcList including all its substructure. +*/ +void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ + int i; + struct SrcList_item *pItem; + if( pList==0 ) return; + for(pItem=pList->a, i=0; inSrc; i++, pItem++){ + sqlite3DbFree(db, pItem->zDatabase); + sqlite3DbFree(db, pItem->zName); + sqlite3DbFree(db, pItem->zAlias); + sqlite3DbFree(db, pItem->zIndex); + sqlite3DeleteTable(db, pItem->pTab); + sqlite3SelectDelete(db, pItem->pSelect); + sqlite3ExprDelete(db, pItem->pOn); + sqlite3IdListDelete(db, pItem->pUsing); + } + sqlite3DbFree(db, pList); +} + +/* +** This routine is called by the parser to add a new term to the +** end of a growing FROM clause. The "p" parameter is the part of +** the FROM clause that has already been constructed. "p" is NULL +** if this is the first term of the FROM clause. pTable and pDatabase +** are the name of the table and database named in the FROM clause term. +** pDatabase is NULL if the database name qualifier is missing - the +** usual case. If the term has a alias, then pAlias points to the +** alias token. If the term is a subquery, then pSubquery is the +** SELECT statement that the subquery encodes. The pTable and +** pDatabase parameters are NULL for subqueries. The pOn and pUsing +** parameters are the content of the ON and USING clauses. +** +** Return a new SrcList which encodes is the FROM with the new +** term added. +*/ +SrcList *sqlite3SrcListAppendFromTerm( + Parse *pParse, /* Parsing context */ + SrcList *p, /* The left part of the FROM clause already seen */ + Token *pTable, /* Name of the table to add to the FROM clause */ + Token *pDatabase, /* Name of the database containing pTable */ + Token *pAlias, /* The right-hand side of the AS subexpression */ + Select *pSubquery, /* A subquery used in place of a table name */ + Expr *pOn, /* The ON clause of a join */ + IdList *pUsing /* The USING clause of a join */ +){ + struct SrcList_item *pItem; + sqlite3 *db = pParse->db; + if( !p && (pOn || pUsing) ){ + sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", + (pOn ? "ON" : "USING") + ); + goto append_from_error; + } + p = sqlite3SrcListAppend(db, p, pTable, pDatabase); + if( p==0 || NEVER(p->nSrc==0) ){ + goto append_from_error; + } + pItem = &p->a[p->nSrc-1]; + assert( pAlias!=0 ); + if( pAlias->n ){ + pItem->zAlias = sqlite3NameFromToken(db, pAlias); + } + pItem->pSelect = pSubquery; + pItem->pOn = pOn; + pItem->pUsing = pUsing; + return p; + + append_from_error: + assert( p==0 ); + sqlite3ExprDelete(db, pOn); + sqlite3IdListDelete(db, pUsing); + sqlite3SelectDelete(db, pSubquery); + return 0; +} + +/* +** Add an INDEXED BY or NOT INDEXED clause to the most recently added +** element of the source-list passed as the second argument. +*/ +void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ + assert( pIndexedBy!=0 ); + if( p && ALWAYS(p->nSrc>0) ){ + struct SrcList_item *pItem = &p->a[p->nSrc-1]; + assert( pItem->notIndexed==0 && pItem->zIndex==0 ); + if( pIndexedBy->n==1 && !pIndexedBy->z ){ + /* A "NOT INDEXED" clause was supplied. See parse.y + ** construct "indexed_opt" for details. */ + pItem->notIndexed = 1; + }else{ + pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); + } + } +} + +/* +** When building up a FROM clause in the parser, the join operator +** is initially attached to the left operand. But the code generator +** expects the join operator to be on the right operand. This routine +** Shifts all join operators from left to right for an entire FROM +** clause. +** +** Example: Suppose the join is like this: +** +** A natural cross join B +** +** The operator is "natural cross join". The A and B operands are stored +** in p->a[0] and p->a[1], respectively. The parser initially stores the +** operator with A. This routine shifts that operator over to B. +*/ +void sqlite3SrcListShiftJoinType(SrcList *p){ + if( p ){ + int i; + assert( p->a || p->nSrc==0 ); + for(i=p->nSrc-1; i>0; i--){ + p->a[i].jointype = p->a[i-1].jointype; + } + p->a[0].jointype = 0; + } +} + +/* +** Begin a transaction +*/ +void sqlite3BeginTransaction(Parse *pParse, int type){ + sqlite3 *db; + Vdbe *v; + int i; + + assert( pParse!=0 ); + db = pParse->db; + assert( db!=0 ); +/* if( db->aDb[0].pBt==0 ) return; */ + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ + return; + } + v = sqlite3GetVdbe(pParse); + if( !v ) return; + if( type!=TK_DEFERRED ){ + for(i=0; inDb; i++){ + sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); + sqlite3VdbeUsesBtree(v, i); + } + } + sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); +} + +/* +** Commit a transaction +*/ +void sqlite3CommitTransaction(Parse *pParse){ + Vdbe *v; + + assert( pParse!=0 ); + assert( pParse->db!=0 ); + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ + return; + } + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); + } +} + +/* +** Rollback a transaction +*/ +void sqlite3RollbackTransaction(Parse *pParse){ + Vdbe *v; + + assert( pParse!=0 ); + assert( pParse->db!=0 ); + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ + return; + } + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); + } +} + +/* +** This function is called by the parser when it parses a command to create, +** release or rollback an SQL savepoint. +*/ +void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ + char *zName = sqlite3NameFromToken(pParse->db, pName); + if( zName ){ + Vdbe *v = sqlite3GetVdbe(pParse); +#ifndef SQLITE_OMIT_AUTHORIZATION + static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; + assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); +#endif + if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ + sqlite3DbFree(pParse->db, zName); + return; + } + sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); + } +} + +/* +** Make sure the TEMP database is open and available for use. Return +** the number of errors. Leave any error messages in the pParse structure. +*/ +int sqlite3OpenTempDatabase(Parse *pParse){ + sqlite3 *db = pParse->db; + if( db->aDb[1].pBt==0 && !pParse->explain ){ + int rc; + Btree *pBt; + static const int flags = + SQLITE_OPEN_READWRITE | + SQLITE_OPEN_CREATE | + SQLITE_OPEN_EXCLUSIVE | + SQLITE_OPEN_DELETEONCLOSE | + SQLITE_OPEN_TEMP_DB; + + rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); + if( rc!=SQLITE_OK ){ + sqlite3ErrorMsg(pParse, "unable to open a temporary database " + "file for storing temporary tables"); + pParse->rc = rc; + return 1; + } + db->aDb[1].pBt = pBt; + assert( db->aDb[1].pSchema ); + if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ + db->mallocFailed = 1; + return 1; + } + } + return 0; +} + +/* +** Generate VDBE code that will verify the schema cookie and start +** a read-transaction for all named database files. +** +** It is important that all schema cookies be verified and all +** read transactions be started before anything else happens in +** the VDBE program. But this routine can be called after much other +** code has been generated. So here is what we do: +** +** The first time this routine is called, we code an OP_Goto that +** will jump to a subroutine at the end of the program. Then we +** record every database that needs its schema verified in the +** pParse->cookieMask field. Later, after all other code has been +** generated, the subroutine that does the cookie verifications and +** starts the transactions will be coded and the OP_Goto P2 value +** will be made to point to that subroutine. The generation of the +** cookie verification subroutine code happens in sqlite3FinishCoding(). +** +** If iDb<0 then code the OP_Goto only - don't set flag to verify the +** schema on any databases. This can be used to position the OP_Goto +** early in the code, before we know if any database tables will be used. +*/ +void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ + Parse *pToplevel = sqlite3ParseToplevel(pParse); + + if( pToplevel->cookieGoto==0 ){ + Vdbe *v = sqlite3GetVdbe(pToplevel); + if( v==0 ) return; /* This only happens if there was a prior error */ + pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; + } + if( iDb>=0 ){ + sqlite3 *db = pToplevel->db; + yDbMask mask; + + assert( iDbnDb ); + assert( db->aDb[iDb].pBt!=0 || iDb==1 ); + assert( iDbcookieMask & mask)==0 ){ + pToplevel->cookieMask |= mask; + pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; + if( !OMIT_TEMPDB && iDb==1 ){ + sqlite3OpenTempDatabase(pToplevel); + } + } + } +} + +/* +** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each +** attached database. Otherwise, invoke it for the database named zDb only. +*/ +void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ + sqlite3 *db = pParse->db; + int i; + for(i=0; inDb; i++){ + Db *pDb = &db->aDb[i]; + if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ + sqlite3CodeVerifySchema(pParse, i); + } + } +} + +/* +** Generate VDBE code that prepares for doing an operation that +** might change the database. +** +** This routine starts a new transaction if we are not already within +** a transaction. If we are already within a transaction, then a checkpoint +** is set if the setStatement parameter is true. A checkpoint should +** be set for operations that might fail (due to a constraint) part of +** the way through and which will need to undo some writes without having to +** rollback the whole transaction. For operations where all constraints +** can be checked before any changes are made to the database, it is never +** necessary to undo a write and the checkpoint should not be set. +*/ +void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ + Parse *pToplevel = sqlite3ParseToplevel(pParse); + sqlite3CodeVerifySchema(pParse, iDb); + pToplevel->writeMask |= ((yDbMask)1)<isMultiWrite |= setStatement; +} + +/* +** Indicate that the statement currently under construction might write +** more than one entry (example: deleting one row then inserting another, +** inserting multiple rows in a table, or inserting a row and index entries.) +** If an abort occurs after some of these writes have completed, then it will +** be necessary to undo the completed writes. +*/ +void sqlite3MultiWrite(Parse *pParse){ + Parse *pToplevel = sqlite3ParseToplevel(pParse); + pToplevel->isMultiWrite = 1; +} + +/* +** The code generator calls this routine if is discovers that it is +** possible to abort a statement prior to completion. In order to +** perform this abort without corrupting the database, we need to make +** sure that the statement is protected by a statement transaction. +** +** Technically, we only need to set the mayAbort flag if the +** isMultiWrite flag was previously set. There is a time dependency +** such that the abort must occur after the multiwrite. This makes +** some statements involving the REPLACE conflict resolution algorithm +** go a little faster. But taking advantage of this time dependency +** makes it more difficult to prove that the code is correct (in +** particular, it prevents us from writing an effective +** implementation of sqlite3AssertMayAbort()) and so we have chosen +** to take the safe route and skip the optimization. +*/ +void sqlite3MayAbort(Parse *pParse){ + Parse *pToplevel = sqlite3ParseToplevel(pParse); + pToplevel->mayAbort = 1; +} + +/* +** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT +** error. The onError parameter determines which (if any) of the statement +** and/or current transaction is rolled back. +*/ +void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){ + Vdbe *v = sqlite3GetVdbe(pParse); + if( onError==OE_Abort ){ + sqlite3MayAbort(pParse); + } + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type); +} + +/* +** Check to see if pIndex uses the collating sequence pColl. Return +** true if it does and false if it does not. +*/ +#ifndef SQLITE_OMIT_REINDEX +static int collationMatch(const char *zColl, Index *pIndex){ + int i; + assert( zColl!=0 ); + for(i=0; inColumn; i++){ + const char *z = pIndex->azColl[i]; + assert( z!=0 ); + if( 0==sqlite3StrICmp(z, zColl) ){ + return 1; + } + } + return 0; +} +#endif + +/* +** Recompute all indices of pTab that use the collating sequence pColl. +** If pColl==0 then recompute all indices of pTab. +*/ +#ifndef SQLITE_OMIT_REINDEX +static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ + Index *pIndex; /* An index associated with pTab */ + + for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ + if( zColl==0 || collationMatch(zColl, pIndex) ){ + int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3RefillIndex(pParse, pIndex, -1); + } + } +} +#endif + +/* +** Recompute all indices of all tables in all databases where the +** indices use the collating sequence pColl. If pColl==0 then recompute +** all indices everywhere. +*/ +#ifndef SQLITE_OMIT_REINDEX +static void reindexDatabases(Parse *pParse, char const *zColl){ + Db *pDb; /* A single database */ + int iDb; /* The database index number */ + sqlite3 *db = pParse->db; /* The database connection */ + HashElem *k; /* For looping over tables in pDb */ + Table *pTab; /* A table in the database */ + + assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ + for(iDb=0, pDb=db->aDb; iDbnDb; iDb++, pDb++){ + assert( pDb!=0 ); + for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ + pTab = (Table*)sqliteHashData(k); + reindexTable(pParse, pTab, zColl); + } + } +} +#endif + +/* +** Generate code for the REINDEX command. +** +** REINDEX -- 1 +** REINDEX -- 2 +** REINDEX ?.? -- 3 +** REINDEX ?.? -- 4 +** +** Form 1 causes all indices in all attached databases to be rebuilt. +** Form 2 rebuilds all indices in all databases that use the named +** collating function. Forms 3 and 4 rebuild the named index or all +** indices associated with the named table. +*/ +#ifndef SQLITE_OMIT_REINDEX +void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ + CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ + char *z; /* Name of a table or index */ + const char *zDb; /* Name of the database */ + Table *pTab; /* A table in the database */ + Index *pIndex; /* An index associated with pTab */ + int iDb; /* The database index number */ + sqlite3 *db = pParse->db; /* The database connection */ + Token *pObjName; /* Name of the table or index to be reindexed */ + + /* Read the database schema. If an error occurs, leave an error message + ** and code in pParse and return NULL. */ + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + return; + } + + if( pName1==0 ){ + reindexDatabases(pParse, 0); + return; + }else if( NEVER(pName2==0) || pName2->z==0 ){ + char *zColl; + assert( pName1->z ); + zColl = sqlite3NameFromToken(pParse->db, pName1); + if( !zColl ) return; + pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); + if( pColl ){ + reindexDatabases(pParse, zColl); + sqlite3DbFree(db, zColl); + return; + } + sqlite3DbFree(db, zColl); + } + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); + if( iDb<0 ) return; + z = sqlite3NameFromToken(db, pObjName); + if( z==0 ) return; + zDb = db->aDb[iDb].zName; + pTab = sqlite3FindTable(db, z, zDb); + if( pTab ){ + reindexTable(pParse, pTab, 0); + sqlite3DbFree(db, z); + return; + } + pIndex = sqlite3FindIndex(db, z, zDb); + sqlite3DbFree(db, z); + if( pIndex ){ + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3RefillIndex(pParse, pIndex, -1); + return; + } + sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); +} +#endif + +/* +** Return a dynamicly allocated KeyInfo structure that can be used +** with OP_OpenRead or OP_OpenWrite to access database index pIdx. +** +** If successful, a pointer to the new structure is returned. In this case +** the caller is responsible for calling sqlite3DbFree(db, ) on the returned +** pointer. If an error occurs (out of memory or missing collation +** sequence), NULL is returned and the state of pParse updated to reflect +** the error. +*/ +KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ + int i; + int nCol = pIdx->nColumn; + int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; + sqlite3 *db = pParse->db; + KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); + + if( pKey ){ + pKey->db = pParse->db; + pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); + assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); + for(i=0; iazColl[i]; + assert( zColl ); + pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); + pKey->aSortOrder[i] = pIdx->aSortOrder[i]; + } + pKey->nField = (u16)nCol; + } + + if( pParse->nErr ){ + sqlite3DbFree(db, pKey); + pKey = 0; + } + return pKey; +} diff --git a/src/callback.c b/src/callback.c new file mode 100644 index 0000000..ce84908 --- /dev/null +++ b/src/callback.c @@ -0,0 +1,457 @@ +/* +** 2005 May 23 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains functions used to access the internal hash tables +** of user defined functions and collation sequences. +*/ + +#include "sqliteInt.h" + +/* +** Invoke the 'collation needed' callback to request a collation sequence +** in the encoding enc of name zName, length nName. +*/ +static void callCollNeeded(sqlite3 *db, int enc, const char *zName){ + assert( !db->xCollNeeded || !db->xCollNeeded16 ); + if( db->xCollNeeded ){ + char *zExternal = sqlite3DbStrDup(db, zName); + if( !zExternal ) return; + db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal); + sqlite3DbFree(db, zExternal); + } +#ifndef SQLITE_OMIT_UTF16 + if( db->xCollNeeded16 ){ + char const *zExternal; + sqlite3_value *pTmp = sqlite3ValueNew(db); + sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC); + zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE); + if( zExternal ){ + db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal); + } + sqlite3ValueFree(pTmp); + } +#endif +} + +/* +** This routine is called if the collation factory fails to deliver a +** collation function in the best encoding but there may be other versions +** of this collation function (for other text encodings) available. Use one +** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if +** possible. +*/ +static int synthCollSeq(sqlite3 *db, CollSeq *pColl){ + CollSeq *pColl2; + char *z = pColl->zName; + int i; + static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 }; + for(i=0; i<3; i++){ + pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0); + if( pColl2->xCmp!=0 ){ + memcpy(pColl, pColl2, sizeof(CollSeq)); + pColl->xDel = 0; /* Do not copy the destructor */ + return SQLITE_OK; + } + } + return SQLITE_ERROR; +} + +/* +** This function is responsible for invoking the collation factory callback +** or substituting a collation sequence of a different encoding when the +** requested collation sequence is not available in the desired encoding. +** +** If it is not NULL, then pColl must point to the database native encoding +** collation sequence with name zName, length nName. +** +** The return value is either the collation sequence to be used in database +** db for collation type name zName, length nName, or NULL, if no collation +** sequence can be found. +** +** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq() +*/ +CollSeq *sqlite3GetCollSeq( + sqlite3* db, /* The database connection */ + u8 enc, /* The desired encoding for the collating sequence */ + CollSeq *pColl, /* Collating sequence with native encoding, or NULL */ + const char *zName /* Collating sequence name */ +){ + CollSeq *p; + + p = pColl; + if( !p ){ + p = sqlite3FindCollSeq(db, enc, zName, 0); + } + if( !p || !p->xCmp ){ + /* No collation sequence of this type for this encoding is registered. + ** Call the collation factory to see if it can supply us with one. + */ + callCollNeeded(db, enc, zName); + p = sqlite3FindCollSeq(db, enc, zName, 0); + } + if( p && !p->xCmp && synthCollSeq(db, p) ){ + p = 0; + } + assert( !p || p->xCmp ); + return p; +} + +/* +** This routine is called on a collation sequence before it is used to +** check that it is defined. An undefined collation sequence exists when +** a database is loaded that contains references to collation sequences +** that have not been defined by sqlite3_create_collation() etc. +** +** If required, this routine calls the 'collation needed' callback to +** request a definition of the collating sequence. If this doesn't work, +** an equivalent collating sequence that uses a text encoding different +** from the main database is substituted, if one is available. +*/ +int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ + if( pColl ){ + const char *zName = pColl->zName; + sqlite3 *db = pParse->db; + CollSeq *p = sqlite3GetCollSeq(db, ENC(db), pColl, zName); + if( !p ){ + sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); + pParse->nErr++; + return SQLITE_ERROR; + } + assert( p==pColl ); + } + return SQLITE_OK; +} + + + +/* +** Locate and return an entry from the db.aCollSeq hash table. If the entry +** specified by zName and nName is not found and parameter 'create' is +** true, then create a new entry. Otherwise return NULL. +** +** Each pointer stored in the sqlite3.aCollSeq hash table contains an +** array of three CollSeq structures. The first is the collation sequence +** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be. +** +** Stored immediately after the three collation sequences is a copy of +** the collation sequence name. A pointer to this string is stored in +** each collation sequence structure. +*/ +static CollSeq *findCollSeqEntry( + sqlite3 *db, /* Database connection */ + const char *zName, /* Name of the collating sequence */ + int create /* Create a new entry if true */ +){ + CollSeq *pColl; + int nName = sqlite3Strlen30(zName); + pColl = sqlite3HashFind(&db->aCollSeq, zName, nName); + + if( 0==pColl && create ){ + pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 ); + if( pColl ){ + CollSeq *pDel = 0; + pColl[0].zName = (char*)&pColl[3]; + pColl[0].enc = SQLITE_UTF8; + pColl[1].zName = (char*)&pColl[3]; + pColl[1].enc = SQLITE_UTF16LE; + pColl[2].zName = (char*)&pColl[3]; + pColl[2].enc = SQLITE_UTF16BE; + memcpy(pColl[0].zName, zName, nName); + pColl[0].zName[nName] = 0; + pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl); + + /* If a malloc() failure occurred in sqlite3HashInsert(), it will + ** return the pColl pointer to be deleted (because it wasn't added + ** to the hash table). + */ + assert( pDel==0 || pDel==pColl ); + if( pDel!=0 ){ + db->mallocFailed = 1; + sqlite3DbFree(db, pDel); + pColl = 0; + } + } + } + return pColl; +} + +/* +** Parameter zName points to a UTF-8 encoded string nName bytes long. +** Return the CollSeq* pointer for the collation sequence named zName +** for the encoding 'enc' from the database 'db'. +** +** If the entry specified is not found and 'create' is true, then create a +** new entry. Otherwise return NULL. +** +** A separate function sqlite3LocateCollSeq() is a wrapper around +** this routine. sqlite3LocateCollSeq() invokes the collation factory +** if necessary and generates an error message if the collating sequence +** cannot be found. +** +** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq() +*/ +CollSeq *sqlite3FindCollSeq( + sqlite3 *db, + u8 enc, + const char *zName, + int create +){ + CollSeq *pColl; + if( zName ){ + pColl = findCollSeqEntry(db, zName, create); + }else{ + pColl = db->pDfltColl; + } + assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); + assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE ); + if( pColl ) pColl += enc-1; + return pColl; +} + +/* During the search for the best function definition, this procedure +** is called to test how well the function passed as the first argument +** matches the request for a function with nArg arguments in a system +** that uses encoding enc. The value returned indicates how well the +** request is matched. A higher value indicates a better match. +** +** The returned value is always between 0 and 6, as follows: +** +** 0: Not a match, or if nArg<0 and the function is has no implementation. +** 1: A variable arguments function that prefers UTF-8 when a UTF-16 +** encoding is requested, or vice versa. +** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is +** requested, or vice versa. +** 3: A variable arguments function using the same text encoding. +** 4: A function with the exact number of arguments requested that +** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa. +** 5: A function with the exact number of arguments requested that +** prefers UTF-16LE when UTF-16BE is requested, or vice versa. +** 6: An exact match. +** +*/ +static int matchQuality(FuncDef *p, int nArg, u8 enc){ + int match = 0; + if( p->nArg==-1 || p->nArg==nArg + || (nArg==-1 && (p->xFunc!=0 || p->xStep!=0)) + ){ + match = 1; + if( p->nArg==nArg || nArg==-1 ){ + match = 4; + } + if( enc==p->iPrefEnc ){ + match += 2; + } + else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) || + (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){ + match += 1; + } + } + return match; +} + +/* +** Search a FuncDefHash for a function with the given name. Return +** a pointer to the matching FuncDef if found, or 0 if there is no match. +*/ +static FuncDef *functionSearch( + FuncDefHash *pHash, /* Hash table to search */ + int h, /* Hash of the name */ + const char *zFunc, /* Name of function */ + int nFunc /* Number of bytes in zFunc */ +){ + FuncDef *p; + for(p=pHash->a[h]; p; p=p->pHash){ + if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 && p->zName[nFunc]==0 ){ + return p; + } + } + return 0; +} + +/* +** Insert a new FuncDef into a FuncDefHash hash table. +*/ +void sqlite3FuncDefInsert( + FuncDefHash *pHash, /* The hash table into which to insert */ + FuncDef *pDef /* The function definition to insert */ +){ + FuncDef *pOther; + int nName = sqlite3Strlen30(pDef->zName); + u8 c1 = (u8)pDef->zName[0]; + int h = (sqlite3UpperToLower[c1] + nName) % ArraySize(pHash->a); + pOther = functionSearch(pHash, h, pDef->zName, nName); + if( pOther ){ + assert( pOther!=pDef && pOther->pNext!=pDef ); + pDef->pNext = pOther->pNext; + pOther->pNext = pDef; + }else{ + pDef->pNext = 0; + pDef->pHash = pHash->a[h]; + pHash->a[h] = pDef; + } +} + + + +/* +** Locate a user function given a name, a number of arguments and a flag +** indicating whether the function prefers UTF-16 over UTF-8. Return a +** pointer to the FuncDef structure that defines that function, or return +** NULL if the function does not exist. +** +** If the createFlag argument is true, then a new (blank) FuncDef +** structure is created and liked into the "db" structure if a +** no matching function previously existed. When createFlag is true +** and the nArg parameter is -1, then only a function that accepts +** any number of arguments will be returned. +** +** If createFlag is false and nArg is -1, then the first valid +** function found is returned. A function is valid if either xFunc +** or xStep is non-zero. +** +** If createFlag is false, then a function with the required name and +** number of arguments may be returned even if the eTextRep flag does not +** match that requested. +*/ +FuncDef *sqlite3FindFunction( + sqlite3 *db, /* An open database */ + const char *zName, /* Name of the function. Not null-terminated */ + int nName, /* Number of characters in the name */ + int nArg, /* Number of arguments. -1 means any number */ + u8 enc, /* Preferred text encoding */ + int createFlag /* Create new entry if true and does not otherwise exist */ +){ + FuncDef *p; /* Iterator variable */ + FuncDef *pBest = 0; /* Best match found so far */ + int bestScore = 0; /* Score of best match */ + int h; /* Hash value */ + + + assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); + h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a); + + /* First search for a match amongst the application-defined functions. + */ + p = functionSearch(&db->aFunc, h, zName, nName); + while( p ){ + int score = matchQuality(p, nArg, enc); + if( score>bestScore ){ + pBest = p; + bestScore = score; + } + p = p->pNext; + } + + /* If no match is found, search the built-in functions. + ** + ** If the SQLITE_PreferBuiltin flag is set, then search the built-in + ** functions even if a prior app-defined function was found. And give + ** priority to built-in functions. + ** + ** Except, if createFlag is true, that means that we are trying to + ** install a new function. Whatever FuncDef structure is returned it will + ** have fields overwritten with new information appropriate for the + ** new function. But the FuncDefs for built-in functions are read-only. + ** So we must not search for built-ins when creating a new function. + */ + if( !createFlag && (pBest==0 || (db->flags & SQLITE_PreferBuiltin)!=0) ){ + FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); + bestScore = 0; + p = functionSearch(pHash, h, zName, nName); + while( p ){ + int score = matchQuality(p, nArg, enc); + if( score>bestScore ){ + pBest = p; + bestScore = score; + } + p = p->pNext; + } + } + + /* If the createFlag parameter is true and the search did not reveal an + ** exact match for the name, number of arguments and encoding, then add a + ** new entry to the hash table and return it. + */ + if( createFlag && (bestScore<6 || pBest->nArg!=nArg) && + (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){ + pBest->zName = (char *)&pBest[1]; + pBest->nArg = (u16)nArg; + pBest->iPrefEnc = enc; + memcpy(pBest->zName, zName, nName); + pBest->zName[nName] = 0; + sqlite3FuncDefInsert(&db->aFunc, pBest); + } + + if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){ + return pBest; + } + return 0; +} + +/* +** Free all resources held by the schema structure. The void* argument points +** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the +** pointer itself, it just cleans up subsidiary resources (i.e. the contents +** of the schema hash tables). +** +** The Schema.cache_size variable is not cleared. +*/ +void sqlite3SchemaClear(void *p){ + Hash temp1; + Hash temp2; + HashElem *pElem; + Schema *pSchema = (Schema *)p; + + temp1 = pSchema->tblHash; + temp2 = pSchema->trigHash; + sqlite3HashInit(&pSchema->trigHash); + sqlite3HashClear(&pSchema->idxHash); + for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ + sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem)); + } + sqlite3HashClear(&temp2); + sqlite3HashInit(&pSchema->tblHash); + for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ + Table *pTab = sqliteHashData(pElem); + sqlite3DeleteTable(0, pTab); + } + sqlite3HashClear(&temp1); + sqlite3HashClear(&pSchema->fkeyHash); + pSchema->pSeqTab = 0; + if( pSchema->flags & DB_SchemaLoaded ){ + pSchema->iGeneration++; + pSchema->flags &= ~DB_SchemaLoaded; + } +} + +/* +** Find and return the schema associated with a BTree. Create +** a new one if necessary. +*/ +Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ + Schema * p; + if( pBt ){ + p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear); + }else{ + p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema)); + } + if( !p ){ + db->mallocFailed = 1; + }else if ( 0==p->file_format ){ + sqlite3HashInit(&p->tblHash); + sqlite3HashInit(&p->idxHash); + sqlite3HashInit(&p->trigHash); + sqlite3HashInit(&p->fkeyHash); + p->enc = SQLITE_UTF8; + } + return p; +} diff --git a/src/complete.c b/src/complete.c new file mode 100644 index 0000000..9e91400 --- /dev/null +++ b/src/complete.c @@ -0,0 +1,283 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** An tokenizer for SQL +** +** This file contains C code that implements the sqlite3_complete() API. +** This code used to be part of the tokenizer.c source file. But by +** separating it out, the code will be automatically omitted from +** static links that do not use it. +*/ +#include "sqliteInt.h" +#ifndef SQLITE_OMIT_COMPLETE + +/* +** This is defined in tokenize.c. We just have to import the definition. +*/ +#ifndef SQLITE_AMALGAMATION +#ifdef SQLITE_ASCII +#define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0) +#endif +#ifdef SQLITE_EBCDIC +extern const char sqlite3IsEbcdicIdChar[]; +#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) +#endif +#endif /* SQLITE_AMALGAMATION */ + + +/* +** Token types used by the sqlite3_complete() routine. See the header +** comments on that procedure for additional information. +*/ +#define tkSEMI 0 +#define tkWS 1 +#define tkOTHER 2 +#ifndef SQLITE_OMIT_TRIGGER +#define tkEXPLAIN 3 +#define tkCREATE 4 +#define tkTEMP 5 +#define tkTRIGGER 6 +#define tkEND 7 +#endif + +/* +** Return TRUE if the given SQL string ends in a semicolon. +** +** Special handling is require for CREATE TRIGGER statements. +** Whenever the CREATE TRIGGER keywords are seen, the statement +** must end with ";END;". +** +** This implementation uses a state machine with 8 states: +** +** (0) INVALID We have not yet seen a non-whitespace character. +** +** (1) START At the beginning or end of an SQL statement. This routine +** returns 1 if it ends in the START state and 0 if it ends +** in any other state. +** +** (2) NORMAL We are in the middle of statement which ends with a single +** semicolon. +** +** (3) EXPLAIN The keyword EXPLAIN has been seen at the beginning of +** a statement. +** +** (4) CREATE The keyword CREATE has been seen at the beginning of a +** statement, possibly preceeded by EXPLAIN and/or followed by +** TEMP or TEMPORARY +** +** (5) TRIGGER We are in the middle of a trigger definition that must be +** ended by a semicolon, the keyword END, and another semicolon. +** +** (6) SEMI We've seen the first semicolon in the ";END;" that occurs at +** the end of a trigger definition. +** +** (7) END We've seen the ";END" of the ";END;" that occurs at the end +** of a trigger difinition. +** +** Transitions between states above are determined by tokens extracted +** from the input. The following tokens are significant: +** +** (0) tkSEMI A semicolon. +** (1) tkWS Whitespace. +** (2) tkOTHER Any other SQL token. +** (3) tkEXPLAIN The "explain" keyword. +** (4) tkCREATE The "create" keyword. +** (5) tkTEMP The "temp" or "temporary" keyword. +** (6) tkTRIGGER The "trigger" keyword. +** (7) tkEND The "end" keyword. +** +** Whitespace never causes a state transition and is always ignored. +** This means that a SQL string of all whitespace is invalid. +** +** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed +** to recognize the end of a trigger can be omitted. All we have to do +** is look for a semicolon that is not part of an string or comment. +*/ +int sqlite3_complete(const char *zSql){ + u8 state = 0; /* Current state, using numbers defined in header comment */ + u8 token; /* Value of the next token */ + +#ifndef SQLITE_OMIT_TRIGGER + /* A complex statement machine used to detect the end of a CREATE TRIGGER + ** statement. This is the normal case. + */ + static const u8 trans[8][8] = { + /* Token: */ + /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */ + /* 0 INVALID: */ { 1, 0, 2, 3, 4, 2, 2, 2, }, + /* 1 START: */ { 1, 1, 2, 3, 4, 2, 2, 2, }, + /* 2 NORMAL: */ { 1, 2, 2, 2, 2, 2, 2, 2, }, + /* 3 EXPLAIN: */ { 1, 3, 3, 2, 4, 2, 2, 2, }, + /* 4 CREATE: */ { 1, 4, 2, 2, 2, 4, 5, 2, }, + /* 5 TRIGGER: */ { 6, 5, 5, 5, 5, 5, 5, 5, }, + /* 6 SEMI: */ { 6, 6, 5, 5, 5, 5, 5, 7, }, + /* 7 END: */ { 1, 7, 5, 5, 5, 5, 5, 5, }, + }; +#else + /* If triggers are not supported by this compile then the statement machine + ** used to detect the end of a statement is much simplier + */ + static const u8 trans[3][3] = { + /* Token: */ + /* State: ** SEMI WS OTHER */ + /* 0 INVALID: */ { 1, 0, 2, }, + /* 1 START: */ { 1, 1, 2, }, + /* 2 NORMAL: */ { 1, 2, 2, }, + }; +#endif /* SQLITE_OMIT_TRIGGER */ + + while( *zSql ){ + switch( *zSql ){ + case ';': { /* A semicolon */ + token = tkSEMI; + break; + } + case ' ': + case '\r': + case '\t': + case '\n': + case '\f': { /* White space is ignored */ + token = tkWS; + break; + } + case '/': { /* C-style comments */ + if( zSql[1]!='*' ){ + token = tkOTHER; + break; + } + zSql += 2; + while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; } + if( zSql[0]==0 ) return 0; + zSql++; + token = tkWS; + break; + } + case '-': { /* SQL-style comments from "--" to end of line */ + if( zSql[1]!='-' ){ + token = tkOTHER; + break; + } + while( *zSql && *zSql!='\n' ){ zSql++; } + if( *zSql==0 ) return state==1; + token = tkWS; + break; + } + case '[': { /* Microsoft-style identifiers in [...] */ + zSql++; + while( *zSql && *zSql!=']' ){ zSql++; } + if( *zSql==0 ) return 0; + token = tkOTHER; + break; + } + case '`': /* Grave-accent quoted symbols used by MySQL */ + case '"': /* single- and double-quoted strings */ + case '\'': { + int c = *zSql; + zSql++; + while( *zSql && *zSql!=c ){ zSql++; } + if( *zSql==0 ) return 0; + token = tkOTHER; + break; + } + default: { +#ifdef SQLITE_EBCDIC + unsigned char c; +#endif + if( IdChar((u8)*zSql) ){ + /* Keywords and unquoted identifiers */ + int nId; + for(nId=1; IdChar(zSql[nId]); nId++){} +#ifdef SQLITE_OMIT_TRIGGER + token = tkOTHER; +#else + switch( *zSql ){ + case 'c': case 'C': { + if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){ + token = tkCREATE; + }else{ + token = tkOTHER; + } + break; + } + case 't': case 'T': { + if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){ + token = tkTRIGGER; + }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){ + token = tkTEMP; + }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){ + token = tkTEMP; + }else{ + token = tkOTHER; + } + break; + } + case 'e': case 'E': { + if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){ + token = tkEND; + }else +#ifndef SQLITE_OMIT_EXPLAIN + if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){ + token = tkEXPLAIN; + }else +#endif + { + token = tkOTHER; + } + break; + } + default: { + token = tkOTHER; + break; + } + } +#endif /* SQLITE_OMIT_TRIGGER */ + zSql += nId-1; + }else{ + /* Operators and special symbols */ + token = tkOTHER; + } + break; + } + } + state = trans[state][token]; + zSql++; + } + return state==1; +} + +#ifndef SQLITE_OMIT_UTF16 +/* +** This routine is the same as the sqlite3_complete() routine described +** above, except that the parameter is required to be UTF-16 encoded, not +** UTF-8. +*/ +int sqlite3_complete16(const void *zSql){ + sqlite3_value *pVal; + char const *zSql8; + int rc = SQLITE_NOMEM; + +#ifndef SQLITE_OMIT_AUTOINIT + rc = sqlite3_initialize(); + if( rc ) return rc; +#endif + pVal = sqlite3ValueNew(0); + sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC); + zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); + if( zSql8 ){ + rc = sqlite3_complete(zSql8); + }else{ + rc = SQLITE_NOMEM; + } + sqlite3ValueFree(pVal); + return sqlite3ApiExit(0, rc); +} +#endif /* SQLITE_OMIT_UTF16 */ +#endif /* SQLITE_OMIT_COMPLETE */ diff --git a/src/crypto.c b/src/crypto.c new file mode 100644 index 0000000..5c8b2d6 --- /dev/null +++ b/src/crypto.c @@ -0,0 +1,345 @@ +/* +** SQLCipher +** crypto.c developed by Stephen Lombardo (Zetetic LLC) +** sjlombardo at zetetic dot net +** http://zetetic.net +** +** Copyright (c) 2009, ZETETIC LLC +** All rights reserved. +** +** Redistribution and use in source and binary forms, with or without +** modification, are permitted provided that the following conditions are met: +** * Redistributions of source code must retain the above copyright +** notice, this list of conditions and the following disclaimer. +** * Redistributions in binary form must reproduce the above copyright +** notice, this list of conditions and the following disclaimer in the +** documentation and/or other materials provided with the distribution. +** * Neither the name of the ZETETIC LLC nor the +** names of its contributors may be used to endorse or promote products +** derived from this software without specific prior written permission. +** +** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY +** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY +** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +** +*/ +/* BEGIN CRYPTO */ +#ifdef SQLITE_HAS_CODEC + +#include +#include "sqliteInt.h" +#include "btreeInt.h" +#include "crypto.h" + +int codec_set_kdf_iter(sqlite3* db, int nDb, int kdf_iter, int for_ctx) { + struct Db *pDb = &db->aDb[nDb]; + CODEC_TRACE(("codec_set_kdf_iter: entered db=%d nDb=%d kdf_iter=%d for_ctx=%d\n", db, nDb, kdf_iter, for_ctx)); + + if(pDb->pBt) { + codec_ctx *ctx; + sqlite3pager_get_codec(pDb->pBt->pBt->pPager, (void **) &ctx); + if(ctx) return sqlcipher_codec_ctx_set_kdf_iter(ctx, kdf_iter, for_ctx); + } + return SQLITE_ERROR; +} + +int codec_set_fast_kdf_iter(sqlite3* db, int nDb, int kdf_iter, int for_ctx) { + struct Db *pDb = &db->aDb[nDb]; + CODEC_TRACE(("codec_set_kdf_iter: entered db=%d nDb=%d kdf_iter=%d for_ctx=%d\n", db, nDb, kdf_iter, for_ctx)); + + if(pDb->pBt) { + codec_ctx *ctx; + sqlite3pager_get_codec(pDb->pBt->pBt->pPager, (void **) &ctx); + if(ctx) return sqlcipher_codec_ctx_set_fast_kdf_iter(ctx, kdf_iter, for_ctx); + } + return SQLITE_ERROR; +} + +static int codec_set_btree_to_codec_pagesize(sqlite3 *db, Db *pDb, codec_ctx *ctx) { + int rc, page_sz, reserve_sz; + + page_sz = sqlcipher_codec_ctx_get_pagesize(ctx); + reserve_sz = sqlcipher_codec_ctx_get_reservesize(ctx); + + sqlite3_mutex_enter(db->mutex); + db->nextPagesize = page_sz; + pDb->pBt->pBt->pageSizeFixed = 0; + CODEC_TRACE(("codec_set_btree_to_codec_pagesize: sqlite3BtreeSetPageSize() size=%d reserve=%d\n", page_sz, reserve_sz)); + rc = sqlite3BtreeSetPageSize(pDb->pBt, page_sz, reserve_sz, 0); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +int codec_set_use_hmac(sqlite3* db, int nDb, int use) { + struct Db *pDb = &db->aDb[nDb]; + + CODEC_TRACE(("codec_set_use_hmac: entered db=%d nDb=%d use=%d\n", db, nDb, use)); + + if(pDb->pBt) { + int rc; + codec_ctx *ctx; + sqlite3pager_get_codec(pDb->pBt->pBt->pPager, (void **) &ctx); + if(ctx) { + rc = sqlcipher_codec_ctx_set_use_hmac(ctx, use); + if(rc != SQLITE_OK) return rc; + /* since the use of hmac has changed, the page size may also change */ + /* Note: before forcing the page size we need to force pageSizeFixed to 0, else + sqliteBtreeSetPageSize will block the change */ + return codec_set_btree_to_codec_pagesize(db, pDb, ctx); + } + } + return SQLITE_ERROR; +} + +int codec_set_page_size(sqlite3* db, int nDb, int size) { + struct Db *pDb = &db->aDb[nDb]; + CODEC_TRACE(("codec_set_page_size: entered db=%d nDb=%d size=%d\n", db, nDb, size)); + + if(pDb->pBt) { + int rc; + codec_ctx *ctx; + sqlite3pager_get_codec(pDb->pBt->pBt->pPager, (void **) &ctx); + + if(ctx) { + rc = sqlcipher_codec_ctx_set_pagesize(ctx, size); + if(rc != SQLITE_OK) return rc; + return codec_set_btree_to_codec_pagesize(db, pDb, ctx); + } + } + return SQLITE_ERROR; +} + +/** + * + * when for_ctx == 0 then it will change for read + * when for_ctx == 1 then it will change for write + * when for_ctx == 2 then it will change for both + */ +int codec_set_cipher_name(sqlite3* db, int nDb, const char *cipher_name, int for_ctx) { + struct Db *pDb = &db->aDb[nDb]; + CODEC_TRACE(("codec_set_cipher_name: entered db=%d nDb=%d cipher_name=%s for_ctx=%d\n", db, nDb, cipher_name, for_ctx)); + + if(pDb->pBt) { + codec_ctx *ctx; + sqlite3pager_get_codec(pDb->pBt->pBt->pPager, (void **) &ctx); + if(ctx) return sqlcipher_codec_ctx_set_cipher(ctx, cipher_name, for_ctx); + } + return SQLITE_ERROR; +} + +int codec_set_pass_key(sqlite3* db, int nDb, const void *zKey, int nKey, int for_ctx) { + struct Db *pDb = &db->aDb[nDb]; + CODEC_TRACE(("codec_set_pass_key: entered db=%d nDb=%d cipher_name=%s nKey=%d for_ctx=%d\n", db, nDb, zKey, nKey, for_ctx)); + if(pDb->pBt) { + codec_ctx *ctx; + sqlite3pager_get_codec(pDb->pBt->pBt->pPager, (void **) &ctx); + if(ctx) return sqlcipher_codec_ctx_set_pass(ctx, zKey, nKey, for_ctx); + } + return SQLITE_ERROR; +} + +/* + * sqlite3Codec can be called in multiple modes. + * encrypt mode - expected to return a pointer to the + * encrypted data without altering pData. + * decrypt mode - expected to return a pointer to pData, with + * the data decrypted in the input buffer + */ +void* sqlite3Codec(void *iCtx, void *data, Pgno pgno, int mode) { + codec_ctx *ctx = (codec_ctx *) iCtx; + int offset = 0, rc = 0; + int page_sz = sqlcipher_codec_ctx_get_pagesize(ctx); + unsigned char *pData = (unsigned char *) data; + void *buffer = sqlcipher_codec_ctx_get_data(ctx); + void *kdf_salt = sqlcipher_codec_ctx_get_kdf_salt(ctx); + CODEC_TRACE(("sqlite3Codec: entered pgno=%d, mode=%d, page_sz=%d\n", pgno, mode, page_sz)); + + /* call to derive keys if not present yet */ + if((rc = sqlcipher_codec_key_derive(ctx)) != SQLITE_OK) { + sqlcipher_codec_ctx_set_error(ctx, rc); + return NULL; + } + + if(pgno == 1) offset = FILE_HEADER_SZ; /* adjust starting pointers in data page for header offset on first page*/ + + CODEC_TRACE(("sqlite3Codec: switch mode=%d offset=%d\n", mode, offset)); + switch(mode) { + case 0: /* decrypt */ + case 2: + case 3: + if(pgno == 1) memcpy(buffer, SQLITE_FILE_HEADER, FILE_HEADER_SZ); /* copy file header to the first 16 bytes of the page */ + rc = sqlcipher_page_cipher(ctx, CIPHER_READ_CTX, pgno, CIPHER_DECRYPT, page_sz - offset, pData + offset, (unsigned char*)buffer + offset); + if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc); + memcpy(pData, buffer, page_sz); /* copy buffer data back to pData and return */ + return pData; + break; + case 6: /* encrypt */ + if(pgno == 1) memcpy(buffer, kdf_salt, FILE_HEADER_SZ); /* copy salt to output buffer */ + rc = sqlcipher_page_cipher(ctx, CIPHER_WRITE_CTX, pgno, CIPHER_ENCRYPT, page_sz - offset, pData + offset, (unsigned char*)buffer + offset); + if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc); + return buffer; /* return persistent buffer data, pData remains intact */ + break; + case 7: + if(pgno == 1) memcpy(buffer, kdf_salt, FILE_HEADER_SZ); /* copy salt to output buffer */ + rc = sqlcipher_page_cipher(ctx, CIPHER_READ_CTX, pgno, CIPHER_ENCRYPT, page_sz - offset, pData + offset, (unsigned char*)buffer + offset); + if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc); + return buffer; /* return persistent buffer data, pData remains intact */ + break; + default: + return pData; + break; + } +} + +void sqlite3FreeCodecArg(void *pCodecArg) { + codec_ctx *ctx = (codec_ctx *) pCodecArg; + if(pCodecArg == NULL) return; + sqlcipher_codec_ctx_free(&ctx); // wipe and free allocated memory for the context +} + +int sqlite3CodecAttach(sqlite3* db, int nDb, const void *zKey, int nKey) { + struct Db *pDb = &db->aDb[nDb]; + + CODEC_TRACE(("sqlite3CodecAttach: entered nDb=%d zKey=%s, nKey=%d\n", nDb, zKey, nKey)); + + sqlcipher_activate(); + + if(nKey && zKey && pDb->pBt) { + int rc; + Pager *pPager = pDb->pBt->pBt->pPager; + sqlite3_file *fd = sqlite3Pager_get_fd(pPager); + codec_ctx *ctx; + + /* point the internal codec argument against the contet to be prepared */ + rc = sqlcipher_codec_ctx_init(&ctx, pDb, pDb->pBt->pBt->pPager, fd, zKey, nKey); + + sqlite3pager_sqlite3PagerSetCodec(sqlite3BtreePager(pDb->pBt), sqlite3Codec, NULL, sqlite3FreeCodecArg, (void *) ctx); + + codec_set_btree_to_codec_pagesize(db, pDb, ctx); + + /* if fd is null, then this is an in-memory database and + we dont' want to overwrite the AutoVacuum settings + if not null, then set to the default */ + sqlite3_mutex_enter(db->mutex); + if(fd != NULL) { + sqlite3BtreeSetAutoVacuum(pDb->pBt, SQLITE_DEFAULT_AUTOVACUUM); + } + sqlite3_mutex_leave(db->mutex); + } + return SQLITE_OK; +} + +void sqlite3_activate_see(const char* in) { + /* do nothing, security enhancements are always active */ +} + +int sqlite3_key(sqlite3 *db, const void *pKey, int nKey) { + CODEC_TRACE(("sqlite3_key: entered db=%d pKey=%s nKey=%d\n", db, pKey, nKey)); + /* attach key if db and pKey are not null and nKey is > 0 */ + if(db && pKey && nKey) { + sqlite3CodecAttach(db, 0, pKey, nKey); // operate only on the main db + return SQLITE_OK; + } + return SQLITE_ERROR; +} + +/* sqlite3_rekey +** Given a database, this will reencrypt the database using a new key. +** There is only one possible modes of operation - to encrypt a database +** that is already encrpyted. If the database is not already encrypted +** this should do nothing +** The proposed logic for this function follows: +** 1. Determine if the database is already encryptped +** 2. If there is NOT already a key present do nothing +** 3. If there is a key present, re-encrypt the database with the new key +*/ +int sqlite3_rekey(sqlite3 *db, const void *pKey, int nKey) { + CODEC_TRACE(("sqlite3_rekey: entered db=%d pKey=%s, nKey=%d\n", db, pKey, nKey)); + sqlcipher_activate(); + if(db && pKey && nKey) { + struct Db *pDb = &db->aDb[0]; + CODEC_TRACE(("sqlite3_rekey: database pDb=%d\n", pDb)); + if(pDb->pBt) { + codec_ctx *ctx; + int rc, page_count; + Pgno pgno; + PgHdr *page; + Pager *pPager = pDb->pBt->pBt->pPager; + + sqlite3pager_get_codec(pDb->pBt->pBt->pPager, (void **) &ctx); + + if(ctx == NULL) { + /* there was no codec attached to this database, so this should do nothing! */ + CODEC_TRACE(("sqlite3_rekey: no codec attached to db, exiting\n")); + return SQLITE_OK; + } + + sqlite3_mutex_enter(db->mutex); + + codec_set_pass_key(db, 0, pKey, nKey, CIPHER_WRITE_CTX); + + /* do stuff here to rewrite the database + ** 1. Create a transaction on the database + ** 2. Iterate through each page, reading it and then writing it. + ** 3. If that goes ok then commit and put ctx->rekey into ctx->key + ** note: don't deallocate rekey since it may be used in a subsequent iteration + */ + rc = sqlite3BtreeBeginTrans(pDb->pBt, 1); /* begin write transaction */ + sqlite3PagerPagecount(pPager, &page_count); + for(pgno = 1; rc == SQLITE_OK && pgno <= page_count; pgno++) { /* pgno's start at 1 see pager.c:pagerAcquire */ + if(!sqlite3pager_is_mj_pgno(pPager, pgno)) { /* skip this page (see pager.c:pagerAcquire for reasoning) */ + rc = sqlite3PagerGet(pPager, pgno, &page); + if(rc == SQLITE_OK) { /* write page see pager_incr_changecounter for example */ + rc = sqlite3PagerWrite(page); + //printf("sqlite3PagerWrite(%d)\n", pgno); + if(rc == SQLITE_OK) { + sqlite3PagerUnref(page); + } + } + } + } + + /* if commit was successful commit and copy the rekey data to current key, else rollback to release locks */ + if(rc == SQLITE_OK) { + CODEC_TRACE(("sqlite3_rekey: committing\n")); + rc = sqlite3BtreeCommit(pDb->pBt); + sqlcipher_codec_key_copy(ctx, CIPHER_WRITE_CTX); + } else { + CODEC_TRACE(("sqlite3_rekey: rollback\n")); + sqlite3BtreeRollback(pDb->pBt); + } + + sqlite3_mutex_leave(db->mutex); + } + return SQLITE_OK; + } + return SQLITE_ERROR; +} + +void sqlite3CodecGetKey(sqlite3* db, int nDb, void **zKey, int *nKey) { + struct Db *pDb = &db->aDb[nDb]; + CODEC_TRACE(("sqlite3CodecGetKey: entered db=%d, nDb=%d\n", db, nDb)); + + if( pDb->pBt ) { + codec_ctx *ctx; + sqlite3pager_get_codec(pDb->pBt->pBt->pPager, (void **) &ctx); + + if(ctx) { /* if the codec has an attached codec_context user the raw key data */ + sqlcipher_codec_get_pass(ctx, zKey, nKey); + } else { + *zKey = NULL; + *nKey = 0; + } + } +} + + +/* END CRYPTO */ +#endif diff --git a/src/crypto.h b/src/crypto.h new file mode 100644 index 0000000..a5a62ec --- /dev/null +++ b/src/crypto.h @@ -0,0 +1,157 @@ +/* +** SQLCipher +** crypto.h developed by Stephen Lombardo (Zetetic LLC) +** sjlombardo at zetetic dot net +** http://zetetic.net +** +** Copyright (c) 2008, ZETETIC LLC +** All rights reserved. +** +** Redistribution and use in source and binary forms, with or without +** modification, are permitted provided that the following conditions are met: +** * Redistributions of source code must retain the above copyright +** notice, this list of conditions and the following disclaimer. +** * Redistributions in binary form must reproduce the above copyright +** notice, this list of conditions and the following disclaimer in the +** documentation and/or other materials provided with the distribution. +** * Neither the name of the ZETETIC LLC nor the +** names of its contributors may be used to endorse or promote products +** derived from this software without specific prior written permission. +** +** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY +** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY +** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +** +*/ +/* BEGIN CRYPTO */ +#ifdef SQLITE_HAS_CODEC +#ifndef CRYPTO_H +#define CRYPTO_H + +#define FILE_HEADER_SZ 16 + +#ifndef CIPHER +#define CIPHER "aes-256-cbc" +#endif + +#define CIPHER_DECRYPT 0 +#define CIPHER_ENCRYPT 1 + +#define CIPHER_READ_CTX 0 +#define CIPHER_WRITE_CTX 1 +#define CIPHER_READWRITE_CTX 2 + +#ifndef PBKDF2_ITER +#define PBKDF2_ITER 4000 +#endif + +#ifndef DEFAULT_USE_HMAC +#define DEFAULT_USE_HMAC 1 +#endif + +/* by default, sqlcipher will use a reduced number of iterations to generate + the HMAC key / or transform a raw cipher key + */ +#ifndef FAST_PBKDF2_ITER +#define FAST_PBKDF2_ITER 2 +#endif + +/* this if a fixed random array that will be xor'd with the database salt to ensure that the + salt passed to the HMAC key derivation function is not the same as that used to derive + the encryption key. This can be overridden at compile time but it will make the resulting + binary incompatible with the default builds when using HMAC. A future version of SQLcipher + will likely allow this to be defined at runtime via pragma */ +#ifndef HMAC_SALT_MASK +#define HMAC_SALT_MASK 0x3a +#endif + +#ifdef CODEC_DEBUG +#define CODEC_TRACE(X) {printf X;fflush(stdout);} +#else +#define CODEC_TRACE(X) +#endif + + +/* extensions defined in pragma.c */ + +void sqlite3pager_get_codec(Pager *pPager, void **ctx); +int sqlite3pager_is_mj_pgno(Pager *pPager, Pgno pgno); +sqlite3_file *sqlite3Pager_get_fd(Pager *pPager); +void sqlite3pager_sqlite3PagerSetCodec( + Pager *pPager, + void *(*xCodec)(void*,void*,Pgno,int), + void (*xCodecSizeChng)(void*,int,int), + void (*xCodecFree)(void*), + void *pCodec +); +/* end extensions defined in pragma.c */ + +/* +** Simple shared routines for converting hex char strings to binary data + */ +static int cipher_hex2int(char c) { + return (c>='0' && c<='9') ? (c)-'0' : + (c>='A' && c<='F') ? (c)-'A'+10 : + (c>='a' && c<='f') ? (c)-'a'+10 : 0; +} + +static void cipher_hex2bin(const char *hex, int sz, unsigned char *out){ + int i; + for(i = 0; i < sz; i += 2){ + out[i/2] = (cipher_hex2int(hex[i])<<4) | cipher_hex2int(hex[i+1]); + } +} + +/* extensions defined in crypto_impl.c */ + +typedef struct codec_ctx codec_ctx; + +/* utility functions */ +int sqlcipher_memcmp(const unsigned char *a0, const unsigned char *a1, int len); +int sqlcipher_pseudorandom(void *, int); +void sqlcipher_free(void *, int); + +/* activation and initialization */ +void sqlcipher_activate(); +int sqlcipher_codec_ctx_init(codec_ctx **, Db *, Pager *, sqlite3_file *, const void *, int); +void sqlcipher_codec_ctx_free(codec_ctx **); +int sqlcipher_codec_key_derive(codec_ctx *); +int sqlcipher_codec_key_copy(codec_ctx *, int); + +/* page cipher implementation */ +int sqlcipher_page_cipher(codec_ctx *, int, Pgno, int, int, unsigned char *, unsigned char *); + +/* context setters & getters */ +void sqlcipher_codec_ctx_set_error(codec_ctx *, int); + +int sqlcipher_codec_ctx_set_pass(codec_ctx *, const void *, int, int); +void sqlcipher_codec_get_pass(codec_ctx *, void **zKey, int *nKey); + +int sqlcipher_codec_ctx_set_pagesize(codec_ctx *, int); +int sqlcipher_codec_ctx_get_pagesize(codec_ctx *); +int sqlcipher_codec_ctx_get_reservesize(codec_ctx *); + +int sqlcipher_codec_ctx_set_kdf_iter(codec_ctx *, int, int); +void* sqlcipher_codec_ctx_get_kdf_salt(codec_ctx *ctx); + +int sqlcipher_codec_ctx_set_fast_kdf_iter(codec_ctx *, int, int); + +int sqlcipher_codec_ctx_set_cipher(codec_ctx *, const char *, int); + +void* sqlcipher_codec_ctx_get_data(codec_ctx *); + +void sqlcipher_exportFunc(sqlite3_context *, int, sqlite3_value **); + +int sqlcipher_codec_ctx_set_use_hmac(codec_ctx *ctx, int use); +/* end extensions defined in crypto_impl.c */ + +#endif +#endif +/* END CRYPTO */ diff --git a/src/crypto_impl.c b/src/crypto_impl.c new file mode 100644 index 0000000..336afbd --- /dev/null +++ b/src/crypto_impl.c @@ -0,0 +1,833 @@ +/* +** SQLCipher +** crypto_impl.c developed by Stephen Lombardo (Zetetic LLC) +** sjlombardo at zetetic dot net +** http://zetetic.net +** +** Copyright (c) 2011, ZETETIC LLC +** All rights reserved. +** +** Redistribution and use in source and binary forms, with or without +** modification, are permitted provided that the following conditions are met: +** * Redistributions of source code must retain the above copyright +** notice, this list of conditions and the following disclaimer. +** * Redistributions in binary form must reproduce the above copyright +** notice, this list of conditions and the following disclaimer in the +** documentation and/or other materials provided with the distribution. +** * Neither the name of the ZETETIC LLC nor the +** names of its contributors may be used to endorse or promote products +** derived from this software without specific prior written permission. +** +** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY +** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY +** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +** +*/ +/* BEGIN CRYPTO */ +#ifdef SQLITE_HAS_CODEC + +#include +#include +#include +#include "sqliteInt.h" +#include "btreeInt.h" +#include "crypto.h" +#ifndef OMIT_MEMLOCK +#if defined(__unix__) || defined(__APPLE__) +#include +#elif defined(_WIN32) +# include +#endif +#endif + +/* the default implementation of SQLCipher uses a cipher_ctx + to keep track of read / write state separately. The following + struct and associated functions are defined here */ +typedef struct { + int derive_key; + EVP_CIPHER *evp_cipher; + EVP_CIPHER_CTX ectx; + HMAC_CTX hctx; + int kdf_iter; + int fast_kdf_iter; + int key_sz; + int iv_sz; + int block_sz; + int pass_sz; + int reserve_sz; + int hmac_sz; + int use_hmac; + unsigned char *key; + unsigned char *hmac_key; + char *pass; +} cipher_ctx; + +void sqlcipher_cipher_ctx_free(cipher_ctx **); +int sqlcipher_cipher_ctx_cmp(cipher_ctx *, cipher_ctx *); +int sqlcipher_cipher_ctx_copy(cipher_ctx *, cipher_ctx *); +int sqlcipher_cipher_ctx_init(cipher_ctx **); +int sqlcipher_cipher_ctx_set_pass(cipher_ctx *, const void *, int); +int sqlcipher_cipher_ctx_key_derive(codec_ctx *, cipher_ctx *); + +/* prototype for pager HMAC function */ +int sqlcipher_page_hmac(cipher_ctx *, Pgno, unsigned char *, int, unsigned char *); + +struct codec_ctx { + int kdf_salt_sz; + int page_sz; + unsigned char *kdf_salt; + unsigned char *hmac_kdf_salt; + unsigned char *buffer; + Btree *pBt; + cipher_ctx *read_ctx; + cipher_ctx *write_ctx; +}; + +void sqlcipher_activate() { + sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); + if(EVP_get_cipherbyname(CIPHER) == NULL) { + OpenSSL_add_all_algorithms(); + } + sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); +} + +/* fixed time memory comparison routine */ +int sqlcipher_memcmp(const unsigned char *a0, const unsigned char *a1, int len) { + int i = 0, noMatch = 0; + + for(i = 0; i < len; i++) { + noMatch = (noMatch || (a0[i] != a1[i])); + } + + return noMatch; +} + +/* generate a defined number of pseudorandom bytes */ +int sqlcipher_random (void *buffer, int length) { + return RAND_bytes((unsigned char *)buffer, length); +} + +/** + * Free and wipe memory. Uses SQLites internal sqlite3_free so that memory + * can be countend and memory leak detection works in the tet suite. + * If ptr is not null memory will be freed. + * If sz is greater than zero, the memory will be overwritten with zero before it is freed + * If sz is > 0, and not compiled with OMIT_MEMLOCK, system will attempt to unlock the + * memory segment so it can be paged + */ +void sqlcipher_free(void *ptr, int sz) { + if(ptr) { + if(sz > 0) { + memset(ptr, 0, sz); +#ifndef OMIT_MEMLOCK +#if defined(__unix__) || defined(__APPLE__) + munlock(ptr, sz); +#elif defined(_WIN32) + VirtualUnlock(ptr, sz); +#endif +#endif + } + sqlite3_free(ptr); + } +} + +/** + * allocate memory. Uses sqlite's internall malloc wrapper so memory can be + * reference counted and leak detection works. Unless compiled with OMIT_MEMLOCK + * attempts to lock the memory pages so sensitive information won't be swapped + */ +void* sqlcipher_malloc(int sz) { + void *ptr = sqlite3Malloc(sz); +#ifndef OMIT_MEMLOCK + if(ptr) { +#if defined(__unix__) || defined(__APPLE__) + mlock(ptr, sz); +#elif defined(_WIN32) + VirtualLock(ptr, sz); +#endif + } +#endif + return ptr; +} + + +/** + * Initialize a a new cipher_ctx struct. This function will allocate memory + * for the cipher context and for the key + * + * returns SQLITE_OK if initialization was successful + * returns SQLITE_NOMEM if an error occured allocating memory + */ +int sqlcipher_cipher_ctx_init(cipher_ctx **iCtx) { + cipher_ctx *ctx; + *iCtx = (cipher_ctx *) sqlcipher_malloc(sizeof(cipher_ctx)); + ctx = *iCtx; + if(ctx == NULL) return SQLITE_NOMEM; + memset(ctx, 0, sizeof(cipher_ctx)); + ctx->key = (unsigned char *) sqlcipher_malloc(EVP_MAX_KEY_LENGTH); + ctx->hmac_key = (unsigned char *) sqlcipher_malloc(EVP_MAX_KEY_LENGTH); + if(ctx->key == NULL) return SQLITE_NOMEM; + if(ctx->hmac_key == NULL) return SQLITE_NOMEM; + return SQLITE_OK; +} + +/** + * Free and wipe memory associated with a cipher_ctx + */ +void sqlcipher_cipher_ctx_free(cipher_ctx **iCtx) { + cipher_ctx *ctx = *iCtx; + CODEC_TRACE(("cipher_ctx_free: entered iCtx=%d\n", iCtx)); + sqlcipher_free(ctx->key, ctx->key_sz); + sqlcipher_free(ctx->hmac_key, ctx->key_sz); + sqlcipher_free(ctx->pass, ctx->pass_sz); + sqlcipher_free(ctx, sizeof(cipher_ctx)); +} + +/** + * Compare one cipher_ctx to another. + * + * returns 0 if all the parameters (except the derived key data) are the same + * returns 1 otherwise + */ +int sqlcipher_cipher_ctx_cmp(cipher_ctx *c1, cipher_ctx *c2) { + CODEC_TRACE(("sqlcipher_cipher_ctx_cmp: entered c1=%d c2=%d\n", c1, c2)); + + if( + c1->evp_cipher == c2->evp_cipher + && c1->iv_sz == c2->iv_sz + && c1->kdf_iter == c2->kdf_iter + && c1->fast_kdf_iter == c2->fast_kdf_iter + && c1->key_sz == c2->key_sz + && c1->pass_sz == c2->pass_sz + && ( + c1->pass == c2->pass + || !sqlcipher_memcmp((const unsigned char*)c1->pass, + (const unsigned char*)c2->pass, + c1->pass_sz) + ) + ) return 0; + return 1; +} + +/** + * Copy one cipher_ctx to another. For instance, assuming that read_ctx is a + * fully initialized context, you could copy it to write_ctx and all yet data + * and pass information across + * + * returns SQLITE_OK if initialization was successful + * returns SQLITE_NOMEM if an error occured allocating memory + */ +int sqlcipher_cipher_ctx_copy(cipher_ctx *target, cipher_ctx *source) { + void *key = target->key; + void *hmac_key = target->hmac_key; + + CODEC_TRACE(("sqlcipher_cipher_ctx_copy: entered target=%d, source=%d\n", target, source)); + sqlcipher_free(target->pass, target->pass_sz); + memcpy(target, source, sizeof(cipher_ctx)); + + target->key = key; //restore pointer to previously allocated key data + memcpy(target->key, source->key, EVP_MAX_KEY_LENGTH); + + target->hmac_key = hmac_key; //restore pointer to previously allocated hmac key data + memcpy(target->hmac_key, source->hmac_key, EVP_MAX_KEY_LENGTH); + + target->pass = sqlcipher_malloc(source->pass_sz); + if(target->pass == NULL) return SQLITE_NOMEM; + memcpy(target->pass, source->pass, source->pass_sz); + + return SQLITE_OK; +} + + +/** + * Set the raw password / key data for a cipher context + * + * returns SQLITE_OK if assignment was successfull + * returns SQLITE_NOMEM if an error occured allocating memory + * returns SQLITE_ERROR if the key couldn't be set because the pass was null or size was zero + */ +int sqlcipher_cipher_ctx_set_pass(cipher_ctx *ctx, const void *zKey, int nKey) { + sqlcipher_free(ctx->pass, ctx->pass_sz); + ctx->pass_sz = nKey; + if(zKey && nKey) { + ctx->pass = sqlcipher_malloc(nKey); + if(ctx->pass == NULL) return SQLITE_NOMEM; + memcpy(ctx->pass, zKey, nKey); + return SQLITE_OK; + } + return SQLITE_ERROR; +} + +int sqlcipher_codec_ctx_set_pass(codec_ctx *ctx, const void *zKey, int nKey, int for_ctx) { + cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx; + int rc; + + if((rc = sqlcipher_cipher_ctx_set_pass(c_ctx, zKey, nKey)) != SQLITE_OK) return rc; + c_ctx->derive_key = 1; + + if(for_ctx == 2) + if((rc = sqlcipher_cipher_ctx_copy( for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK) + return rc; + + return SQLITE_OK; +} + +int sqlcipher_codec_ctx_set_cipher(codec_ctx *ctx, const char *cipher_name, int for_ctx) { + cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx; + int rc; + + c_ctx->evp_cipher = (EVP_CIPHER *) EVP_get_cipherbyname(cipher_name); + c_ctx->key_sz = EVP_CIPHER_key_length(c_ctx->evp_cipher); + c_ctx->iv_sz = EVP_CIPHER_iv_length(c_ctx->evp_cipher); + c_ctx->block_sz = EVP_CIPHER_block_size(c_ctx->evp_cipher); + c_ctx->hmac_sz = EVP_MD_size(EVP_sha1()); + c_ctx->derive_key = 1; + + if(for_ctx == 2) + if((rc = sqlcipher_cipher_ctx_copy( for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK) + return rc; + + return SQLITE_OK; +} + +int sqlcipher_codec_ctx_set_kdf_iter(codec_ctx *ctx, int kdf_iter, int for_ctx) { + cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx; + int rc; + + c_ctx->kdf_iter = kdf_iter; + c_ctx->derive_key = 1; + + if(for_ctx == 2) + if((rc = sqlcipher_cipher_ctx_copy( for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK) + return rc; + + return SQLITE_OK; +} + +int sqlcipher_codec_ctx_set_fast_kdf_iter(codec_ctx *ctx, int fast_kdf_iter, int for_ctx) { + cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx; + int rc; + + c_ctx->fast_kdf_iter = fast_kdf_iter; + c_ctx->derive_key = 1; + + if(for_ctx == 2) + if((rc = sqlcipher_cipher_ctx_copy( for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK) + return rc; + + return SQLITE_OK; +} + + +int sqlcipher_codec_ctx_set_use_hmac(codec_ctx *ctx, int use) { + int reserve = EVP_MAX_IV_LENGTH; /* base reserve size will be IV only */ + + if(use) reserve += ctx->read_ctx->hmac_sz; /* if reserve will include hmac, update that size */ + + /* calculate the amount of reserve needed in even increments of the cipher block size */ + + reserve = ((reserve % ctx->read_ctx->block_sz) == 0) ? reserve : + ((reserve / ctx->read_ctx->block_sz) + 1) * ctx->read_ctx->block_sz; + + CODEC_TRACE(("sqlcipher_codec_ctx_set_use_hmac: use=%d block_sz=%d md_size=%d reserve=%d\n", + use, ctx->read_ctx->block_sz, ctx->read_ctx->hmac_sz, reserve)); + + ctx->write_ctx->use_hmac = ctx->read_ctx->use_hmac = use; + ctx->write_ctx->reserve_sz = ctx->read_ctx->reserve_sz = reserve; + + return SQLITE_OK; +} + +void sqlcipher_codec_ctx_set_error(codec_ctx *ctx, int error) { + ctx->pBt->db->errCode = error; +} + +int sqlcipher_codec_ctx_get_pagesize(codec_ctx *ctx) { + return ctx->page_sz; +} + +int sqlcipher_codec_ctx_get_reservesize(codec_ctx *ctx) { + return ctx->read_ctx->reserve_sz; +} + +void* sqlcipher_codec_ctx_get_data(codec_ctx *ctx) { + return ctx->buffer; +} + +void* sqlcipher_codec_ctx_get_kdf_salt(codec_ctx *ctx) { + return ctx->kdf_salt; +} + +void sqlcipher_codec_get_pass(codec_ctx *ctx, void **zKey, int *nKey) { + *zKey = ctx->read_ctx->pass; + *nKey = ctx->read_ctx->pass_sz; +} + +int sqlcipher_codec_ctx_set_pagesize(codec_ctx *ctx, int size) { + /* attempt to free the existing page buffer */ + sqlcipher_free(ctx->buffer,ctx->page_sz); + ctx->page_sz = size; + + /* pre-allocate a page buffer of PageSize bytes. This will + be used as a persistent buffer for encryption and decryption + operations to avoid overhead of multiple memory allocations*/ + ctx->buffer = sqlcipher_malloc(size); + if(ctx->buffer == NULL) return SQLITE_NOMEM; + + return SQLITE_OK; +} + +int sqlcipher_codec_ctx_init(codec_ctx **iCtx, Db *pDb, Pager *pPager, sqlite3_file *fd, const void *zKey, int nKey) { + int rc; + codec_ctx *ctx; + *iCtx = sqlcipher_malloc(sizeof(codec_ctx)); + ctx = *iCtx; + + if(ctx == NULL) return SQLITE_NOMEM; + + memset(ctx, 0, sizeof(codec_ctx)); /* initialize all pointers and values to 0 */ + ctx->pBt = pDb->pBt; /* assign pointer to database btree structure */ + + /* allocate space for salt data. Then read the first 16 bytes + directly off the database file. This is the salt for the + key derivation function. If we get a short read allocate + a new random salt value */ + ctx->kdf_salt_sz = FILE_HEADER_SZ; + ctx->kdf_salt = sqlcipher_malloc(ctx->kdf_salt_sz); + if(ctx->kdf_salt == NULL) return SQLITE_NOMEM; + + /* allocate space for separate hmac salt data. We want the + HMAC derivation salt to be different than the encryption + key derivation salt */ + ctx->hmac_kdf_salt = sqlcipher_malloc(ctx->kdf_salt_sz); + if(ctx->hmac_kdf_salt == NULL) return SQLITE_NOMEM; + + + /* + Always overwrite page size and set to the default because the first page of the database + in encrypted and thus sqlite can't effectively determine the pagesize. this causes an issue in + cases where bytes 16 & 17 of the page header are a power of 2 as reported by John Lehman + */ + if((rc = sqlcipher_codec_ctx_set_pagesize(ctx, SQLITE_DEFAULT_PAGE_SIZE)) != SQLITE_OK) return rc; + + if((rc = sqlcipher_cipher_ctx_init(&ctx->read_ctx)) != SQLITE_OK) return rc; + if((rc = sqlcipher_cipher_ctx_init(&ctx->write_ctx)) != SQLITE_OK) return rc; + + if(fd == NULL || sqlite3OsRead(fd, ctx->kdf_salt, FILE_HEADER_SZ, 0) != SQLITE_OK) { + /* if unable to read the bytes, generate random salt */ + if(sqlcipher_random(ctx->kdf_salt, FILE_HEADER_SZ) != 1) return SQLITE_ERROR; + } + + if((rc = sqlcipher_codec_ctx_set_cipher(ctx, CIPHER, 0)) != SQLITE_OK) return rc; + if((rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, PBKDF2_ITER, 0)) != SQLITE_OK) return rc; + if((rc = sqlcipher_codec_ctx_set_fast_kdf_iter(ctx, FAST_PBKDF2_ITER, 0)) != SQLITE_OK) return rc; + if((rc = sqlcipher_codec_ctx_set_pass(ctx, zKey, nKey, 0)) != SQLITE_OK) return rc; + + /* Use HMAC signatures by default. Note that codec_set_use_hmac will implicity call + codec_set_page_size to set the default */ + if((rc = sqlcipher_codec_ctx_set_use_hmac(ctx, DEFAULT_USE_HMAC)) != SQLITE_OK) return rc; + + if((rc = sqlcipher_cipher_ctx_copy(ctx->write_ctx, ctx->read_ctx)) != SQLITE_OK) return rc; + + return SQLITE_OK; +} + +/** + * Free and wipe memory associated with a cipher_ctx, including the allocated + * read_ctx and write_ctx. + */ +void sqlcipher_codec_ctx_free(codec_ctx **iCtx) { + codec_ctx *ctx = *iCtx; + CODEC_TRACE(("codec_ctx_free: entered iCtx=%d\n", iCtx)); + sqlcipher_free(ctx->kdf_salt, ctx->kdf_salt_sz); + sqlcipher_free(ctx->hmac_kdf_salt, ctx->kdf_salt_sz); + sqlcipher_free(ctx->buffer, 0); + sqlcipher_cipher_ctx_free(&ctx->read_ctx); + sqlcipher_cipher_ctx_free(&ctx->write_ctx); + sqlcipher_free(ctx, sizeof(codec_ctx)); +} + +int sqlcipher_page_hmac(cipher_ctx *ctx, Pgno pgno, unsigned char *in, int in_sz, unsigned char *out) { + HMAC_CTX_init(&ctx->hctx); + + HMAC_Init_ex(&ctx->hctx, ctx->hmac_key, ctx->key_sz, EVP_sha1(), NULL); + + /* include the encrypted page data, initialization vector, and page number in HMAC. This will + prevent both tampering with the ciphertext, manipulation of the IV, or resequencing otherwise + valid pages out of order in a database */ + HMAC_Update(&ctx->hctx, in, in_sz); + HMAC_Update(&ctx->hctx, (const unsigned char*) &pgno, sizeof(Pgno)); + HMAC_Final(&ctx->hctx, out, NULL); + HMAC_CTX_cleanup(&ctx->hctx); + return SQLITE_OK; +} + +/* + * ctx - codec context + * pgno - page number in database + * size - size in bytes of input and output buffers + * mode - 1 to encrypt, 0 to decrypt + * in - pointer to input bytes + * out - pouter to output bytes + */ +int sqlcipher_page_cipher(codec_ctx *ctx, int for_ctx, Pgno pgno, int mode, int page_sz, unsigned char *in, unsigned char *out) { + cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx; + unsigned char *iv_in, *iv_out, *hmac_in, *hmac_out, *out_start; + int tmp_csz, csz, size; + + /* calculate some required positions into various buffers */ + size = page_sz - c_ctx->reserve_sz; /* adjust size to useable size and memset reserve at end of page */ + iv_out = out + size; + iv_in = in + size; + + /* hmac will be written immediately after the initialization vector. the remainder of the page reserve will contain + random bytes. note, these pointers are only valid when use_hmac is true */ + hmac_in = in + size + c_ctx->iv_sz; + hmac_out = out + size + c_ctx->iv_sz; + out_start = out; /* note the original position of the output buffer pointer, as out will be rewritten during encryption */ + + CODEC_TRACE(("codec_cipher:entered pgno=%d, mode=%d, size=%d\n", pgno, mode, size)); + + /* just copy raw data from in to out when key size is 0 + * i.e. during a rekey of a plaintext database */ + if(c_ctx->key_sz == 0) { + memcpy(out, in, size); + return SQLITE_OK; + } + + if(mode == CIPHER_ENCRYPT) { + /* start at front of the reserve block, write random data to the end */ + if(sqlcipher_random(iv_out, c_ctx->reserve_sz) != 1) return SQLITE_ERROR; + } else { /* CIPHER_DECRYPT */ + memcpy(iv_out, iv_in, c_ctx->iv_sz); /* copy the iv from the input to output buffer */ + } + + if(c_ctx->use_hmac && (mode == CIPHER_DECRYPT)) { + if(sqlcipher_page_hmac(c_ctx, pgno, in, size + c_ctx->iv_sz, hmac_out) != SQLITE_OK) { + memset(out, 0, page_sz); + CODEC_TRACE(("codec_cipher: hmac operations failed for pgno=%d\n", pgno)); + return SQLITE_ERROR; + } + + CODEC_TRACE(("codec_cipher: comparing hmac on in=%d out=%d hmac_sz=%d\n", hmac_in, hmac_out, c_ctx->hmac_sz)); + if(sqlcipher_memcmp(hmac_in, hmac_out, c_ctx->hmac_sz) != 0) { + /* the hmac check failed, which means the data was tampered with or + corrupted in some way. we will return an error, and zero out the page data + to force an error */ + memset(out, 0, page_sz); + CODEC_TRACE(("codec_cipher: hmac check failed for pgno=%d\n", pgno)); + return SQLITE_ERROR; + } + } + + EVP_CipherInit(&c_ctx->ectx, c_ctx->evp_cipher, NULL, NULL, mode); + EVP_CIPHER_CTX_set_padding(&c_ctx->ectx, 0); + EVP_CipherInit(&c_ctx->ectx, NULL, c_ctx->key, iv_out, mode); + EVP_CipherUpdate(&c_ctx->ectx, out, &tmp_csz, in, size); + csz = tmp_csz; + out += tmp_csz; + EVP_CipherFinal(&c_ctx->ectx, out, &tmp_csz); + csz += tmp_csz; + EVP_CIPHER_CTX_cleanup(&c_ctx->ectx); + assert(size == csz); + + if(c_ctx->use_hmac && (mode == CIPHER_ENCRYPT)) { + sqlcipher_page_hmac(c_ctx, pgno, out_start, size + c_ctx->iv_sz, hmac_out); + } + + return SQLITE_OK; +} + +/** + * Derive an encryption key for a cipher contex key based on the raw password. + * + * If the raw key data is formated as x'hex' and there are exactly enough hex chars to fill + * the key space (i.e 64 hex chars for a 256 bit key) then the key data will be used directly. + * + * Otherwise, a key data will be derived using PBKDF2 + * + * returns SQLITE_OK if initialization was successful + * returns SQLITE_ERROR if the key could't be derived (for instance if pass is NULL or pass_sz is 0) + */ +int sqlcipher_cipher_ctx_key_derive(codec_ctx *ctx, cipher_ctx *c_ctx) { + CODEC_TRACE(("codec_key_derive: entered c_ctx->pass=%s, c_ctx->pass_sz=%d \ + ctx->kdf_salt=%d ctx->kdf_salt_sz=%d c_ctx->kdf_iter=%d \ + ctx->hmac_kdf_salt=%d, c_ctx->fast_kdf_iter=%d c_ctx->key_sz=%d\n", + c_ctx->pass, c_ctx->pass_sz, ctx->kdf_salt, ctx->kdf_salt_sz, c_ctx->kdf_iter, + ctx->hmac_kdf_salt, c_ctx->fast_kdf_iter, c_ctx->key_sz)); + + + if(c_ctx->pass && c_ctx->pass_sz) { // if pass is not null + if (c_ctx->pass_sz == ((c_ctx->key_sz*2)+3) && sqlite3StrNICmp(c_ctx->pass ,"x'", 2) == 0) { + int n = c_ctx->pass_sz - 3; /* adjust for leading x' and tailing ' */ + const char *z = c_ctx->pass + 2; /* adjust lead offset of x' */ + CODEC_TRACE(("codec_key_derive: using raw key from hex\n")); + cipher_hex2bin(z, n, c_ctx->key); + } else { + CODEC_TRACE(("codec_key_derive: deriving key using full PBKDF2 with %d iterations\n", c_ctx->kdf_iter)); + PKCS5_PBKDF2_HMAC_SHA1( c_ctx->pass, c_ctx->pass_sz, + ctx->kdf_salt, ctx->kdf_salt_sz, + c_ctx->kdf_iter, c_ctx->key_sz, c_ctx->key); + + } + + /* if this context is setup to use hmac checks, generate a seperate and different + key for HMAC. In this case, we use the output of the previous KDF as the input to + this KDF run. This ensures a distinct but predictable HMAC key. */ + if(c_ctx->use_hmac) { + int i; + + /* start by copying the kdf key into the hmac salt slot + then XOR it with the fixed hmac salt defined at compile time + this ensures that the salt passed in to derive the hmac key, while + easy to derive and publically known, is not the same as the salt used + to generate the encryption key */ + memcpy(ctx->hmac_kdf_salt, ctx->kdf_salt, ctx->kdf_salt_sz); + for(i = 0; i < ctx->kdf_salt_sz; i++) { + ctx->hmac_kdf_salt[i] ^= HMAC_SALT_MASK; + } + + CODEC_TRACE(("codec_key_derive: deriving hmac key from encryption key using PBKDF2 with %d iterations\n", + c_ctx->fast_kdf_iter)); + PKCS5_PBKDF2_HMAC_SHA1( (const char*)c_ctx->key, c_ctx->key_sz, + ctx->hmac_kdf_salt, ctx->kdf_salt_sz, + c_ctx->fast_kdf_iter, c_ctx->key_sz, c_ctx->hmac_key); + } + + c_ctx->derive_key = 0; + return SQLITE_OK; + }; + return SQLITE_ERROR; +} + +int sqlcipher_codec_key_derive(codec_ctx *ctx) { + /* derive key on first use if necessary */ + if(ctx->read_ctx->derive_key) { + if(sqlcipher_cipher_ctx_key_derive(ctx, ctx->read_ctx) != SQLITE_OK) return SQLITE_ERROR; + } + + if(ctx->write_ctx->derive_key) { + if(sqlcipher_cipher_ctx_cmp(ctx->write_ctx, ctx->read_ctx) == 0) { + // the relevant parameters are the same, just copy read key + if(sqlcipher_cipher_ctx_copy(ctx->write_ctx, ctx->read_ctx) != SQLITE_OK) return SQLITE_ERROR; + } else { + if(sqlcipher_cipher_ctx_key_derive(ctx, ctx->write_ctx) != SQLITE_OK) return SQLITE_ERROR; + } + } + return SQLITE_OK; +} + +int sqlcipher_codec_key_copy(codec_ctx *ctx, int source) { + if(source == CIPHER_READ_CTX) { + return sqlcipher_cipher_ctx_copy(ctx->write_ctx, ctx->read_ctx); + } else { + return sqlcipher_cipher_ctx_copy(ctx->read_ctx, ctx->write_ctx); + } +} + + +#ifndef OMIT_EXPORT + +/* + * Implementation of an "export" function that allows a caller + * to duplicate the main database to an attached database. This is intended + * as a conveneince for users who need to: + * + * 1. migrate from an non-encrypted database to an encrypted database + * 2. move from an encrypted database to a non-encrypted database + * 3. convert beween the various flavors of encrypted databases. + * + * This implementation is based heavily on the procedure and code used + * in vacuum.c, but is exposed as a function that allows export to any + * named attached database. + */ + +/* +** Finalize a prepared statement. If there was an error, store the +** text of the error message in *pzErrMsg. Return the result code. +** +** Based on vacuumFinalize from vacuum.c +*/ +static int sqlcipher_finalize(sqlite3 *db, sqlite3_stmt *pStmt, char **pzErrMsg){ + int rc; + rc = sqlite3VdbeFinalize((Vdbe*)pStmt); + if( rc ){ + sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); + } + return rc; +} + +/* +** Execute zSql on database db. Return an error code. +** +** Based on execSql from vacuum.c +*/ +static int sqlcipher_execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ + sqlite3_stmt *pStmt; + VVA_ONLY( int rc; ) + if( !zSql ){ + return SQLITE_NOMEM; + } + if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){ + sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); + return sqlite3_errcode(db); + } + VVA_ONLY( rc = ) sqlite3_step(pStmt); + assert( rc!=SQLITE_ROW ); + return sqlcipher_finalize(db, pStmt, pzErrMsg); +} + +/* +** Execute zSql on database db. The statement returns exactly +** one column. Execute this as SQL on the same database. +** +** Based on execExecSql from vacuum.c +*/ +static int sqlcipher_execExecSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ + sqlite3_stmt *pStmt; + int rc; + + rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); + if( rc!=SQLITE_OK ) return rc; + + while( SQLITE_ROW==sqlite3_step(pStmt) ){ + rc = sqlcipher_execSql(db, pzErrMsg, (char*)sqlite3_column_text(pStmt, 0)); + if( rc!=SQLITE_OK ){ + sqlcipher_finalize(db, pStmt, pzErrMsg); + return rc; + } + } + + return sqlcipher_finalize(db, pStmt, pzErrMsg); +} + +/* + * copy database and schema from the main database to an attached database + * + * Based on sqlite3RunVacuum from vacuum.c +*/ +void sqlcipher_exportFunc(sqlite3_context *context, int argc, sqlite3_value **argv) { + sqlite3 *db = sqlite3_context_db_handle(context); + const char* attachedDb = (const char*) sqlite3_value_text(argv[0]); + int saved_flags; /* Saved value of the db->flags */ + int saved_nChange; /* Saved value of db->nChange */ + int saved_nTotalChange; /* Saved value of db->nTotalChange */ + void (*saved_xTrace)(void*,const char*); /* Saved db->xTrace */ + int rc = SQLITE_OK; /* Return code from service routines */ + char *zSql = NULL; /* SQL statements */ + char *pzErrMsg = NULL; + + saved_flags = db->flags; + saved_nChange = db->nChange; + saved_nTotalChange = db->nTotalChange; + saved_xTrace = db->xTrace; + db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks | SQLITE_PreferBuiltin; + db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder); + db->xTrace = 0; + + /* Query the schema of the main database. Create a mirror schema + ** in the temporary database. + */ + zSql = sqlite3_mprintf( + "SELECT 'CREATE TABLE %s.' || substr(sql,14) " + " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'" + " AND rootpage>0" + , attachedDb); + rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); + if( rc!=SQLITE_OK ) goto end_of_export; + sqlite3_free(zSql); + + zSql = sqlite3_mprintf( + "SELECT 'CREATE INDEX %s.' || substr(sql,14)" + " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %%' " + , attachedDb); + rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); + if( rc!=SQLITE_OK ) goto end_of_export; + sqlite3_free(zSql); + + zSql = sqlite3_mprintf( + "SELECT 'CREATE UNIQUE INDEX %s.' || substr(sql,21) " + " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %%'" + , attachedDb); + rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); + if( rc!=SQLITE_OK ) goto end_of_export; + sqlite3_free(zSql); + + /* Loop through the tables in the main database. For each, do + ** an "INSERT INTO rekey_db.xxx SELECT * FROM main.xxx;" to copy + ** the contents to the temporary database. + */ + zSql = sqlite3_mprintf( + "SELECT 'INSERT INTO %s.' || quote(name) " + "|| ' SELECT * FROM main.' || quote(name) || ';'" + "FROM main.sqlite_master " + "WHERE type = 'table' AND name!='sqlite_sequence' " + " AND rootpage>0" + , attachedDb); + rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); + if( rc!=SQLITE_OK ) goto end_of_export; + sqlite3_free(zSql); + + /* Copy over the sequence table + */ + zSql = sqlite3_mprintf( + "SELECT 'DELETE FROM %s.' || quote(name) || ';' " + "FROM %s.sqlite_master WHERE name='sqlite_sequence' " + , attachedDb, attachedDb); + rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); + if( rc!=SQLITE_OK ) goto end_of_export; + sqlite3_free(zSql); + + zSql = sqlite3_mprintf( + "SELECT 'INSERT INTO %s.' || quote(name) " + "|| ' SELECT * FROM main.' || quote(name) || ';' " + "FROM %s.sqlite_master WHERE name=='sqlite_sequence';" + , attachedDb, attachedDb); + rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); + if( rc!=SQLITE_OK ) goto end_of_export; + sqlite3_free(zSql); + + /* Copy the triggers, views, and virtual tables from the main database + ** over to the temporary database. None of these objects has any + ** associated storage, so all we have to do is copy their entries + ** from the SQLITE_MASTER table. + */ + zSql = sqlite3_mprintf( + "INSERT INTO %s.sqlite_master " + " SELECT type, name, tbl_name, rootpage, sql" + " FROM main.sqlite_master" + " WHERE type='view' OR type='trigger'" + " OR (type='table' AND rootpage=0)" + , attachedDb); + rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execSql(db, &pzErrMsg, zSql); + if( rc!=SQLITE_OK ) goto end_of_export; + sqlite3_free(zSql); + + zSql = NULL; +end_of_export: + db->flags = saved_flags; + db->nChange = saved_nChange; + db->nTotalChange = saved_nTotalChange; + db->xTrace = saved_xTrace; + + sqlite3_free(zSql); + + if(rc) { + if(pzErrMsg != NULL) { + sqlite3_result_error(context, pzErrMsg, -1); + sqlite3DbFree(db, pzErrMsg); + } else { + sqlite3_result_error(context, sqlite3ErrStr(rc), -1); + } + } +} + +#endif +#endif diff --git a/src/ctime.c b/src/ctime.c new file mode 100644 index 0000000..1688069 --- /dev/null +++ b/src/ctime.c @@ -0,0 +1,399 @@ +/* +** 2010 February 23 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file implements routines used to report what compile-time options +** SQLite was built with. +*/ + +#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS + +#include "sqliteInt.h" + +/* +** An array of names of all compile-time options. This array should +** be sorted A-Z. +** +** This array looks large, but in a typical installation actually uses +** only a handful of compile-time options, so most times this array is usually +** rather short and uses little memory space. +*/ +static const char * const azCompileOpt[] = { + +/* These macros are provided to "stringify" the value of the define +** for those options in which the value is meaningful. */ +#define CTIMEOPT_VAL_(opt) #opt +#define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt) + +#ifdef SQLITE_32BIT_ROWID + "32BIT_ROWID", +#endif +#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC + "4_BYTE_ALIGNED_MALLOC", +#endif +#ifdef SQLITE_CASE_SENSITIVE_LIKE + "CASE_SENSITIVE_LIKE", +#endif +#ifdef SQLITE_CHECK_PAGES + "CHECK_PAGES", +#endif +#ifdef SQLITE_COVERAGE_TEST + "COVERAGE_TEST", +#endif +#ifdef SQLITE_DEBUG + "DEBUG", +#endif +#ifdef SQLITE_DEFAULT_LOCKING_MODE + "DEFAULT_LOCKING_MODE=" CTIMEOPT_VAL(SQLITE_DEFAULT_LOCKING_MODE), +#endif +#ifdef SQLITE_DISABLE_DIRSYNC + "DISABLE_DIRSYNC", +#endif +#ifdef SQLITE_DISABLE_LFS + "DISABLE_LFS", +#endif +#ifdef SQLITE_ENABLE_ATOMIC_WRITE + "ENABLE_ATOMIC_WRITE", +#endif +#ifdef SQLITE_ENABLE_CEROD + "ENABLE_CEROD", +#endif +#ifdef SQLITE_ENABLE_COLUMN_METADATA + "ENABLE_COLUMN_METADATA", +#endif +#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT + "ENABLE_EXPENSIVE_ASSERT", +#endif +#ifdef SQLITE_ENABLE_FTS1 + "ENABLE_FTS1", +#endif +#ifdef SQLITE_ENABLE_FTS2 + "ENABLE_FTS2", +#endif +#ifdef SQLITE_ENABLE_FTS3 + "ENABLE_FTS3", +#endif +#ifdef SQLITE_ENABLE_FTS3_PARENTHESIS + "ENABLE_FTS3_PARENTHESIS", +#endif +#ifdef SQLITE_ENABLE_FTS4 + "ENABLE_FTS4", +#endif +#ifdef SQLITE_ENABLE_ICU + "ENABLE_ICU", +#endif +#ifdef SQLITE_ENABLE_IOTRACE + "ENABLE_IOTRACE", +#endif +#ifdef SQLITE_ENABLE_LOAD_EXTENSION + "ENABLE_LOAD_EXTENSION", +#endif +#ifdef SQLITE_ENABLE_LOCKING_STYLE + "ENABLE_LOCKING_STYLE=" CTIMEOPT_VAL(SQLITE_ENABLE_LOCKING_STYLE), +#endif +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + "ENABLE_MEMORY_MANAGEMENT", +#endif +#ifdef SQLITE_ENABLE_MEMSYS3 + "ENABLE_MEMSYS3", +#endif +#ifdef SQLITE_ENABLE_MEMSYS5 + "ENABLE_MEMSYS5", +#endif +#ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK + "ENABLE_OVERSIZE_CELL_CHECK", +#endif +#ifdef SQLITE_ENABLE_RTREE + "ENABLE_RTREE", +#endif +#ifdef SQLITE_ENABLE_STAT3 + "ENABLE_STAT3", +#endif +#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY + "ENABLE_UNLOCK_NOTIFY", +#endif +#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT + "ENABLE_UPDATE_DELETE_LIMIT", +#endif +#ifdef SQLITE_HAS_CODEC + "HAS_CODEC", +#endif +#ifdef SQLITE_HAVE_ISNAN + "HAVE_ISNAN", +#endif +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + "HOMEGROWN_RECURSIVE_MUTEX", +#endif +#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS + "IGNORE_AFP_LOCK_ERRORS", +#endif +#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS + "IGNORE_FLOCK_LOCK_ERRORS", +#endif +#ifdef SQLITE_INT64_TYPE + "INT64_TYPE", +#endif +#ifdef SQLITE_LOCK_TRACE + "LOCK_TRACE", +#endif +#ifdef SQLITE_MAX_SCHEMA_RETRY + "MAX_SCHEMA_RETRY=" CTIMEOPT_VAL(SQLITE_MAX_SCHEMA_RETRY), +#endif +#ifdef SQLITE_MEMDEBUG + "MEMDEBUG", +#endif +#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT + "MIXED_ENDIAN_64BIT_FLOAT", +#endif +#ifdef SQLITE_NO_SYNC + "NO_SYNC", +#endif +#ifdef SQLITE_OMIT_ALTERTABLE + "OMIT_ALTERTABLE", +#endif +#ifdef SQLITE_OMIT_ANALYZE + "OMIT_ANALYZE", +#endif +#ifdef SQLITE_OMIT_ATTACH + "OMIT_ATTACH", +#endif +#ifdef SQLITE_OMIT_AUTHORIZATION + "OMIT_AUTHORIZATION", +#endif +#ifdef SQLITE_OMIT_AUTOINCREMENT + "OMIT_AUTOINCREMENT", +#endif +#ifdef SQLITE_OMIT_AUTOINIT + "OMIT_AUTOINIT", +#endif +#ifdef SQLITE_OMIT_AUTOMATIC_INDEX + "OMIT_AUTOMATIC_INDEX", +#endif +#ifdef SQLITE_OMIT_AUTORESET + "OMIT_AUTORESET", +#endif +#ifdef SQLITE_OMIT_AUTOVACUUM + "OMIT_AUTOVACUUM", +#endif +#ifdef SQLITE_OMIT_BETWEEN_OPTIMIZATION + "OMIT_BETWEEN_OPTIMIZATION", +#endif +#ifdef SQLITE_OMIT_BLOB_LITERAL + "OMIT_BLOB_LITERAL", +#endif +#ifdef SQLITE_OMIT_BTREECOUNT + "OMIT_BTREECOUNT", +#endif +#ifdef SQLITE_OMIT_BUILTIN_TEST + "OMIT_BUILTIN_TEST", +#endif +#ifdef SQLITE_OMIT_CAST + "OMIT_CAST", +#endif +#ifdef SQLITE_OMIT_CHECK + "OMIT_CHECK", +#endif +/* // redundant +** #ifdef SQLITE_OMIT_COMPILEOPTION_DIAGS +** "OMIT_COMPILEOPTION_DIAGS", +** #endif +*/ +#ifdef SQLITE_OMIT_COMPLETE + "OMIT_COMPLETE", +#endif +#ifdef SQLITE_OMIT_COMPOUND_SELECT + "OMIT_COMPOUND_SELECT", +#endif +#ifdef SQLITE_OMIT_DATETIME_FUNCS + "OMIT_DATETIME_FUNCS", +#endif +#ifdef SQLITE_OMIT_DECLTYPE + "OMIT_DECLTYPE", +#endif +#ifdef SQLITE_OMIT_DEPRECATED + "OMIT_DEPRECATED", +#endif +#ifdef SQLITE_OMIT_DISKIO + "OMIT_DISKIO", +#endif +#ifdef SQLITE_OMIT_EXPLAIN + "OMIT_EXPLAIN", +#endif +#ifdef SQLITE_OMIT_FLAG_PRAGMAS + "OMIT_FLAG_PRAGMAS", +#endif +#ifdef SQLITE_OMIT_FLOATING_POINT + "OMIT_FLOATING_POINT", +#endif +#ifdef SQLITE_OMIT_FOREIGN_KEY + "OMIT_FOREIGN_KEY", +#endif +#ifdef SQLITE_OMIT_GET_TABLE + "OMIT_GET_TABLE", +#endif +#ifdef SQLITE_OMIT_INCRBLOB + "OMIT_INCRBLOB", +#endif +#ifdef SQLITE_OMIT_INTEGRITY_CHECK + "OMIT_INTEGRITY_CHECK", +#endif +#ifdef SQLITE_OMIT_LIKE_OPTIMIZATION + "OMIT_LIKE_OPTIMIZATION", +#endif +#ifdef SQLITE_OMIT_LOAD_EXTENSION + "OMIT_LOAD_EXTENSION", +#endif +#ifdef SQLITE_OMIT_LOCALTIME + "OMIT_LOCALTIME", +#endif +#ifdef SQLITE_OMIT_LOOKASIDE + "OMIT_LOOKASIDE", +#endif +#ifdef SQLITE_OMIT_MEMORYDB + "OMIT_MEMORYDB", +#endif +#ifdef SQLITE_OMIT_MERGE_SORT + "OMIT_MERGE_SORT", +#endif +#ifdef SQLITE_OMIT_OR_OPTIMIZATION + "OMIT_OR_OPTIMIZATION", +#endif +#ifdef SQLITE_OMIT_PAGER_PRAGMAS + "OMIT_PAGER_PRAGMAS", +#endif +#ifdef SQLITE_OMIT_PRAGMA + "OMIT_PRAGMA", +#endif +#ifdef SQLITE_OMIT_PROGRESS_CALLBACK + "OMIT_PROGRESS_CALLBACK", +#endif +#ifdef SQLITE_OMIT_QUICKBALANCE + "OMIT_QUICKBALANCE", +#endif +#ifdef SQLITE_OMIT_REINDEX + "OMIT_REINDEX", +#endif +#ifdef SQLITE_OMIT_SCHEMA_PRAGMAS + "OMIT_SCHEMA_PRAGMAS", +#endif +#ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS + "OMIT_SCHEMA_VERSION_PRAGMAS", +#endif +#ifdef SQLITE_OMIT_SHARED_CACHE + "OMIT_SHARED_CACHE", +#endif +#ifdef SQLITE_OMIT_SUBQUERY + "OMIT_SUBQUERY", +#endif +#ifdef SQLITE_OMIT_TCL_VARIABLE + "OMIT_TCL_VARIABLE", +#endif +#ifdef SQLITE_OMIT_TEMPDB + "OMIT_TEMPDB", +#endif +#ifdef SQLITE_OMIT_TRACE + "OMIT_TRACE", +#endif +#ifdef SQLITE_OMIT_TRIGGER + "OMIT_TRIGGER", +#endif +#ifdef SQLITE_OMIT_TRUNCATE_OPTIMIZATION + "OMIT_TRUNCATE_OPTIMIZATION", +#endif +#ifdef SQLITE_OMIT_UTF16 + "OMIT_UTF16", +#endif +#ifdef SQLITE_OMIT_VACUUM + "OMIT_VACUUM", +#endif +#ifdef SQLITE_OMIT_VIEW + "OMIT_VIEW", +#endif +#ifdef SQLITE_OMIT_VIRTUALTABLE + "OMIT_VIRTUALTABLE", +#endif +#ifdef SQLITE_OMIT_WAL + "OMIT_WAL", +#endif +#ifdef SQLITE_OMIT_WSD + "OMIT_WSD", +#endif +#ifdef SQLITE_OMIT_XFER_OPT + "OMIT_XFER_OPT", +#endif +#ifdef SQLITE_PERFORMANCE_TRACE + "PERFORMANCE_TRACE", +#endif +#ifdef SQLITE_PROXY_DEBUG + "PROXY_DEBUG", +#endif +#ifdef SQLITE_SECURE_DELETE + "SECURE_DELETE", +#endif +#ifdef SQLITE_SMALL_STACK + "SMALL_STACK", +#endif +#ifdef SQLITE_SOUNDEX + "SOUNDEX", +#endif +#ifdef SQLITE_TCL + "TCL", +#endif +#ifdef SQLITE_TEMP_STORE + "TEMP_STORE=" CTIMEOPT_VAL(SQLITE_TEMP_STORE), +#endif +#ifdef SQLITE_TEST + "TEST", +#endif +#ifdef SQLITE_THREADSAFE + "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE), +#endif +#ifdef SQLITE_USE_ALLOCA + "USE_ALLOCA", +#endif +#ifdef SQLITE_ZERO_MALLOC + "ZERO_MALLOC" +#endif +}; + +/* +** Given the name of a compile-time option, return true if that option +** was used and false if not. +** +** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix +** is not required for a match. +*/ +int sqlite3_compileoption_used(const char *zOptName){ + int i, n; + if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7; + n = sqlite3Strlen30(zOptName); + + /* Since ArraySize(azCompileOpt) is normally in single digits, a + ** linear search is adequate. No need for a binary search. */ + for(i=0; i=0 && N +#include +#include + +#ifndef SQLITE_OMIT_DATETIME_FUNCS + + +/* +** A structure for holding a single date and time. +*/ +typedef struct DateTime DateTime; +struct DateTime { + sqlite3_int64 iJD; /* The julian day number times 86400000 */ + int Y, M, D; /* Year, month, and day */ + int h, m; /* Hour and minutes */ + int tz; /* Timezone offset in minutes */ + double s; /* Seconds */ + char validYMD; /* True (1) if Y,M,D are valid */ + char validHMS; /* True (1) if h,m,s are valid */ + char validJD; /* True (1) if iJD is valid */ + char validTZ; /* True (1) if tz is valid */ +}; + + +/* +** Convert zDate into one or more integers. Additional arguments +** come in groups of 5 as follows: +** +** N number of digits in the integer +** min minimum allowed value of the integer +** max maximum allowed value of the integer +** nextC first character after the integer +** pVal where to write the integers value. +** +** Conversions continue until one with nextC==0 is encountered. +** The function returns the number of successful conversions. +*/ +static int getDigits(const char *zDate, ...){ + va_list ap; + int val; + int N; + int min; + int max; + int nextC; + int *pVal; + int cnt = 0; + va_start(ap, zDate); + do{ + N = va_arg(ap, int); + min = va_arg(ap, int); + max = va_arg(ap, int); + nextC = va_arg(ap, int); + pVal = va_arg(ap, int*); + val = 0; + while( N-- ){ + if( !sqlite3Isdigit(*zDate) ){ + goto end_getDigits; + } + val = val*10 + *zDate - '0'; + zDate++; + } + if( valmax || (nextC!=0 && nextC!=*zDate) ){ + goto end_getDigits; + } + *pVal = val; + zDate++; + cnt++; + }while( nextC ); +end_getDigits: + va_end(ap); + return cnt; +} + +/* +** Parse a timezone extension on the end of a date-time. +** The extension is of the form: +** +** (+/-)HH:MM +** +** Or the "zulu" notation: +** +** Z +** +** If the parse is successful, write the number of minutes +** of change in p->tz and return 0. If a parser error occurs, +** return non-zero. +** +** A missing specifier is not considered an error. +*/ +static int parseTimezone(const char *zDate, DateTime *p){ + int sgn = 0; + int nHr, nMn; + int c; + while( sqlite3Isspace(*zDate) ){ zDate++; } + p->tz = 0; + c = *zDate; + if( c=='-' ){ + sgn = -1; + }else if( c=='+' ){ + sgn = +1; + }else if( c=='Z' || c=='z' ){ + zDate++; + goto zulu_time; + }else{ + return c!=0; + } + zDate++; + if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ + return 1; + } + zDate += 5; + p->tz = sgn*(nMn + nHr*60); +zulu_time: + while( sqlite3Isspace(*zDate) ){ zDate++; } + return *zDate!=0; +} + +/* +** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. +** The HH, MM, and SS must each be exactly 2 digits. The +** fractional seconds FFFF can be one or more digits. +** +** Return 1 if there is a parsing error and 0 on success. +*/ +static int parseHhMmSs(const char *zDate, DateTime *p){ + int h, m, s; + double ms = 0.0; + if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ + return 1; + } + zDate += 5; + if( *zDate==':' ){ + zDate++; + if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ + return 1; + } + zDate += 2; + if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ + double rScale = 1.0; + zDate++; + while( sqlite3Isdigit(*zDate) ){ + ms = ms*10.0 + *zDate - '0'; + rScale *= 10.0; + zDate++; + } + ms /= rScale; + } + }else{ + s = 0; + } + p->validJD = 0; + p->validHMS = 1; + p->h = h; + p->m = m; + p->s = s + ms; + if( parseTimezone(zDate, p) ) return 1; + p->validTZ = (p->tz!=0)?1:0; + return 0; +} + +/* +** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume +** that the YYYY-MM-DD is according to the Gregorian calendar. +** +** Reference: Meeus page 61 +*/ +static void computeJD(DateTime *p){ + int Y, M, D, A, B, X1, X2; + + if( p->validJD ) return; + if( p->validYMD ){ + Y = p->Y; + M = p->M; + D = p->D; + }else{ + Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ + M = 1; + D = 1; + } + if( M<=2 ){ + Y--; + M += 12; + } + A = Y/100; + B = 2 - A + (A/4); + X1 = 36525*(Y+4716)/100; + X2 = 306001*(M+1)/10000; + p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); + p->validJD = 1; + if( p->validHMS ){ + p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); + if( p->validTZ ){ + p->iJD -= p->tz*60000; + p->validYMD = 0; + p->validHMS = 0; + p->validTZ = 0; + } + } +} + +/* +** Parse dates of the form +** +** YYYY-MM-DD HH:MM:SS.FFF +** YYYY-MM-DD HH:MM:SS +** YYYY-MM-DD HH:MM +** YYYY-MM-DD +** +** Write the result into the DateTime structure and return 0 +** on success and 1 if the input string is not a well-formed +** date. +*/ +static int parseYyyyMmDd(const char *zDate, DateTime *p){ + int Y, M, D, neg; + + if( zDate[0]=='-' ){ + zDate++; + neg = 1; + }else{ + neg = 0; + } + if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ + return 1; + } + zDate += 10; + while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } + if( parseHhMmSs(zDate, p)==0 ){ + /* We got the time */ + }else if( *zDate==0 ){ + p->validHMS = 0; + }else{ + return 1; + } + p->validJD = 0; + p->validYMD = 1; + p->Y = neg ? -Y : Y; + p->M = M; + p->D = D; + if( p->validTZ ){ + computeJD(p); + } + return 0; +} + +/* +** Set the time to the current time reported by the VFS. +** +** Return the number of errors. +*/ +static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ + sqlite3 *db = sqlite3_context_db_handle(context); + if( sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD)==SQLITE_OK ){ + p->validJD = 1; + return 0; + }else{ + return 1; + } +} + +/* +** Attempt to parse the given string into a Julian Day Number. Return +** the number of errors. +** +** The following are acceptable forms for the input string: +** +** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM +** DDDD.DD +** now +** +** In the first form, the +/-HH:MM is always optional. The fractional +** seconds extension (the ".FFF") is optional. The seconds portion +** (":SS.FFF") is option. The year and date can be omitted as long +** as there is a time string. The time string can be omitted as long +** as there is a year and date. +*/ +static int parseDateOrTime( + sqlite3_context *context, + const char *zDate, + DateTime *p +){ + double r; + if( parseYyyyMmDd(zDate,p)==0 ){ + return 0; + }else if( parseHhMmSs(zDate, p)==0 ){ + return 0; + }else if( sqlite3StrICmp(zDate,"now")==0){ + return setDateTimeToCurrent(context, p); + }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ + p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); + p->validJD = 1; + return 0; + } + return 1; +} + +/* +** Compute the Year, Month, and Day from the julian day number. +*/ +static void computeYMD(DateTime *p){ + int Z, A, B, C, D, E, X1; + if( p->validYMD ) return; + if( !p->validJD ){ + p->Y = 2000; + p->M = 1; + p->D = 1; + }else{ + Z = (int)((p->iJD + 43200000)/86400000); + A = (int)((Z - 1867216.25)/36524.25); + A = Z + 1 + A - (A/4); + B = A + 1524; + C = (int)((B - 122.1)/365.25); + D = (36525*C)/100; + E = (int)((B-D)/30.6001); + X1 = (int)(30.6001*E); + p->D = B - D - X1; + p->M = E<14 ? E-1 : E-13; + p->Y = p->M>2 ? C - 4716 : C - 4715; + } + p->validYMD = 1; +} + +/* +** Compute the Hour, Minute, and Seconds from the julian day number. +*/ +static void computeHMS(DateTime *p){ + int s; + if( p->validHMS ) return; + computeJD(p); + s = (int)((p->iJD + 43200000) % 86400000); + p->s = s/1000.0; + s = (int)p->s; + p->s -= s; + p->h = s/3600; + s -= p->h*3600; + p->m = s/60; + p->s += s - p->m*60; + p->validHMS = 1; +} + +/* +** Compute both YMD and HMS +*/ +static void computeYMD_HMS(DateTime *p){ + computeYMD(p); + computeHMS(p); +} + +/* +** Clear the YMD and HMS and the TZ +*/ +static void clearYMD_HMS_TZ(DateTime *p){ + p->validYMD = 0; + p->validHMS = 0; + p->validTZ = 0; +} + +/* +** On recent Windows platforms, the localtime_s() function is available +** as part of the "Secure CRT". It is essentially equivalent to +** localtime_r() available under most POSIX platforms, except that the +** order of the parameters is reversed. +** +** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. +** +** If the user has not indicated to use localtime_r() or localtime_s() +** already, check for an MSVC build environment that provides +** localtime_s(). +*/ +#if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ + defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) +#define HAVE_LOCALTIME_S 1 +#endif + +#ifndef SQLITE_OMIT_LOCALTIME +/* +** The following routine implements the rough equivalent of localtime_r() +** using whatever operating-system specific localtime facility that +** is available. This routine returns 0 on success and +** non-zero on any kind of error. +** +** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this +** routine will always fail. +*/ +static int osLocaltime(time_t *t, struct tm *pTm){ + int rc; +#if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \ + && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S) + struct tm *pX; +#if SQLITE_THREADSAFE>0 + sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); +#endif + sqlite3_mutex_enter(mutex); + pX = localtime(t); +#ifndef SQLITE_OMIT_BUILTIN_TEST + if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; +#endif + if( pX ) *pTm = *pX; + sqlite3_mutex_leave(mutex); + rc = pX==0; +#else +#ifndef SQLITE_OMIT_BUILTIN_TEST + if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; +#endif +#if defined(HAVE_LOCALTIME_R) && HAVE_LOCALTIME_R + rc = localtime_r(t, pTm)==0; +#else + rc = localtime_s(pTm, t); +#endif /* HAVE_LOCALTIME_R */ +#endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ + return rc; +} +#endif /* SQLITE_OMIT_LOCALTIME */ + + +#ifndef SQLITE_OMIT_LOCALTIME +/* +** Compute the difference (in milliseconds) between localtime and UTC +** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, +** return this value and set *pRc to SQLITE_OK. +** +** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value +** is undefined in this case. +*/ +static sqlite3_int64 localtimeOffset( + DateTime *p, /* Date at which to calculate offset */ + sqlite3_context *pCtx, /* Write error here if one occurs */ + int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ +){ + DateTime x, y; + time_t t; + struct tm sLocal; + + /* Initialize the contents of sLocal to avoid a compiler warning. */ + memset(&sLocal, 0, sizeof(sLocal)); + + x = *p; + computeYMD_HMS(&x); + if( x.Y<1971 || x.Y>=2038 ){ + x.Y = 2000; + x.M = 1; + x.D = 1; + x.h = 0; + x.m = 0; + x.s = 0.0; + } else { + int s = (int)(x.s + 0.5); + x.s = s; + } + x.tz = 0; + x.validJD = 0; + computeJD(&x); + t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); + if( osLocaltime(&t, &sLocal) ){ + sqlite3_result_error(pCtx, "local time unavailable", -1); + *pRc = SQLITE_ERROR; + return 0; + } + y.Y = sLocal.tm_year + 1900; + y.M = sLocal.tm_mon + 1; + y.D = sLocal.tm_mday; + y.h = sLocal.tm_hour; + y.m = sLocal.tm_min; + y.s = sLocal.tm_sec; + y.validYMD = 1; + y.validHMS = 1; + y.validJD = 0; + y.validTZ = 0; + computeJD(&y); + *pRc = SQLITE_OK; + return y.iJD - x.iJD; +} +#endif /* SQLITE_OMIT_LOCALTIME */ + +/* +** Process a modifier to a date-time stamp. The modifiers are +** as follows: +** +** NNN days +** NNN hours +** NNN minutes +** NNN.NNNN seconds +** NNN months +** NNN years +** start of month +** start of year +** start of week +** start of day +** weekday N +** unixepoch +** localtime +** utc +** +** Return 0 on success and 1 if there is any kind of error. If the error +** is in a system call (i.e. localtime()), then an error message is written +** to context pCtx. If the error is an unrecognized modifier, no error is +** written to pCtx. +*/ +static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){ + int rc = 1; + int n; + double r; + char *z, zBuf[30]; + z = zBuf; + for(n=0; niJD += localtimeOffset(p, pCtx, &rc); + clearYMD_HMS_TZ(p); + } + break; + } +#endif + case 'u': { + /* + ** unixepoch + ** + ** Treat the current value of p->iJD as the number of + ** seconds since 1970. Convert to a real julian day number. + */ + if( strcmp(z, "unixepoch")==0 && p->validJD ){ + p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; + clearYMD_HMS_TZ(p); + rc = 0; + } +#ifndef SQLITE_OMIT_LOCALTIME + else if( strcmp(z, "utc")==0 ){ + sqlite3_int64 c1; + computeJD(p); + c1 = localtimeOffset(p, pCtx, &rc); + if( rc==SQLITE_OK ){ + p->iJD -= c1; + clearYMD_HMS_TZ(p); + p->iJD += c1 - localtimeOffset(p, pCtx, &rc); + } + } +#endif + break; + } + case 'w': { + /* + ** weekday N + ** + ** Move the date to the same time on the next occurrence of + ** weekday N where 0==Sunday, 1==Monday, and so forth. If the + ** date is already on the appropriate weekday, this is a no-op. + */ + if( strncmp(z, "weekday ", 8)==0 + && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) + && (n=(int)r)==r && n>=0 && r<7 ){ + sqlite3_int64 Z; + computeYMD_HMS(p); + p->validTZ = 0; + p->validJD = 0; + computeJD(p); + Z = ((p->iJD + 129600000)/86400000) % 7; + if( Z>n ) Z -= 7; + p->iJD += (n - Z)*86400000; + clearYMD_HMS_TZ(p); + rc = 0; + } + break; + } + case 's': { + /* + ** start of TTTTT + ** + ** Move the date backwards to the beginning of the current day, + ** or month or year. + */ + if( strncmp(z, "start of ", 9)!=0 ) break; + z += 9; + computeYMD(p); + p->validHMS = 1; + p->h = p->m = 0; + p->s = 0.0; + p->validTZ = 0; + p->validJD = 0; + if( strcmp(z,"month")==0 ){ + p->D = 1; + rc = 0; + }else if( strcmp(z,"year")==0 ){ + computeYMD(p); + p->M = 1; + p->D = 1; + rc = 0; + }else if( strcmp(z,"day")==0 ){ + rc = 0; + } + break; + } + case '+': + case '-': + case '0': + case '1': + case '2': + case '3': + case '4': + case '5': + case '6': + case '7': + case '8': + case '9': { + double rRounder; + for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} + if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ + rc = 1; + break; + } + if( z[n]==':' ){ + /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the + ** specified number of hours, minutes, seconds, and fractional seconds + ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be + ** omitted. + */ + const char *z2 = z; + DateTime tx; + sqlite3_int64 day; + if( !sqlite3Isdigit(*z2) ) z2++; + memset(&tx, 0, sizeof(tx)); + if( parseHhMmSs(z2, &tx) ) break; + computeJD(&tx); + tx.iJD -= 43200000; + day = tx.iJD/86400000; + tx.iJD -= day*86400000; + if( z[0]=='-' ) tx.iJD = -tx.iJD; + computeJD(p); + clearYMD_HMS_TZ(p); + p->iJD += tx.iJD; + rc = 0; + break; + } + z += n; + while( sqlite3Isspace(*z) ) z++; + n = sqlite3Strlen30(z); + if( n>10 || n<3 ) break; + if( z[n-1]=='s' ){ z[n-1] = 0; n--; } + computeJD(p); + rc = 0; + rRounder = r<0 ? -0.5 : +0.5; + if( n==3 && strcmp(z,"day")==0 ){ + p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); + }else if( n==4 && strcmp(z,"hour")==0 ){ + p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); + }else if( n==6 && strcmp(z,"minute")==0 ){ + p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); + }else if( n==6 && strcmp(z,"second")==0 ){ + p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); + }else if( n==5 && strcmp(z,"month")==0 ){ + int x, y; + computeYMD_HMS(p); + p->M += (int)r; + x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; + p->Y += x; + p->M -= x*12; + p->validJD = 0; + computeJD(p); + y = (int)r; + if( y!=r ){ + p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); + } + }else if( n==4 && strcmp(z,"year")==0 ){ + int y = (int)r; + computeYMD_HMS(p); + p->Y += y; + p->validJD = 0; + computeJD(p); + if( y!=r ){ + p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); + } + }else{ + rc = 1; + } + clearYMD_HMS_TZ(p); + break; + } + default: { + break; + } + } + return rc; +} + +/* +** Process time function arguments. argv[0] is a date-time stamp. +** argv[1] and following are modifiers. Parse them all and write +** the resulting time into the DateTime structure p. Return 0 +** on success and 1 if there are any errors. +** +** If there are zero parameters (if even argv[0] is undefined) +** then assume a default value of "now" for argv[0]. +*/ +static int isDate( + sqlite3_context *context, + int argc, + sqlite3_value **argv, + DateTime *p +){ + int i; + const unsigned char *z; + int eType; + memset(p, 0, sizeof(*p)); + if( argc==0 ){ + return setDateTimeToCurrent(context, p); + } + if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT + || eType==SQLITE_INTEGER ){ + p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); + p->validJD = 1; + }else{ + z = sqlite3_value_text(argv[0]); + if( !z || parseDateOrTime(context, (char*)z, p) ){ + return 1; + } + } + for(i=1; iaLimit[SQLITE_LIMIT_LENGTH]+1 ); + testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); + if( n(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ + sqlite3_result_error_toobig(context); + return; + }else{ + z = sqlite3DbMallocRaw(db, (int)n); + if( z==0 ){ + sqlite3_result_error_nomem(context); + return; + } + } + computeJD(&x); + computeYMD_HMS(&x); + for(i=j=0; zFmt[i]; i++){ + if( zFmt[i]!='%' ){ + z[j++] = zFmt[i]; + }else{ + i++; + switch( zFmt[i] ){ + case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; + case 'f': { + double s = x.s; + if( s>59.999 ) s = 59.999; + sqlite3_snprintf(7, &z[j],"%06.3f", s); + j += sqlite3Strlen30(&z[j]); + break; + } + case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; + case 'W': /* Fall thru */ + case 'j': { + int nDay; /* Number of days since 1st day of year */ + DateTime y = x; + y.validJD = 0; + y.M = 1; + y.D = 1; + computeJD(&y); + nDay = (int)((x.iJD-y.iJD+43200000)/86400000); + if( zFmt[i]=='W' ){ + int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ + wd = (int)(((x.iJD+43200000)/86400000)%7); + sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); + j += 2; + }else{ + sqlite3_snprintf(4, &z[j],"%03d",nDay+1); + j += 3; + } + break; + } + case 'J': { + sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); + j+=sqlite3Strlen30(&z[j]); + break; + } + case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; + case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; + case 's': { + sqlite3_snprintf(30,&z[j],"%lld", + (i64)(x.iJD/1000 - 21086676*(i64)10000)); + j += sqlite3Strlen30(&z[j]); + break; + } + case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; + case 'w': { + z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; + break; + } + case 'Y': { + sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); + break; + } + default: z[j++] = '%'; break; + } + } + } + z[j] = 0; + sqlite3_result_text(context, z, -1, + z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); +} + +/* +** current_time() +** +** This function returns the same value as time('now'). +*/ +static void ctimeFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **NotUsed2 +){ + UNUSED_PARAMETER2(NotUsed, NotUsed2); + timeFunc(context, 0, 0); +} + +/* +** current_date() +** +** This function returns the same value as date('now'). +*/ +static void cdateFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **NotUsed2 +){ + UNUSED_PARAMETER2(NotUsed, NotUsed2); + dateFunc(context, 0, 0); +} + +/* +** current_timestamp() +** +** This function returns the same value as datetime('now'). +*/ +static void ctimestampFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **NotUsed2 +){ + UNUSED_PARAMETER2(NotUsed, NotUsed2); + datetimeFunc(context, 0, 0); +} +#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ + +#ifdef SQLITE_OMIT_DATETIME_FUNCS +/* +** If the library is compiled to omit the full-scale date and time +** handling (to get a smaller binary), the following minimal version +** of the functions current_time(), current_date() and current_timestamp() +** are included instead. This is to support column declarations that +** include "DEFAULT CURRENT_TIME" etc. +** +** This function uses the C-library functions time(), gmtime() +** and strftime(). The format string to pass to strftime() is supplied +** as the user-data for the function. +*/ +static void currentTimeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + time_t t; + char *zFormat = (char *)sqlite3_user_data(context); + sqlite3 *db; + sqlite3_int64 iT; + struct tm *pTm; + struct tm sNow; + char zBuf[20]; + + UNUSED_PARAMETER(argc); + UNUSED_PARAMETER(argv); + + db = sqlite3_context_db_handle(context); + if( sqlite3OsCurrentTimeInt64(db->pVfs, &iT) ) return; + t = iT/1000 - 10000*(sqlite3_int64)21086676; +#ifdef HAVE_GMTIME_R + pTm = gmtime_r(&t, &sNow); +#else + sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); + pTm = gmtime(&t); + if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); + sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); +#endif + if( pTm ){ + strftime(zBuf, 20, zFormat, &sNow); + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); + } +} +#endif + +/* +** This function registered all of the above C functions as SQL +** functions. This should be the only routine in this file with +** external linkage. +*/ +void sqlite3RegisterDateTimeFunctions(void){ + static SQLITE_WSD FuncDef aDateTimeFuncs[] = { +#ifndef SQLITE_OMIT_DATETIME_FUNCS + FUNCTION(julianday, -1, 0, 0, juliandayFunc ), + FUNCTION(date, -1, 0, 0, dateFunc ), + FUNCTION(time, -1, 0, 0, timeFunc ), + FUNCTION(datetime, -1, 0, 0, datetimeFunc ), + FUNCTION(strftime, -1, 0, 0, strftimeFunc ), + FUNCTION(current_time, 0, 0, 0, ctimeFunc ), + FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), + FUNCTION(current_date, 0, 0, 0, cdateFunc ), +#else + STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), + STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), + STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), +#endif + }; + int i; + FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); + FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); + + for(i=0; ia[0].pTab Pointer to the Table object +** pSrc->a[0].pIndex Pointer to the INDEXED BY index, if there is one +** +*/ +Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ + struct SrcList_item *pItem = pSrc->a; + Table *pTab; + assert( pItem && pSrc->nSrc==1 ); + pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); + sqlite3DeleteTable(pParse->db, pItem->pTab); + pItem->pTab = pTab; + if( pTab ){ + pTab->nRef++; + } + if( sqlite3IndexedByLookup(pParse, pItem) ){ + pTab = 0; + } + return pTab; +} + +/* +** Check to make sure the given table is writable. If it is not +** writable, generate an error message and return 1. If it is +** writable return 0; +*/ +int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){ + /* A table is not writable under the following circumstances: + ** + ** 1) It is a virtual table and no implementation of the xUpdate method + ** has been provided, or + ** 2) It is a system table (i.e. sqlite_master), this call is not + ** part of a nested parse and writable_schema pragma has not + ** been specified. + ** + ** In either case leave an error message in pParse and return non-zero. + */ + if( ( IsVirtual(pTab) + && sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0 ) + || ( (pTab->tabFlags & TF_Readonly)!=0 + && (pParse->db->flags & SQLITE_WriteSchema)==0 + && pParse->nested==0 ) + ){ + sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName); + return 1; + } + +#ifndef SQLITE_OMIT_VIEW + if( !viewOk && pTab->pSelect ){ + sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName); + return 1; + } +#endif + return 0; +} + + +#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) +/* +** Evaluate a view and store its result in an ephemeral table. The +** pWhere argument is an optional WHERE clause that restricts the +** set of rows in the view that are to be added to the ephemeral table. +*/ +void sqlite3MaterializeView( + Parse *pParse, /* Parsing context */ + Table *pView, /* View definition */ + Expr *pWhere, /* Optional WHERE clause to be added */ + int iCur /* Cursor number for ephemerial table */ +){ + SelectDest dest; + Select *pDup; + sqlite3 *db = pParse->db; + + pDup = sqlite3SelectDup(db, pView->pSelect, 0); + if( pWhere ){ + SrcList *pFrom; + + pWhere = sqlite3ExprDup(db, pWhere, 0); + pFrom = sqlite3SrcListAppend(db, 0, 0, 0); + if( pFrom ){ + assert( pFrom->nSrc==1 ); + pFrom->a[0].zAlias = sqlite3DbStrDup(db, pView->zName); + pFrom->a[0].pSelect = pDup; + assert( pFrom->a[0].pOn==0 ); + assert( pFrom->a[0].pUsing==0 ); + }else{ + sqlite3SelectDelete(db, pDup); + } + pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0); + } + sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur); + sqlite3Select(pParse, pDup, &dest); + sqlite3SelectDelete(db, pDup); +} +#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */ + +#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) +/* +** Generate an expression tree to implement the WHERE, ORDER BY, +** and LIMIT/OFFSET portion of DELETE and UPDATE statements. +** +** DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1; +** \__________________________/ +** pLimitWhere (pInClause) +*/ +Expr *sqlite3LimitWhere( + Parse *pParse, /* The parser context */ + SrcList *pSrc, /* the FROM clause -- which tables to scan */ + Expr *pWhere, /* The WHERE clause. May be null */ + ExprList *pOrderBy, /* The ORDER BY clause. May be null */ + Expr *pLimit, /* The LIMIT clause. May be null */ + Expr *pOffset, /* The OFFSET clause. May be null */ + char *zStmtType /* Either DELETE or UPDATE. For error messages. */ +){ + Expr *pWhereRowid = NULL; /* WHERE rowid .. */ + Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */ + Expr *pSelectRowid = NULL; /* SELECT rowid ... */ + ExprList *pEList = NULL; /* Expression list contaning only pSelectRowid */ + SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */ + Select *pSelect = NULL; /* Complete SELECT tree */ + + /* Check that there isn't an ORDER BY without a LIMIT clause. + */ + if( pOrderBy && (pLimit == 0) ) { + sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType); + pParse->parseError = 1; + goto limit_where_cleanup_2; + } + + /* We only need to generate a select expression if there + ** is a limit/offset term to enforce. + */ + if( pLimit == 0 ) { + /* if pLimit is null, pOffset will always be null as well. */ + assert( pOffset == 0 ); + return pWhere; + } + + /* Generate a select expression tree to enforce the limit/offset + ** term for the DELETE or UPDATE statement. For example: + ** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 + ** becomes: + ** DELETE FROM table_a WHERE rowid IN ( + ** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 + ** ); + */ + + pSelectRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0); + if( pSelectRowid == 0 ) goto limit_where_cleanup_2; + pEList = sqlite3ExprListAppend(pParse, 0, pSelectRowid); + if( pEList == 0 ) goto limit_where_cleanup_2; + + /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree + ** and the SELECT subtree. */ + pSelectSrc = sqlite3SrcListDup(pParse->db, pSrc, 0); + if( pSelectSrc == 0 ) { + sqlite3ExprListDelete(pParse->db, pEList); + goto limit_where_cleanup_2; + } + + /* generate the SELECT expression tree. */ + pSelect = sqlite3SelectNew(pParse,pEList,pSelectSrc,pWhere,0,0, + pOrderBy,0,pLimit,pOffset); + if( pSelect == 0 ) return 0; + + /* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */ + pWhereRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0); + if( pWhereRowid == 0 ) goto limit_where_cleanup_1; + pInClause = sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0); + if( pInClause == 0 ) goto limit_where_cleanup_1; + + pInClause->x.pSelect = pSelect; + pInClause->flags |= EP_xIsSelect; + sqlite3ExprSetHeight(pParse, pInClause); + return pInClause; + + /* something went wrong. clean up anything allocated. */ +limit_where_cleanup_1: + sqlite3SelectDelete(pParse->db, pSelect); + return 0; + +limit_where_cleanup_2: + sqlite3ExprDelete(pParse->db, pWhere); + sqlite3ExprListDelete(pParse->db, pOrderBy); + sqlite3ExprDelete(pParse->db, pLimit); + sqlite3ExprDelete(pParse->db, pOffset); + return 0; +} +#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */ + +/* +** Generate code for a DELETE FROM statement. +** +** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL; +** \________/ \________________/ +** pTabList pWhere +*/ +void sqlite3DeleteFrom( + Parse *pParse, /* The parser context */ + SrcList *pTabList, /* The table from which we should delete things */ + Expr *pWhere /* The WHERE clause. May be null */ +){ + Vdbe *v; /* The virtual database engine */ + Table *pTab; /* The table from which records will be deleted */ + const char *zDb; /* Name of database holding pTab */ + int end, addr = 0; /* A couple addresses of generated code */ + int i; /* Loop counter */ + WhereInfo *pWInfo; /* Information about the WHERE clause */ + Index *pIdx; /* For looping over indices of the table */ + int iCur; /* VDBE Cursor number for pTab */ + sqlite3 *db; /* Main database structure */ + AuthContext sContext; /* Authorization context */ + NameContext sNC; /* Name context to resolve expressions in */ + int iDb; /* Database number */ + int memCnt = -1; /* Memory cell used for change counting */ + int rcauth; /* Value returned by authorization callback */ + +#ifndef SQLITE_OMIT_TRIGGER + int isView; /* True if attempting to delete from a view */ + Trigger *pTrigger; /* List of table triggers, if required */ +#endif + + memset(&sContext, 0, sizeof(sContext)); + db = pParse->db; + if( pParse->nErr || db->mallocFailed ){ + goto delete_from_cleanup; + } + assert( pTabList->nSrc==1 ); + + /* Locate the table which we want to delete. This table has to be + ** put in an SrcList structure because some of the subroutines we + ** will be calling are designed to work with multiple tables and expect + ** an SrcList* parameter instead of just a Table* parameter. + */ + pTab = sqlite3SrcListLookup(pParse, pTabList); + if( pTab==0 ) goto delete_from_cleanup; + + /* Figure out if we have any triggers and if the table being + ** deleted from is a view + */ +#ifndef SQLITE_OMIT_TRIGGER + pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); + isView = pTab->pSelect!=0; +#else +# define pTrigger 0 +# define isView 0 +#endif +#ifdef SQLITE_OMIT_VIEW +# undef isView +# define isView 0 +#endif + + /* If pTab is really a view, make sure it has been initialized. + */ + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto delete_from_cleanup; + } + + if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){ + goto delete_from_cleanup; + } + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( iDbnDb ); + zDb = db->aDb[iDb].zName; + rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb); + assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE ); + if( rcauth==SQLITE_DENY ){ + goto delete_from_cleanup; + } + assert(!isView || pTrigger); + + /* Assign cursor number to the table and all its indices. + */ + assert( pTabList->nSrc==1 ); + iCur = pTabList->a[0].iCursor = pParse->nTab++; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + pParse->nTab++; + } + + /* Start the view context + */ + if( isView ){ + sqlite3AuthContextPush(pParse, &sContext, pTab->zName); + } + + /* Begin generating code. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ){ + goto delete_from_cleanup; + } + if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); + sqlite3BeginWriteOperation(pParse, 1, iDb); + + /* If we are trying to delete from a view, realize that view into + ** a ephemeral table. + */ +#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) + if( isView ){ + sqlite3MaterializeView(pParse, pTab, pWhere, iCur); + } +#endif + + /* Resolve the column names in the WHERE clause. + */ + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + sNC.pSrcList = pTabList; + if( sqlite3ResolveExprNames(&sNC, pWhere) ){ + goto delete_from_cleanup; + } + + /* Initialize the counter of the number of rows deleted, if + ** we are counting rows. + */ + if( db->flags & SQLITE_CountRows ){ + memCnt = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt); + } + +#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION + /* Special case: A DELETE without a WHERE clause deletes everything. + ** It is easier just to erase the whole table. Prior to version 3.6.5, + ** this optimization caused the row change count (the value returned by + ** API function sqlite3_count_changes) to be set incorrectly. */ + if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab) + && 0==sqlite3FkRequired(pParse, pTab, 0, 0) + ){ + assert( !isView ); + sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt, + pTab->zName, P4_STATIC); + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + assert( pIdx->pSchema==pTab->pSchema ); + sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb); + } + }else +#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */ + /* The usual case: There is a WHERE clause so we have to scan through + ** the table and pick which records to delete. + */ + { + int iRowSet = ++pParse->nMem; /* Register for rowset of rows to delete */ + int iRowid = ++pParse->nMem; /* Used for storing rowid values. */ + int regRowid; /* Actual register containing rowids */ + + /* Collect rowids of every row to be deleted. + */ + sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); + pWInfo = sqlite3WhereBegin( + pParse, pTabList, pWhere, 0, 0, WHERE_DUPLICATES_OK + ); + if( pWInfo==0 ) goto delete_from_cleanup; + regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid); + sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid); + if( db->flags & SQLITE_CountRows ){ + sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); + } + sqlite3WhereEnd(pWInfo); + + /* Delete every item whose key was written to the list during the + ** database scan. We have to delete items after the scan is complete + ** because deleting an item can change the scan order. */ + end = sqlite3VdbeMakeLabel(v); + + /* Unless this is a view, open cursors for the table we are + ** deleting from and all its indices. If this is a view, then the + ** only effect this statement has is to fire the INSTEAD OF + ** triggers. */ + if( !isView ){ + sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite); + } + + addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, end, iRowid); + + /* Delete the row */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); + sqlite3VtabMakeWritable(pParse, pTab); + sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVTab, P4_VTAB); + sqlite3VdbeChangeP5(v, OE_Abort); + sqlite3MayAbort(pParse); + }else +#endif + { + int count = (pParse->nested==0); /* True to count changes */ + sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default); + } + + /* End of the delete loop */ + sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); + sqlite3VdbeResolveLabel(v, end); + + /* Close the cursors open on the table and its indexes. */ + if( !isView && !IsVirtual(pTab) ){ + for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ + sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum); + } + sqlite3VdbeAddOp1(v, OP_Close, iCur); + } + } + + /* Update the sqlite_sequence table by storing the content of the + ** maximum rowid counter values recorded while inserting into + ** autoincrement tables. + */ + if( pParse->nested==0 && pParse->pTriggerTab==0 ){ + sqlite3AutoincrementEnd(pParse); + } + + /* Return the number of rows that were deleted. If this routine is + ** generating code because of a call to sqlite3NestedParse(), do not + ** invoke the callback function. + */ + if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ + sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC); + } + +delete_from_cleanup: + sqlite3AuthContextPop(&sContext); + sqlite3SrcListDelete(db, pTabList); + sqlite3ExprDelete(db, pWhere); + return; +} +/* Make sure "isView" and other macros defined above are undefined. Otherwise +** thely may interfere with compilation of other functions in this file +** (or in another file, if this file becomes part of the amalgamation). */ +#ifdef isView + #undef isView +#endif +#ifdef pTrigger + #undef pTrigger +#endif + +/* +** This routine generates VDBE code that causes a single row of a +** single table to be deleted. +** +** The VDBE must be in a particular state when this routine is called. +** These are the requirements: +** +** 1. A read/write cursor pointing to pTab, the table containing the row +** to be deleted, must be opened as cursor number $iCur. +** +** 2. Read/write cursors for all indices of pTab must be open as +** cursor number base+i for the i-th index. +** +** 3. The record number of the row to be deleted must be stored in +** memory cell iRowid. +** +** This routine generates code to remove both the table record and all +** index entries that point to that record. +*/ +void sqlite3GenerateRowDelete( + Parse *pParse, /* Parsing context */ + Table *pTab, /* Table containing the row to be deleted */ + int iCur, /* Cursor number for the table */ + int iRowid, /* Memory cell that contains the rowid to delete */ + int count, /* If non-zero, increment the row change counter */ + Trigger *pTrigger, /* List of triggers to (potentially) fire */ + int onconf /* Default ON CONFLICT policy for triggers */ +){ + Vdbe *v = pParse->pVdbe; /* Vdbe */ + int iOld = 0; /* First register in OLD.* array */ + int iLabel; /* Label resolved to end of generated code */ + + /* Vdbe is guaranteed to have been allocated by this stage. */ + assert( v ); + + /* Seek cursor iCur to the row to delete. If this row no longer exists + ** (this can happen if a trigger program has already deleted it), do + ** not attempt to delete it or fire any DELETE triggers. */ + iLabel = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid); + + /* If there are any triggers to fire, allocate a range of registers to + ** use for the old.* references in the triggers. */ + if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){ + u32 mask; /* Mask of OLD.* columns in use */ + int iCol; /* Iterator used while populating OLD.* */ + + /* TODO: Could use temporary registers here. Also could attempt to + ** avoid copying the contents of the rowid register. */ + mask = sqlite3TriggerColmask( + pParse, pTrigger, 0, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onconf + ); + mask |= sqlite3FkOldmask(pParse, pTab); + iOld = pParse->nMem+1; + pParse->nMem += (1 + pTab->nCol); + + /* Populate the OLD.* pseudo-table register array. These values will be + ** used by any BEFORE and AFTER triggers that exist. */ + sqlite3VdbeAddOp2(v, OP_Copy, iRowid, iOld); + for(iCol=0; iColnCol; iCol++){ + if( mask==0xffffffff || mask&(1<pSelect==0 ){ + sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0); + sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0)); + if( count ){ + sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); + } + } + + /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to + ** handle rows (possibly in other tables) that refer via a foreign key + ** to the row just deleted. */ + sqlite3FkActions(pParse, pTab, 0, iOld); + + /* Invoke AFTER DELETE trigger programs. */ + sqlite3CodeRowTrigger(pParse, pTrigger, + TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel + ); + + /* Jump here if the row had already been deleted before any BEFORE + ** trigger programs were invoked. Or if a trigger program throws a + ** RAISE(IGNORE) exception. */ + sqlite3VdbeResolveLabel(v, iLabel); +} + +/* +** This routine generates VDBE code that causes the deletion of all +** index entries associated with a single row of a single table. +** +** The VDBE must be in a particular state when this routine is called. +** These are the requirements: +** +** 1. A read/write cursor pointing to pTab, the table containing the row +** to be deleted, must be opened as cursor number "iCur". +** +** 2. Read/write cursors for all indices of pTab must be open as +** cursor number iCur+i for the i-th index. +** +** 3. The "iCur" cursor must be pointing to the row that is to be +** deleted. +*/ +void sqlite3GenerateRowIndexDelete( + Parse *pParse, /* Parsing and code generating context */ + Table *pTab, /* Table containing the row to be deleted */ + int iCur, /* Cursor number for the table */ + int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */ +){ + int i; + Index *pIdx; + int r1; + + for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ + if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue; + r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0); + sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1); + } +} + +/* +** Generate code that will assemble an index key and put it in register +** regOut. The key with be for index pIdx which is an index on pTab. +** iCur is the index of a cursor open on the pTab table and pointing to +** the entry that needs indexing. +** +** Return a register number which is the first in a block of +** registers that holds the elements of the index key. The +** block of registers has already been deallocated by the time +** this routine returns. +*/ +int sqlite3GenerateIndexKey( + Parse *pParse, /* Parsing context */ + Index *pIdx, /* The index for which to generate a key */ + int iCur, /* Cursor number for the pIdx->pTable table */ + int regOut, /* Write the new index key to this register */ + int doMakeRec /* Run the OP_MakeRecord instruction if true */ +){ + Vdbe *v = pParse->pVdbe; + int j; + Table *pTab = pIdx->pTable; + int regBase; + int nCol; + + nCol = pIdx->nColumn; + regBase = sqlite3GetTempRange(pParse, nCol+1); + sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol); + for(j=0; jaiColumn[j]; + if( idx==pTab->iPKey ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j); + }else{ + sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); + sqlite3ColumnDefault(v, pTab, idx, -1); + } + } + if( doMakeRec ){ + const char *zAff; + if( pTab->pSelect || (pParse->db->flags & SQLITE_IdxRealAsInt)!=0 ){ + zAff = 0; + }else{ + zAff = sqlite3IndexAffinityStr(v, pIdx); + } + sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); + sqlite3VdbeChangeP4(v, -1, zAff, P4_TRANSIENT); + } + sqlite3ReleaseTempRange(pParse, regBase, nCol+1); + return regBase; +} diff --git a/src/expr.c b/src/expr.c new file mode 100644 index 0000000..d506173 --- /dev/null +++ b/src/expr.c @@ -0,0 +1,3764 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains routines used for analyzing expressions and +** for generating VDBE code that evaluates expressions in SQLite. +*/ +#include "sqliteInt.h" + +/* +** Return the 'affinity' of the expression pExpr if any. +** +** If pExpr is a column, a reference to a column via an 'AS' alias, +** or a sub-select with a column as the return value, then the +** affinity of that column is returned. Otherwise, 0x00 is returned, +** indicating no affinity for the expression. +** +** i.e. the WHERE clause expresssions in the following statements all +** have an affinity: +** +** CREATE TABLE t1(a); +** SELECT * FROM t1 WHERE a; +** SELECT a AS b FROM t1 WHERE b; +** SELECT * FROM t1 WHERE (select a from t1); +*/ +char sqlite3ExprAffinity(Expr *pExpr){ + int op = pExpr->op; + if( op==TK_SELECT ){ + assert( pExpr->flags&EP_xIsSelect ); + return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); + } +#ifndef SQLITE_OMIT_CAST + if( op==TK_CAST ){ + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + return sqlite3AffinityType(pExpr->u.zToken); + } +#endif + if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) + && pExpr->pTab!=0 + ){ + /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally + ** a TK_COLUMN but was previously evaluated and cached in a register */ + int j = pExpr->iColumn; + if( j<0 ) return SQLITE_AFF_INTEGER; + assert( pExpr->pTab && jpTab->nCol ); + return pExpr->pTab->aCol[j].affinity; + } + return pExpr->affinity; +} + +/* +** Set the explicit collating sequence for an expression to the +** collating sequence supplied in the second argument. +*/ +Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ + if( pExpr && pColl ){ + pExpr->pColl = pColl; + pExpr->flags |= EP_ExpCollate; + } + return pExpr; +} + +/* +** Set the collating sequence for expression pExpr to be the collating +** sequence named by pToken. Return a pointer to the revised expression. +** The collating sequence is marked as "explicit" using the EP_ExpCollate +** flag. An explicit collating sequence will override implicit +** collating sequences. +*/ +Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ + char *zColl = 0; /* Dequoted name of collation sequence */ + CollSeq *pColl; + sqlite3 *db = pParse->db; + zColl = sqlite3NameFromToken(db, pCollName); + pColl = sqlite3LocateCollSeq(pParse, zColl); + sqlite3ExprSetColl(pExpr, pColl); + sqlite3DbFree(db, zColl); + return pExpr; +} + +/* +** Return the default collation sequence for the expression pExpr. If +** there is no default collation type, return 0. +*/ +CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ + CollSeq *pColl = 0; + Expr *p = pExpr; + while( p ){ + int op; + pColl = p->pColl; + if( pColl ) break; + op = p->op; + if( p->pTab!=0 && ( + op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER + )){ + /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally + ** a TK_COLUMN but was previously evaluated and cached in a register */ + const char *zColl; + int j = p->iColumn; + if( j>=0 ){ + sqlite3 *db = pParse->db; + zColl = p->pTab->aCol[j].zColl; + pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); + pExpr->pColl = pColl; + } + break; + } + if( op!=TK_CAST && op!=TK_UPLUS ){ + break; + } + p = p->pLeft; + } + if( sqlite3CheckCollSeq(pParse, pColl) ){ + pColl = 0; + } + return pColl; +} + +/* +** pExpr is an operand of a comparison operator. aff2 is the +** type affinity of the other operand. This routine returns the +** type affinity that should be used for the comparison operator. +*/ +char sqlite3CompareAffinity(Expr *pExpr, char aff2){ + char aff1 = sqlite3ExprAffinity(pExpr); + if( aff1 && aff2 ){ + /* Both sides of the comparison are columns. If one has numeric + ** affinity, use that. Otherwise use no affinity. + */ + if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ + return SQLITE_AFF_NUMERIC; + }else{ + return SQLITE_AFF_NONE; + } + }else if( !aff1 && !aff2 ){ + /* Neither side of the comparison is a column. Compare the + ** results directly. + */ + return SQLITE_AFF_NONE; + }else{ + /* One side is a column, the other is not. Use the columns affinity. */ + assert( aff1==0 || aff2==0 ); + return (aff1 + aff2); + } +} + +/* +** pExpr is a comparison operator. Return the type affinity that should +** be applied to both operands prior to doing the comparison. +*/ +static char comparisonAffinity(Expr *pExpr){ + char aff; + assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || + pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || + pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); + assert( pExpr->pLeft ); + aff = sqlite3ExprAffinity(pExpr->pLeft); + if( pExpr->pRight ){ + aff = sqlite3CompareAffinity(pExpr->pRight, aff); + }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ + aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); + }else if( !aff ){ + aff = SQLITE_AFF_NONE; + } + return aff; +} + +/* +** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. +** idx_affinity is the affinity of an indexed column. Return true +** if the index with affinity idx_affinity may be used to implement +** the comparison in pExpr. +*/ +int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ + char aff = comparisonAffinity(pExpr); + switch( aff ){ + case SQLITE_AFF_NONE: + return 1; + case SQLITE_AFF_TEXT: + return idx_affinity==SQLITE_AFF_TEXT; + default: + return sqlite3IsNumericAffinity(idx_affinity); + } +} + +/* +** Return the P5 value that should be used for a binary comparison +** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. +*/ +static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ + u8 aff = (char)sqlite3ExprAffinity(pExpr2); + aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; + return aff; +} + +/* +** Return a pointer to the collation sequence that should be used by +** a binary comparison operator comparing pLeft and pRight. +** +** If the left hand expression has a collating sequence type, then it is +** used. Otherwise the collation sequence for the right hand expression +** is used, or the default (BINARY) if neither expression has a collating +** type. +** +** Argument pRight (but not pLeft) may be a null pointer. In this case, +** it is not considered. +*/ +CollSeq *sqlite3BinaryCompareCollSeq( + Parse *pParse, + Expr *pLeft, + Expr *pRight +){ + CollSeq *pColl; + assert( pLeft ); + if( pLeft->flags & EP_ExpCollate ){ + assert( pLeft->pColl ); + pColl = pLeft->pColl; + }else if( pRight && pRight->flags & EP_ExpCollate ){ + assert( pRight->pColl ); + pColl = pRight->pColl; + }else{ + pColl = sqlite3ExprCollSeq(pParse, pLeft); + if( !pColl ){ + pColl = sqlite3ExprCollSeq(pParse, pRight); + } + } + return pColl; +} + +/* +** Generate code for a comparison operator. +*/ +static int codeCompare( + Parse *pParse, /* The parsing (and code generating) context */ + Expr *pLeft, /* The left operand */ + Expr *pRight, /* The right operand */ + int opcode, /* The comparison opcode */ + int in1, int in2, /* Register holding operands */ + int dest, /* Jump here if true. */ + int jumpIfNull /* If true, jump if either operand is NULL */ +){ + int p5; + int addr; + CollSeq *p4; + + p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); + p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); + addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, + (void*)p4, P4_COLLSEQ); + sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); + return addr; +} + +#if SQLITE_MAX_EXPR_DEPTH>0 +/* +** Check that argument nHeight is less than or equal to the maximum +** expression depth allowed. If it is not, leave an error message in +** pParse. +*/ +int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ + int rc = SQLITE_OK; + int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; + if( nHeight>mxHeight ){ + sqlite3ErrorMsg(pParse, + "Expression tree is too large (maximum depth %d)", mxHeight + ); + rc = SQLITE_ERROR; + } + return rc; +} + +/* The following three functions, heightOfExpr(), heightOfExprList() +** and heightOfSelect(), are used to determine the maximum height +** of any expression tree referenced by the structure passed as the +** first argument. +** +** If this maximum height is greater than the current value pointed +** to by pnHeight, the second parameter, then set *pnHeight to that +** value. +*/ +static void heightOfExpr(Expr *p, int *pnHeight){ + if( p ){ + if( p->nHeight>*pnHeight ){ + *pnHeight = p->nHeight; + } + } +} +static void heightOfExprList(ExprList *p, int *pnHeight){ + if( p ){ + int i; + for(i=0; inExpr; i++){ + heightOfExpr(p->a[i].pExpr, pnHeight); + } + } +} +static void heightOfSelect(Select *p, int *pnHeight){ + if( p ){ + heightOfExpr(p->pWhere, pnHeight); + heightOfExpr(p->pHaving, pnHeight); + heightOfExpr(p->pLimit, pnHeight); + heightOfExpr(p->pOffset, pnHeight); + heightOfExprList(p->pEList, pnHeight); + heightOfExprList(p->pGroupBy, pnHeight); + heightOfExprList(p->pOrderBy, pnHeight); + heightOfSelect(p->pPrior, pnHeight); + } +} + +/* +** Set the Expr.nHeight variable in the structure passed as an +** argument. An expression with no children, Expr.pList or +** Expr.pSelect member has a height of 1. Any other expression +** has a height equal to the maximum height of any other +** referenced Expr plus one. +*/ +static void exprSetHeight(Expr *p){ + int nHeight = 0; + heightOfExpr(p->pLeft, &nHeight); + heightOfExpr(p->pRight, &nHeight); + if( ExprHasProperty(p, EP_xIsSelect) ){ + heightOfSelect(p->x.pSelect, &nHeight); + }else{ + heightOfExprList(p->x.pList, &nHeight); + } + p->nHeight = nHeight + 1; +} + +/* +** Set the Expr.nHeight variable using the exprSetHeight() function. If +** the height is greater than the maximum allowed expression depth, +** leave an error in pParse. +*/ +void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ + exprSetHeight(p); + sqlite3ExprCheckHeight(pParse, p->nHeight); +} + +/* +** Return the maximum height of any expression tree referenced +** by the select statement passed as an argument. +*/ +int sqlite3SelectExprHeight(Select *p){ + int nHeight = 0; + heightOfSelect(p, &nHeight); + return nHeight; +} +#else + #define exprSetHeight(y) +#endif /* SQLITE_MAX_EXPR_DEPTH>0 */ + +/* +** This routine is the core allocator for Expr nodes. +** +** Construct a new expression node and return a pointer to it. Memory +** for this node and for the pToken argument is a single allocation +** obtained from sqlite3DbMalloc(). The calling function +** is responsible for making sure the node eventually gets freed. +** +** If dequote is true, then the token (if it exists) is dequoted. +** If dequote is false, no dequoting is performance. The deQuote +** parameter is ignored if pToken is NULL or if the token does not +** appear to be quoted. If the quotes were of the form "..." (double-quotes) +** then the EP_DblQuoted flag is set on the expression node. +** +** Special case: If op==TK_INTEGER and pToken points to a string that +** can be translated into a 32-bit integer, then the token is not +** stored in u.zToken. Instead, the integer values is written +** into u.iValue and the EP_IntValue flag is set. No extra storage +** is allocated to hold the integer text and the dequote flag is ignored. +*/ +Expr *sqlite3ExprAlloc( + sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ + int op, /* Expression opcode */ + const Token *pToken, /* Token argument. Might be NULL */ + int dequote /* True to dequote */ +){ + Expr *pNew; + int nExtra = 0; + int iValue = 0; + + if( pToken ){ + if( op!=TK_INTEGER || pToken->z==0 + || sqlite3GetInt32(pToken->z, &iValue)==0 ){ + nExtra = pToken->n+1; + assert( iValue>=0 ); + } + } + pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); + if( pNew ){ + pNew->op = (u8)op; + pNew->iAgg = -1; + if( pToken ){ + if( nExtra==0 ){ + pNew->flags |= EP_IntValue; + pNew->u.iValue = iValue; + }else{ + int c; + pNew->u.zToken = (char*)&pNew[1]; + assert( pToken->z!=0 || pToken->n==0 ); + if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); + pNew->u.zToken[pToken->n] = 0; + if( dequote && nExtra>=3 + && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ + sqlite3Dequote(pNew->u.zToken); + if( c=='"' ) pNew->flags |= EP_DblQuoted; + } + } + } +#if SQLITE_MAX_EXPR_DEPTH>0 + pNew->nHeight = 1; +#endif + } + return pNew; +} + +/* +** Allocate a new expression node from a zero-terminated token that has +** already been dequoted. +*/ +Expr *sqlite3Expr( + sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ + int op, /* Expression opcode */ + const char *zToken /* Token argument. Might be NULL */ +){ + Token x; + x.z = zToken; + x.n = zToken ? sqlite3Strlen30(zToken) : 0; + return sqlite3ExprAlloc(db, op, &x, 0); +} + +/* +** Attach subtrees pLeft and pRight to the Expr node pRoot. +** +** If pRoot==NULL that means that a memory allocation error has occurred. +** In that case, delete the subtrees pLeft and pRight. +*/ +void sqlite3ExprAttachSubtrees( + sqlite3 *db, + Expr *pRoot, + Expr *pLeft, + Expr *pRight +){ + if( pRoot==0 ){ + assert( db->mallocFailed ); + sqlite3ExprDelete(db, pLeft); + sqlite3ExprDelete(db, pRight); + }else{ + if( pRight ){ + pRoot->pRight = pRight; + if( pRight->flags & EP_ExpCollate ){ + pRoot->flags |= EP_ExpCollate; + pRoot->pColl = pRight->pColl; + } + } + if( pLeft ){ + pRoot->pLeft = pLeft; + if( pLeft->flags & EP_ExpCollate ){ + pRoot->flags |= EP_ExpCollate; + pRoot->pColl = pLeft->pColl; + } + } + exprSetHeight(pRoot); + } +} + +/* +** Allocate a Expr node which joins as many as two subtrees. +** +** One or both of the subtrees can be NULL. Return a pointer to the new +** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, +** free the subtrees and return NULL. +*/ +Expr *sqlite3PExpr( + Parse *pParse, /* Parsing context */ + int op, /* Expression opcode */ + Expr *pLeft, /* Left operand */ + Expr *pRight, /* Right operand */ + const Token *pToken /* Argument token */ +){ + Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); + sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); + if( p ) { + sqlite3ExprCheckHeight(pParse, p->nHeight); + } + return p; +} + +/* +** Join two expressions using an AND operator. If either expression is +** NULL, then just return the other expression. +*/ +Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ + if( pLeft==0 ){ + return pRight; + }else if( pRight==0 ){ + return pLeft; + }else{ + Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); + sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); + return pNew; + } +} + +/* +** Construct a new expression node for a function with multiple +** arguments. +*/ +Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ + Expr *pNew; + sqlite3 *db = pParse->db; + assert( pToken ); + pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); + if( pNew==0 ){ + sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ + return 0; + } + pNew->x.pList = pList; + assert( !ExprHasProperty(pNew, EP_xIsSelect) ); + sqlite3ExprSetHeight(pParse, pNew); + return pNew; +} + +/* +** Assign a variable number to an expression that encodes a wildcard +** in the original SQL statement. +** +** Wildcards consisting of a single "?" are assigned the next sequential +** variable number. +** +** Wildcards of the form "?nnn" are assigned the number "nnn". We make +** sure "nnn" is not too be to avoid a denial of service attack when +** the SQL statement comes from an external source. +** +** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number +** as the previous instance of the same wildcard. Or if this is the first +** instance of the wildcard, the next sequenial variable number is +** assigned. +*/ +void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ + sqlite3 *db = pParse->db; + const char *z; + + if( pExpr==0 ) return; + assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); + z = pExpr->u.zToken; + assert( z!=0 ); + assert( z[0]!=0 ); + if( z[1]==0 ){ + /* Wildcard of the form "?". Assign the next variable number */ + assert( z[0]=='?' ); + pExpr->iColumn = (ynVar)(++pParse->nVar); + }else{ + ynVar x = 0; + u32 n = sqlite3Strlen30(z); + if( z[0]=='?' ){ + /* Wildcard of the form "?nnn". Convert "nnn" to an integer and + ** use it as the variable number */ + i64 i; + int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); + pExpr->iColumn = x = (ynVar)i; + testcase( i==0 ); + testcase( i==1 ); + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); + if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ + sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", + db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); + x = 0; + } + if( i>pParse->nVar ){ + pParse->nVar = (int)i; + } + }else{ + /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable + ** number as the prior appearance of the same name, or if the name + ** has never appeared before, reuse the same variable number + */ + ynVar i; + for(i=0; inzVar; i++){ + if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){ + pExpr->iColumn = x = (ynVar)i+1; + break; + } + } + if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); + } + if( x>0 ){ + if( x>pParse->nzVar ){ + char **a; + a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); + if( a==0 ) return; /* Error reported through db->mallocFailed */ + pParse->azVar = a; + memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); + pParse->nzVar = x; + } + if( z[0]!='?' || pParse->azVar[x-1]==0 ){ + sqlite3DbFree(db, pParse->azVar[x-1]); + pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); + } + } + } + if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ + sqlite3ErrorMsg(pParse, "too many SQL variables"); + } +} + +/* +** Recursively delete an expression tree. +*/ +void sqlite3ExprDelete(sqlite3 *db, Expr *p){ + if( p==0 ) return; + /* Sanity check: Assert that the IntValue is non-negative if it exists */ + assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); + if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ + sqlite3ExprDelete(db, p->pLeft); + sqlite3ExprDelete(db, p->pRight); + if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ + sqlite3DbFree(db, p->u.zToken); + } + if( ExprHasProperty(p, EP_xIsSelect) ){ + sqlite3SelectDelete(db, p->x.pSelect); + }else{ + sqlite3ExprListDelete(db, p->x.pList); + } + } + if( !ExprHasProperty(p, EP_Static) ){ + sqlite3DbFree(db, p); + } +} + +/* +** Return the number of bytes allocated for the expression structure +** passed as the first argument. This is always one of EXPR_FULLSIZE, +** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. +*/ +static int exprStructSize(Expr *p){ + if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; + if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; + return EXPR_FULLSIZE; +} + +/* +** The dupedExpr*Size() routines each return the number of bytes required +** to store a copy of an expression or expression tree. They differ in +** how much of the tree is measured. +** +** dupedExprStructSize() Size of only the Expr structure +** dupedExprNodeSize() Size of Expr + space for token +** dupedExprSize() Expr + token + subtree components +** +*************************************************************************** +** +** The dupedExprStructSize() function returns two values OR-ed together: +** (1) the space required for a copy of the Expr structure only and +** (2) the EP_xxx flags that indicate what the structure size should be. +** The return values is always one of: +** +** EXPR_FULLSIZE +** EXPR_REDUCEDSIZE | EP_Reduced +** EXPR_TOKENONLYSIZE | EP_TokenOnly +** +** The size of the structure can be found by masking the return value +** of this routine with 0xfff. The flags can be found by masking the +** return value with EP_Reduced|EP_TokenOnly. +** +** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size +** (unreduced) Expr objects as they or originally constructed by the parser. +** During expression analysis, extra information is computed and moved into +** later parts of teh Expr object and that extra information might get chopped +** off if the expression is reduced. Note also that it does not work to +** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal +** to reduce a pristine expression tree from the parser. The implementation +** of dupedExprStructSize() contain multiple assert() statements that attempt +** to enforce this constraint. +*/ +static int dupedExprStructSize(Expr *p, int flags){ + int nSize; + assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ + if( 0==(flags&EXPRDUP_REDUCE) ){ + nSize = EXPR_FULLSIZE; + }else{ + assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); + assert( !ExprHasProperty(p, EP_FromJoin) ); + assert( (p->flags2 & EP2_MallocedToken)==0 ); + assert( (p->flags2 & EP2_Irreducible)==0 ); + if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ + nSize = EXPR_REDUCEDSIZE | EP_Reduced; + }else{ + nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; + } + } + return nSize; +} + +/* +** This function returns the space in bytes required to store the copy +** of the Expr structure and a copy of the Expr.u.zToken string (if that +** string is defined.) +*/ +static int dupedExprNodeSize(Expr *p, int flags){ + int nByte = dupedExprStructSize(p, flags) & 0xfff; + if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ + nByte += sqlite3Strlen30(p->u.zToken)+1; + } + return ROUND8(nByte); +} + +/* +** Return the number of bytes required to create a duplicate of the +** expression passed as the first argument. The second argument is a +** mask containing EXPRDUP_XXX flags. +** +** The value returned includes space to create a copy of the Expr struct +** itself and the buffer referred to by Expr.u.zToken, if any. +** +** If the EXPRDUP_REDUCE flag is set, then the return value includes +** space to duplicate all Expr nodes in the tree formed by Expr.pLeft +** and Expr.pRight variables (but not for any structures pointed to or +** descended from the Expr.x.pList or Expr.x.pSelect variables). +*/ +static int dupedExprSize(Expr *p, int flags){ + int nByte = 0; + if( p ){ + nByte = dupedExprNodeSize(p, flags); + if( flags&EXPRDUP_REDUCE ){ + nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); + } + } + return nByte; +} + +/* +** This function is similar to sqlite3ExprDup(), except that if pzBuffer +** is not NULL then *pzBuffer is assumed to point to a buffer large enough +** to store the copy of expression p, the copies of p->u.zToken +** (if applicable), and the copies of the p->pLeft and p->pRight expressions, +** if any. Before returning, *pzBuffer is set to the first byte passed the +** portion of the buffer copied into by this function. +*/ +static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ + Expr *pNew = 0; /* Value to return */ + if( p ){ + const int isReduced = (flags&EXPRDUP_REDUCE); + u8 *zAlloc; + u32 staticFlag = 0; + + assert( pzBuffer==0 || isReduced ); + + /* Figure out where to write the new Expr structure. */ + if( pzBuffer ){ + zAlloc = *pzBuffer; + staticFlag = EP_Static; + }else{ + zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); + } + pNew = (Expr *)zAlloc; + + if( pNew ){ + /* Set nNewSize to the size allocated for the structure pointed to + ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or + ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed + ** by the copy of the p->u.zToken string (if any). + */ + const unsigned nStructSize = dupedExprStructSize(p, flags); + const int nNewSize = nStructSize & 0xfff; + int nToken; + if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ + nToken = sqlite3Strlen30(p->u.zToken) + 1; + }else{ + nToken = 0; + } + if( isReduced ){ + assert( ExprHasProperty(p, EP_Reduced)==0 ); + memcpy(zAlloc, p, nNewSize); + }else{ + int nSize = exprStructSize(p); + memcpy(zAlloc, p, nSize); + memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); + } + + /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ + pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); + pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); + pNew->flags |= staticFlag; + + /* Copy the p->u.zToken string, if any. */ + if( nToken ){ + char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; + memcpy(zToken, p->u.zToken, nToken); + } + + if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ + /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ + if( ExprHasProperty(p, EP_xIsSelect) ){ + pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); + }else{ + pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); + } + } + + /* Fill in pNew->pLeft and pNew->pRight. */ + if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ + zAlloc += dupedExprNodeSize(p, flags); + if( ExprHasProperty(pNew, EP_Reduced) ){ + pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); + pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); + } + if( pzBuffer ){ + *pzBuffer = zAlloc; + } + }else{ + pNew->flags2 = 0; + if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ + pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); + pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); + } + } + + } + } + return pNew; +} + +/* +** The following group of routines make deep copies of expressions, +** expression lists, ID lists, and select statements. The copies can +** be deleted (by being passed to their respective ...Delete() routines) +** without effecting the originals. +** +** The expression list, ID, and source lists return by sqlite3ExprListDup(), +** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded +** by subsequent calls to sqlite*ListAppend() routines. +** +** Any tables that the SrcList might point to are not duplicated. +** +** The flags parameter contains a combination of the EXPRDUP_XXX flags. +** If the EXPRDUP_REDUCE flag is set, then the structure returned is a +** truncated version of the usual Expr structure that will be stored as +** part of the in-memory representation of the database schema. +*/ +Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ + return exprDup(db, p, flags, 0); +} +ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ + ExprList *pNew; + struct ExprList_item *pItem, *pOldItem; + int i; + if( p==0 ) return 0; + pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); + if( pNew==0 ) return 0; + pNew->iECursor = 0; + pNew->nExpr = pNew->nAlloc = p->nExpr; + pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); + if( pItem==0 ){ + sqlite3DbFree(db, pNew); + return 0; + } + pOldItem = p->a; + for(i=0; inExpr; i++, pItem++, pOldItem++){ + Expr *pOldExpr = pOldItem->pExpr; + pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); + pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); + pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); + pItem->sortOrder = pOldItem->sortOrder; + pItem->done = 0; + pItem->iCol = pOldItem->iCol; + pItem->iAlias = pOldItem->iAlias; + } + return pNew; +} + +/* +** If cursors, triggers, views and subqueries are all omitted from +** the build, then none of the following routines, except for +** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes +** called with a NULL argument. +*/ +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ + || !defined(SQLITE_OMIT_SUBQUERY) +SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ + SrcList *pNew; + int i; + int nByte; + if( p==0 ) return 0; + nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); + pNew = sqlite3DbMallocRaw(db, nByte ); + if( pNew==0 ) return 0; + pNew->nSrc = pNew->nAlloc = p->nSrc; + for(i=0; inSrc; i++){ + struct SrcList_item *pNewItem = &pNew->a[i]; + struct SrcList_item *pOldItem = &p->a[i]; + Table *pTab; + pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); + pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); + pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); + pNewItem->jointype = pOldItem->jointype; + pNewItem->iCursor = pOldItem->iCursor; + pNewItem->addrFillSub = pOldItem->addrFillSub; + pNewItem->regReturn = pOldItem->regReturn; + pNewItem->isCorrelated = pOldItem->isCorrelated; + pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); + pNewItem->notIndexed = pOldItem->notIndexed; + pNewItem->pIndex = pOldItem->pIndex; + pTab = pNewItem->pTab = pOldItem->pTab; + if( pTab ){ + pTab->nRef++; + } + pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); + pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); + pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); + pNewItem->colUsed = pOldItem->colUsed; + } + return pNew; +} +IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ + IdList *pNew; + int i; + if( p==0 ) return 0; + pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); + if( pNew==0 ) return 0; + pNew->nId = pNew->nAlloc = p->nId; + pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); + if( pNew->a==0 ){ + sqlite3DbFree(db, pNew); + return 0; + } + for(i=0; inId; i++){ + struct IdList_item *pNewItem = &pNew->a[i]; + struct IdList_item *pOldItem = &p->a[i]; + pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); + pNewItem->idx = pOldItem->idx; + } + return pNew; +} +Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ + Select *pNew; + if( p==0 ) return 0; + pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); + if( pNew==0 ) return 0; + pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); + pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); + pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); + pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); + pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); + pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); + pNew->op = p->op; + pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); + pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); + pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); + pNew->iLimit = 0; + pNew->iOffset = 0; + pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; + pNew->pRightmost = 0; + pNew->addrOpenEphm[0] = -1; + pNew->addrOpenEphm[1] = -1; + pNew->addrOpenEphm[2] = -1; + return pNew; +} +#else +Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ + assert( p==0 ); + return 0; +} +#endif + + +/* +** Add a new element to the end of an expression list. If pList is +** initially NULL, then create a new expression list. +** +** If a memory allocation error occurs, the entire list is freed and +** NULL is returned. If non-NULL is returned, then it is guaranteed +** that the new entry was successfully appended. +*/ +ExprList *sqlite3ExprListAppend( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* List to which to append. Might be NULL */ + Expr *pExpr /* Expression to be appended. Might be NULL */ +){ + sqlite3 *db = pParse->db; + if( pList==0 ){ + pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); + if( pList==0 ){ + goto no_mem; + } + assert( pList->nAlloc==0 ); + } + if( pList->nAlloc<=pList->nExpr ){ + struct ExprList_item *a; + int n = pList->nAlloc*2 + 4; + a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); + if( a==0 ){ + goto no_mem; + } + pList->a = a; + pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); + } + assert( pList->a!=0 ); + if( 1 ){ + struct ExprList_item *pItem = &pList->a[pList->nExpr++]; + memset(pItem, 0, sizeof(*pItem)); + pItem->pExpr = pExpr; + } + return pList; + +no_mem: + /* Avoid leaking memory if malloc has failed. */ + sqlite3ExprDelete(db, pExpr); + sqlite3ExprListDelete(db, pList); + return 0; +} + +/* +** Set the ExprList.a[].zName element of the most recently added item +** on the expression list. +** +** pList might be NULL following an OOM error. But pName should never be +** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag +** is set. +*/ +void sqlite3ExprListSetName( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* List to which to add the span. */ + Token *pName, /* Name to be added */ + int dequote /* True to cause the name to be dequoted */ +){ + assert( pList!=0 || pParse->db->mallocFailed!=0 ); + if( pList ){ + struct ExprList_item *pItem; + assert( pList->nExpr>0 ); + pItem = &pList->a[pList->nExpr-1]; + assert( pItem->zName==0 ); + pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); + if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); + } +} + +/* +** Set the ExprList.a[].zSpan element of the most recently added item +** on the expression list. +** +** pList might be NULL following an OOM error. But pSpan should never be +** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag +** is set. +*/ +void sqlite3ExprListSetSpan( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* List to which to add the span. */ + ExprSpan *pSpan /* The span to be added */ +){ + sqlite3 *db = pParse->db; + assert( pList!=0 || db->mallocFailed!=0 ); + if( pList ){ + struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; + assert( pList->nExpr>0 ); + assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); + sqlite3DbFree(db, pItem->zSpan); + pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, + (int)(pSpan->zEnd - pSpan->zStart)); + } +} + +/* +** If the expression list pEList contains more than iLimit elements, +** leave an error message in pParse. +*/ +void sqlite3ExprListCheckLength( + Parse *pParse, + ExprList *pEList, + const char *zObject +){ + int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; + testcase( pEList && pEList->nExpr==mx ); + testcase( pEList && pEList->nExpr==mx+1 ); + if( pEList && pEList->nExpr>mx ){ + sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); + } +} + +/* +** Delete an entire expression list. +*/ +void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ + int i; + struct ExprList_item *pItem; + if( pList==0 ) return; + assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); + assert( pList->nExpr<=pList->nAlloc ); + for(pItem=pList->a, i=0; inExpr; i++, pItem++){ + sqlite3ExprDelete(db, pItem->pExpr); + sqlite3DbFree(db, pItem->zName); + sqlite3DbFree(db, pItem->zSpan); + } + sqlite3DbFree(db, pList->a); + sqlite3DbFree(db, pList); +} + +/* +** These routines are Walker callbacks. Walker.u.pi is a pointer +** to an integer. These routines are checking an expression to see +** if it is a constant. Set *Walker.u.pi to 0 if the expression is +** not constant. +** +** These callback routines are used to implement the following: +** +** sqlite3ExprIsConstant() +** sqlite3ExprIsConstantNotJoin() +** sqlite3ExprIsConstantOrFunction() +** +*/ +static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ + + /* If pWalker->u.i is 3 then any term of the expression that comes from + ** the ON or USING clauses of a join disqualifies the expression + ** from being considered constant. */ + if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ + pWalker->u.i = 0; + return WRC_Abort; + } + + switch( pExpr->op ){ + /* Consider functions to be constant if all their arguments are constant + ** and pWalker->u.i==2 */ + case TK_FUNCTION: + if( pWalker->u.i==2 ) return 0; + /* Fall through */ + case TK_ID: + case TK_COLUMN: + case TK_AGG_FUNCTION: + case TK_AGG_COLUMN: + testcase( pExpr->op==TK_ID ); + testcase( pExpr->op==TK_COLUMN ); + testcase( pExpr->op==TK_AGG_FUNCTION ); + testcase( pExpr->op==TK_AGG_COLUMN ); + pWalker->u.i = 0; + return WRC_Abort; + default: + testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ + testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ + return WRC_Continue; + } +} +static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ + UNUSED_PARAMETER(NotUsed); + pWalker->u.i = 0; + return WRC_Abort; +} +static int exprIsConst(Expr *p, int initFlag){ + Walker w; + w.u.i = initFlag; + w.xExprCallback = exprNodeIsConstant; + w.xSelectCallback = selectNodeIsConstant; + sqlite3WalkExpr(&w, p); + return w.u.i; +} + +/* +** Walk an expression tree. Return 1 if the expression is constant +** and 0 if it involves variables or function calls. +** +** For the purposes of this function, a double-quoted string (ex: "abc") +** is considered a variable but a single-quoted string (ex: 'abc') is +** a constant. +*/ +int sqlite3ExprIsConstant(Expr *p){ + return exprIsConst(p, 1); +} + +/* +** Walk an expression tree. Return 1 if the expression is constant +** that does no originate from the ON or USING clauses of a join. +** Return 0 if it involves variables or function calls or terms from +** an ON or USING clause. +*/ +int sqlite3ExprIsConstantNotJoin(Expr *p){ + return exprIsConst(p, 3); +} + +/* +** Walk an expression tree. Return 1 if the expression is constant +** or a function call with constant arguments. Return and 0 if there +** are any variables. +** +** For the purposes of this function, a double-quoted string (ex: "abc") +** is considered a variable but a single-quoted string (ex: 'abc') is +** a constant. +*/ +int sqlite3ExprIsConstantOrFunction(Expr *p){ + return exprIsConst(p, 2); +} + +/* +** If the expression p codes a constant integer that is small enough +** to fit in a 32-bit integer, return 1 and put the value of the integer +** in *pValue. If the expression is not an integer or if it is too big +** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. +*/ +int sqlite3ExprIsInteger(Expr *p, int *pValue){ + int rc = 0; + + /* If an expression is an integer literal that fits in a signed 32-bit + ** integer, then the EP_IntValue flag will have already been set */ + assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 + || sqlite3GetInt32(p->u.zToken, &rc)==0 ); + + if( p->flags & EP_IntValue ){ + *pValue = p->u.iValue; + return 1; + } + switch( p->op ){ + case TK_UPLUS: { + rc = sqlite3ExprIsInteger(p->pLeft, pValue); + break; + } + case TK_UMINUS: { + int v; + if( sqlite3ExprIsInteger(p->pLeft, &v) ){ + *pValue = -v; + rc = 1; + } + break; + } + default: break; + } + return rc; +} + +/* +** Return FALSE if there is no chance that the expression can be NULL. +** +** If the expression might be NULL or if the expression is too complex +** to tell return TRUE. +** +** This routine is used as an optimization, to skip OP_IsNull opcodes +** when we know that a value cannot be NULL. Hence, a false positive +** (returning TRUE when in fact the expression can never be NULL) might +** be a small performance hit but is otherwise harmless. On the other +** hand, a false negative (returning FALSE when the result could be NULL) +** will likely result in an incorrect answer. So when in doubt, return +** TRUE. +*/ +int sqlite3ExprCanBeNull(const Expr *p){ + u8 op; + while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } + op = p->op; + if( op==TK_REGISTER ) op = p->op2; + switch( op ){ + case TK_INTEGER: + case TK_STRING: + case TK_FLOAT: + case TK_BLOB: + return 0; + default: + return 1; + } +} + +/* +** Generate an OP_IsNull instruction that tests register iReg and jumps +** to location iDest if the value in iReg is NULL. The value in iReg +** was computed by pExpr. If we can look at pExpr at compile-time and +** determine that it can never generate a NULL, then the OP_IsNull operation +** can be omitted. +*/ +void sqlite3ExprCodeIsNullJump( + Vdbe *v, /* The VDBE under construction */ + const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ + int iReg, /* Test the value in this register for NULL */ + int iDest /* Jump here if the value is null */ +){ + if( sqlite3ExprCanBeNull(pExpr) ){ + sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); + } +} + +/* +** Return TRUE if the given expression is a constant which would be +** unchanged by OP_Affinity with the affinity given in the second +** argument. +** +** This routine is used to determine if the OP_Affinity operation +** can be omitted. When in doubt return FALSE. A false negative +** is harmless. A false positive, however, can result in the wrong +** answer. +*/ +int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ + u8 op; + if( aff==SQLITE_AFF_NONE ) return 1; + while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } + op = p->op; + if( op==TK_REGISTER ) op = p->op2; + switch( op ){ + case TK_INTEGER: { + return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; + } + case TK_FLOAT: { + return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; + } + case TK_STRING: { + return aff==SQLITE_AFF_TEXT; + } + case TK_BLOB: { + return 1; + } + case TK_COLUMN: { + assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ + return p->iColumn<0 + && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); + } + default: { + return 0; + } + } +} + +/* +** Return TRUE if the given string is a row-id column name. +*/ +int sqlite3IsRowid(const char *z){ + if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; + if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; + if( sqlite3StrICmp(z, "OID")==0 ) return 1; + return 0; +} + +/* +** Return true if we are able to the IN operator optimization on a +** query of the form +** +** x IN (SELECT ...) +** +** Where the SELECT... clause is as specified by the parameter to this +** routine. +** +** The Select object passed in has already been preprocessed and no +** errors have been found. +*/ +#ifndef SQLITE_OMIT_SUBQUERY +static int isCandidateForInOpt(Select *p){ + SrcList *pSrc; + ExprList *pEList; + Table *pTab; + if( p==0 ) return 0; /* right-hand side of IN is SELECT */ + if( p->pPrior ) return 0; /* Not a compound SELECT */ + if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ + testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); + testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); + return 0; /* No DISTINCT keyword and no aggregate functions */ + } + assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ + if( p->pLimit ) return 0; /* Has no LIMIT clause */ + assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ + if( p->pWhere ) return 0; /* Has no WHERE clause */ + pSrc = p->pSrc; + assert( pSrc!=0 ); + if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ + if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ + pTab = pSrc->a[0].pTab; + if( NEVER(pTab==0) ) return 0; + assert( pTab->pSelect==0 ); /* FROM clause is not a view */ + if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ + pEList = p->pEList; + if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ + if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ + return 1; +} +#endif /* SQLITE_OMIT_SUBQUERY */ + +/* +** This function is used by the implementation of the IN (...) operator. +** It's job is to find or create a b-tree structure that may be used +** either to test for membership of the (...) set or to iterate through +** its members, skipping duplicates. +** +** The index of the cursor opened on the b-tree (database table, database index +** or ephermal table) is stored in pX->iTable before this function returns. +** The returned value of this function indicates the b-tree type, as follows: +** +** IN_INDEX_ROWID - The cursor was opened on a database table. +** IN_INDEX_INDEX - The cursor was opened on a database index. +** IN_INDEX_EPH - The cursor was opened on a specially created and +** populated epheremal table. +** +** An existing b-tree may only be used if the SELECT is of the simple +** form: +** +** SELECT FROM +** +** If the prNotFound parameter is 0, then the b-tree will be used to iterate +** through the set members, skipping any duplicates. In this case an +** epheremal table must be used unless the selected is guaranteed +** to be unique - either because it is an INTEGER PRIMARY KEY or it +** has a UNIQUE constraint or UNIQUE index. +** +** If the prNotFound parameter is not 0, then the b-tree will be used +** for fast set membership tests. In this case an epheremal table must +** be used unless is an INTEGER PRIMARY KEY or an index can +** be found with as its left-most column. +** +** When the b-tree is being used for membership tests, the calling function +** needs to know whether or not the structure contains an SQL NULL +** value in order to correctly evaluate expressions like "X IN (Y, Z)". +** If there is any chance that the (...) might contain a NULL value at +** runtime, then a register is allocated and the register number written +** to *prNotFound. If there is no chance that the (...) contains a +** NULL value, then *prNotFound is left unchanged. +** +** If a register is allocated and its location stored in *prNotFound, then +** its initial value is NULL. If the (...) does not remain constant +** for the duration of the query (i.e. the SELECT within the (...) +** is a correlated subquery) then the value of the allocated register is +** reset to NULL each time the subquery is rerun. This allows the +** caller to use vdbe code equivalent to the following: +** +** if( register==NULL ){ +** has_null = +** register = 1 +** } +** +** in order to avoid running the +** test more often than is necessary. +*/ +#ifndef SQLITE_OMIT_SUBQUERY +int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ + Select *p; /* SELECT to the right of IN operator */ + int eType = 0; /* Type of RHS table. IN_INDEX_* */ + int iTab = pParse->nTab++; /* Cursor of the RHS table */ + int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ + + assert( pX->op==TK_IN ); + + /* Check to see if an existing table or index can be used to + ** satisfy the query. This is preferable to generating a new + ** ephemeral table. + */ + p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); + if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ + sqlite3 *db = pParse->db; /* Database connection */ + Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ + Table *pTab; /* Table
. */ + Expr *pExpr; /* Expression */ + int iCol; /* Index of column */ + int iDb; /* Database idx for pTab */ + + assert( p ); /* Because of isCandidateForInOpt(p) */ + assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ + assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ + assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ + pTab = p->pSrc->a[0].pTab; + pExpr = p->pEList->a[0].pExpr; + iCol = pExpr->iColumn; + + /* Code an OP_VerifyCookie and OP_TableLock for
. */ + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + sqlite3CodeVerifySchema(pParse, iDb); + sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); + + /* This function is only called from two places. In both cases the vdbe + ** has already been allocated. So assume sqlite3GetVdbe() is always + ** successful here. + */ + assert(v); + if( iCol<0 ){ + int iMem = ++pParse->nMem; + int iAddr; + + iAddr = sqlite3VdbeAddOp1(v, OP_Once, iMem); + + sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); + eType = IN_INDEX_ROWID; + + sqlite3VdbeJumpHere(v, iAddr); + }else{ + Index *pIdx; /* Iterator variable */ + + /* The collation sequence used by the comparison. If an index is to + ** be used in place of a temp-table, it must be ordered according + ** to this collation sequence. */ + CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); + + /* Check that the affinity that will be used to perform the + ** comparison is the same as the affinity of the column. If + ** it is not, it is not possible to use any index. + */ + char aff = comparisonAffinity(pX); + int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); + + for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ + if( (pIdx->aiColumn[0]==iCol) + && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq + && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) + ){ + int iMem = ++pParse->nMem; + int iAddr; + char *pKey; + + pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); + iAddr = sqlite3VdbeAddOp1(v, OP_Once, iMem); + + sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, + pKey,P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pIdx->zName)); + eType = IN_INDEX_INDEX; + + sqlite3VdbeJumpHere(v, iAddr); + if( prNotFound && !pTab->aCol[iCol].notNull ){ + *prNotFound = ++pParse->nMem; + } + } + } + } + } + + if( eType==0 ){ + /* Could not found an existing table or index to use as the RHS b-tree. + ** We will have to generate an ephemeral table to do the job. + */ + double savedNQueryLoop = pParse->nQueryLoop; + int rMayHaveNull = 0; + eType = IN_INDEX_EPH; + if( prNotFound ){ + *prNotFound = rMayHaveNull = ++pParse->nMem; + }else{ + testcase( pParse->nQueryLoop>(double)1 ); + pParse->nQueryLoop = (double)1; + if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ + eType = IN_INDEX_ROWID; + } + } + sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); + pParse->nQueryLoop = savedNQueryLoop; + }else{ + pX->iTable = iTab; + } + return eType; +} +#endif + +/* +** Generate code for scalar subqueries used as a subquery expression, EXISTS, +** or IN operators. Examples: +** +** (SELECT a FROM b) -- subquery +** EXISTS (SELECT a FROM b) -- EXISTS subquery +** x IN (4,5,11) -- IN operator with list on right-hand side +** x IN (SELECT a FROM b) -- IN operator with subquery on the right +** +** The pExpr parameter describes the expression that contains the IN +** operator or subquery. +** +** If parameter isRowid is non-zero, then expression pExpr is guaranteed +** to be of the form " IN (?, ?, ?)", where is a reference +** to some integer key column of a table B-Tree. In this case, use an +** intkey B-Tree to store the set of IN(...) values instead of the usual +** (slower) variable length keys B-Tree. +** +** If rMayHaveNull is non-zero, that means that the operation is an IN +** (not a SELECT or EXISTS) and that the RHS might contains NULLs. +** Furthermore, the IN is in a WHERE clause and that we really want +** to iterate over the RHS of the IN operator in order to quickly locate +** all corresponding LHS elements. All this routine does is initialize +** the register given by rMayHaveNull to NULL. Calling routines will take +** care of changing this register value to non-NULL if the RHS is NULL-free. +** +** If rMayHaveNull is zero, that means that the subquery is being used +** for membership testing only. There is no need to initialize any +** registers to indicate the presense or absence of NULLs on the RHS. +** +** For a SELECT or EXISTS operator, return the register that holds the +** result. For IN operators or if an error occurs, the return value is 0. +*/ +#ifndef SQLITE_OMIT_SUBQUERY +int sqlite3CodeSubselect( + Parse *pParse, /* Parsing context */ + Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ + int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ + int isRowid /* If true, LHS of IN operator is a rowid */ +){ + int testAddr = -1; /* One-time test address */ + int rReg = 0; /* Register storing resulting */ + Vdbe *v = sqlite3GetVdbe(pParse); + if( NEVER(v==0) ) return 0; + sqlite3ExprCachePush(pParse); + + /* This code must be run in its entirety every time it is encountered + ** if any of the following is true: + ** + ** * The right-hand side is a correlated subquery + ** * The right-hand side is an expression list containing variables + ** * We are inside a trigger + ** + ** If all of the above are false, then we can run this code just once + ** save the results, and reuse the same result on subsequent invocations. + */ + if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){ + int mem = ++pParse->nMem; + testAddr = sqlite3VdbeAddOp1(v, OP_Once, mem); + } + +#ifndef SQLITE_OMIT_EXPLAIN + if( pParse->explain==2 ){ + char *zMsg = sqlite3MPrintf( + pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", + pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId + ); + sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); + } +#endif + + switch( pExpr->op ){ + case TK_IN: { + char affinity; /* Affinity of the LHS of the IN */ + KeyInfo keyInfo; /* Keyinfo for the generated table */ + int addr; /* Address of OP_OpenEphemeral instruction */ + Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ + + if( rMayHaveNull ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); + } + + affinity = sqlite3ExprAffinity(pLeft); + + /* Whether this is an 'x IN(SELECT...)' or an 'x IN()' + ** expression it is handled the same way. An ephemeral table is + ** filled with single-field index keys representing the results + ** from the SELECT or the . + ** + ** If the 'x' expression is a column value, or the SELECT... + ** statement returns a column value, then the affinity of that + ** column is used to build the index keys. If both 'x' and the + ** SELECT... statement are columns, then numeric affinity is used + ** if either column has NUMERIC or INTEGER affinity. If neither + ** 'x' nor the SELECT... statement are columns, then numeric affinity + ** is used. + */ + pExpr->iTable = pParse->nTab++; + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); + if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); + memset(&keyInfo, 0, sizeof(keyInfo)); + keyInfo.nField = 1; + + if( ExprHasProperty(pExpr, EP_xIsSelect) ){ + /* Case 1: expr IN (SELECT ...) + ** + ** Generate code to write the results of the select into the temporary + ** table allocated and opened above. + */ + SelectDest dest; + ExprList *pEList; + + assert( !isRowid ); + sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); + dest.affinity = (u8)affinity; + assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); + pExpr->x.pSelect->iLimit = 0; + if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ + return 0; + } + pEList = pExpr->x.pSelect->pEList; + if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ + keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, + pEList->a[0].pExpr); + } + }else if( ALWAYS(pExpr->x.pList!=0) ){ + /* Case 2: expr IN (exprlist) + ** + ** For each expression, build an index key from the evaluation and + ** store it in the temporary table. If is a column, then use + ** that columns affinity when building index keys. If is not + ** a column, use numeric affinity. + */ + int i; + ExprList *pList = pExpr->x.pList; + struct ExprList_item *pItem; + int r1, r2, r3; + + if( !affinity ){ + affinity = SQLITE_AFF_NONE; + } + keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); + + /* Loop through each expression in . */ + r1 = sqlite3GetTempReg(pParse); + r2 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_Null, 0, r2); + for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ + Expr *pE2 = pItem->pExpr; + int iValToIns; + + /* If the expression is not constant then we will need to + ** disable the test that was generated above that makes sure + ** this code only executes once. Because for a non-constant + ** expression we need to rerun this code each time. + */ + if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ + sqlite3VdbeChangeToNoop(v, testAddr); + testAddr = -1; + } + + /* Evaluate the expression and insert it into the temp table */ + if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ + sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); + }else{ + r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); + if( isRowid ){ + sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, + sqlite3VdbeCurrentAddr(v)+2); + sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); + }else{ + sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); + sqlite3ExprCacheAffinityChange(pParse, r3, 1); + sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); + } + } + } + sqlite3ReleaseTempReg(pParse, r1); + sqlite3ReleaseTempReg(pParse, r2); + } + if( !isRowid ){ + sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); + } + break; + } + + case TK_EXISTS: + case TK_SELECT: + default: { + /* If this has to be a scalar SELECT. Generate code to put the + ** value of this select in a memory cell and record the number + ** of the memory cell in iColumn. If this is an EXISTS, write + ** an integer 0 (not exists) or 1 (exists) into a memory cell + ** and record that memory cell in iColumn. + */ + Select *pSel; /* SELECT statement to encode */ + SelectDest dest; /* How to deal with SELECt result */ + + testcase( pExpr->op==TK_EXISTS ); + testcase( pExpr->op==TK_SELECT ); + assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); + + assert( ExprHasProperty(pExpr, EP_xIsSelect) ); + pSel = pExpr->x.pSelect; + sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); + if( pExpr->op==TK_SELECT ){ + dest.eDest = SRT_Mem; + sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); + VdbeComment((v, "Init subquery result")); + }else{ + dest.eDest = SRT_Exists; + sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); + VdbeComment((v, "Init EXISTS result")); + } + sqlite3ExprDelete(pParse->db, pSel->pLimit); + pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, + &sqlite3IntTokens[1]); + pSel->iLimit = 0; + if( sqlite3Select(pParse, pSel, &dest) ){ + return 0; + } + rReg = dest.iParm; + ExprSetIrreducible(pExpr); + break; + } + } + + if( testAddr>=0 ){ + sqlite3VdbeJumpHere(v, testAddr); + } + sqlite3ExprCachePop(pParse, 1); + + return rReg; +} +#endif /* SQLITE_OMIT_SUBQUERY */ + +#ifndef SQLITE_OMIT_SUBQUERY +/* +** Generate code for an IN expression. +** +** x IN (SELECT ...) +** x IN (value, value, ...) +** +** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) +** is an array of zero or more values. The expression is true if the LHS is +** contained within the RHS. The value of the expression is unknown (NULL) +** if the LHS is NULL or if the LHS is not contained within the RHS and the +** RHS contains one or more NULL values. +** +** This routine generates code will jump to destIfFalse if the LHS is not +** contained within the RHS. If due to NULLs we cannot determine if the LHS +** is contained in the RHS then jump to destIfNull. If the LHS is contained +** within the RHS then fall through. +*/ +static void sqlite3ExprCodeIN( + Parse *pParse, /* Parsing and code generating context */ + Expr *pExpr, /* The IN expression */ + int destIfFalse, /* Jump here if LHS is not contained in the RHS */ + int destIfNull /* Jump here if the results are unknown due to NULLs */ +){ + int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ + char affinity; /* Comparison affinity to use */ + int eType; /* Type of the RHS */ + int r1; /* Temporary use register */ + Vdbe *v; /* Statement under construction */ + + /* Compute the RHS. After this step, the table with cursor + ** pExpr->iTable will contains the values that make up the RHS. + */ + v = pParse->pVdbe; + assert( v!=0 ); /* OOM detected prior to this routine */ + VdbeNoopComment((v, "begin IN expr")); + eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); + + /* Figure out the affinity to use to create a key from the results + ** of the expression. affinityStr stores a static string suitable for + ** P4 of OP_MakeRecord. + */ + affinity = comparisonAffinity(pExpr); + + /* Code the LHS, the from " IN (...)". + */ + sqlite3ExprCachePush(pParse); + r1 = sqlite3GetTempReg(pParse); + sqlite3ExprCode(pParse, pExpr->pLeft, r1); + + /* If the LHS is NULL, then the result is either false or NULL depending + ** on whether the RHS is empty or not, respectively. + */ + if( destIfNull==destIfFalse ){ + /* Shortcut for the common case where the false and NULL outcomes are + ** the same. */ + sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); + }else{ + int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); + sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); + sqlite3VdbeJumpHere(v, addr1); + } + + if( eType==IN_INDEX_ROWID ){ + /* In this case, the RHS is the ROWID of table b-tree + */ + sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); + sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); + }else{ + /* In this case, the RHS is an index b-tree. + */ + sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); + + /* If the set membership test fails, then the result of the + ** "x IN (...)" expression must be either 0 or NULL. If the set + ** contains no NULL values, then the result is 0. If the set + ** contains one or more NULL values, then the result of the + ** expression is also NULL. + */ + if( rRhsHasNull==0 || destIfFalse==destIfNull ){ + /* This branch runs if it is known at compile time that the RHS + ** cannot contain NULL values. This happens as the result + ** of a "NOT NULL" constraint in the database schema. + ** + ** Also run this branch if NULL is equivalent to FALSE + ** for this particular IN operator. + */ + sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); + + }else{ + /* In this branch, the RHS of the IN might contain a NULL and + ** the presence of a NULL on the RHS makes a difference in the + ** outcome. + */ + int j1, j2, j3; + + /* First check to see if the LHS is contained in the RHS. If so, + ** then the presence of NULLs in the RHS does not matter, so jump + ** over all of the code that follows. + */ + j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); + + /* Here we begin generating code that runs if the LHS is not + ** contained within the RHS. Generate additional code that + ** tests the RHS for NULLs. If the RHS contains a NULL then + ** jump to destIfNull. If there are no NULLs in the RHS then + ** jump to destIfFalse. + */ + j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); + j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); + sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); + sqlite3VdbeJumpHere(v, j3); + sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); + sqlite3VdbeJumpHere(v, j2); + + /* Jump to the appropriate target depending on whether or not + ** the RHS contains a NULL + */ + sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); + + /* The OP_Found at the top of this branch jumps here when true, + ** causing the overall IN expression evaluation to fall through. + */ + sqlite3VdbeJumpHere(v, j1); + } + } + sqlite3ReleaseTempReg(pParse, r1); + sqlite3ExprCachePop(pParse, 1); + VdbeComment((v, "end IN expr")); +} +#endif /* SQLITE_OMIT_SUBQUERY */ + +/* +** Duplicate an 8-byte value +*/ +static char *dup8bytes(Vdbe *v, const char *in){ + char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); + if( out ){ + memcpy(out, in, 8); + } + return out; +} + +#ifndef SQLITE_OMIT_FLOATING_POINT +/* +** Generate an instruction that will put the floating point +** value described by z[0..n-1] into register iMem. +** +** The z[] string will probably not be zero-terminated. But the +** z[n] character is guaranteed to be something that does not look +** like the continuation of the number. +*/ +static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ + if( ALWAYS(z!=0) ){ + double value; + char *zV; + sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); + assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ + if( negateFlag ) value = -value; + zV = dup8bytes(v, (char*)&value); + sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); + } +} +#endif + + +/* +** Generate an instruction that will put the integer describe by +** text z[0..n-1] into register iMem. +** +** Expr.u.zToken is always UTF8 and zero-terminated. +*/ +static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ + Vdbe *v = pParse->pVdbe; + if( pExpr->flags & EP_IntValue ){ + int i = pExpr->u.iValue; + assert( i>=0 ); + if( negFlag ) i = -i; + sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); + }else{ + int c; + i64 value; + const char *z = pExpr->u.zToken; + assert( z!=0 ); + c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); + if( c==0 || (c==2 && negFlag) ){ + char *zV; + if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } + zV = dup8bytes(v, (char*)&value); + sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); + }else{ +#ifdef SQLITE_OMIT_FLOATING_POINT + sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); +#else + codeReal(v, z, negFlag, iMem); +#endif + } + } +} + +/* +** Clear a cache entry. +*/ +static void cacheEntryClear(Parse *pParse, struct yColCache *p){ + if( p->tempReg ){ + if( pParse->nTempRegaTempReg) ){ + pParse->aTempReg[pParse->nTempReg++] = p->iReg; + } + p->tempReg = 0; + } +} + + +/* +** Record in the column cache that a particular column from a +** particular table is stored in a particular register. +*/ +void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ + int i; + int minLru; + int idxLru; + struct yColCache *p; + + assert( iReg>0 ); /* Register numbers are always positive */ + assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ + + /* The SQLITE_ColumnCache flag disables the column cache. This is used + ** for testing only - to verify that SQLite always gets the same answer + ** with and without the column cache. + */ + if( pParse->db->flags & SQLITE_ColumnCache ) return; + + /* First replace any existing entry. + ** + ** Actually, the way the column cache is currently used, we are guaranteed + ** that the object will never already be in cache. Verify this guarantee. + */ +#ifndef NDEBUG + for(i=0, p=pParse->aColCache; iiReg && p->iTable==iTab && p->iColumn==iCol ){ + cacheEntryClear(pParse, p); + p->iLevel = pParse->iCacheLevel; + p->iReg = iReg; + p->lru = pParse->iCacheCnt++; + return; + } +#endif + assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); + } +#endif + + /* Find an empty slot and replace it */ + for(i=0, p=pParse->aColCache; iiReg==0 ){ + p->iLevel = pParse->iCacheLevel; + p->iTable = iTab; + p->iColumn = iCol; + p->iReg = iReg; + p->tempReg = 0; + p->lru = pParse->iCacheCnt++; + return; + } + } + + /* Replace the last recently used */ + minLru = 0x7fffffff; + idxLru = -1; + for(i=0, p=pParse->aColCache; ilrulru; + } + } + if( ALWAYS(idxLru>=0) ){ + p = &pParse->aColCache[idxLru]; + p->iLevel = pParse->iCacheLevel; + p->iTable = iTab; + p->iColumn = iCol; + p->iReg = iReg; + p->tempReg = 0; + p->lru = pParse->iCacheCnt++; + return; + } +} + +/* +** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. +** Purge the range of registers from the column cache. +*/ +void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ + int i; + int iLast = iReg + nReg - 1; + struct yColCache *p; + for(i=0, p=pParse->aColCache; iiReg; + if( r>=iReg && r<=iLast ){ + cacheEntryClear(pParse, p); + p->iReg = 0; + } + } +} + +/* +** Remember the current column cache context. Any new entries added +** added to the column cache after this call are removed when the +** corresponding pop occurs. +*/ +void sqlite3ExprCachePush(Parse *pParse){ + pParse->iCacheLevel++; +} + +/* +** Remove from the column cache any entries that were added since the +** the previous N Push operations. In other words, restore the cache +** to the state it was in N Pushes ago. +*/ +void sqlite3ExprCachePop(Parse *pParse, int N){ + int i; + struct yColCache *p; + assert( N>0 ); + assert( pParse->iCacheLevel>=N ); + pParse->iCacheLevel -= N; + for(i=0, p=pParse->aColCache; iiReg && p->iLevel>pParse->iCacheLevel ){ + cacheEntryClear(pParse, p); + p->iReg = 0; + } + } +} + +/* +** When a cached column is reused, make sure that its register is +** no longer available as a temp register. ticket #3879: that same +** register might be in the cache in multiple places, so be sure to +** get them all. +*/ +static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ + int i; + struct yColCache *p; + for(i=0, p=pParse->aColCache; iiReg==iReg ){ + p->tempReg = 0; + } + } +} + +/* +** Generate code to extract the value of the iCol-th column of a table. +*/ +void sqlite3ExprCodeGetColumnOfTable( + Vdbe *v, /* The VDBE under construction */ + Table *pTab, /* The table containing the value */ + int iTabCur, /* The cursor for this table */ + int iCol, /* Index of the column to extract */ + int regOut /* Extract the valud into this register */ +){ + if( iCol<0 || iCol==pTab->iPKey ){ + sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); + }else{ + int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; + sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); + } + if( iCol>=0 ){ + sqlite3ColumnDefault(v, pTab, iCol, regOut); + } +} + +/* +** Generate code that will extract the iColumn-th column from +** table pTab and store the column value in a register. An effort +** is made to store the column value in register iReg, but this is +** not guaranteed. The location of the column value is returned. +** +** There must be an open cursor to pTab in iTable when this routine +** is called. If iColumn<0 then code is generated that extracts the rowid. +*/ +int sqlite3ExprCodeGetColumn( + Parse *pParse, /* Parsing and code generating context */ + Table *pTab, /* Description of the table we are reading from */ + int iColumn, /* Index of the table column */ + int iTable, /* The cursor pointing to the table */ + int iReg /* Store results here */ +){ + Vdbe *v = pParse->pVdbe; + int i; + struct yColCache *p; + + for(i=0, p=pParse->aColCache; iiReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ + p->lru = pParse->iCacheCnt++; + sqlite3ExprCachePinRegister(pParse, p->iReg); + return p->iReg; + } + } + assert( v!=0 ); + sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); + sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); + return iReg; +} + +/* +** Clear all column cache entries. +*/ +void sqlite3ExprCacheClear(Parse *pParse){ + int i; + struct yColCache *p; + + for(i=0, p=pParse->aColCache; iiReg ){ + cacheEntryClear(pParse, p); + p->iReg = 0; + } + } +} + +/* +** Record the fact that an affinity change has occurred on iCount +** registers starting with iStart. +*/ +void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ + sqlite3ExprCacheRemove(pParse, iStart, iCount); +} + +/* +** Generate code to move content from registers iFrom...iFrom+nReg-1 +** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. +*/ +void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ + int i; + struct yColCache *p; + if( NEVER(iFrom==iTo) ) return; + sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); + for(i=0, p=pParse->aColCache; iiReg; + if( x>=iFrom && xiReg += iTo-iFrom; + } + } +} + +/* +** Generate code to copy content from registers iFrom...iFrom+nReg-1 +** over to iTo..iTo+nReg-1. +*/ +void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ + int i; + if( NEVER(iFrom==iTo) ) return; + for(i=0; ipVdbe, OP_Copy, iFrom+i, iTo+i); + } +} + +#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) +/* +** Return true if any register in the range iFrom..iTo (inclusive) +** is used as part of the column cache. +** +** This routine is used within assert() and testcase() macros only +** and does not appear in a normal build. +*/ +static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ + int i; + struct yColCache *p; + for(i=0, p=pParse->aColCache; iiReg; + if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ + } + return 0; +} +#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ + +/* +** Generate code into the current Vdbe to evaluate the given +** expression. Attempt to store the results in register "target". +** Return the register where results are stored. +** +** With this routine, there is no guarantee that results will +** be stored in target. The result might be stored in some other +** register if it is convenient to do so. The calling function +** must check the return code and move the results to the desired +** register. +*/ +int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ + Vdbe *v = pParse->pVdbe; /* The VM under construction */ + int op; /* The opcode being coded */ + int inReg = target; /* Results stored in register inReg */ + int regFree1 = 0; /* If non-zero free this temporary register */ + int regFree2 = 0; /* If non-zero free this temporary register */ + int r1, r2, r3, r4; /* Various register numbers */ + sqlite3 *db = pParse->db; /* The database connection */ + + assert( target>0 && target<=pParse->nMem ); + if( v==0 ){ + assert( pParse->db->mallocFailed ); + return 0; + } + + if( pExpr==0 ){ + op = TK_NULL; + }else{ + op = pExpr->op; + } + switch( op ){ + case TK_AGG_COLUMN: { + AggInfo *pAggInfo = pExpr->pAggInfo; + struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; + if( !pAggInfo->directMode ){ + assert( pCol->iMem>0 ); + inReg = pCol->iMem; + break; + }else if( pAggInfo->useSortingIdx ){ + sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, + pCol->iSorterColumn, target); + break; + } + /* Otherwise, fall thru into the TK_COLUMN case */ + } + case TK_COLUMN: { + if( pExpr->iTable<0 ){ + /* This only happens when coding check constraints */ + assert( pParse->ckBase>0 ); + inReg = pExpr->iColumn + pParse->ckBase; + }else{ + inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, + pExpr->iColumn, pExpr->iTable, target); + } + break; + } + case TK_INTEGER: { + codeInteger(pParse, pExpr, 0, target); + break; + } +#ifndef SQLITE_OMIT_FLOATING_POINT + case TK_FLOAT: { + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + codeReal(v, pExpr->u.zToken, 0, target); + break; + } +#endif + case TK_STRING: { + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); + break; + } + case TK_NULL: { + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + break; + } +#ifndef SQLITE_OMIT_BLOB_LITERAL + case TK_BLOB: { + int n; + const char *z; + char *zBlob; + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); + assert( pExpr->u.zToken[1]=='\'' ); + z = &pExpr->u.zToken[2]; + n = sqlite3Strlen30(z) - 1; + assert( z[n]=='\'' ); + zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); + sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); + break; + } +#endif + case TK_VARIABLE: { + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + assert( pExpr->u.zToken!=0 ); + assert( pExpr->u.zToken[0]!=0 ); + sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); + if( pExpr->u.zToken[1]!=0 ){ + assert( pExpr->u.zToken[0]=='?' + || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); + sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); + } + break; + } + case TK_REGISTER: { + inReg = pExpr->iTable; + break; + } + case TK_AS: { + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); + break; + } +#ifndef SQLITE_OMIT_CAST + case TK_CAST: { + /* Expressions of the form: CAST(pLeft AS token) */ + int aff, to_op; + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + aff = sqlite3AffinityType(pExpr->u.zToken); + to_op = aff - SQLITE_AFF_TEXT + OP_ToText; + assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); + assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); + assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); + assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); + assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); + testcase( to_op==OP_ToText ); + testcase( to_op==OP_ToBlob ); + testcase( to_op==OP_ToNumeric ); + testcase( to_op==OP_ToInt ); + testcase( to_op==OP_ToReal ); + if( inReg!=target ){ + sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); + inReg = target; + } + sqlite3VdbeAddOp1(v, to_op, inReg); + testcase( usedAsColumnCache(pParse, inReg, inReg) ); + sqlite3ExprCacheAffinityChange(pParse, inReg, 1); + break; + } +#endif /* SQLITE_OMIT_CAST */ + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + assert( TK_LT==OP_Lt ); + assert( TK_LE==OP_Le ); + assert( TK_GT==OP_Gt ); + assert( TK_GE==OP_Ge ); + assert( TK_EQ==OP_Eq ); + assert( TK_NE==OP_Ne ); + testcase( op==TK_LT ); + testcase( op==TK_LE ); + testcase( op==TK_GT ); + testcase( op==TK_GE ); + testcase( op==TK_EQ ); + testcase( op==TK_NE ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, inReg, SQLITE_STOREP2); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_IS: + case TK_ISNOT: { + testcase( op==TK_IS ); + testcase( op==TK_ISNOT ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + op = (op==TK_IS) ? TK_EQ : TK_NE; + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_AND: + case TK_OR: + case TK_PLUS: + case TK_STAR: + case TK_MINUS: + case TK_REM: + case TK_BITAND: + case TK_BITOR: + case TK_SLASH: + case TK_LSHIFT: + case TK_RSHIFT: + case TK_CONCAT: { + assert( TK_AND==OP_And ); + assert( TK_OR==OP_Or ); + assert( TK_PLUS==OP_Add ); + assert( TK_MINUS==OP_Subtract ); + assert( TK_REM==OP_Remainder ); + assert( TK_BITAND==OP_BitAnd ); + assert( TK_BITOR==OP_BitOr ); + assert( TK_SLASH==OP_Divide ); + assert( TK_LSHIFT==OP_ShiftLeft ); + assert( TK_RSHIFT==OP_ShiftRight ); + assert( TK_CONCAT==OP_Concat ); + testcase( op==TK_AND ); + testcase( op==TK_OR ); + testcase( op==TK_PLUS ); + testcase( op==TK_MINUS ); + testcase( op==TK_REM ); + testcase( op==TK_BITAND ); + testcase( op==TK_BITOR ); + testcase( op==TK_SLASH ); + testcase( op==TK_LSHIFT ); + testcase( op==TK_RSHIFT ); + testcase( op==TK_CONCAT ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + sqlite3VdbeAddOp3(v, op, r2, r1, target); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_UMINUS: { + Expr *pLeft = pExpr->pLeft; + assert( pLeft ); + if( pLeft->op==TK_INTEGER ){ + codeInteger(pParse, pLeft, 1, target); +#ifndef SQLITE_OMIT_FLOATING_POINT + }else if( pLeft->op==TK_FLOAT ){ + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + codeReal(v, pLeft->u.zToken, 1, target); +#endif + }else{ + regFree1 = r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); + sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); + testcase( regFree2==0 ); + } + inReg = target; + break; + } + case TK_BITNOT: + case TK_NOT: { + assert( TK_BITNOT==OP_BitNot ); + assert( TK_NOT==OP_Not ); + testcase( op==TK_BITNOT ); + testcase( op==TK_NOT ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + testcase( regFree1==0 ); + inReg = target; + sqlite3VdbeAddOp2(v, op, r1, inReg); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + int addr; + assert( TK_ISNULL==OP_IsNull ); + assert( TK_NOTNULL==OP_NotNull ); + testcase( op==TK_ISNULL ); + testcase( op==TK_NOTNULL ); + sqlite3VdbeAddOp2(v, OP_Integer, 1, target); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + testcase( regFree1==0 ); + addr = sqlite3VdbeAddOp1(v, op, r1); + sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); + sqlite3VdbeJumpHere(v, addr); + break; + } + case TK_AGG_FUNCTION: { + AggInfo *pInfo = pExpr->pAggInfo; + if( pInfo==0 ){ + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); + }else{ + inReg = pInfo->aFunc[pExpr->iAgg].iMem; + } + break; + } + case TK_CONST_FUNC: + case TK_FUNCTION: { + ExprList *pFarg; /* List of function arguments */ + int nFarg; /* Number of function arguments */ + FuncDef *pDef; /* The function definition object */ + int nId; /* Length of the function name in bytes */ + const char *zId; /* The function name */ + int constMask = 0; /* Mask of function arguments that are constant */ + int i; /* Loop counter */ + u8 enc = ENC(db); /* The text encoding used by this database */ + CollSeq *pColl = 0; /* A collating sequence */ + + assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); + testcase( op==TK_CONST_FUNC ); + testcase( op==TK_FUNCTION ); + if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ + pFarg = 0; + }else{ + pFarg = pExpr->x.pList; + } + nFarg = pFarg ? pFarg->nExpr : 0; + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + zId = pExpr->u.zToken; + nId = sqlite3Strlen30(zId); + pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); + if( pDef==0 ){ + sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); + break; + } + + /* Attempt a direct implementation of the built-in COALESCE() and + ** IFNULL() functions. This avoids unnecessary evalation of + ** arguments past the first non-NULL argument. + */ + if( pDef->flags & SQLITE_FUNC_COALESCE ){ + int endCoalesce = sqlite3VdbeMakeLabel(v); + assert( nFarg>=2 ); + sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); + for(i=1; ia[i].pExpr, target); + sqlite3ExprCachePop(pParse, 1); + } + sqlite3VdbeResolveLabel(v, endCoalesce); + break; + } + + + if( pFarg ){ + r1 = sqlite3GetTempRange(pParse, nFarg); + sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ + sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); + sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ + }else{ + r1 = 0; + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + /* Possibly overload the function if the first argument is + ** a virtual table column. + ** + ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the + ** second argument, not the first, as the argument to test to + ** see if it is a column in a virtual table. This is done because + ** the left operand of infix functions (the operand we want to + ** control overloading) ends up as the second argument to the + ** function. The expression "A glob B" is equivalent to + ** "glob(B,A). We want to use the A in "A glob B" to test + ** for function overloading. But we use the B term in "glob(B,A)". + */ + if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ + pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); + }else if( nFarg>0 ){ + pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); + } +#endif + for(i=0; ia[i].pExpr) ){ + constMask |= (1<flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ + pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); + } + } + if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ + if( !pColl ) pColl = db->pDfltColl; + sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); + } + sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, + (char*)pDef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, (u8)nFarg); + if( nFarg ){ + sqlite3ReleaseTempRange(pParse, r1, nFarg); + } + break; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_EXISTS: + case TK_SELECT: { + testcase( op==TK_EXISTS ); + testcase( op==TK_SELECT ); + inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); + break; + } + case TK_IN: { + int destIfFalse = sqlite3VdbeMakeLabel(v); + int destIfNull = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); + sqlite3VdbeAddOp2(v, OP_Integer, 1, target); + sqlite3VdbeResolveLabel(v, destIfFalse); + sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); + sqlite3VdbeResolveLabel(v, destIfNull); + break; + } +#endif /* SQLITE_OMIT_SUBQUERY */ + + + /* + ** x BETWEEN y AND z + ** + ** This is equivalent to + ** + ** x>=y AND x<=z + ** + ** X is stored in pExpr->pLeft. + ** Y is stored in pExpr->pList->a[0].pExpr. + ** Z is stored in pExpr->pList->a[1].pExpr. + */ + case TK_BETWEEN: { + Expr *pLeft = pExpr->pLeft; + struct ExprList_item *pLItem = pExpr->x.pList->a; + Expr *pRight = pLItem->pExpr; + + r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + r3 = sqlite3GetTempReg(pParse); + r4 = sqlite3GetTempReg(pParse); + codeCompare(pParse, pLeft, pRight, OP_Ge, + r1, r2, r3, SQLITE_STOREP2); + pLItem++; + pRight = pLItem->pExpr; + sqlite3ReleaseTempReg(pParse, regFree2); + r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); + testcase( regFree2==0 ); + codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); + sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); + sqlite3ReleaseTempReg(pParse, r3); + sqlite3ReleaseTempReg(pParse, r4); + break; + } + case TK_UPLUS: { + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); + break; + } + + case TK_TRIGGER: { + /* If the opcode is TK_TRIGGER, then the expression is a reference + ** to a column in the new.* or old.* pseudo-tables available to + ** trigger programs. In this case Expr.iTable is set to 1 for the + ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn + ** is set to the column of the pseudo-table to read, or to -1 to + ** read the rowid field. + ** + ** The expression is implemented using an OP_Param opcode. The p1 + ** parameter is set to 0 for an old.rowid reference, or to (i+1) + ** to reference another column of the old.* pseudo-table, where + ** i is the index of the column. For a new.rowid reference, p1 is + ** set to (n+1), where n is the number of columns in each pseudo-table. + ** For a reference to any other column in the new.* pseudo-table, p1 + ** is set to (n+2+i), where n and i are as defined previously. For + ** example, if the table on which triggers are being fired is + ** declared as: + ** + ** CREATE TABLE t1(a, b); + ** + ** Then p1 is interpreted as follows: + ** + ** p1==0 -> old.rowid p1==3 -> new.rowid + ** p1==1 -> old.a p1==4 -> new.a + ** p1==2 -> old.b p1==5 -> new.b + */ + Table *pTab = pExpr->pTab; + int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; + + assert( pExpr->iTable==0 || pExpr->iTable==1 ); + assert( pExpr->iColumn>=-1 && pExpr->iColumnnCol ); + assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); + assert( p1>=0 && p1<(pTab->nCol*2+2) ); + + sqlite3VdbeAddOp2(v, OP_Param, p1, target); + VdbeComment((v, "%s.%s -> $%d", + (pExpr->iTable ? "new" : "old"), + (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), + target + )); + +#ifndef SQLITE_OMIT_FLOATING_POINT + /* If the column has REAL affinity, it may currently be stored as an + ** integer. Use OP_RealAffinity to make sure it is really real. */ + if( pExpr->iColumn>=0 + && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL + ){ + sqlite3VdbeAddOp1(v, OP_RealAffinity, target); + } +#endif + break; + } + + + /* + ** Form A: + ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END + ** + ** Form B: + ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END + ** + ** Form A is can be transformed into the equivalent form B as follows: + ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... + ** WHEN x=eN THEN rN ELSE y END + ** + ** X (if it exists) is in pExpr->pLeft. + ** Y is in pExpr->pRight. The Y is also optional. If there is no + ** ELSE clause and no other term matches, then the result of the + ** exprssion is NULL. + ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. + ** + ** The result of the expression is the Ri for the first matching Ei, + ** or if there is no matching Ei, the ELSE term Y, or if there is + ** no ELSE term, NULL. + */ + default: assert( op==TK_CASE ); { + int endLabel; /* GOTO label for end of CASE stmt */ + int nextCase; /* GOTO label for next WHEN clause */ + int nExpr; /* 2x number of WHEN terms */ + int i; /* Loop counter */ + ExprList *pEList; /* List of WHEN terms */ + struct ExprList_item *aListelem; /* Array of WHEN terms */ + Expr opCompare; /* The X==Ei expression */ + Expr cacheX; /* Cached expression X */ + Expr *pX; /* The X expression */ + Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ + VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) + + assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); + assert((pExpr->x.pList->nExpr % 2) == 0); + assert(pExpr->x.pList->nExpr > 0); + pEList = pExpr->x.pList; + aListelem = pEList->a; + nExpr = pEList->nExpr; + endLabel = sqlite3VdbeMakeLabel(v); + if( (pX = pExpr->pLeft)!=0 ){ + cacheX = *pX; + testcase( pX->op==TK_COLUMN ); + testcase( pX->op==TK_REGISTER ); + cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); + testcase( regFree1==0 ); + cacheX.op = TK_REGISTER; + opCompare.op = TK_EQ; + opCompare.pLeft = &cacheX; + pTest = &opCompare; + /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: + ** The value in regFree1 might get SCopy-ed into the file result. + ** So make sure that the regFree1 register is not reused for other + ** purposes and possibly overwritten. */ + regFree1 = 0; + } + for(i=0; iop==TK_COLUMN ); + sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); + testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); + testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); + sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); + sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); + sqlite3ExprCachePop(pParse, 1); + sqlite3VdbeResolveLabel(v, nextCase); + } + if( pExpr->pRight ){ + sqlite3ExprCachePush(pParse); + sqlite3ExprCode(pParse, pExpr->pRight, target); + sqlite3ExprCachePop(pParse, 1); + }else{ + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + } + assert( db->mallocFailed || pParse->nErr>0 + || pParse->iCacheLevel==iCacheLevel ); + sqlite3VdbeResolveLabel(v, endLabel); + break; + } +#ifndef SQLITE_OMIT_TRIGGER + case TK_RAISE: { + assert( pExpr->affinity==OE_Rollback + || pExpr->affinity==OE_Abort + || pExpr->affinity==OE_Fail + || pExpr->affinity==OE_Ignore + ); + if( !pParse->pTriggerTab ){ + sqlite3ErrorMsg(pParse, + "RAISE() may only be used within a trigger-program"); + return 0; + } + if( pExpr->affinity==OE_Abort ){ + sqlite3MayAbort(pParse); + } + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + if( pExpr->affinity==OE_Ignore ){ + sqlite3VdbeAddOp4( + v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); + }else{ + sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); + } + + break; + } +#endif + } + sqlite3ReleaseTempReg(pParse, regFree1); + sqlite3ReleaseTempReg(pParse, regFree2); + return inReg; +} + +/* +** Generate code to evaluate an expression and store the results +** into a register. Return the register number where the results +** are stored. +** +** If the register is a temporary register that can be deallocated, +** then write its number into *pReg. If the result register is not +** a temporary, then set *pReg to zero. +*/ +int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ + int r1 = sqlite3GetTempReg(pParse); + int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); + if( r2==r1 ){ + *pReg = r1; + }else{ + sqlite3ReleaseTempReg(pParse, r1); + *pReg = 0; + } + return r2; +} + +/* +** Generate code that will evaluate expression pExpr and store the +** results in register target. The results are guaranteed to appear +** in register target. +*/ +int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ + int inReg; + + assert( target>0 && target<=pParse->nMem ); + if( pExpr && pExpr->op==TK_REGISTER ){ + sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); + }else{ + inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); + assert( pParse->pVdbe || pParse->db->mallocFailed ); + if( inReg!=target && pParse->pVdbe ){ + sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); + } + } + return target; +} + +/* +** Generate code that evalutes the given expression and puts the result +** in register target. +** +** Also make a copy of the expression results into another "cache" register +** and modify the expression so that the next time it is evaluated, +** the result is a copy of the cache register. +** +** This routine is used for expressions that are used multiple +** times. They are evaluated once and the results of the expression +** are reused. +*/ +int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ + Vdbe *v = pParse->pVdbe; + int inReg; + inReg = sqlite3ExprCode(pParse, pExpr, target); + assert( target>0 ); + /* This routine is called for terms to INSERT or UPDATE. And the only + ** other place where expressions can be converted into TK_REGISTER is + ** in WHERE clause processing. So as currently implemented, there is + ** no way for a TK_REGISTER to exist here. But it seems prudent to + ** keep the ALWAYS() in case the conditions above change with future + ** modifications or enhancements. */ + if( ALWAYS(pExpr->op!=TK_REGISTER) ){ + int iMem; + iMem = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); + pExpr->iTable = iMem; + pExpr->op2 = pExpr->op; + pExpr->op = TK_REGISTER; + } + return inReg; +} + +/* +** Return TRUE if pExpr is an constant expression that is appropriate +** for factoring out of a loop. Appropriate expressions are: +** +** * Any expression that evaluates to two or more opcodes. +** +** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, +** or OP_Variable that does not need to be placed in a +** specific register. +** +** There is no point in factoring out single-instruction constant +** expressions that need to be placed in a particular register. +** We could factor them out, but then we would end up adding an +** OP_SCopy instruction to move the value into the correct register +** later. We might as well just use the original instruction and +** avoid the OP_SCopy. +*/ +static int isAppropriateForFactoring(Expr *p){ + if( !sqlite3ExprIsConstantNotJoin(p) ){ + return 0; /* Only constant expressions are appropriate for factoring */ + } + if( (p->flags & EP_FixedDest)==0 ){ + return 1; /* Any constant without a fixed destination is appropriate */ + } + while( p->op==TK_UPLUS ) p = p->pLeft; + switch( p->op ){ +#ifndef SQLITE_OMIT_BLOB_LITERAL + case TK_BLOB: +#endif + case TK_VARIABLE: + case TK_INTEGER: + case TK_FLOAT: + case TK_NULL: + case TK_STRING: { + testcase( p->op==TK_BLOB ); + testcase( p->op==TK_VARIABLE ); + testcase( p->op==TK_INTEGER ); + testcase( p->op==TK_FLOAT ); + testcase( p->op==TK_NULL ); + testcase( p->op==TK_STRING ); + /* Single-instruction constants with a fixed destination are + ** better done in-line. If we factor them, they will just end + ** up generating an OP_SCopy to move the value to the destination + ** register. */ + return 0; + } + case TK_UMINUS: { + if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ + return 0; + } + break; + } + default: { + break; + } + } + return 1; +} + +/* +** If pExpr is a constant expression that is appropriate for +** factoring out of a loop, then evaluate the expression +** into a register and convert the expression into a TK_REGISTER +** expression. +*/ +static int evalConstExpr(Walker *pWalker, Expr *pExpr){ + Parse *pParse = pWalker->pParse; + switch( pExpr->op ){ + case TK_IN: + case TK_REGISTER: { + return WRC_Prune; + } + case TK_FUNCTION: + case TK_AGG_FUNCTION: + case TK_CONST_FUNC: { + /* The arguments to a function have a fixed destination. + ** Mark them this way to avoid generated unneeded OP_SCopy + ** instructions. + */ + ExprList *pList = pExpr->x.pList; + assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); + if( pList ){ + int i = pList->nExpr; + struct ExprList_item *pItem = pList->a; + for(; i>0; i--, pItem++){ + if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; + } + } + break; + } + } + if( isAppropriateForFactoring(pExpr) ){ + int r1 = ++pParse->nMem; + int r2; + r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); + if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); + pExpr->op2 = pExpr->op; + pExpr->op = TK_REGISTER; + pExpr->iTable = r2; + return WRC_Prune; + } + return WRC_Continue; +} + +/* +** Preevaluate constant subexpressions within pExpr and store the +** results in registers. Modify pExpr so that the constant subexpresions +** are TK_REGISTER opcodes that refer to the precomputed values. +** +** This routine is a no-op if the jump to the cookie-check code has +** already occur. Since the cookie-check jump is generated prior to +** any other serious processing, this check ensures that there is no +** way to accidently bypass the constant initializations. +** +** This routine is also a no-op if the SQLITE_FactorOutConst optimization +** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) +** interface. This allows test logic to verify that the same answer is +** obtained for queries regardless of whether or not constants are +** precomputed into registers or if they are inserted in-line. +*/ +void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ + Walker w; + if( pParse->cookieGoto ) return; + if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return; + w.xExprCallback = evalConstExpr; + w.xSelectCallback = 0; + w.pParse = pParse; + sqlite3WalkExpr(&w, pExpr); +} + + +/* +** Generate code that pushes the value of every element of the given +** expression list into a sequence of registers beginning at target. +** +** Return the number of elements evaluated. +*/ +int sqlite3ExprCodeExprList( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* The expression list to be coded */ + int target, /* Where to write results */ + int doHardCopy /* Make a hard copy of every element */ +){ + struct ExprList_item *pItem; + int i, n; + assert( pList!=0 ); + assert( target>0 ); + assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ + n = pList->nExpr; + for(pItem=pList->a, i=0; ipExpr; + int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); + if( inReg!=target+i ){ + sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, + inReg, target+i); + } + } + return n; +} + +/* +** Generate code for a BETWEEN operator. +** +** x BETWEEN y AND z +** +** The above is equivalent to +** +** x>=y AND x<=z +** +** Code it as such, taking care to do the common subexpression +** elementation of x. +*/ +static void exprCodeBetween( + Parse *pParse, /* Parsing and code generating context */ + Expr *pExpr, /* The BETWEEN expression */ + int dest, /* Jump here if the jump is taken */ + int jumpIfTrue, /* Take the jump if the BETWEEN is true */ + int jumpIfNull /* Take the jump if the BETWEEN is NULL */ +){ + Expr exprAnd; /* The AND operator in x>=y AND x<=z */ + Expr compLeft; /* The x>=y term */ + Expr compRight; /* The x<=z term */ + Expr exprX; /* The x subexpression */ + int regFree1 = 0; /* Temporary use register */ + + assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); + exprX = *pExpr->pLeft; + exprAnd.op = TK_AND; + exprAnd.pLeft = &compLeft; + exprAnd.pRight = &compRight; + compLeft.op = TK_GE; + compLeft.pLeft = &exprX; + compLeft.pRight = pExpr->x.pList->a[0].pExpr; + compRight.op = TK_LE; + compRight.pLeft = &exprX; + compRight.pRight = pExpr->x.pList->a[1].pExpr; + exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); + exprX.op = TK_REGISTER; + if( jumpIfTrue ){ + sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); + }else{ + sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); + } + sqlite3ReleaseTempReg(pParse, regFree1); + + /* Ensure adequate test coverage */ + testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); + testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); + testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); + testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); + testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); + testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); + testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); + testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); +} + +/* +** Generate code for a boolean expression such that a jump is made +** to the label "dest" if the expression is true but execution +** continues straight thru if the expression is false. +** +** If the expression evaluates to NULL (neither true nor false), then +** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. +** +** This code depends on the fact that certain token values (ex: TK_EQ) +** are the same as opcode values (ex: OP_Eq) that implement the corresponding +** operation. Special comments in vdbe.c and the mkopcodeh.awk script in +** the make process cause these values to align. Assert()s in the code +** below verify that the numbers are aligned correctly. +*/ +void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ + Vdbe *v = pParse->pVdbe; + int op = 0; + int regFree1 = 0; + int regFree2 = 0; + int r1, r2; + + assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); + if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ + if( NEVER(pExpr==0) ) return; /* No way this can happen */ + op = pExpr->op; + switch( op ){ + case TK_AND: { + int d2 = sqlite3VdbeMakeLabel(v); + testcase( jumpIfNull==0 ); + sqlite3ExprCachePush(pParse); + sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); + sqlite3VdbeResolveLabel(v, d2); + sqlite3ExprCachePop(pParse, 1); + break; + } + case TK_OR: { + testcase( jumpIfNull==0 ); + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); + break; + } + case TK_NOT: { + testcase( jumpIfNull==0 ); + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); + break; + } + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + assert( TK_LT==OP_Lt ); + assert( TK_LE==OP_Le ); + assert( TK_GT==OP_Gt ); + assert( TK_GE==OP_Ge ); + assert( TK_EQ==OP_Eq ); + assert( TK_NE==OP_Ne ); + testcase( op==TK_LT ); + testcase( op==TK_LE ); + testcase( op==TK_GT ); + testcase( op==TK_GE ); + testcase( op==TK_EQ ); + testcase( op==TK_NE ); + testcase( jumpIfNull==0 ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, dest, jumpIfNull); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_IS: + case TK_ISNOT: { + testcase( op==TK_IS ); + testcase( op==TK_ISNOT ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + op = (op==TK_IS) ? TK_EQ : TK_NE; + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, dest, SQLITE_NULLEQ); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + assert( TK_ISNULL==OP_IsNull ); + assert( TK_NOTNULL==OP_NotNull ); + testcase( op==TK_ISNULL ); + testcase( op==TK_NOTNULL ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + sqlite3VdbeAddOp2(v, op, r1, dest); + testcase( regFree1==0 ); + break; + } + case TK_BETWEEN: { + testcase( jumpIfNull==0 ); + exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); + break; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_IN: { + int destIfFalse = sqlite3VdbeMakeLabel(v); + int destIfNull = jumpIfNull ? dest : destIfFalse; + sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); + sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); + sqlite3VdbeResolveLabel(v, destIfFalse); + break; + } +#endif + default: { + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); + sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); + testcase( regFree1==0 ); + testcase( jumpIfNull==0 ); + break; + } + } + sqlite3ReleaseTempReg(pParse, regFree1); + sqlite3ReleaseTempReg(pParse, regFree2); +} + +/* +** Generate code for a boolean expression such that a jump is made +** to the label "dest" if the expression is false but execution +** continues straight thru if the expression is true. +** +** If the expression evaluates to NULL (neither true nor false) then +** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull +** is 0. +*/ +void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ + Vdbe *v = pParse->pVdbe; + int op = 0; + int regFree1 = 0; + int regFree2 = 0; + int r1, r2; + + assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); + if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ + if( pExpr==0 ) return; + + /* The value of pExpr->op and op are related as follows: + ** + ** pExpr->op op + ** --------- ---------- + ** TK_ISNULL OP_NotNull + ** TK_NOTNULL OP_IsNull + ** TK_NE OP_Eq + ** TK_EQ OP_Ne + ** TK_GT OP_Le + ** TK_LE OP_Gt + ** TK_GE OP_Lt + ** TK_LT OP_Ge + ** + ** For other values of pExpr->op, op is undefined and unused. + ** The value of TK_ and OP_ constants are arranged such that we + ** can compute the mapping above using the following expression. + ** Assert()s verify that the computation is correct. + */ + op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); + + /* Verify correct alignment of TK_ and OP_ constants + */ + assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); + assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); + assert( pExpr->op!=TK_NE || op==OP_Eq ); + assert( pExpr->op!=TK_EQ || op==OP_Ne ); + assert( pExpr->op!=TK_LT || op==OP_Ge ); + assert( pExpr->op!=TK_LE || op==OP_Gt ); + assert( pExpr->op!=TK_GT || op==OP_Le ); + assert( pExpr->op!=TK_GE || op==OP_Lt ); + + switch( pExpr->op ){ + case TK_AND: { + testcase( jumpIfNull==0 ); + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); + break; + } + case TK_OR: { + int d2 = sqlite3VdbeMakeLabel(v); + testcase( jumpIfNull==0 ); + sqlite3ExprCachePush(pParse); + sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); + sqlite3VdbeResolveLabel(v, d2); + sqlite3ExprCachePop(pParse, 1); + break; + } + case TK_NOT: { + testcase( jumpIfNull==0 ); + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); + break; + } + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + testcase( op==TK_LT ); + testcase( op==TK_LE ); + testcase( op==TK_GT ); + testcase( op==TK_GE ); + testcase( op==TK_EQ ); + testcase( op==TK_NE ); + testcase( jumpIfNull==0 ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, dest, jumpIfNull); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_IS: + case TK_ISNOT: { + testcase( pExpr->op==TK_IS ); + testcase( pExpr->op==TK_ISNOT ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, dest, SQLITE_NULLEQ); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + testcase( op==TK_ISNULL ); + testcase( op==TK_NOTNULL ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + sqlite3VdbeAddOp2(v, op, r1, dest); + testcase( regFree1==0 ); + break; + } + case TK_BETWEEN: { + testcase( jumpIfNull==0 ); + exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); + break; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_IN: { + if( jumpIfNull ){ + sqlite3ExprCodeIN(pParse, pExpr, dest, dest); + }else{ + int destIfNull = sqlite3VdbeMakeLabel(v); + sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); + sqlite3VdbeResolveLabel(v, destIfNull); + } + break; + } +#endif + default: { + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); + sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); + testcase( regFree1==0 ); + testcase( jumpIfNull==0 ); + break; + } + } + sqlite3ReleaseTempReg(pParse, regFree1); + sqlite3ReleaseTempReg(pParse, regFree2); +} + +/* +** Do a deep comparison of two expression trees. Return 0 if the two +** expressions are completely identical. Return 1 if they differ only +** by a COLLATE operator at the top level. Return 2 if there are differences +** other than the top-level COLLATE operator. +** +** Sometimes this routine will return 2 even if the two expressions +** really are equivalent. If we cannot prove that the expressions are +** identical, we return 2 just to be safe. So if this routine +** returns 2, then you do not really know for certain if the two +** expressions are the same. But if you get a 0 or 1 return, then you +** can be sure the expressions are the same. In the places where +** this routine is used, it does not hurt to get an extra 2 - that +** just might result in some slightly slower code. But returning +** an incorrect 0 or 1 could lead to a malfunction. +*/ +int sqlite3ExprCompare(Expr *pA, Expr *pB){ + if( pA==0||pB==0 ){ + return pB==pA ? 0 : 2; + } + assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); + assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); + if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ + return 2; + } + if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; + if( pA->op!=pB->op ) return 2; + if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; + if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; + if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; + if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; + if( ExprHasProperty(pA, EP_IntValue) ){ + if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ + return 2; + } + }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ + if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; + if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ + return 2; + } + } + if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1; + if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2; + return 0; +} + +/* +** Compare two ExprList objects. Return 0 if they are identical and +** non-zero if they differ in any way. +** +** This routine might return non-zero for equivalent ExprLists. The +** only consequence will be disabled optimizations. But this routine +** must never return 0 if the two ExprList objects are different, or +** a malfunction will result. +** +** Two NULL pointers are considered to be the same. But a NULL pointer +** always differs from a non-NULL pointer. +*/ +int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ + int i; + if( pA==0 && pB==0 ) return 0; + if( pA==0 || pB==0 ) return 1; + if( pA->nExpr!=pB->nExpr ) return 1; + for(i=0; inExpr; i++){ + Expr *pExprA = pA->a[i].pExpr; + Expr *pExprB = pB->a[i].pExpr; + if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; + if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; + } + return 0; +} + +/* +** Add a new element to the pAggInfo->aCol[] array. Return the index of +** the new element. Return a negative number if malloc fails. +*/ +static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ + int i; + pInfo->aCol = sqlite3ArrayAllocate( + db, + pInfo->aCol, + sizeof(pInfo->aCol[0]), + 3, + &pInfo->nColumn, + &pInfo->nColumnAlloc, + &i + ); + return i; +} + +/* +** Add a new element to the pAggInfo->aFunc[] array. Return the index of +** the new element. Return a negative number if malloc fails. +*/ +static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ + int i; + pInfo->aFunc = sqlite3ArrayAllocate( + db, + pInfo->aFunc, + sizeof(pInfo->aFunc[0]), + 3, + &pInfo->nFunc, + &pInfo->nFuncAlloc, + &i + ); + return i; +} + +/* +** This is the xExprCallback for a tree walker. It is used to +** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates +** for additional information. +*/ +static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ + int i; + NameContext *pNC = pWalker->u.pNC; + Parse *pParse = pNC->pParse; + SrcList *pSrcList = pNC->pSrcList; + AggInfo *pAggInfo = pNC->pAggInfo; + + switch( pExpr->op ){ + case TK_AGG_COLUMN: + case TK_COLUMN: { + testcase( pExpr->op==TK_AGG_COLUMN ); + testcase( pExpr->op==TK_COLUMN ); + /* Check to see if the column is in one of the tables in the FROM + ** clause of the aggregate query */ + if( ALWAYS(pSrcList!=0) ){ + struct SrcList_item *pItem = pSrcList->a; + for(i=0; inSrc; i++, pItem++){ + struct AggInfo_col *pCol; + assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); + if( pExpr->iTable==pItem->iCursor ){ + /* If we reach this point, it means that pExpr refers to a table + ** that is in the FROM clause of the aggregate query. + ** + ** Make an entry for the column in pAggInfo->aCol[] if there + ** is not an entry there already. + */ + int k; + pCol = pAggInfo->aCol; + for(k=0; knColumn; k++, pCol++){ + if( pCol->iTable==pExpr->iTable && + pCol->iColumn==pExpr->iColumn ){ + break; + } + } + if( (k>=pAggInfo->nColumn) + && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 + ){ + pCol = &pAggInfo->aCol[k]; + pCol->pTab = pExpr->pTab; + pCol->iTable = pExpr->iTable; + pCol->iColumn = pExpr->iColumn; + pCol->iMem = ++pParse->nMem; + pCol->iSorterColumn = -1; + pCol->pExpr = pExpr; + if( pAggInfo->pGroupBy ){ + int j, n; + ExprList *pGB = pAggInfo->pGroupBy; + struct ExprList_item *pTerm = pGB->a; + n = pGB->nExpr; + for(j=0; jpExpr; + if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && + pE->iColumn==pExpr->iColumn ){ + pCol->iSorterColumn = j; + break; + } + } + } + if( pCol->iSorterColumn<0 ){ + pCol->iSorterColumn = pAggInfo->nSortingColumn++; + } + } + /* There is now an entry for pExpr in pAggInfo->aCol[] (either + ** because it was there before or because we just created it). + ** Convert the pExpr to be a TK_AGG_COLUMN referring to that + ** pAggInfo->aCol[] entry. + */ + ExprSetIrreducible(pExpr); + pExpr->pAggInfo = pAggInfo; + pExpr->op = TK_AGG_COLUMN; + pExpr->iAgg = (i16)k; + break; + } /* endif pExpr->iTable==pItem->iCursor */ + } /* end loop over pSrcList */ + } + return WRC_Prune; + } + case TK_AGG_FUNCTION: { + /* The pNC->nDepth==0 test causes aggregate functions in subqueries + ** to be ignored */ + if( pNC->nDepth==0 ){ + /* Check to see if pExpr is a duplicate of another aggregate + ** function that is already in the pAggInfo structure + */ + struct AggInfo_func *pItem = pAggInfo->aFunc; + for(i=0; inFunc; i++, pItem++){ + if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ + break; + } + } + if( i>=pAggInfo->nFunc ){ + /* pExpr is original. Make a new entry in pAggInfo->aFunc[] + */ + u8 enc = ENC(pParse->db); + i = addAggInfoFunc(pParse->db, pAggInfo); + if( i>=0 ){ + assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); + pItem = &pAggInfo->aFunc[i]; + pItem->pExpr = pExpr; + pItem->iMem = ++pParse->nMem; + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + pItem->pFunc = sqlite3FindFunction(pParse->db, + pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), + pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); + if( pExpr->flags & EP_Distinct ){ + pItem->iDistinct = pParse->nTab++; + }else{ + pItem->iDistinct = -1; + } + } + } + /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry + */ + assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); + ExprSetIrreducible(pExpr); + pExpr->iAgg = (i16)i; + pExpr->pAggInfo = pAggInfo; + return WRC_Prune; + } + } + } + return WRC_Continue; +} +static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ + NameContext *pNC = pWalker->u.pNC; + if( pNC->nDepth==0 ){ + pNC->nDepth++; + sqlite3WalkSelect(pWalker, pSelect); + pNC->nDepth--; + return WRC_Prune; + }else{ + return WRC_Continue; + } +} + +/* +** Analyze the given expression looking for aggregate functions and +** for variables that need to be added to the pParse->aAgg[] array. +** Make additional entries to the pParse->aAgg[] array as necessary. +** +** This routine should only be called after the expression has been +** analyzed by sqlite3ResolveExprNames(). +*/ +void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ + Walker w; + w.xExprCallback = analyzeAggregate; + w.xSelectCallback = analyzeAggregatesInSelect; + w.u.pNC = pNC; + assert( pNC->pSrcList!=0 ); + sqlite3WalkExpr(&w, pExpr); +} + +/* +** Call sqlite3ExprAnalyzeAggregates() for every expression in an +** expression list. Return the number of errors. +** +** If an error is found, the analysis is cut short. +*/ +void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ + struct ExprList_item *pItem; + int i; + if( pList ){ + for(pItem=pList->a, i=0; inExpr; i++, pItem++){ + sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); + } + } +} + +/* +** Allocate a single new register for use to hold some intermediate result. +*/ +int sqlite3GetTempReg(Parse *pParse){ + if( pParse->nTempReg==0 ){ + return ++pParse->nMem; + } + return pParse->aTempReg[--pParse->nTempReg]; +} + +/* +** Deallocate a register, making available for reuse for some other +** purpose. +** +** If a register is currently being used by the column cache, then +** the dallocation is deferred until the column cache line that uses +** the register becomes stale. +*/ +void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ + if( iReg && pParse->nTempRegaTempReg) ){ + int i; + struct yColCache *p; + for(i=0, p=pParse->aColCache; iiReg==iReg ){ + p->tempReg = 1; + return; + } + } + pParse->aTempReg[pParse->nTempReg++] = iReg; + } +} + +/* +** Allocate or deallocate a block of nReg consecutive registers +*/ +int sqlite3GetTempRange(Parse *pParse, int nReg){ + int i, n; + i = pParse->iRangeReg; + n = pParse->nRangeReg; + if( nReg<=n ){ + assert( !usedAsColumnCache(pParse, i, i+n-1) ); + pParse->iRangeReg += nReg; + pParse->nRangeReg -= nReg; + }else{ + i = pParse->nMem+1; + pParse->nMem += nReg; + } + return i; +} +void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ + sqlite3ExprCacheRemove(pParse, iReg, nReg); + if( nReg>pParse->nRangeReg ){ + pParse->nRangeReg = nReg; + pParse->iRangeReg = iReg; + } +} diff --git a/src/fault.c b/src/fault.c new file mode 100644 index 0000000..c3028c4 --- /dev/null +++ b/src/fault.c @@ -0,0 +1,87 @@ +/* +** 2008 Jan 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains code to support the concept of "benign" +** malloc failures (when the xMalloc() or xRealloc() method of the +** sqlite3_mem_methods structure fails to allocate a block of memory +** and returns 0). +** +** Most malloc failures are non-benign. After they occur, SQLite +** abandons the current operation and returns an error code (usually +** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily +** fatal. For example, if a malloc fails while resizing a hash table, this +** is completely recoverable simply by not carrying out the resize. The +** hash table will continue to function normally. So a malloc failure +** during a hash table resize is a benign fault. +*/ + +#include "sqliteInt.h" + +#ifndef SQLITE_OMIT_BUILTIN_TEST + +/* +** Global variables. +*/ +typedef struct BenignMallocHooks BenignMallocHooks; +static SQLITE_WSD struct BenignMallocHooks { + void (*xBenignBegin)(void); + void (*xBenignEnd)(void); +} sqlite3Hooks = { 0, 0 }; + +/* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks +** structure. If writable static data is unsupported on the target, +** we have to locate the state vector at run-time. In the more common +** case where writable static data is supported, wsdHooks can refer directly +** to the "sqlite3Hooks" state vector declared above. +*/ +#ifdef SQLITE_OMIT_WSD +# define wsdHooksInit \ + BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks) +# define wsdHooks x[0] +#else +# define wsdHooksInit +# define wsdHooks sqlite3Hooks +#endif + + +/* +** Register hooks to call when sqlite3BeginBenignMalloc() and +** sqlite3EndBenignMalloc() are called, respectively. +*/ +void sqlite3BenignMallocHooks( + void (*xBenignBegin)(void), + void (*xBenignEnd)(void) +){ + wsdHooksInit; + wsdHooks.xBenignBegin = xBenignBegin; + wsdHooks.xBenignEnd = xBenignEnd; +} + +/* +** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that +** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc() +** indicates that subsequent malloc failures are non-benign. +*/ +void sqlite3BeginBenignMalloc(void){ + wsdHooksInit; + if( wsdHooks.xBenignBegin ){ + wsdHooks.xBenignBegin(); + } +} +void sqlite3EndBenignMalloc(void){ + wsdHooksInit; + if( wsdHooks.xBenignEnd ){ + wsdHooks.xBenignEnd(); + } +} + +#endif /* #ifndef SQLITE_OMIT_BUILTIN_TEST */ diff --git a/src/fkey.c b/src/fkey.c new file mode 100644 index 0000000..82e4cdc --- /dev/null +++ b/src/fkey.c @@ -0,0 +1,1219 @@ +/* +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used by the compiler to add foreign key +** support to compiled SQL statements. +*/ +#include "sqliteInt.h" + +#ifndef SQLITE_OMIT_FOREIGN_KEY +#ifndef SQLITE_OMIT_TRIGGER + +/* +** Deferred and Immediate FKs +** -------------------------- +** +** Foreign keys in SQLite come in two flavours: deferred and immediate. +** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT +** is returned and the current statement transaction rolled back. If a +** deferred foreign key constraint is violated, no action is taken +** immediately. However if the application attempts to commit the +** transaction before fixing the constraint violation, the attempt fails. +** +** Deferred constraints are implemented using a simple counter associated +** with the database handle. The counter is set to zero each time a +** database transaction is opened. Each time a statement is executed +** that causes a foreign key violation, the counter is incremented. Each +** time a statement is executed that removes an existing violation from +** the database, the counter is decremented. When the transaction is +** committed, the commit fails if the current value of the counter is +** greater than zero. This scheme has two big drawbacks: +** +** * When a commit fails due to a deferred foreign key constraint, +** there is no way to tell which foreign constraint is not satisfied, +** or which row it is not satisfied for. +** +** * If the database contains foreign key violations when the +** transaction is opened, this may cause the mechanism to malfunction. +** +** Despite these problems, this approach is adopted as it seems simpler +** than the alternatives. +** +** INSERT operations: +** +** I.1) For each FK for which the table is the child table, search +** the parent table for a match. If none is found increment the +** constraint counter. +** +** I.2) For each FK for which the table is the parent table, +** search the child table for rows that correspond to the new +** row in the parent table. Decrement the counter for each row +** found (as the constraint is now satisfied). +** +** DELETE operations: +** +** D.1) For each FK for which the table is the child table, +** search the parent table for a row that corresponds to the +** deleted row in the child table. If such a row is not found, +** decrement the counter. +** +** D.2) For each FK for which the table is the parent table, search +** the child table for rows that correspond to the deleted row +** in the parent table. For each found increment the counter. +** +** UPDATE operations: +** +** An UPDATE command requires that all 4 steps above are taken, but only +** for FK constraints for which the affected columns are actually +** modified (values must be compared at runtime). +** +** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. +** This simplifies the implementation a bit. +** +** For the purposes of immediate FK constraints, the OR REPLACE conflict +** resolution is considered to delete rows before the new row is inserted. +** If a delete caused by OR REPLACE violates an FK constraint, an exception +** is thrown, even if the FK constraint would be satisfied after the new +** row is inserted. +** +** Immediate constraints are usually handled similarly. The only difference +** is that the counter used is stored as part of each individual statement +** object (struct Vdbe). If, after the statement has run, its immediate +** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT +** and the statement transaction is rolled back. An exception is an INSERT +** statement that inserts a single row only (no triggers). In this case, +** instead of using a counter, an exception is thrown immediately if the +** INSERT violates a foreign key constraint. This is necessary as such +** an INSERT does not open a statement transaction. +** +** TODO: How should dropping a table be handled? How should renaming a +** table be handled? +** +** +** Query API Notes +** --------------- +** +** Before coding an UPDATE or DELETE row operation, the code-generator +** for those two operations needs to know whether or not the operation +** requires any FK processing and, if so, which columns of the original +** row are required by the FK processing VDBE code (i.e. if FKs were +** implemented using triggers, which of the old.* columns would be +** accessed). No information is required by the code-generator before +** coding an INSERT operation. The functions used by the UPDATE/DELETE +** generation code to query for this information are: +** +** sqlite3FkRequired() - Test to see if FK processing is required. +** sqlite3FkOldmask() - Query for the set of required old.* columns. +** +** +** Externally accessible module functions +** -------------------------------------- +** +** sqlite3FkCheck() - Check for foreign key violations. +** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. +** sqlite3FkDelete() - Delete an FKey structure. +*/ + +/* +** VDBE Calling Convention +** ----------------------- +** +** Example: +** +** For the following INSERT statement: +** +** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); +** INSERT INTO t1 VALUES(1, 2, 3.1); +** +** Register (x): 2 (type integer) +** Register (x+1): 1 (type integer) +** Register (x+2): NULL (type NULL) +** Register (x+3): 3.1 (type real) +*/ + +/* +** A foreign key constraint requires that the key columns in the parent +** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. +** Given that pParent is the parent table for foreign key constraint pFKey, +** search the schema a unique index on the parent key columns. +** +** If successful, zero is returned. If the parent key is an INTEGER PRIMARY +** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx +** is set to point to the unique index. +** +** If the parent key consists of a single column (the foreign key constraint +** is not a composite foreign key), output variable *paiCol is set to NULL. +** Otherwise, it is set to point to an allocated array of size N, where +** N is the number of columns in the parent key. The first element of the +** array is the index of the child table column that is mapped by the FK +** constraint to the parent table column stored in the left-most column +** of index *ppIdx. The second element of the array is the index of the +** child table column that corresponds to the second left-most column of +** *ppIdx, and so on. +** +** If the required index cannot be found, either because: +** +** 1) The named parent key columns do not exist, or +** +** 2) The named parent key columns do exist, but are not subject to a +** UNIQUE or PRIMARY KEY constraint, or +** +** 3) No parent key columns were provided explicitly as part of the +** foreign key definition, and the parent table does not have a +** PRIMARY KEY, or +** +** 4) No parent key columns were provided explicitly as part of the +** foreign key definition, and the PRIMARY KEY of the parent table +** consists of a a different number of columns to the child key in +** the child table. +** +** then non-zero is returned, and a "foreign key mismatch" error loaded +** into pParse. If an OOM error occurs, non-zero is returned and the +** pParse->db->mallocFailed flag is set. +*/ +static int locateFkeyIndex( + Parse *pParse, /* Parse context to store any error in */ + Table *pParent, /* Parent table of FK constraint pFKey */ + FKey *pFKey, /* Foreign key to find index for */ + Index **ppIdx, /* OUT: Unique index on parent table */ + int **paiCol /* OUT: Map of index columns in pFKey */ +){ + Index *pIdx = 0; /* Value to return via *ppIdx */ + int *aiCol = 0; /* Value to return via *paiCol */ + int nCol = pFKey->nCol; /* Number of columns in parent key */ + char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ + + /* The caller is responsible for zeroing output parameters. */ + assert( ppIdx && *ppIdx==0 ); + assert( !paiCol || *paiCol==0 ); + assert( pParse ); + + /* If this is a non-composite (single column) foreign key, check if it + ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx + ** and *paiCol set to zero and return early. + ** + ** Otherwise, for a composite foreign key (more than one column), allocate + ** space for the aiCol array (returned via output parameter *paiCol). + ** Non-composite foreign keys do not require the aiCol array. + */ + if( nCol==1 ){ + /* The FK maps to the IPK if any of the following are true: + ** + ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly + ** mapped to the primary key of table pParent, or + ** 2) The FK is explicitly mapped to a column declared as INTEGER + ** PRIMARY KEY. + */ + if( pParent->iPKey>=0 ){ + if( !zKey ) return 0; + if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; + } + }else if( paiCol ){ + assert( nCol>1 ); + aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); + if( !aiCol ) return 1; + *paiCol = aiCol; + } + + for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ + if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){ + /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number + ** of columns. If each indexed column corresponds to a foreign key + ** column of pFKey, then this index is a winner. */ + + if( zKey==0 ){ + /* If zKey is NULL, then this foreign key is implicitly mapped to + ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be + ** identified by the test (Index.autoIndex==2). */ + if( pIdx->autoIndex==2 ){ + if( aiCol ){ + int i; + for(i=0; iaCol[i].iFrom; + } + break; + } + }else{ + /* If zKey is non-NULL, then this foreign key was declared to + ** map to an explicit list of columns in table pParent. Check if this + ** index matches those columns. Also, check that the index uses + ** the default collation sequences for each column. */ + int i, j; + for(i=0; iaiColumn[i]; /* Index of column in parent tbl */ + char *zDfltColl; /* Def. collation for column */ + char *zIdxCol; /* Name of indexed column */ + + /* If the index uses a collation sequence that is different from + ** the default collation sequence for the column, this index is + ** unusable. Bail out early in this case. */ + zDfltColl = pParent->aCol[iCol].zColl; + if( !zDfltColl ){ + zDfltColl = "BINARY"; + } + if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; + + zIdxCol = pParent->aCol[iCol].zName; + for(j=0; jaCol[j].zCol, zIdxCol)==0 ){ + if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; + break; + } + } + if( j==nCol ) break; + } + if( i==nCol ) break; /* pIdx is usable */ + } + } + } + + if( !pIdx ){ + if( !pParse->disableTriggers ){ + sqlite3ErrorMsg(pParse, "foreign key mismatch"); + } + sqlite3DbFree(pParse->db, aiCol); + return 1; + } + + *ppIdx = pIdx; + return 0; +} + +/* +** This function is called when a row is inserted into or deleted from the +** child table of foreign key constraint pFKey. If an SQL UPDATE is executed +** on the child table of pFKey, this function is invoked twice for each row +** affected - once to "delete" the old row, and then again to "insert" the +** new row. +** +** Each time it is called, this function generates VDBE code to locate the +** row in the parent table that corresponds to the row being inserted into +** or deleted from the child table. If the parent row can be found, no +** special action is taken. Otherwise, if the parent row can *not* be +** found in the parent table: +** +** Operation | FK type | Action taken +** -------------------------------------------------------------------------- +** INSERT immediate Increment the "immediate constraint counter". +** +** DELETE immediate Decrement the "immediate constraint counter". +** +** INSERT deferred Increment the "deferred constraint counter". +** +** DELETE deferred Decrement the "deferred constraint counter". +** +** These operations are identified in the comment at the top of this file +** (fkey.c) as "I.1" and "D.1". +*/ +static void fkLookupParent( + Parse *pParse, /* Parse context */ + int iDb, /* Index of database housing pTab */ + Table *pTab, /* Parent table of FK pFKey */ + Index *pIdx, /* Unique index on parent key columns in pTab */ + FKey *pFKey, /* Foreign key constraint */ + int *aiCol, /* Map from parent key columns to child table columns */ + int regData, /* Address of array containing child table row */ + int nIncr, /* Increment constraint counter by this */ + int isIgnore /* If true, pretend pTab contains all NULL values */ +){ + int i; /* Iterator variable */ + Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ + int iCur = pParse->nTab - 1; /* Cursor number to use */ + int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ + + /* If nIncr is less than zero, then check at runtime if there are any + ** outstanding constraints to resolve. If there are not, there is no need + ** to check if deleting this row resolves any outstanding violations. + ** + ** Check if any of the key columns in the child table row are NULL. If + ** any are, then the constraint is considered satisfied. No need to + ** search for a matching row in the parent table. */ + if( nIncr<0 ){ + sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); + } + for(i=0; inCol; i++){ + int iReg = aiCol[i] + regData + 1; + sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); + } + + if( isIgnore==0 ){ + if( pIdx==0 ){ + /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY + ** column of the parent table (table pTab). */ + int iMustBeInt; /* Address of MustBeInt instruction */ + int regTemp = sqlite3GetTempReg(pParse); + + /* Invoke MustBeInt to coerce the child key value to an integer (i.e. + ** apply the affinity of the parent key). If this fails, then there + ** is no matching parent key. Before using MustBeInt, make a copy of + ** the value. Otherwise, the value inserted into the child key column + ** will have INTEGER affinity applied to it, which may not be correct. */ + sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); + iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); + + /* If the parent table is the same as the child table, and we are about + ** to increment the constraint-counter (i.e. this is an INSERT operation), + ** then check if the row being inserted matches itself. If so, do not + ** increment the constraint-counter. */ + if( pTab==pFKey->pFrom && nIncr==1 ){ + sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); + } + + sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); + sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); + sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); + sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); + sqlite3VdbeJumpHere(v, iMustBeInt); + sqlite3ReleaseTempReg(pParse, regTemp); + }else{ + int nCol = pFKey->nCol; + int regTemp = sqlite3GetTempRange(pParse, nCol); + int regRec = sqlite3GetTempReg(pParse); + KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); + + sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); + sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); + for(i=0; ipFrom && nIncr==1 ){ + int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; + for(i=0; iaiColumn[i]+1+regData; + assert( aiCol[i]!=pTab->iPKey ); + if( pIdx->aiColumn[i]==pTab->iPKey ){ + /* The parent key is a composite key that includes the IPK column */ + iParent = regData; + } + sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); + sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); + } + sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); + } + + sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); + sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT); + sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); + + sqlite3ReleaseTempReg(pParse, regRec); + sqlite3ReleaseTempRange(pParse, regTemp, nCol); + } + } + + if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ + /* Special case: If this is an INSERT statement that will insert exactly + ** one row into the table, raise a constraint immediately instead of + ** incrementing a counter. This is necessary as the VM code is being + ** generated for will not open a statement transaction. */ + assert( nIncr==1 ); + sqlite3HaltConstraint( + pParse, OE_Abort, "foreign key constraint failed", P4_STATIC + ); + }else{ + if( nIncr>0 && pFKey->isDeferred==0 ){ + sqlite3ParseToplevel(pParse)->mayAbort = 1; + } + sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); + } + + sqlite3VdbeResolveLabel(v, iOk); + sqlite3VdbeAddOp1(v, OP_Close, iCur); +} + +/* +** This function is called to generate code executed when a row is deleted +** from the parent table of foreign key constraint pFKey and, if pFKey is +** deferred, when a row is inserted into the same table. When generating +** code for an SQL UPDATE operation, this function may be called twice - +** once to "delete" the old row and once to "insert" the new row. +** +** The code generated by this function scans through the rows in the child +** table that correspond to the parent table row being deleted or inserted. +** For each child row found, one of the following actions is taken: +** +** Operation | FK type | Action taken +** -------------------------------------------------------------------------- +** DELETE immediate Increment the "immediate constraint counter". +** Or, if the ON (UPDATE|DELETE) action is RESTRICT, +** throw a "foreign key constraint failed" exception. +** +** INSERT immediate Decrement the "immediate constraint counter". +** +** DELETE deferred Increment the "deferred constraint counter". +** Or, if the ON (UPDATE|DELETE) action is RESTRICT, +** throw a "foreign key constraint failed" exception. +** +** INSERT deferred Decrement the "deferred constraint counter". +** +** These operations are identified in the comment at the top of this file +** (fkey.c) as "I.2" and "D.2". +*/ +static void fkScanChildren( + Parse *pParse, /* Parse context */ + SrcList *pSrc, /* SrcList containing the table to scan */ + Table *pTab, + Index *pIdx, /* Foreign key index */ + FKey *pFKey, /* Foreign key relationship */ + int *aiCol, /* Map from pIdx cols to child table cols */ + int regData, /* Referenced table data starts here */ + int nIncr /* Amount to increment deferred counter by */ +){ + sqlite3 *db = pParse->db; /* Database handle */ + int i; /* Iterator variable */ + Expr *pWhere = 0; /* WHERE clause to scan with */ + NameContext sNameContext; /* Context used to resolve WHERE clause */ + WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ + int iFkIfZero = 0; /* Address of OP_FkIfZero */ + Vdbe *v = sqlite3GetVdbe(pParse); + + assert( !pIdx || pIdx->pTable==pTab ); + + if( nIncr<0 ){ + iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); + } + + /* Create an Expr object representing an SQL expression like: + ** + ** = AND = ... + ** + ** The collation sequence used for the comparison should be that of + ** the parent key columns. The affinity of the parent key column should + ** be applied to each child key value before the comparison takes place. + */ + for(i=0; inCol; i++){ + Expr *pLeft; /* Value from parent table row */ + Expr *pRight; /* Column ref to child table */ + Expr *pEq; /* Expression (pLeft = pRight) */ + int iCol; /* Index of column in child table */ + const char *zCol; /* Name of column in child table */ + + pLeft = sqlite3Expr(db, TK_REGISTER, 0); + if( pLeft ){ + /* Set the collation sequence and affinity of the LHS of each TK_EQ + ** expression to the parent key column defaults. */ + if( pIdx ){ + Column *pCol; + iCol = pIdx->aiColumn[i]; + pCol = &pTab->aCol[iCol]; + if( pTab->iPKey==iCol ) iCol = -1; + pLeft->iTable = regData+iCol+1; + pLeft->affinity = pCol->affinity; + pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl); + }else{ + pLeft->iTable = regData; + pLeft->affinity = SQLITE_AFF_INTEGER; + } + } + iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; + assert( iCol>=0 ); + zCol = pFKey->pFrom->aCol[iCol].zName; + pRight = sqlite3Expr(db, TK_ID, zCol); + pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); + pWhere = sqlite3ExprAnd(db, pWhere, pEq); + } + + /* If the child table is the same as the parent table, and this scan + ** is taking place as part of a DELETE operation (operation D.2), omit the + ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE + ** clause, where $rowid is the rowid of the row being deleted. */ + if( pTab==pFKey->pFrom && nIncr>0 ){ + Expr *pEq; /* Expression (pLeft = pRight) */ + Expr *pLeft; /* Value from parent table row */ + Expr *pRight; /* Column ref to child table */ + pLeft = sqlite3Expr(db, TK_REGISTER, 0); + pRight = sqlite3Expr(db, TK_COLUMN, 0); + if( pLeft && pRight ){ + pLeft->iTable = regData; + pLeft->affinity = SQLITE_AFF_INTEGER; + pRight->iTable = pSrc->a[0].iCursor; + pRight->iColumn = -1; + } + pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); + pWhere = sqlite3ExprAnd(db, pWhere, pEq); + } + + /* Resolve the references in the WHERE clause. */ + memset(&sNameContext, 0, sizeof(NameContext)); + sNameContext.pSrcList = pSrc; + sNameContext.pParse = pParse; + sqlite3ResolveExprNames(&sNameContext, pWhere); + + /* Create VDBE to loop through the entries in pSrc that match the WHERE + ** clause. If the constraint is not deferred, throw an exception for + ** each row found. Otherwise, for deferred constraints, increment the + ** deferred constraint counter by nIncr for each row selected. */ + pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0); + if( nIncr>0 && pFKey->isDeferred==0 ){ + sqlite3ParseToplevel(pParse)->mayAbort = 1; + } + sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); + if( pWInfo ){ + sqlite3WhereEnd(pWInfo); + } + + /* Clean up the WHERE clause constructed above. */ + sqlite3ExprDelete(db, pWhere); + if( iFkIfZero ){ + sqlite3VdbeJumpHere(v, iFkIfZero); + } +} + +/* +** This function returns a pointer to the head of a linked list of FK +** constraints for which table pTab is the parent table. For example, +** given the following schema: +** +** CREATE TABLE t1(a PRIMARY KEY); +** CREATE TABLE t2(b REFERENCES t1(a); +** +** Calling this function with table "t1" as an argument returns a pointer +** to the FKey structure representing the foreign key constraint on table +** "t2". Calling this function with "t2" as the argument would return a +** NULL pointer (as there are no FK constraints for which t2 is the parent +** table). +*/ +FKey *sqlite3FkReferences(Table *pTab){ + int nName = sqlite3Strlen30(pTab->zName); + return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName); +} + +/* +** The second argument is a Trigger structure allocated by the +** fkActionTrigger() routine. This function deletes the Trigger structure +** and all of its sub-components. +** +** The Trigger structure or any of its sub-components may be allocated from +** the lookaside buffer belonging to database handle dbMem. +*/ +static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ + if( p ){ + TriggerStep *pStep = p->step_list; + sqlite3ExprDelete(dbMem, pStep->pWhere); + sqlite3ExprListDelete(dbMem, pStep->pExprList); + sqlite3SelectDelete(dbMem, pStep->pSelect); + sqlite3ExprDelete(dbMem, p->pWhen); + sqlite3DbFree(dbMem, p); + } +} + +/* +** This function is called to generate code that runs when table pTab is +** being dropped from the database. The SrcList passed as the second argument +** to this function contains a single entry guaranteed to resolve to +** table pTab. +** +** Normally, no code is required. However, if either +** +** (a) The table is the parent table of a FK constraint, or +** (b) The table is the child table of a deferred FK constraint and it is +** determined at runtime that there are outstanding deferred FK +** constraint violations in the database, +** +** then the equivalent of "DELETE FROM " is executed before dropping +** the table from the database. Triggers are disabled while running this +** DELETE, but foreign key actions are not. +*/ +void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ + sqlite3 *db = pParse->db; + if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ + int iSkip = 0; + Vdbe *v = sqlite3GetVdbe(pParse); + + assert( v ); /* VDBE has already been allocated */ + if( sqlite3FkReferences(pTab)==0 ){ + /* Search for a deferred foreign key constraint for which this table + ** is the child table. If one cannot be found, return without + ** generating any VDBE code. If one can be found, then jump over + ** the entire DELETE if there are no outstanding deferred constraints + ** when this statement is run. */ + FKey *p; + for(p=pTab->pFKey; p; p=p->pNextFrom){ + if( p->isDeferred ) break; + } + if( !p ) return; + iSkip = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); + } + + pParse->disableTriggers = 1; + sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); + pParse->disableTriggers = 0; + + /* If the DELETE has generated immediate foreign key constraint + ** violations, halt the VDBE and return an error at this point, before + ** any modifications to the schema are made. This is because statement + ** transactions are not able to rollback schema changes. */ + sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); + sqlite3HaltConstraint( + pParse, OE_Abort, "foreign key constraint failed", P4_STATIC + ); + + if( iSkip ){ + sqlite3VdbeResolveLabel(v, iSkip); + } + } +} + +/* +** This function is called when inserting, deleting or updating a row of +** table pTab to generate VDBE code to perform foreign key constraint +** processing for the operation. +** +** For a DELETE operation, parameter regOld is passed the index of the +** first register in an array of (pTab->nCol+1) registers containing the +** rowid of the row being deleted, followed by each of the column values +** of the row being deleted, from left to right. Parameter regNew is passed +** zero in this case. +** +** For an INSERT operation, regOld is passed zero and regNew is passed the +** first register of an array of (pTab->nCol+1) registers containing the new +** row data. +** +** For an UPDATE operation, this function is called twice. Once before +** the original record is deleted from the table using the calling convention +** described for DELETE. Then again after the original record is deleted +** but before the new record is inserted using the INSERT convention. +*/ +void sqlite3FkCheck( + Parse *pParse, /* Parse context */ + Table *pTab, /* Row is being deleted from this table */ + int regOld, /* Previous row data is stored here */ + int regNew /* New row data is stored here */ +){ + sqlite3 *db = pParse->db; /* Database handle */ + FKey *pFKey; /* Used to iterate through FKs */ + int iDb; /* Index of database containing pTab */ + const char *zDb; /* Name of database containing pTab */ + int isIgnoreErrors = pParse->disableTriggers; + + /* Exactly one of regOld and regNew should be non-zero. */ + assert( (regOld==0)!=(regNew==0) ); + + /* If foreign-keys are disabled, this function is a no-op. */ + if( (db->flags&SQLITE_ForeignKeys)==0 ) return; + + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + zDb = db->aDb[iDb].zName; + + /* Loop through all the foreign key constraints for which pTab is the + ** child table (the table that the foreign key definition is part of). */ + for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ + Table *pTo; /* Parent table of foreign key pFKey */ + Index *pIdx = 0; /* Index on key columns in pTo */ + int *aiFree = 0; + int *aiCol; + int iCol; + int i; + int isIgnore = 0; + + /* Find the parent table of this foreign key. Also find a unique index + ** on the parent key columns in the parent table. If either of these + ** schema items cannot be located, set an error in pParse and return + ** early. */ + if( pParse->disableTriggers ){ + pTo = sqlite3FindTable(db, pFKey->zTo, zDb); + }else{ + pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); + } + if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ + assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); + if( !isIgnoreErrors || db->mallocFailed ) return; + if( pTo==0 ){ + /* If isIgnoreErrors is true, then a table is being dropped. In this + ** case SQLite runs a "DELETE FROM xxx" on the table being dropped + ** before actually dropping it in order to check FK constraints. + ** If the parent table of an FK constraint on the current table is + ** missing, behave as if it is empty. i.e. decrement the relevant + ** FK counter for each row of the current table with non-NULL keys. + */ + Vdbe *v = sqlite3GetVdbe(pParse); + int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; + for(i=0; inCol; i++){ + int iReg = pFKey->aCol[i].iFrom + regOld + 1; + sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); + } + sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); + } + continue; + } + assert( pFKey->nCol==1 || (aiFree && pIdx) ); + + if( aiFree ){ + aiCol = aiFree; + }else{ + iCol = pFKey->aCol[0].iFrom; + aiCol = &iCol; + } + for(i=0; inCol; i++){ + if( aiCol[i]==pTab->iPKey ){ + aiCol[i] = -1; + } +#ifndef SQLITE_OMIT_AUTHORIZATION + /* Request permission to read the parent key columns. If the + ** authorization callback returns SQLITE_IGNORE, behave as if any + ** values read from the parent table are NULL. */ + if( db->xAuth ){ + int rcauth; + char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; + rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); + isIgnore = (rcauth==SQLITE_IGNORE); + } +#endif + } + + /* Take a shared-cache advisory read-lock on the parent table. Allocate + ** a cursor to use to search the unique index on the parent key columns + ** in the parent table. */ + sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); + pParse->nTab++; + + if( regOld!=0 ){ + /* A row is being removed from the child table. Search for the parent. + ** If the parent does not exist, removing the child row resolves an + ** outstanding foreign key constraint violation. */ + fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore); + } + if( regNew!=0 ){ + /* A row is being added to the child table. If a parent row cannot + ** be found, adding the child row has violated the FK constraint. */ + fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore); + } + + sqlite3DbFree(db, aiFree); + } + + /* Loop through all the foreign key constraints that refer to this table */ + for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ + Index *pIdx = 0; /* Foreign key index for pFKey */ + SrcList *pSrc; + int *aiCol = 0; + + if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ + assert( regOld==0 && regNew!=0 ); + /* Inserting a single row into a parent table cannot cause an immediate + ** foreign key violation. So do nothing in this case. */ + continue; + } + + if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ + if( !isIgnoreErrors || db->mallocFailed ) return; + continue; + } + assert( aiCol || pFKey->nCol==1 ); + + /* Create a SrcList structure containing a single table (the table + ** the foreign key that refers to this table is attached to). This + ** is required for the sqlite3WhereXXX() interface. */ + pSrc = sqlite3SrcListAppend(db, 0, 0, 0); + if( pSrc ){ + struct SrcList_item *pItem = pSrc->a; + pItem->pTab = pFKey->pFrom; + pItem->zName = pFKey->pFrom->zName; + pItem->pTab->nRef++; + pItem->iCursor = pParse->nTab++; + + if( regNew!=0 ){ + fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); + } + if( regOld!=0 ){ + /* If there is a RESTRICT action configured for the current operation + ** on the parent table of this FK, then throw an exception + ** immediately if the FK constraint is violated, even if this is a + ** deferred trigger. That's what RESTRICT means. To defer checking + ** the constraint, the FK should specify NO ACTION (represented + ** using OE_None). NO ACTION is the default. */ + fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); + } + pItem->zName = 0; + sqlite3SrcListDelete(db, pSrc); + } + sqlite3DbFree(db, aiCol); + } +} + +#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) + +/* +** This function is called before generating code to update or delete a +** row contained in table pTab. +*/ +u32 sqlite3FkOldmask( + Parse *pParse, /* Parse context */ + Table *pTab /* Table being modified */ +){ + u32 mask = 0; + if( pParse->db->flags&SQLITE_ForeignKeys ){ + FKey *p; + int i; + for(p=pTab->pFKey; p; p=p->pNextFrom){ + for(i=0; inCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); + } + for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ + Index *pIdx = 0; + locateFkeyIndex(pParse, pTab, p, &pIdx, 0); + if( pIdx ){ + for(i=0; inColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); + } + } + } + return mask; +} + +/* +** This function is called before generating code to update or delete a +** row contained in table pTab. If the operation is a DELETE, then +** parameter aChange is passed a NULL value. For an UPDATE, aChange points +** to an array of size N, where N is the number of columns in table pTab. +** If the i'th column is not modified by the UPDATE, then the corresponding +** entry in the aChange[] array is set to -1. If the column is modified, +** the value is 0 or greater. Parameter chngRowid is set to true if the +** UPDATE statement modifies the rowid fields of the table. +** +** If any foreign key processing will be required, this function returns +** true. If there is no foreign key related processing, this function +** returns false. +*/ +int sqlite3FkRequired( + Parse *pParse, /* Parse context */ + Table *pTab, /* Table being modified */ + int *aChange, /* Non-NULL for UPDATE operations */ + int chngRowid /* True for UPDATE that affects rowid */ +){ + if( pParse->db->flags&SQLITE_ForeignKeys ){ + if( !aChange ){ + /* A DELETE operation. Foreign key processing is required if the + ** table in question is either the child or parent table for any + ** foreign key constraint. */ + return (sqlite3FkReferences(pTab) || pTab->pFKey); + }else{ + /* This is an UPDATE. Foreign key processing is only required if the + ** operation modifies one or more child or parent key columns. */ + int i; + FKey *p; + + /* Check if any child key columns are being modified. */ + for(p=pTab->pFKey; p; p=p->pNextFrom){ + for(i=0; inCol; i++){ + int iChildKey = p->aCol[i].iFrom; + if( aChange[iChildKey]>=0 ) return 1; + if( iChildKey==pTab->iPKey && chngRowid ) return 1; + } + } + + /* Check if any parent key columns are being modified. */ + for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ + for(i=0; inCol; i++){ + char *zKey = p->aCol[i].zCol; + int iKey; + for(iKey=0; iKeynCol; iKey++){ + Column *pCol = &pTab->aCol[iKey]; + if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){ + if( aChange[iKey]>=0 ) return 1; + if( iKey==pTab->iPKey && chngRowid ) return 1; + } + } + } + } + } + } + return 0; +} + +/* +** This function is called when an UPDATE or DELETE operation is being +** compiled on table pTab, which is the parent table of foreign-key pFKey. +** If the current operation is an UPDATE, then the pChanges parameter is +** passed a pointer to the list of columns being modified. If it is a +** DELETE, pChanges is passed a NULL pointer. +** +** It returns a pointer to a Trigger structure containing a trigger +** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. +** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is +** returned (these actions require no special handling by the triggers +** sub-system, code for them is created by fkScanChildren()). +** +** For example, if pFKey is the foreign key and pTab is table "p" in +** the following schema: +** +** CREATE TABLE p(pk PRIMARY KEY); +** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); +** +** then the returned trigger structure is equivalent to: +** +** CREATE TRIGGER ... DELETE ON p BEGIN +** DELETE FROM c WHERE ck = old.pk; +** END; +** +** The returned pointer is cached as part of the foreign key object. It +** is eventually freed along with the rest of the foreign key object by +** sqlite3FkDelete(). +*/ +static Trigger *fkActionTrigger( + Parse *pParse, /* Parse context */ + Table *pTab, /* Table being updated or deleted from */ + FKey *pFKey, /* Foreign key to get action for */ + ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ +){ + sqlite3 *db = pParse->db; /* Database handle */ + int action; /* One of OE_None, OE_Cascade etc. */ + Trigger *pTrigger; /* Trigger definition to return */ + int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ + + action = pFKey->aAction[iAction]; + pTrigger = pFKey->apTrigger[iAction]; + + if( action!=OE_None && !pTrigger ){ + u8 enableLookaside; /* Copy of db->lookaside.bEnabled */ + char const *zFrom; /* Name of child table */ + int nFrom; /* Length in bytes of zFrom */ + Index *pIdx = 0; /* Parent key index for this FK */ + int *aiCol = 0; /* child table cols -> parent key cols */ + TriggerStep *pStep = 0; /* First (only) step of trigger program */ + Expr *pWhere = 0; /* WHERE clause of trigger step */ + ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ + Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ + int i; /* Iterator variable */ + Expr *pWhen = 0; /* WHEN clause for the trigger */ + + if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; + assert( aiCol || pFKey->nCol==1 ); + + for(i=0; inCol; i++){ + Token tOld = { "old", 3 }; /* Literal "old" token */ + Token tNew = { "new", 3 }; /* Literal "new" token */ + Token tFromCol; /* Name of column in child table */ + Token tToCol; /* Name of column in parent table */ + int iFromCol; /* Idx of column in child table */ + Expr *pEq; /* tFromCol = OLD.tToCol */ + + iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; + assert( iFromCol>=0 ); + tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid"; + tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; + + tToCol.n = sqlite3Strlen30(tToCol.z); + tFromCol.n = sqlite3Strlen30(tFromCol.z); + + /* Create the expression "OLD.zToCol = zFromCol". It is important + ** that the "OLD.zToCol" term is on the LHS of the = operator, so + ** that the affinity and collation sequence associated with the + ** parent table are used for the comparison. */ + pEq = sqlite3PExpr(pParse, TK_EQ, + sqlite3PExpr(pParse, TK_DOT, + sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), + sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) + , 0), + sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol) + , 0); + pWhere = sqlite3ExprAnd(db, pWhere, pEq); + + /* For ON UPDATE, construct the next term of the WHEN clause. + ** The final WHEN clause will be like this: + ** + ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) + */ + if( pChanges ){ + pEq = sqlite3PExpr(pParse, TK_IS, + sqlite3PExpr(pParse, TK_DOT, + sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), + sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), + 0), + sqlite3PExpr(pParse, TK_DOT, + sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), + sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), + 0), + 0); + pWhen = sqlite3ExprAnd(db, pWhen, pEq); + } + + if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ + Expr *pNew; + if( action==OE_Cascade ){ + pNew = sqlite3PExpr(pParse, TK_DOT, + sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), + sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) + , 0); + }else if( action==OE_SetDflt ){ + Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; + if( pDflt ){ + pNew = sqlite3ExprDup(db, pDflt, 0); + }else{ + pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); + } + }else{ + pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); + } + pList = sqlite3ExprListAppend(pParse, pList, pNew); + sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); + } + } + sqlite3DbFree(db, aiCol); + + zFrom = pFKey->pFrom->zName; + nFrom = sqlite3Strlen30(zFrom); + + if( action==OE_Restrict ){ + Token tFrom; + Expr *pRaise; + + tFrom.z = zFrom; + tFrom.n = nFrom; + pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed"); + if( pRaise ){ + pRaise->affinity = OE_Abort; + } + pSelect = sqlite3SelectNew(pParse, + sqlite3ExprListAppend(pParse, 0, pRaise), + sqlite3SrcListAppend(db, 0, &tFrom, 0), + pWhere, + 0, 0, 0, 0, 0, 0 + ); + pWhere = 0; + } + + /* Disable lookaside memory allocation */ + enableLookaside = db->lookaside.bEnabled; + db->lookaside.bEnabled = 0; + + pTrigger = (Trigger *)sqlite3DbMallocZero(db, + sizeof(Trigger) + /* struct Trigger */ + sizeof(TriggerStep) + /* Single step in trigger program */ + nFrom + 1 /* Space for pStep->target.z */ + ); + if( pTrigger ){ + pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; + pStep->target.z = (char *)&pStep[1]; + pStep->target.n = nFrom; + memcpy((char *)pStep->target.z, zFrom, nFrom); + + pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); + pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); + pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); + if( pWhen ){ + pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); + pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); + } + } + + /* Re-enable the lookaside buffer, if it was disabled earlier. */ + db->lookaside.bEnabled = enableLookaside; + + sqlite3ExprDelete(db, pWhere); + sqlite3ExprDelete(db, pWhen); + sqlite3ExprListDelete(db, pList); + sqlite3SelectDelete(db, pSelect); + if( db->mallocFailed==1 ){ + fkTriggerDelete(db, pTrigger); + return 0; + } + assert( pStep!=0 ); + + switch( action ){ + case OE_Restrict: + pStep->op = TK_SELECT; + break; + case OE_Cascade: + if( !pChanges ){ + pStep->op = TK_DELETE; + break; + } + default: + pStep->op = TK_UPDATE; + } + pStep->pTrig = pTrigger; + pTrigger->pSchema = pTab->pSchema; + pTrigger->pTabSchema = pTab->pSchema; + pFKey->apTrigger[iAction] = pTrigger; + pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); + } + + return pTrigger; +} + +/* +** This function is called when deleting or updating a row to implement +** any required CASCADE, SET NULL or SET DEFAULT actions. +*/ +void sqlite3FkActions( + Parse *pParse, /* Parse context */ + Table *pTab, /* Table being updated or deleted from */ + ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ + int regOld /* Address of array containing old row */ +){ + /* If foreign-key support is enabled, iterate through all FKs that + ** refer to table pTab. If there is an action associated with the FK + ** for this operation (either update or delete), invoke the associated + ** trigger sub-program. */ + if( pParse->db->flags&SQLITE_ForeignKeys ){ + FKey *pFKey; /* Iterator variable */ + for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ + Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges); + if( pAction ){ + sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0); + } + } + } +} + +#endif /* ifndef SQLITE_OMIT_TRIGGER */ + +/* +** Free all memory associated with foreign key definitions attached to +** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash +** hash table. +*/ +void sqlite3FkDelete(sqlite3 *db, Table *pTab){ + FKey *pFKey; /* Iterator variable */ + FKey *pNext; /* Copy of pFKey->pNextFrom */ + + assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); + for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ + + /* Remove the FK from the fkeyHash hash table. */ + if( !db || db->pnBytesFreed==0 ){ + if( pFKey->pPrevTo ){ + pFKey->pPrevTo->pNextTo = pFKey->pNextTo; + }else{ + void *p = (void *)pFKey->pNextTo; + const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); + sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p); + } + if( pFKey->pNextTo ){ + pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; + } + } + + /* EV: R-30323-21917 Each foreign key constraint in SQLite is + ** classified as either immediate or deferred. + */ + assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); + + /* Delete any triggers created to implement actions for this FK. */ +#ifndef SQLITE_OMIT_TRIGGER + fkTriggerDelete(db, pFKey->apTrigger[0]); + fkTriggerDelete(db, pFKey->apTrigger[1]); +#endif + + pNext = pFKey->pNextFrom; + sqlite3DbFree(db, pFKey); + } +} +#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ diff --git a/src/func.c b/src/func.c new file mode 100644 index 0000000..10b61df --- /dev/null +++ b/src/func.c @@ -0,0 +1,1611 @@ +/* +** 2002 February 23 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement various SQL +** functions of SQLite. +** +** There is only one exported symbol in this file - the function +** sqliteRegisterBuildinFunctions() found at the bottom of the file. +** All other code has file scope. +*/ +#include "sqliteInt.h" +#include +#include +#include "vdbeInt.h" + +/* +** Return the collating function associated with a function. +*/ +static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ + return context->pColl; +} + +/* +** Implementation of the non-aggregate min() and max() functions +*/ +static void minmaxFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i; + int mask; /* 0 for min() or 0xffffffff for max() */ + int iBest; + CollSeq *pColl; + + assert( argc>1 ); + mask = sqlite3_user_data(context)==0 ? 0 : -1; + pColl = sqlite3GetFuncCollSeq(context); + assert( pColl ); + assert( mask==-1 || mask==0 ); + iBest = 0; + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + for(i=1; i=0 ){ + testcase( mask==0 ); + iBest = i; + } + } + sqlite3_result_value(context, argv[iBest]); +} + +/* +** Return the type of the argument. +*/ +static void typeofFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **argv +){ + const char *z = 0; + UNUSED_PARAMETER(NotUsed); + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_INTEGER: z = "integer"; break; + case SQLITE_TEXT: z = "text"; break; + case SQLITE_FLOAT: z = "real"; break; + case SQLITE_BLOB: z = "blob"; break; + default: z = "null"; break; + } + sqlite3_result_text(context, z, -1, SQLITE_STATIC); +} + + +/* +** Implementation of the length() function +*/ +static void lengthFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int len; + + assert( argc==1 ); + UNUSED_PARAMETER(argc); + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_BLOB: + case SQLITE_INTEGER: + case SQLITE_FLOAT: { + sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); + break; + } + case SQLITE_TEXT: { + const unsigned char *z = sqlite3_value_text(argv[0]); + if( z==0 ) return; + len = 0; + while( *z ){ + len++; + SQLITE_SKIP_UTF8(z); + } + sqlite3_result_int(context, len); + break; + } + default: { + sqlite3_result_null(context); + break; + } + } +} + +/* +** Implementation of the abs() function. +** +** IMP: R-23979-26855 The abs(X) function returns the absolute value of +** the numeric argument X. +*/ +static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + assert( argc==1 ); + UNUSED_PARAMETER(argc); + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_INTEGER: { + i64 iVal = sqlite3_value_int64(argv[0]); + if( iVal<0 ){ + if( (iVal<<1)==0 ){ + /* IMP: R-35460-15084 If X is the integer -9223372036854775807 then + ** abs(X) throws an integer overflow error since there is no + ** equivalent positive 64-bit two complement value. */ + sqlite3_result_error(context, "integer overflow", -1); + return; + } + iVal = -iVal; + } + sqlite3_result_int64(context, iVal); + break; + } + case SQLITE_NULL: { + /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ + sqlite3_result_null(context); + break; + } + default: { + /* Because sqlite3_value_double() returns 0.0 if the argument is not + ** something that can be converted into a number, we have: + ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that + ** cannot be converted to a numeric value. + */ + double rVal = sqlite3_value_double(argv[0]); + if( rVal<0 ) rVal = -rVal; + sqlite3_result_double(context, rVal); + break; + } + } +} + +/* +** Implementation of the substr() function. +** +** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. +** p1 is 1-indexed. So substr(x,1,1) returns the first character +** of x. If x is text, then we actually count UTF-8 characters. +** If x is a blob, then we count bytes. +** +** If p1 is negative, then we begin abs(p1) from the end of x[]. +** +** If p2 is negative, return the p2 characters preceeding p1. +*/ +static void substrFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *z; + const unsigned char *z2; + int len; + int p0type; + i64 p1, p2; + int negP2 = 0; + + assert( argc==3 || argc==2 ); + if( sqlite3_value_type(argv[1])==SQLITE_NULL + || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL) + ){ + return; + } + p0type = sqlite3_value_type(argv[0]); + p1 = sqlite3_value_int(argv[1]); + if( p0type==SQLITE_BLOB ){ + len = sqlite3_value_bytes(argv[0]); + z = sqlite3_value_blob(argv[0]); + if( z==0 ) return; + assert( len==sqlite3_value_bytes(argv[0]) ); + }else{ + z = sqlite3_value_text(argv[0]); + if( z==0 ) return; + len = 0; + if( p1<0 ){ + for(z2=z; *z2; len++){ + SQLITE_SKIP_UTF8(z2); + } + } + } + if( argc==3 ){ + p2 = sqlite3_value_int(argv[2]); + if( p2<0 ){ + p2 = -p2; + negP2 = 1; + } + }else{ + p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH]; + } + if( p1<0 ){ + p1 += len; + if( p1<0 ){ + p2 += p1; + if( p2<0 ) p2 = 0; + p1 = 0; + } + }else if( p1>0 ){ + p1--; + }else if( p2>0 ){ + p2--; + } + if( negP2 ){ + p1 -= p2; + if( p1<0 ){ + p2 += p1; + p1 = 0; + } + } + assert( p1>=0 && p2>=0 ); + if( p0type!=SQLITE_BLOB ){ + while( *z && p1 ){ + SQLITE_SKIP_UTF8(z); + p1--; + } + for(z2=z; *z2 && p2; p2--){ + SQLITE_SKIP_UTF8(z2); + } + sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT); + }else{ + if( p1+p2>len ){ + p2 = len-p1; + if( p2<0 ) p2 = 0; + } + sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT); + } +} + +/* +** Implementation of the round() function +*/ +#ifndef SQLITE_OMIT_FLOATING_POINT +static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + int n = 0; + double r; + char *zBuf; + assert( argc==1 || argc==2 ); + if( argc==2 ){ + if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; + n = sqlite3_value_int(argv[1]); + if( n>30 ) n = 30; + if( n<0 ) n = 0; + } + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + r = sqlite3_value_double(argv[0]); + /* If Y==0 and X will fit in a 64-bit int, + ** handle the rounding directly, + ** otherwise use printf. + */ + if( n==0 && r>=0 && r0 ); + testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); + testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); + if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ + sqlite3_result_error_toobig(context); + z = 0; + }else{ + z = sqlite3Malloc((int)nByte); + if( !z ){ + sqlite3_result_error_nomem(context); + } + } + return z; +} + +/* +** Implementation of the upper() and lower() SQL functions. +*/ +static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + char *z1; + const char *z2; + int i, n; + UNUSED_PARAMETER(argc); + z2 = (char*)sqlite3_value_text(argv[0]); + n = sqlite3_value_bytes(argv[0]); + /* Verify that the call to _bytes() does not invalidate the _text() pointer */ + assert( z2==(char*)sqlite3_value_text(argv[0]) ); + if( z2 ){ + z1 = contextMalloc(context, ((i64)n)+1); + if( z1 ){ + for(i=0; imatchOne; + u8 matchAll = pInfo->matchAll; + u8 matchSet = pInfo->matchSet; + u8 noCase = pInfo->noCase; + int prevEscape = 0; /* True if the previous character was 'escape' */ + + while( (c = sqlite3Utf8Read(zPattern,&zPattern))!=0 ){ + if( !prevEscape && c==matchAll ){ + while( (c=sqlite3Utf8Read(zPattern,&zPattern)) == matchAll + || c == matchOne ){ + if( c==matchOne && sqlite3Utf8Read(zString, &zString)==0 ){ + return 0; + } + } + if( c==0 ){ + return 1; + }else if( c==esc ){ + c = sqlite3Utf8Read(zPattern, &zPattern); + if( c==0 ){ + return 0; + } + }else if( c==matchSet ){ + assert( esc==0 ); /* This is GLOB, not LIKE */ + assert( matchSet<0x80 ); /* '[' is a single-byte character */ + while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){ + SQLITE_SKIP_UTF8(zString); + } + return *zString!=0; + } + while( (c2 = sqlite3Utf8Read(zString,&zString))!=0 ){ + if( noCase ){ + GlogUpperToLower(c2); + GlogUpperToLower(c); + while( c2 != 0 && c2 != c ){ + c2 = sqlite3Utf8Read(zString, &zString); + GlogUpperToLower(c2); + } + }else{ + while( c2 != 0 && c2 != c ){ + c2 = sqlite3Utf8Read(zString, &zString); + } + } + if( c2==0 ) return 0; + if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; + } + return 0; + }else if( !prevEscape && c==matchOne ){ + if( sqlite3Utf8Read(zString, &zString)==0 ){ + return 0; + } + }else if( c==matchSet ){ + u32 prior_c = 0; + assert( esc==0 ); /* This only occurs for GLOB, not LIKE */ + seen = 0; + invert = 0; + c = sqlite3Utf8Read(zString, &zString); + if( c==0 ) return 0; + c2 = sqlite3Utf8Read(zPattern, &zPattern); + if( c2=='^' ){ + invert = 1; + c2 = sqlite3Utf8Read(zPattern, &zPattern); + } + if( c2==']' ){ + if( c==']' ) seen = 1; + c2 = sqlite3Utf8Read(zPattern, &zPattern); + } + while( c2 && c2!=']' ){ + if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ + c2 = sqlite3Utf8Read(zPattern, &zPattern); + if( c>=prior_c && c<=c2 ) seen = 1; + prior_c = 0; + }else{ + if( c==c2 ){ + seen = 1; + } + prior_c = c2; + } + c2 = sqlite3Utf8Read(zPattern, &zPattern); + } + if( c2==0 || (seen ^ invert)==0 ){ + return 0; + } + }else if( esc==c && !prevEscape ){ + prevEscape = 1; + }else{ + c2 = sqlite3Utf8Read(zString, &zString); + if( noCase ){ + GlogUpperToLower(c); + GlogUpperToLower(c2); + } + if( c!=c2 ){ + return 0; + } + prevEscape = 0; + } + } + return *zString==0; +} + +/* +** Count the number of times that the LIKE operator (or GLOB which is +** just a variation of LIKE) gets called. This is used for testing +** only. +*/ +#ifdef SQLITE_TEST +int sqlite3_like_count = 0; +#endif + + +/* +** Implementation of the like() SQL function. This function implements +** the build-in LIKE operator. The first argument to the function is the +** pattern and the second argument is the string. So, the SQL statements: +** +** A LIKE B +** +** is implemented as like(B,A). +** +** This same function (with a different compareInfo structure) computes +** the GLOB operator. +*/ +static void likeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *zA, *zB; + u32 escape = 0; + int nPat; + sqlite3 *db = sqlite3_context_db_handle(context); + + zB = sqlite3_value_text(argv[0]); + zA = sqlite3_value_text(argv[1]); + + /* Limit the length of the LIKE or GLOB pattern to avoid problems + ** of deep recursion and N*N behavior in patternCompare(). + */ + nPat = sqlite3_value_bytes(argv[0]); + testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ); + testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 ); + if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){ + sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); + return; + } + assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */ + + if( argc==3 ){ + /* The escape character string must consist of a single UTF-8 character. + ** Otherwise, return an error. + */ + const unsigned char *zEsc = sqlite3_value_text(argv[2]); + if( zEsc==0 ) return; + if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ + sqlite3_result_error(context, + "ESCAPE expression must be a single character", -1); + return; + } + escape = sqlite3Utf8Read(zEsc, &zEsc); + } + if( zA && zB ){ + struct compareInfo *pInfo = sqlite3_user_data(context); +#ifdef SQLITE_TEST + sqlite3_like_count++; +#endif + + sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)); + } +} + +/* +** Implementation of the NULLIF(x,y) function. The result is the first +** argument if the arguments are different. The result is NULL if the +** arguments are equal to each other. +*/ +static void nullifFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **argv +){ + CollSeq *pColl = sqlite3GetFuncCollSeq(context); + UNUSED_PARAMETER(NotUsed); + if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ + sqlite3_result_value(context, argv[0]); + } +} + +/* +** Implementation of the sqlite_version() function. The result is the version +** of the SQLite library that is running. +*/ +static void versionFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **NotUsed2 +){ + UNUSED_PARAMETER2(NotUsed, NotUsed2); + /* IMP: R-48699-48617 This function is an SQL wrapper around the + ** sqlite3_libversion() C-interface. */ + sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC); +} + +/* +** Implementation of the sqlite_source_id() function. The result is a string +** that identifies the particular version of the source code used to build +** SQLite. +*/ +static void sourceidFunc( + sqlite3_context *context, + int NotUsed, + sqlite3_value **NotUsed2 +){ + UNUSED_PARAMETER2(NotUsed, NotUsed2); + /* IMP: R-24470-31136 This function is an SQL wrapper around the + ** sqlite3_sourceid() C interface. */ + sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); +} + +/* +** Implementation of the sqlite_log() function. This is a wrapper around +** sqlite3_log(). The return value is NULL. The function exists purely for +** its side-effects. +*/ +static void errlogFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + UNUSED_PARAMETER(argc); + UNUSED_PARAMETER(context); + sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1])); +} + +/* +** Implementation of the sqlite_compileoption_used() function. +** The result is an integer that identifies if the compiler option +** was used to build SQLite. +*/ +#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS +static void compileoptionusedFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const char *zOptName; + assert( argc==1 ); + UNUSED_PARAMETER(argc); + /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL + ** function is a wrapper around the sqlite3_compileoption_used() C/C++ + ** function. + */ + if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){ + sqlite3_result_int(context, sqlite3_compileoption_used(zOptName)); + } +} +#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ + +/* +** Implementation of the sqlite_compileoption_get() function. +** The result is a string that identifies the compiler options +** used to build SQLite. +*/ +#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS +static void compileoptiongetFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int n; + assert( argc==1 ); + UNUSED_PARAMETER(argc); + /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function + ** is a wrapper around the sqlite3_compileoption_get() C/C++ function. + */ + n = sqlite3_value_int(argv[0]); + sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC); +} +#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ + +/* Array for converting from half-bytes (nybbles) into ASCII hex +** digits. */ +static const char hexdigits[] = { + '0', '1', '2', '3', '4', '5', '6', '7', + '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' +}; + +/* +** EXPERIMENTAL - This is not an official function. The interface may +** change. This function may disappear. Do not write code that depends +** on this function. +** +** Implementation of the QUOTE() function. This function takes a single +** argument. If the argument is numeric, the return value is the same as +** the argument. If the argument is NULL, the return value is the string +** "NULL". Otherwise, the argument is enclosed in single quotes with +** single-quote escapes. +*/ +static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + assert( argc==1 ); + UNUSED_PARAMETER(argc); + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_INTEGER: + case SQLITE_FLOAT: { + sqlite3_result_value(context, argv[0]); + break; + } + case SQLITE_BLOB: { + char *zText = 0; + char const *zBlob = sqlite3_value_blob(argv[0]); + int nBlob = sqlite3_value_bytes(argv[0]); + assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ + zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4); + if( zText ){ + int i; + for(i=0; i>4)&0x0F]; + zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; + } + zText[(nBlob*2)+2] = '\''; + zText[(nBlob*2)+3] = '\0'; + zText[0] = 'X'; + zText[1] = '\''; + sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); + sqlite3_free(zText); + } + break; + } + case SQLITE_TEXT: { + int i,j; + u64 n; + const unsigned char *zArg = sqlite3_value_text(argv[0]); + char *z; + + if( zArg==0 ) return; + for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; } + z = contextMalloc(context, ((i64)i)+((i64)n)+3); + if( z ){ + z[0] = '\''; + for(i=0, j=1; zArg[i]; i++){ + z[j++] = zArg[i]; + if( zArg[i]=='\'' ){ + z[j++] = '\''; + } + } + z[j++] = '\''; + z[j] = 0; + sqlite3_result_text(context, z, j, sqlite3_free); + } + break; + } + default: { + assert( sqlite3_value_type(argv[0])==SQLITE_NULL ); + sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); + break; + } + } +} + +/* +** The hex() function. Interpret the argument as a blob. Return +** a hexadecimal rendering as text. +*/ +static void hexFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i, n; + const unsigned char *pBlob; + char *zHex, *z; + assert( argc==1 ); + UNUSED_PARAMETER(argc); + pBlob = sqlite3_value_blob(argv[0]); + n = sqlite3_value_bytes(argv[0]); + assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ + z = zHex = contextMalloc(context, ((i64)n)*2 + 1); + if( zHex ){ + for(i=0; i>4)&0xf]; + *(z++) = hexdigits[c&0xf]; + } + *z = 0; + sqlite3_result_text(context, zHex, n*2, sqlite3_free); + } +} + +/* +** The zeroblob(N) function returns a zero-filled blob of size N bytes. +*/ +static void zeroblobFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + i64 n; + sqlite3 *db = sqlite3_context_db_handle(context); + assert( argc==1 ); + UNUSED_PARAMETER(argc); + n = sqlite3_value_int64(argv[0]); + testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH] ); + testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); + if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){ + sqlite3_result_error_toobig(context); + }else{ + sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */ + } +} + +/* +** The replace() function. Three arguments are all strings: call +** them A, B, and C. The result is also a string which is derived +** from A by replacing every occurance of B with C. The match +** must be exact. Collating sequences are not used. +*/ +static void replaceFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *zStr; /* The input string A */ + const unsigned char *zPattern; /* The pattern string B */ + const unsigned char *zRep; /* The replacement string C */ + unsigned char *zOut; /* The output */ + int nStr; /* Size of zStr */ + int nPattern; /* Size of zPattern */ + int nRep; /* Size of zRep */ + i64 nOut; /* Maximum size of zOut */ + int loopLimit; /* Last zStr[] that might match zPattern[] */ + int i, j; /* Loop counters */ + + assert( argc==3 ); + UNUSED_PARAMETER(argc); + zStr = sqlite3_value_text(argv[0]); + if( zStr==0 ) return; + nStr = sqlite3_value_bytes(argv[0]); + assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */ + zPattern = sqlite3_value_text(argv[1]); + if( zPattern==0 ){ + assert( sqlite3_value_type(argv[1])==SQLITE_NULL + || sqlite3_context_db_handle(context)->mallocFailed ); + return; + } + if( zPattern[0]==0 ){ + assert( sqlite3_value_type(argv[1])!=SQLITE_NULL ); + sqlite3_result_value(context, argv[0]); + return; + } + nPattern = sqlite3_value_bytes(argv[1]); + assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ + zRep = sqlite3_value_text(argv[2]); + if( zRep==0 ) return; + nRep = sqlite3_value_bytes(argv[2]); + assert( zRep==sqlite3_value_text(argv[2]) ); + nOut = nStr + 1; + assert( nOutaLimit[SQLITE_LIMIT_LENGTH] ); + testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); + if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ + sqlite3_result_error_toobig(context); + sqlite3_free(zOut); + return; + } + zOld = zOut; + zOut = sqlite3_realloc(zOut, (int)nOut); + if( zOut==0 ){ + sqlite3_result_error_nomem(context); + sqlite3_free(zOld); + return; + } + memcpy(&zOut[j], zRep, nRep); + j += nRep; + i += nPattern-1; + } + } + assert( j+nStr-i+1==nOut ); + memcpy(&zOut[j], &zStr[i], nStr-i); + j += nStr - i; + assert( j<=nOut ); + zOut[j] = 0; + sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); +} + +/* +** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. +** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. +*/ +static void trimFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *zIn; /* Input string */ + const unsigned char *zCharSet; /* Set of characters to trim */ + int nIn; /* Number of bytes in input */ + int flags; /* 1: trimleft 2: trimright 3: trim */ + int i; /* Loop counter */ + unsigned char *aLen = 0; /* Length of each character in zCharSet */ + unsigned char **azChar = 0; /* Individual characters in zCharSet */ + int nChar; /* Number of characters in zCharSet */ + + if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ + return; + } + zIn = sqlite3_value_text(argv[0]); + if( zIn==0 ) return; + nIn = sqlite3_value_bytes(argv[0]); + assert( zIn==sqlite3_value_text(argv[0]) ); + if( argc==1 ){ + static const unsigned char lenOne[] = { 1 }; + static unsigned char * const azOne[] = { (u8*)" " }; + nChar = 1; + aLen = (u8*)lenOne; + azChar = (unsigned char **)azOne; + zCharSet = 0; + }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ + return; + }else{ + const unsigned char *z; + for(z=zCharSet, nChar=0; *z; nChar++){ + SQLITE_SKIP_UTF8(z); + } + if( nChar>0 ){ + azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1)); + if( azChar==0 ){ + return; + } + aLen = (unsigned char*)&azChar[nChar]; + for(z=zCharSet, nChar=0; *z; nChar++){ + azChar[nChar] = (unsigned char *)z; + SQLITE_SKIP_UTF8(z); + aLen[nChar] = (u8)(z - azChar[nChar]); + } + } + } + if( nChar>0 ){ + flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context)); + if( flags & 1 ){ + while( nIn>0 ){ + int len = 0; + for(i=0; i=nChar ) break; + zIn += len; + nIn -= len; + } + } + if( flags & 2 ){ + while( nIn>0 ){ + int len = 0; + for(i=0; i=nChar ) break; + nIn -= len; + } + } + if( zCharSet ){ + sqlite3_free(azChar); + } + } + sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); +} + + +/* IMP: R-25361-16150 This function is omitted from SQLite by default. It +** is only available if the SQLITE_SOUNDEX compile-time option is used +** when SQLite is built. +*/ +#ifdef SQLITE_SOUNDEX +/* +** Compute the soundex encoding of a word. +** +** IMP: R-59782-00072 The soundex(X) function returns a string that is the +** soundex encoding of the string X. +*/ +static void soundexFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + char zResult[8]; + const u8 *zIn; + int i, j; + static const unsigned char iCode[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, + 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, + 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, + 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, + }; + assert( argc==1 ); + zIn = (u8*)sqlite3_value_text(argv[0]); + if( zIn==0 ) zIn = (u8*)""; + for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){} + if( zIn[i] ){ + u8 prevcode = iCode[zIn[i]&0x7f]; + zResult[0] = sqlite3Toupper(zIn[i]); + for(j=1; j<4 && zIn[i]; i++){ + int code = iCode[zIn[i]&0x7f]; + if( code>0 ){ + if( code!=prevcode ){ + prevcode = code; + zResult[j++] = code + '0'; + } + }else{ + prevcode = 0; + } + } + while( j<4 ){ + zResult[j++] = '0'; + } + zResult[j] = 0; + sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); + }else{ + /* IMP: R-64894-50321 The string "?000" is returned if the argument + ** is NULL or contains no ASCII alphabetic characters. */ + sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); + } +} +#endif /* SQLITE_SOUNDEX */ + +#ifndef SQLITE_OMIT_LOAD_EXTENSION +/* +** A function that loads a shared-library extension then returns NULL. +*/ +static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ + const char *zFile = (const char *)sqlite3_value_text(argv[0]); + const char *zProc; + sqlite3 *db = sqlite3_context_db_handle(context); + char *zErrMsg = 0; + + if( argc==2 ){ + zProc = (const char *)sqlite3_value_text(argv[1]); + }else{ + zProc = 0; + } + if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ + sqlite3_result_error(context, zErrMsg, -1); + sqlite3_free(zErrMsg); + } +} +#endif + + +/* +** An instance of the following structure holds the context of a +** sum() or avg() aggregate computation. +*/ +typedef struct SumCtx SumCtx; +struct SumCtx { + double rSum; /* Floating point sum */ + i64 iSum; /* Integer sum */ + i64 cnt; /* Number of elements summed */ + u8 overflow; /* True if integer overflow seen */ + u8 approx; /* True if non-integer value was input to the sum */ +}; + +/* +** Routines used to compute the sum, average, and total. +** +** The SUM() function follows the (broken) SQL standard which means +** that it returns NULL if it sums over no inputs. TOTAL returns +** 0.0 in that case. In addition, TOTAL always returns a float where +** SUM might return an integer if it never encounters a floating point +** value. TOTAL never fails, but SUM might through an exception if +** it overflows an integer. +*/ +static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + SumCtx *p; + int type; + assert( argc==1 ); + UNUSED_PARAMETER(argc); + p = sqlite3_aggregate_context(context, sizeof(*p)); + type = sqlite3_value_numeric_type(argv[0]); + if( p && type!=SQLITE_NULL ){ + p->cnt++; + if( type==SQLITE_INTEGER ){ + i64 v = sqlite3_value_int64(argv[0]); + p->rSum += v; + if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){ + p->overflow = 1; + } + }else{ + p->rSum += sqlite3_value_double(argv[0]); + p->approx = 1; + } + } +} +static void sumFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, 0); + if( p && p->cnt>0 ){ + if( p->overflow ){ + sqlite3_result_error(context,"integer overflow",-1); + }else if( p->approx ){ + sqlite3_result_double(context, p->rSum); + }else{ + sqlite3_result_int64(context, p->iSum); + } + } +} +static void avgFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, 0); + if( p && p->cnt>0 ){ + sqlite3_result_double(context, p->rSum/(double)p->cnt); + } +} +static void totalFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, 0); + /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ + sqlite3_result_double(context, p ? p->rSum : (double)0); +} + +/* +** The following structure keeps track of state information for the +** count() aggregate function. +*/ +typedef struct CountCtx CountCtx; +struct CountCtx { + i64 n; +}; + +/* +** Routines to implement the count() aggregate function. +*/ +static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + CountCtx *p; + p = sqlite3_aggregate_context(context, sizeof(*p)); + if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ + p->n++; + } + +#ifndef SQLITE_OMIT_DEPRECATED + /* The sqlite3_aggregate_count() function is deprecated. But just to make + ** sure it still operates correctly, verify that its count agrees with our + ** internal count when using count(*) and when the total count can be + ** expressed as a 32-bit integer. */ + assert( argc==1 || p==0 || p->n>0x7fffffff + || p->n==sqlite3_aggregate_count(context) ); +#endif +} +static void countFinalize(sqlite3_context *context){ + CountCtx *p; + p = sqlite3_aggregate_context(context, 0); + sqlite3_result_int64(context, p ? p->n : 0); +} + +/* +** Routines to implement min() and max() aggregate functions. +*/ +static void minmaxStep( + sqlite3_context *context, + int NotUsed, + sqlite3_value **argv +){ + Mem *pArg = (Mem *)argv[0]; + Mem *pBest; + UNUSED_PARAMETER(NotUsed); + + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); + if( !pBest ) return; + + if( pBest->flags ){ + int max; + int cmp; + CollSeq *pColl = sqlite3GetFuncCollSeq(context); + /* This step function is used for both the min() and max() aggregates, + ** the only difference between the two being that the sense of the + ** comparison is inverted. For the max() aggregate, the + ** sqlite3_user_data() function returns (void *)-1. For min() it + ** returns (void *)db, where db is the sqlite3* database pointer. + ** Therefore the next statement sets variable 'max' to 1 for the max() + ** aggregate, or 0 for min(). + */ + max = sqlite3_user_data(context)!=0; + cmp = sqlite3MemCompare(pBest, pArg, pColl); + if( (max && cmp<0) || (!max && cmp>0) ){ + sqlite3VdbeMemCopy(pBest, pArg); + } + }else{ + sqlite3VdbeMemCopy(pBest, pArg); + } +} +static void minMaxFinalize(sqlite3_context *context){ + sqlite3_value *pRes; + pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); + if( pRes ){ + if( ALWAYS(pRes->flags) ){ + sqlite3_result_value(context, pRes); + } + sqlite3VdbeMemRelease(pRes); + } +} + +/* +** group_concat(EXPR, ?SEPARATOR?) +*/ +static void groupConcatStep( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const char *zVal; + StrAccum *pAccum; + const char *zSep; + int nVal, nSep; + assert( argc==1 || argc==2 ); + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); + + if( pAccum ){ + sqlite3 *db = sqlite3_context_db_handle(context); + int firstTerm = pAccum->useMalloc==0; + pAccum->useMalloc = 2; + pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; + if( !firstTerm ){ + if( argc==2 ){ + zSep = (char*)sqlite3_value_text(argv[1]); + nSep = sqlite3_value_bytes(argv[1]); + }else{ + zSep = ","; + nSep = 1; + } + sqlite3StrAccumAppend(pAccum, zSep, nSep); + } + zVal = (char*)sqlite3_value_text(argv[0]); + nVal = sqlite3_value_bytes(argv[0]); + sqlite3StrAccumAppend(pAccum, zVal, nVal); + } +} +static void groupConcatFinalize(sqlite3_context *context){ + StrAccum *pAccum; + pAccum = sqlite3_aggregate_context(context, 0); + if( pAccum ){ + if( pAccum->tooBig ){ + sqlite3_result_error_toobig(context); + }else if( pAccum->mallocFailed ){ + sqlite3_result_error_nomem(context); + }else{ + sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, + sqlite3_free); + } + } +} + +/* +** This routine does per-connection function registration. Most +** of the built-in functions above are part of the global function set. +** This routine only deals with those that are not global. +*/ +void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ + int rc = sqlite3_overload_function(db, "MATCH", 2); +#ifndef OMIT_EXPORT + extern void sqlcipher_exportFunc(sqlite3_context *, int, sqlite3_value **); +#endif + assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); + if( rc==SQLITE_NOMEM ){ + db->mallocFailed = 1; + } +#ifndef OMIT_EXPORT + sqlite3CreateFunc(db, "sqlcipher_export", 1, SQLITE_TEXT, 0, sqlcipher_exportFunc, 0, 0, 0); +#endif +} + +/* +** Set the LIKEOPT flag on the 2-argument function with the given name. +*/ +static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){ + FuncDef *pDef; + pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName), + 2, SQLITE_UTF8, 0); + if( ALWAYS(pDef) ){ + pDef->flags = flagVal; + } +} + +/* +** Register the built-in LIKE and GLOB functions. The caseSensitive +** parameter determines whether or not the LIKE operator is case +** sensitive. GLOB is always case sensitive. +*/ +void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ + struct compareInfo *pInfo; + if( caseSensitive ){ + pInfo = (struct compareInfo*)&likeInfoAlt; + }else{ + pInfo = (struct compareInfo*)&likeInfoNorm; + } + sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0); + sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0); + sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, + (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0); + setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE); + setLikeOptFlag(db, "like", + caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE); +} + +/* +** pExpr points to an expression which implements a function. If +** it is appropriate to apply the LIKE optimization to that function +** then set aWc[0] through aWc[2] to the wildcard characters and +** return TRUE. If the function is not a LIKE-style function then +** return FALSE. +*/ +int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ + FuncDef *pDef; + if( pExpr->op!=TK_FUNCTION + || !pExpr->x.pList + || pExpr->x.pList->nExpr!=2 + ){ + return 0; + } + assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); + pDef = sqlite3FindFunction(db, pExpr->u.zToken, + sqlite3Strlen30(pExpr->u.zToken), + 2, SQLITE_UTF8, 0); + if( NEVER(pDef==0) || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){ + return 0; + } + + /* The memcpy() statement assumes that the wildcard characters are + ** the first three statements in the compareInfo structure. The + ** asserts() that follow verify that assumption + */ + memcpy(aWc, pDef->pUserData, 3); + assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); + assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); + assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); + *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0; + return 1; +} + +/* +** All all of the FuncDef structures in the aBuiltinFunc[] array above +** to the global function hash table. This occurs at start-time (as +** a consequence of calling sqlite3_initialize()). +** +** After this routine runs +*/ +void sqlite3RegisterGlobalFunctions(void){ + /* + ** The following array holds FuncDef structures for all of the functions + ** defined in this file. + ** + ** The array cannot be constant since changes are made to the + ** FuncDef.pHash elements at start-time. The elements of this array + ** are read-only after initialization is complete. + */ + static SQLITE_WSD FuncDef aBuiltinFunc[] = { + FUNCTION(ltrim, 1, 1, 0, trimFunc ), + FUNCTION(ltrim, 2, 1, 0, trimFunc ), + FUNCTION(rtrim, 1, 2, 0, trimFunc ), + FUNCTION(rtrim, 2, 2, 0, trimFunc ), + FUNCTION(trim, 1, 3, 0, trimFunc ), + FUNCTION(trim, 2, 3, 0, trimFunc ), + FUNCTION(min, -1, 0, 1, minmaxFunc ), + FUNCTION(min, 0, 0, 1, 0 ), + AGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize ), + FUNCTION(max, -1, 1, 1, minmaxFunc ), + FUNCTION(max, 0, 1, 1, 0 ), + AGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize ), + FUNCTION(typeof, 1, 0, 0, typeofFunc ), + FUNCTION(length, 1, 0, 0, lengthFunc ), + FUNCTION(substr, 2, 0, 0, substrFunc ), + FUNCTION(substr, 3, 0, 0, substrFunc ), + FUNCTION(abs, 1, 0, 0, absFunc ), +#ifndef SQLITE_OMIT_FLOATING_POINT + FUNCTION(round, 1, 0, 0, roundFunc ), + FUNCTION(round, 2, 0, 0, roundFunc ), +#endif + FUNCTION(upper, 1, 0, 0, upperFunc ), + FUNCTION(lower, 1, 0, 0, lowerFunc ), + FUNCTION(coalesce, 1, 0, 0, 0 ), + FUNCTION(coalesce, 0, 0, 0, 0 ), +/* FUNCTION(coalesce, -1, 0, 0, ifnullFunc ), */ + {-1,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"coalesce",0,0}, + FUNCTION(hex, 1, 0, 0, hexFunc ), +/* FUNCTION(ifnull, 2, 0, 0, ifnullFunc ), */ + {2,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"ifnull",0,0}, + FUNCTION(random, 0, 0, 0, randomFunc ), + FUNCTION(randomblob, 1, 0, 0, randomBlob ), + FUNCTION(nullif, 2, 0, 1, nullifFunc ), + FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), + FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), + FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), +#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS + FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), + FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), +#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ + FUNCTION(quote, 1, 0, 0, quoteFunc ), + FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), + FUNCTION(changes, 0, 0, 0, changes ), + FUNCTION(total_changes, 0, 0, 0, total_changes ), + FUNCTION(replace, 3, 0, 0, replaceFunc ), + FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), + #ifdef SQLITE_SOUNDEX + FUNCTION(soundex, 1, 0, 0, soundexFunc ), + #endif + #ifndef SQLITE_OMIT_LOAD_EXTENSION + FUNCTION(load_extension, 1, 0, 0, loadExt ), + FUNCTION(load_extension, 2, 0, 0, loadExt ), + #endif + AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ), + AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ), + AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ), + /* AGGREGATE(count, 0, 0, 0, countStep, countFinalize ), */ + {0,SQLITE_UTF8,SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0}, + AGGREGATE(count, 1, 0, 0, countStep, countFinalize ), + AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize), + AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize), + + LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), + #ifdef SQLITE_CASE_SENSITIVE_LIKE + LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), + LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), + #else + LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE), + LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE), + #endif + }; + + int i; + FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); + FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc); + + for(i=0; i? */ + + 0x00, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x02, /* 40..47 @ABCDEFG */ + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 48..4f HIJKLMNO */ + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 50..57 PQRSTUVW */ + 0x02, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x40, /* 58..5f XYZ[\]^_ */ + 0x00, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x22, /* 60..67 `abcdefg */ + 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 68..6f hijklmno */ + 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 70..77 pqrstuvw */ + 0x22, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, /* 78..7f xyz{|}~. */ + + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 80..87 ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 88..8f ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 90..97 ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 98..9f ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a0..a7 ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a8..af ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b0..b7 ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b8..bf ........ */ + + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c0..c7 ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c8..cf ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d0..d7 ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d8..df ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e0..e7 ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e8..ef ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* f0..f7 ........ */ + 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40 /* f8..ff ........ */ +}; +#endif + +#ifndef SQLITE_USE_URI +# define SQLITE_USE_URI 0 +#endif + +/* +** The following singleton contains the global configuration for +** the SQLite library. +*/ +SQLITE_WSD struct Sqlite3Config sqlite3Config = { + SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */ + 1, /* bCoreMutex */ + SQLITE_THREADSAFE==1, /* bFullMutex */ + SQLITE_USE_URI, /* bOpenUri */ + 0x7ffffffe, /* mxStrlen */ + 128, /* szLookaside */ + 500, /* nLookaside */ + {0,0,0,0,0,0,0,0}, /* m */ + {0,0,0,0,0,0,0,0,0}, /* mutex */ + {0,0,0,0,0,0,0,0,0,0,0}, /* pcache */ + (void*)0, /* pHeap */ + 0, /* nHeap */ + 0, 0, /* mnHeap, mxHeap */ + (void*)0, /* pScratch */ + 0, /* szScratch */ + 0, /* nScratch */ + (void*)0, /* pPage */ + 0, /* szPage */ + 0, /* nPage */ + 0, /* mxParserStack */ + 0, /* sharedCacheEnabled */ + /* All the rest should always be initialized to zero */ + 0, /* isInit */ + 0, /* inProgress */ + 0, /* isMutexInit */ + 0, /* isMallocInit */ + 0, /* isPCacheInit */ + 0, /* pInitMutex */ + 0, /* nRefInitMutex */ + 0, /* xLog */ + 0, /* pLogArg */ + 0, /* bLocaltimeFault */ +}; + + +/* +** Hash table for global functions - functions common to all +** database connections. After initialization, this table is +** read-only. +*/ +SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; + +/* +** Constant tokens for values 0 and 1. +*/ +const Token sqlite3IntTokens[] = { + { "0", 1 }, + { "1", 1 } +}; + + +/* +** The value of the "pending" byte must be 0x40000000 (1 byte past the +** 1-gibabyte boundary) in a compatible database. SQLite never uses +** the database page that contains the pending byte. It never attempts +** to read or write that page. The pending byte page is set assign +** for use by the VFS layers as space for managing file locks. +** +** During testing, it is often desirable to move the pending byte to +** a different position in the file. This allows code that has to +** deal with the pending byte to run on files that are much smaller +** than 1 GiB. The sqlite3_test_control() interface can be used to +** move the pending byte. +** +** IMPORTANT: Changing the pending byte to any value other than +** 0x40000000 results in an incompatible database file format! +** Changing the pending byte during operating results in undefined +** and dileterious behavior. +*/ +#ifndef SQLITE_OMIT_WSD +int sqlite3PendingByte = 0x40000000; +#endif + +#include "opcodes.h" +/* +** Properties of opcodes. The OPFLG_INITIALIZER macro is +** created by mkopcodeh.awk during compilation. Data is obtained +** from the comments following the "case OP_xxxx:" statements in +** the vdbe.c file. +*/ +const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER; diff --git a/src/hash.c b/src/hash.c new file mode 100644 index 0000000..d4daf92 --- /dev/null +++ b/src/hash.c @@ -0,0 +1,277 @@ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the implementation of generic hash-tables +** used in SQLite. +*/ +#include "sqliteInt.h" +#include + +/* Turn bulk memory into a hash table object by initializing the +** fields of the Hash structure. +** +** "pNew" is a pointer to the hash table that is to be initialized. +*/ +void sqlite3HashInit(Hash *pNew){ + assert( pNew!=0 ); + pNew->first = 0; + pNew->count = 0; + pNew->htsize = 0; + pNew->ht = 0; +} + +/* Remove all entries from a hash table. Reclaim all memory. +** Call this routine to delete a hash table or to reset a hash table +** to the empty state. +*/ +void sqlite3HashClear(Hash *pH){ + HashElem *elem; /* For looping over all elements of the table */ + + assert( pH!=0 ); + elem = pH->first; + pH->first = 0; + sqlite3_free(pH->ht); + pH->ht = 0; + pH->htsize = 0; + while( elem ){ + HashElem *next_elem = elem->next; + sqlite3_free(elem); + elem = next_elem; + } + pH->count = 0; +} + +/* +** The hashing function. +*/ +static unsigned int strHash(const char *z, int nKey){ + int h = 0; + assert( nKey>=0 ); + while( nKey > 0 ){ + h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++]; + nKey--; + } + return h; +} + + +/* Link pNew element into the hash table pH. If pEntry!=0 then also +** insert pNew into the pEntry hash bucket. +*/ +static void insertElement( + Hash *pH, /* The complete hash table */ + struct _ht *pEntry, /* The entry into which pNew is inserted */ + HashElem *pNew /* The element to be inserted */ +){ + HashElem *pHead; /* First element already in pEntry */ + if( pEntry ){ + pHead = pEntry->count ? pEntry->chain : 0; + pEntry->count++; + pEntry->chain = pNew; + }else{ + pHead = 0; + } + if( pHead ){ + pNew->next = pHead; + pNew->prev = pHead->prev; + if( pHead->prev ){ pHead->prev->next = pNew; } + else { pH->first = pNew; } + pHead->prev = pNew; + }else{ + pNew->next = pH->first; + if( pH->first ){ pH->first->prev = pNew; } + pNew->prev = 0; + pH->first = pNew; + } +} + + +/* Resize the hash table so that it cantains "new_size" buckets. +** +** The hash table might fail to resize if sqlite3_malloc() fails or +** if the new size is the same as the prior size. +** Return TRUE if the resize occurs and false if not. +*/ +static int rehash(Hash *pH, unsigned int new_size){ + struct _ht *new_ht; /* The new hash table */ + HashElem *elem, *next_elem; /* For looping over existing elements */ + +#if SQLITE_MALLOC_SOFT_LIMIT>0 + if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){ + new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht); + } + if( new_size==pH->htsize ) return 0; +#endif + + /* The inability to allocates space for a larger hash table is + ** a performance hit but it is not a fatal error. So mark the + ** allocation as a benign. + */ + sqlite3BeginBenignMalloc(); + new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) ); + sqlite3EndBenignMalloc(); + + if( new_ht==0 ) return 0; + sqlite3_free(pH->ht); + pH->ht = new_ht; + pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht); + memset(new_ht, 0, new_size*sizeof(struct _ht)); + for(elem=pH->first, pH->first=0; elem; elem = next_elem){ + unsigned int h = strHash(elem->pKey, elem->nKey) % new_size; + next_elem = elem->next; + insertElement(pH, &new_ht[h], elem); + } + return 1; +} + +/* This function (for internal use only) locates an element in an +** hash table that matches the given key. The hash for this key has +** already been computed and is passed as the 4th parameter. +*/ +static HashElem *findElementGivenHash( + const Hash *pH, /* The pH to be searched */ + const char *pKey, /* The key we are searching for */ + int nKey, /* Bytes in key (not counting zero terminator) */ + unsigned int h /* The hash for this key. */ +){ + HashElem *elem; /* Used to loop thru the element list */ + int count; /* Number of elements left to test */ + + if( pH->ht ){ + struct _ht *pEntry = &pH->ht[h]; + elem = pEntry->chain; + count = pEntry->count; + }else{ + elem = pH->first; + count = pH->count; + } + while( count-- && ALWAYS(elem) ){ + if( elem->nKey==nKey && sqlite3StrNICmp(elem->pKey,pKey,nKey)==0 ){ + return elem; + } + elem = elem->next; + } + return 0; +} + +/* Remove a single entry from the hash table given a pointer to that +** element and a hash on the element's key. +*/ +static void removeElementGivenHash( + Hash *pH, /* The pH containing "elem" */ + HashElem* elem, /* The element to be removed from the pH */ + unsigned int h /* Hash value for the element */ +){ + struct _ht *pEntry; + if( elem->prev ){ + elem->prev->next = elem->next; + }else{ + pH->first = elem->next; + } + if( elem->next ){ + elem->next->prev = elem->prev; + } + if( pH->ht ){ + pEntry = &pH->ht[h]; + if( pEntry->chain==elem ){ + pEntry->chain = elem->next; + } + pEntry->count--; + assert( pEntry->count>=0 ); + } + sqlite3_free( elem ); + pH->count--; + if( pH->count<=0 ){ + assert( pH->first==0 ); + assert( pH->count==0 ); + sqlite3HashClear(pH); + } +} + +/* Attempt to locate an element of the hash table pH with a key +** that matches pKey,nKey. Return the data for this element if it is +** found, or NULL if there is no match. +*/ +void *sqlite3HashFind(const Hash *pH, const char *pKey, int nKey){ + HashElem *elem; /* The element that matches key */ + unsigned int h; /* A hash on key */ + + assert( pH!=0 ); + assert( pKey!=0 ); + assert( nKey>=0 ); + if( pH->ht ){ + h = strHash(pKey, nKey) % pH->htsize; + }else{ + h = 0; + } + elem = findElementGivenHash(pH, pKey, nKey, h); + return elem ? elem->data : 0; +} + +/* Insert an element into the hash table pH. The key is pKey,nKey +** and the data is "data". +** +** If no element exists with a matching key, then a new +** element is created and NULL is returned. +** +** If another element already exists with the same key, then the +** new data replaces the old data and the old data is returned. +** The key is not copied in this instance. If a malloc fails, then +** the new data is returned and the hash table is unchanged. +** +** If the "data" parameter to this function is NULL, then the +** element corresponding to "key" is removed from the hash table. +*/ +void *sqlite3HashInsert(Hash *pH, const char *pKey, int nKey, void *data){ + unsigned int h; /* the hash of the key modulo hash table size */ + HashElem *elem; /* Used to loop thru the element list */ + HashElem *new_elem; /* New element added to the pH */ + + assert( pH!=0 ); + assert( pKey!=0 ); + assert( nKey>=0 ); + if( pH->htsize ){ + h = strHash(pKey, nKey) % pH->htsize; + }else{ + h = 0; + } + elem = findElementGivenHash(pH,pKey,nKey,h); + if( elem ){ + void *old_data = elem->data; + if( data==0 ){ + removeElementGivenHash(pH,elem,h); + }else{ + elem->data = data; + elem->pKey = pKey; + assert(nKey==elem->nKey); + } + return old_data; + } + if( data==0 ) return 0; + new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) ); + if( new_elem==0 ) return data; + new_elem->pKey = pKey; + new_elem->nKey = nKey; + new_elem->data = data; + pH->count++; + if( pH->count>=10 && pH->count > 2*pH->htsize ){ + if( rehash(pH, pH->count*2) ){ + assert( pH->htsize>0 ); + h = strHash(pKey, nKey) % pH->htsize; + } + } + if( pH->ht ){ + insertElement(pH, &pH->ht[h], new_elem); + }else{ + insertElement(pH, 0, new_elem); + } + return 0; +} diff --git a/src/hash.h b/src/hash.h new file mode 100644 index 0000000..990a2d6 --- /dev/null +++ b/src/hash.h @@ -0,0 +1,96 @@ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the header file for the generic hash-table implemenation +** used in SQLite. +*/ +#ifndef _SQLITE_HASH_H_ +#define _SQLITE_HASH_H_ + +/* Forward declarations of structures. */ +typedef struct Hash Hash; +typedef struct HashElem HashElem; + +/* A complete hash table is an instance of the following structure. +** The internals of this structure are intended to be opaque -- client +** code should not attempt to access or modify the fields of this structure +** directly. Change this structure only by using the routines below. +** However, some of the "procedures" and "functions" for modifying and +** accessing this structure are really macros, so we can't really make +** this structure opaque. +** +** All elements of the hash table are on a single doubly-linked list. +** Hash.first points to the head of this list. +** +** There are Hash.htsize buckets. Each bucket points to a spot in +** the global doubly-linked list. The contents of the bucket are the +** element pointed to plus the next _ht.count-1 elements in the list. +** +** Hash.htsize and Hash.ht may be zero. In that case lookup is done +** by a linear search of the global list. For small tables, the +** Hash.ht table is never allocated because if there are few elements +** in the table, it is faster to do a linear search than to manage +** the hash table. +*/ +struct Hash { + unsigned int htsize; /* Number of buckets in the hash table */ + unsigned int count; /* Number of entries in this table */ + HashElem *first; /* The first element of the array */ + struct _ht { /* the hash table */ + int count; /* Number of entries with this hash */ + HashElem *chain; /* Pointer to first entry with this hash */ + } *ht; +}; + +/* Each element in the hash table is an instance of the following +** structure. All elements are stored on a single doubly-linked list. +** +** Again, this structure is intended to be opaque, but it can't really +** be opaque because it is used by macros. +*/ +struct HashElem { + HashElem *next, *prev; /* Next and previous elements in the table */ + void *data; /* Data associated with this element */ + const char *pKey; int nKey; /* Key associated with this element */ +}; + +/* +** Access routines. To delete, insert a NULL pointer. +*/ +void sqlite3HashInit(Hash*); +void *sqlite3HashInsert(Hash*, const char *pKey, int nKey, void *pData); +void *sqlite3HashFind(const Hash*, const char *pKey, int nKey); +void sqlite3HashClear(Hash*); + +/* +** Macros for looping over all elements of a hash table. The idiom is +** like this: +** +** Hash h; +** HashElem *p; +** ... +** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){ +** SomeStructure *pData = sqliteHashData(p); +** // do something with pData +** } +*/ +#define sqliteHashFirst(H) ((H)->first) +#define sqliteHashNext(E) ((E)->next) +#define sqliteHashData(E) ((E)->data) +/* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */ +/* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */ + +/* +** Number of entries in a hash table +*/ +/* #define sqliteHashCount(H) ((H)->count) // NOT USED */ + +#endif /* _SQLITE_HASH_H_ */ diff --git a/src/hwtime.h b/src/hwtime.h new file mode 100644 index 0000000..b8bc5a2 --- /dev/null +++ b/src/hwtime.h @@ -0,0 +1,85 @@ +/* +** 2008 May 27 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains inline asm code for retrieving "high-performance" +** counters for x86 class CPUs. +*/ +#ifndef _HWTIME_H_ +#define _HWTIME_H_ + +/* +** The following routine only works on pentium-class (or newer) processors. +** It uses the RDTSC opcode to read the cycle count value out of the +** processor and returns that value. This can be used for high-res +** profiling. +*/ +#if (defined(__GNUC__) || defined(_MSC_VER)) && \ + (defined(i386) || defined(__i386__) || defined(_M_IX86)) + + #if defined(__GNUC__) + + __inline__ sqlite_uint64 sqlite3Hwtime(void){ + unsigned int lo, hi; + __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi)); + return (sqlite_uint64)hi << 32 | lo; + } + + #elif defined(_MSC_VER) + + __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){ + __asm { + rdtsc + ret ; return value at EDX:EAX + } + } + + #endif + +#elif (defined(__GNUC__) && defined(__x86_64__)) + + __inline__ sqlite_uint64 sqlite3Hwtime(void){ + unsigned long val; + __asm__ __volatile__ ("rdtsc" : "=A" (val)); + return val; + } + +#elif (defined(__GNUC__) && defined(__ppc__)) + + __inline__ sqlite_uint64 sqlite3Hwtime(void){ + unsigned long long retval; + unsigned long junk; + __asm__ __volatile__ ("\n\ + 1: mftbu %1\n\ + mftb %L0\n\ + mftbu %0\n\ + cmpw %0,%1\n\ + bne 1b" + : "=r" (retval), "=r" (junk)); + return retval; + } + +#else + + #error Need implementation of sqlite3Hwtime() for your platform. + + /* + ** To compile without implementing sqlite3Hwtime() for your platform, + ** you can remove the above #error and use the following + ** stub function. You will lose timing support for many + ** of the debugging and testing utilities, but it should at + ** least compile and run. + */ + sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); } + +#endif + +#endif /* !defined(_HWTIME_H_) */ diff --git a/src/insert.c b/src/insert.c new file mode 100644 index 0000000..277a852 --- /dev/null +++ b/src/insert.c @@ -0,0 +1,1846 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle INSERT statements in SQLite. +*/ +#include "sqliteInt.h" + +/* +** Generate code that will open a table for reading. +*/ +void sqlite3OpenTable( + Parse *p, /* Generate code into this VDBE */ + int iCur, /* The cursor number of the table */ + int iDb, /* The database index in sqlite3.aDb[] */ + Table *pTab, /* The table to be opened */ + int opcode /* OP_OpenRead or OP_OpenWrite */ +){ + Vdbe *v; + if( IsVirtual(pTab) ) return; + v = sqlite3GetVdbe(p); + assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); + sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); + sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); + sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); + VdbeComment((v, "%s", pTab->zName)); +} + +/* +** Return a pointer to the column affinity string associated with index +** pIdx. A column affinity string has one character for each column in +** the table, according to the affinity of the column: +** +** Character Column affinity +** ------------------------------ +** 'a' TEXT +** 'b' NONE +** 'c' NUMERIC +** 'd' INTEGER +** 'e' REAL +** +** An extra 'b' is appended to the end of the string to cover the +** rowid that appears as the last column in every index. +** +** Memory for the buffer containing the column index affinity string +** is managed along with the rest of the Index structure. It will be +** released when sqlite3DeleteIndex() is called. +*/ +const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ + if( !pIdx->zColAff ){ + /* The first time a column affinity string for a particular index is + ** required, it is allocated and populated here. It is then stored as + ** a member of the Index structure for subsequent use. + ** + ** The column affinity string will eventually be deleted by + ** sqliteDeleteIndex() when the Index structure itself is cleaned + ** up. + */ + int n; + Table *pTab = pIdx->pTable; + sqlite3 *db = sqlite3VdbeDb(v); + pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2); + if( !pIdx->zColAff ){ + db->mallocFailed = 1; + return 0; + } + for(n=0; nnColumn; n++){ + pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; + } + pIdx->zColAff[n++] = SQLITE_AFF_NONE; + pIdx->zColAff[n] = 0; + } + + return pIdx->zColAff; +} + +/* +** Set P4 of the most recently inserted opcode to a column affinity +** string for table pTab. A column affinity string has one character +** for each column indexed by the index, according to the affinity of the +** column: +** +** Character Column affinity +** ------------------------------ +** 'a' TEXT +** 'b' NONE +** 'c' NUMERIC +** 'd' INTEGER +** 'e' REAL +*/ +void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ + /* The first time a column affinity string for a particular table + ** is required, it is allocated and populated here. It is then + ** stored as a member of the Table structure for subsequent use. + ** + ** The column affinity string will eventually be deleted by + ** sqlite3DeleteTable() when the Table structure itself is cleaned up. + */ + if( !pTab->zColAff ){ + char *zColAff; + int i; + sqlite3 *db = sqlite3VdbeDb(v); + + zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); + if( !zColAff ){ + db->mallocFailed = 1; + return; + } + + for(i=0; inCol; i++){ + zColAff[i] = pTab->aCol[i].affinity; + } + zColAff[pTab->nCol] = '\0'; + + pTab->zColAff = zColAff; + } + + sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT); +} + +/* +** Return non-zero if the table pTab in database iDb or any of its indices +** have been opened at any point in the VDBE program beginning at location +** iStartAddr throught the end of the program. This is used to see if +** a statement of the form "INSERT INTO SELECT ..." can +** run without using temporary table for the results of the SELECT. +*/ +static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ + Vdbe *v = sqlite3GetVdbe(p); + int i; + int iEnd = sqlite3VdbeCurrentAddr(v); +#ifndef SQLITE_OMIT_VIRTUALTABLE + VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; +#endif + + for(i=iStartAddr; iopcode==OP_OpenRead && pOp->p3==iDb ){ + Index *pIndex; + int tnum = pOp->p2; + if( tnum==pTab->tnum ){ + return 1; + } + for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ + if( tnum==pIndex->tnum ){ + return 1; + } + } + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ + assert( pOp->p4.pVtab!=0 ); + assert( pOp->p4type==P4_VTAB ); + return 1; + } +#endif + } + return 0; +} + +#ifndef SQLITE_OMIT_AUTOINCREMENT +/* +** Locate or create an AutoincInfo structure associated with table pTab +** which is in database iDb. Return the register number for the register +** that holds the maximum rowid. +** +** There is at most one AutoincInfo structure per table even if the +** same table is autoincremented multiple times due to inserts within +** triggers. A new AutoincInfo structure is created if this is the +** first use of table pTab. On 2nd and subsequent uses, the original +** AutoincInfo structure is used. +** +** Three memory locations are allocated: +** +** (1) Register to hold the name of the pTab table. +** (2) Register to hold the maximum ROWID of pTab. +** (3) Register to hold the rowid in sqlite_sequence of pTab +** +** The 2nd register is the one that is returned. That is all the +** insert routine needs to know about. +*/ +static int autoIncBegin( + Parse *pParse, /* Parsing context */ + int iDb, /* Index of the database holding pTab */ + Table *pTab /* The table we are writing to */ +){ + int memId = 0; /* Register holding maximum rowid */ + if( pTab->tabFlags & TF_Autoincrement ){ + Parse *pToplevel = sqlite3ParseToplevel(pParse); + AutoincInfo *pInfo; + + pInfo = pToplevel->pAinc; + while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } + if( pInfo==0 ){ + pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); + if( pInfo==0 ) return 0; + pInfo->pNext = pToplevel->pAinc; + pToplevel->pAinc = pInfo; + pInfo->pTab = pTab; + pInfo->iDb = iDb; + pToplevel->nMem++; /* Register to hold name of table */ + pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ + pToplevel->nMem++; /* Rowid in sqlite_sequence */ + } + memId = pInfo->regCtr; + } + return memId; +} + +/* +** This routine generates code that will initialize all of the +** register used by the autoincrement tracker. +*/ +void sqlite3AutoincrementBegin(Parse *pParse){ + AutoincInfo *p; /* Information about an AUTOINCREMENT */ + sqlite3 *db = pParse->db; /* The database connection */ + Db *pDb; /* Database only autoinc table */ + int memId; /* Register holding max rowid */ + int addr; /* A VDBE address */ + Vdbe *v = pParse->pVdbe; /* VDBE under construction */ + + /* This routine is never called during trigger-generation. It is + ** only called from the top-level */ + assert( pParse->pTriggerTab==0 ); + assert( pParse==sqlite3ParseToplevel(pParse) ); + + assert( v ); /* We failed long ago if this is not so */ + for(p = pParse->pAinc; p; p = p->pNext){ + pDb = &db->aDb[p->iDb]; + memId = p->regCtr; + assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); + sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); + addr = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); + sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); + sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); + sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); + sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); + sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); + sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); + sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); + sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); + sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); + sqlite3VdbeAddOp0(v, OP_Close); + } +} + +/* +** Update the maximum rowid for an autoincrement calculation. +** +** This routine should be called when the top of the stack holds a +** new rowid that is about to be inserted. If that new rowid is +** larger than the maximum rowid in the memId memory cell, then the +** memory cell is updated. The stack is unchanged. +*/ +static void autoIncStep(Parse *pParse, int memId, int regRowid){ + if( memId>0 ){ + sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); + } +} + +/* +** This routine generates the code needed to write autoincrement +** maximum rowid values back into the sqlite_sequence register. +** Every statement that might do an INSERT into an autoincrement +** table (either directly or through triggers) needs to call this +** routine just before the "exit" code. +*/ +void sqlite3AutoincrementEnd(Parse *pParse){ + AutoincInfo *p; + Vdbe *v = pParse->pVdbe; + sqlite3 *db = pParse->db; + + assert( v ); + for(p = pParse->pAinc; p; p = p->pNext){ + Db *pDb = &db->aDb[p->iDb]; + int j1, j2, j3, j4, j5; + int iRec; + int memId = p->regCtr; + + iRec = sqlite3GetTempReg(pParse); + assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); + sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); + j2 = sqlite3VdbeAddOp0(v, OP_Rewind); + j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); + j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); + sqlite3VdbeAddOp2(v, OP_Next, 0, j3); + sqlite3VdbeJumpHere(v, j2); + sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); + j5 = sqlite3VdbeAddOp0(v, OP_Goto); + sqlite3VdbeJumpHere(v, j4); + sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); + sqlite3VdbeJumpHere(v, j1); + sqlite3VdbeJumpHere(v, j5); + sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); + sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + sqlite3VdbeAddOp0(v, OP_Close); + sqlite3ReleaseTempReg(pParse, iRec); + } +} +#else +/* +** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines +** above are all no-ops +*/ +# define autoIncBegin(A,B,C) (0) +# define autoIncStep(A,B,C) +#endif /* SQLITE_OMIT_AUTOINCREMENT */ + + +/* Forward declaration */ +static int xferOptimization( + Parse *pParse, /* Parser context */ + Table *pDest, /* The table we are inserting into */ + Select *pSelect, /* A SELECT statement to use as the data source */ + int onError, /* How to handle constraint errors */ + int iDbDest /* The database of pDest */ +); + +/* +** This routine is call to handle SQL of the following forms: +** +** insert into TABLE (IDLIST) values(EXPRLIST) +** insert into TABLE (IDLIST) select +** +** The IDLIST following the table name is always optional. If omitted, +** then a list of all columns for the table is substituted. The IDLIST +** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. +** +** The pList parameter holds EXPRLIST in the first form of the INSERT +** statement above, and pSelect is NULL. For the second form, pList is +** NULL and pSelect is a pointer to the select statement used to generate +** data for the insert. +** +** The code generated follows one of four templates. For a simple +** select with data coming from a VALUES clause, the code executes +** once straight down through. Pseudo-code follows (we call this +** the "1st template"): +** +** open write cursor to
and its indices +** puts VALUES clause expressions onto the stack +** write the resulting record into
+** cleanup +** +** The three remaining templates assume the statement is of the form +** +** INSERT INTO
SELECT ... +** +** If the SELECT clause is of the restricted form "SELECT * FROM " - +** in other words if the SELECT pulls all columns from a single table +** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and +** if and are distinct tables but have identical +** schemas, including all the same indices, then a special optimization +** is invoked that copies raw records from over to . +** See the xferOptimization() function for the implementation of this +** template. This is the 2nd template. +** +** open a write cursor to
+** open read cursor on +** transfer all records in over to
+** close cursors +** foreach index on
+** open a write cursor on the
index +** open a read cursor on the corresponding index +** transfer all records from the read to the write cursors +** close cursors +** end foreach +** +** The 3rd template is for when the second template does not apply +** and the SELECT clause does not read from
at any time. +** The generated code follows this template: +** +** EOF <- 0 +** X <- A +** goto B +** A: setup for the SELECT +** loop over the rows in the SELECT +** load values into registers R..R+n +** yield X +** end loop +** cleanup after the SELECT +** EOF <- 1 +** yield X +** goto A +** B: open write cursor to
and its indices +** C: yield X +** if EOF goto D +** insert the select result into
from R..R+n +** goto C +** D: cleanup +** +** The 4th template is used if the insert statement takes its +** values from a SELECT but the data is being inserted into a table +** that is also read as part of the SELECT. In the third form, +** we have to use a intermediate table to store the results of +** the select. The template is like this: +** +** EOF <- 0 +** X <- A +** goto B +** A: setup for the SELECT +** loop over the tables in the SELECT +** load value into register R..R+n +** yield X +** end loop +** cleanup after the SELECT +** EOF <- 1 +** yield X +** halt-error +** B: open temp table +** L: yield X +** if EOF goto M +** insert row from R..R+n into temp table +** goto L +** M: open write cursor to
and its indices +** rewind temp table +** C: loop over rows of intermediate table +** transfer values form intermediate table into
+** end loop +** D: cleanup +*/ +void sqlite3Insert( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* Name of table into which we are inserting */ + ExprList *pList, /* List of values to be inserted */ + Select *pSelect, /* A SELECT statement to use as the data source */ + IdList *pColumn, /* Column names corresponding to IDLIST. */ + int onError /* How to handle constraint errors */ +){ + sqlite3 *db; /* The main database structure */ + Table *pTab; /* The table to insert into. aka TABLE */ + char *zTab; /* Name of the table into which we are inserting */ + const char *zDb; /* Name of the database holding this table */ + int i, j, idx; /* Loop counters */ + Vdbe *v; /* Generate code into this virtual machine */ + Index *pIdx; /* For looping over indices of the table */ + int nColumn; /* Number of columns in the data */ + int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ + int baseCur = 0; /* VDBE Cursor number for pTab */ + int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ + int endOfLoop; /* Label for the end of the insertion loop */ + int useTempTable = 0; /* Store SELECT results in intermediate table */ + int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ + int addrInsTop = 0; /* Jump to label "D" */ + int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ + int addrSelect = 0; /* Address of coroutine that implements the SELECT */ + SelectDest dest; /* Destination for SELECT on rhs of INSERT */ + int iDb; /* Index of database holding TABLE */ + Db *pDb; /* The database containing table being inserted into */ + int appendFlag = 0; /* True if the insert is likely to be an append */ + + /* Register allocations */ + int regFromSelect = 0;/* Base register for data coming from SELECT */ + int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ + int regRowCount = 0; /* Memory cell used for the row counter */ + int regIns; /* Block of regs holding rowid+data being inserted */ + int regRowid; /* registers holding insert rowid */ + int regData; /* register holding first column to insert */ + int regEof = 0; /* Register recording end of SELECT data */ + int *aRegIdx = 0; /* One register allocated to each index */ + +#ifndef SQLITE_OMIT_TRIGGER + int isView; /* True if attempting to insert into a view */ + Trigger *pTrigger; /* List of triggers on pTab, if required */ + int tmask; /* Mask of trigger times */ +#endif + + db = pParse->db; + memset(&dest, 0, sizeof(dest)); + if( pParse->nErr || db->mallocFailed ){ + goto insert_cleanup; + } + + /* Locate the table into which we will be inserting new information. + */ + assert( pTabList->nSrc==1 ); + zTab = pTabList->a[0].zName; + if( NEVER(zTab==0) ) goto insert_cleanup; + pTab = sqlite3SrcListLookup(pParse, pTabList); + if( pTab==0 ){ + goto insert_cleanup; + } + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( iDbnDb ); + pDb = &db->aDb[iDb]; + zDb = pDb->zName; + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ + goto insert_cleanup; + } + + /* Figure out if we have any triggers and if the table being + ** inserted into is a view + */ +#ifndef SQLITE_OMIT_TRIGGER + pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); + isView = pTab->pSelect!=0; +#else +# define pTrigger 0 +# define tmask 0 +# define isView 0 +#endif +#ifdef SQLITE_OMIT_VIEW +# undef isView +# define isView 0 +#endif + assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); + + /* If pTab is really a view, make sure it has been initialized. + ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual + ** module table). + */ + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto insert_cleanup; + } + + /* Ensure that: + * (a) the table is not read-only, + * (b) that if it is a view then ON INSERT triggers exist + */ + if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ + goto insert_cleanup; + } + + /* Allocate a VDBE + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto insert_cleanup; + if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); + sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); + +#ifndef SQLITE_OMIT_XFER_OPT + /* If the statement is of the form + ** + ** INSERT INTO SELECT * FROM ; + ** + ** Then special optimizations can be applied that make the transfer + ** very fast and which reduce fragmentation of indices. + ** + ** This is the 2nd template. + */ + if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ + assert( !pTrigger ); + assert( pList==0 ); + goto insert_end; + } +#endif /* SQLITE_OMIT_XFER_OPT */ + + /* If this is an AUTOINCREMENT table, look up the sequence number in the + ** sqlite_sequence table and store it in memory cell regAutoinc. + */ + regAutoinc = autoIncBegin(pParse, iDb, pTab); + + /* Figure out how many columns of data are supplied. If the data + ** is coming from a SELECT statement, then generate a co-routine that + ** produces a single row of the SELECT on each invocation. The + ** co-routine is the common header to the 3rd and 4th templates. + */ + if( pSelect ){ + /* Data is coming from a SELECT. Generate code to implement that SELECT + ** as a co-routine. The code is common to both the 3rd and 4th + ** templates: + ** + ** EOF <- 0 + ** X <- A + ** goto B + ** A: setup for the SELECT + ** loop over the tables in the SELECT + ** load value into register R..R+n + ** yield X + ** end loop + ** cleanup after the SELECT + ** EOF <- 1 + ** yield X + ** halt-error + ** + ** On each invocation of the co-routine, it puts a single row of the + ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1. + ** (These output registers are allocated by sqlite3Select().) When + ** the SELECT completes, it sets the EOF flag stored in regEof. + */ + int rc, j1; + + regEof = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ + VdbeComment((v, "SELECT eof flag")); + sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); + addrSelect = sqlite3VdbeCurrentAddr(v)+2; + sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm); + j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); + VdbeComment((v, "Jump over SELECT coroutine")); + + /* Resolve the expressions in the SELECT statement and execute it. */ + rc = sqlite3Select(pParse, pSelect, &dest); + assert( pParse->nErr==0 || rc ); + if( rc || NEVER(pParse->nErr) || db->mallocFailed ){ + goto insert_cleanup; + } + sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ + sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */ + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); + VdbeComment((v, "End of SELECT coroutine")); + sqlite3VdbeJumpHere(v, j1); /* label B: */ + + regFromSelect = dest.iMem; + assert( pSelect->pEList ); + nColumn = pSelect->pEList->nExpr; + assert( dest.nMem==nColumn ); + + /* Set useTempTable to TRUE if the result of the SELECT statement + ** should be written into a temporary table (template 4). Set to + ** FALSE if each* row of the SELECT can be written directly into + ** the destination table (template 3). + ** + ** A temp table must be used if the table being updated is also one + ** of the tables being read by the SELECT statement. Also use a + ** temp table in the case of row triggers. + */ + if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ + useTempTable = 1; + } + + if( useTempTable ){ + /* Invoke the coroutine to extract information from the SELECT + ** and add it to a transient table srcTab. The code generated + ** here is from the 4th template: + ** + ** B: open temp table + ** L: yield X + ** if EOF goto M + ** insert row from R..R+n into temp table + ** goto L + ** M: ... + */ + int regRec; /* Register to hold packed record */ + int regTempRowid; /* Register to hold temp table ROWID */ + int addrTop; /* Label "L" */ + int addrIf; /* Address of jump to M */ + + srcTab = pParse->nTab++; + regRec = sqlite3GetTempReg(pParse); + regTempRowid = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); + addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); + addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); + sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); + sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); + sqlite3VdbeJumpHere(v, addrIf); + sqlite3ReleaseTempReg(pParse, regRec); + sqlite3ReleaseTempReg(pParse, regTempRowid); + } + }else{ + /* This is the case if the data for the INSERT is coming from a VALUES + ** clause + */ + NameContext sNC; + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + srcTab = -1; + assert( useTempTable==0 ); + nColumn = pList ? pList->nExpr : 0; + for(i=0; ia[i].pExpr) ){ + goto insert_cleanup; + } + } + } + + /* Make sure the number of columns in the source data matches the number + ** of columns to be inserted into the table. + */ + if( IsVirtual(pTab) ){ + for(i=0; inCol; i++){ + nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); + } + } + if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ + sqlite3ErrorMsg(pParse, + "table %S has %d columns but %d values were supplied", + pTabList, 0, pTab->nCol-nHidden, nColumn); + goto insert_cleanup; + } + if( pColumn!=0 && nColumn!=pColumn->nId ){ + sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); + goto insert_cleanup; + } + + /* If the INSERT statement included an IDLIST term, then make sure + ** all elements of the IDLIST really are columns of the table and + ** remember the column indices. + ** + ** If the table has an INTEGER PRIMARY KEY column and that column + ** is named in the IDLIST, then record in the keyColumn variable + ** the index into IDLIST of the primary key column. keyColumn is + ** the index of the primary key as it appears in IDLIST, not as + ** is appears in the original table. (The index of the primary + ** key in the original table is pTab->iPKey.) + */ + if( pColumn ){ + for(i=0; inId; i++){ + pColumn->a[i].idx = -1; + } + for(i=0; inId; i++){ + for(j=0; jnCol; j++){ + if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ + pColumn->a[i].idx = j; + if( j==pTab->iPKey ){ + keyColumn = i; + } + break; + } + } + if( j>=pTab->nCol ){ + if( sqlite3IsRowid(pColumn->a[i].zName) ){ + keyColumn = i; + }else{ + sqlite3ErrorMsg(pParse, "table %S has no column named %s", + pTabList, 0, pColumn->a[i].zName); + pParse->checkSchema = 1; + goto insert_cleanup; + } + } + } + } + + /* If there is no IDLIST term but the table has an integer primary + ** key, the set the keyColumn variable to the primary key column index + ** in the original table definition. + */ + if( pColumn==0 && nColumn>0 ){ + keyColumn = pTab->iPKey; + } + + /* Initialize the count of rows to be inserted + */ + if( db->flags & SQLITE_CountRows ){ + regRowCount = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); + } + + /* If this is not a view, open the table and and all indices */ + if( !isView ){ + int nIdx; + + baseCur = pParse->nTab; + nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); + aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); + if( aRegIdx==0 ){ + goto insert_cleanup; + } + for(i=0; inMem; + } + } + + /* This is the top of the main insertion loop */ + if( useTempTable ){ + /* This block codes the top of loop only. The complete loop is the + ** following pseudocode (template 4): + ** + ** rewind temp table + ** C: loop over rows of intermediate table + ** transfer values form intermediate table into
+ ** end loop + ** D: ... + */ + addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); + addrCont = sqlite3VdbeCurrentAddr(v); + }else if( pSelect ){ + /* This block codes the top of loop only. The complete loop is the + ** following pseudocode (template 3): + ** + ** C: yield X + ** if EOF goto D + ** insert the select result into
from R..R+n + ** goto C + ** D: ... + */ + addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); + addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); + } + + /* Allocate registers for holding the rowid of the new row, + ** the content of the new row, and the assemblied row record. + */ + regRowid = regIns = pParse->nMem+1; + pParse->nMem += pTab->nCol + 1; + if( IsVirtual(pTab) ){ + regRowid++; + pParse->nMem++; + } + regData = regRowid+1; + + /* Run the BEFORE and INSTEAD OF triggers, if there are any + */ + endOfLoop = sqlite3VdbeMakeLabel(v); + if( tmask & TRIGGER_BEFORE ){ + int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); + + /* build the NEW.* reference row. Note that if there is an INTEGER + ** PRIMARY KEY into which a NULL is being inserted, that NULL will be + ** translated into a unique ID for the row. But on a BEFORE trigger, + ** we do not know what the unique ID will be (because the insert has + ** not happened yet) so we substitute a rowid of -1 + */ + if( keyColumn<0 ){ + sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); + }else{ + int j1; + if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols); + }else{ + assert( pSelect==0 ); /* Otherwise useTempTable is true */ + sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols); + } + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); + sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); + sqlite3VdbeJumpHere(v, j1); + sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); + } + + /* Cannot have triggers on a virtual table. If it were possible, + ** this block would have to account for hidden column. + */ + assert( !IsVirtual(pTab) ); + + /* Create the new column data + */ + for(i=0; inCol; i++){ + if( pColumn==0 ){ + j = i; + }else{ + for(j=0; jnId; j++){ + if( pColumn->a[j].idx==i ) break; + } + } + if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){ + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); + }else if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); + }else{ + assert( pSelect==0 ); /* Otherwise useTempTable is true */ + sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); + } + } + + /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, + ** do not attempt any conversions before assembling the record. + ** If this is a real table, attempt conversions as required by the + ** table column affinities. + */ + if( !isView ){ + sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); + sqlite3TableAffinityStr(v, pTab); + } + + /* Fire BEFORE or INSTEAD OF triggers */ + sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, + pTab, regCols-pTab->nCol-1, onError, endOfLoop); + + sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); + } + + /* Push the record number for the new entry onto the stack. The + ** record number is a randomly generate integer created by NewRowid + ** except when the table has an INTEGER PRIMARY KEY column, in which + ** case the record number is the same as that column. + */ + if( !isView ){ + if( IsVirtual(pTab) ){ + /* The row that the VUpdate opcode will delete: none */ + sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); + } + if( keyColumn>=0 ){ + if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); + }else if( pSelect ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); + }else{ + VdbeOp *pOp; + sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); + pOp = sqlite3VdbeGetOp(v, -1); + if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ + appendFlag = 1; + pOp->opcode = OP_NewRowid; + pOp->p1 = baseCur; + pOp->p2 = regRowid; + pOp->p3 = regAutoinc; + } + } + /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid + ** to generate a unique primary key value. + */ + if( !appendFlag ){ + int j1; + if( !IsVirtual(pTab) ){ + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); + sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); + sqlite3VdbeJumpHere(v, j1); + }else{ + j1 = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); + } + sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); + } + }else if( IsVirtual(pTab) ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); + }else{ + sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); + appendFlag = 1; + } + autoIncStep(pParse, regAutoinc, regRowid); + + /* Push onto the stack, data for all columns of the new entry, beginning + ** with the first column. + */ + nHidden = 0; + for(i=0; inCol; i++){ + int iRegStore = regRowid+1+i; + if( i==pTab->iPKey ){ + /* The value of the INTEGER PRIMARY KEY column is always a NULL. + ** Whenever this column is read, the record number will be substituted + ** in its place. So will fill this column with a NULL to avoid + ** taking up data space with information that will never be used. */ + sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); + continue; + } + if( pColumn==0 ){ + if( IsHiddenColumn(&pTab->aCol[i]) ){ + assert( IsVirtual(pTab) ); + j = -1; + nHidden++; + }else{ + j = i - nHidden; + } + }else{ + for(j=0; jnId; j++){ + if( pColumn->a[j].idx==i ) break; + } + } + if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); + }else if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); + }else if( pSelect ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); + }else{ + sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); + } + } + + /* Generate code to check constraints and generate index keys and + ** do the insertion. + */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); + sqlite3VtabMakeWritable(pParse, pTab); + sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); + sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); + sqlite3MayAbort(pParse); + }else +#endif + { + int isReplace; /* Set to true if constraints may cause a replace */ + sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, + keyColumn>=0, 0, onError, endOfLoop, &isReplace + ); + sqlite3FkCheck(pParse, pTab, 0, regIns); + sqlite3CompleteInsertion( + pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0 + ); + } + } + + /* Update the count of rows that are inserted + */ + if( (db->flags & SQLITE_CountRows)!=0 ){ + sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); + } + + if( pTrigger ){ + /* Code AFTER triggers */ + sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, + pTab, regData-2-pTab->nCol, onError, endOfLoop); + } + + /* The bottom of the main insertion loop, if the data source + ** is a SELECT statement. + */ + sqlite3VdbeResolveLabel(v, endOfLoop); + if( useTempTable ){ + sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); + sqlite3VdbeJumpHere(v, addrInsTop); + sqlite3VdbeAddOp1(v, OP_Close, srcTab); + }else if( pSelect ){ + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); + sqlite3VdbeJumpHere(v, addrInsTop); + } + + if( !IsVirtual(pTab) && !isView ){ + /* Close all tables opened */ + sqlite3VdbeAddOp1(v, OP_Close, baseCur); + for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ + sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); + } + } + +insert_end: + /* Update the sqlite_sequence table by storing the content of the + ** maximum rowid counter values recorded while inserting into + ** autoincrement tables. + */ + if( pParse->nested==0 && pParse->pTriggerTab==0 ){ + sqlite3AutoincrementEnd(pParse); + } + + /* + ** Return the number of rows inserted. If this routine is + ** generating code because of a call to sqlite3NestedParse(), do not + ** invoke the callback function. + */ + if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ + sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); + } + +insert_cleanup: + sqlite3SrcListDelete(db, pTabList); + sqlite3ExprListDelete(db, pList); + sqlite3SelectDelete(db, pSelect); + sqlite3IdListDelete(db, pColumn); + sqlite3DbFree(db, aRegIdx); +} + +/* Make sure "isView" and other macros defined above are undefined. Otherwise +** thely may interfere with compilation of other functions in this file +** (or in another file, if this file becomes part of the amalgamation). */ +#ifdef isView + #undef isView +#endif +#ifdef pTrigger + #undef pTrigger +#endif +#ifdef tmask + #undef tmask +#endif + + +/* +** Generate code to do constraint checks prior to an INSERT or an UPDATE. +** +** The input is a range of consecutive registers as follows: +** +** 1. The rowid of the row after the update. +** +** 2. The data in the first column of the entry after the update. +** +** i. Data from middle columns... +** +** N. The data in the last column of the entry after the update. +** +** The regRowid parameter is the index of the register containing (1). +** +** If isUpdate is true and rowidChng is non-zero, then rowidChng contains +** the address of a register containing the rowid before the update takes +** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate +** is false, indicating an INSERT statement, then a non-zero rowidChng +** indicates that the rowid was explicitly specified as part of the +** INSERT statement. If rowidChng is false, it means that the rowid is +** computed automatically in an insert or that the rowid value is not +** modified by an update. +** +** The code generated by this routine store new index entries into +** registers identified by aRegIdx[]. No index entry is created for +** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is +** the same as the order of indices on the linked list of indices +** attached to the table. +** +** This routine also generates code to check constraints. NOT NULL, +** CHECK, and UNIQUE constraints are all checked. If a constraint fails, +** then the appropriate action is performed. There are five possible +** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. +** +** Constraint type Action What Happens +** --------------- ---------- ---------------------------------------- +** any ROLLBACK The current transaction is rolled back and +** sqlite3_exec() returns immediately with a +** return code of SQLITE_CONSTRAINT. +** +** any ABORT Back out changes from the current command +** only (do not do a complete rollback) then +** cause sqlite3_exec() to return immediately +** with SQLITE_CONSTRAINT. +** +** any FAIL Sqlite_exec() returns immediately with a +** return code of SQLITE_CONSTRAINT. The +** transaction is not rolled back and any +** prior changes are retained. +** +** any IGNORE The record number and data is popped from +** the stack and there is an immediate jump +** to label ignoreDest. +** +** NOT NULL REPLACE The NULL value is replace by the default +** value for that column. If the default value +** is NULL, the action is the same as ABORT. +** +** UNIQUE REPLACE The other row that conflicts with the row +** being inserted is removed. +** +** CHECK REPLACE Illegal. The results in an exception. +** +** Which action to take is determined by the overrideError parameter. +** Or if overrideError==OE_Default, then the pParse->onError parameter +** is used. Or if pParse->onError==OE_Default then the onError value +** for the constraint is used. +** +** The calling routine must open a read/write cursor for pTab with +** cursor number "baseCur". All indices of pTab must also have open +** read/write cursors with cursor number baseCur+i for the i-th cursor. +** Except, if there is no possibility of a REPLACE action then +** cursors do not need to be open for indices where aRegIdx[i]==0. +*/ +void sqlite3GenerateConstraintChecks( + Parse *pParse, /* The parser context */ + Table *pTab, /* the table into which we are inserting */ + int baseCur, /* Index of a read/write cursor pointing at pTab */ + int regRowid, /* Index of the range of input registers */ + int *aRegIdx, /* Register used by each index. 0 for unused indices */ + int rowidChng, /* True if the rowid might collide with existing entry */ + int isUpdate, /* True for UPDATE, False for INSERT */ + int overrideError, /* Override onError to this if not OE_Default */ + int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ + int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ +){ + int i; /* loop counter */ + Vdbe *v; /* VDBE under constrution */ + int nCol; /* Number of columns */ + int onError; /* Conflict resolution strategy */ + int j1; /* Addresss of jump instruction */ + int j2 = 0, j3; /* Addresses of jump instructions */ + int regData; /* Register containing first data column */ + int iCur; /* Table cursor number */ + Index *pIdx; /* Pointer to one of the indices */ + int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ + int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid; + + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + assert( pTab->pSelect==0 ); /* This table is not a VIEW */ + nCol = pTab->nCol; + regData = regRowid + 1; + + /* Test all NOT NULL constraints. + */ + for(i=0; iiPKey ){ + continue; + } + onError = pTab->aCol[i].notNull; + if( onError==OE_None ) continue; + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ + onError = OE_Abort; + } + assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail + || onError==OE_Ignore || onError==OE_Replace ); + switch( onError ){ + case OE_Abort: + sqlite3MayAbort(pParse); + case OE_Rollback: + case OE_Fail: { + char *zMsg; + sqlite3VdbeAddOp3(v, OP_HaltIfNull, + SQLITE_CONSTRAINT, onError, regData+i); + zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", + pTab->zName, pTab->aCol[i].zName); + sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); + break; + } + case OE_Ignore: { + sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest); + break; + } + default: { + assert( onError==OE_Replace ); + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); + sqlite3VdbeJumpHere(v, j1); + break; + } + } + } + + /* Test all CHECK constraints + */ +#ifndef SQLITE_OMIT_CHECK + if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ + int allOk = sqlite3VdbeMakeLabel(v); + pParse->ckBase = regData; + sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); + onError = overrideError!=OE_Default ? overrideError : OE_Abort; + if( onError==OE_Ignore ){ + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + }else{ + if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ + sqlite3HaltConstraint(pParse, onError, 0, 0); + } + sqlite3VdbeResolveLabel(v, allOk); + } +#endif /* !defined(SQLITE_OMIT_CHECK) */ + + /* If we have an INTEGER PRIMARY KEY, make sure the primary key + ** of the new record does not previously exist. Except, if this + ** is an UPDATE and the primary key is not changing, that is OK. + */ + if( rowidChng ){ + onError = pTab->keyConf; + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + + if( isUpdate ){ + j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng); + } + j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); + switch( onError ){ + default: { + onError = OE_Abort; + /* Fall thru into the next case */ + } + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + sqlite3HaltConstraint( + pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); + break; + } + case OE_Replace: { + /* If there are DELETE triggers on this table and the + ** recursive-triggers flag is set, call GenerateRowDelete() to + ** remove the conflicting row from the the table. This will fire + ** the triggers and remove both the table and index b-tree entries. + ** + ** Otherwise, if there are no triggers or the recursive-triggers + ** flag is not set, but the table has one or more indexes, call + ** GenerateRowIndexDelete(). This removes the index b-tree entries + ** only. The table b-tree entry will be replaced by the new entry + ** when it is inserted. + ** + ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, + ** also invoke MultiWrite() to indicate that this VDBE may require + ** statement rollback (if the statement is aborted after the delete + ** takes place). Earlier versions called sqlite3MultiWrite() regardless, + ** but being more selective here allows statements like: + ** + ** REPLACE INTO t(rowid) VALUES($newrowid) + ** + ** to run without a statement journal if there are no indexes on the + ** table. + */ + Trigger *pTrigger = 0; + if( pParse->db->flags&SQLITE_RecTriggers ){ + pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); + } + if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ + sqlite3MultiWrite(pParse); + sqlite3GenerateRowDelete( + pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace + ); + }else if( pTab->pIndex ){ + sqlite3MultiWrite(pParse); + sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); + } + seenReplace = 1; + break; + } + case OE_Ignore: { + assert( seenReplace==0 ); + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + break; + } + } + sqlite3VdbeJumpHere(v, j3); + if( isUpdate ){ + sqlite3VdbeJumpHere(v, j2); + } + } + + /* Test all UNIQUE constraints by creating entries for each UNIQUE + ** index and making sure that duplicate entries do not already exist. + ** Add the new records to the indices as we go. + */ + for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ + int regIdx; + int regR; + + if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ + + /* Create a key for accessing the index entry */ + regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); + for(i=0; inColumn; i++){ + int idx = pIdx->aiColumn[i]; + if( idx==pTab->iPKey ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); + }else{ + sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); + } + } + sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); + sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); + sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); + + /* Find out what action to take in case there is an indexing conflict */ + onError = pIdx->onError; + if( onError==OE_None ){ + sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); + continue; /* pIdx is not a UNIQUE index */ + } + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + if( seenReplace ){ + if( onError==OE_Ignore ) onError = OE_Replace; + else if( onError==OE_Fail ) onError = OE_Abort; + } + + /* Check to see if the new index entry will be unique */ + regR = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR); + j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, + regR, SQLITE_INT_TO_PTR(regIdx), + P4_INT32); + sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); + + /* Generate code that executes if the new index entry is not unique */ + assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail + || onError==OE_Ignore || onError==OE_Replace ); + switch( onError ){ + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + int j; + StrAccum errMsg; + const char *zSep; + char *zErr; + + sqlite3StrAccumInit(&errMsg, 0, 0, 200); + errMsg.db = pParse->db; + zSep = pIdx->nColumn>1 ? "columns " : "column "; + for(j=0; jnColumn; j++){ + char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; + sqlite3StrAccumAppend(&errMsg, zSep, -1); + zSep = ", "; + sqlite3StrAccumAppend(&errMsg, zCol, -1); + } + sqlite3StrAccumAppend(&errMsg, + pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); + zErr = sqlite3StrAccumFinish(&errMsg); + sqlite3HaltConstraint(pParse, onError, zErr, 0); + sqlite3DbFree(errMsg.db, zErr); + break; + } + case OE_Ignore: { + assert( seenReplace==0 ); + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + break; + } + default: { + Trigger *pTrigger = 0; + assert( onError==OE_Replace ); + sqlite3MultiWrite(pParse); + if( pParse->db->flags&SQLITE_RecTriggers ){ + pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); + } + sqlite3GenerateRowDelete( + pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace + ); + seenReplace = 1; + break; + } + } + sqlite3VdbeJumpHere(v, j3); + sqlite3ReleaseTempReg(pParse, regR); + } + + if( pbMayReplace ){ + *pbMayReplace = seenReplace; + } +} + +/* +** This routine generates code to finish the INSERT or UPDATE operation +** that was started by a prior call to sqlite3GenerateConstraintChecks. +** A consecutive range of registers starting at regRowid contains the +** rowid and the content to be inserted. +** +** The arguments to this routine should be the same as the first six +** arguments to sqlite3GenerateConstraintChecks. +*/ +void sqlite3CompleteInsertion( + Parse *pParse, /* The parser context */ + Table *pTab, /* the table into which we are inserting */ + int baseCur, /* Index of a read/write cursor pointing at pTab */ + int regRowid, /* Range of content */ + int *aRegIdx, /* Register used by each index. 0 for unused indices */ + int isUpdate, /* True for UPDATE, False for INSERT */ + int appendBias, /* True if this is likely to be an append */ + int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ +){ + int i; + Vdbe *v; + int nIdx; + Index *pIdx; + u8 pik_flags; + int regData; + int regRec; + + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + assert( pTab->pSelect==0 ); /* This table is not a VIEW */ + for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} + for(i=nIdx-1; i>=0; i--){ + if( aRegIdx[i]==0 ) continue; + sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); + if( useSeekResult ){ + sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); + } + } + regData = regRowid + 1; + regRec = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); + sqlite3TableAffinityStr(v, pTab); + sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); + if( pParse->nested ){ + pik_flags = 0; + }else{ + pik_flags = OPFLAG_NCHANGE; + pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); + } + if( appendBias ){ + pik_flags |= OPFLAG_APPEND; + } + if( useSeekResult ){ + pik_flags |= OPFLAG_USESEEKRESULT; + } + sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); + if( !pParse->nested ){ + sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); + } + sqlite3VdbeChangeP5(v, pik_flags); +} + +/* +** Generate code that will open cursors for a table and for all +** indices of that table. The "baseCur" parameter is the cursor number used +** for the table. Indices are opened on subsequent cursors. +** +** Return the number of indices on the table. +*/ +int sqlite3OpenTableAndIndices( + Parse *pParse, /* Parsing context */ + Table *pTab, /* Table to be opened */ + int baseCur, /* Cursor number assigned to the table */ + int op /* OP_OpenRead or OP_OpenWrite */ +){ + int i; + int iDb; + Index *pIdx; + Vdbe *v; + + if( IsVirtual(pTab) ) return 0; + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); + for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); + assert( pIdx->pSchema==pTab->pSchema ); + sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, + (char*)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pIdx->zName)); + } + if( pParse->nTabnTab = baseCur+i; + } + return i-1; +} + + +#ifdef SQLITE_TEST +/* +** The following global variable is incremented whenever the +** transfer optimization is used. This is used for testing +** purposes only - to make sure the transfer optimization really +** is happening when it is suppose to. +*/ +int sqlite3_xferopt_count; +#endif /* SQLITE_TEST */ + + +#ifndef SQLITE_OMIT_XFER_OPT +/* +** Check to collation names to see if they are compatible. +*/ +static int xferCompatibleCollation(const char *z1, const char *z2){ + if( z1==0 ){ + return z2==0; + } + if( z2==0 ){ + return 0; + } + return sqlite3StrICmp(z1, z2)==0; +} + + +/* +** Check to see if index pSrc is compatible as a source of data +** for index pDest in an insert transfer optimization. The rules +** for a compatible index: +** +** * The index is over the same set of columns +** * The same DESC and ASC markings occurs on all columns +** * The same onError processing (OE_Abort, OE_Ignore, etc) +** * The same collating sequence on each column +*/ +static int xferCompatibleIndex(Index *pDest, Index *pSrc){ + int i; + assert( pDest && pSrc ); + assert( pDest->pTable!=pSrc->pTable ); + if( pDest->nColumn!=pSrc->nColumn ){ + return 0; /* Different number of columns */ + } + if( pDest->onError!=pSrc->onError ){ + return 0; /* Different conflict resolution strategies */ + } + for(i=0; inColumn; i++){ + if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ + return 0; /* Different columns indexed */ + } + if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ + return 0; /* Different sort orders */ + } + if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ + return 0; /* Different collating sequences */ + } + } + + /* If no test above fails then the indices must be compatible */ + return 1; +} + +/* +** Attempt the transfer optimization on INSERTs of the form +** +** INSERT INTO tab1 SELECT * FROM tab2; +** +** This optimization is only attempted if +** +** (1) tab1 and tab2 have identical schemas including all the +** same indices and constraints +** +** (2) tab1 and tab2 are different tables +** +** (3) There must be no triggers on tab1 +** +** (4) The result set of the SELECT statement is "*" +** +** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, +** or LIMIT clause. +** +** (6) The SELECT statement is a simple (not a compound) select that +** contains only tab2 in its FROM clause +** +** This method for implementing the INSERT transfers raw records from +** tab2 over to tab1. The columns are not decoded. Raw records from +** the indices of tab2 are transfered to tab1 as well. In so doing, +** the resulting tab1 has much less fragmentation. +** +** This routine returns TRUE if the optimization is attempted. If any +** of the conditions above fail so that the optimization should not +** be attempted, then this routine returns FALSE. +*/ +static int xferOptimization( + Parse *pParse, /* Parser context */ + Table *pDest, /* The table we are inserting into */ + Select *pSelect, /* A SELECT statement to use as the data source */ + int onError, /* How to handle constraint errors */ + int iDbDest /* The database of pDest */ +){ + ExprList *pEList; /* The result set of the SELECT */ + Table *pSrc; /* The table in the FROM clause of SELECT */ + Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ + struct SrcList_item *pItem; /* An element of pSelect->pSrc */ + int i; /* Loop counter */ + int iDbSrc; /* The database of pSrc */ + int iSrc, iDest; /* Cursors from source and destination */ + int addr1, addr2; /* Loop addresses */ + int emptyDestTest; /* Address of test for empty pDest */ + int emptySrcTest; /* Address of test for empty pSrc */ + Vdbe *v; /* The VDBE we are building */ + KeyInfo *pKey; /* Key information for an index */ + int regAutoinc; /* Memory register used by AUTOINC */ + int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ + int regData, regRowid; /* Registers holding data and rowid */ + + if( pSelect==0 ){ + return 0; /* Must be of the form INSERT INTO ... SELECT ... */ + } + if( sqlite3TriggerList(pParse, pDest) ){ + return 0; /* tab1 must not have triggers */ + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pDest->tabFlags & TF_Virtual ){ + return 0; /* tab1 must not be a virtual table */ + } +#endif + if( onError==OE_Default ){ + onError = OE_Abort; + } + if( onError!=OE_Abort && onError!=OE_Rollback ){ + return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ + } + assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ + if( pSelect->pSrc->nSrc!=1 ){ + return 0; /* FROM clause must have exactly one term */ + } + if( pSelect->pSrc->a[0].pSelect ){ + return 0; /* FROM clause cannot contain a subquery */ + } + if( pSelect->pWhere ){ + return 0; /* SELECT may not have a WHERE clause */ + } + if( pSelect->pOrderBy ){ + return 0; /* SELECT may not have an ORDER BY clause */ + } + /* Do not need to test for a HAVING clause. If HAVING is present but + ** there is no ORDER BY, we will get an error. */ + if( pSelect->pGroupBy ){ + return 0; /* SELECT may not have a GROUP BY clause */ + } + if( pSelect->pLimit ){ + return 0; /* SELECT may not have a LIMIT clause */ + } + assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ + if( pSelect->pPrior ){ + return 0; /* SELECT may not be a compound query */ + } + if( pSelect->selFlags & SF_Distinct ){ + return 0; /* SELECT may not be DISTINCT */ + } + pEList = pSelect->pEList; + assert( pEList!=0 ); + if( pEList->nExpr!=1 ){ + return 0; /* The result set must have exactly one column */ + } + assert( pEList->a[0].pExpr ); + if( pEList->a[0].pExpr->op!=TK_ALL ){ + return 0; /* The result set must be the special operator "*" */ + } + + /* At this point we have established that the statement is of the + ** correct syntactic form to participate in this optimization. Now + ** we have to check the semantics. + */ + pItem = pSelect->pSrc->a; + pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); + if( pSrc==0 ){ + return 0; /* FROM clause does not contain a real table */ + } + if( pSrc==pDest ){ + return 0; /* tab1 and tab2 may not be the same table */ + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pSrc->tabFlags & TF_Virtual ){ + return 0; /* tab2 must not be a virtual table */ + } +#endif + if( pSrc->pSelect ){ + return 0; /* tab2 may not be a view */ + } + if( pDest->nCol!=pSrc->nCol ){ + return 0; /* Number of columns must be the same in tab1 and tab2 */ + } + if( pDest->iPKey!=pSrc->iPKey ){ + return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ + } + for(i=0; inCol; i++){ + if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ + return 0; /* Affinity must be the same on all columns */ + } + if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ + return 0; /* Collating sequence must be the same on all columns */ + } + if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ + return 0; /* tab2 must be NOT NULL if tab1 is */ + } + } + for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ + if( pDestIdx->onError!=OE_None ){ + destHasUniqueIdx = 1; + } + for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ + if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; + } + if( pSrcIdx==0 ){ + return 0; /* pDestIdx has no corresponding index in pSrc */ + } + } +#ifndef SQLITE_OMIT_CHECK + if( pDest->pCheck && sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ + return 0; /* Tables have different CHECK constraints. Ticket #2252 */ + } +#endif +#ifndef SQLITE_OMIT_FOREIGN_KEY + /* Disallow the transfer optimization if the destination table constains + ** any foreign key constraints. This is more restrictive than necessary. + ** But the main beneficiary of the transfer optimization is the VACUUM + ** command, and the VACUUM command disables foreign key constraints. So + ** the extra complication to make this rule less restrictive is probably + ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] + */ + if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ + return 0; + } +#endif + if( (pParse->db->flags & SQLITE_CountRows)!=0 ){ + return 0; + } + + /* If we get this far, it means either: + ** + ** * We can always do the transfer if the table contains an + ** an integer primary key + ** + ** * We can conditionally do the transfer if the destination + ** table is empty. + */ +#ifdef SQLITE_TEST + sqlite3_xferopt_count++; +#endif + iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); + v = sqlite3GetVdbe(pParse); + sqlite3CodeVerifySchema(pParse, iDbSrc); + iSrc = pParse->nTab++; + iDest = pParse->nTab++; + regAutoinc = autoIncBegin(pParse, iDbDest, pDest); + sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); + if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ + /* If tables do not have an INTEGER PRIMARY KEY and there + ** are indices to be copied and the destination is not empty, + ** we have to disallow the transfer optimization because the + ** the rowids might change which will mess up indexing. + ** + ** Or if the destination has a UNIQUE index and is not empty, + ** we also disallow the transfer optimization because we cannot + ** insure that all entries in the union of DEST and SRC will be + ** unique. + */ + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); + emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); + sqlite3VdbeJumpHere(v, addr1); + }else{ + emptyDestTest = 0; + } + sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); + emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); + regData = sqlite3GetTempReg(pParse); + regRowid = sqlite3GetTempReg(pParse); + if( pDest->iPKey>=0 ){ + addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); + addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); + sqlite3HaltConstraint( + pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); + sqlite3VdbeJumpHere(v, addr2); + autoIncStep(pParse, regAutoinc, regRowid); + }else if( pDest->pIndex==0 ){ + addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); + }else{ + addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); + assert( (pDest->tabFlags & TF_Autoincrement)==0 ); + } + sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); + sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); + sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); + sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); + sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); + for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ + for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ + if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; + } + assert( pSrcIdx ); + sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); + sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, + (char*)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pSrcIdx->zName)); + pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); + sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, + (char*)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pDestIdx->zName)); + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); + sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); + sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); + sqlite3VdbeJumpHere(v, addr1); + } + sqlite3VdbeJumpHere(v, emptySrcTest); + sqlite3ReleaseTempReg(pParse, regRowid); + sqlite3ReleaseTempReg(pParse, regData); + sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + if( emptyDestTest ){ + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); + sqlite3VdbeJumpHere(v, emptyDestTest); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + return 0; + }else{ + return 1; + } +} +#endif /* SQLITE_OMIT_XFER_OPT */ diff --git a/src/journal.c b/src/journal.c new file mode 100644 index 0000000..2f9e222 --- /dev/null +++ b/src/journal.c @@ -0,0 +1,238 @@ +/* +** 2007 August 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file implements a special kind of sqlite3_file object used +** by SQLite to create journal files if the atomic-write optimization +** is enabled. +** +** The distinctive characteristic of this sqlite3_file is that the +** actual on disk file is created lazily. When the file is created, +** the caller specifies a buffer size for an in-memory buffer to +** be used to service read() and write() requests. The actual file +** on disk is not created or populated until either: +** +** 1) The in-memory representation grows too large for the allocated +** buffer, or +** 2) The sqlite3JournalCreate() function is called. +*/ +#ifdef SQLITE_ENABLE_ATOMIC_WRITE +#include "sqliteInt.h" + + +/* +** A JournalFile object is a subclass of sqlite3_file used by +** as an open file handle for journal files. +*/ +struct JournalFile { + sqlite3_io_methods *pMethod; /* I/O methods on journal files */ + int nBuf; /* Size of zBuf[] in bytes */ + char *zBuf; /* Space to buffer journal writes */ + int iSize; /* Amount of zBuf[] currently used */ + int flags; /* xOpen flags */ + sqlite3_vfs *pVfs; /* The "real" underlying VFS */ + sqlite3_file *pReal; /* The "real" underlying file descriptor */ + const char *zJournal; /* Name of the journal file */ +}; +typedef struct JournalFile JournalFile; + +/* +** If it does not already exists, create and populate the on-disk file +** for JournalFile p. +*/ +static int createFile(JournalFile *p){ + int rc = SQLITE_OK; + if( !p->pReal ){ + sqlite3_file *pReal = (sqlite3_file *)&p[1]; + rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0); + if( rc==SQLITE_OK ){ + p->pReal = pReal; + if( p->iSize>0 ){ + assert(p->iSize<=p->nBuf); + rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0); + } + } + } + return rc; +} + +/* +** Close the file. +*/ +static int jrnlClose(sqlite3_file *pJfd){ + JournalFile *p = (JournalFile *)pJfd; + if( p->pReal ){ + sqlite3OsClose(p->pReal); + } + sqlite3_free(p->zBuf); + return SQLITE_OK; +} + +/* +** Read data from the file. +*/ +static int jrnlRead( + sqlite3_file *pJfd, /* The journal file from which to read */ + void *zBuf, /* Put the results here */ + int iAmt, /* Number of bytes to read */ + sqlite_int64 iOfst /* Begin reading at this offset */ +){ + int rc = SQLITE_OK; + JournalFile *p = (JournalFile *)pJfd; + if( p->pReal ){ + rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst); + }else if( (iAmt+iOfst)>p->iSize ){ + rc = SQLITE_IOERR_SHORT_READ; + }else{ + memcpy(zBuf, &p->zBuf[iOfst], iAmt); + } + return rc; +} + +/* +** Write data to the file. +*/ +static int jrnlWrite( + sqlite3_file *pJfd, /* The journal file into which to write */ + const void *zBuf, /* Take data to be written from here */ + int iAmt, /* Number of bytes to write */ + sqlite_int64 iOfst /* Begin writing at this offset into the file */ +){ + int rc = SQLITE_OK; + JournalFile *p = (JournalFile *)pJfd; + if( !p->pReal && (iOfst+iAmt)>p->nBuf ){ + rc = createFile(p); + } + if( rc==SQLITE_OK ){ + if( p->pReal ){ + rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst); + }else{ + memcpy(&p->zBuf[iOfst], zBuf, iAmt); + if( p->iSize<(iOfst+iAmt) ){ + p->iSize = (iOfst+iAmt); + } + } + } + return rc; +} + +/* +** Truncate the file. +*/ +static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){ + int rc = SQLITE_OK; + JournalFile *p = (JournalFile *)pJfd; + if( p->pReal ){ + rc = sqlite3OsTruncate(p->pReal, size); + }else if( sizeiSize ){ + p->iSize = size; + } + return rc; +} + +/* +** Sync the file. +*/ +static int jrnlSync(sqlite3_file *pJfd, int flags){ + int rc; + JournalFile *p = (JournalFile *)pJfd; + if( p->pReal ){ + rc = sqlite3OsSync(p->pReal, flags); + }else{ + rc = SQLITE_OK; + } + return rc; +} + +/* +** Query the size of the file in bytes. +*/ +static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){ + int rc = SQLITE_OK; + JournalFile *p = (JournalFile *)pJfd; + if( p->pReal ){ + rc = sqlite3OsFileSize(p->pReal, pSize); + }else{ + *pSize = (sqlite_int64) p->iSize; + } + return rc; +} + +/* +** Table of methods for JournalFile sqlite3_file object. +*/ +static struct sqlite3_io_methods JournalFileMethods = { + 1, /* iVersion */ + jrnlClose, /* xClose */ + jrnlRead, /* xRead */ + jrnlWrite, /* xWrite */ + jrnlTruncate, /* xTruncate */ + jrnlSync, /* xSync */ + jrnlFileSize, /* xFileSize */ + 0, /* xLock */ + 0, /* xUnlock */ + 0, /* xCheckReservedLock */ + 0, /* xFileControl */ + 0, /* xSectorSize */ + 0, /* xDeviceCharacteristics */ + 0, /* xShmMap */ + 0, /* xShmLock */ + 0, /* xShmBarrier */ + 0 /* xShmUnmap */ +}; + +/* +** Open a journal file. +*/ +int sqlite3JournalOpen( + sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */ + const char *zName, /* Name of the journal file */ + sqlite3_file *pJfd, /* Preallocated, blank file handle */ + int flags, /* Opening flags */ + int nBuf /* Bytes buffered before opening the file */ +){ + JournalFile *p = (JournalFile *)pJfd; + memset(p, 0, sqlite3JournalSize(pVfs)); + if( nBuf>0 ){ + p->zBuf = sqlite3MallocZero(nBuf); + if( !p->zBuf ){ + return SQLITE_NOMEM; + } + }else{ + return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0); + } + p->pMethod = &JournalFileMethods; + p->nBuf = nBuf; + p->flags = flags; + p->zJournal = zName; + p->pVfs = pVfs; + return SQLITE_OK; +} + +/* +** If the argument p points to a JournalFile structure, and the underlying +** file has not yet been created, create it now. +*/ +int sqlite3JournalCreate(sqlite3_file *p){ + if( p->pMethods!=&JournalFileMethods ){ + return SQLITE_OK; + } + return createFile((JournalFile *)p); +} + +/* +** Return the number of bytes required to store a JournalFile that uses vfs +** pVfs to create the underlying on-disk files. +*/ +int sqlite3JournalSize(sqlite3_vfs *pVfs){ + return (pVfs->szOsFile+sizeof(JournalFile)); +} +#endif diff --git a/src/legacy.c b/src/legacy.c new file mode 100644 index 0000000..ebab2de --- /dev/null +++ b/src/legacy.c @@ -0,0 +1,145 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Main file for the SQLite library. The routines in this file +** implement the programmer interface to the library. Routines in +** other files are for internal use by SQLite and should not be +** accessed by users of the library. +*/ + +#include "sqliteInt.h" + +/* +** Execute SQL code. Return one of the SQLITE_ success/failure +** codes. Also write an error message into memory obtained from +** malloc() and make *pzErrMsg point to that message. +** +** If the SQL is a query, then for each row in the query result +** the xCallback() function is called. pArg becomes the first +** argument to xCallback(). If xCallback=NULL then no callback +** is invoked, even for queries. +*/ +int sqlite3_exec( + sqlite3 *db, /* The database on which the SQL executes */ + const char *zSql, /* The SQL to be executed */ + sqlite3_callback xCallback, /* Invoke this callback routine */ + void *pArg, /* First argument to xCallback() */ + char **pzErrMsg /* Write error messages here */ +){ + int rc = SQLITE_OK; /* Return code */ + const char *zLeftover; /* Tail of unprocessed SQL */ + sqlite3_stmt *pStmt = 0; /* The current SQL statement */ + char **azCols = 0; /* Names of result columns */ + int nRetry = 0; /* Number of retry attempts */ + int callbackIsInit; /* True if callback data is initialized */ + + if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; + if( zSql==0 ) zSql = ""; + + sqlite3_mutex_enter(db->mutex); + sqlite3Error(db, SQLITE_OK, 0); + while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){ + int nCol; + char **azVals = 0; + + pStmt = 0; + rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover); + assert( rc==SQLITE_OK || pStmt==0 ); + if( rc!=SQLITE_OK ){ + continue; + } + if( !pStmt ){ + /* this happens for a comment or white-space */ + zSql = zLeftover; + continue; + } + + callbackIsInit = 0; + nCol = sqlite3_column_count(pStmt); + + while( 1 ){ + int i; + rc = sqlite3_step(pStmt); + + /* Invoke the callback function if required */ + if( xCallback && (SQLITE_ROW==rc || + (SQLITE_DONE==rc && !callbackIsInit + && db->flags&SQLITE_NullCallback)) ){ + if( !callbackIsInit ){ + azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1); + if( azCols==0 ){ + goto exec_out; + } + for(i=0; imallocFailed = 1; + goto exec_out; + } + } + } + if( xCallback(pArg, nCol, azVals, azCols) ){ + rc = SQLITE_ABORT; + sqlite3VdbeFinalize((Vdbe *)pStmt); + pStmt = 0; + sqlite3Error(db, SQLITE_ABORT, 0); + goto exec_out; + } + } + + if( rc!=SQLITE_ROW ){ + rc = sqlite3VdbeFinalize((Vdbe *)pStmt); + pStmt = 0; + if( rc!=SQLITE_SCHEMA ){ + nRetry = 0; + zSql = zLeftover; + while( sqlite3Isspace(zSql[0]) ) zSql++; + } + break; + } + } + + sqlite3DbFree(db, azCols); + azCols = 0; + } + +exec_out: + if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt); + sqlite3DbFree(db, azCols); + + rc = sqlite3ApiExit(db, rc); + if( rc!=SQLITE_OK && ALWAYS(rc==sqlite3_errcode(db)) && pzErrMsg ){ + int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db)); + *pzErrMsg = sqlite3Malloc(nErrMsg); + if( *pzErrMsg ){ + memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg); + }else{ + rc = SQLITE_NOMEM; + sqlite3Error(db, SQLITE_NOMEM, 0); + } + }else if( pzErrMsg ){ + *pzErrMsg = 0; + } + + assert( (rc&db->errMask)==rc ); + sqlite3_mutex_leave(db->mutex); + return rc; +} diff --git a/src/lempar.c b/src/lempar.c new file mode 100644 index 0000000..cb6025e --- /dev/null +++ b/src/lempar.c @@ -0,0 +1,863 @@ +/* Driver template for the LEMON parser generator. +** The author disclaims copyright to this source code. +** +** This version of "lempar.c" is modified, slightly, for use by SQLite. +** The only modifications are the addition of a couple of NEVER() +** macros to disable tests that are needed in the case of a general +** LALR(1) grammar but which are always false in the +** specific grammar used by SQLite. +*/ +/* First off, code is included that follows the "include" declaration +** in the input grammar file. */ +#include +%% +/* Next is all token values, in a form suitable for use by makeheaders. +** This section will be null unless lemon is run with the -m switch. +*/ +/* +** These constants (all generated automatically by the parser generator) +** specify the various kinds of tokens (terminals) that the parser +** understands. +** +** Each symbol here is a terminal symbol in the grammar. +*/ +%% +/* Make sure the INTERFACE macro is defined. +*/ +#ifndef INTERFACE +# define INTERFACE 1 +#endif +/* The next thing included is series of defines which control +** various aspects of the generated parser. +** YYCODETYPE is the data type used for storing terminal +** and nonterminal numbers. "unsigned char" is +** used if there are fewer than 250 terminals +** and nonterminals. "int" is used otherwise. +** YYNOCODE is a number of type YYCODETYPE which corresponds +** to no legal terminal or nonterminal number. This +** number is used to fill in empty slots of the hash +** table. +** YYFALLBACK If defined, this indicates that one or more tokens +** have fall-back values which should be used if the +** original value of the token will not parse. +** YYACTIONTYPE is the data type used for storing terminal +** and nonterminal numbers. "unsigned char" is +** used if there are fewer than 250 rules and +** states combined. "int" is used otherwise. +** ParseTOKENTYPE is the data type used for minor tokens given +** directly to the parser from the tokenizer. +** YYMINORTYPE is the data type used for all minor tokens. +** This is typically a union of many types, one of +** which is ParseTOKENTYPE. The entry in the union +** for base tokens is called "yy0". +** YYSTACKDEPTH is the maximum depth of the parser's stack. If +** zero the stack is dynamically sized using realloc() +** ParseARG_SDECL A static variable declaration for the %extra_argument +** ParseARG_PDECL A parameter declaration for the %extra_argument +** ParseARG_STORE Code to store %extra_argument into yypParser +** ParseARG_FETCH Code to extract %extra_argument from yypParser +** YYNSTATE the combined number of states. +** YYNRULE the number of rules in the grammar +** YYERRORSYMBOL is the code number of the error symbol. If not +** defined, then do no error processing. +*/ +%% +#define YY_NO_ACTION (YYNSTATE+YYNRULE+2) +#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1) +#define YY_ERROR_ACTION (YYNSTATE+YYNRULE) + +/* The yyzerominor constant is used to initialize instances of +** YYMINORTYPE objects to zero. */ +static const YYMINORTYPE yyzerominor = { 0 }; + +/* Define the yytestcase() macro to be a no-op if is not already defined +** otherwise. +** +** Applications can choose to define yytestcase() in the %include section +** to a macro that can assist in verifying code coverage. For production +** code the yytestcase() macro should be turned off. But it is useful +** for testing. +*/ +#ifndef yytestcase +# define yytestcase(X) +#endif + + +/* Next are the tables used to determine what action to take based on the +** current state and lookahead token. These tables are used to implement +** functions that take a state number and lookahead value and return an +** action integer. +** +** Suppose the action integer is N. Then the action is determined as +** follows +** +** 0 <= N < YYNSTATE Shift N. That is, push the lookahead +** token onto the stack and goto state N. +** +** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE. +** +** N == YYNSTATE+YYNRULE A syntax error has occurred. +** +** N == YYNSTATE+YYNRULE+1 The parser accepts its input. +** +** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused +** slots in the yy_action[] table. +** +** The action table is constructed as a single large table named yy_action[]. +** Given state S and lookahead X, the action is computed as +** +** yy_action[ yy_shift_ofst[S] + X ] +** +** If the index value yy_shift_ofst[S]+X is out of range or if the value +** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S] +** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table +** and that yy_default[S] should be used instead. +** +** The formula above is for computing the action when the lookahead is +** a terminal symbol. If the lookahead is a non-terminal (as occurs after +** a reduce action) then the yy_reduce_ofst[] array is used in place of +** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of +** YY_SHIFT_USE_DFLT. +** +** The following are the tables generated in this section: +** +** yy_action[] A single table containing all actions. +** yy_lookahead[] A table containing the lookahead for each entry in +** yy_action. Used to detect hash collisions. +** yy_shift_ofst[] For each state, the offset into yy_action for +** shifting terminals. +** yy_reduce_ofst[] For each state, the offset into yy_action for +** shifting non-terminals after a reduce. +** yy_default[] Default action for each state. +*/ +%% + +/* The next table maps tokens into fallback tokens. If a construct +** like the following: +** +** %fallback ID X Y Z. +** +** appears in the grammar, then ID becomes a fallback token for X, Y, +** and Z. Whenever one of the tokens X, Y, or Z is input to the parser +** but it does not parse, the type of the token is changed to ID and +** the parse is retried before an error is thrown. +*/ +#ifdef YYFALLBACK +static const YYCODETYPE yyFallback[] = { +%% +}; +#endif /* YYFALLBACK */ + +/* The following structure represents a single element of the +** parser's stack. Information stored includes: +** +** + The state number for the parser at this level of the stack. +** +** + The value of the token stored at this level of the stack. +** (In other words, the "major" token.) +** +** + The semantic value stored at this level of the stack. This is +** the information used by the action routines in the grammar. +** It is sometimes called the "minor" token. +*/ +struct yyStackEntry { + YYACTIONTYPE stateno; /* The state-number */ + YYCODETYPE major; /* The major token value. This is the code + ** number for the token at this stack level */ + YYMINORTYPE minor; /* The user-supplied minor token value. This + ** is the value of the token */ +}; +typedef struct yyStackEntry yyStackEntry; + +/* The state of the parser is completely contained in an instance of +** the following structure */ +struct yyParser { + int yyidx; /* Index of top element in stack */ +#ifdef YYTRACKMAXSTACKDEPTH + int yyidxMax; /* Maximum value of yyidx */ +#endif + int yyerrcnt; /* Shifts left before out of the error */ + ParseARG_SDECL /* A place to hold %extra_argument */ +#if YYSTACKDEPTH<=0 + int yystksz; /* Current side of the stack */ + yyStackEntry *yystack; /* The parser's stack */ +#else + yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ +#endif +}; +typedef struct yyParser yyParser; + +#ifndef NDEBUG +#include +static FILE *yyTraceFILE = 0; +static char *yyTracePrompt = 0; +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* +** Turn parser tracing on by giving a stream to which to write the trace +** and a prompt to preface each trace message. Tracing is turned off +** by making either argument NULL +** +** Inputs: +**
    +**
  • A FILE* to which trace output should be written. +** If NULL, then tracing is turned off. +**
  • A prefix string written at the beginning of every +** line of trace output. If NULL, then tracing is +** turned off. +**
+** +** Outputs: +** None. +*/ +void ParseTrace(FILE *TraceFILE, char *zTracePrompt){ + yyTraceFILE = TraceFILE; + yyTracePrompt = zTracePrompt; + if( yyTraceFILE==0 ) yyTracePrompt = 0; + else if( yyTracePrompt==0 ) yyTraceFILE = 0; +} +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* For tracing shifts, the names of all terminals and nonterminals +** are required. The following table supplies these names */ +static const char *const yyTokenName[] = { +%% +}; +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* For tracing reduce actions, the names of all rules are required. +*/ +static const char *const yyRuleName[] = { +%% +}; +#endif /* NDEBUG */ + + +#if YYSTACKDEPTH<=0 +/* +** Try to increase the size of the parser stack. +*/ +static void yyGrowStack(yyParser *p){ + int newSize; + yyStackEntry *pNew; + + newSize = p->yystksz*2 + 100; + pNew = realloc(p->yystack, newSize*sizeof(pNew[0])); + if( pNew ){ + p->yystack = pNew; + p->yystksz = newSize; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sStack grows to %d entries!\n", + yyTracePrompt, p->yystksz); + } +#endif + } +} +#endif + +/* +** This function allocates a new parser. +** The only argument is a pointer to a function which works like +** malloc. +** +** Inputs: +** A pointer to the function used to allocate memory. +** +** Outputs: +** A pointer to a parser. This pointer is used in subsequent calls +** to Parse and ParseFree. +*/ +void *ParseAlloc(void *(*mallocProc)(size_t)){ + yyParser *pParser; + pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) ); + if( pParser ){ + pParser->yyidx = -1; +#ifdef YYTRACKMAXSTACKDEPTH + pParser->yyidxMax = 0; +#endif +#if YYSTACKDEPTH<=0 + pParser->yystack = NULL; + pParser->yystksz = 0; + yyGrowStack(pParser); +#endif + } + return pParser; +} + +/* The following function deletes the value associated with a +** symbol. The symbol can be either a terminal or nonterminal. +** "yymajor" is the symbol code, and "yypminor" is a pointer to +** the value. +*/ +static void yy_destructor( + yyParser *yypParser, /* The parser */ + YYCODETYPE yymajor, /* Type code for object to destroy */ + YYMINORTYPE *yypminor /* The object to be destroyed */ +){ + ParseARG_FETCH; + switch( yymajor ){ + /* Here is inserted the actions which take place when a + ** terminal or non-terminal is destroyed. This can happen + ** when the symbol is popped from the stack during a + ** reduce or during error processing or when a parser is + ** being destroyed before it is finished parsing. + ** + ** Note: during a reduce, the only symbols destroyed are those + ** which appear on the RHS of the rule, but which are not used + ** inside the C code. + */ +%% + default: break; /* If no destructor action specified: do nothing */ + } +} + +/* +** Pop the parser's stack once. +** +** If there is a destructor routine associated with the token which +** is popped from the stack, then call it. +** +** Return the major token number for the symbol popped. +*/ +static int yy_pop_parser_stack(yyParser *pParser){ + YYCODETYPE yymajor; + yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; + + /* There is no mechanism by which the parser stack can be popped below + ** empty in SQLite. */ + if( NEVER(pParser->yyidx<0) ) return 0; +#ifndef NDEBUG + if( yyTraceFILE && pParser->yyidx>=0 ){ + fprintf(yyTraceFILE,"%sPopping %s\n", + yyTracePrompt, + yyTokenName[yytos->major]); + } +#endif + yymajor = yytos->major; + yy_destructor(pParser, yymajor, &yytos->minor); + pParser->yyidx--; + return yymajor; +} + +/* +** Deallocate and destroy a parser. Destructors are all called for +** all stack elements before shutting the parser down. +** +** Inputs: +**
    +**
  • A pointer to the parser. This should be a pointer +** obtained from ParseAlloc. +**
  • A pointer to a function used to reclaim memory obtained +** from malloc. +**
+*/ +void ParseFree( + void *p, /* The parser to be deleted */ + void (*freeProc)(void*) /* Function used to reclaim memory */ +){ + yyParser *pParser = (yyParser*)p; + /* In SQLite, we never try to destroy a parser that was not successfully + ** created in the first place. */ + if( NEVER(pParser==0) ) return; + while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser); +#if YYSTACKDEPTH<=0 + free(pParser->yystack); +#endif + (*freeProc)((void*)pParser); +} + +/* +** Return the peak depth of the stack for a parser. +*/ +#ifdef YYTRACKMAXSTACKDEPTH +int ParseStackPeak(void *p){ + yyParser *pParser = (yyParser*)p; + return pParser->yyidxMax; +} +#endif + +/* +** Find the appropriate action for a parser given the terminal +** look-ahead token iLookAhead. +** +** If the look-ahead token is YYNOCODE, then check to see if the action is +** independent of the look-ahead. If it is, return the action, otherwise +** return YY_NO_ACTION. +*/ +static int yy_find_shift_action( + yyParser *pParser, /* The parser */ + YYCODETYPE iLookAhead /* The look-ahead token */ +){ + int i; + int stateno = pParser->yystack[pParser->yyidx].stateno; + + if( stateno>YY_SHIFT_COUNT + || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){ + return yy_default[stateno]; + } + assert( iLookAhead!=YYNOCODE ); + i += iLookAhead; + if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){ + if( iLookAhead>0 ){ +#ifdef YYFALLBACK + YYCODETYPE iFallback; /* Fallback token */ + if( iLookAhead %s\n", + yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]); + } +#endif + return yy_find_shift_action(pParser, iFallback); + } +#endif +#ifdef YYWILDCARD + { + int j = i - iLookAhead + YYWILDCARD; + if( +#if YY_SHIFT_MIN+YYWILDCARD<0 + j>=0 && +#endif +#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT + j %s\n", + yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]); + } +#endif /* NDEBUG */ + return yy_action[j]; + } + } +#endif /* YYWILDCARD */ + } + return yy_default[stateno]; + }else{ + return yy_action[i]; + } +} + +/* +** Find the appropriate action for a parser given the non-terminal +** look-ahead token iLookAhead. +** +** If the look-ahead token is YYNOCODE, then check to see if the action is +** independent of the look-ahead. If it is, return the action, otherwise +** return YY_NO_ACTION. +*/ +static int yy_find_reduce_action( + int stateno, /* Current state number */ + YYCODETYPE iLookAhead /* The look-ahead token */ +){ + int i; +#ifdef YYERRORSYMBOL + if( stateno>YY_REDUCE_COUNT ){ + return yy_default[stateno]; + } +#else + assert( stateno<=YY_REDUCE_COUNT ); +#endif + i = yy_reduce_ofst[stateno]; + assert( i!=YY_REDUCE_USE_DFLT ); + assert( iLookAhead!=YYNOCODE ); + i += iLookAhead; +#ifdef YYERRORSYMBOL + if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){ + return yy_default[stateno]; + } +#else + assert( i>=0 && iyyidx--; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will execute if the parser + ** stack every overflows */ +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument var */ +} + +/* +** Perform a shift action. +*/ +static void yy_shift( + yyParser *yypParser, /* The parser to be shifted */ + int yyNewState, /* The new state to shift in */ + int yyMajor, /* The major token to shift in */ + YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */ +){ + yyStackEntry *yytos; + yypParser->yyidx++; +#ifdef YYTRACKMAXSTACKDEPTH + if( yypParser->yyidx>yypParser->yyidxMax ){ + yypParser->yyidxMax = yypParser->yyidx; + } +#endif +#if YYSTACKDEPTH>0 + if( yypParser->yyidx>=YYSTACKDEPTH ){ + yyStackOverflow(yypParser, yypMinor); + return; + } +#else + if( yypParser->yyidx>=yypParser->yystksz ){ + yyGrowStack(yypParser); + if( yypParser->yyidx>=yypParser->yystksz ){ + yyStackOverflow(yypParser, yypMinor); + return; + } + } +#endif + yytos = &yypParser->yystack[yypParser->yyidx]; + yytos->stateno = (YYACTIONTYPE)yyNewState; + yytos->major = (YYCODETYPE)yyMajor; + yytos->minor = *yypMinor; +#ifndef NDEBUG + if( yyTraceFILE && yypParser->yyidx>0 ){ + int i; + fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState); + fprintf(yyTraceFILE,"%sStack:",yyTracePrompt); + for(i=1; i<=yypParser->yyidx; i++) + fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]); + fprintf(yyTraceFILE,"\n"); + } +#endif +} + +/* The following table contains information about every rule that +** is used during the reduce. +*/ +static const struct { + YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */ + unsigned char nrhs; /* Number of right-hand side symbols in the rule */ +} yyRuleInfo[] = { +%% +}; + +static void yy_accept(yyParser*); /* Forward Declaration */ + +/* +** Perform a reduce action and the shift that must immediately +** follow the reduce. +*/ +static void yy_reduce( + yyParser *yypParser, /* The parser */ + int yyruleno /* Number of the rule by which to reduce */ +){ + int yygoto; /* The next state */ + int yyact; /* The next action */ + YYMINORTYPE yygotominor; /* The LHS of the rule reduced */ + yyStackEntry *yymsp; /* The top of the parser's stack */ + int yysize; /* Amount to pop the stack */ + ParseARG_FETCH; + yymsp = &yypParser->yystack[yypParser->yyidx]; +#ifndef NDEBUG + if( yyTraceFILE && yyruleno>=0 + && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){ + fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt, + yyRuleName[yyruleno]); + } +#endif /* NDEBUG */ + + /* Silence complaints from purify about yygotominor being uninitialized + ** in some cases when it is copied into the stack after the following + ** switch. yygotominor is uninitialized when a rule reduces that does + ** not set the value of its left-hand side nonterminal. Leaving the + ** value of the nonterminal uninitialized is utterly harmless as long + ** as the value is never used. So really the only thing this code + ** accomplishes is to quieten purify. + ** + ** 2007-01-16: The wireshark project (www.wireshark.org) reports that + ** without this code, their parser segfaults. I'm not sure what there + ** parser is doing to make this happen. This is the second bug report + ** from wireshark this week. Clearly they are stressing Lemon in ways + ** that it has not been previously stressed... (SQLite ticket #2172) + */ + /*memset(&yygotominor, 0, sizeof(yygotominor));*/ + yygotominor = yyzerominor; + + + switch( yyruleno ){ + /* Beginning here are the reduction cases. A typical example + ** follows: + ** case 0: + ** #line + ** { ... } // User supplied code + ** #line + ** break; + */ +%% + }; + yygoto = yyRuleInfo[yyruleno].lhs; + yysize = yyRuleInfo[yyruleno].nrhs; + yypParser->yyidx -= yysize; + yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto); + if( yyact < YYNSTATE ){ +#ifdef NDEBUG + /* If we are not debugging and the reduce action popped at least + ** one element off the stack, then we can push the new element back + ** onto the stack here, and skip the stack overflow test in yy_shift(). + ** That gives a significant speed improvement. */ + if( yysize ){ + yypParser->yyidx++; + yymsp -= yysize-1; + yymsp->stateno = (YYACTIONTYPE)yyact; + yymsp->major = (YYCODETYPE)yygoto; + yymsp->minor = yygotominor; + }else +#endif + { + yy_shift(yypParser,yyact,yygoto,&yygotominor); + } + }else{ + assert( yyact == YYNSTATE + YYNRULE + 1 ); + yy_accept(yypParser); + } +} + +/* +** The following code executes when the parse fails +*/ +#ifndef YYNOERRORRECOVERY +static void yy_parse_failed( + yyParser *yypParser /* The parser */ +){ + ParseARG_FETCH; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will be executed whenever the + ** parser fails */ +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} +#endif /* YYNOERRORRECOVERY */ + +/* +** The following code executes when a syntax error first occurs. +*/ +static void yy_syntax_error( + yyParser *yypParser, /* The parser */ + int yymajor, /* The major type of the error token */ + YYMINORTYPE yyminor /* The minor type of the error token */ +){ + ParseARG_FETCH; +#define TOKEN (yyminor.yy0) +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* +** The following is executed when the parser accepts +*/ +static void yy_accept( + yyParser *yypParser /* The parser */ +){ + ParseARG_FETCH; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will be executed whenever the + ** parser accepts */ +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* The main parser program. +** The first argument is a pointer to a structure obtained from +** "ParseAlloc" which describes the current state of the parser. +** The second argument is the major token number. The third is +** the minor token. The fourth optional argument is whatever the +** user wants (and specified in the grammar) and is available for +** use by the action routines. +** +** Inputs: +**
    +**
  • A pointer to the parser (an opaque structure.) +**
  • The major token number. +**
  • The minor token number. +**
  • An option argument of a grammar-specified type. +**
+** +** Outputs: +** None. +*/ +void Parse( + void *yyp, /* The parser */ + int yymajor, /* The major token code number */ + ParseTOKENTYPE yyminor /* The value for the token */ + ParseARG_PDECL /* Optional %extra_argument parameter */ +){ + YYMINORTYPE yyminorunion; + int yyact; /* The parser action. */ +#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY) + int yyendofinput; /* True if we are at the end of input */ +#endif +#ifdef YYERRORSYMBOL + int yyerrorhit = 0; /* True if yymajor has invoked an error */ +#endif + yyParser *yypParser; /* The parser */ + + /* (re)initialize the parser, if necessary */ + yypParser = (yyParser*)yyp; + if( yypParser->yyidx<0 ){ +#if YYSTACKDEPTH<=0 + if( yypParser->yystksz <=0 ){ + /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/ + yyminorunion = yyzerominor; + yyStackOverflow(yypParser, &yyminorunion); + return; + } +#endif + yypParser->yyidx = 0; + yypParser->yyerrcnt = -1; + yypParser->yystack[0].stateno = 0; + yypParser->yystack[0].major = 0; + } + yyminorunion.yy0 = yyminor; +#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY) + yyendofinput = (yymajor==0); +#endif + ParseARG_STORE; + +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]); + } +#endif + + do{ + yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor); + if( yyactyyerrcnt--; + yymajor = YYNOCODE; + }else if( yyact < YYNSTATE + YYNRULE ){ + yy_reduce(yypParser,yyact-YYNSTATE); + }else{ + assert( yyact == YY_ERROR_ACTION ); +#ifdef YYERRORSYMBOL + int yymx; +#endif +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); + } +#endif +#ifdef YYERRORSYMBOL + /* A syntax error has occurred. + ** The response to an error depends upon whether or not the + ** grammar defines an error token "ERROR". + ** + ** This is what we do if the grammar does define ERROR: + ** + ** * Call the %syntax_error function. + ** + ** * Begin popping the stack until we enter a state where + ** it is legal to shift the error symbol, then shift + ** the error symbol. + ** + ** * Set the error count to three. + ** + ** * Begin accepting and shifting new tokens. No new error + ** processing will occur until three tokens have been + ** shifted successfully. + ** + */ + if( yypParser->yyerrcnt<0 ){ + yy_syntax_error(yypParser,yymajor,yyminorunion); + } + yymx = yypParser->yystack[yypParser->yyidx].major; + if( yymx==YYERRORSYMBOL || yyerrorhit ){ +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sDiscard input token %s\n", + yyTracePrompt,yyTokenName[yymajor]); + } +#endif + yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion); + yymajor = YYNOCODE; + }else{ + while( + yypParser->yyidx >= 0 && + yymx != YYERRORSYMBOL && + (yyact = yy_find_reduce_action( + yypParser->yystack[yypParser->yyidx].stateno, + YYERRORSYMBOL)) >= YYNSTATE + ){ + yy_pop_parser_stack(yypParser); + } + if( yypParser->yyidx < 0 || yymajor==0 ){ + yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); + yy_parse_failed(yypParser); + yymajor = YYNOCODE; + }else if( yymx!=YYERRORSYMBOL ){ + YYMINORTYPE u2; + u2.YYERRSYMDT = 0; + yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2); + } + } + yypParser->yyerrcnt = 3; + yyerrorhit = 1; +#elif defined(YYNOERRORRECOVERY) + /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to + ** do any kind of error recovery. Instead, simply invoke the syntax + ** error routine and continue going as if nothing had happened. + ** + ** Applications can set this macro (for example inside %include) if + ** they intend to abandon the parse upon the first syntax error seen. + */ + yy_syntax_error(yypParser,yymajor,yyminorunion); + yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); + yymajor = YYNOCODE; + +#else /* YYERRORSYMBOL is not defined */ + /* This is what we do if the grammar does not define ERROR: + ** + ** * Report an error message, and throw away the input token. + ** + ** * If the input token is $, then fail the parse. + ** + ** As before, subsequent error messages are suppressed until + ** three input tokens have been successfully shifted. + */ + if( yypParser->yyerrcnt<=0 ){ + yy_syntax_error(yypParser,yymajor,yyminorunion); + } + yypParser->yyerrcnt = 3; + yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); + if( yyendofinput ){ + yy_parse_failed(yypParser); + } + yymajor = YYNOCODE; +#endif + } + }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 ); + return; +} diff --git a/src/loadext.c b/src/loadext.c new file mode 100644 index 0000000..e9c97ad --- /dev/null +++ b/src/loadext.c @@ -0,0 +1,657 @@ +/* +** 2006 June 7 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to dynamically load extensions into +** the SQLite library. +*/ + +#ifndef SQLITE_CORE + #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */ +#endif +#include "sqlite3ext.h" +#include "sqliteInt.h" +#include + +#ifndef SQLITE_OMIT_LOAD_EXTENSION + +/* +** Some API routines are omitted when various features are +** excluded from a build of SQLite. Substitute a NULL pointer +** for any missing APIs. +*/ +#ifndef SQLITE_ENABLE_COLUMN_METADATA +# define sqlite3_column_database_name 0 +# define sqlite3_column_database_name16 0 +# define sqlite3_column_table_name 0 +# define sqlite3_column_table_name16 0 +# define sqlite3_column_origin_name 0 +# define sqlite3_column_origin_name16 0 +# define sqlite3_table_column_metadata 0 +#endif + +#ifdef SQLITE_OMIT_AUTHORIZATION +# define sqlite3_set_authorizer 0 +#endif + +#ifdef SQLITE_OMIT_UTF16 +# define sqlite3_bind_text16 0 +# define sqlite3_collation_needed16 0 +# define sqlite3_column_decltype16 0 +# define sqlite3_column_name16 0 +# define sqlite3_column_text16 0 +# define sqlite3_complete16 0 +# define sqlite3_create_collation16 0 +# define sqlite3_create_function16 0 +# define sqlite3_errmsg16 0 +# define sqlite3_open16 0 +# define sqlite3_prepare16 0 +# define sqlite3_prepare16_v2 0 +# define sqlite3_result_error16 0 +# define sqlite3_result_text16 0 +# define sqlite3_result_text16be 0 +# define sqlite3_result_text16le 0 +# define sqlite3_value_text16 0 +# define sqlite3_value_text16be 0 +# define sqlite3_value_text16le 0 +# define sqlite3_column_database_name16 0 +# define sqlite3_column_table_name16 0 +# define sqlite3_column_origin_name16 0 +#endif + +#ifdef SQLITE_OMIT_COMPLETE +# define sqlite3_complete 0 +# define sqlite3_complete16 0 +#endif + +#ifdef SQLITE_OMIT_DECLTYPE +# define sqlite3_column_decltype16 0 +# define sqlite3_column_decltype 0 +#endif + +#ifdef SQLITE_OMIT_PROGRESS_CALLBACK +# define sqlite3_progress_handler 0 +#endif + +#ifdef SQLITE_OMIT_VIRTUALTABLE +# define sqlite3_create_module 0 +# define sqlite3_create_module_v2 0 +# define sqlite3_declare_vtab 0 +# define sqlite3_vtab_config 0 +# define sqlite3_vtab_on_conflict 0 +#endif + +#ifdef SQLITE_OMIT_SHARED_CACHE +# define sqlite3_enable_shared_cache 0 +#endif + +#ifdef SQLITE_OMIT_TRACE +# define sqlite3_profile 0 +# define sqlite3_trace 0 +#endif + +#ifdef SQLITE_OMIT_GET_TABLE +# define sqlite3_free_table 0 +# define sqlite3_get_table 0 +#endif + +#ifdef SQLITE_OMIT_INCRBLOB +#define sqlite3_bind_zeroblob 0 +#define sqlite3_blob_bytes 0 +#define sqlite3_blob_close 0 +#define sqlite3_blob_open 0 +#define sqlite3_blob_read 0 +#define sqlite3_blob_write 0 +#define sqlite3_blob_reopen 0 +#endif + +/* +** The following structure contains pointers to all SQLite API routines. +** A pointer to this structure is passed into extensions when they are +** loaded so that the extension can make calls back into the SQLite +** library. +** +** When adding new APIs, add them to the bottom of this structure +** in order to preserve backwards compatibility. +** +** Extensions that use newer APIs should first call the +** sqlite3_libversion_number() to make sure that the API they +** intend to use is supported by the library. Extensions should +** also check to make sure that the pointer to the function is +** not NULL before calling it. +*/ +static const sqlite3_api_routines sqlite3Apis = { + sqlite3_aggregate_context, +#ifndef SQLITE_OMIT_DEPRECATED + sqlite3_aggregate_count, +#else + 0, +#endif + sqlite3_bind_blob, + sqlite3_bind_double, + sqlite3_bind_int, + sqlite3_bind_int64, + sqlite3_bind_null, + sqlite3_bind_parameter_count, + sqlite3_bind_parameter_index, + sqlite3_bind_parameter_name, + sqlite3_bind_text, + sqlite3_bind_text16, + sqlite3_bind_value, + sqlite3_busy_handler, + sqlite3_busy_timeout, + sqlite3_changes, + sqlite3_close, + sqlite3_collation_needed, + sqlite3_collation_needed16, + sqlite3_column_blob, + sqlite3_column_bytes, + sqlite3_column_bytes16, + sqlite3_column_count, + sqlite3_column_database_name, + sqlite3_column_database_name16, + sqlite3_column_decltype, + sqlite3_column_decltype16, + sqlite3_column_double, + sqlite3_column_int, + sqlite3_column_int64, + sqlite3_column_name, + sqlite3_column_name16, + sqlite3_column_origin_name, + sqlite3_column_origin_name16, + sqlite3_column_table_name, + sqlite3_column_table_name16, + sqlite3_column_text, + sqlite3_column_text16, + sqlite3_column_type, + sqlite3_column_value, + sqlite3_commit_hook, + sqlite3_complete, + sqlite3_complete16, + sqlite3_create_collation, + sqlite3_create_collation16, + sqlite3_create_function, + sqlite3_create_function16, + sqlite3_create_module, + sqlite3_data_count, + sqlite3_db_handle, + sqlite3_declare_vtab, + sqlite3_enable_shared_cache, + sqlite3_errcode, + sqlite3_errmsg, + sqlite3_errmsg16, + sqlite3_exec, +#ifndef SQLITE_OMIT_DEPRECATED + sqlite3_expired, +#else + 0, +#endif + sqlite3_finalize, + sqlite3_free, + sqlite3_free_table, + sqlite3_get_autocommit, + sqlite3_get_auxdata, + sqlite3_get_table, + 0, /* Was sqlite3_global_recover(), but that function is deprecated */ + sqlite3_interrupt, + sqlite3_last_insert_rowid, + sqlite3_libversion, + sqlite3_libversion_number, + sqlite3_malloc, + sqlite3_mprintf, + sqlite3_open, + sqlite3_open16, + sqlite3_prepare, + sqlite3_prepare16, + sqlite3_profile, + sqlite3_progress_handler, + sqlite3_realloc, + sqlite3_reset, + sqlite3_result_blob, + sqlite3_result_double, + sqlite3_result_error, + sqlite3_result_error16, + sqlite3_result_int, + sqlite3_result_int64, + sqlite3_result_null, + sqlite3_result_text, + sqlite3_result_text16, + sqlite3_result_text16be, + sqlite3_result_text16le, + sqlite3_result_value, + sqlite3_rollback_hook, + sqlite3_set_authorizer, + sqlite3_set_auxdata, + sqlite3_snprintf, + sqlite3_step, + sqlite3_table_column_metadata, +#ifndef SQLITE_OMIT_DEPRECATED + sqlite3_thread_cleanup, +#else + 0, +#endif + sqlite3_total_changes, + sqlite3_trace, +#ifndef SQLITE_OMIT_DEPRECATED + sqlite3_transfer_bindings, +#else + 0, +#endif + sqlite3_update_hook, + sqlite3_user_data, + sqlite3_value_blob, + sqlite3_value_bytes, + sqlite3_value_bytes16, + sqlite3_value_double, + sqlite3_value_int, + sqlite3_value_int64, + sqlite3_value_numeric_type, + sqlite3_value_text, + sqlite3_value_text16, + sqlite3_value_text16be, + sqlite3_value_text16le, + sqlite3_value_type, + sqlite3_vmprintf, + /* + ** The original API set ends here. All extensions can call any + ** of the APIs above provided that the pointer is not NULL. But + ** before calling APIs that follow, extension should check the + ** sqlite3_libversion_number() to make sure they are dealing with + ** a library that is new enough to support that API. + ************************************************************************* + */ + sqlite3_overload_function, + + /* + ** Added after 3.3.13 + */ + sqlite3_prepare_v2, + sqlite3_prepare16_v2, + sqlite3_clear_bindings, + + /* + ** Added for 3.4.1 + */ + sqlite3_create_module_v2, + + /* + ** Added for 3.5.0 + */ + sqlite3_bind_zeroblob, + sqlite3_blob_bytes, + sqlite3_blob_close, + sqlite3_blob_open, + sqlite3_blob_read, + sqlite3_blob_write, + sqlite3_create_collation_v2, + sqlite3_file_control, + sqlite3_memory_highwater, + sqlite3_memory_used, +#ifdef SQLITE_MUTEX_OMIT + 0, + 0, + 0, + 0, + 0, +#else + sqlite3_mutex_alloc, + sqlite3_mutex_enter, + sqlite3_mutex_free, + sqlite3_mutex_leave, + sqlite3_mutex_try, +#endif + sqlite3_open_v2, + sqlite3_release_memory, + sqlite3_result_error_nomem, + sqlite3_result_error_toobig, + sqlite3_sleep, + sqlite3_soft_heap_limit, + sqlite3_vfs_find, + sqlite3_vfs_register, + sqlite3_vfs_unregister, + + /* + ** Added for 3.5.8 + */ + sqlite3_threadsafe, + sqlite3_result_zeroblob, + sqlite3_result_error_code, + sqlite3_test_control, + sqlite3_randomness, + sqlite3_context_db_handle, + + /* + ** Added for 3.6.0 + */ + sqlite3_extended_result_codes, + sqlite3_limit, + sqlite3_next_stmt, + sqlite3_sql, + sqlite3_status, + + /* + ** Added for 3.7.4 + */ + sqlite3_backup_finish, + sqlite3_backup_init, + sqlite3_backup_pagecount, + sqlite3_backup_remaining, + sqlite3_backup_step, +#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS + sqlite3_compileoption_get, + sqlite3_compileoption_used, +#else + 0, + 0, +#endif + sqlite3_create_function_v2, + sqlite3_db_config, + sqlite3_db_mutex, + sqlite3_db_status, + sqlite3_extended_errcode, + sqlite3_log, + sqlite3_soft_heap_limit64, + sqlite3_sourceid, + sqlite3_stmt_status, + sqlite3_strnicmp, +#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY + sqlite3_unlock_notify, +#else + 0, +#endif +#ifndef SQLITE_OMIT_WAL + sqlite3_wal_autocheckpoint, + sqlite3_wal_checkpoint, + sqlite3_wal_hook, +#else + 0, + 0, + 0, +#endif + sqlite3_blob_reopen, + sqlite3_vtab_config, + sqlite3_vtab_on_conflict, +}; + +/* +** Attempt to load an SQLite extension library contained in the file +** zFile. The entry point is zProc. zProc may be 0 in which case a +** default entry point name (sqlite3_extension_init) is used. Use +** of the default name is recommended. +** +** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong. +** +** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with +** error message text. The calling function should free this memory +** by calling sqlite3DbFree(db, ). +*/ +static int sqlite3LoadExtension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +){ + sqlite3_vfs *pVfs = db->pVfs; + void *handle; + int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*); + char *zErrmsg = 0; + void **aHandle; + int nMsg = 300 + sqlite3Strlen30(zFile); + + if( pzErrMsg ) *pzErrMsg = 0; + + /* Ticket #1863. To avoid a creating security problems for older + ** applications that relink against newer versions of SQLite, the + ** ability to run load_extension is turned off by default. One + ** must call sqlite3_enable_load_extension() to turn on extension + ** loading. Otherwise you get the following error. + */ + if( (db->flags & SQLITE_LoadExtension)==0 ){ + if( pzErrMsg ){ + *pzErrMsg = sqlite3_mprintf("not authorized"); + } + return SQLITE_ERROR; + } + + if( zProc==0 ){ + zProc = "sqlite3_extension_init"; + } + + handle = sqlite3OsDlOpen(pVfs, zFile); + if( handle==0 ){ + if( pzErrMsg ){ + *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg); + if( zErrmsg ){ + sqlite3_snprintf(nMsg, zErrmsg, + "unable to open shared library [%s]", zFile); + sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); + } + } + return SQLITE_ERROR; + } + xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*)) + sqlite3OsDlSym(pVfs, handle, zProc); + if( xInit==0 ){ + if( pzErrMsg ){ + nMsg += sqlite3Strlen30(zProc); + *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg); + if( zErrmsg ){ + sqlite3_snprintf(nMsg, zErrmsg, + "no entry point [%s] in shared library [%s]", zProc,zFile); + sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); + } + sqlite3OsDlClose(pVfs, handle); + } + return SQLITE_ERROR; + }else if( xInit(db, &zErrmsg, &sqlite3Apis) ){ + if( pzErrMsg ){ + *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg); + } + sqlite3_free(zErrmsg); + sqlite3OsDlClose(pVfs, handle); + return SQLITE_ERROR; + } + + /* Append the new shared library handle to the db->aExtension array. */ + aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1)); + if( aHandle==0 ){ + return SQLITE_NOMEM; + } + if( db->nExtension>0 ){ + memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension); + } + sqlite3DbFree(db, db->aExtension); + db->aExtension = aHandle; + + db->aExtension[db->nExtension++] = handle; + return SQLITE_OK; +} +int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +){ + int rc; + sqlite3_mutex_enter(db->mutex); + rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Call this routine when the database connection is closing in order +** to clean up loaded extensions +*/ +void sqlite3CloseExtensions(sqlite3 *db){ + int i; + assert( sqlite3_mutex_held(db->mutex) ); + for(i=0; inExtension; i++){ + sqlite3OsDlClose(db->pVfs, db->aExtension[i]); + } + sqlite3DbFree(db, db->aExtension); +} + +/* +** Enable or disable extension loading. Extension loading is disabled by +** default so as not to open security holes in older applications. +*/ +int sqlite3_enable_load_extension(sqlite3 *db, int onoff){ + sqlite3_mutex_enter(db->mutex); + if( onoff ){ + db->flags |= SQLITE_LoadExtension; + }else{ + db->flags &= ~SQLITE_LoadExtension; + } + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} + +#endif /* SQLITE_OMIT_LOAD_EXTENSION */ + +/* +** The auto-extension code added regardless of whether or not extension +** loading is supported. We need a dummy sqlite3Apis pointer for that +** code if regular extension loading is not available. This is that +** dummy pointer. +*/ +#ifdef SQLITE_OMIT_LOAD_EXTENSION +static const sqlite3_api_routines sqlite3Apis = { 0 }; +#endif + + +/* +** The following object holds the list of automatically loaded +** extensions. +** +** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER +** mutex must be held while accessing this list. +*/ +typedef struct sqlite3AutoExtList sqlite3AutoExtList; +static SQLITE_WSD struct sqlite3AutoExtList { + int nExt; /* Number of entries in aExt[] */ + void (**aExt)(void); /* Pointers to the extension init functions */ +} sqlite3Autoext = { 0, 0 }; + +/* The "wsdAutoext" macro will resolve to the autoextension +** state vector. If writable static data is unsupported on the target, +** we have to locate the state vector at run-time. In the more common +** case where writable static data is supported, wsdStat can refer directly +** to the "sqlite3Autoext" state vector declared above. +*/ +#ifdef SQLITE_OMIT_WSD +# define wsdAutoextInit \ + sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext) +# define wsdAutoext x[0] +#else +# define wsdAutoextInit +# define wsdAutoext sqlite3Autoext +#endif + + +/* +** Register a statically linked extension that is automatically +** loaded by every new database connection. +*/ +int sqlite3_auto_extension(void (*xInit)(void)){ + int rc = SQLITE_OK; +#ifndef SQLITE_OMIT_AUTOINIT + rc = sqlite3_initialize(); + if( rc ){ + return rc; + }else +#endif + { + int i; +#if SQLITE_THREADSAFE + sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); +#endif + wsdAutoextInit; + sqlite3_mutex_enter(mutex); + for(i=0; i=wsdAutoext.nExt ){ + xInit = 0; + go = 0; + }else{ + xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*)) + wsdAutoext.aExt[i]; + } + sqlite3_mutex_leave(mutex); + zErrmsg = 0; + if( xInit && xInit(db, &zErrmsg, &sqlite3Apis) ){ + sqlite3Error(db, SQLITE_ERROR, + "automatic extension loading failed: %s", zErrmsg); + go = 0; + } + sqlite3_free(zErrmsg); + } +} diff --git a/src/main.c b/src/main.c new file mode 100644 index 0000000..42bbba5 --- /dev/null +++ b/src/main.c @@ -0,0 +1,2954 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Main file for the SQLite library. The routines in this file +** implement the programmer interface to the library. Routines in +** other files are for internal use by SQLite and should not be +** accessed by users of the library. +*/ +#include "sqliteInt.h" + +#ifdef SQLITE_ENABLE_FTS3 +# include "fts3.h" +#endif +#ifdef SQLITE_ENABLE_RTREE +# include "rtree.h" +#endif +#ifdef SQLITE_ENABLE_ICU +# include "sqliteicu.h" +#endif + +#ifndef SQLITE_AMALGAMATION +/* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant +** contains the text of SQLITE_VERSION macro. +*/ +const char sqlite3_version[] = SQLITE_VERSION; +#endif + +/* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns +** a pointer to the to the sqlite3_version[] string constant. +*/ +const char *sqlite3_libversion(void){ return sqlite3_version; } + +/* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a +** pointer to a string constant whose value is the same as the +** SQLITE_SOURCE_ID C preprocessor macro. +*/ +const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } + +/* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function +** returns an integer equal to SQLITE_VERSION_NUMBER. +*/ +int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } + +/* IMPLEMENTATION-OF: R-54823-41343 The sqlite3_threadsafe() function returns +** zero if and only if SQLite was compiled mutexing code omitted due to +** the SQLITE_THREADSAFE compile-time option being set to 0. +*/ +int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } + +#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) +/* +** If the following function pointer is not NULL and if +** SQLITE_ENABLE_IOTRACE is enabled, then messages describing +** I/O active are written using this function. These messages +** are intended for debugging activity only. +*/ +void (*sqlite3IoTrace)(const char*, ...) = 0; +#endif + +/* +** If the following global variable points to a string which is the +** name of a directory, then that directory will be used to store +** temporary files. +** +** See also the "PRAGMA temp_store_directory" SQL command. +*/ +char *sqlite3_temp_directory = 0; + +/* +** Initialize SQLite. +** +** This routine must be called to initialize the memory allocation, +** VFS, and mutex subsystems prior to doing any serious work with +** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT +** this routine will be called automatically by key routines such as +** sqlite3_open(). +** +** This routine is a no-op except on its very first call for the process, +** or for the first call after a call to sqlite3_shutdown. +** +** The first thread to call this routine runs the initialization to +** completion. If subsequent threads call this routine before the first +** thread has finished the initialization process, then the subsequent +** threads must block until the first thread finishes with the initialization. +** +** The first thread might call this routine recursively. Recursive +** calls to this routine should not block, of course. Otherwise the +** initialization process would never complete. +** +** Let X be the first thread to enter this routine. Let Y be some other +** thread. Then while the initial invocation of this routine by X is +** incomplete, it is required that: +** +** * Calls to this routine from Y must block until the outer-most +** call by X completes. +** +** * Recursive calls to this routine from thread X return immediately +** without blocking. +*/ +int sqlite3_initialize(void){ + MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ + int rc; /* Result code */ + +#ifdef SQLITE_OMIT_WSD + rc = sqlite3_wsd_init(4096, 24); + if( rc!=SQLITE_OK ){ + return rc; + } +#endif + + /* If SQLite is already completely initialized, then this call + ** to sqlite3_initialize() should be a no-op. But the initialization + ** must be complete. So isInit must not be set until the very end + ** of this routine. + */ + if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; + + /* Make sure the mutex subsystem is initialized. If unable to + ** initialize the mutex subsystem, return early with the error. + ** If the system is so sick that we are unable to allocate a mutex, + ** there is not much SQLite is going to be able to do. + ** + ** The mutex subsystem must take care of serializing its own + ** initialization. + */ + rc = sqlite3MutexInit(); + if( rc ) return rc; + + /* Initialize the malloc() system and the recursive pInitMutex mutex. + ** This operation is protected by the STATIC_MASTER mutex. Note that + ** MutexAlloc() is called for a static mutex prior to initializing the + ** malloc subsystem - this implies that the allocation of a static + ** mutex must not require support from the malloc subsystem. + */ + MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) + sqlite3_mutex_enter(pMaster); + sqlite3GlobalConfig.isMutexInit = 1; + if( !sqlite3GlobalConfig.isMallocInit ){ + rc = sqlite3MallocInit(); + } + if( rc==SQLITE_OK ){ + sqlite3GlobalConfig.isMallocInit = 1; + if( !sqlite3GlobalConfig.pInitMutex ){ + sqlite3GlobalConfig.pInitMutex = + sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); + if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ + rc = SQLITE_NOMEM; + } + } + } + if( rc==SQLITE_OK ){ + sqlite3GlobalConfig.nRefInitMutex++; + } + sqlite3_mutex_leave(pMaster); + + /* If rc is not SQLITE_OK at this point, then either the malloc + ** subsystem could not be initialized or the system failed to allocate + ** the pInitMutex mutex. Return an error in either case. */ + if( rc!=SQLITE_OK ){ + return rc; + } + + /* Do the rest of the initialization under the recursive mutex so + ** that we will be able to handle recursive calls into + ** sqlite3_initialize(). The recursive calls normally come through + ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other + ** recursive calls might also be possible. + ** + ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls + ** to the xInit method, so the xInit method need not be threadsafe. + ** + ** The following mutex is what serializes access to the appdef pcache xInit + ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the + ** call to sqlite3PcacheInitialize(). + */ + sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); + if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ + FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); + sqlite3GlobalConfig.inProgress = 1; + memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); + sqlite3RegisterGlobalFunctions(); + if( sqlite3GlobalConfig.isPCacheInit==0 ){ + rc = sqlite3PcacheInitialize(); + } + if( rc==SQLITE_OK ){ + sqlite3GlobalConfig.isPCacheInit = 1; + rc = sqlite3OsInit(); + } + if( rc==SQLITE_OK ){ + sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, + sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); + sqlite3GlobalConfig.isInit = 1; + } + sqlite3GlobalConfig.inProgress = 0; + } + sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); + + /* Go back under the static mutex and clean up the recursive + ** mutex to prevent a resource leak. + */ + sqlite3_mutex_enter(pMaster); + sqlite3GlobalConfig.nRefInitMutex--; + if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ + assert( sqlite3GlobalConfig.nRefInitMutex==0 ); + sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); + sqlite3GlobalConfig.pInitMutex = 0; + } + sqlite3_mutex_leave(pMaster); + + /* The following is just a sanity check to make sure SQLite has + ** been compiled correctly. It is important to run this code, but + ** we don't want to run it too often and soak up CPU cycles for no + ** reason. So we run it once during initialization. + */ +#ifndef NDEBUG +#ifndef SQLITE_OMIT_FLOATING_POINT + /* This section of code's only "output" is via assert() statements. */ + if ( rc==SQLITE_OK ){ + u64 x = (((u64)1)<<63)-1; + double y; + assert(sizeof(x)==8); + assert(sizeof(x)==sizeof(y)); + memcpy(&y, &x, 8); + assert( sqlite3IsNaN(y) ); + } +#endif +#endif + + /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT + ** compile-time option. + */ +#ifdef SQLITE_EXTRA_INIT + if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){ + int SQLITE_EXTRA_INIT(void); + rc = SQLITE_EXTRA_INIT(); + } +#endif + + return rc; +} + +/* +** Undo the effects of sqlite3_initialize(). Must not be called while +** there are outstanding database connections or memory allocations or +** while any part of SQLite is otherwise in use in any thread. This +** routine is not threadsafe. But it is safe to invoke this routine +** on when SQLite is already shut down. If SQLite is already shut down +** when this routine is invoked, then this routine is a harmless no-op. +*/ +int sqlite3_shutdown(void){ + if( sqlite3GlobalConfig.isInit ){ + sqlite3_os_end(); + sqlite3_reset_auto_extension(); + sqlite3GlobalConfig.isInit = 0; + } + if( sqlite3GlobalConfig.isPCacheInit ){ + sqlite3PcacheShutdown(); + sqlite3GlobalConfig.isPCacheInit = 0; + } + if( sqlite3GlobalConfig.isMallocInit ){ + sqlite3MallocEnd(); + sqlite3GlobalConfig.isMallocInit = 0; + } + if( sqlite3GlobalConfig.isMutexInit ){ + sqlite3MutexEnd(); + sqlite3GlobalConfig.isMutexInit = 0; + } + + return SQLITE_OK; +} + +/* +** This API allows applications to modify the global configuration of +** the SQLite library at run-time. +** +** This routine should only be called when there are no outstanding +** database connections or memory allocations. This routine is not +** threadsafe. Failure to heed these warnings can lead to unpredictable +** behavior. +*/ +int sqlite3_config(int op, ...){ + va_list ap; + int rc = SQLITE_OK; + + /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while + ** the SQLite library is in use. */ + if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; + + va_start(ap, op); + switch( op ){ + + /* Mutex configuration options are only available in a threadsafe + ** compile. + */ +#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 + case SQLITE_CONFIG_SINGLETHREAD: { + /* Disable all mutexing */ + sqlite3GlobalConfig.bCoreMutex = 0; + sqlite3GlobalConfig.bFullMutex = 0; + break; + } + case SQLITE_CONFIG_MULTITHREAD: { + /* Disable mutexing of database connections */ + /* Enable mutexing of core data structures */ + sqlite3GlobalConfig.bCoreMutex = 1; + sqlite3GlobalConfig.bFullMutex = 0; + break; + } + case SQLITE_CONFIG_SERIALIZED: { + /* Enable all mutexing */ + sqlite3GlobalConfig.bCoreMutex = 1; + sqlite3GlobalConfig.bFullMutex = 1; + break; + } + case SQLITE_CONFIG_MUTEX: { + /* Specify an alternative mutex implementation */ + sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); + break; + } + case SQLITE_CONFIG_GETMUTEX: { + /* Retrieve the current mutex implementation */ + *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; + break; + } +#endif + + + case SQLITE_CONFIG_MALLOC: { + /* Specify an alternative malloc implementation */ + sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); + break; + } + case SQLITE_CONFIG_GETMALLOC: { + /* Retrieve the current malloc() implementation */ + if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); + *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; + break; + } + case SQLITE_CONFIG_MEMSTATUS: { + /* Enable or disable the malloc status collection */ + sqlite3GlobalConfig.bMemstat = va_arg(ap, int); + break; + } + case SQLITE_CONFIG_SCRATCH: { + /* Designate a buffer for scratch memory space */ + sqlite3GlobalConfig.pScratch = va_arg(ap, void*); + sqlite3GlobalConfig.szScratch = va_arg(ap, int); + sqlite3GlobalConfig.nScratch = va_arg(ap, int); + break; + } + case SQLITE_CONFIG_PAGECACHE: { + /* Designate a buffer for page cache memory space */ + sqlite3GlobalConfig.pPage = va_arg(ap, void*); + sqlite3GlobalConfig.szPage = va_arg(ap, int); + sqlite3GlobalConfig.nPage = va_arg(ap, int); + break; + } + + case SQLITE_CONFIG_PCACHE: { + /* Specify an alternative page cache implementation */ + sqlite3GlobalConfig.pcache = *va_arg(ap, sqlite3_pcache_methods*); + break; + } + + case SQLITE_CONFIG_GETPCACHE: { + if( sqlite3GlobalConfig.pcache.xInit==0 ){ + sqlite3PCacheSetDefault(); + } + *va_arg(ap, sqlite3_pcache_methods*) = sqlite3GlobalConfig.pcache; + break; + } + +#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) + case SQLITE_CONFIG_HEAP: { + /* Designate a buffer for heap memory space */ + sqlite3GlobalConfig.pHeap = va_arg(ap, void*); + sqlite3GlobalConfig.nHeap = va_arg(ap, int); + sqlite3GlobalConfig.mnReq = va_arg(ap, int); + + if( sqlite3GlobalConfig.mnReq<1 ){ + sqlite3GlobalConfig.mnReq = 1; + }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ + /* cap min request size at 2^12 */ + sqlite3GlobalConfig.mnReq = (1<<12); + } + + if( sqlite3GlobalConfig.pHeap==0 ){ + /* If the heap pointer is NULL, then restore the malloc implementation + ** back to NULL pointers too. This will cause the malloc to go + ** back to its default implementation when sqlite3_initialize() is + ** run. + */ + memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); + }else{ + /* The heap pointer is not NULL, then install one of the + ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor + ** ENABLE_MEMSYS5 is defined, return an error. + */ +#ifdef SQLITE_ENABLE_MEMSYS3 + sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); +#endif +#ifdef SQLITE_ENABLE_MEMSYS5 + sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); +#endif + } + break; + } +#endif + + case SQLITE_CONFIG_LOOKASIDE: { + sqlite3GlobalConfig.szLookaside = va_arg(ap, int); + sqlite3GlobalConfig.nLookaside = va_arg(ap, int); + break; + } + + /* Record a pointer to the logger funcction and its first argument. + ** The default is NULL. Logging is disabled if the function pointer is + ** NULL. + */ + case SQLITE_CONFIG_LOG: { + /* MSVC is picky about pulling func ptrs from va lists. + ** http://support.microsoft.com/kb/47961 + ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); + */ + typedef void(*LOGFUNC_t)(void*,int,const char*); + sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); + sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); + break; + } + + case SQLITE_CONFIG_URI: { + sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); + break; + } + + default: { + rc = SQLITE_ERROR; + break; + } + } + va_end(ap); + return rc; +} + +/* +** Set up the lookaside buffers for a database connection. +** Return SQLITE_OK on success. +** If lookaside is already active, return SQLITE_BUSY. +** +** The sz parameter is the number of bytes in each lookaside slot. +** The cnt parameter is the number of slots. If pStart is NULL the +** space for the lookaside memory is obtained from sqlite3_malloc(). +** If pStart is not NULL then it is sz*cnt bytes of memory to use for +** the lookaside memory. +*/ +static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ + void *pStart; + if( db->lookaside.nOut ){ + return SQLITE_BUSY; + } + /* Free any existing lookaside buffer for this handle before + ** allocating a new one so we don't have to have space for + ** both at the same time. + */ + if( db->lookaside.bMalloced ){ + sqlite3_free(db->lookaside.pStart); + } + /* The size of a lookaside slot needs to be larger than a pointer + ** to be useful. + */ + if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; + if( cnt<0 ) cnt = 0; + if( sz==0 || cnt==0 ){ + sz = 0; + pStart = 0; + }else if( pBuf==0 ){ + sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ + sqlite3BeginBenignMalloc(); + pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ + sqlite3EndBenignMalloc(); + }else{ + sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ + pStart = pBuf; + } + db->lookaside.pStart = pStart; + db->lookaside.pFree = 0; + db->lookaside.sz = (u16)sz; + if( pStart ){ + int i; + LookasideSlot *p; + assert( sz > (int)sizeof(LookasideSlot*) ); + p = (LookasideSlot*)pStart; + for(i=cnt-1; i>=0; i--){ + p->pNext = db->lookaside.pFree; + db->lookaside.pFree = p; + p = (LookasideSlot*)&((u8*)p)[sz]; + } + db->lookaside.pEnd = p; + db->lookaside.bEnabled = 1; + db->lookaside.bMalloced = pBuf==0 ?1:0; + }else{ + db->lookaside.pEnd = 0; + db->lookaside.bEnabled = 0; + db->lookaside.bMalloced = 0; + } + return SQLITE_OK; +} + +/* +** Return the mutex associated with a database connection. +*/ +sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ + return db->mutex; +} + +/* +** Configuration settings for an individual database connection +*/ +int sqlite3_db_config(sqlite3 *db, int op, ...){ + va_list ap; + int rc; + va_start(ap, op); + switch( op ){ + case SQLITE_DBCONFIG_LOOKASIDE: { + void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ + int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ + int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ + rc = setupLookaside(db, pBuf, sz, cnt); + break; + } + default: { + static const struct { + int op; /* The opcode */ + u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ + } aFlagOp[] = { + { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, + { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, + }; + unsigned int i; + rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ + for(i=0; iflags; + if( onoff>0 ){ + db->flags |= aFlagOp[i].mask; + }else if( onoff==0 ){ + db->flags &= ~aFlagOp[i].mask; + } + if( oldFlags!=db->flags ){ + sqlite3ExpirePreparedStatements(db); + } + if( pRes ){ + *pRes = (db->flags & aFlagOp[i].mask)!=0; + } + rc = SQLITE_OK; + break; + } + } + break; + } + } + va_end(ap); + return rc; +} + + +/* +** Return true if the buffer z[0..n-1] contains all spaces. +*/ +static int allSpaces(const char *z, int n){ + while( n>0 && z[n-1]==' ' ){ n--; } + return n==0; +} + +/* +** This is the default collating function named "BINARY" which is always +** available. +** +** If the padFlag argument is not NULL then space padding at the end +** of strings is ignored. This implements the RTRIM collation. +*/ +static int binCollFunc( + void *padFlag, + int nKey1, const void *pKey1, + int nKey2, const void *pKey2 +){ + int rc, n; + n = nKey1lastRowid; +} + +/* +** Return the number of changes in the most recent call to sqlite3_exec(). +*/ +int sqlite3_changes(sqlite3 *db){ + return db->nChange; +} + +/* +** Return the number of changes since the database handle was opened. +*/ +int sqlite3_total_changes(sqlite3 *db){ + return db->nTotalChange; +} + +/* +** Close all open savepoints. This function only manipulates fields of the +** database handle object, it does not close any savepoints that may be open +** at the b-tree/pager level. +*/ +void sqlite3CloseSavepoints(sqlite3 *db){ + while( db->pSavepoint ){ + Savepoint *pTmp = db->pSavepoint; + db->pSavepoint = pTmp->pNext; + sqlite3DbFree(db, pTmp); + } + db->nSavepoint = 0; + db->nStatement = 0; + db->isTransactionSavepoint = 0; +} + +/* +** Invoke the destructor function associated with FuncDef p, if any. Except, +** if this is not the last copy of the function, do not invoke it. Multiple +** copies of a single function are created when create_function() is called +** with SQLITE_ANY as the encoding. +*/ +static void functionDestroy(sqlite3 *db, FuncDef *p){ + FuncDestructor *pDestructor = p->pDestructor; + if( pDestructor ){ + pDestructor->nRef--; + if( pDestructor->nRef==0 ){ + pDestructor->xDestroy(pDestructor->pUserData); + sqlite3DbFree(db, pDestructor); + } + } +} + +/* +** Close an existing SQLite database +*/ +int sqlite3_close(sqlite3 *db){ + HashElem *i; /* Hash table iterator */ + int j; + + if( !db ){ + return SQLITE_OK; + } + if( !sqlite3SafetyCheckSickOrOk(db) ){ + return SQLITE_MISUSE_BKPT; + } + sqlite3_mutex_enter(db->mutex); + + /* Force xDestroy calls on all virtual tables */ + sqlite3ResetInternalSchema(db, -1); + + /* If a transaction is open, the ResetInternalSchema() call above + ** will not have called the xDisconnect() method on any virtual + ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() + ** call will do so. We need to do this before the check for active + ** SQL statements below, as the v-table implementation may be storing + ** some prepared statements internally. + */ + sqlite3VtabRollback(db); + + /* If there are any outstanding VMs, return SQLITE_BUSY. */ + if( db->pVdbe ){ + sqlite3Error(db, SQLITE_BUSY, + "unable to close due to unfinalised statements"); + sqlite3_mutex_leave(db->mutex); + return SQLITE_BUSY; + } + assert( sqlite3SafetyCheckSickOrOk(db) ); + + for(j=0; jnDb; j++){ + Btree *pBt = db->aDb[j].pBt; + if( pBt && sqlite3BtreeIsInBackup(pBt) ){ + sqlite3Error(db, SQLITE_BUSY, + "unable to close due to unfinished backup operation"); + sqlite3_mutex_leave(db->mutex); + return SQLITE_BUSY; + } + } + + /* Free any outstanding Savepoint structures. */ + sqlite3CloseSavepoints(db); + + for(j=0; jnDb; j++){ + struct Db *pDb = &db->aDb[j]; + if( pDb->pBt ){ + sqlite3BtreeClose(pDb->pBt); + pDb->pBt = 0; + if( j!=1 ){ + pDb->pSchema = 0; + } + } + } + sqlite3ResetInternalSchema(db, -1); + + /* Tell the code in notify.c that the connection no longer holds any + ** locks and does not require any further unlock-notify callbacks. + */ + sqlite3ConnectionClosed(db); + + assert( db->nDb<=2 ); + assert( db->aDb==db->aDbStatic ); + for(j=0; jaFunc.a); j++){ + FuncDef *pNext, *pHash, *p; + for(p=db->aFunc.a[j]; p; p=pHash){ + pHash = p->pHash; + while( p ){ + functionDestroy(db, p); + pNext = p->pNext; + sqlite3DbFree(db, p); + p = pNext; + } + } + } + for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ + CollSeq *pColl = (CollSeq *)sqliteHashData(i); + /* Invoke any destructors registered for collation sequence user data. */ + for(j=0; j<3; j++){ + if( pColl[j].xDel ){ + pColl[j].xDel(pColl[j].pUser); + } + } + sqlite3DbFree(db, pColl); + } + sqlite3HashClear(&db->aCollSeq); +#ifndef SQLITE_OMIT_VIRTUALTABLE + for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ + Module *pMod = (Module *)sqliteHashData(i); + if( pMod->xDestroy ){ + pMod->xDestroy(pMod->pAux); + } + sqlite3DbFree(db, pMod); + } + sqlite3HashClear(&db->aModule); +#endif + + sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ + if( db->pErr ){ + sqlite3ValueFree(db->pErr); + } + sqlite3CloseExtensions(db); + + db->magic = SQLITE_MAGIC_ERROR; + + /* The temp-database schema is allocated differently from the other schema + ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). + ** So it needs to be freed here. Todo: Why not roll the temp schema into + ** the same sqliteMalloc() as the one that allocates the database + ** structure? + */ + sqlite3DbFree(db, db->aDb[1].pSchema); + sqlite3_mutex_leave(db->mutex); + db->magic = SQLITE_MAGIC_CLOSED; + sqlite3_mutex_free(db->mutex); + assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ + if( db->lookaside.bMalloced ){ + sqlite3_free(db->lookaside.pStart); + } + sqlite3_free(db); + return SQLITE_OK; +} + +/* +** Rollback all database files. +*/ +void sqlite3RollbackAll(sqlite3 *db){ + int i; + int inTrans = 0; + assert( sqlite3_mutex_held(db->mutex) ); + sqlite3BeginBenignMalloc(); + for(i=0; inDb; i++){ + if( db->aDb[i].pBt ){ + if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ + inTrans = 1; + } + sqlite3BtreeRollback(db->aDb[i].pBt); + db->aDb[i].inTrans = 0; + } + } + sqlite3VtabRollback(db); + sqlite3EndBenignMalloc(); + + if( db->flags&SQLITE_InternChanges ){ + sqlite3ExpirePreparedStatements(db); + sqlite3ResetInternalSchema(db, -1); + } + + /* Any deferred constraint violations have now been resolved. */ + db->nDeferredCons = 0; + + /* If one has been configured, invoke the rollback-hook callback */ + if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ + db->xRollbackCallback(db->pRollbackArg); + } +} + +/* +** Return a static string that describes the kind of error specified in the +** argument. +*/ +const char *sqlite3ErrStr(int rc){ + static const char* const aMsg[] = { + /* SQLITE_OK */ "not an error", + /* SQLITE_ERROR */ "SQL logic error or missing database", + /* SQLITE_INTERNAL */ 0, + /* SQLITE_PERM */ "access permission denied", + /* SQLITE_ABORT */ "callback requested query abort", + /* SQLITE_BUSY */ "database is locked", + /* SQLITE_LOCKED */ "database table is locked", + /* SQLITE_NOMEM */ "out of memory", + /* SQLITE_READONLY */ "attempt to write a readonly database", + /* SQLITE_INTERRUPT */ "interrupted", + /* SQLITE_IOERR */ "disk I/O error", + /* SQLITE_CORRUPT */ "database disk image is malformed", + /* SQLITE_NOTFOUND */ "unknown operation", + /* SQLITE_FULL */ "database or disk is full", + /* SQLITE_CANTOPEN */ "unable to open database file", + /* SQLITE_PROTOCOL */ "locking protocol", + /* SQLITE_EMPTY */ "table contains no data", + /* SQLITE_SCHEMA */ "database schema has changed", + /* SQLITE_TOOBIG */ "string or blob too big", + /* SQLITE_CONSTRAINT */ "constraint failed", + /* SQLITE_MISMATCH */ "datatype mismatch", + /* SQLITE_MISUSE */ "library routine called out of sequence", + /* SQLITE_NOLFS */ "large file support is disabled", + /* SQLITE_AUTH */ "authorization denied", + /* SQLITE_FORMAT */ "auxiliary database format error", + /* SQLITE_RANGE */ "bind or column index out of range", + /* SQLITE_NOTADB */ "file is encrypted or is not a database", + }; + rc &= 0xff; + if( ALWAYS(rc>=0) && rc<(int)(sizeof(aMsg)/sizeof(aMsg[0])) && aMsg[rc]!=0 ){ + return aMsg[rc]; + }else{ + return "unknown error"; + } +} + +/* +** This routine implements a busy callback that sleeps and tries +** again until a timeout value is reached. The timeout value is +** an integer number of milliseconds passed in as the first +** argument. +*/ +static int sqliteDefaultBusyCallback( + void *ptr, /* Database connection */ + int count /* Number of times table has been busy */ +){ +#if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) + static const u8 delays[] = + { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; + static const u8 totals[] = + { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; +# define NDELAY ArraySize(delays) + sqlite3 *db = (sqlite3 *)ptr; + int timeout = db->busyTimeout; + int delay, prior; + + assert( count>=0 ); + if( count < NDELAY ){ + delay = delays[count]; + prior = totals[count]; + }else{ + delay = delays[NDELAY-1]; + prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); + } + if( prior + delay > timeout ){ + delay = timeout - prior; + if( delay<=0 ) return 0; + } + sqlite3OsSleep(db->pVfs, delay*1000); + return 1; +#else + sqlite3 *db = (sqlite3 *)ptr; + int timeout = ((sqlite3 *)ptr)->busyTimeout; + if( (count+1)*1000 > timeout ){ + return 0; + } + sqlite3OsSleep(db->pVfs, 1000000); + return 1; +#endif +} + +/* +** Invoke the given busy handler. +** +** This routine is called when an operation failed with a lock. +** If this routine returns non-zero, the lock is retried. If it +** returns 0, the operation aborts with an SQLITE_BUSY error. +*/ +int sqlite3InvokeBusyHandler(BusyHandler *p){ + int rc; + if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; + rc = p->xFunc(p->pArg, p->nBusy); + if( rc==0 ){ + p->nBusy = -1; + }else{ + p->nBusy++; + } + return rc; +} + +/* +** This routine sets the busy callback for an Sqlite database to the +** given callback function with the given argument. +*/ +int sqlite3_busy_handler( + sqlite3 *db, + int (*xBusy)(void*,int), + void *pArg +){ + sqlite3_mutex_enter(db->mutex); + db->busyHandler.xFunc = xBusy; + db->busyHandler.pArg = pArg; + db->busyHandler.nBusy = 0; + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} + +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK +/* +** This routine sets the progress callback for an Sqlite database to the +** given callback function with the given argument. The progress callback will +** be invoked every nOps opcodes. +*/ +void sqlite3_progress_handler( + sqlite3 *db, + int nOps, + int (*xProgress)(void*), + void *pArg +){ + sqlite3_mutex_enter(db->mutex); + if( nOps>0 ){ + db->xProgress = xProgress; + db->nProgressOps = nOps; + db->pProgressArg = pArg; + }else{ + db->xProgress = 0; + db->nProgressOps = 0; + db->pProgressArg = 0; + } + sqlite3_mutex_leave(db->mutex); +} +#endif + + +/* +** This routine installs a default busy handler that waits for the +** specified number of milliseconds before returning 0. +*/ +int sqlite3_busy_timeout(sqlite3 *db, int ms){ + if( ms>0 ){ + db->busyTimeout = ms; + sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); + }else{ + sqlite3_busy_handler(db, 0, 0); + } + return SQLITE_OK; +} + +/* +** Cause any pending operation to stop at its earliest opportunity. +*/ +void sqlite3_interrupt(sqlite3 *db){ + db->u1.isInterrupted = 1; +} + + +/* +** This function is exactly the same as sqlite3_create_function(), except +** that it is designed to be called by internal code. The difference is +** that if a malloc() fails in sqlite3_create_function(), an error code +** is returned and the mallocFailed flag cleared. +*/ +int sqlite3CreateFunc( + sqlite3 *db, + const char *zFunctionName, + int nArg, + int enc, + void *pUserData, + void (*xFunc)(sqlite3_context*,int,sqlite3_value **), + void (*xStep)(sqlite3_context*,int,sqlite3_value **), + void (*xFinal)(sqlite3_context*), + FuncDestructor *pDestructor +){ + FuncDef *p; + int nName; + + assert( sqlite3_mutex_held(db->mutex) ); + if( zFunctionName==0 || + (xFunc && (xFinal || xStep)) || + (!xFunc && (xFinal && !xStep)) || + (!xFunc && (!xFinal && xStep)) || + (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || + (255<(nName = sqlite3Strlen30( zFunctionName))) ){ + return SQLITE_MISUSE_BKPT; + } + +#ifndef SQLITE_OMIT_UTF16 + /* If SQLITE_UTF16 is specified as the encoding type, transform this + ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the + ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. + ** + ** If SQLITE_ANY is specified, add three versions of the function + ** to the hash table. + */ + if( enc==SQLITE_UTF16 ){ + enc = SQLITE_UTF16NATIVE; + }else if( enc==SQLITE_ANY ){ + int rc; + rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, + pUserData, xFunc, xStep, xFinal, pDestructor); + if( rc==SQLITE_OK ){ + rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, + pUserData, xFunc, xStep, xFinal, pDestructor); + } + if( rc!=SQLITE_OK ){ + return rc; + } + enc = SQLITE_UTF16BE; + } +#else + enc = SQLITE_UTF8; +#endif + + /* Check if an existing function is being overridden or deleted. If so, + ** and there are active VMs, then return SQLITE_BUSY. If a function + ** is being overridden/deleted but there are no active VMs, allow the + ** operation to continue but invalidate all precompiled statements. + */ + p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); + if( p && p->iPrefEnc==enc && p->nArg==nArg ){ + if( db->activeVdbeCnt ){ + sqlite3Error(db, SQLITE_BUSY, + "unable to delete/modify user-function due to active statements"); + assert( !db->mallocFailed ); + return SQLITE_BUSY; + }else{ + sqlite3ExpirePreparedStatements(db); + } + } + + p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); + assert(p || db->mallocFailed); + if( !p ){ + return SQLITE_NOMEM; + } + + /* If an older version of the function with a configured destructor is + ** being replaced invoke the destructor function here. */ + functionDestroy(db, p); + + if( pDestructor ){ + pDestructor->nRef++; + } + p->pDestructor = pDestructor; + p->flags = 0; + p->xFunc = xFunc; + p->xStep = xStep; + p->xFinalize = xFinal; + p->pUserData = pUserData; + p->nArg = (u16)nArg; + return SQLITE_OK; +} + +/* +** Create new user functions. +*/ +int sqlite3_create_function( + sqlite3 *db, + const char *zFunc, + int nArg, + int enc, + void *p, + void (*xFunc)(sqlite3_context*,int,sqlite3_value **), + void (*xStep)(sqlite3_context*,int,sqlite3_value **), + void (*xFinal)(sqlite3_context*) +){ + return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, + xFinal, 0); +} + +int sqlite3_create_function_v2( + sqlite3 *db, + const char *zFunc, + int nArg, + int enc, + void *p, + void (*xFunc)(sqlite3_context*,int,sqlite3_value **), + void (*xStep)(sqlite3_context*,int,sqlite3_value **), + void (*xFinal)(sqlite3_context*), + void (*xDestroy)(void *) +){ + int rc = SQLITE_ERROR; + FuncDestructor *pArg = 0; + sqlite3_mutex_enter(db->mutex); + if( xDestroy ){ + pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); + if( !pArg ){ + xDestroy(p); + goto out; + } + pArg->xDestroy = xDestroy; + pArg->pUserData = p; + } + rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); + if( pArg && pArg->nRef==0 ){ + assert( rc!=SQLITE_OK ); + xDestroy(p); + sqlite3DbFree(db, pArg); + } + + out: + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +#ifndef SQLITE_OMIT_UTF16 +int sqlite3_create_function16( + sqlite3 *db, + const void *zFunctionName, + int nArg, + int eTextRep, + void *p, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +){ + int rc; + char *zFunc8; + sqlite3_mutex_enter(db->mutex); + assert( !db->mallocFailed ); + zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); + rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); + sqlite3DbFree(db, zFunc8); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} +#endif + + +/* +** Declare that a function has been overloaded by a virtual table. +** +** If the function already exists as a regular global function, then +** this routine is a no-op. If the function does not exist, then create +** a new one that always throws a run-time error. +** +** When virtual tables intend to provide an overloaded function, they +** should call this routine to make sure the global function exists. +** A global function must exist in order for name resolution to work +** properly. +*/ +int sqlite3_overload_function( + sqlite3 *db, + const char *zName, + int nArg +){ + int nName = sqlite3Strlen30(zName); + int rc = SQLITE_OK; + sqlite3_mutex_enter(db->mutex); + if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ + rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, + 0, sqlite3InvalidFunction, 0, 0, 0); + } + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +#ifndef SQLITE_OMIT_TRACE +/* +** Register a trace function. The pArg from the previously registered trace +** is returned. +** +** A NULL trace function means that no tracing is executes. A non-NULL +** trace is a pointer to a function that is invoked at the start of each +** SQL statement. +*/ +void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ + void *pOld; + sqlite3_mutex_enter(db->mutex); + pOld = db->pTraceArg; + db->xTrace = xTrace; + db->pTraceArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pOld; +} +/* +** Register a profile function. The pArg from the previously registered +** profile function is returned. +** +** A NULL profile function means that no profiling is executes. A non-NULL +** profile is a pointer to a function that is invoked at the conclusion of +** each SQL statement that is run. +*/ +void *sqlite3_profile( + sqlite3 *db, + void (*xProfile)(void*,const char*,sqlite_uint64), + void *pArg +){ + void *pOld; + sqlite3_mutex_enter(db->mutex); + pOld = db->pProfileArg; + db->xProfile = xProfile; + db->pProfileArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pOld; +} +#endif /* SQLITE_OMIT_TRACE */ + +/*** EXPERIMENTAL *** +** +** Register a function to be invoked when a transaction comments. +** If the invoked function returns non-zero, then the commit becomes a +** rollback. +*/ +void *sqlite3_commit_hook( + sqlite3 *db, /* Attach the hook to this database */ + int (*xCallback)(void*), /* Function to invoke on each commit */ + void *pArg /* Argument to the function */ +){ + void *pOld; + sqlite3_mutex_enter(db->mutex); + pOld = db->pCommitArg; + db->xCommitCallback = xCallback; + db->pCommitArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pOld; +} + +/* +** Register a callback to be invoked each time a row is updated, +** inserted or deleted using this database connection. +*/ +void *sqlite3_update_hook( + sqlite3 *db, /* Attach the hook to this database */ + void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), + void *pArg /* Argument to the function */ +){ + void *pRet; + sqlite3_mutex_enter(db->mutex); + pRet = db->pUpdateArg; + db->xUpdateCallback = xCallback; + db->pUpdateArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pRet; +} + +/* +** Register a callback to be invoked each time a transaction is rolled +** back by this database connection. +*/ +void *sqlite3_rollback_hook( + sqlite3 *db, /* Attach the hook to this database */ + void (*xCallback)(void*), /* Callback function */ + void *pArg /* Argument to the function */ +){ + void *pRet; + sqlite3_mutex_enter(db->mutex); + pRet = db->pRollbackArg; + db->xRollbackCallback = xCallback; + db->pRollbackArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pRet; +} + +#ifndef SQLITE_OMIT_WAL +/* +** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). +** Invoke sqlite3_wal_checkpoint if the number of frames in the log file +** is greater than sqlite3.pWalArg cast to an integer (the value configured by +** wal_autocheckpoint()). +*/ +int sqlite3WalDefaultHook( + void *pClientData, /* Argument */ + sqlite3 *db, /* Connection */ + const char *zDb, /* Database */ + int nFrame /* Size of WAL */ +){ + if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ + sqlite3BeginBenignMalloc(); + sqlite3_wal_checkpoint(db, zDb); + sqlite3EndBenignMalloc(); + } + return SQLITE_OK; +} +#endif /* SQLITE_OMIT_WAL */ + +/* +** Configure an sqlite3_wal_hook() callback to automatically checkpoint +** a database after committing a transaction if there are nFrame or +** more frames in the log file. Passing zero or a negative value as the +** nFrame parameter disables automatic checkpoints entirely. +** +** The callback registered by this function replaces any existing callback +** registered using sqlite3_wal_hook(). Likewise, registering a callback +** using sqlite3_wal_hook() disables the automatic checkpoint mechanism +** configured by this function. +*/ +int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ +#ifdef SQLITE_OMIT_WAL + UNUSED_PARAMETER(db); + UNUSED_PARAMETER(nFrame); +#else + if( nFrame>0 ){ + sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); + }else{ + sqlite3_wal_hook(db, 0, 0); + } +#endif + return SQLITE_OK; +} + +/* +** Register a callback to be invoked each time a transaction is written +** into the write-ahead-log by this database connection. +*/ +void *sqlite3_wal_hook( + sqlite3 *db, /* Attach the hook to this db handle */ + int(*xCallback)(void *, sqlite3*, const char*, int), + void *pArg /* First argument passed to xCallback() */ +){ +#ifndef SQLITE_OMIT_WAL + void *pRet; + sqlite3_mutex_enter(db->mutex); + pRet = db->pWalArg; + db->xWalCallback = xCallback; + db->pWalArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pRet; +#else + return 0; +#endif +} + +/* +** Checkpoint database zDb. +*/ +int sqlite3_wal_checkpoint_v2( + sqlite3 *db, /* Database handle */ + const char *zDb, /* Name of attached database (or NULL) */ + int eMode, /* SQLITE_CHECKPOINT_* value */ + int *pnLog, /* OUT: Size of WAL log in frames */ + int *pnCkpt /* OUT: Total number of frames checkpointed */ +){ +#ifdef SQLITE_OMIT_WAL + return SQLITE_OK; +#else + int rc; /* Return code */ + int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ + + /* Initialize the output variables to -1 in case an error occurs. */ + if( pnLog ) *pnLog = -1; + if( pnCkpt ) *pnCkpt = -1; + + assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); + assert( SQLITE_CHECKPOINT_FULLSQLITE_CHECKPOINT_RESTART ){ + return SQLITE_MISUSE; + } + + sqlite3_mutex_enter(db->mutex); + if( zDb && zDb[0] ){ + iDb = sqlite3FindDbName(db, zDb); + } + if( iDb<0 ){ + rc = SQLITE_ERROR; + sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb); + }else{ + rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); + sqlite3Error(db, rc, 0); + } + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +#endif +} + + +/* +** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points +** to contains a zero-length string, all attached databases are +** checkpointed. +*/ +int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ + return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0); +} + +#ifndef SQLITE_OMIT_WAL +/* +** Run a checkpoint on database iDb. This is a no-op if database iDb is +** not currently open in WAL mode. +** +** If a transaction is open on the database being checkpointed, this +** function returns SQLITE_LOCKED and a checkpoint is not attempted. If +** an error occurs while running the checkpoint, an SQLite error code is +** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. +** +** The mutex on database handle db should be held by the caller. The mutex +** associated with the specific b-tree being checkpointed is taken by +** this function while the checkpoint is running. +** +** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are +** checkpointed. If an error is encountered it is returned immediately - +** no attempt is made to checkpoint any remaining databases. +** +** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. +*/ +int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ + int rc = SQLITE_OK; /* Return code */ + int i; /* Used to iterate through attached dbs */ + int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ + + assert( sqlite3_mutex_held(db->mutex) ); + assert( !pnLog || *pnLog==-1 ); + assert( !pnCkpt || *pnCkpt==-1 ); + + for(i=0; inDb && rc==SQLITE_OK; i++){ + if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ + rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); + pnLog = 0; + pnCkpt = 0; + if( rc==SQLITE_BUSY ){ + bBusy = 1; + rc = SQLITE_OK; + } + } + } + + return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; +} +#endif /* SQLITE_OMIT_WAL */ + +/* +** This function returns true if main-memory should be used instead of +** a temporary file for transient pager files and statement journals. +** The value returned depends on the value of db->temp_store (runtime +** parameter) and the compile time value of SQLITE_TEMP_STORE. The +** following table describes the relationship between these two values +** and this functions return value. +** +** SQLITE_TEMP_STORE db->temp_store Location of temporary database +** ----------------- -------------- ------------------------------ +** 0 any file (return 0) +** 1 1 file (return 0) +** 1 2 memory (return 1) +** 1 0 file (return 0) +** 2 1 file (return 0) +** 2 2 memory (return 1) +** 2 0 memory (return 1) +** 3 any memory (return 1) +*/ +int sqlite3TempInMemory(const sqlite3 *db){ +#if SQLITE_TEMP_STORE==1 + return ( db->temp_store==2 ); +#endif +#if SQLITE_TEMP_STORE==2 + return ( db->temp_store!=1 ); +#endif +#if SQLITE_TEMP_STORE==3 + return 1; +#endif +#if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 + return 0; +#endif +} + +/* +** Return UTF-8 encoded English language explanation of the most recent +** error. +*/ +const char *sqlite3_errmsg(sqlite3 *db){ + const char *z; + if( !db ){ + return sqlite3ErrStr(SQLITE_NOMEM); + } + if( !sqlite3SafetyCheckSickOrOk(db) ){ + return sqlite3ErrStr(SQLITE_MISUSE_BKPT); + } + sqlite3_mutex_enter(db->mutex); + if( db->mallocFailed ){ + z = sqlite3ErrStr(SQLITE_NOMEM); + }else{ + z = (char*)sqlite3_value_text(db->pErr); + assert( !db->mallocFailed ); + if( z==0 ){ + z = sqlite3ErrStr(db->errCode); + } + } + sqlite3_mutex_leave(db->mutex); + return z; +} + +#ifndef SQLITE_OMIT_UTF16 +/* +** Return UTF-16 encoded English language explanation of the most recent +** error. +*/ +const void *sqlite3_errmsg16(sqlite3 *db){ + static const u16 outOfMem[] = { + 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 + }; + static const u16 misuse[] = { + 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', + 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', + 'c', 'a', 'l', 'l', 'e', 'd', ' ', + 'o', 'u', 't', ' ', + 'o', 'f', ' ', + 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 + }; + + const void *z; + if( !db ){ + return (void *)outOfMem; + } + if( !sqlite3SafetyCheckSickOrOk(db) ){ + return (void *)misuse; + } + sqlite3_mutex_enter(db->mutex); + if( db->mallocFailed ){ + z = (void *)outOfMem; + }else{ + z = sqlite3_value_text16(db->pErr); + if( z==0 ){ + sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), + SQLITE_UTF8, SQLITE_STATIC); + z = sqlite3_value_text16(db->pErr); + } + /* A malloc() may have failed within the call to sqlite3_value_text16() + ** above. If this is the case, then the db->mallocFailed flag needs to + ** be cleared before returning. Do this directly, instead of via + ** sqlite3ApiExit(), to avoid setting the database handle error message. + */ + db->mallocFailed = 0; + } + sqlite3_mutex_leave(db->mutex); + return z; +} +#endif /* SQLITE_OMIT_UTF16 */ + +/* +** Return the most recent error code generated by an SQLite routine. If NULL is +** passed to this function, we assume a malloc() failed during sqlite3_open(). +*/ +int sqlite3_errcode(sqlite3 *db){ + if( db && !sqlite3SafetyCheckSickOrOk(db) ){ + return SQLITE_MISUSE_BKPT; + } + if( !db || db->mallocFailed ){ + return SQLITE_NOMEM; + } + return db->errCode & db->errMask; +} +int sqlite3_extended_errcode(sqlite3 *db){ + if( db && !sqlite3SafetyCheckSickOrOk(db) ){ + return SQLITE_MISUSE_BKPT; + } + if( !db || db->mallocFailed ){ + return SQLITE_NOMEM; + } + return db->errCode; +} + +/* +** Create a new collating function for database "db". The name is zName +** and the encoding is enc. +*/ +static int createCollation( + sqlite3* db, + const char *zName, + u8 enc, + u8 collType, + void* pCtx, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDel)(void*) +){ + CollSeq *pColl; + int enc2; + int nName = sqlite3Strlen30(zName); + + assert( sqlite3_mutex_held(db->mutex) ); + + /* If SQLITE_UTF16 is specified as the encoding type, transform this + ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the + ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. + */ + enc2 = enc; + testcase( enc2==SQLITE_UTF16 ); + testcase( enc2==SQLITE_UTF16_ALIGNED ); + if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ + enc2 = SQLITE_UTF16NATIVE; + } + if( enc2SQLITE_UTF16BE ){ + return SQLITE_MISUSE_BKPT; + } + + /* Check if this call is removing or replacing an existing collation + ** sequence. If so, and there are active VMs, return busy. If there + ** are no active VMs, invalidate any pre-compiled statements. + */ + pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); + if( pColl && pColl->xCmp ){ + if( db->activeVdbeCnt ){ + sqlite3Error(db, SQLITE_BUSY, + "unable to delete/modify collation sequence due to active statements"); + return SQLITE_BUSY; + } + sqlite3ExpirePreparedStatements(db); + + /* If collation sequence pColl was created directly by a call to + ** sqlite3_create_collation, and not generated by synthCollSeq(), + ** then any copies made by synthCollSeq() need to be invalidated. + ** Also, collation destructor - CollSeq.xDel() - function may need + ** to be called. + */ + if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ + CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); + int j; + for(j=0; j<3; j++){ + CollSeq *p = &aColl[j]; + if( p->enc==pColl->enc ){ + if( p->xDel ){ + p->xDel(p->pUser); + } + p->xCmp = 0; + } + } + } + } + + pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); + if( pColl==0 ) return SQLITE_NOMEM; + pColl->xCmp = xCompare; + pColl->pUser = pCtx; + pColl->xDel = xDel; + pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); + pColl->type = collType; + sqlite3Error(db, SQLITE_OK, 0); + return SQLITE_OK; +} + + +/* +** This array defines hard upper bounds on limit values. The +** initializer must be kept in sync with the SQLITE_LIMIT_* +** #defines in sqlite3.h. +*/ +static const int aHardLimit[] = { + SQLITE_MAX_LENGTH, + SQLITE_MAX_SQL_LENGTH, + SQLITE_MAX_COLUMN, + SQLITE_MAX_EXPR_DEPTH, + SQLITE_MAX_COMPOUND_SELECT, + SQLITE_MAX_VDBE_OP, + SQLITE_MAX_FUNCTION_ARG, + SQLITE_MAX_ATTACHED, + SQLITE_MAX_LIKE_PATTERN_LENGTH, + SQLITE_MAX_VARIABLE_NUMBER, + SQLITE_MAX_TRIGGER_DEPTH, +}; + +/* +** Make sure the hard limits are set to reasonable values +*/ +#if SQLITE_MAX_LENGTH<100 +# error SQLITE_MAX_LENGTH must be at least 100 +#endif +#if SQLITE_MAX_SQL_LENGTH<100 +# error SQLITE_MAX_SQL_LENGTH must be at least 100 +#endif +#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH +# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH +#endif +#if SQLITE_MAX_COMPOUND_SELECT<2 +# error SQLITE_MAX_COMPOUND_SELECT must be at least 2 +#endif +#if SQLITE_MAX_VDBE_OP<40 +# error SQLITE_MAX_VDBE_OP must be at least 40 +#endif +#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 +# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 +#endif +#if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62 +# error SQLITE_MAX_ATTACHED must be between 0 and 62 +#endif +#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 +# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 +#endif +#if SQLITE_MAX_COLUMN>32767 +# error SQLITE_MAX_COLUMN must not exceed 32767 +#endif +#if SQLITE_MAX_TRIGGER_DEPTH<1 +# error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 +#endif + + +/* +** Change the value of a limit. Report the old value. +** If an invalid limit index is supplied, report -1. +** Make no changes but still report the old value if the +** new limit is negative. +** +** A new lower limit does not shrink existing constructs. +** It merely prevents new constructs that exceed the limit +** from forming. +*/ +int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ + int oldLimit; + + + /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME + ** there is a hard upper bound set at compile-time by a C preprocessor + ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to + ** "_MAX_".) + */ + assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); + assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); + assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); + assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); + assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); + assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); + assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); + assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); + assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== + SQLITE_MAX_LIKE_PATTERN_LENGTH ); + assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); + assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); + assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) ); + + + if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ + return -1; + } + oldLimit = db->aLimit[limitId]; + if( newLimit>=0 ){ /* IMP: R-52476-28732 */ + if( newLimit>aHardLimit[limitId] ){ + newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ + } + db->aLimit[limitId] = newLimit; + } + return oldLimit; /* IMP: R-53341-35419 */ +} + +/* +** This function is used to parse both URIs and non-URI filenames passed by the +** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database +** URIs specified as part of ATTACH statements. +** +** The first argument to this function is the name of the VFS to use (or +** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" +** query parameter. The second argument contains the URI (or non-URI filename) +** itself. When this function is called the *pFlags variable should contain +** the default flags to open the database handle with. The value stored in +** *pFlags may be updated before returning if the URI filename contains +** "cache=xxx" or "mode=xxx" query parameters. +** +** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to +** the VFS that should be used to open the database file. *pzFile is set to +** point to a buffer containing the name of the file to open. It is the +** responsibility of the caller to eventually call sqlite3_free() to release +** this buffer. +** +** If an error occurs, then an SQLite error code is returned and *pzErrMsg +** may be set to point to a buffer containing an English language error +** message. It is the responsibility of the caller to eventually release +** this buffer by calling sqlite3_free(). +*/ +int sqlite3ParseUri( + const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ + const char *zUri, /* Nul-terminated URI to parse */ + unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ + sqlite3_vfs **ppVfs, /* OUT: VFS to use */ + char **pzFile, /* OUT: Filename component of URI */ + char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ +){ + int rc = SQLITE_OK; + unsigned int flags = *pFlags; + const char *zVfs = zDefaultVfs; + char *zFile; + char c; + int nUri = sqlite3Strlen30(zUri); + + assert( *pzErrMsg==0 ); + + if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri) + && nUri>=5 && memcmp(zUri, "file:", 5)==0 + ){ + char *zOpt; + int eState; /* Parser state when parsing URI */ + int iIn; /* Input character index */ + int iOut = 0; /* Output character index */ + int nByte = nUri+2; /* Bytes of space to allocate */ + + /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen + ** method that there may be extra parameters following the file-name. */ + flags |= SQLITE_OPEN_URI; + + for(iIn=0; iIn=0 && octet<256 ); + if( octet==0 ){ + /* This branch is taken when "%00" appears within the URI. In this + ** case we ignore all text in the remainder of the path, name or + ** value currently being parsed. So ignore the current character + ** and skip to the next "?", "=" or "&", as appropriate. */ + while( (c = zUri[iIn])!=0 && c!='#' + && (eState!=0 || c!='?') + && (eState!=1 || (c!='=' && c!='&')) + && (eState!=2 || c!='&') + ){ + iIn++; + } + continue; + } + c = octet; + }else if( eState==1 && (c=='&' || c=='=') ){ + if( zFile[iOut-1]==0 ){ + /* An empty option name. Ignore this option altogether. */ + while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; + continue; + } + if( c=='&' ){ + zFile[iOut++] = '\0'; + }else{ + eState = 2; + } + c = 0; + }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ + c = 0; + eState = 1; + } + zFile[iOut++] = c; + } + if( eState==1 ) zFile[iOut++] = '\0'; + zFile[iOut++] = '\0'; + zFile[iOut++] = '\0'; + + /* Check if there were any options specified that should be interpreted + ** here. Options that are interpreted here include "vfs" and those that + ** correspond to flags that may be passed to the sqlite3_open_v2() + ** method. */ + zOpt = &zFile[sqlite3Strlen30(zFile)+1]; + while( zOpt[0] ){ + int nOpt = sqlite3Strlen30(zOpt); + char *zVal = &zOpt[nOpt+1]; + int nVal = sqlite3Strlen30(zVal); + + if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ + zVfs = zVal; + }else{ + struct OpenMode { + const char *z; + int mode; + } *aMode = 0; + char *zModeType = 0; + int mask = 0; + int limit = 0; + + if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ + static struct OpenMode aCacheMode[] = { + { "shared", SQLITE_OPEN_SHAREDCACHE }, + { "private", SQLITE_OPEN_PRIVATECACHE }, + { 0, 0 } + }; + + mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; + aMode = aCacheMode; + limit = mask; + zModeType = "cache"; + } + if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ + static struct OpenMode aOpenMode[] = { + { "ro", SQLITE_OPEN_READONLY }, + { "rw", SQLITE_OPEN_READWRITE }, + { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, + { 0, 0 } + }; + + mask = SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; + aMode = aOpenMode; + limit = mask & flags; + zModeType = "access"; + } + + if( aMode ){ + int i; + int mode = 0; + for(i=0; aMode[i].z; i++){ + const char *z = aMode[i].z; + if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ + mode = aMode[i].mode; + break; + } + } + if( mode==0 ){ + *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); + rc = SQLITE_ERROR; + goto parse_uri_out; + } + if( mode>limit ){ + *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", + zModeType, zVal); + rc = SQLITE_PERM; + goto parse_uri_out; + } + flags = (flags & ~mask) | mode; + } + } + + zOpt = &zVal[nVal+1]; + } + + }else{ + zFile = sqlite3_malloc(nUri+2); + if( !zFile ) return SQLITE_NOMEM; + memcpy(zFile, zUri, nUri); + zFile[nUri] = '\0'; + zFile[nUri+1] = '\0'; + } + + *ppVfs = sqlite3_vfs_find(zVfs); + if( *ppVfs==0 ){ + *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); + rc = SQLITE_ERROR; + } + parse_uri_out: + if( rc!=SQLITE_OK ){ + sqlite3_free(zFile); + zFile = 0; + } + *pFlags = flags; + *pzFile = zFile; + return rc; +} + + +/* +** This routine does the work of opening a database on behalf of +** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" +** is UTF-8 encoded. +*/ +static int openDatabase( + const char *zFilename, /* Database filename UTF-8 encoded */ + sqlite3 **ppDb, /* OUT: Returned database handle */ + unsigned int flags, /* Operational flags */ + const char *zVfs /* Name of the VFS to use */ +){ + sqlite3 *db; /* Store allocated handle here */ + int rc; /* Return code */ + int isThreadsafe; /* True for threadsafe connections */ + char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ + char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ + + *ppDb = 0; +#ifndef SQLITE_OMIT_AUTOINIT + rc = sqlite3_initialize(); + if( rc ) return rc; +#endif + + /* Only allow sensible combinations of bits in the flags argument. + ** Throw an error if any non-sense combination is used. If we + ** do not block illegal combinations here, it could trigger + ** assert() statements in deeper layers. Sensible combinations + ** are: + ** + ** 1: SQLITE_OPEN_READONLY + ** 2: SQLITE_OPEN_READWRITE + ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE + */ + assert( SQLITE_OPEN_READONLY == 0x01 ); + assert( SQLITE_OPEN_READWRITE == 0x02 ); + assert( SQLITE_OPEN_CREATE == 0x04 ); + testcase( (1<<(flags&7))==0x02 ); /* READONLY */ + testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ + testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ + if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT; + + if( sqlite3GlobalConfig.bCoreMutex==0 ){ + isThreadsafe = 0; + }else if( flags & SQLITE_OPEN_NOMUTEX ){ + isThreadsafe = 0; + }else if( flags & SQLITE_OPEN_FULLMUTEX ){ + isThreadsafe = 1; + }else{ + isThreadsafe = sqlite3GlobalConfig.bFullMutex; + } + if( flags & SQLITE_OPEN_PRIVATECACHE ){ + flags &= ~SQLITE_OPEN_SHAREDCACHE; + }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ + flags |= SQLITE_OPEN_SHAREDCACHE; + } + + /* Remove harmful bits from the flags parameter + ** + ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were + ** dealt with in the previous code block. Besides these, the only + ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, + ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, + ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask + ** off all other flags. + */ + flags &= ~( SQLITE_OPEN_DELETEONCLOSE | + SQLITE_OPEN_EXCLUSIVE | + SQLITE_OPEN_MAIN_DB | + SQLITE_OPEN_TEMP_DB | + SQLITE_OPEN_TRANSIENT_DB | + SQLITE_OPEN_MAIN_JOURNAL | + SQLITE_OPEN_TEMP_JOURNAL | + SQLITE_OPEN_SUBJOURNAL | + SQLITE_OPEN_MASTER_JOURNAL | + SQLITE_OPEN_NOMUTEX | + SQLITE_OPEN_FULLMUTEX | + SQLITE_OPEN_WAL + ); + + /* Allocate the sqlite data structure */ + db = sqlite3MallocZero( sizeof(sqlite3) ); + if( db==0 ) goto opendb_out; + if( isThreadsafe ){ + db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); + if( db->mutex==0 ){ + sqlite3_free(db); + db = 0; + goto opendb_out; + } + } + sqlite3_mutex_enter(db->mutex); + db->errMask = 0xff; + db->nDb = 2; + db->magic = SQLITE_MAGIC_BUSY; + db->aDb = db->aDbStatic; + + assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); + memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); + db->autoCommit = 1; + db->nextAutovac = -1; + db->nextPagesize = 0; + db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger +#if SQLITE_DEFAULT_FILE_FORMAT<4 + | SQLITE_LegacyFileFmt +#endif +#ifdef SQLITE_ENABLE_LOAD_EXTENSION + | SQLITE_LoadExtension +#endif +#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS + | SQLITE_RecTriggers +#endif +#if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS + | SQLITE_ForeignKeys +#endif + ; + sqlite3HashInit(&db->aCollSeq); +#ifndef SQLITE_OMIT_VIRTUALTABLE + sqlite3HashInit(&db->aModule); +#endif + + /* Add the default collation sequence BINARY. BINARY works for both UTF-8 + ** and UTF-16, so add a version for each to avoid any unnecessary + ** conversions. The only error that can occur here is a malloc() failure. + */ + createCollation(db, "BINARY", SQLITE_UTF8, SQLITE_COLL_BINARY, 0, + binCollFunc, 0); + createCollation(db, "BINARY", SQLITE_UTF16BE, SQLITE_COLL_BINARY, 0, + binCollFunc, 0); + createCollation(db, "BINARY", SQLITE_UTF16LE, SQLITE_COLL_BINARY, 0, + binCollFunc, 0); + createCollation(db, "RTRIM", SQLITE_UTF8, SQLITE_COLL_USER, (void*)1, + binCollFunc, 0); + if( db->mallocFailed ){ + goto opendb_out; + } + db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); + assert( db->pDfltColl!=0 ); + + /* Also add a UTF-8 case-insensitive collation sequence. */ + createCollation(db, "NOCASE", SQLITE_UTF8, SQLITE_COLL_NOCASE, 0, + nocaseCollatingFunc, 0); + + /* Parse the filename/URI argument. */ + db->openFlags = flags; + rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; + sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg); + sqlite3_free(zErrMsg); + goto opendb_out; + } + + /* Open the backend database driver */ + rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, + flags | SQLITE_OPEN_MAIN_DB); + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_IOERR_NOMEM ){ + rc = SQLITE_NOMEM; + } + sqlite3Error(db, rc, 0); + goto opendb_out; + } + db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); + db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); + + + /* The default safety_level for the main database is 'full'; for the temp + ** database it is 'NONE'. This matches the pager layer defaults. + */ + db->aDb[0].zName = "main"; + db->aDb[0].safety_level = 3; + db->aDb[1].zName = "temp"; + db->aDb[1].safety_level = 1; + + db->magic = SQLITE_MAGIC_OPEN; + if( db->mallocFailed ){ + goto opendb_out; + } + + /* Register all built-in functions, but do not attempt to read the + ** database schema yet. This is delayed until the first time the database + ** is accessed. + */ + sqlite3Error(db, SQLITE_OK, 0); + sqlite3RegisterBuiltinFunctions(db); + + /* Load automatic extensions - extensions that have been registered + ** using the sqlite3_automatic_extension() API. + */ + sqlite3AutoLoadExtensions(db); + rc = sqlite3_errcode(db); + if( rc!=SQLITE_OK ){ + goto opendb_out; + } + +#ifdef SQLITE_ENABLE_FTS1 + if( !db->mallocFailed ){ + extern int sqlite3Fts1Init(sqlite3*); + rc = sqlite3Fts1Init(db); + } +#endif + +#ifdef SQLITE_ENABLE_FTS2 + if( !db->mallocFailed && rc==SQLITE_OK ){ + extern int sqlite3Fts2Init(sqlite3*); + rc = sqlite3Fts2Init(db); + } +#endif + +#ifdef SQLITE_ENABLE_FTS3 + if( !db->mallocFailed && rc==SQLITE_OK ){ + rc = sqlite3Fts3Init(db); + } +#endif + +#ifdef SQLITE_ENABLE_ICU + if( !db->mallocFailed && rc==SQLITE_OK ){ + rc = sqlite3IcuInit(db); + } +#endif + +#ifdef SQLITE_ENABLE_RTREE + if( !db->mallocFailed && rc==SQLITE_OK){ + rc = sqlite3RtreeInit(db); + } +#endif + + sqlite3Error(db, rc, 0); + + /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking + ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking + ** mode. Doing nothing at all also makes NORMAL the default. + */ +#ifdef SQLITE_DEFAULT_LOCKING_MODE + db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; + sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), + SQLITE_DEFAULT_LOCKING_MODE); +#endif + + /* Enable the lookaside-malloc subsystem */ + setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, + sqlite3GlobalConfig.nLookaside); + + sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); + +opendb_out: + sqlite3_free(zOpen); + if( db ){ + assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); + sqlite3_mutex_leave(db->mutex); + } + rc = sqlite3_errcode(db); + assert( db!=0 || rc==SQLITE_NOMEM ); + if( rc==SQLITE_NOMEM ){ + sqlite3_close(db); + db = 0; + }else if( rc!=SQLITE_OK ){ + db->magic = SQLITE_MAGIC_SICK; + } + *ppDb = db; + return sqlite3ApiExit(0, rc); +} + +/* +** Open a new database handle. +*/ +int sqlite3_open( + const char *zFilename, + sqlite3 **ppDb +){ + return openDatabase(zFilename, ppDb, + SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); +} +int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +){ + return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); +} + +#ifndef SQLITE_OMIT_UTF16 +/* +** Open a new database handle. +*/ +int sqlite3_open16( + const void *zFilename, + sqlite3 **ppDb +){ + char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ + sqlite3_value *pVal; + int rc; + + assert( zFilename ); + assert( ppDb ); + *ppDb = 0; +#ifndef SQLITE_OMIT_AUTOINIT + rc = sqlite3_initialize(); + if( rc ) return rc; +#endif + pVal = sqlite3ValueNew(0); + sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); + zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); + if( zFilename8 ){ + rc = openDatabase(zFilename8, ppDb, + SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); + assert( *ppDb || rc==SQLITE_NOMEM ); + if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ + ENC(*ppDb) = SQLITE_UTF16NATIVE; + } + }else{ + rc = SQLITE_NOMEM; + } + sqlite3ValueFree(pVal); + + return sqlite3ApiExit(0, rc); +} +#endif /* SQLITE_OMIT_UTF16 */ + +/* +** Register a new collation sequence with the database handle db. +*/ +int sqlite3_create_collation( + sqlite3* db, + const char *zName, + int enc, + void* pCtx, + int(*xCompare)(void*,int,const void*,int,const void*) +){ + int rc; + sqlite3_mutex_enter(db->mutex); + assert( !db->mallocFailed ); + rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Register a new collation sequence with the database handle db. +*/ +int sqlite3_create_collation_v2( + sqlite3* db, + const char *zName, + int enc, + void* pCtx, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDel)(void*) +){ + int rc; + sqlite3_mutex_enter(db->mutex); + assert( !db->mallocFailed ); + rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, xDel); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +#ifndef SQLITE_OMIT_UTF16 +/* +** Register a new collation sequence with the database handle db. +*/ +int sqlite3_create_collation16( + sqlite3* db, + const void *zName, + int enc, + void* pCtx, + int(*xCompare)(void*,int,const void*,int,const void*) +){ + int rc = SQLITE_OK; + char *zName8; + sqlite3_mutex_enter(db->mutex); + assert( !db->mallocFailed ); + zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); + if( zName8 ){ + rc = createCollation(db, zName8, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0); + sqlite3DbFree(db, zName8); + } + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} +#endif /* SQLITE_OMIT_UTF16 */ + +/* +** Register a collation sequence factory callback with the database handle +** db. Replace any previously installed collation sequence factory. +*/ +int sqlite3_collation_needed( + sqlite3 *db, + void *pCollNeededArg, + void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) +){ + sqlite3_mutex_enter(db->mutex); + db->xCollNeeded = xCollNeeded; + db->xCollNeeded16 = 0; + db->pCollNeededArg = pCollNeededArg; + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} + +#ifndef SQLITE_OMIT_UTF16 +/* +** Register a collation sequence factory callback with the database handle +** db. Replace any previously installed collation sequence factory. +*/ +int sqlite3_collation_needed16( + sqlite3 *db, + void *pCollNeededArg, + void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) +){ + sqlite3_mutex_enter(db->mutex); + db->xCollNeeded = 0; + db->xCollNeeded16 = xCollNeeded16; + db->pCollNeededArg = pCollNeededArg; + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} +#endif /* SQLITE_OMIT_UTF16 */ + +#ifndef SQLITE_OMIT_DEPRECATED +/* +** This function is now an anachronism. It used to be used to recover from a +** malloc() failure, but SQLite now does this automatically. +*/ +int sqlite3_global_recover(void){ + return SQLITE_OK; +} +#endif + +/* +** Test to see whether or not the database connection is in autocommit +** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on +** by default. Autocommit is disabled by a BEGIN statement and reenabled +** by the next COMMIT or ROLLBACK. +** +******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** +*/ +int sqlite3_get_autocommit(sqlite3 *db){ + return db->autoCommit; +} + +/* +** The following routines are subtitutes for constants SQLITE_CORRUPT, +** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error +** constants. They server two purposes: +** +** 1. Serve as a convenient place to set a breakpoint in a debugger +** to detect when version error conditions occurs. +** +** 2. Invoke sqlite3_log() to provide the source code location where +** a low-level error is first detected. +*/ +int sqlite3CorruptError(int lineno){ + testcase( sqlite3GlobalConfig.xLog!=0 ); + sqlite3_log(SQLITE_CORRUPT, + "database corruption at line %d of [%.10s]", + lineno, 20+sqlite3_sourceid()); + return SQLITE_CORRUPT; +} +int sqlite3MisuseError(int lineno){ + testcase( sqlite3GlobalConfig.xLog!=0 ); + sqlite3_log(SQLITE_MISUSE, + "misuse at line %d of [%.10s]", + lineno, 20+sqlite3_sourceid()); + return SQLITE_MISUSE; +} +int sqlite3CantopenError(int lineno){ + testcase( sqlite3GlobalConfig.xLog!=0 ); + sqlite3_log(SQLITE_CANTOPEN, + "cannot open file at line %d of [%.10s]", + lineno, 20+sqlite3_sourceid()); + return SQLITE_CANTOPEN; +} + + +#ifndef SQLITE_OMIT_DEPRECATED +/* +** This is a convenience routine that makes sure that all thread-specific +** data for this thread has been deallocated. +** +** SQLite no longer uses thread-specific data so this routine is now a +** no-op. It is retained for historical compatibility. +*/ +void sqlite3_thread_cleanup(void){ +} +#endif + +/* +** Return meta information about a specific column of a database table. +** See comment in sqlite3.h (sqlite.h.in) for details. +*/ +#ifdef SQLITE_ENABLE_COLUMN_METADATA +int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +){ + int rc; + char *zErrMsg = 0; + Table *pTab = 0; + Column *pCol = 0; + int iCol; + + char const *zDataType = 0; + char const *zCollSeq = 0; + int notnull = 0; + int primarykey = 0; + int autoinc = 0; + + /* Ensure the database schema has been loaded */ + sqlite3_mutex_enter(db->mutex); + sqlite3BtreeEnterAll(db); + rc = sqlite3Init(db, &zErrMsg); + if( SQLITE_OK!=rc ){ + goto error_out; + } + + /* Locate the table in question */ + pTab = sqlite3FindTable(db, zTableName, zDbName); + if( !pTab || pTab->pSelect ){ + pTab = 0; + goto error_out; + } + + /* Find the column for which info is requested */ + if( sqlite3IsRowid(zColumnName) ){ + iCol = pTab->iPKey; + if( iCol>=0 ){ + pCol = &pTab->aCol[iCol]; + } + }else{ + for(iCol=0; iColnCol; iCol++){ + pCol = &pTab->aCol[iCol]; + if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ + break; + } + } + if( iCol==pTab->nCol ){ + pTab = 0; + goto error_out; + } + } + + /* The following block stores the meta information that will be returned + ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey + ** and autoinc. At this point there are two possibilities: + ** + ** 1. The specified column name was rowid", "oid" or "_rowid_" + ** and there is no explicitly declared IPK column. + ** + ** 2. The table is not a view and the column name identified an + ** explicitly declared column. Copy meta information from *pCol. + */ + if( pCol ){ + zDataType = pCol->zType; + zCollSeq = pCol->zColl; + notnull = pCol->notNull!=0; + primarykey = pCol->isPrimKey!=0; + autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; + }else{ + zDataType = "INTEGER"; + primarykey = 1; + } + if( !zCollSeq ){ + zCollSeq = "BINARY"; + } + +error_out: + sqlite3BtreeLeaveAll(db); + + /* Whether the function call succeeded or failed, set the output parameters + ** to whatever their local counterparts contain. If an error did occur, + ** this has the effect of zeroing all output parameters. + */ + if( pzDataType ) *pzDataType = zDataType; + if( pzCollSeq ) *pzCollSeq = zCollSeq; + if( pNotNull ) *pNotNull = notnull; + if( pPrimaryKey ) *pPrimaryKey = primarykey; + if( pAutoinc ) *pAutoinc = autoinc; + + if( SQLITE_OK==rc && !pTab ){ + sqlite3DbFree(db, zErrMsg); + zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, + zColumnName); + rc = SQLITE_ERROR; + } + sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); + sqlite3DbFree(db, zErrMsg); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} +#endif + +/* +** Sleep for a little while. Return the amount of time slept. +*/ +int sqlite3_sleep(int ms){ + sqlite3_vfs *pVfs; + int rc; + pVfs = sqlite3_vfs_find(0); + if( pVfs==0 ) return 0; + + /* This function works in milliseconds, but the underlying OsSleep() + ** API uses microseconds. Hence the 1000's. + */ + rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); + return rc; +} + +/* +** Enable or disable the extended result codes. +*/ +int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ + sqlite3_mutex_enter(db->mutex); + db->errMask = onoff ? 0xffffffff : 0xff; + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} + +/* +** Invoke the xFileControl method on a particular database. +*/ +int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ + int rc = SQLITE_ERROR; + int iDb; + sqlite3_mutex_enter(db->mutex); + if( zDbName==0 ){ + iDb = 0; + }else{ + for(iDb=0; iDbnDb; iDb++){ + if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break; + } + } + if( iDbnDb ){ + Btree *pBtree = db->aDb[iDb].pBt; + if( pBtree ){ + Pager *pPager; + sqlite3_file *fd; + sqlite3BtreeEnter(pBtree); + pPager = sqlite3BtreePager(pBtree); + assert( pPager!=0 ); + fd = sqlite3PagerFile(pPager); + assert( fd!=0 ); + if( op==SQLITE_FCNTL_FILE_POINTER ){ + *(sqlite3_file**)pArg = fd; + rc = SQLITE_OK; + }else if( fd->pMethods ){ + rc = sqlite3OsFileControl(fd, op, pArg); + }else{ + rc = SQLITE_NOTFOUND; + } + sqlite3BtreeLeave(pBtree); + } + } + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Interface to the testing logic. +*/ +int sqlite3_test_control(int op, ...){ + int rc = 0; +#ifndef SQLITE_OMIT_BUILTIN_TEST + va_list ap; + va_start(ap, op); + switch( op ){ + + /* + ** Save the current state of the PRNG. + */ + case SQLITE_TESTCTRL_PRNG_SAVE: { + sqlite3PrngSaveState(); + break; + } + + /* + ** Restore the state of the PRNG to the last state saved using + ** PRNG_SAVE. If PRNG_SAVE has never before been called, then + ** this verb acts like PRNG_RESET. + */ + case SQLITE_TESTCTRL_PRNG_RESTORE: { + sqlite3PrngRestoreState(); + break; + } + + /* + ** Reset the PRNG back to its uninitialized state. The next call + ** to sqlite3_randomness() will reseed the PRNG using a single call + ** to the xRandomness method of the default VFS. + */ + case SQLITE_TESTCTRL_PRNG_RESET: { + sqlite3PrngResetState(); + break; + } + + /* + ** sqlite3_test_control(BITVEC_TEST, size, program) + ** + ** Run a test against a Bitvec object of size. The program argument + ** is an array of integers that defines the test. Return -1 on a + ** memory allocation error, 0 on success, or non-zero for an error. + ** See the sqlite3BitvecBuiltinTest() for additional information. + */ + case SQLITE_TESTCTRL_BITVEC_TEST: { + int sz = va_arg(ap, int); + int *aProg = va_arg(ap, int*); + rc = sqlite3BitvecBuiltinTest(sz, aProg); + break; + } + + /* + ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) + ** + ** Register hooks to call to indicate which malloc() failures + ** are benign. + */ + case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { + typedef void (*void_function)(void); + void_function xBenignBegin; + void_function xBenignEnd; + xBenignBegin = va_arg(ap, void_function); + xBenignEnd = va_arg(ap, void_function); + sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); + break; + } + + /* + ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) + ** + ** Set the PENDING byte to the value in the argument, if X>0. + ** Make no changes if X==0. Return the value of the pending byte + ** as it existing before this routine was called. + ** + ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in + ** an incompatible database file format. Changing the PENDING byte + ** while any database connection is open results in undefined and + ** dileterious behavior. + */ + case SQLITE_TESTCTRL_PENDING_BYTE: { + rc = PENDING_BYTE; +#ifndef SQLITE_OMIT_WSD + { + unsigned int newVal = va_arg(ap, unsigned int); + if( newVal ) sqlite3PendingByte = newVal; + } +#endif + break; + } + + /* + ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) + ** + ** This action provides a run-time test to see whether or not + ** assert() was enabled at compile-time. If X is true and assert() + ** is enabled, then the return value is true. If X is true and + ** assert() is disabled, then the return value is zero. If X is + ** false and assert() is enabled, then the assertion fires and the + ** process aborts. If X is false and assert() is disabled, then the + ** return value is zero. + */ + case SQLITE_TESTCTRL_ASSERT: { + volatile int x = 0; + assert( (x = va_arg(ap,int))!=0 ); + rc = x; + break; + } + + + /* + ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) + ** + ** This action provides a run-time test to see how the ALWAYS and + ** NEVER macros were defined at compile-time. + ** + ** The return value is ALWAYS(X). + ** + ** The recommended test is X==2. If the return value is 2, that means + ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the + ** default setting. If the return value is 1, then ALWAYS() is either + ** hard-coded to true or else it asserts if its argument is false. + ** The first behavior (hard-coded to true) is the case if + ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second + ** behavior (assert if the argument to ALWAYS() is false) is the case if + ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. + ** + ** The run-time test procedure might look something like this: + ** + ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ + ** // ALWAYS() and NEVER() are no-op pass-through macros + ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ + ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. + ** }else{ + ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. + ** } + */ + case SQLITE_TESTCTRL_ALWAYS: { + int x = va_arg(ap,int); + rc = ALWAYS(x); + break; + } + + /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) + ** + ** Set the nReserve size to N for the main database on the database + ** connection db. + */ + case SQLITE_TESTCTRL_RESERVE: { + sqlite3 *db = va_arg(ap, sqlite3*); + int x = va_arg(ap,int); + sqlite3_mutex_enter(db->mutex); + sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); + sqlite3_mutex_leave(db->mutex); + break; + } + + /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) + ** + ** Enable or disable various optimizations for testing purposes. The + ** argument N is a bitmask of optimizations to be disabled. For normal + ** operation N should be 0. The idea is that a test program (like the + ** SQL Logic Test or SLT test module) can run the same SQL multiple times + ** with various optimizations disabled to verify that the same answer + ** is obtained in every case. + */ + case SQLITE_TESTCTRL_OPTIMIZATIONS: { + sqlite3 *db = va_arg(ap, sqlite3*); + int x = va_arg(ap,int); + db->flags = (x & SQLITE_OptMask) | (db->flags & ~SQLITE_OptMask); + break; + } + +#ifdef SQLITE_N_KEYWORD + /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) + ** + ** If zWord is a keyword recognized by the parser, then return the + ** number of keywords. Or if zWord is not a keyword, return 0. + ** + ** This test feature is only available in the amalgamation since + ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite + ** is built using separate source files. + */ + case SQLITE_TESTCTRL_ISKEYWORD: { + const char *zWord = va_arg(ap, const char*); + int n = sqlite3Strlen30(zWord); + rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; + break; + } +#endif + + /* sqlite3_test_control(SQLITE_TESTCTRL_PGHDRSZ) + ** + ** Return the size of a pcache header in bytes. + */ + case SQLITE_TESTCTRL_PGHDRSZ: { + rc = sizeof(PgHdr); + break; + } + + /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); + ** + ** Pass pFree into sqlite3ScratchFree(). + ** If sz>0 then allocate a scratch buffer into pNew. + */ + case SQLITE_TESTCTRL_SCRATCHMALLOC: { + void *pFree, **ppNew; + int sz; + sz = va_arg(ap, int); + ppNew = va_arg(ap, void**); + pFree = va_arg(ap, void*); + if( sz ) *ppNew = sqlite3ScratchMalloc(sz); + sqlite3ScratchFree(pFree); + break; + } + + /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); + ** + ** If parameter onoff is non-zero, configure the wrappers so that all + ** subsequent calls to localtime() and variants fail. If onoff is zero, + ** undo this setting. + */ + case SQLITE_TESTCTRL_LOCALTIME_FAULT: { + sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); + break; + } + + } + va_end(ap); +#endif /* SQLITE_OMIT_BUILTIN_TEST */ + return rc; +} + +/* +** This is a utility routine, useful to VFS implementations, that checks +** to see if a database file was a URI that contained a specific query +** parameter, and if so obtains the value of the query parameter. +** +** The zFilename argument is the filename pointer passed into the xOpen() +** method of a VFS implementation. The zParam argument is the name of the +** query parameter we seek. This routine returns the value of the zParam +** parameter if it exists. If the parameter does not exist, this routine +** returns a NULL pointer. +*/ +const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ + zFilename += sqlite3Strlen30(zFilename) + 1; + while( zFilename[0] ){ + int x = strcmp(zFilename, zParam); + zFilename += sqlite3Strlen30(zFilename) + 1; + if( x==0 ) return zFilename; + zFilename += sqlite3Strlen30(zFilename) + 1; + } + return 0; +} diff --git a/src/malloc.c b/src/malloc.c new file mode 100644 index 0000000..3e38d1d --- /dev/null +++ b/src/malloc.c @@ -0,0 +1,777 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** Memory allocation functions used throughout sqlite. +*/ +#include "sqliteInt.h" +#include + +/* +** Attempt to release up to n bytes of non-essential memory currently +** held by SQLite. An example of non-essential memory is memory used to +** cache database pages that are not currently in use. +*/ +int sqlite3_release_memory(int n){ +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + return sqlite3PcacheReleaseMemory(n); +#else + /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine + ** is a no-op returning zero if SQLite is not compiled with + ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ + UNUSED_PARAMETER(n); + return 0; +#endif +} + +/* +** An instance of the following object records the location of +** each unused scratch buffer. +*/ +typedef struct ScratchFreeslot { + struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ +} ScratchFreeslot; + +/* +** State information local to the memory allocation subsystem. +*/ +static SQLITE_WSD struct Mem0Global { + sqlite3_mutex *mutex; /* Mutex to serialize access */ + + /* + ** The alarm callback and its arguments. The mem0.mutex lock will + ** be held while the callback is running. Recursive calls into + ** the memory subsystem are allowed, but no new callbacks will be + ** issued. + */ + sqlite3_int64 alarmThreshold; + void (*alarmCallback)(void*, sqlite3_int64,int); + void *alarmArg; + + /* + ** Pointers to the end of sqlite3GlobalConfig.pScratch memory + ** (so that a range test can be used to determine if an allocation + ** being freed came from pScratch) and a pointer to the list of + ** unused scratch allocations. + */ + void *pScratchEnd; + ScratchFreeslot *pScratchFree; + u32 nScratchFree; + + /* + ** True if heap is nearly "full" where "full" is defined by the + ** sqlite3_soft_heap_limit() setting. + */ + int nearlyFull; +} mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; + +#define mem0 GLOBAL(struct Mem0Global, mem0) + +/* +** This routine runs when the memory allocator sees that the +** total memory allocation is about to exceed the soft heap +** limit. +*/ +static void softHeapLimitEnforcer( + void *NotUsed, + sqlite3_int64 NotUsed2, + int allocSize +){ + UNUSED_PARAMETER2(NotUsed, NotUsed2); + sqlite3_release_memory(allocSize); +} + +/* +** Change the alarm callback +*/ +static int sqlite3MemoryAlarm( + void(*xCallback)(void *pArg, sqlite3_int64 used,int N), + void *pArg, + sqlite3_int64 iThreshold +){ + int nUsed; + sqlite3_mutex_enter(mem0.mutex); + mem0.alarmCallback = xCallback; + mem0.alarmArg = pArg; + mem0.alarmThreshold = iThreshold; + nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); + mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); + sqlite3_mutex_leave(mem0.mutex); + return SQLITE_OK; +} + +#ifndef SQLITE_OMIT_DEPRECATED +/* +** Deprecated external interface. Internal/core SQLite code +** should call sqlite3MemoryAlarm. +*/ +int sqlite3_memory_alarm( + void(*xCallback)(void *pArg, sqlite3_int64 used,int N), + void *pArg, + sqlite3_int64 iThreshold +){ + return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); +} +#endif + +/* +** Set the soft heap-size limit for the library. Passing a zero or +** negative value indicates no limit. +*/ +sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ + sqlite3_int64 priorLimit; + sqlite3_int64 excess; +#ifndef SQLITE_OMIT_AUTOINIT + sqlite3_initialize(); +#endif + sqlite3_mutex_enter(mem0.mutex); + priorLimit = mem0.alarmThreshold; + sqlite3_mutex_leave(mem0.mutex); + if( n<0 ) return priorLimit; + if( n>0 ){ + sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); + }else{ + sqlite3MemoryAlarm(0, 0, 0); + } + excess = sqlite3_memory_used() - n; + if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); + return priorLimit; +} +void sqlite3_soft_heap_limit(int n){ + if( n<0 ) n = 0; + sqlite3_soft_heap_limit64(n); +} + +/* +** Initialize the memory allocation subsystem. +*/ +int sqlite3MallocInit(void){ + if( sqlite3GlobalConfig.m.xMalloc==0 ){ + sqlite3MemSetDefault(); + } + memset(&mem0, 0, sizeof(mem0)); + if( sqlite3GlobalConfig.bCoreMutex ){ + mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); + } + if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 + && sqlite3GlobalConfig.nScratch>0 ){ + int i, n, sz; + ScratchFreeslot *pSlot; + sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); + sqlite3GlobalConfig.szScratch = sz; + pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; + n = sqlite3GlobalConfig.nScratch; + mem0.pScratchFree = pSlot; + mem0.nScratchFree = n; + for(i=0; ipNext = (ScratchFreeslot*)(sz+(char*)pSlot); + pSlot = pSlot->pNext; + } + pSlot->pNext = 0; + mem0.pScratchEnd = (void*)&pSlot[1]; + }else{ + mem0.pScratchEnd = 0; + sqlite3GlobalConfig.pScratch = 0; + sqlite3GlobalConfig.szScratch = 0; + sqlite3GlobalConfig.nScratch = 0; + } + if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 + || sqlite3GlobalConfig.nPage<1 ){ + sqlite3GlobalConfig.pPage = 0; + sqlite3GlobalConfig.szPage = 0; + sqlite3GlobalConfig.nPage = 0; + } + return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); +} + +/* +** Return true if the heap is currently under memory pressure - in other +** words if the amount of heap used is close to the limit set by +** sqlite3_soft_heap_limit(). +*/ +int sqlite3HeapNearlyFull(void){ + return mem0.nearlyFull; +} + +/* +** Deinitialize the memory allocation subsystem. +*/ +void sqlite3MallocEnd(void){ + if( sqlite3GlobalConfig.m.xShutdown ){ + sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); + } + memset(&mem0, 0, sizeof(mem0)); +} + +/* +** Return the amount of memory currently checked out. +*/ +sqlite3_int64 sqlite3_memory_used(void){ + int n, mx; + sqlite3_int64 res; + sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); + res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ + return res; +} + +/* +** Return the maximum amount of memory that has ever been +** checked out since either the beginning of this process +** or since the most recent reset. +*/ +sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ + int n, mx; + sqlite3_int64 res; + sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); + res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ + return res; +} + +/* +** Trigger the alarm +*/ +static void sqlite3MallocAlarm(int nByte){ + void (*xCallback)(void*,sqlite3_int64,int); + sqlite3_int64 nowUsed; + void *pArg; + if( mem0.alarmCallback==0 ) return; + xCallback = mem0.alarmCallback; + nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); + pArg = mem0.alarmArg; + mem0.alarmCallback = 0; + sqlite3_mutex_leave(mem0.mutex); + xCallback(pArg, nowUsed, nByte); + sqlite3_mutex_enter(mem0.mutex); + mem0.alarmCallback = xCallback; + mem0.alarmArg = pArg; +} + +/* +** Do a memory allocation with statistics and alarms. Assume the +** lock is already held. +*/ +static int mallocWithAlarm(int n, void **pp){ + int nFull; + void *p; + assert( sqlite3_mutex_held(mem0.mutex) ); + nFull = sqlite3GlobalConfig.m.xRoundup(n); + sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); + if( mem0.alarmCallback!=0 ){ + int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); + if( nUsed >= mem0.alarmThreshold - nFull ){ + mem0.nearlyFull = 1; + sqlite3MallocAlarm(nFull); + }else{ + mem0.nearlyFull = 0; + } + } + p = sqlite3GlobalConfig.m.xMalloc(nFull); +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + if( p==0 && mem0.alarmCallback ){ + sqlite3MallocAlarm(nFull); + p = sqlite3GlobalConfig.m.xMalloc(nFull); + } +#endif + if( p ){ + nFull = sqlite3MallocSize(p); + sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); + sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); + } + *pp = p; + return nFull; +} + +/* +** Allocate memory. This routine is like sqlite3_malloc() except that it +** assumes the memory subsystem has already been initialized. +*/ +void *sqlite3Malloc(int n){ + void *p; + if( n<=0 /* IMP: R-65312-04917 */ + || n>=0x7fffff00 + ){ + /* A memory allocation of a number of bytes which is near the maximum + ** signed integer value might cause an integer overflow inside of the + ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving + ** 255 bytes of overhead. SQLite itself will never use anything near + ** this amount. The only way to reach the limit is with sqlite3_malloc() */ + p = 0; + }else if( sqlite3GlobalConfig.bMemstat ){ + sqlite3_mutex_enter(mem0.mutex); + mallocWithAlarm(n, &p); + sqlite3_mutex_leave(mem0.mutex); + }else{ + p = sqlite3GlobalConfig.m.xMalloc(n); + } + assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */ + return p; +} + +/* +** This version of the memory allocation is for use by the application. +** First make sure the memory subsystem is initialized, then do the +** allocation. +*/ +void *sqlite3_malloc(int n){ +#ifndef SQLITE_OMIT_AUTOINIT + if( sqlite3_initialize() ) return 0; +#endif + return sqlite3Malloc(n); +} + +/* +** Each thread may only have a single outstanding allocation from +** xScratchMalloc(). We verify this constraint in the single-threaded +** case by setting scratchAllocOut to 1 when an allocation +** is outstanding clearing it when the allocation is freed. +*/ +#if SQLITE_THREADSAFE==0 && !defined(NDEBUG) +static int scratchAllocOut = 0; +#endif + + +/* +** Allocate memory that is to be used and released right away. +** This routine is similar to alloca() in that it is not intended +** for situations where the memory might be held long-term. This +** routine is intended to get memory to old large transient data +** structures that would not normally fit on the stack of an +** embedded processor. +*/ +void *sqlite3ScratchMalloc(int n){ + void *p; + assert( n>0 ); + + sqlite3_mutex_enter(mem0.mutex); + if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ + p = mem0.pScratchFree; + mem0.pScratchFree = mem0.pScratchFree->pNext; + mem0.nScratchFree--; + sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); + sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); + sqlite3_mutex_leave(mem0.mutex); + }else{ + if( sqlite3GlobalConfig.bMemstat ){ + sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); + n = mallocWithAlarm(n, &p); + if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); + sqlite3_mutex_leave(mem0.mutex); + }else{ + sqlite3_mutex_leave(mem0.mutex); + p = sqlite3GlobalConfig.m.xMalloc(n); + } + sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); + } + assert( sqlite3_mutex_notheld(mem0.mutex) ); + + +#if SQLITE_THREADSAFE==0 && !defined(NDEBUG) + /* Verify that no more than two scratch allocations per thread + ** are outstanding at one time. (This is only checked in the + ** single-threaded case since checking in the multi-threaded case + ** would be much more complicated.) */ + assert( scratchAllocOut<=1 ); + if( p ) scratchAllocOut++; +#endif + + return p; +} +void sqlite3ScratchFree(void *p){ + if( p ){ + +#if SQLITE_THREADSAFE==0 && !defined(NDEBUG) + /* Verify that no more than two scratch allocation per thread + ** is outstanding at one time. (This is only checked in the + ** single-threaded case since checking in the multi-threaded case + ** would be much more complicated.) */ + assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); + scratchAllocOut--; +#endif + + if( p>=sqlite3GlobalConfig.pScratch && ppNext = mem0.pScratchFree; + mem0.pScratchFree = pSlot; + mem0.nScratchFree++; + assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); + sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); + sqlite3_mutex_leave(mem0.mutex); + }else{ + /* Release memory back to the heap */ + assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); + assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); + sqlite3MemdebugSetType(p, MEMTYPE_HEAP); + if( sqlite3GlobalConfig.bMemstat ){ + int iSize = sqlite3MallocSize(p); + sqlite3_mutex_enter(mem0.mutex); + sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); + sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); + sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); + sqlite3GlobalConfig.m.xFree(p); + sqlite3_mutex_leave(mem0.mutex); + }else{ + sqlite3GlobalConfig.m.xFree(p); + } + } + } +} + +/* +** TRUE if p is a lookaside memory allocation from db +*/ +#ifndef SQLITE_OMIT_LOOKASIDE +static int isLookaside(sqlite3 *db, void *p){ + return p && p>=db->lookaside.pStart && plookaside.pEnd; +} +#else +#define isLookaside(A,B) 0 +#endif + +/* +** Return the size of a memory allocation previously obtained from +** sqlite3Malloc() or sqlite3_malloc(). +*/ +int sqlite3MallocSize(void *p){ + assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); + assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); + return sqlite3GlobalConfig.m.xSize(p); +} +int sqlite3DbMallocSize(sqlite3 *db, void *p){ + assert( db==0 || sqlite3_mutex_held(db->mutex) ); + if( db && isLookaside(db, p) ){ + return db->lookaside.sz; + }else{ + assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); + assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); + assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); + return sqlite3GlobalConfig.m.xSize(p); + } +} + +/* +** Free memory previously obtained from sqlite3Malloc(). +*/ +void sqlite3_free(void *p){ + if( p==0 ) return; /* IMP: R-49053-54554 */ + assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); + assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); + if( sqlite3GlobalConfig.bMemstat ){ + sqlite3_mutex_enter(mem0.mutex); + sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); + sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); + sqlite3GlobalConfig.m.xFree(p); + sqlite3_mutex_leave(mem0.mutex); + }else{ + sqlite3GlobalConfig.m.xFree(p); + } +} + +/* +** Free memory that might be associated with a particular database +** connection. +*/ +void sqlite3DbFree(sqlite3 *db, void *p){ + assert( db==0 || sqlite3_mutex_held(db->mutex) ); + if( db ){ + if( db->pnBytesFreed ){ + *db->pnBytesFreed += sqlite3DbMallocSize(db, p); + return; + } + if( isLookaside(db, p) ){ + LookasideSlot *pBuf = (LookasideSlot*)p; + pBuf->pNext = db->lookaside.pFree; + db->lookaside.pFree = pBuf; + db->lookaside.nOut--; + return; + } + } + assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); + assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); + assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); + sqlite3MemdebugSetType(p, MEMTYPE_HEAP); + sqlite3_free(p); +} + +/* +** Change the size of an existing memory allocation +*/ +void *sqlite3Realloc(void *pOld, int nBytes){ + int nOld, nNew, nDiff; + void *pNew; + if( pOld==0 ){ + return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */ + } + if( nBytes<=0 ){ + sqlite3_free(pOld); /* IMP: R-31593-10574 */ + return 0; + } + if( nBytes>=0x7fffff00 ){ + /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ + return 0; + } + nOld = sqlite3MallocSize(pOld); + /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second + ** argument to xRealloc is always a value returned by a prior call to + ** xRoundup. */ + nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); + if( nOld==nNew ){ + pNew = pOld; + }else if( sqlite3GlobalConfig.bMemstat ){ + sqlite3_mutex_enter(mem0.mutex); + sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); + nDiff = nNew - nOld; + if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= + mem0.alarmThreshold-nDiff ){ + sqlite3MallocAlarm(nDiff); + } + assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); + assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); + pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); + if( pNew==0 && mem0.alarmCallback ){ + sqlite3MallocAlarm(nBytes); + pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); + } + if( pNew ){ + nNew = sqlite3MallocSize(pNew); + sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); + } + sqlite3_mutex_leave(mem0.mutex); + }else{ + pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); + } + assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */ + return pNew; +} + +/* +** The public interface to sqlite3Realloc. Make sure that the memory +** subsystem is initialized prior to invoking sqliteRealloc. +*/ +void *sqlite3_realloc(void *pOld, int n){ +#ifndef SQLITE_OMIT_AUTOINIT + if( sqlite3_initialize() ) return 0; +#endif + return sqlite3Realloc(pOld, n); +} + + +/* +** Allocate and zero memory. +*/ +void *sqlite3MallocZero(int n){ + void *p = sqlite3Malloc(n); + if( p ){ + memset(p, 0, n); + } + return p; +} + +/* +** Allocate and zero memory. If the allocation fails, make +** the mallocFailed flag in the connection pointer. +*/ +void *sqlite3DbMallocZero(sqlite3 *db, int n){ + void *p = sqlite3DbMallocRaw(db, n); + if( p ){ + memset(p, 0, n); + } + return p; +} + +/* +** Allocate and zero memory. If the allocation fails, make +** the mallocFailed flag in the connection pointer. +** +** If db!=0 and db->mallocFailed is true (indicating a prior malloc +** failure on the same database connection) then always return 0. +** Hence for a particular database connection, once malloc starts +** failing, it fails consistently until mallocFailed is reset. +** This is an important assumption. There are many places in the +** code that do things like this: +** +** int *a = (int*)sqlite3DbMallocRaw(db, 100); +** int *b = (int*)sqlite3DbMallocRaw(db, 200); +** if( b ) a[10] = 9; +** +** In other words, if a subsequent malloc (ex: "b") worked, it is assumed +** that all prior mallocs (ex: "a") worked too. +*/ +void *sqlite3DbMallocRaw(sqlite3 *db, int n){ + void *p; + assert( db==0 || sqlite3_mutex_held(db->mutex) ); + assert( db==0 || db->pnBytesFreed==0 ); +#ifndef SQLITE_OMIT_LOOKASIDE + if( db ){ + LookasideSlot *pBuf; + if( db->mallocFailed ){ + return 0; + } + if( db->lookaside.bEnabled ){ + if( n>db->lookaside.sz ){ + db->lookaside.anStat[1]++; + }else if( (pBuf = db->lookaside.pFree)==0 ){ + db->lookaside.anStat[2]++; + }else{ + db->lookaside.pFree = pBuf->pNext; + db->lookaside.nOut++; + db->lookaside.anStat[0]++; + if( db->lookaside.nOut>db->lookaside.mxOut ){ + db->lookaside.mxOut = db->lookaside.nOut; + } + return (void*)pBuf; + } + } + } +#else + if( db && db->mallocFailed ){ + return 0; + } +#endif + p = sqlite3Malloc(n); + if( !p && db ){ + db->mallocFailed = 1; + } + sqlite3MemdebugSetType(p, MEMTYPE_DB | + ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); + return p; +} + +/* +** Resize the block of memory pointed to by p to n bytes. If the +** resize fails, set the mallocFailed flag in the connection object. +*/ +void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ + void *pNew = 0; + assert( db!=0 ); + assert( sqlite3_mutex_held(db->mutex) ); + if( db->mallocFailed==0 ){ + if( p==0 ){ + return sqlite3DbMallocRaw(db, n); + } + if( isLookaside(db, p) ){ + if( n<=db->lookaside.sz ){ + return p; + } + pNew = sqlite3DbMallocRaw(db, n); + if( pNew ){ + memcpy(pNew, p, db->lookaside.sz); + sqlite3DbFree(db, p); + } + }else{ + assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); + assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); + sqlite3MemdebugSetType(p, MEMTYPE_HEAP); + pNew = sqlite3_realloc(p, n); + if( !pNew ){ + sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP); + db->mallocFailed = 1; + } + sqlite3MemdebugSetType(pNew, MEMTYPE_DB | + (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); + } + } + return pNew; +} + +/* +** Attempt to reallocate p. If the reallocation fails, then free p +** and set the mallocFailed flag in the database connection. +*/ +void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ + void *pNew; + pNew = sqlite3DbRealloc(db, p, n); + if( !pNew ){ + sqlite3DbFree(db, p); + } + return pNew; +} + +/* +** Make a copy of a string in memory obtained from sqliteMalloc(). These +** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This +** is because when memory debugging is turned on, these two functions are +** called via macros that record the current file and line number in the +** ThreadData structure. +*/ +char *sqlite3DbStrDup(sqlite3 *db, const char *z){ + char *zNew; + size_t n; + if( z==0 ){ + return 0; + } + n = sqlite3Strlen30(z) + 1; + assert( (n&0x7fffffff)==n ); + zNew = sqlite3DbMallocRaw(db, (int)n); + if( zNew ){ + memcpy(zNew, z, n); + } + return zNew; +} +char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ + char *zNew; + if( z==0 ){ + return 0; + } + assert( (n&0x7fffffff)==n ); + zNew = sqlite3DbMallocRaw(db, n+1); + if( zNew ){ + memcpy(zNew, z, n); + zNew[n] = 0; + } + return zNew; +} + +/* +** Create a string from the zFromat argument and the va_list that follows. +** Store the string in memory obtained from sqliteMalloc() and make *pz +** point to that string. +*/ +void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ + va_list ap; + char *z; + + va_start(ap, zFormat); + z = sqlite3VMPrintf(db, zFormat, ap); + va_end(ap); + sqlite3DbFree(db, *pz); + *pz = z; +} + + +/* +** This function must be called before exiting any API function (i.e. +** returning control to the user) that has called sqlite3_malloc or +** sqlite3_realloc. +** +** The returned value is normally a copy of the second argument to this +** function. However, if a malloc() failure has occurred since the previous +** invocation SQLITE_NOMEM is returned instead. +** +** If the first argument, db, is not NULL and a malloc() error has occurred, +** then the connection error-code (the value returned by sqlite3_errcode()) +** is set to SQLITE_NOMEM. +*/ +int sqlite3ApiExit(sqlite3* db, int rc){ + /* If the db handle is not NULL, then we must hold the connection handle + ** mutex here. Otherwise the read (and possible write) of db->mallocFailed + ** is unsafe, as is the call to sqlite3Error(). + */ + assert( !db || sqlite3_mutex_held(db->mutex) ); + if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ + sqlite3Error(db, SQLITE_NOMEM, 0); + db->mallocFailed = 0; + rc = SQLITE_NOMEM; + } + return rc & (db ? db->errMask : 0xff); +} diff --git a/src/mem0.c b/src/mem0.c new file mode 100644 index 0000000..0d0b666 --- /dev/null +++ b/src/mem0.c @@ -0,0 +1,59 @@ +/* +** 2008 October 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains a no-op memory allocation drivers for use when +** SQLITE_ZERO_MALLOC is defined. The allocation drivers implemented +** here always fail. SQLite will not operate with these drivers. These +** are merely placeholders. Real drivers must be substituted using +** sqlite3_config() before SQLite will operate. +*/ +#include "sqliteInt.h" + +/* +** This version of the memory allocator is the default. It is +** used when no other memory allocator is specified using compile-time +** macros. +*/ +#ifdef SQLITE_ZERO_MALLOC + +/* +** No-op versions of all memory allocation routines +*/ +static void *sqlite3MemMalloc(int nByte){ return 0; } +static void sqlite3MemFree(void *pPrior){ return; } +static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; } +static int sqlite3MemSize(void *pPrior){ return 0; } +static int sqlite3MemRoundup(int n){ return n; } +static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; } +static void sqlite3MemShutdown(void *NotUsed){ return; } + +/* +** This routine is the only routine in this file with external linkage. +** +** Populate the low-level memory allocation function pointers in +** sqlite3GlobalConfig.m with pointers to the routines in this file. +*/ +void sqlite3MemSetDefault(void){ + static const sqlite3_mem_methods defaultMethods = { + sqlite3MemMalloc, + sqlite3MemFree, + sqlite3MemRealloc, + sqlite3MemSize, + sqlite3MemRoundup, + sqlite3MemInit, + sqlite3MemShutdown, + 0 + }; + sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); +} + +#endif /* SQLITE_ZERO_MALLOC */ diff --git a/src/mem1.c b/src/mem1.c new file mode 100644 index 0000000..61fbf4b --- /dev/null +++ b/src/mem1.c @@ -0,0 +1,150 @@ +/* +** 2007 August 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains low-level memory allocation drivers for when +** SQLite will use the standard C-library malloc/realloc/free interface +** to obtain the memory it needs. +** +** This file contains implementations of the low-level memory allocation +** routines specified in the sqlite3_mem_methods object. +*/ +#include "sqliteInt.h" + +/* +** This version of the memory allocator is the default. It is +** used when no other memory allocator is specified using compile-time +** macros. +*/ +#ifdef SQLITE_SYSTEM_MALLOC + +/* +** Like malloc(), but remember the size of the allocation +** so that we can find it later using sqlite3MemSize(). +** +** For this low-level routine, we are guaranteed that nByte>0 because +** cases of nByte<=0 will be intercepted and dealt with by higher level +** routines. +*/ +static void *sqlite3MemMalloc(int nByte){ + sqlite3_int64 *p; + assert( nByte>0 ); + nByte = ROUND8(nByte); + p = malloc( nByte+8 ); + if( p ){ + p[0] = nByte; + p++; + }else{ + testcase( sqlite3GlobalConfig.xLog!=0 ); + sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte); + } + return (void *)p; +} + +/* +** Like free() but works for allocations obtained from sqlite3MemMalloc() +** or sqlite3MemRealloc(). +** +** For this low-level routine, we already know that pPrior!=0 since +** cases where pPrior==0 will have been intecepted and dealt with +** by higher-level routines. +*/ +static void sqlite3MemFree(void *pPrior){ + sqlite3_int64 *p = (sqlite3_int64*)pPrior; + assert( pPrior!=0 ); + p--; + free(p); +} + +/* +** Report the allocated size of a prior return from xMalloc() +** or xRealloc(). +*/ +static int sqlite3MemSize(void *pPrior){ + sqlite3_int64 *p; + if( pPrior==0 ) return 0; + p = (sqlite3_int64*)pPrior; + p--; + return (int)p[0]; +} + +/* +** Like realloc(). Resize an allocation previously obtained from +** sqlite3MemMalloc(). +** +** For this low-level interface, we know that pPrior!=0. Cases where +** pPrior==0 while have been intercepted by higher-level routine and +** redirected to xMalloc. Similarly, we know that nByte>0 becauses +** cases where nByte<=0 will have been intercepted by higher-level +** routines and redirected to xFree. +*/ +static void *sqlite3MemRealloc(void *pPrior, int nByte){ + sqlite3_int64 *p = (sqlite3_int64*)pPrior; + assert( pPrior!=0 && nByte>0 ); + assert( nByte==ROUND8(nByte) ); /* EV: R-46199-30249 */ + p--; + p = realloc(p, nByte+8 ); + if( p ){ + p[0] = nByte; + p++; + }else{ + testcase( sqlite3GlobalConfig.xLog!=0 ); + sqlite3_log(SQLITE_NOMEM, + "failed memory resize %u to %u bytes", + sqlite3MemSize(pPrior), nByte); + } + return (void*)p; +} + +/* +** Round up a request size to the next valid allocation size. +*/ +static int sqlite3MemRoundup(int n){ + return ROUND8(n); +} + +/* +** Initialize this module. +*/ +static int sqlite3MemInit(void *NotUsed){ + UNUSED_PARAMETER(NotUsed); + return SQLITE_OK; +} + +/* +** Deinitialize this module. +*/ +static void sqlite3MemShutdown(void *NotUsed){ + UNUSED_PARAMETER(NotUsed); + return; +} + +/* +** This routine is the only routine in this file with external linkage. +** +** Populate the low-level memory allocation function pointers in +** sqlite3GlobalConfig.m with pointers to the routines in this file. +*/ +void sqlite3MemSetDefault(void){ + static const sqlite3_mem_methods defaultMethods = { + sqlite3MemMalloc, + sqlite3MemFree, + sqlite3MemRealloc, + sqlite3MemSize, + sqlite3MemRoundup, + sqlite3MemInit, + sqlite3MemShutdown, + 0 + }; + sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); +} + +#endif /* SQLITE_SYSTEM_MALLOC */ diff --git a/src/mem2.c b/src/mem2.c new file mode 100644 index 0000000..26448ea --- /dev/null +++ b/src/mem2.c @@ -0,0 +1,528 @@ +/* +** 2007 August 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains low-level memory allocation drivers for when +** SQLite will use the standard C-library malloc/realloc/free interface +** to obtain the memory it needs while adding lots of additional debugging +** information to each allocation in order to help detect and fix memory +** leaks and memory usage errors. +** +** This file contains implementations of the low-level memory allocation +** routines specified in the sqlite3_mem_methods object. +*/ +#include "sqliteInt.h" + +/* +** This version of the memory allocator is used only if the +** SQLITE_MEMDEBUG macro is defined +*/ +#ifdef SQLITE_MEMDEBUG + +/* +** The backtrace functionality is only available with GLIBC +*/ +#ifdef __GLIBC__ + extern int backtrace(void**,int); + extern void backtrace_symbols_fd(void*const*,int,int); +#else +# define backtrace(A,B) 1 +# define backtrace_symbols_fd(A,B,C) +#endif +#include + +/* +** Each memory allocation looks like this: +** +** ------------------------------------------------------------------------ +** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard | +** ------------------------------------------------------------------------ +** +** The application code sees only a pointer to the allocation. We have +** to back up from the allocation pointer to find the MemBlockHdr. The +** MemBlockHdr tells us the size of the allocation and the number of +** backtrace pointers. There is also a guard word at the end of the +** MemBlockHdr. +*/ +struct MemBlockHdr { + i64 iSize; /* Size of this allocation */ + struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */ + char nBacktrace; /* Number of backtraces on this alloc */ + char nBacktraceSlots; /* Available backtrace slots */ + u8 nTitle; /* Bytes of title; includes '\0' */ + u8 eType; /* Allocation type code */ + int iForeGuard; /* Guard word for sanity */ +}; + +/* +** Guard words +*/ +#define FOREGUARD 0x80F5E153 +#define REARGUARD 0xE4676B53 + +/* +** Number of malloc size increments to track. +*/ +#define NCSIZE 1000 + +/* +** All of the static variables used by this module are collected +** into a single structure named "mem". This is to keep the +** static variables organized and to reduce namespace pollution +** when this module is combined with other in the amalgamation. +*/ +static struct { + + /* + ** Mutex to control access to the memory allocation subsystem. + */ + sqlite3_mutex *mutex; + + /* + ** Head and tail of a linked list of all outstanding allocations + */ + struct MemBlockHdr *pFirst; + struct MemBlockHdr *pLast; + + /* + ** The number of levels of backtrace to save in new allocations. + */ + int nBacktrace; + void (*xBacktrace)(int, int, void **); + + /* + ** Title text to insert in front of each block + */ + int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */ + char zTitle[100]; /* The title text */ + + /* + ** sqlite3MallocDisallow() increments the following counter. + ** sqlite3MallocAllow() decrements it. + */ + int disallow; /* Do not allow memory allocation */ + + /* + ** Gather statistics on the sizes of memory allocations. + ** nAlloc[i] is the number of allocation attempts of i*8 + ** bytes. i==NCSIZE is the number of allocation attempts for + ** sizes more than NCSIZE*8 bytes. + */ + int nAlloc[NCSIZE]; /* Total number of allocations */ + int nCurrent[NCSIZE]; /* Current number of allocations */ + int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */ + +} mem; + + +/* +** Adjust memory usage statistics +*/ +static void adjustStats(int iSize, int increment){ + int i = ROUND8(iSize)/8; + if( i>NCSIZE-1 ){ + i = NCSIZE - 1; + } + if( increment>0 ){ + mem.nAlloc[i]++; + mem.nCurrent[i]++; + if( mem.nCurrent[i]>mem.mxCurrent[i] ){ + mem.mxCurrent[i] = mem.nCurrent[i]; + } + }else{ + mem.nCurrent[i]--; + assert( mem.nCurrent[i]>=0 ); + } +} + +/* +** Given an allocation, find the MemBlockHdr for that allocation. +** +** This routine checks the guards at either end of the allocation and +** if they are incorrect it asserts. +*/ +static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){ + struct MemBlockHdr *p; + int *pInt; + u8 *pU8; + int nReserve; + + p = (struct MemBlockHdr*)pAllocation; + p--; + assert( p->iForeGuard==(int)FOREGUARD ); + nReserve = ROUND8(p->iSize); + pInt = (int*)pAllocation; + pU8 = (u8*)pAllocation; + assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD ); + /* This checks any of the "extra" bytes allocated due + ** to rounding up to an 8 byte boundary to ensure + ** they haven't been overwritten. + */ + while( nReserve-- > p->iSize ) assert( pU8[nReserve]==0x65 ); + return p; +} + +/* +** Return the number of bytes currently allocated at address p. +*/ +static int sqlite3MemSize(void *p){ + struct MemBlockHdr *pHdr; + if( !p ){ + return 0; + } + pHdr = sqlite3MemsysGetHeader(p); + return pHdr->iSize; +} + +/* +** Initialize the memory allocation subsystem. +*/ +static int sqlite3MemInit(void *NotUsed){ + UNUSED_PARAMETER(NotUsed); + assert( (sizeof(struct MemBlockHdr)&7) == 0 ); + if( !sqlite3GlobalConfig.bMemstat ){ + /* If memory status is enabled, then the malloc.c wrapper will already + ** hold the STATIC_MEM mutex when the routines here are invoked. */ + mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); + } + return SQLITE_OK; +} + +/* +** Deinitialize the memory allocation subsystem. +*/ +static void sqlite3MemShutdown(void *NotUsed){ + UNUSED_PARAMETER(NotUsed); + mem.mutex = 0; +} + +/* +** Round up a request size to the next valid allocation size. +*/ +static int sqlite3MemRoundup(int n){ + return ROUND8(n); +} + +/* +** Fill a buffer with pseudo-random bytes. This is used to preset +** the content of a new memory allocation to unpredictable values and +** to clear the content of a freed allocation to unpredictable values. +*/ +static void randomFill(char *pBuf, int nByte){ + unsigned int x, y, r; + x = SQLITE_PTR_TO_INT(pBuf); + y = nByte | 1; + while( nByte >= 4 ){ + x = (x>>1) ^ (-(x&1) & 0xd0000001); + y = y*1103515245 + 12345; + r = x ^ y; + *(int*)pBuf = r; + pBuf += 4; + nByte -= 4; + } + while( nByte-- > 0 ){ + x = (x>>1) ^ (-(x&1) & 0xd0000001); + y = y*1103515245 + 12345; + r = x ^ y; + *(pBuf++) = r & 0xff; + } +} + +/* +** Allocate nByte bytes of memory. +*/ +static void *sqlite3MemMalloc(int nByte){ + struct MemBlockHdr *pHdr; + void **pBt; + char *z; + int *pInt; + void *p = 0; + int totalSize; + int nReserve; + sqlite3_mutex_enter(mem.mutex); + assert( mem.disallow==0 ); + nReserve = ROUND8(nByte); + totalSize = nReserve + sizeof(*pHdr) + sizeof(int) + + mem.nBacktrace*sizeof(void*) + mem.nTitle; + p = malloc(totalSize); + if( p ){ + z = p; + pBt = (void**)&z[mem.nTitle]; + pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace]; + pHdr->pNext = 0; + pHdr->pPrev = mem.pLast; + if( mem.pLast ){ + mem.pLast->pNext = pHdr; + }else{ + mem.pFirst = pHdr; + } + mem.pLast = pHdr; + pHdr->iForeGuard = FOREGUARD; + pHdr->eType = MEMTYPE_HEAP; + pHdr->nBacktraceSlots = mem.nBacktrace; + pHdr->nTitle = mem.nTitle; + if( mem.nBacktrace ){ + void *aAddr[40]; + pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1; + memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*)); + assert(pBt[0]); + if( mem.xBacktrace ){ + mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]); + } + }else{ + pHdr->nBacktrace = 0; + } + if( mem.nTitle ){ + memcpy(z, mem.zTitle, mem.nTitle); + } + pHdr->iSize = nByte; + adjustStats(nByte, +1); + pInt = (int*)&pHdr[1]; + pInt[nReserve/sizeof(int)] = REARGUARD; + randomFill((char*)pInt, nByte); + memset(((char*)pInt)+nByte, 0x65, nReserve-nByte); + p = (void*)pInt; + } + sqlite3_mutex_leave(mem.mutex); + return p; +} + +/* +** Free memory. +*/ +static void sqlite3MemFree(void *pPrior){ + struct MemBlockHdr *pHdr; + void **pBt; + char *z; + assert( sqlite3GlobalConfig.bMemstat || sqlite3GlobalConfig.bCoreMutex==0 + || mem.mutex!=0 ); + pHdr = sqlite3MemsysGetHeader(pPrior); + pBt = (void**)pHdr; + pBt -= pHdr->nBacktraceSlots; + sqlite3_mutex_enter(mem.mutex); + if( pHdr->pPrev ){ + assert( pHdr->pPrev->pNext==pHdr ); + pHdr->pPrev->pNext = pHdr->pNext; + }else{ + assert( mem.pFirst==pHdr ); + mem.pFirst = pHdr->pNext; + } + if( pHdr->pNext ){ + assert( pHdr->pNext->pPrev==pHdr ); + pHdr->pNext->pPrev = pHdr->pPrev; + }else{ + assert( mem.pLast==pHdr ); + mem.pLast = pHdr->pPrev; + } + z = (char*)pBt; + z -= pHdr->nTitle; + adjustStats(pHdr->iSize, -1); + randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) + + pHdr->iSize + sizeof(int) + pHdr->nTitle); + free(z); + sqlite3_mutex_leave(mem.mutex); +} + +/* +** Change the size of an existing memory allocation. +** +** For this debugging implementation, we *always* make a copy of the +** allocation into a new place in memory. In this way, if the +** higher level code is using pointer to the old allocation, it is +** much more likely to break and we are much more liking to find +** the error. +*/ +static void *sqlite3MemRealloc(void *pPrior, int nByte){ + struct MemBlockHdr *pOldHdr; + void *pNew; + assert( mem.disallow==0 ); + assert( (nByte & 7)==0 ); /* EV: R-46199-30249 */ + pOldHdr = sqlite3MemsysGetHeader(pPrior); + pNew = sqlite3MemMalloc(nByte); + if( pNew ){ + memcpy(pNew, pPrior, nByteiSize ? nByte : pOldHdr->iSize); + if( nByte>pOldHdr->iSize ){ + randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - pOldHdr->iSize); + } + sqlite3MemFree(pPrior); + } + return pNew; +} + +/* +** Populate the low-level memory allocation function pointers in +** sqlite3GlobalConfig.m with pointers to the routines in this file. +*/ +void sqlite3MemSetDefault(void){ + static const sqlite3_mem_methods defaultMethods = { + sqlite3MemMalloc, + sqlite3MemFree, + sqlite3MemRealloc, + sqlite3MemSize, + sqlite3MemRoundup, + sqlite3MemInit, + sqlite3MemShutdown, + 0 + }; + sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); +} + +/* +** Set the "type" of an allocation. +*/ +void sqlite3MemdebugSetType(void *p, u8 eType){ + if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){ + struct MemBlockHdr *pHdr; + pHdr = sqlite3MemsysGetHeader(p); + assert( pHdr->iForeGuard==FOREGUARD ); + pHdr->eType = eType; + } +} + +/* +** Return TRUE if the mask of type in eType matches the type of the +** allocation p. Also return true if p==NULL. +** +** This routine is designed for use within an assert() statement, to +** verify the type of an allocation. For example: +** +** assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); +*/ +int sqlite3MemdebugHasType(void *p, u8 eType){ + int rc = 1; + if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){ + struct MemBlockHdr *pHdr; + pHdr = sqlite3MemsysGetHeader(p); + assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ + if( (pHdr->eType&eType)==0 ){ + rc = 0; + } + } + return rc; +} + +/* +** Return TRUE if the mask of type in eType matches no bits of the type of the +** allocation p. Also return true if p==NULL. +** +** This routine is designed for use within an assert() statement, to +** verify the type of an allocation. For example: +** +** assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); +*/ +int sqlite3MemdebugNoType(void *p, u8 eType){ + int rc = 1; + if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){ + struct MemBlockHdr *pHdr; + pHdr = sqlite3MemsysGetHeader(p); + assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ + if( (pHdr->eType&eType)!=0 ){ + rc = 0; + } + } + return rc; +} + +/* +** Set the number of backtrace levels kept for each allocation. +** A value of zero turns off backtracing. The number is always rounded +** up to a multiple of 2. +*/ +void sqlite3MemdebugBacktrace(int depth){ + if( depth<0 ){ depth = 0; } + if( depth>20 ){ depth = 20; } + depth = (depth+1)&0xfe; + mem.nBacktrace = depth; +} + +void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){ + mem.xBacktrace = xBacktrace; +} + +/* +** Set the title string for subsequent allocations. +*/ +void sqlite3MemdebugSettitle(const char *zTitle){ + unsigned int n = sqlite3Strlen30(zTitle) + 1; + sqlite3_mutex_enter(mem.mutex); + if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1; + memcpy(mem.zTitle, zTitle, n); + mem.zTitle[n] = 0; + mem.nTitle = ROUND8(n); + sqlite3_mutex_leave(mem.mutex); +} + +void sqlite3MemdebugSync(){ + struct MemBlockHdr *pHdr; + for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ + void **pBt = (void**)pHdr; + pBt -= pHdr->nBacktraceSlots; + mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]); + } +} + +/* +** Open the file indicated and write a log of all unfreed memory +** allocations into that log. +*/ +void sqlite3MemdebugDump(const char *zFilename){ + FILE *out; + struct MemBlockHdr *pHdr; + void **pBt; + int i; + out = fopen(zFilename, "w"); + if( out==0 ){ + fprintf(stderr, "** Unable to output memory debug output log: %s **\n", + zFilename); + return; + } + for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ + char *z = (char*)pHdr; + z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle; + fprintf(out, "**** %lld bytes at %p from %s ****\n", + pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???"); + if( pHdr->nBacktrace ){ + fflush(out); + pBt = (void**)pHdr; + pBt -= pHdr->nBacktraceSlots; + backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out)); + fprintf(out, "\n"); + } + } + fprintf(out, "COUNTS:\n"); + for(i=0; i=1 ); + size = mem3.aPool[i-1].u.hdr.size4x/4; + assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); + assert( size>=2 ); + if( size <= MX_SMALL ){ + memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); + }else{ + hash = size % N_HASH; + memsys3UnlinkFromList(i, &mem3.aiHash[hash]); + } +} + +/* +** Link the chunk at mem3.aPool[i] so that is on the list rooted +** at *pRoot. +*/ +static void memsys3LinkIntoList(u32 i, u32 *pRoot){ + assert( sqlite3_mutex_held(mem3.mutex) ); + mem3.aPool[i].u.list.next = *pRoot; + mem3.aPool[i].u.list.prev = 0; + if( *pRoot ){ + mem3.aPool[*pRoot].u.list.prev = i; + } + *pRoot = i; +} + +/* +** Link the chunk at index i into either the appropriate +** small chunk list, or into the large chunk hash table. +*/ +static void memsys3Link(u32 i){ + u32 size, hash; + assert( sqlite3_mutex_held(mem3.mutex) ); + assert( i>=1 ); + assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); + size = mem3.aPool[i-1].u.hdr.size4x/4; + assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); + assert( size>=2 ); + if( size <= MX_SMALL ){ + memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); + }else{ + hash = size % N_HASH; + memsys3LinkIntoList(i, &mem3.aiHash[hash]); + } +} + +/* +** If the STATIC_MEM mutex is not already held, obtain it now. The mutex +** will already be held (obtained by code in malloc.c) if +** sqlite3GlobalConfig.bMemStat is true. +*/ +static void memsys3Enter(void){ + if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){ + mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); + } + sqlite3_mutex_enter(mem3.mutex); +} +static void memsys3Leave(void){ + sqlite3_mutex_leave(mem3.mutex); +} + +/* +** Called when we are unable to satisfy an allocation of nBytes. +*/ +static void memsys3OutOfMemory(int nByte){ + if( !mem3.alarmBusy ){ + mem3.alarmBusy = 1; + assert( sqlite3_mutex_held(mem3.mutex) ); + sqlite3_mutex_leave(mem3.mutex); + sqlite3_release_memory(nByte); + sqlite3_mutex_enter(mem3.mutex); + mem3.alarmBusy = 0; + } +} + + +/* +** Chunk i is a free chunk that has been unlinked. Adjust its +** size parameters for check-out and return a pointer to the +** user portion of the chunk. +*/ +static void *memsys3Checkout(u32 i, u32 nBlock){ + u32 x; + assert( sqlite3_mutex_held(mem3.mutex) ); + assert( i>=1 ); + assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); + assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); + x = mem3.aPool[i-1].u.hdr.size4x; + mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); + mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; + mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; + return &mem3.aPool[i]; +} + +/* +** Carve a piece off of the end of the mem3.iMaster free chunk. +** Return a pointer to the new allocation. Or, if the master chunk +** is not large enough, return 0. +*/ +static void *memsys3FromMaster(u32 nBlock){ + assert( sqlite3_mutex_held(mem3.mutex) ); + assert( mem3.szMaster>=nBlock ); + if( nBlock>=mem3.szMaster-1 ){ + /* Use the entire master */ + void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster); + mem3.iMaster = 0; + mem3.szMaster = 0; + mem3.mnMaster = 0; + return p; + }else{ + /* Split the master block. Return the tail. */ + u32 newi, x; + newi = mem3.iMaster + mem3.szMaster - nBlock; + assert( newi > mem3.iMaster+1 ); + mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock; + mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2; + mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; + mem3.szMaster -= nBlock; + mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster; + x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; + mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; + if( mem3.szMaster < mem3.mnMaster ){ + mem3.mnMaster = mem3.szMaster; + } + return (void*)&mem3.aPool[newi]; + } +} + +/* +** *pRoot is the head of a list of free chunks of the same size +** or same size hash. In other words, *pRoot is an entry in either +** mem3.aiSmall[] or mem3.aiHash[]. +** +** This routine examines all entries on the given list and tries +** to coalesce each entries with adjacent free chunks. +** +** If it sees a chunk that is larger than mem3.iMaster, it replaces +** the current mem3.iMaster with the new larger chunk. In order for +** this mem3.iMaster replacement to work, the master chunk must be +** linked into the hash tables. That is not the normal state of +** affairs, of course. The calling routine must link the master +** chunk before invoking this routine, then must unlink the (possibly +** changed) master chunk once this routine has finished. +*/ +static void memsys3Merge(u32 *pRoot){ + u32 iNext, prev, size, i, x; + + assert( sqlite3_mutex_held(mem3.mutex) ); + for(i=*pRoot; i>0; i=iNext){ + iNext = mem3.aPool[i].u.list.next; + size = mem3.aPool[i-1].u.hdr.size4x; + assert( (size&1)==0 ); + if( (size&2)==0 ){ + memsys3UnlinkFromList(i, pRoot); + assert( i > mem3.aPool[i-1].u.hdr.prevSize ); + prev = i - mem3.aPool[i-1].u.hdr.prevSize; + if( prev==iNext ){ + iNext = mem3.aPool[prev].u.list.next; + } + memsys3Unlink(prev); + size = i + size/4 - prev; + x = mem3.aPool[prev-1].u.hdr.size4x & 2; + mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; + mem3.aPool[prev+size-1].u.hdr.prevSize = size; + memsys3Link(prev); + i = prev; + }else{ + size /= 4; + } + if( size>mem3.szMaster ){ + mem3.iMaster = i; + mem3.szMaster = size; + } + } +} + +/* +** Return a block of memory of at least nBytes in size. +** Return NULL if unable. +** +** This function assumes that the necessary mutexes, if any, are +** already held by the caller. Hence "Unsafe". +*/ +static void *memsys3MallocUnsafe(int nByte){ + u32 i; + u32 nBlock; + u32 toFree; + + assert( sqlite3_mutex_held(mem3.mutex) ); + assert( sizeof(Mem3Block)==8 ); + if( nByte<=12 ){ + nBlock = 2; + }else{ + nBlock = (nByte + 11)/8; + } + assert( nBlock>=2 ); + + /* STEP 1: + ** Look for an entry of the correct size in either the small + ** chunk table or in the large chunk hash table. This is + ** successful most of the time (about 9 times out of 10). + */ + if( nBlock <= MX_SMALL ){ + i = mem3.aiSmall[nBlock-2]; + if( i>0 ){ + memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); + return memsys3Checkout(i, nBlock); + } + }else{ + int hash = nBlock % N_HASH; + for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ + if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ + memsys3UnlinkFromList(i, &mem3.aiHash[hash]); + return memsys3Checkout(i, nBlock); + } + } + } + + /* STEP 2: + ** Try to satisfy the allocation by carving a piece off of the end + ** of the master chunk. This step usually works if step 1 fails. + */ + if( mem3.szMaster>=nBlock ){ + return memsys3FromMaster(nBlock); + } + + + /* STEP 3: + ** Loop through the entire memory pool. Coalesce adjacent free + ** chunks. Recompute the master chunk as the largest free chunk. + ** Then try again to satisfy the allocation by carving a piece off + ** of the end of the master chunk. This step happens very + ** rarely (we hope!) + */ + for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ + memsys3OutOfMemory(toFree); + if( mem3.iMaster ){ + memsys3Link(mem3.iMaster); + mem3.iMaster = 0; + mem3.szMaster = 0; + } + for(i=0; i=nBlock ){ + return memsys3FromMaster(nBlock); + } + } + } + + /* If none of the above worked, then we fail. */ + return 0; +} + +/* +** Free an outstanding memory allocation. +** +** This function assumes that the necessary mutexes, if any, are +** already held by the caller. Hence "Unsafe". +*/ +static void memsys3FreeUnsafe(void *pOld){ + Mem3Block *p = (Mem3Block*)pOld; + int i; + u32 size, x; + assert( sqlite3_mutex_held(mem3.mutex) ); + assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); + i = p - mem3.aPool; + assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); + size = mem3.aPool[i-1].u.hdr.size4x/4; + assert( i+size<=mem3.nPool+1 ); + mem3.aPool[i-1].u.hdr.size4x &= ~1; + mem3.aPool[i+size-1].u.hdr.prevSize = size; + mem3.aPool[i+size-1].u.hdr.size4x &= ~2; + memsys3Link(i); + + /* Try to expand the master using the newly freed chunk */ + if( mem3.iMaster ){ + while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){ + size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize; + mem3.iMaster -= size; + mem3.szMaster += size; + memsys3Unlink(mem3.iMaster); + x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; + mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; + mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; + } + x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; + while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){ + memsys3Unlink(mem3.iMaster+mem3.szMaster); + mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4; + mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; + mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; + } + } +} + +/* +** Return the size of an outstanding allocation, in bytes. The +** size returned omits the 8-byte header overhead. This only +** works for chunks that are currently checked out. +*/ +static int memsys3Size(void *p){ + Mem3Block *pBlock; + if( p==0 ) return 0; + pBlock = (Mem3Block*)p; + assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); + return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; +} + +/* +** Round up a request size to the next valid allocation size. +*/ +static int memsys3Roundup(int n){ + if( n<=12 ){ + return 12; + }else{ + return ((n+11)&~7) - 4; + } +} + +/* +** Allocate nBytes of memory. +*/ +static void *memsys3Malloc(int nBytes){ + sqlite3_int64 *p; + assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */ + memsys3Enter(); + p = memsys3MallocUnsafe(nBytes); + memsys3Leave(); + return (void*)p; +} + +/* +** Free memory. +*/ +static void memsys3Free(void *pPrior){ + assert( pPrior ); + memsys3Enter(); + memsys3FreeUnsafe(pPrior); + memsys3Leave(); +} + +/* +** Change the size of an existing memory allocation +*/ +static void *memsys3Realloc(void *pPrior, int nBytes){ + int nOld; + void *p; + if( pPrior==0 ){ + return sqlite3_malloc(nBytes); + } + if( nBytes<=0 ){ + sqlite3_free(pPrior); + return 0; + } + nOld = memsys3Size(pPrior); + if( nBytes<=nOld && nBytes>=nOld-128 ){ + return pPrior; + } + memsys3Enter(); + p = memsys3MallocUnsafe(nBytes); + if( p ){ + if( nOld>1)!=(size&1) ){ + fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); + assert( 0 ); + break; + } + if( size&1 ){ + fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); + }else{ + fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, + i==mem3.iMaster ? " **master**" : ""); + } + } + for(i=0; i0; j=mem3.aPool[j].u.list.next){ + fprintf(out, " %p(%d)", &mem3.aPool[j], + (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); + } + fprintf(out, "\n"); + } + for(i=0; i0; j=mem3.aPool[j].u.list.next){ + fprintf(out, " %p(%d)", &mem3.aPool[j], + (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); + } + fprintf(out, "\n"); + } + fprintf(out, "master=%d\n", mem3.iMaster); + fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8); + fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8); + sqlite3_mutex_leave(mem3.mutex); + if( out==stdout ){ + fflush(stdout); + }else{ + fclose(out); + } +#else + UNUSED_PARAMETER(zFilename); +#endif +} + +/* +** This routine is the only routine in this file with external +** linkage. +** +** Populate the low-level memory allocation function pointers in +** sqlite3GlobalConfig.m with pointers to the routines in this file. The +** arguments specify the block of memory to manage. +** +** This routine is only called by sqlite3_config(), and therefore +** is not required to be threadsafe (it is not). +*/ +const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ + static const sqlite3_mem_methods mempoolMethods = { + memsys3Malloc, + memsys3Free, + memsys3Realloc, + memsys3Size, + memsys3Roundup, + memsys3Init, + memsys3Shutdown, + 0 + }; + return &mempoolMethods; +} + +#endif /* SQLITE_ENABLE_MEMSYS3 */ diff --git a/src/mem5.c b/src/mem5.c new file mode 100644 index 0000000..783cef6 --- /dev/null +++ b/src/mem5.c @@ -0,0 +1,581 @@ +/* +** 2007 October 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement a memory +** allocation subsystem for use by SQLite. +** +** This version of the memory allocation subsystem omits all +** use of malloc(). The application gives SQLite a block of memory +** before calling sqlite3_initialize() from which allocations +** are made and returned by the xMalloc() and xRealloc() +** implementations. Once sqlite3_initialize() has been called, +** the amount of memory available to SQLite is fixed and cannot +** be changed. +** +** This version of the memory allocation subsystem is included +** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. +** +** This memory allocator uses the following algorithm: +** +** 1. All memory allocations sizes are rounded up to a power of 2. +** +** 2. If two adjacent free blocks are the halves of a larger block, +** then the two blocks are coalesed into the single larger block. +** +** 3. New memory is allocated from the first available free block. +** +** This algorithm is described in: J. M. Robson. "Bounds for Some Functions +** Concerning Dynamic Storage Allocation". Journal of the Association for +** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. +** +** Let n be the size of the largest allocation divided by the minimum +** allocation size (after rounding all sizes up to a power of 2.) Let M +** be the maximum amount of memory ever outstanding at one time. Let +** N be the total amount of memory available for allocation. Robson +** proved that this memory allocator will never breakdown due to +** fragmentation as long as the following constraint holds: +** +** N >= M*(1 + log2(n)/2) - n + 1 +** +** The sqlite3_status() logic tracks the maximum values of n and M so +** that an application can, at any time, verify this constraint. +*/ +#include "sqliteInt.h" + +/* +** This version of the memory allocator is used only when +** SQLITE_ENABLE_MEMSYS5 is defined. +*/ +#ifdef SQLITE_ENABLE_MEMSYS5 + +/* +** A minimum allocation is an instance of the following structure. +** Larger allocations are an array of these structures where the +** size of the array is a power of 2. +** +** The size of this object must be a power of two. That fact is +** verified in memsys5Init(). +*/ +typedef struct Mem5Link Mem5Link; +struct Mem5Link { + int next; /* Index of next free chunk */ + int prev; /* Index of previous free chunk */ +}; + +/* +** Maximum size of any allocation is ((1<=0 && i=0 && iLogsize<=LOGMAX ); + assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); + + next = MEM5LINK(i)->next; + prev = MEM5LINK(i)->prev; + if( prev<0 ){ + mem5.aiFreelist[iLogsize] = next; + }else{ + MEM5LINK(prev)->next = next; + } + if( next>=0 ){ + MEM5LINK(next)->prev = prev; + } +} + +/* +** Link the chunk at mem5.aPool[i] so that is on the iLogsize +** free list. +*/ +static void memsys5Link(int i, int iLogsize){ + int x; + assert( sqlite3_mutex_held(mem5.mutex) ); + assert( i>=0 && i=0 && iLogsize<=LOGMAX ); + assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); + + x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; + MEM5LINK(i)->prev = -1; + if( x>=0 ){ + assert( xprev = i; + } + mem5.aiFreelist[iLogsize] = i; +} + +/* +** If the STATIC_MEM mutex is not already held, obtain it now. The mutex +** will already be held (obtained by code in malloc.c) if +** sqlite3GlobalConfig.bMemStat is true. +*/ +static void memsys5Enter(void){ + sqlite3_mutex_enter(mem5.mutex); +} +static void memsys5Leave(void){ + sqlite3_mutex_leave(mem5.mutex); +} + +/* +** Return the size of an outstanding allocation, in bytes. The +** size returned omits the 8-byte header overhead. This only +** works for chunks that are currently checked out. +*/ +static int memsys5Size(void *p){ + int iSize = 0; + if( p ){ + int i = ((u8 *)p-mem5.zPool)/mem5.szAtom; + assert( i>=0 && i=0 && iLogsize<=LOGMAX ); + i = iFirst = mem5.aiFreelist[iLogsize]; + assert( iFirst>=0 ); + while( i>0 ){ + if( inext; + } + memsys5Unlink(iFirst, iLogsize); + return iFirst; +} + +/* +** Return a block of memory of at least nBytes in size. +** Return NULL if unable. Return NULL if nBytes==0. +** +** The caller guarantees that nByte positive. +** +** The caller has obtained a mutex prior to invoking this +** routine so there is never any chance that two or more +** threads can be in this routine at the same time. +*/ +static void *memsys5MallocUnsafe(int nByte){ + int i; /* Index of a mem5.aPool[] slot */ + int iBin; /* Index into mem5.aiFreelist[] */ + int iFullSz; /* Size of allocation rounded up to power of 2 */ + int iLogsize; /* Log2 of iFullSz/POW2_MIN */ + + /* nByte must be a positive */ + assert( nByte>0 ); + + /* Keep track of the maximum allocation request. Even unfulfilled + ** requests are counted */ + if( (u32)nByte>mem5.maxRequest ){ + mem5.maxRequest = nByte; + } + + /* Abort if the requested allocation size is larger than the largest + ** power of two that we can represent using 32-bit signed integers. + */ + if( nByte > 0x40000000 ){ + return 0; + } + + /* Round nByte up to the next valid power of two */ + for(iFullSz=mem5.szAtom, iLogsize=0; iFullSzLOGMAX ){ + testcase( sqlite3GlobalConfig.xLog!=0 ); + sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); + return 0; + } + i = memsys5UnlinkFirst(iBin); + while( iBin>iLogsize ){ + int newSize; + + iBin--; + newSize = 1 << iBin; + mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; + memsys5Link(i+newSize, iBin); + } + mem5.aCtrl[i] = iLogsize; + + /* Update allocator performance statistics. */ + mem5.nAlloc++; + mem5.totalAlloc += iFullSz; + mem5.totalExcess += iFullSz - nByte; + mem5.currentCount++; + mem5.currentOut += iFullSz; + if( mem5.maxCount=0 && iBlock0 ); + assert( mem5.currentOut>=(size*mem5.szAtom) ); + mem5.currentCount--; + mem5.currentOut -= size*mem5.szAtom; + assert( mem5.currentOut>0 || mem5.currentCount==0 ); + assert( mem5.currentCount>0 || mem5.currentOut==0 ); + + mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; + while( ALWAYS(iLogsize>iLogsize) & 1 ){ + iBuddy = iBlock - size; + }else{ + iBuddy = iBlock + size; + } + assert( iBuddy>=0 ); + if( (iBuddy+(1<mem5.nBlock ) break; + if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; + memsys5Unlink(iBuddy, iLogsize); + iLogsize++; + if( iBuddy0 ){ + memsys5Enter(); + p = memsys5MallocUnsafe(nBytes); + memsys5Leave(); + } + return (void*)p; +} + +/* +** Free memory. +** +** The outer layer memory allocator prevents this routine from +** being called with pPrior==0. +*/ +static void memsys5Free(void *pPrior){ + assert( pPrior!=0 ); + memsys5Enter(); + memsys5FreeUnsafe(pPrior); + memsys5Leave(); +} + +/* +** Change the size of an existing memory allocation. +** +** The outer layer memory allocator prevents this routine from +** being called with pPrior==0. +** +** nBytes is always a value obtained from a prior call to +** memsys5Round(). Hence nBytes is always a non-negative power +** of two. If nBytes==0 that means that an oversize allocation +** (an allocation larger than 0x40000000) was requested and this +** routine should return 0 without freeing pPrior. +*/ +static void *memsys5Realloc(void *pPrior, int nBytes){ + int nOld; + void *p; + assert( pPrior!=0 ); + assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */ + assert( nBytes>=0 ); + if( nBytes==0 ){ + return 0; + } + nOld = memsys5Size(pPrior); + if( nBytes<=nOld ){ + return pPrior; + } + memsys5Enter(); + p = memsys5MallocUnsafe(nBytes); + if( p ){ + memcpy(p, pPrior, nOld); + memsys5FreeUnsafe(pPrior); + } + memsys5Leave(); + return p; +} + +/* +** Round up a request size to the next valid allocation size. If +** the allocation is too large to be handled by this allocation system, +** return 0. +** +** All allocations must be a power of two and must be expressed by a +** 32-bit signed integer. Hence the largest allocation is 0x40000000 +** or 1073741824 bytes. +*/ +static int memsys5Roundup(int n){ + int iFullSz; + if( n > 0x40000000 ) return 0; + for(iFullSz=mem5.szAtom; iFullSz 0 +** memsys5Log(2) -> 1 +** memsys5Log(4) -> 2 +** memsys5Log(5) -> 3 +** memsys5Log(8) -> 3 +** memsys5Log(9) -> 4 +*/ +static int memsys5Log(int iValue){ + int iLog; + for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<mem5.szAtom ){ + mem5.szAtom = mem5.szAtom << 1; + } + + mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); + mem5.zPool = zByte; + mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; + + for(ii=0; ii<=LOGMAX; ii++){ + mem5.aiFreelist[ii] = -1; + } + + iOffset = 0; + for(ii=LOGMAX; ii>=0; ii--){ + int nAlloc = (1<mem5.nBlock); + } + + /* If a mutex is required for normal operation, allocate one */ + if( sqlite3GlobalConfig.bMemstat==0 ){ + mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); + } + + return SQLITE_OK; +} + +/* +** Deinitialize this module. +*/ +static void memsys5Shutdown(void *NotUsed){ + UNUSED_PARAMETER(NotUsed); + mem5.mutex = 0; + return; +} + +#ifdef SQLITE_TEST +/* +** Open the file indicated and write a log of all unfreed memory +** allocations into that log. +*/ +void sqlite3Memsys5Dump(const char *zFilename){ + FILE *out; + int i, j, n; + int nMinLog; + + if( zFilename==0 || zFilename[0]==0 ){ + out = stdout; + }else{ + out = fopen(zFilename, "w"); + if( out==0 ){ + fprintf(stderr, "** Unable to output memory debug output log: %s **\n", + zFilename); + return; + } + } + memsys5Enter(); + nMinLog = memsys5Log(mem5.szAtom); + for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ + for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} + fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); + } + fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); + fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); + fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); + fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); + fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); + fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); + fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); + fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); + memsys5Leave(); + if( out==stdout ){ + fflush(stdout); + }else{ + fclose(out); + } +} +#endif + +/* +** This routine is the only routine in this file with external +** linkage. It returns a pointer to a static sqlite3_mem_methods +** struct populated with the memsys5 methods. +*/ +const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ + static const sqlite3_mem_methods memsys5Methods = { + memsys5Malloc, + memsys5Free, + memsys5Realloc, + memsys5Size, + memsys5Roundup, + memsys5Init, + memsys5Shutdown, + 0 + }; + return &memsys5Methods; +} + +#endif /* SQLITE_ENABLE_MEMSYS5 */ diff --git a/src/memjournal.c b/src/memjournal.c new file mode 100644 index 0000000..3e66e21 --- /dev/null +++ b/src/memjournal.c @@ -0,0 +1,259 @@ +/* +** 2008 October 7 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains code use to implement an in-memory rollback journal. +** The in-memory rollback journal is used to journal transactions for +** ":memory:" databases and when the journal_mode=MEMORY pragma is used. +*/ +#include "sqliteInt.h" + +/* Forward references to internal structures */ +typedef struct MemJournal MemJournal; +typedef struct FilePoint FilePoint; +typedef struct FileChunk FileChunk; + +/* Space to hold the rollback journal is allocated in increments of +** this many bytes. +** +** The size chosen is a little less than a power of two. That way, +** the FileChunk object will have a size that almost exactly fills +** a power-of-two allocation. This mimimizes wasted space in power-of-two +** memory allocators. +*/ +#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*))) + +/* Macro to find the minimum of two numeric values. +*/ +#ifndef MIN +# define MIN(x,y) ((x)<(y)?(x):(y)) +#endif + +/* +** The rollback journal is composed of a linked list of these structures. +*/ +struct FileChunk { + FileChunk *pNext; /* Next chunk in the journal */ + u8 zChunk[JOURNAL_CHUNKSIZE]; /* Content of this chunk */ +}; + +/* +** An instance of this object serves as a cursor into the rollback journal. +** The cursor can be either for reading or writing. +*/ +struct FilePoint { + sqlite3_int64 iOffset; /* Offset from the beginning of the file */ + FileChunk *pChunk; /* Specific chunk into which cursor points */ +}; + +/* +** This subclass is a subclass of sqlite3_file. Each open memory-journal +** is an instance of this class. +*/ +struct MemJournal { + sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */ + FileChunk *pFirst; /* Head of in-memory chunk-list */ + FilePoint endpoint; /* Pointer to the end of the file */ + FilePoint readpoint; /* Pointer to the end of the last xRead() */ +}; + +/* +** Read data from the in-memory journal file. This is the implementation +** of the sqlite3_vfs.xRead method. +*/ +static int memjrnlRead( + sqlite3_file *pJfd, /* The journal file from which to read */ + void *zBuf, /* Put the results here */ + int iAmt, /* Number of bytes to read */ + sqlite_int64 iOfst /* Begin reading at this offset */ +){ + MemJournal *p = (MemJournal *)pJfd; + u8 *zOut = zBuf; + int nRead = iAmt; + int iChunkOffset; + FileChunk *pChunk; + + /* SQLite never tries to read past the end of a rollback journal file */ + assert( iOfst+iAmt<=p->endpoint.iOffset ); + + if( p->readpoint.iOffset!=iOfst || iOfst==0 ){ + sqlite3_int64 iOff = 0; + for(pChunk=p->pFirst; + ALWAYS(pChunk) && (iOff+JOURNAL_CHUNKSIZE)<=iOfst; + pChunk=pChunk->pNext + ){ + iOff += JOURNAL_CHUNKSIZE; + } + }else{ + pChunk = p->readpoint.pChunk; + } + + iChunkOffset = (int)(iOfst%JOURNAL_CHUNKSIZE); + do { + int iSpace = JOURNAL_CHUNKSIZE - iChunkOffset; + int nCopy = MIN(nRead, (JOURNAL_CHUNKSIZE - iChunkOffset)); + memcpy(zOut, &pChunk->zChunk[iChunkOffset], nCopy); + zOut += nCopy; + nRead -= iSpace; + iChunkOffset = 0; + } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 ); + p->readpoint.iOffset = iOfst+iAmt; + p->readpoint.pChunk = pChunk; + + return SQLITE_OK; +} + +/* +** Write data to the file. +*/ +static int memjrnlWrite( + sqlite3_file *pJfd, /* The journal file into which to write */ + const void *zBuf, /* Take data to be written from here */ + int iAmt, /* Number of bytes to write */ + sqlite_int64 iOfst /* Begin writing at this offset into the file */ +){ + MemJournal *p = (MemJournal *)pJfd; + int nWrite = iAmt; + u8 *zWrite = (u8 *)zBuf; + + /* An in-memory journal file should only ever be appended to. Random + ** access writes are not required by sqlite. + */ + assert( iOfst==p->endpoint.iOffset ); + UNUSED_PARAMETER(iOfst); + + while( nWrite>0 ){ + FileChunk *pChunk = p->endpoint.pChunk; + int iChunkOffset = (int)(p->endpoint.iOffset%JOURNAL_CHUNKSIZE); + int iSpace = MIN(nWrite, JOURNAL_CHUNKSIZE - iChunkOffset); + + if( iChunkOffset==0 ){ + /* New chunk is required to extend the file. */ + FileChunk *pNew = sqlite3_malloc(sizeof(FileChunk)); + if( !pNew ){ + return SQLITE_IOERR_NOMEM; + } + pNew->pNext = 0; + if( pChunk ){ + assert( p->pFirst ); + pChunk->pNext = pNew; + }else{ + assert( !p->pFirst ); + p->pFirst = pNew; + } + p->endpoint.pChunk = pNew; + } + + memcpy(&p->endpoint.pChunk->zChunk[iChunkOffset], zWrite, iSpace); + zWrite += iSpace; + nWrite -= iSpace; + p->endpoint.iOffset += iSpace; + } + + return SQLITE_OK; +} + +/* +** Truncate the file. +*/ +static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){ + MemJournal *p = (MemJournal *)pJfd; + FileChunk *pChunk; + assert(size==0); + UNUSED_PARAMETER(size); + pChunk = p->pFirst; + while( pChunk ){ + FileChunk *pTmp = pChunk; + pChunk = pChunk->pNext; + sqlite3_free(pTmp); + } + sqlite3MemJournalOpen(pJfd); + return SQLITE_OK; +} + +/* +** Close the file. +*/ +static int memjrnlClose(sqlite3_file *pJfd){ + memjrnlTruncate(pJfd, 0); + return SQLITE_OK; +} + + +/* +** Sync the file. +** +** Syncing an in-memory journal is a no-op. And, in fact, this routine +** is never called in a working implementation. This implementation +** exists purely as a contingency, in case some malfunction in some other +** part of SQLite causes Sync to be called by mistake. +*/ +static int memjrnlSync(sqlite3_file *NotUsed, int NotUsed2){ + UNUSED_PARAMETER2(NotUsed, NotUsed2); + return SQLITE_OK; +} + +/* +** Query the size of the file in bytes. +*/ +static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){ + MemJournal *p = (MemJournal *)pJfd; + *pSize = (sqlite_int64) p->endpoint.iOffset; + return SQLITE_OK; +} + +/* +** Table of methods for MemJournal sqlite3_file object. +*/ +static const struct sqlite3_io_methods MemJournalMethods = { + 1, /* iVersion */ + memjrnlClose, /* xClose */ + memjrnlRead, /* xRead */ + memjrnlWrite, /* xWrite */ + memjrnlTruncate, /* xTruncate */ + memjrnlSync, /* xSync */ + memjrnlFileSize, /* xFileSize */ + 0, /* xLock */ + 0, /* xUnlock */ + 0, /* xCheckReservedLock */ + 0, /* xFileControl */ + 0, /* xSectorSize */ + 0, /* xDeviceCharacteristics */ + 0, /* xShmMap */ + 0, /* xShmLock */ + 0, /* xShmBarrier */ + 0 /* xShmUnlock */ +}; + +/* +** Open a journal file. +*/ +void sqlite3MemJournalOpen(sqlite3_file *pJfd){ + MemJournal *p = (MemJournal *)pJfd; + assert( EIGHT_BYTE_ALIGNMENT(p) ); + memset(p, 0, sqlite3MemJournalSize()); + p->pMethod = (sqlite3_io_methods*)&MemJournalMethods; +} + +/* +** Return true if the file-handle passed as an argument is +** an in-memory journal +*/ +int sqlite3IsMemJournal(sqlite3_file *pJfd){ + return pJfd->pMethods==&MemJournalMethods; +} + +/* +** Return the number of bytes required to store a MemJournal file descriptor. +*/ +int sqlite3MemJournalSize(void){ + return sizeof(MemJournal); +} diff --git a/src/mutex.c b/src/mutex.c new file mode 100644 index 0000000..869a4ae --- /dev/null +++ b/src/mutex.c @@ -0,0 +1,153 @@ +/* +** 2007 August 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement mutexes. +** +** This file contains code that is common across all mutex implementations. +*/ +#include "sqliteInt.h" + +#if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT) +/* +** For debugging purposes, record when the mutex subsystem is initialized +** and uninitialized so that we can assert() if there is an attempt to +** allocate a mutex while the system is uninitialized. +*/ +static SQLITE_WSD int mutexIsInit = 0; +#endif /* SQLITE_DEBUG */ + + +#ifndef SQLITE_MUTEX_OMIT +/* +** Initialize the mutex system. +*/ +int sqlite3MutexInit(void){ + int rc = SQLITE_OK; + if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){ + /* If the xMutexAlloc method has not been set, then the user did not + ** install a mutex implementation via sqlite3_config() prior to + ** sqlite3_initialize() being called. This block copies pointers to + ** the default implementation into the sqlite3GlobalConfig structure. + */ + sqlite3_mutex_methods const *pFrom; + sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex; + + if( sqlite3GlobalConfig.bCoreMutex ){ + pFrom = sqlite3DefaultMutex(); + }else{ + pFrom = sqlite3NoopMutex(); + } + memcpy(pTo, pFrom, offsetof(sqlite3_mutex_methods, xMutexAlloc)); + memcpy(&pTo->xMutexFree, &pFrom->xMutexFree, + sizeof(*pTo) - offsetof(sqlite3_mutex_methods, xMutexFree)); + pTo->xMutexAlloc = pFrom->xMutexAlloc; + } + rc = sqlite3GlobalConfig.mutex.xMutexInit(); + +#ifdef SQLITE_DEBUG + GLOBAL(int, mutexIsInit) = 1; +#endif + + return rc; +} + +/* +** Shutdown the mutex system. This call frees resources allocated by +** sqlite3MutexInit(). +*/ +int sqlite3MutexEnd(void){ + int rc = SQLITE_OK; + if( sqlite3GlobalConfig.mutex.xMutexEnd ){ + rc = sqlite3GlobalConfig.mutex.xMutexEnd(); + } + +#ifdef SQLITE_DEBUG + GLOBAL(int, mutexIsInit) = 0; +#endif + + return rc; +} + +/* +** Retrieve a pointer to a static mutex or allocate a new dynamic one. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int id){ +#ifndef SQLITE_OMIT_AUTOINIT + if( sqlite3_initialize() ) return 0; +#endif + return sqlite3GlobalConfig.mutex.xMutexAlloc(id); +} + +sqlite3_mutex *sqlite3MutexAlloc(int id){ + if( !sqlite3GlobalConfig.bCoreMutex ){ + return 0; + } + assert( GLOBAL(int, mutexIsInit) ); + return sqlite3GlobalConfig.mutex.xMutexAlloc(id); +} + +/* +** Free a dynamic mutex. +*/ +void sqlite3_mutex_free(sqlite3_mutex *p){ + if( p ){ + sqlite3GlobalConfig.mutex.xMutexFree(p); + } +} + +/* +** Obtain the mutex p. If some other thread already has the mutex, block +** until it can be obtained. +*/ +void sqlite3_mutex_enter(sqlite3_mutex *p){ + if( p ){ + sqlite3GlobalConfig.mutex.xMutexEnter(p); + } +} + +/* +** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another +** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY. +*/ +int sqlite3_mutex_try(sqlite3_mutex *p){ + int rc = SQLITE_OK; + if( p ){ + return sqlite3GlobalConfig.mutex.xMutexTry(p); + } + return rc; +} + +/* +** The sqlite3_mutex_leave() routine exits a mutex that was previously +** entered by the same thread. The behavior is undefined if the mutex +** is not currently entered. If a NULL pointer is passed as an argument +** this function is a no-op. +*/ +void sqlite3_mutex_leave(sqlite3_mutex *p){ + if( p ){ + sqlite3GlobalConfig.mutex.xMutexLeave(p); + } +} + +#ifndef NDEBUG +/* +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are +** intended for use inside assert() statements. +*/ +int sqlite3_mutex_held(sqlite3_mutex *p){ + return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p); +} +int sqlite3_mutex_notheld(sqlite3_mutex *p){ + return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p); +} +#endif + +#endif /* SQLITE_MUTEX_OMIT */ diff --git a/src/mutex.h b/src/mutex.h new file mode 100644 index 0000000..b0e552c --- /dev/null +++ b/src/mutex.h @@ -0,0 +1,74 @@ +/* +** 2007 August 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains the common header for all mutex implementations. +** The sqliteInt.h header #includes this file so that it is available +** to all source files. We break it out in an effort to keep the code +** better organized. +** +** NOTE: source files should *not* #include this header file directly. +** Source files should #include the sqliteInt.h file and let that file +** include this one indirectly. +*/ + + +/* +** Figure out what version of the code to use. The choices are +** +** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The +** mutexes implemention cannot be overridden +** at start-time. +** +** SQLITE_MUTEX_NOOP For single-threaded applications. No +** mutual exclusion is provided. But this +** implementation can be overridden at +** start-time. +** +** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix. +** +** SQLITE_MUTEX_W32 For multi-threaded applications on Win32. +** +** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2. +*/ +#if !SQLITE_THREADSAFE +# define SQLITE_MUTEX_OMIT +#endif +#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP) +# if SQLITE_OS_UNIX +# define SQLITE_MUTEX_PTHREADS +# elif SQLITE_OS_WIN +# define SQLITE_MUTEX_W32 +# elif SQLITE_OS_OS2 +# define SQLITE_MUTEX_OS2 +# else +# define SQLITE_MUTEX_NOOP +# endif +#endif + +#ifdef SQLITE_MUTEX_OMIT +/* +** If this is a no-op implementation, implement everything as macros. +*/ +#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8) +#define sqlite3_mutex_free(X) +#define sqlite3_mutex_enter(X) +#define sqlite3_mutex_try(X) SQLITE_OK +#define sqlite3_mutex_leave(X) +#define sqlite3_mutex_held(X) ((void)(X),1) +#define sqlite3_mutex_notheld(X) ((void)(X),1) +#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8) +#define sqlite3MutexInit() SQLITE_OK +#define sqlite3MutexEnd() +#define MUTEX_LOGIC(X) +#else +#define MUTEX_LOGIC(X) X +#endif /* defined(SQLITE_MUTEX_OMIT) */ diff --git a/src/mutex_noop.c b/src/mutex_noop.c new file mode 100644 index 0000000..c5fd520 --- /dev/null +++ b/src/mutex_noop.c @@ -0,0 +1,206 @@ +/* +** 2008 October 07 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement mutexes. +** +** This implementation in this file does not provide any mutual +** exclusion and is thus suitable for use only in applications +** that use SQLite in a single thread. The routines defined +** here are place-holders. Applications can substitute working +** mutex routines at start-time using the +** +** sqlite3_config(SQLITE_CONFIG_MUTEX,...) +** +** interface. +** +** If compiled with SQLITE_DEBUG, then additional logic is inserted +** that does error checking on mutexes to make sure they are being +** called correctly. +*/ +#include "sqliteInt.h" + +#ifndef SQLITE_MUTEX_OMIT + +#ifndef SQLITE_DEBUG +/* +** Stub routines for all mutex methods. +** +** This routines provide no mutual exclusion or error checking. +*/ +static int noopMutexInit(void){ return SQLITE_OK; } +static int noopMutexEnd(void){ return SQLITE_OK; } +static sqlite3_mutex *noopMutexAlloc(int id){ + UNUSED_PARAMETER(id); + return (sqlite3_mutex*)8; +} +static void noopMutexFree(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } +static void noopMutexEnter(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } +static int noopMutexTry(sqlite3_mutex *p){ + UNUSED_PARAMETER(p); + return SQLITE_OK; +} +static void noopMutexLeave(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } + +sqlite3_mutex_methods const *sqlite3NoopMutex(void){ + static const sqlite3_mutex_methods sMutex = { + noopMutexInit, + noopMutexEnd, + noopMutexAlloc, + noopMutexFree, + noopMutexEnter, + noopMutexTry, + noopMutexLeave, + + 0, + 0, + }; + + return &sMutex; +} +#endif /* !SQLITE_DEBUG */ + +#ifdef SQLITE_DEBUG +/* +** In this implementation, error checking is provided for testing +** and debugging purposes. The mutexes still do not provide any +** mutual exclusion. +*/ + +/* +** The mutex object +*/ +typedef struct sqlite3_debug_mutex { + int id; /* The mutex type */ + int cnt; /* Number of entries without a matching leave */ +} sqlite3_debug_mutex; + +/* +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are +** intended for use inside assert() statements. +*/ +static int debugMutexHeld(sqlite3_mutex *pX){ + sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; + return p==0 || p->cnt>0; +} +static int debugMutexNotheld(sqlite3_mutex *pX){ + sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; + return p==0 || p->cnt==0; +} + +/* +** Initialize and deinitialize the mutex subsystem. +*/ +static int debugMutexInit(void){ return SQLITE_OK; } +static int debugMutexEnd(void){ return SQLITE_OK; } + +/* +** The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. If it returns NULL +** that means that a mutex could not be allocated. +*/ +static sqlite3_mutex *debugMutexAlloc(int id){ + static sqlite3_debug_mutex aStatic[6]; + sqlite3_debug_mutex *pNew = 0; + switch( id ){ + case SQLITE_MUTEX_FAST: + case SQLITE_MUTEX_RECURSIVE: { + pNew = sqlite3Malloc(sizeof(*pNew)); + if( pNew ){ + pNew->id = id; + pNew->cnt = 0; + } + break; + } + default: { + assert( id-2 >= 0 ); + assert( id-2 < (int)(sizeof(aStatic)/sizeof(aStatic[0])) ); + pNew = &aStatic[id-2]; + pNew->id = id; + break; + } + } + return (sqlite3_mutex*)pNew; +} + +/* +** This routine deallocates a previously allocated mutex. +*/ +static void debugMutexFree(sqlite3_mutex *pX){ + sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; + assert( p->cnt==0 ); + assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); + sqlite3_free(p); +} + +/* +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can +** be entered multiple times by the same thread. In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. If the same thread tries to enter any other kind of mutex +** more than once, the behavior is undefined. +*/ +static void debugMutexEnter(sqlite3_mutex *pX){ + sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; + assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); + p->cnt++; +} +static int debugMutexTry(sqlite3_mutex *pX){ + sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; + assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); + p->cnt++; + return SQLITE_OK; +} + +/* +** The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. The behavior +** is undefined if the mutex is not currently entered or +** is not currently allocated. SQLite will never do either. +*/ +static void debugMutexLeave(sqlite3_mutex *pX){ + sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; + assert( debugMutexHeld(pX) ); + p->cnt--; + assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); +} + +sqlite3_mutex_methods const *sqlite3NoopMutex(void){ + static const sqlite3_mutex_methods sMutex = { + debugMutexInit, + debugMutexEnd, + debugMutexAlloc, + debugMutexFree, + debugMutexEnter, + debugMutexTry, + debugMutexLeave, + + debugMutexHeld, + debugMutexNotheld + }; + + return &sMutex; +} +#endif /* SQLITE_DEBUG */ + +/* +** If compiled with SQLITE_MUTEX_NOOP, then the no-op mutex implementation +** is used regardless of the run-time threadsafety setting. +*/ +#ifdef SQLITE_MUTEX_NOOP +sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ + return sqlite3NoopMutex(); +} +#endif /* SQLITE_MUTEX_NOOP */ +#endif /* SQLITE_MUTEX_OMIT */ diff --git a/src/mutex_os2.c b/src/mutex_os2.c new file mode 100644 index 0000000..ce650d9 --- /dev/null +++ b/src/mutex_os2.c @@ -0,0 +1,274 @@ +/* +** 2007 August 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement mutexes for OS/2 +*/ +#include "sqliteInt.h" + +/* +** The code in this file is only used if SQLITE_MUTEX_OS2 is defined. +** See the mutex.h file for details. +*/ +#ifdef SQLITE_MUTEX_OS2 + +/********************** OS/2 Mutex Implementation ********************** +** +** This implementation of mutexes is built using the OS/2 API. +*/ + +/* +** The mutex object +** Each recursive mutex is an instance of the following structure. +*/ +struct sqlite3_mutex { + HMTX mutex; /* Mutex controlling the lock */ + int id; /* Mutex type */ +#ifdef SQLITE_DEBUG + int trace; /* True to trace changes */ +#endif +}; + +#ifdef SQLITE_DEBUG +#define SQLITE3_MUTEX_INITIALIZER { 0, 0, 0 } +#else +#define SQLITE3_MUTEX_INITIALIZER { 0, 0 } +#endif + +/* +** Initialize and deinitialize the mutex subsystem. +*/ +static int os2MutexInit(void){ return SQLITE_OK; } +static int os2MutexEnd(void){ return SQLITE_OK; } + +/* +** The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. If it returns NULL +** that means that a mutex could not be allocated. +** SQLite will unwind its stack and return an error. The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
  • SQLITE_MUTEX_STATIC_LRU2 +**
+** +** The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. But SQLite will only request a recursive mutex in +** cases where it really needs one. If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. Six static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. +*/ +static sqlite3_mutex *os2MutexAlloc(int iType){ + sqlite3_mutex *p = NULL; + switch( iType ){ + case SQLITE_MUTEX_FAST: + case SQLITE_MUTEX_RECURSIVE: { + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ + p->id = iType; + if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){ + sqlite3_free( p ); + p = NULL; + } + } + break; + } + default: { + static volatile int isInit = 0; + static sqlite3_mutex staticMutexes[6] = { + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + }; + if ( !isInit ){ + APIRET rc; + PTIB ptib; + PPIB ppib; + HMTX mutex; + char name[32]; + DosGetInfoBlocks( &ptib, &ppib ); + sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x", + ppib->pib_ulpid ); + while( !isInit ){ + mutex = 0; + rc = DosCreateMutexSem( name, &mutex, 0, FALSE); + if( rc == NO_ERROR ){ + unsigned int i; + if( !isInit ){ + for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){ + DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE ); + } + isInit = 1; + } + DosCloseMutexSem( mutex ); + }else if( rc == ERROR_DUPLICATE_NAME ){ + DosSleep( 1 ); + }else{ + return p; + } + } + } + assert( iType-2 >= 0 ); + assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) ); + p = &staticMutexes[iType-2]; + p->id = iType; + break; + } + } + return p; +} + + +/* +** This routine deallocates a previously allocated mutex. +** SQLite is careful to deallocate every mutex that it allocates. +*/ +static void os2MutexFree(sqlite3_mutex *p){ +#ifdef SQLITE_DEBUG + TID tid; + PID pid; + ULONG ulCount; + DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount); + assert( ulCount==0 ); + assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); +#endif + DosCloseMutexSem( p->mutex ); + sqlite3_free( p ); +} + +#ifdef SQLITE_DEBUG +/* +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are +** intended for use inside assert() statements. +*/ +static int os2MutexHeld(sqlite3_mutex *p){ + TID tid; + PID pid; + ULONG ulCount; + PTIB ptib; + DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount); + if( ulCount==0 || ( ulCount>1 && p->id!=SQLITE_MUTEX_RECURSIVE ) ) + return 0; + DosGetInfoBlocks(&ptib, NULL); + return tid==ptib->tib_ptib2->tib2_ultid; +} +static int os2MutexNotheld(sqlite3_mutex *p){ + TID tid; + PID pid; + ULONG ulCount; + PTIB ptib; + DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount); + if( ulCount==0 ) + return 1; + DosGetInfoBlocks(&ptib, NULL); + return tid!=ptib->tib_ptib2->tib2_ultid; +} +static void os2MutexTrace(sqlite3_mutex *p, char *pAction){ + TID tid; + PID pid; + ULONG ulCount; + DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount); + printf("%s mutex %p (%d) with nRef=%ld\n", pAction, (void*)p, p->trace, ulCount); +} +#endif + +/* +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can +** be entered multiple times by the same thread. In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. If the same thread tries to enter any other kind of mutex +** more than once, the behavior is undefined. +*/ +static void os2MutexEnter(sqlite3_mutex *p){ + assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) ); + DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT); +#ifdef SQLITE_DEBUG + if( p->trace ) os2MutexTrace(p, "enter"); +#endif +} +static int os2MutexTry(sqlite3_mutex *p){ + int rc = SQLITE_BUSY; + assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) ); + if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR ) { + rc = SQLITE_OK; +#ifdef SQLITE_DEBUG + if( p->trace ) os2MutexTrace(p, "try"); +#endif + } + return rc; +} + +/* +** The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. The behavior +** is undefined if the mutex is not currently entered or +** is not currently allocated. SQLite will never do either. +*/ +static void os2MutexLeave(sqlite3_mutex *p){ + assert( os2MutexHeld(p) ); + DosReleaseMutexSem(p->mutex); +#ifdef SQLITE_DEBUG + if( p->trace ) os2MutexTrace(p, "leave"); +#endif +} + +sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ + static const sqlite3_mutex_methods sMutex = { + os2MutexInit, + os2MutexEnd, + os2MutexAlloc, + os2MutexFree, + os2MutexEnter, + os2MutexTry, + os2MutexLeave, +#ifdef SQLITE_DEBUG + os2MutexHeld, + os2MutexNotheld +#else + 0, + 0 +#endif + }; + + return &sMutex; +} +#endif /* SQLITE_MUTEX_OS2 */ diff --git a/src/mutex_unix.c b/src/mutex_unix.c new file mode 100644 index 0000000..aa9a8cf --- /dev/null +++ b/src/mutex_unix.c @@ -0,0 +1,351 @@ +/* +** 2007 August 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement mutexes for pthreads +*/ +#include "sqliteInt.h" + +/* +** The code in this file is only used if we are compiling threadsafe +** under unix with pthreads. +** +** Note that this implementation requires a version of pthreads that +** supports recursive mutexes. +*/ +#ifdef SQLITE_MUTEX_PTHREADS + +#include + +/* +** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields +** are necessary under two condidtions: (1) Debug builds and (2) using +** home-grown mutexes. Encapsulate these conditions into a single #define. +*/ +#if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX) +# define SQLITE_MUTEX_NREF 1 +#else +# define SQLITE_MUTEX_NREF 0 +#endif + +/* +** Each recursive mutex is an instance of the following structure. +*/ +struct sqlite3_mutex { + pthread_mutex_t mutex; /* Mutex controlling the lock */ +#if SQLITE_MUTEX_NREF + int id; /* Mutex type */ + volatile int nRef; /* Number of entrances */ + volatile pthread_t owner; /* Thread that is within this mutex */ + int trace; /* True to trace changes */ +#endif +}; +#if SQLITE_MUTEX_NREF +#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 } +#else +#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER } +#endif + +/* +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are +** intended for use only inside assert() statements. On some platforms, +** there might be race conditions that can cause these routines to +** deliver incorrect results. In particular, if pthread_equal() is +** not an atomic operation, then these routines might delivery +** incorrect results. On most platforms, pthread_equal() is a +** comparison of two integers and is therefore atomic. But we are +** told that HPUX is not such a platform. If so, then these routines +** will not always work correctly on HPUX. +** +** On those platforms where pthread_equal() is not atomic, SQLite +** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to +** make sure no assert() statements are evaluated and hence these +** routines are never called. +*/ +#if !defined(NDEBUG) || defined(SQLITE_DEBUG) +static int pthreadMutexHeld(sqlite3_mutex *p){ + return (p->nRef!=0 && pthread_equal(p->owner, pthread_self())); +} +static int pthreadMutexNotheld(sqlite3_mutex *p){ + return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0; +} +#endif + +/* +** Initialize and deinitialize the mutex subsystem. +*/ +static int pthreadMutexInit(void){ return SQLITE_OK; } +static int pthreadMutexEnd(void){ return SQLITE_OK; } + +/* +** The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. If it returns NULL +** that means that a mutex could not be allocated. SQLite +** will unwind its stack and return an error. The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
    +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
  • SQLITE_MUTEX_STATIC_PMEM +**
+** +** The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. But SQLite will only request a recursive mutex in +** cases where it really needs one. If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. Six static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. +*/ +static sqlite3_mutex *pthreadMutexAlloc(int iType){ + static sqlite3_mutex staticMutexes[] = { + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER + }; + sqlite3_mutex *p; + switch( iType ){ + case SQLITE_MUTEX_RECURSIVE: { + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + /* If recursive mutexes are not available, we will have to + ** build our own. See below. */ + pthread_mutex_init(&p->mutex, 0); +#else + /* Use a recursive mutex if it is available */ + pthread_mutexattr_t recursiveAttr; + pthread_mutexattr_init(&recursiveAttr); + pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE); + pthread_mutex_init(&p->mutex, &recursiveAttr); + pthread_mutexattr_destroy(&recursiveAttr); +#endif +#if SQLITE_MUTEX_NREF + p->id = iType; +#endif + } + break; + } + case SQLITE_MUTEX_FAST: { + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ +#if SQLITE_MUTEX_NREF + p->id = iType; +#endif + pthread_mutex_init(&p->mutex, 0); + } + break; + } + default: { + assert( iType-2 >= 0 ); + assert( iType-2 < ArraySize(staticMutexes) ); + p = &staticMutexes[iType-2]; +#if SQLITE_MUTEX_NREF + p->id = iType; +#endif + break; + } + } + return p; +} + + +/* +** This routine deallocates a previously +** allocated mutex. SQLite is careful to deallocate every +** mutex that it allocates. +*/ +static void pthreadMutexFree(sqlite3_mutex *p){ + assert( p->nRef==0 ); + assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); + pthread_mutex_destroy(&p->mutex); + sqlite3_free(p); +} + +/* +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can +** be entered multiple times by the same thread. In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. If the same thread tries to enter any other kind of mutex +** more than once, the behavior is undefined. +*/ +static void pthreadMutexEnter(sqlite3_mutex *p){ + assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); + +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + /* If recursive mutexes are not available, then we have to grow + ** our own. This implementation assumes that pthread_equal() + ** is atomic - that it cannot be deceived into thinking self + ** and p->owner are equal if p->owner changes between two values + ** that are not equal to self while the comparison is taking place. + ** This implementation also assumes a coherent cache - that + ** separate processes cannot read different values from the same + ** address at the same time. If either of these two conditions + ** are not met, then the mutexes will fail and problems will result. + */ + { + pthread_t self = pthread_self(); + if( p->nRef>0 && pthread_equal(p->owner, self) ){ + p->nRef++; + }else{ + pthread_mutex_lock(&p->mutex); + assert( p->nRef==0 ); + p->owner = self; + p->nRef = 1; + } + } +#else + /* Use the built-in recursive mutexes if they are available. + */ + pthread_mutex_lock(&p->mutex); +#if SQLITE_MUTEX_NREF + assert( p->nRef>0 || p->owner==0 ); + p->owner = pthread_self(); + p->nRef++; +#endif +#endif + +#ifdef SQLITE_DEBUG + if( p->trace ){ + printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif +} +static int pthreadMutexTry(sqlite3_mutex *p){ + int rc; + assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); + +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + /* If recursive mutexes are not available, then we have to grow + ** our own. This implementation assumes that pthread_equal() + ** is atomic - that it cannot be deceived into thinking self + ** and p->owner are equal if p->owner changes between two values + ** that are not equal to self while the comparison is taking place. + ** This implementation also assumes a coherent cache - that + ** separate processes cannot read different values from the same + ** address at the same time. If either of these two conditions + ** are not met, then the mutexes will fail and problems will result. + */ + { + pthread_t self = pthread_self(); + if( p->nRef>0 && pthread_equal(p->owner, self) ){ + p->nRef++; + rc = SQLITE_OK; + }else if( pthread_mutex_trylock(&p->mutex)==0 ){ + assert( p->nRef==0 ); + p->owner = self; + p->nRef = 1; + rc = SQLITE_OK; + }else{ + rc = SQLITE_BUSY; + } + } +#else + /* Use the built-in recursive mutexes if they are available. + */ + if( pthread_mutex_trylock(&p->mutex)==0 ){ +#if SQLITE_MUTEX_NREF + p->owner = pthread_self(); + p->nRef++; +#endif + rc = SQLITE_OK; + }else{ + rc = SQLITE_BUSY; + } +#endif + +#ifdef SQLITE_DEBUG + if( rc==SQLITE_OK && p->trace ){ + printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif + return rc; +} + +/* +** The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. The behavior +** is undefined if the mutex is not currently entered or +** is not currently allocated. SQLite will never do either. +*/ +static void pthreadMutexLeave(sqlite3_mutex *p){ + assert( pthreadMutexHeld(p) ); +#if SQLITE_MUTEX_NREF + p->nRef--; + if( p->nRef==0 ) p->owner = 0; +#endif + assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); + +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + if( p->nRef==0 ){ + pthread_mutex_unlock(&p->mutex); + } +#else + pthread_mutex_unlock(&p->mutex); +#endif + +#ifdef SQLITE_DEBUG + if( p->trace ){ + printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif +} + +sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ + static const sqlite3_mutex_methods sMutex = { + pthreadMutexInit, + pthreadMutexEnd, + pthreadMutexAlloc, + pthreadMutexFree, + pthreadMutexEnter, + pthreadMutexTry, + pthreadMutexLeave, +#ifdef SQLITE_DEBUG + pthreadMutexHeld, + pthreadMutexNotheld +#else + 0, + 0 +#endif + }; + + return &sMutex; +} + +#endif /* SQLITE_MUTEX_PTHREAD */ diff --git a/src/mutex_w32.c b/src/mutex_w32.c new file mode 100644 index 0000000..bfd9dac --- /dev/null +++ b/src/mutex_w32.c @@ -0,0 +1,332 @@ +/* +** 2007 August 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement mutexes for win32 +*/ +#include "sqliteInt.h" + +/* +** The code in this file is only used if we are compiling multithreaded +** on a win32 system. +*/ +#ifdef SQLITE_MUTEX_W32 + +/* +** Each recursive mutex is an instance of the following structure. +*/ +struct sqlite3_mutex { + CRITICAL_SECTION mutex; /* Mutex controlling the lock */ + int id; /* Mutex type */ +#ifdef SQLITE_DEBUG + volatile int nRef; /* Number of enterances */ + volatile DWORD owner; /* Thread holding this mutex */ + int trace; /* True to trace changes */ +#endif +}; +#define SQLITE_W32_MUTEX_INITIALIZER { 0 } +#ifdef SQLITE_DEBUG +#define SQLITE3_MUTEX_INITIALIZER { SQLITE_W32_MUTEX_INITIALIZER, 0, 0L, (DWORD)0, 0 } +#else +#define SQLITE3_MUTEX_INITIALIZER { SQLITE_W32_MUTEX_INITIALIZER, 0 } +#endif + +/* +** Return true (non-zero) if we are running under WinNT, Win2K, WinXP, +** or WinCE. Return false (zero) for Win95, Win98, or WinME. +** +** Here is an interesting observation: Win95, Win98, and WinME lack +** the LockFileEx() API. But we can still statically link against that +** API as long as we don't call it win running Win95/98/ME. A call to +** this routine is used to determine if the host is Win95/98/ME or +** WinNT/2K/XP so that we will know whether or not we can safely call +** the LockFileEx() API. +** +** mutexIsNT() is only used for the TryEnterCriticalSection() API call, +** which is only available if your application was compiled with +** _WIN32_WINNT defined to a value >= 0x0400. Currently, the only +** call to TryEnterCriticalSection() is #ifdef'ed out, so #ifdef +** this out as well. +*/ +#if 0 +#if SQLITE_OS_WINCE +# define mutexIsNT() (1) +#else + static int mutexIsNT(void){ + static int osType = 0; + if( osType==0 ){ + OSVERSIONINFO sInfo; + sInfo.dwOSVersionInfoSize = sizeof(sInfo); + GetVersionEx(&sInfo); + osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1; + } + return osType==2; + } +#endif /* SQLITE_OS_WINCE */ +#endif + +#ifdef SQLITE_DEBUG +/* +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are +** intended for use only inside assert() statements. +*/ +static int winMutexHeld(sqlite3_mutex *p){ + return p->nRef!=0 && p->owner==GetCurrentThreadId(); +} +static int winMutexNotheld2(sqlite3_mutex *p, DWORD tid){ + return p->nRef==0 || p->owner!=tid; +} +static int winMutexNotheld(sqlite3_mutex *p){ + DWORD tid = GetCurrentThreadId(); + return winMutexNotheld2(p, tid); +} +#endif + + +/* +** Initialize and deinitialize the mutex subsystem. +*/ +static sqlite3_mutex winMutex_staticMutexes[6] = { + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER +}; +static int winMutex_isInit = 0; +/* As winMutexInit() and winMutexEnd() are called as part +** of the sqlite3_initialize and sqlite3_shutdown() +** processing, the "interlocked" magic is probably not +** strictly necessary. +*/ +static long winMutex_lock = 0; + +static int winMutexInit(void){ + /* The first to increment to 1 does actual initialization */ + if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){ + int i; + for(i=0; i +**
  • SQLITE_MUTEX_FAST +**
  • SQLITE_MUTEX_RECURSIVE +**
  • SQLITE_MUTEX_STATIC_MASTER +**
  • SQLITE_MUTEX_STATIC_MEM +**
  • SQLITE_MUTEX_STATIC_MEM2 +**
  • SQLITE_MUTEX_STATIC_PRNG +**
  • SQLITE_MUTEX_STATIC_LRU +**
  • SQLITE_MUTEX_STATIC_PMEM +** +** +** The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. But SQLite will only request a recursive mutex in +** cases where it really needs one. If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. Six static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. +*/ +static sqlite3_mutex *winMutexAlloc(int iType){ + sqlite3_mutex *p; + + switch( iType ){ + case SQLITE_MUTEX_FAST: + case SQLITE_MUTEX_RECURSIVE: { + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ +#ifdef SQLITE_DEBUG + p->id = iType; +#endif + InitializeCriticalSection(&p->mutex); + } + break; + } + default: { + assert( winMutex_isInit==1 ); + assert( iType-2 >= 0 ); + assert( iType-2 < ArraySize(winMutex_staticMutexes) ); + p = &winMutex_staticMutexes[iType-2]; +#ifdef SQLITE_DEBUG + p->id = iType; +#endif + break; + } + } + return p; +} + + +/* +** This routine deallocates a previously +** allocated mutex. SQLite is careful to deallocate every +** mutex that it allocates. +*/ +static void winMutexFree(sqlite3_mutex *p){ + assert( p ); + assert( p->nRef==0 && p->owner==0 ); + assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); + DeleteCriticalSection(&p->mutex); + sqlite3_free(p); +} + +/* +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can +** be entered multiple times by the same thread. In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. If the same thread tries to enter any other kind of mutex +** more than once, the behavior is undefined. +*/ +static void winMutexEnter(sqlite3_mutex *p){ +#ifdef SQLITE_DEBUG + DWORD tid = GetCurrentThreadId(); + assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); +#endif + EnterCriticalSection(&p->mutex); +#ifdef SQLITE_DEBUG + assert( p->nRef>0 || p->owner==0 ); + p->owner = tid; + p->nRef++; + if( p->trace ){ + printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif +} +static int winMutexTry(sqlite3_mutex *p){ +#ifndef NDEBUG + DWORD tid = GetCurrentThreadId(); +#endif + int rc = SQLITE_BUSY; + assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); + /* + ** The sqlite3_mutex_try() routine is very rarely used, and when it + ** is used it is merely an optimization. So it is OK for it to always + ** fail. + ** + ** The TryEnterCriticalSection() interface is only available on WinNT. + ** And some windows compilers complain if you try to use it without + ** first doing some #defines that prevent SQLite from building on Win98. + ** For that reason, we will omit this optimization for now. See + ** ticket #2685. + */ +#if 0 + if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){ + p->owner = tid; + p->nRef++; + rc = SQLITE_OK; + } +#else + UNUSED_PARAMETER(p); +#endif +#ifdef SQLITE_DEBUG + if( rc==SQLITE_OK && p->trace ){ + printf("try mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif + return rc; +} + +/* +** The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. The behavior +** is undefined if the mutex is not currently entered or +** is not currently allocated. SQLite will never do either. +*/ +static void winMutexLeave(sqlite3_mutex *p){ +#ifndef NDEBUG + DWORD tid = GetCurrentThreadId(); + assert( p->nRef>0 ); + assert( p->owner==tid ); + p->nRef--; + if( p->nRef==0 ) p->owner = 0; + assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); +#endif + LeaveCriticalSection(&p->mutex); +#ifdef SQLITE_DEBUG + if( p->trace ){ + printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif +} + +sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ + static const sqlite3_mutex_methods sMutex = { + winMutexInit, + winMutexEnd, + winMutexAlloc, + winMutexFree, + winMutexEnter, + winMutexTry, + winMutexLeave, +#ifdef SQLITE_DEBUG + winMutexHeld, + winMutexNotheld +#else + 0, + 0 +#endif + }; + + return &sMutex; +} +#endif /* SQLITE_MUTEX_W32 */ diff --git a/src/notify.c b/src/notify.c new file mode 100644 index 0000000..fcab5bf --- /dev/null +++ b/src/notify.c @@ -0,0 +1,332 @@ +/* +** 2009 March 3 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains the implementation of the sqlite3_unlock_notify() +** API method and its associated functionality. +*/ +#include "sqliteInt.h" +#include "btreeInt.h" + +/* Omit this entire file if SQLITE_ENABLE_UNLOCK_NOTIFY is not defined. */ +#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY + +/* +** Public interfaces: +** +** sqlite3ConnectionBlocked() +** sqlite3ConnectionUnlocked() +** sqlite3ConnectionClosed() +** sqlite3_unlock_notify() +*/ + +#define assertMutexHeld() \ + assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) ) + +/* +** Head of a linked list of all sqlite3 objects created by this process +** for which either sqlite3.pBlockingConnection or sqlite3.pUnlockConnection +** is not NULL. This variable may only accessed while the STATIC_MASTER +** mutex is held. +*/ +static sqlite3 *SQLITE_WSD sqlite3BlockedList = 0; + +#ifndef NDEBUG +/* +** This function is a complex assert() that verifies the following +** properties of the blocked connections list: +** +** 1) Each entry in the list has a non-NULL value for either +** pUnlockConnection or pBlockingConnection, or both. +** +** 2) All entries in the list that share a common value for +** xUnlockNotify are grouped together. +** +** 3) If the argument db is not NULL, then none of the entries in the +** blocked connections list have pUnlockConnection or pBlockingConnection +** set to db. This is used when closing connection db. +*/ +static void checkListProperties(sqlite3 *db){ + sqlite3 *p; + for(p=sqlite3BlockedList; p; p=p->pNextBlocked){ + int seen = 0; + sqlite3 *p2; + + /* Verify property (1) */ + assert( p->pUnlockConnection || p->pBlockingConnection ); + + /* Verify property (2) */ + for(p2=sqlite3BlockedList; p2!=p; p2=p2->pNextBlocked){ + if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1; + assert( p2->xUnlockNotify==p->xUnlockNotify || !seen ); + assert( db==0 || p->pUnlockConnection!=db ); + assert( db==0 || p->pBlockingConnection!=db ); + } + } +} +#else +# define checkListProperties(x) +#endif + +/* +** Remove connection db from the blocked connections list. If connection +** db is not currently a part of the list, this function is a no-op. +*/ +static void removeFromBlockedList(sqlite3 *db){ + sqlite3 **pp; + assertMutexHeld(); + for(pp=&sqlite3BlockedList; *pp; pp = &(*pp)->pNextBlocked){ + if( *pp==db ){ + *pp = (*pp)->pNextBlocked; + break; + } + } +} + +/* +** Add connection db to the blocked connections list. It is assumed +** that it is not already a part of the list. +*/ +static void addToBlockedList(sqlite3 *db){ + sqlite3 **pp; + assertMutexHeld(); + for( + pp=&sqlite3BlockedList; + *pp && (*pp)->xUnlockNotify!=db->xUnlockNotify; + pp=&(*pp)->pNextBlocked + ); + db->pNextBlocked = *pp; + *pp = db; +} + +/* +** Obtain the STATIC_MASTER mutex. +*/ +static void enterMutex(void){ + sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); + checkListProperties(0); +} + +/* +** Release the STATIC_MASTER mutex. +*/ +static void leaveMutex(void){ + assertMutexHeld(); + checkListProperties(0); + sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); +} + +/* +** Register an unlock-notify callback. +** +** This is called after connection "db" has attempted some operation +** but has received an SQLITE_LOCKED error because another connection +** (call it pOther) in the same process was busy using the same shared +** cache. pOther is found by looking at db->pBlockingConnection. +** +** If there is no blocking connection, the callback is invoked immediately, +** before this routine returns. +** +** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate +** a deadlock. +** +** Otherwise, make arrangements to invoke xNotify when pOther drops +** its locks. +** +** Each call to this routine overrides any prior callbacks registered +** on the same "db". If xNotify==0 then any prior callbacks are immediately +** cancelled. +*/ +int sqlite3_unlock_notify( + sqlite3 *db, + void (*xNotify)(void **, int), + void *pArg +){ + int rc = SQLITE_OK; + + sqlite3_mutex_enter(db->mutex); + enterMutex(); + + if( xNotify==0 ){ + removeFromBlockedList(db); + db->pBlockingConnection = 0; + db->pUnlockConnection = 0; + db->xUnlockNotify = 0; + db->pUnlockArg = 0; + }else if( 0==db->pBlockingConnection ){ + /* The blocking transaction has been concluded. Or there never was a + ** blocking transaction. In either case, invoke the notify callback + ** immediately. + */ + xNotify(&pArg, 1); + }else{ + sqlite3 *p; + + for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){} + if( p ){ + rc = SQLITE_LOCKED; /* Deadlock detected. */ + }else{ + db->pUnlockConnection = db->pBlockingConnection; + db->xUnlockNotify = xNotify; + db->pUnlockArg = pArg; + removeFromBlockedList(db); + addToBlockedList(db); + } + } + + leaveMutex(); + assert( !db->mallocFailed ); + sqlite3Error(db, rc, (rc?"database is deadlocked":0)); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** This function is called while stepping or preparing a statement +** associated with connection db. The operation will return SQLITE_LOCKED +** to the user because it requires a lock that will not be available +** until connection pBlocker concludes its current transaction. +*/ +void sqlite3ConnectionBlocked(sqlite3 *db, sqlite3 *pBlocker){ + enterMutex(); + if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){ + addToBlockedList(db); + } + db->pBlockingConnection = pBlocker; + leaveMutex(); +} + +/* +** This function is called when +** the transaction opened by database db has just finished. Locks held +** by database connection db have been released. +** +** This function loops through each entry in the blocked connections +** list and does the following: +** +** 1) If the sqlite3.pBlockingConnection member of a list entry is +** set to db, then set pBlockingConnection=0. +** +** 2) If the sqlite3.pUnlockConnection member of a list entry is +** set to db, then invoke the configured unlock-notify callback and +** set pUnlockConnection=0. +** +** 3) If the two steps above mean that pBlockingConnection==0 and +** pUnlockConnection==0, remove the entry from the blocked connections +** list. +*/ +void sqlite3ConnectionUnlocked(sqlite3 *db){ + void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */ + int nArg = 0; /* Number of entries in aArg[] */ + sqlite3 **pp; /* Iterator variable */ + void **aArg; /* Arguments to the unlock callback */ + void **aDyn = 0; /* Dynamically allocated space for aArg[] */ + void *aStatic[16]; /* Starter space for aArg[]. No malloc required */ + + aArg = aStatic; + enterMutex(); /* Enter STATIC_MASTER mutex */ + + /* This loop runs once for each entry in the blocked-connections list. */ + for(pp=&sqlite3BlockedList; *pp; /* no-op */ ){ + sqlite3 *p = *pp; + + /* Step 1. */ + if( p->pBlockingConnection==db ){ + p->pBlockingConnection = 0; + } + + /* Step 2. */ + if( p->pUnlockConnection==db ){ + assert( p->xUnlockNotify ); + if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){ + xUnlockNotify(aArg, nArg); + nArg = 0; + } + + sqlite3BeginBenignMalloc(); + assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) ); + assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn ); + if( (!aDyn && nArg==(int)ArraySize(aStatic)) + || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*))) + ){ + /* The aArg[] array needs to grow. */ + void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2); + if( pNew ){ + memcpy(pNew, aArg, nArg*sizeof(void *)); + sqlite3_free(aDyn); + aDyn = aArg = pNew; + }else{ + /* This occurs when the array of context pointers that need to + ** be passed to the unlock-notify callback is larger than the + ** aStatic[] array allocated on the stack and the attempt to + ** allocate a larger array from the heap has failed. + ** + ** This is a difficult situation to handle. Returning an error + ** code to the caller is insufficient, as even if an error code + ** is returned the transaction on connection db will still be + ** closed and the unlock-notify callbacks on blocked connections + ** will go unissued. This might cause the application to wait + ** indefinitely for an unlock-notify callback that will never + ** arrive. + ** + ** Instead, invoke the unlock-notify callback with the context + ** array already accumulated. We can then clear the array and + ** begin accumulating any further context pointers without + ** requiring any dynamic allocation. This is sub-optimal because + ** it means that instead of one callback with a large array of + ** context pointers the application will receive two or more + ** callbacks with smaller arrays of context pointers, which will + ** reduce the applications ability to prioritize multiple + ** connections. But it is the best that can be done under the + ** circumstances. + */ + xUnlockNotify(aArg, nArg); + nArg = 0; + } + } + sqlite3EndBenignMalloc(); + + aArg[nArg++] = p->pUnlockArg; + xUnlockNotify = p->xUnlockNotify; + p->pUnlockConnection = 0; + p->xUnlockNotify = 0; + p->pUnlockArg = 0; + } + + /* Step 3. */ + if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){ + /* Remove connection p from the blocked connections list. */ + *pp = p->pNextBlocked; + p->pNextBlocked = 0; + }else{ + pp = &p->pNextBlocked; + } + } + + if( nArg!=0 ){ + xUnlockNotify(aArg, nArg); + } + sqlite3_free(aDyn); + leaveMutex(); /* Leave STATIC_MASTER mutex */ +} + +/* +** This is called when the database connection passed as an argument is +** being closed. The connection is removed from the blocked list. +*/ +void sqlite3ConnectionClosed(sqlite3 *db){ + sqlite3ConnectionUnlocked(db); + enterMutex(); + removeFromBlockedList(db); + checkListProperties(db); + leaveMutex(); +} +#endif diff --git a/src/os.c b/src/os.c new file mode 100644 index 0000000..0b13c86 --- /dev/null +++ b/src/os.c @@ -0,0 +1,331 @@ +/* +** 2005 November 29 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains OS interface code that is common to all +** architectures. +*/ +#define _SQLITE_OS_C_ 1 +#include "sqliteInt.h" +#undef _SQLITE_OS_C_ + +/* +** The default SQLite sqlite3_vfs implementations do not allocate +** memory (actually, os_unix.c allocates a small amount of memory +** from within OsOpen()), but some third-party implementations may. +** So we test the effects of a malloc() failing and the sqlite3OsXXX() +** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro. +** +** The following functions are instrumented for malloc() failure +** testing: +** +** sqlite3OsOpen() +** sqlite3OsRead() +** sqlite3OsWrite() +** sqlite3OsSync() +** sqlite3OsLock() +** +*/ +#if defined(SQLITE_TEST) +int sqlite3_memdebug_vfs_oom_test = 1; + #define DO_OS_MALLOC_TEST(x) \ + if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3IsMemJournal(x))) { \ + void *pTstAlloc = sqlite3Malloc(10); \ + if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \ + sqlite3_free(pTstAlloc); \ + } +#else + #define DO_OS_MALLOC_TEST(x) +#endif + +/* +** The following routines are convenience wrappers around methods +** of the sqlite3_file object. This is mostly just syntactic sugar. All +** of this would be completely automatic if SQLite were coded using +** C++ instead of plain old C. +*/ +int sqlite3OsClose(sqlite3_file *pId){ + int rc = SQLITE_OK; + if( pId->pMethods ){ + rc = pId->pMethods->xClose(pId); + pId->pMethods = 0; + } + return rc; +} +int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){ + DO_OS_MALLOC_TEST(id); + return id->pMethods->xRead(id, pBuf, amt, offset); +} +int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){ + DO_OS_MALLOC_TEST(id); + return id->pMethods->xWrite(id, pBuf, amt, offset); +} +int sqlite3OsTruncate(sqlite3_file *id, i64 size){ + return id->pMethods->xTruncate(id, size); +} +int sqlite3OsSync(sqlite3_file *id, int flags){ + DO_OS_MALLOC_TEST(id); + return id->pMethods->xSync(id, flags); +} +int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){ + DO_OS_MALLOC_TEST(id); + return id->pMethods->xFileSize(id, pSize); +} +int sqlite3OsLock(sqlite3_file *id, int lockType){ + DO_OS_MALLOC_TEST(id); + return id->pMethods->xLock(id, lockType); +} +int sqlite3OsUnlock(sqlite3_file *id, int lockType){ + return id->pMethods->xUnlock(id, lockType); +} +int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){ + DO_OS_MALLOC_TEST(id); + return id->pMethods->xCheckReservedLock(id, pResOut); +} +int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){ + return id->pMethods->xFileControl(id, op, pArg); +} +int sqlite3OsSectorSize(sqlite3_file *id){ + int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize; + return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE); +} +int sqlite3OsDeviceCharacteristics(sqlite3_file *id){ + return id->pMethods->xDeviceCharacteristics(id); +} +int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){ + return id->pMethods->xShmLock(id, offset, n, flags); +} +void sqlite3OsShmBarrier(sqlite3_file *id){ + id->pMethods->xShmBarrier(id); +} +int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){ + return id->pMethods->xShmUnmap(id, deleteFlag); +} +int sqlite3OsShmMap( + sqlite3_file *id, /* Database file handle */ + int iPage, + int pgsz, + int bExtend, /* True to extend file if necessary */ + void volatile **pp /* OUT: Pointer to mapping */ +){ + return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp); +} + +/* +** The next group of routines are convenience wrappers around the +** VFS methods. +*/ +int sqlite3OsOpen( + sqlite3_vfs *pVfs, + const char *zPath, + sqlite3_file *pFile, + int flags, + int *pFlagsOut +){ + int rc; + DO_OS_MALLOC_TEST(0); + /* 0x87f3f is a mask of SQLITE_OPEN_ flags that are valid to be passed + ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, + ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before + ** reaching the VFS. */ + rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f7f, pFlagsOut); + assert( rc==SQLITE_OK || pFile->pMethods==0 ); + return rc; +} +int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ + return pVfs->xDelete(pVfs, zPath, dirSync); +} +int sqlite3OsAccess( + sqlite3_vfs *pVfs, + const char *zPath, + int flags, + int *pResOut +){ + DO_OS_MALLOC_TEST(0); + return pVfs->xAccess(pVfs, zPath, flags, pResOut); +} +int sqlite3OsFullPathname( + sqlite3_vfs *pVfs, + const char *zPath, + int nPathOut, + char *zPathOut +){ + zPathOut[0] = 0; + return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); +} +#ifndef SQLITE_OMIT_LOAD_EXTENSION +void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){ + return pVfs->xDlOpen(pVfs, zPath); +} +void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ + pVfs->xDlError(pVfs, nByte, zBufOut); +} +void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){ + return pVfs->xDlSym(pVfs, pHdle, zSym); +} +void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){ + pVfs->xDlClose(pVfs, pHandle); +} +#endif /* SQLITE_OMIT_LOAD_EXTENSION */ +int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ + return pVfs->xRandomness(pVfs, nByte, zBufOut); +} +int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){ + return pVfs->xSleep(pVfs, nMicro); +} +int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){ + int rc; + /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64() + ** method to get the current date and time if that method is available + ** (if iVersion is 2 or greater and the function pointer is not NULL) and + ** will fall back to xCurrentTime() if xCurrentTimeInt64() is + ** unavailable. + */ + if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){ + rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut); + }else{ + double r; + rc = pVfs->xCurrentTime(pVfs, &r); + *pTimeOut = (sqlite3_int64)(r*86400000.0); + } + return rc; +} + +int sqlite3OsOpenMalloc( + sqlite3_vfs *pVfs, + const char *zFile, + sqlite3_file **ppFile, + int flags, + int *pOutFlags +){ + int rc = SQLITE_NOMEM; + sqlite3_file *pFile; + pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile); + if( pFile ){ + rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags); + if( rc!=SQLITE_OK ){ + sqlite3_free(pFile); + }else{ + *ppFile = pFile; + } + } + return rc; +} +int sqlite3OsCloseFree(sqlite3_file *pFile){ + int rc = SQLITE_OK; + assert( pFile ); + rc = sqlite3OsClose(pFile); + sqlite3_free(pFile); + return rc; +} + +/* +** This function is a wrapper around the OS specific implementation of +** sqlite3_os_init(). The purpose of the wrapper is to provide the +** ability to simulate a malloc failure, so that the handling of an +** error in sqlite3_os_init() by the upper layers can be tested. +*/ +int sqlite3OsInit(void){ + void *p = sqlite3_malloc(10); + if( p==0 ) return SQLITE_NOMEM; + sqlite3_free(p); + return sqlite3_os_init(); +} + +/* +** The list of all registered VFS implementations. +*/ +static sqlite3_vfs * SQLITE_WSD vfsList = 0; +#define vfsList GLOBAL(sqlite3_vfs *, vfsList) + +/* +** Locate a VFS by name. If no name is given, simply return the +** first VFS on the list. +*/ +sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){ + sqlite3_vfs *pVfs = 0; +#if SQLITE_THREADSAFE + sqlite3_mutex *mutex; +#endif +#ifndef SQLITE_OMIT_AUTOINIT + int rc = sqlite3_initialize(); + if( rc ) return 0; +#endif +#if SQLITE_THREADSAFE + mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); +#endif + sqlite3_mutex_enter(mutex); + for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){ + if( zVfs==0 ) break; + if( strcmp(zVfs, pVfs->zName)==0 ) break; + } + sqlite3_mutex_leave(mutex); + return pVfs; +} + +/* +** Unlink a VFS from the linked list +*/ +static void vfsUnlink(sqlite3_vfs *pVfs){ + assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) ); + if( pVfs==0 ){ + /* No-op */ + }else if( vfsList==pVfs ){ + vfsList = pVfs->pNext; + }else if( vfsList ){ + sqlite3_vfs *p = vfsList; + while( p->pNext && p->pNext!=pVfs ){ + p = p->pNext; + } + if( p->pNext==pVfs ){ + p->pNext = pVfs->pNext; + } + } +} + +/* +** Register a VFS with the system. It is harmless to register the same +** VFS multiple times. The new VFS becomes the default if makeDflt is +** true. +*/ +int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){ + MUTEX_LOGIC(sqlite3_mutex *mutex;) +#ifndef SQLITE_OMIT_AUTOINIT + int rc = sqlite3_initialize(); + if( rc ) return rc; +#endif + MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) + sqlite3_mutex_enter(mutex); + vfsUnlink(pVfs); + if( makeDflt || vfsList==0 ){ + pVfs->pNext = vfsList; + vfsList = pVfs; + }else{ + pVfs->pNext = vfsList->pNext; + vfsList->pNext = pVfs; + } + assert(vfsList); + sqlite3_mutex_leave(mutex); + return SQLITE_OK; +} + +/* +** Unregister a VFS so that it is no longer accessible. +*/ +int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){ +#if SQLITE_THREADSAFE + sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); +#endif + sqlite3_mutex_enter(mutex); + vfsUnlink(pVfs); + sqlite3_mutex_leave(mutex); + return SQLITE_OK; +} diff --git a/src/os.h b/src/os.h new file mode 100644 index 0000000..7f17c20 --- /dev/null +++ b/src/os.h @@ -0,0 +1,279 @@ +/* +** 2001 September 16 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This header file (together with is companion C source-code file +** "os.c") attempt to abstract the underlying operating system so that +** the SQLite library will work on both POSIX and windows systems. +** +** This header file is #include-ed by sqliteInt.h and thus ends up +** being included by every source file. +*/ +#ifndef _SQLITE_OS_H_ +#define _SQLITE_OS_H_ + +/* +** Figure out if we are dealing with Unix, Windows, or some other +** operating system. After the following block of preprocess macros, +** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER +** will defined to either 1 or 0. One of the four will be 1. The other +** three will be 0. +*/ +#if defined(SQLITE_OS_OTHER) +# if SQLITE_OS_OTHER==1 +# undef SQLITE_OS_UNIX +# define SQLITE_OS_UNIX 0 +# undef SQLITE_OS_WIN +# define SQLITE_OS_WIN 0 +# undef SQLITE_OS_OS2 +# define SQLITE_OS_OS2 0 +# else +# undef SQLITE_OS_OTHER +# endif +#endif +#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER) +# define SQLITE_OS_OTHER 0 +# ifndef SQLITE_OS_WIN +# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) +# define SQLITE_OS_WIN 1 +# define SQLITE_OS_UNIX 0 +# define SQLITE_OS_OS2 0 +# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__) +# define SQLITE_OS_WIN 0 +# define SQLITE_OS_UNIX 0 +# define SQLITE_OS_OS2 1 +# else +# define SQLITE_OS_WIN 0 +# define SQLITE_OS_UNIX 1 +# define SQLITE_OS_OS2 0 +# endif +# else +# define SQLITE_OS_UNIX 0 +# define SQLITE_OS_OS2 0 +# endif +#else +# ifndef SQLITE_OS_WIN +# define SQLITE_OS_WIN 0 +# endif +#endif + +/* +** Determine if we are dealing with WindowsCE - which has a much +** reduced API. +*/ +#if defined(_WIN32_WCE) +# define SQLITE_OS_WINCE 1 +#else +# define SQLITE_OS_WINCE 0 +#endif + + +/* +** Define the maximum size of a temporary filename +*/ +#if SQLITE_OS_WIN +# include +# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50) +#elif SQLITE_OS_OS2 +# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY) +# include /* has to be included before os2.h for linking to work */ +# endif +# define INCL_DOSDATETIME +# define INCL_DOSFILEMGR +# define INCL_DOSERRORS +# define INCL_DOSMISC +# define INCL_DOSPROCESS +# define INCL_DOSMODULEMGR +# define INCL_DOSSEMAPHORES +# include +# include +# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP) +#else +# define SQLITE_TEMPNAME_SIZE 200 +#endif + +/* If the SET_FULLSYNC macro is not defined above, then make it +** a no-op +*/ +#ifndef SET_FULLSYNC +# define SET_FULLSYNC(x,y) +#endif + +/* +** The default size of a disk sector +*/ +#ifndef SQLITE_DEFAULT_SECTOR_SIZE +# define SQLITE_DEFAULT_SECTOR_SIZE 512 +#endif + +/* +** Temporary files are named starting with this prefix followed by 16 random +** alphanumeric characters, and no file extension. They are stored in the +** OS's standard temporary file directory, and are deleted prior to exit. +** If sqlite is being embedded in another program, you may wish to change the +** prefix to reflect your program's name, so that if your program exits +** prematurely, old temporary files can be easily identified. This can be done +** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line. +** +** 2006-10-31: The default prefix used to be "sqlite_". But then +** Mcafee started using SQLite in their anti-virus product and it +** started putting files with the "sqlite" name in the c:/temp folder. +** This annoyed many windows users. Those users would then do a +** Google search for "sqlite", find the telephone numbers of the +** developers and call to wake them up at night and complain. +** For this reason, the default name prefix is changed to be "sqlite" +** spelled backwards. So the temp files are still identified, but +** anybody smart enough to figure out the code is also likely smart +** enough to know that calling the developer will not help get rid +** of the file. +*/ +#ifndef SQLITE_TEMP_FILE_PREFIX +# define SQLITE_TEMP_FILE_PREFIX "etilqs_" +#endif + +/* +** The following values may be passed as the second argument to +** sqlite3OsLock(). The various locks exhibit the following semantics: +** +** SHARED: Any number of processes may hold a SHARED lock simultaneously. +** RESERVED: A single process may hold a RESERVED lock on a file at +** any time. Other processes may hold and obtain new SHARED locks. +** PENDING: A single process may hold a PENDING lock on a file at +** any one time. Existing SHARED locks may persist, but no new +** SHARED locks may be obtained by other processes. +** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks. +** +** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a +** process that requests an EXCLUSIVE lock may actually obtain a PENDING +** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to +** sqlite3OsLock(). +*/ +#define NO_LOCK 0 +#define SHARED_LOCK 1 +#define RESERVED_LOCK 2 +#define PENDING_LOCK 3 +#define EXCLUSIVE_LOCK 4 + +/* +** File Locking Notes: (Mostly about windows but also some info for Unix) +** +** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because +** those functions are not available. So we use only LockFile() and +** UnlockFile(). +** +** LockFile() prevents not just writing but also reading by other processes. +** A SHARED_LOCK is obtained by locking a single randomly-chosen +** byte out of a specific range of bytes. The lock byte is obtained at +** random so two separate readers can probably access the file at the +** same time, unless they are unlucky and choose the same lock byte. +** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range. +** There can only be one writer. A RESERVED_LOCK is obtained by locking +** a single byte of the file that is designated as the reserved lock byte. +** A PENDING_LOCK is obtained by locking a designated byte different from +** the RESERVED_LOCK byte. +** +** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available, +** which means we can use reader/writer locks. When reader/writer locks +** are used, the lock is placed on the same range of bytes that is used +** for probabilistic locking in Win95/98/ME. Hence, the locking scheme +** will support two or more Win95 readers or two or more WinNT readers. +** But a single Win95 reader will lock out all WinNT readers and a single +** WinNT reader will lock out all other Win95 readers. +** +** The following #defines specify the range of bytes used for locking. +** SHARED_SIZE is the number of bytes available in the pool from which +** a random byte is selected for a shared lock. The pool of bytes for +** shared locks begins at SHARED_FIRST. +** +** The same locking strategy and +** byte ranges are used for Unix. This leaves open the possiblity of having +** clients on win95, winNT, and unix all talking to the same shared file +** and all locking correctly. To do so would require that samba (or whatever +** tool is being used for file sharing) implements locks correctly between +** windows and unix. I'm guessing that isn't likely to happen, but by +** using the same locking range we are at least open to the possibility. +** +** Locking in windows is manditory. For this reason, we cannot store +** actual data in the bytes used for locking. The pager never allocates +** the pages involved in locking therefore. SHARED_SIZE is selected so +** that all locks will fit on a single page even at the minimum page size. +** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE +** is set high so that we don't have to allocate an unused page except +** for very large databases. But one should test the page skipping logic +** by setting PENDING_BYTE low and running the entire regression suite. +** +** Changing the value of PENDING_BYTE results in a subtly incompatible +** file format. Depending on how it is changed, you might not notice +** the incompatibility right away, even running a full regression test. +** The default location of PENDING_BYTE is the first byte past the +** 1GB boundary. +** +*/ +#ifdef SQLITE_OMIT_WSD +# define PENDING_BYTE (0x40000000) +#else +# define PENDING_BYTE sqlite3PendingByte +#endif +#define RESERVED_BYTE (PENDING_BYTE+1) +#define SHARED_FIRST (PENDING_BYTE+2) +#define SHARED_SIZE 510 + +/* +** Wrapper around OS specific sqlite3_os_init() function. +*/ +int sqlite3OsInit(void); + +/* +** Functions for accessing sqlite3_file methods +*/ +int sqlite3OsClose(sqlite3_file*); +int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset); +int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset); +int sqlite3OsTruncate(sqlite3_file*, i64 size); +int sqlite3OsSync(sqlite3_file*, int); +int sqlite3OsFileSize(sqlite3_file*, i64 *pSize); +int sqlite3OsLock(sqlite3_file*, int); +int sqlite3OsUnlock(sqlite3_file*, int); +int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut); +int sqlite3OsFileControl(sqlite3_file*,int,void*); +#define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0 +int sqlite3OsSectorSize(sqlite3_file *id); +int sqlite3OsDeviceCharacteristics(sqlite3_file *id); +int sqlite3OsShmMap(sqlite3_file *,int,int,int,void volatile **); +int sqlite3OsShmLock(sqlite3_file *id, int, int, int); +void sqlite3OsShmBarrier(sqlite3_file *id); +int sqlite3OsShmUnmap(sqlite3_file *id, int); + +/* +** Functions for accessing sqlite3_vfs methods +*/ +int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *); +int sqlite3OsDelete(sqlite3_vfs *, const char *, int); +int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut); +int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *); +#ifndef SQLITE_OMIT_LOAD_EXTENSION +void *sqlite3OsDlOpen(sqlite3_vfs *, const char *); +void sqlite3OsDlError(sqlite3_vfs *, int, char *); +void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void); +void sqlite3OsDlClose(sqlite3_vfs *, void *); +#endif /* SQLITE_OMIT_LOAD_EXTENSION */ +int sqlite3OsRandomness(sqlite3_vfs *, int, char *); +int sqlite3OsSleep(sqlite3_vfs *, int); +int sqlite3OsCurrentTimeInt64(sqlite3_vfs *, sqlite3_int64*); + +/* +** Convenience functions for opening and closing files using +** sqlite3_malloc() to obtain space for the file-handle structure. +*/ +int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*); +int sqlite3OsCloseFree(sqlite3_file *); + +#endif /* _SQLITE_OS_H_ */ diff --git a/src/os_common.h b/src/os_common.h new file mode 100644 index 0000000..f6c3e7f --- /dev/null +++ b/src/os_common.h @@ -0,0 +1,115 @@ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains macros and a little bit of code that is common to +** all of the platform-specific files (os_*.c) and is #included into those +** files. +** +** This file should be #included by the os_*.c files only. It is not a +** general purpose header file. +*/ +#ifndef _OS_COMMON_H_ +#define _OS_COMMON_H_ + +/* +** At least two bugs have slipped in because we changed the MEMORY_DEBUG +** macro to SQLITE_DEBUG and some older makefiles have not yet made the +** switch. The following code should catch this problem at compile-time. +*/ +#ifdef MEMORY_DEBUG +# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." +#endif + +#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) +# ifndef SQLITE_DEBUG_OS_TRACE +# define SQLITE_DEBUG_OS_TRACE 0 +# endif + int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; +# define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X +#else +# define OSTRACE(X) +#endif + +/* +** Macros for performance tracing. Normally turned off. Only works +** on i486 hardware. +*/ +#ifdef SQLITE_PERFORMANCE_TRACE + +/* +** hwtime.h contains inline assembler code for implementing +** high-performance timing routines. +*/ +#include "hwtime.h" + +static sqlite_uint64 g_start; +static sqlite_uint64 g_elapsed; +#define TIMER_START g_start=sqlite3Hwtime() +#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start +#define TIMER_ELAPSED g_elapsed +#else +#define TIMER_START +#define TIMER_END +#define TIMER_ELAPSED ((sqlite_uint64)0) +#endif + +/* +** If we compile with the SQLITE_TEST macro set, then the following block +** of code will give us the ability to simulate a disk I/O error. This +** is used for testing the I/O recovery logic. +*/ +#ifdef SQLITE_TEST +int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */ +int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */ +int sqlite3_io_error_pending = 0; /* Count down to first I/O error */ +int sqlite3_io_error_persist = 0; /* True if I/O errors persist */ +int sqlite3_io_error_benign = 0; /* True if errors are benign */ +int sqlite3_diskfull_pending = 0; +int sqlite3_diskfull = 0; +#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X) +#define SimulateIOError(CODE) \ + if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \ + || sqlite3_io_error_pending-- == 1 ) \ + { local_ioerr(); CODE; } +static void local_ioerr(){ + IOTRACE(("IOERR\n")); + sqlite3_io_error_hit++; + if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++; +} +#define SimulateDiskfullError(CODE) \ + if( sqlite3_diskfull_pending ){ \ + if( sqlite3_diskfull_pending == 1 ){ \ + local_ioerr(); \ + sqlite3_diskfull = 1; \ + sqlite3_io_error_hit = 1; \ + CODE; \ + }else{ \ + sqlite3_diskfull_pending--; \ + } \ + } +#else +#define SimulateIOErrorBenign(X) +#define SimulateIOError(A) +#define SimulateDiskfullError(A) +#endif + +/* +** When testing, keep a count of the number of open files. +*/ +#ifdef SQLITE_TEST +int sqlite3_open_file_count = 0; +#define OpenCounter(X) sqlite3_open_file_count+=(X) +#else +#define OpenCounter(X) +#endif + +#endif /* !defined(_OS_COMMON_H_) */ diff --git a/src/os_os2.c b/src/os_os2.c new file mode 100644 index 0000000..487ac3c --- /dev/null +++ b/src/os_os2.c @@ -0,0 +1,1924 @@ +/* +** 2006 Feb 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains code that is specific to OS/2. +*/ + +#include "sqliteInt.h" + +#if SQLITE_OS_OS2 + +/* +** A Note About Memory Allocation: +** +** This driver uses malloc()/free() directly rather than going through +** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers +** are designed for use on embedded systems where memory is scarce and +** malloc failures happen frequently. OS/2 does not typically run on +** embedded systems, and when it does the developers normally have bigger +** problems to worry about than running out of memory. So there is not +** a compelling need to use the wrappers. +** +** But there is a good reason to not use the wrappers. If we use the +** wrappers then we will get simulated malloc() failures within this +** driver. And that causes all kinds of problems for our tests. We +** could enhance SQLite to deal with simulated malloc failures within +** the OS driver, but the code to deal with those failure would not +** be exercised on Linux (which does not need to malloc() in the driver) +** and so we would have difficulty writing coverage tests for that +** code. Better to leave the code out, we think. +** +** The point of this discussion is as follows: When creating a new +** OS layer for an embedded system, if you use this file as an example, +** avoid the use of malloc()/free(). Those routines work ok on OS/2 +** desktops but not so well in embedded systems. +*/ + +/* +** Macros used to determine whether or not to use threads. +*/ +#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE +# define SQLITE_OS2_THREADS 1 +#endif + +/* +** Include code that is common to all os_*.c files +*/ +#include "os_common.h" + +/* Forward references */ +typedef struct os2File os2File; /* The file structure */ +typedef struct os2ShmNode os2ShmNode; /* A shared descritive memory node */ +typedef struct os2ShmLink os2ShmLink; /* A connection to shared-memory */ + +/* +** The os2File structure is subclass of sqlite3_file specific for the OS/2 +** protability layer. +*/ +struct os2File { + const sqlite3_io_methods *pMethod; /* Always the first entry */ + HFILE h; /* Handle for accessing the file */ + int flags; /* Flags provided to os2Open() */ + int locktype; /* Type of lock currently held on this file */ + int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ + char *zFullPathCp; /* Full path name of this file */ + os2ShmLink *pShmLink; /* Instance of shared memory on this file */ +}; + +#define LOCK_TIMEOUT 10L /* the default locking timeout */ + +/* +** Missing from some versions of the OS/2 toolkit - +** used to allocate from high memory if possible +*/ +#ifndef OBJ_ANY +# define OBJ_ANY 0x00000400 +#endif + +/***************************************************************************** +** The next group of routines implement the I/O methods specified +** by the sqlite3_io_methods object. +******************************************************************************/ + +/* +** Close a file. +*/ +static int os2Close( sqlite3_file *id ){ + APIRET rc; + os2File *pFile = (os2File*)id; + + assert( id!=0 ); + OSTRACE(( "CLOSE %d (%s)\n", pFile->h, pFile->zFullPathCp )); + + rc = DosClose( pFile->h ); + + if( pFile->flags & SQLITE_OPEN_DELETEONCLOSE ) + DosForceDelete( (PSZ)pFile->zFullPathCp ); + + free( pFile->zFullPathCp ); + pFile->zFullPathCp = NULL; + pFile->locktype = NO_LOCK; + pFile->h = (HFILE)-1; + pFile->flags = 0; + + OpenCounter( -1 ); + return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR; +} + +/* +** Read data from a file into a buffer. Return SQLITE_OK if all +** bytes were read successfully and SQLITE_IOERR if anything goes +** wrong. +*/ +static int os2Read( + sqlite3_file *id, /* File to read from */ + void *pBuf, /* Write content into this buffer */ + int amt, /* Number of bytes to read */ + sqlite3_int64 offset /* Begin reading at this offset */ +){ + ULONG fileLocation = 0L; + ULONG got; + os2File *pFile = (os2File*)id; + assert( id!=0 ); + SimulateIOError( return SQLITE_IOERR_READ ); + OSTRACE(( "READ %d lock=%d\n", pFile->h, pFile->locktype )); + if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){ + return SQLITE_IOERR; + } + if( DosRead( pFile->h, pBuf, amt, &got ) != NO_ERROR ){ + return SQLITE_IOERR_READ; + } + if( got == (ULONG)amt ) + return SQLITE_OK; + else { + /* Unread portions of the input buffer must be zero-filled */ + memset(&((char*)pBuf)[got], 0, amt-got); + return SQLITE_IOERR_SHORT_READ; + } +} + +/* +** Write data from a buffer into a file. Return SQLITE_OK on success +** or some other error code on failure. +*/ +static int os2Write( + sqlite3_file *id, /* File to write into */ + const void *pBuf, /* The bytes to be written */ + int amt, /* Number of bytes to write */ + sqlite3_int64 offset /* Offset into the file to begin writing at */ +){ + ULONG fileLocation = 0L; + APIRET rc = NO_ERROR; + ULONG wrote; + os2File *pFile = (os2File*)id; + assert( id!=0 ); + SimulateIOError( return SQLITE_IOERR_WRITE ); + SimulateDiskfullError( return SQLITE_FULL ); + OSTRACE(( "WRITE %d lock=%d\n", pFile->h, pFile->locktype )); + if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){ + return SQLITE_IOERR; + } + assert( amt>0 ); + while( amt > 0 && + ( rc = DosWrite( pFile->h, (PVOID)pBuf, amt, &wrote ) ) == NO_ERROR && + wrote > 0 + ){ + amt -= wrote; + pBuf = &((char*)pBuf)[wrote]; + } + + return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK; +} + +/* +** Truncate an open file to a specified size +*/ +static int os2Truncate( sqlite3_file *id, i64 nByte ){ + APIRET rc; + os2File *pFile = (os2File*)id; + assert( id!=0 ); + OSTRACE(( "TRUNCATE %d %lld\n", pFile->h, nByte )); + SimulateIOError( return SQLITE_IOERR_TRUNCATE ); + + /* If the user has configured a chunk-size for this file, truncate the + ** file so that it consists of an integer number of chunks (i.e. the + ** actual file size after the operation may be larger than the requested + ** size). + */ + if( pFile->szChunk ){ + nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; + } + + rc = DosSetFileSize( pFile->h, nByte ); + return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR_TRUNCATE; +} + +#ifdef SQLITE_TEST +/* +** Count the number of fullsyncs and normal syncs. This is used to test +** that syncs and fullsyncs are occuring at the right times. +*/ +int sqlite3_sync_count = 0; +int sqlite3_fullsync_count = 0; +#endif + +/* +** Make sure all writes to a particular file are committed to disk. +*/ +static int os2Sync( sqlite3_file *id, int flags ){ + os2File *pFile = (os2File*)id; + OSTRACE(( "SYNC %d lock=%d\n", pFile->h, pFile->locktype )); +#ifdef SQLITE_TEST + if( flags & SQLITE_SYNC_FULL){ + sqlite3_fullsync_count++; + } + sqlite3_sync_count++; +#endif + /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a + ** no-op + */ +#ifdef SQLITE_NO_SYNC + UNUSED_PARAMETER(pFile); + return SQLITE_OK; +#else + return DosResetBuffer( pFile->h ) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR; +#endif +} + +/* +** Determine the current size of a file in bytes +*/ +static int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){ + APIRET rc = NO_ERROR; + FILESTATUS3 fsts3FileInfo; + memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo)); + assert( id!=0 ); + SimulateIOError( return SQLITE_IOERR_FSTAT ); + rc = DosQueryFileInfo( ((os2File*)id)->h, FIL_STANDARD, &fsts3FileInfo, sizeof(FILESTATUS3) ); + if( rc == NO_ERROR ){ + *pSize = fsts3FileInfo.cbFile; + return SQLITE_OK; + }else{ + return SQLITE_IOERR_FSTAT; + } +} + +/* +** Acquire a reader lock. +*/ +static int getReadLock( os2File *pFile ){ + FILELOCK LockArea, + UnlockArea; + APIRET res; + memset(&LockArea, 0, sizeof(LockArea)); + memset(&UnlockArea, 0, sizeof(UnlockArea)); + LockArea.lOffset = SHARED_FIRST; + LockArea.lRange = SHARED_SIZE; + UnlockArea.lOffset = 0L; + UnlockArea.lRange = 0L; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L ); + OSTRACE(( "GETREADLOCK %d res=%d\n", pFile->h, res )); + return res; +} + +/* +** Undo a readlock +*/ +static int unlockReadLock( os2File *id ){ + FILELOCK LockArea, + UnlockArea; + APIRET res; + memset(&LockArea, 0, sizeof(LockArea)); + memset(&UnlockArea, 0, sizeof(UnlockArea)); + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = SHARED_FIRST; + UnlockArea.lRange = SHARED_SIZE; + res = DosSetFileLocks( id->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L ); + OSTRACE(( "UNLOCK-READLOCK file handle=%d res=%d?\n", id->h, res )); + return res; +} + +/* +** Lock the file with the lock specified by parameter locktype - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. The os2Unlock() routine +** erases all locks at once and returns us immediately to locking level 0. +** It is not possible to lower the locking level one step at a time. You +** must go straight to locking level 0. +*/ +static int os2Lock( sqlite3_file *id, int locktype ){ + int rc = SQLITE_OK; /* Return code from subroutines */ + APIRET res = NO_ERROR; /* Result of an OS/2 lock call */ + int newLocktype; /* Set pFile->locktype to this value before exiting */ + int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */ + FILELOCK LockArea, + UnlockArea; + os2File *pFile = (os2File*)id; + memset(&LockArea, 0, sizeof(LockArea)); + memset(&UnlockArea, 0, sizeof(UnlockArea)); + assert( pFile!=0 ); + OSTRACE(( "LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype )); + + /* If there is already a lock of this type or more restrictive on the + ** os2File, do nothing. Don't use the end_lock: exit path, as + ** sqlite3_mutex_enter() hasn't been called yet. + */ + if( pFile->locktype>=locktype ){ + OSTRACE(( "LOCK %d %d ok (already held)\n", pFile->h, locktype )); + return SQLITE_OK; + } + + /* Make sure the locking sequence is correct + */ + assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); + assert( locktype!=PENDING_LOCK ); + assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); + + /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or + ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of + ** the PENDING_LOCK byte is temporary. + */ + newLocktype = pFile->locktype; + if( pFile->locktype==NO_LOCK + || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK) + ){ + LockArea.lOffset = PENDING_BYTE; + LockArea.lRange = 1L; + UnlockArea.lOffset = 0L; + UnlockArea.lRange = 0L; + + /* wait longer than LOCK_TIMEOUT here not to have to try multiple times */ + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 100L, 0L ); + if( res == NO_ERROR ){ + gotPendingLock = 1; + OSTRACE(( "LOCK %d pending lock boolean set. res=%d\n", pFile->h, res )); + } + } + + /* Acquire a shared lock + */ + if( locktype==SHARED_LOCK && res == NO_ERROR ){ + assert( pFile->locktype==NO_LOCK ); + res = getReadLock(pFile); + if( res == NO_ERROR ){ + newLocktype = SHARED_LOCK; + } + OSTRACE(( "LOCK %d acquire shared lock. res=%d\n", pFile->h, res )); + } + + /* Acquire a RESERVED lock + */ + if( locktype==RESERVED_LOCK && res == NO_ERROR ){ + assert( pFile->locktype==SHARED_LOCK ); + LockArea.lOffset = RESERVED_BYTE; + LockArea.lRange = 1L; + UnlockArea.lOffset = 0L; + UnlockArea.lRange = 0L; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + if( res == NO_ERROR ){ + newLocktype = RESERVED_LOCK; + } + OSTRACE(( "LOCK %d acquire reserved lock. res=%d\n", pFile->h, res )); + } + + /* Acquire a PENDING lock + */ + if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){ + newLocktype = PENDING_LOCK; + gotPendingLock = 0; + OSTRACE(( "LOCK %d acquire pending lock. pending lock boolean unset.\n", + pFile->h )); + } + + /* Acquire an EXCLUSIVE lock + */ + if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){ + assert( pFile->locktype>=SHARED_LOCK ); + res = unlockReadLock(pFile); + OSTRACE(( "unreadlock = %d\n", res )); + LockArea.lOffset = SHARED_FIRST; + LockArea.lRange = SHARED_SIZE; + UnlockArea.lOffset = 0L; + UnlockArea.lRange = 0L; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + if( res == NO_ERROR ){ + newLocktype = EXCLUSIVE_LOCK; + }else{ + OSTRACE(( "OS/2 error-code = %d\n", res )); + getReadLock(pFile); + } + OSTRACE(( "LOCK %d acquire exclusive lock. res=%d\n", pFile->h, res )); + } + + /* If we are holding a PENDING lock that ought to be released, then + ** release it now. + */ + if( gotPendingLock && locktype==SHARED_LOCK ){ + int r; + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = PENDING_BYTE; + UnlockArea.lRange = 1L; + r = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE(( "LOCK %d unlocking pending/is shared. r=%d\n", pFile->h, r )); + } + + /* Update the state of the lock has held in the file descriptor then + ** return the appropriate result code. + */ + if( res == NO_ERROR ){ + rc = SQLITE_OK; + }else{ + OSTRACE(( "LOCK FAILED %d trying for %d but got %d\n", pFile->h, + locktype, newLocktype )); + rc = SQLITE_BUSY; + } + pFile->locktype = newLocktype; + OSTRACE(( "LOCK %d now %d\n", pFile->h, pFile->locktype )); + return rc; +} + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, return +** non-zero, otherwise zero. +*/ +static int os2CheckReservedLock( sqlite3_file *id, int *pOut ){ + int r = 0; + os2File *pFile = (os2File*)id; + assert( pFile!=0 ); + if( pFile->locktype>=RESERVED_LOCK ){ + r = 1; + OSTRACE(( "TEST WR-LOCK %d %d (local)\n", pFile->h, r )); + }else{ + FILELOCK LockArea, + UnlockArea; + APIRET rc = NO_ERROR; + memset(&LockArea, 0, sizeof(LockArea)); + memset(&UnlockArea, 0, sizeof(UnlockArea)); + LockArea.lOffset = RESERVED_BYTE; + LockArea.lRange = 1L; + UnlockArea.lOffset = 0L; + UnlockArea.lRange = 0L; + rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE(( "TEST WR-LOCK %d lock reserved byte rc=%d\n", pFile->h, rc )); + if( rc == NO_ERROR ){ + APIRET rcu = NO_ERROR; /* return code for unlocking */ + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = RESERVED_BYTE; + UnlockArea.lRange = 1L; + rcu = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE(( "TEST WR-LOCK %d unlock reserved byte r=%d\n", pFile->h, rcu )); + } + r = !(rc == NO_ERROR); + OSTRACE(( "TEST WR-LOCK %d %d (remote)\n", pFile->h, r )); + } + *pOut = r; + return SQLITE_OK; +} + +/* +** Lower the locking level on file descriptor id to locktype. locktype +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +** +** It is not possible for this routine to fail if the second argument +** is NO_LOCK. If the second argument is SHARED_LOCK then this routine +** might return SQLITE_IOERR; +*/ +static int os2Unlock( sqlite3_file *id, int locktype ){ + int type; + os2File *pFile = (os2File*)id; + APIRET rc = SQLITE_OK; + APIRET res = NO_ERROR; + FILELOCK LockArea, + UnlockArea; + memset(&LockArea, 0, sizeof(LockArea)); + memset(&UnlockArea, 0, sizeof(UnlockArea)); + assert( pFile!=0 ); + assert( locktype<=SHARED_LOCK ); + OSTRACE(( "UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype )); + type = pFile->locktype; + if( type>=EXCLUSIVE_LOCK ){ + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = SHARED_FIRST; + UnlockArea.lRange = SHARED_SIZE; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE(( "UNLOCK %d exclusive lock res=%d\n", pFile->h, res )); + if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){ + /* This should never happen. We should always be able to + ** reacquire the read lock */ + OSTRACE(( "UNLOCK %d to %d getReadLock() failed\n", pFile->h, locktype )); + rc = SQLITE_IOERR_UNLOCK; + } + } + if( type>=RESERVED_LOCK ){ + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = RESERVED_BYTE; + UnlockArea.lRange = 1L; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE(( "UNLOCK %d reserved res=%d\n", pFile->h, res )); + } + if( locktype==NO_LOCK && type>=SHARED_LOCK ){ + res = unlockReadLock(pFile); + OSTRACE(( "UNLOCK %d is %d want %d res=%d\n", + pFile->h, type, locktype, res )); + } + if( type>=PENDING_LOCK ){ + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = PENDING_BYTE; + UnlockArea.lRange = 1L; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE(( "UNLOCK %d pending res=%d\n", pFile->h, res )); + } + pFile->locktype = locktype; + OSTRACE(( "UNLOCK %d now %d\n", pFile->h, pFile->locktype )); + return rc; +} + +/* +** Control and query of the open file handle. +*/ +static int os2FileControl(sqlite3_file *id, int op, void *pArg){ + switch( op ){ + case SQLITE_FCNTL_LOCKSTATE: { + *(int*)pArg = ((os2File*)id)->locktype; + OSTRACE(( "FCNTL_LOCKSTATE %d lock=%d\n", + ((os2File*)id)->h, ((os2File*)id)->locktype )); + return SQLITE_OK; + } + case SQLITE_FCNTL_CHUNK_SIZE: { + ((os2File*)id)->szChunk = *(int*)pArg; + return SQLITE_OK; + } + case SQLITE_FCNTL_SIZE_HINT: { + sqlite3_int64 sz = *(sqlite3_int64*)pArg; + SimulateIOErrorBenign(1); + os2Truncate(id, sz); + SimulateIOErrorBenign(0); + return SQLITE_OK; + } + case SQLITE_FCNTL_SYNC_OMITTED: { + return SQLITE_OK; + } + } + return SQLITE_NOTFOUND; +} + +/* +** Return the sector size in bytes of the underlying block device for +** the specified file. This is almost always 512 bytes, but may be +** larger for some devices. +** +** SQLite code assumes this function cannot fail. It also assumes that +** if two files are created in the same file-system directory (i.e. +** a database and its journal file) that the sector size will be the +** same for both. +*/ +static int os2SectorSize(sqlite3_file *id){ + UNUSED_PARAMETER(id); + return SQLITE_DEFAULT_SECTOR_SIZE; +} + +/* +** Return a vector of device characteristics. +*/ +static int os2DeviceCharacteristics(sqlite3_file *id){ + UNUSED_PARAMETER(id); + return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN; +} + + +/* +** Character set conversion objects used by conversion routines. +*/ +static UconvObject ucUtf8 = NULL; /* convert between UTF-8 and UCS-2 */ +static UconvObject uclCp = NULL; /* convert between local codepage and UCS-2 */ + +/* +** Helper function to initialize the conversion objects from and to UTF-8. +*/ +static void initUconvObjects( void ){ + if( UniCreateUconvObject( UTF_8, &ucUtf8 ) != ULS_SUCCESS ) + ucUtf8 = NULL; + if ( UniCreateUconvObject( (UniChar *)L"@path=yes", &uclCp ) != ULS_SUCCESS ) + uclCp = NULL; +} + +/* +** Helper function to free the conversion objects from and to UTF-8. +*/ +static void freeUconvObjects( void ){ + if ( ucUtf8 ) + UniFreeUconvObject( ucUtf8 ); + if ( uclCp ) + UniFreeUconvObject( uclCp ); + ucUtf8 = NULL; + uclCp = NULL; +} + +/* +** Helper function to convert UTF-8 filenames to local OS/2 codepage. +** The two-step process: first convert the incoming UTF-8 string +** into UCS-2 and then from UCS-2 to the current codepage. +** The returned char pointer has to be freed. +*/ +static char *convertUtf8PathToCp( const char *in ){ + UniChar tempPath[CCHMAXPATH]; + char *out = (char *)calloc( CCHMAXPATH, 1 ); + + if( !out ) + return NULL; + + if( !ucUtf8 || !uclCp ) + initUconvObjects(); + + /* determine string for the conversion of UTF-8 which is CP1208 */ + if( UniStrToUcs( ucUtf8, tempPath, (char *)in, CCHMAXPATH ) != ULS_SUCCESS ) + return out; /* if conversion fails, return the empty string */ + + /* conversion for current codepage which can be used for paths */ + UniStrFromUcs( uclCp, out, tempPath, CCHMAXPATH ); + + return out; +} + +/* +** Helper function to convert filenames from local codepage to UTF-8. +** The two-step process: first convert the incoming codepage-specific +** string into UCS-2 and then from UCS-2 to the codepage of UTF-8. +** The returned char pointer has to be freed. +** +** This function is non-static to be able to use this in shell.c and +** similar applications that take command line arguments. +*/ +char *convertCpPathToUtf8( const char *in ){ + UniChar tempPath[CCHMAXPATH]; + char *out = (char *)calloc( CCHMAXPATH, 1 ); + + if( !out ) + return NULL; + + if( !ucUtf8 || !uclCp ) + initUconvObjects(); + + /* conversion for current codepage which can be used for paths */ + if( UniStrToUcs( uclCp, tempPath, (char *)in, CCHMAXPATH ) != ULS_SUCCESS ) + return out; /* if conversion fails, return the empty string */ + + /* determine string for the conversion of UTF-8 which is CP1208 */ + UniStrFromUcs( ucUtf8, out, tempPath, CCHMAXPATH ); + + return out; +} + + +#ifndef SQLITE_OMIT_WAL + +/* +** Use main database file for interprocess locking. If un-defined +** a separate file is created for this purpose. The file will be +** used only to set file locks. There will be no data written to it. +*/ +#define SQLITE_OS2_NO_WAL_LOCK_FILE + +#if 0 +static void _ERR_TRACE( const char *fmt, ... ) { + va_list ap; + va_start(ap, fmt); + vfprintf(stderr, fmt, ap); + fflush(stderr); +} +#define ERR_TRACE(rc, msg) \ + if( (rc) != SQLITE_OK ) _ERR_TRACE msg; +#else +#define ERR_TRACE(rc, msg) +#endif + +/* +** Helper functions to obtain and relinquish the global mutex. The +** global mutex is used to protect os2ShmNodeList. +** +** Function os2ShmMutexHeld() is used to assert() that the global mutex +** is held when required. This function is only used as part of assert() +** statements. e.g. +** +** os2ShmEnterMutex() +** assert( os2ShmMutexHeld() ); +** os2ShmLeaveMutex() +*/ +static void os2ShmEnterMutex(void){ + sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); +} +static void os2ShmLeaveMutex(void){ + sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); +} +#ifdef SQLITE_DEBUG +static int os2ShmMutexHeld(void) { + return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); +} +int GetCurrentProcessId(void) { + PPIB pib; + DosGetInfoBlocks(NULL, &pib); + return (int)pib->pib_ulpid; +} +#endif + +/* +** Object used to represent a the shared memory area for a single log file. +** When multiple threads all reference the same log-summary, each thread has +** its own os2File object, but they all point to a single instance of this +** object. In other words, each log-summary is opened only once per process. +** +** os2ShmMutexHeld() must be true when creating or destroying +** this object or while reading or writing the following fields: +** +** nRef +** pNext +** +** The following fields are read-only after the object is created: +** +** szRegion +** hLockFile +** shmBaseName +** +** Either os2ShmNode.mutex must be held or os2ShmNode.nRef==0 and +** os2ShmMutexHeld() is true when reading or writing any other field +** in this structure. +** +*/ +struct os2ShmNode { + sqlite3_mutex *mutex; /* Mutex to access this object */ + os2ShmNode *pNext; /* Next in list of all os2ShmNode objects */ + + int szRegion; /* Size of shared-memory regions */ + + int nRegion; /* Size of array apRegion */ + void **apRegion; /* Array of pointers to shared-memory regions */ + + int nRef; /* Number of os2ShmLink objects pointing to this */ + os2ShmLink *pFirst; /* First os2ShmLink object pointing to this */ + + HFILE hLockFile; /* File used for inter-process memory locking */ + char shmBaseName[1]; /* Name of the memory object !!! must last !!! */ +}; + + +/* +** Structure used internally by this VFS to record the state of an +** open shared memory connection. +** +** The following fields are initialized when this object is created and +** are read-only thereafter: +** +** os2Shm.pShmNode +** os2Shm.id +** +** All other fields are read/write. The os2Shm.pShmNode->mutex must be held +** while accessing any read/write fields. +*/ +struct os2ShmLink { + os2ShmNode *pShmNode; /* The underlying os2ShmNode object */ + os2ShmLink *pNext; /* Next os2Shm with the same os2ShmNode */ + u32 sharedMask; /* Mask of shared locks held */ + u32 exclMask; /* Mask of exclusive locks held */ +#ifdef SQLITE_DEBUG + u8 id; /* Id of this connection with its os2ShmNode */ +#endif +}; + + +/* +** A global list of all os2ShmNode objects. +** +** The os2ShmMutexHeld() must be true while reading or writing this list. +*/ +static os2ShmNode *os2ShmNodeList = NULL; + +/* +** Constants used for locking +*/ +#ifdef SQLITE_OS2_NO_WAL_LOCK_FILE +#define OS2_SHM_BASE (PENDING_BYTE + 0x10000) /* first lock byte */ +#else +#define OS2_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ +#endif + +#define OS2_SHM_DMS (OS2_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ + +/* +** Apply advisory locks for all n bytes beginning at ofst. +*/ +#define _SHM_UNLCK 1 /* no lock */ +#define _SHM_RDLCK 2 /* shared lock, no wait */ +#define _SHM_WRLCK 3 /* exlusive lock, no wait */ +#define _SHM_WRLCK_WAIT 4 /* exclusive lock, wait */ +static int os2ShmSystemLock( + os2ShmNode *pNode, /* Apply locks to this open shared-memory segment */ + int lockType, /* _SHM_UNLCK, _SHM_RDLCK, _SHM_WRLCK or _SHM_WRLCK_WAIT */ + int ofst, /* Offset to first byte to be locked/unlocked */ + int nByte /* Number of bytes to lock or unlock */ +){ + APIRET rc; + FILELOCK area; + ULONG mode, timeout; + + /* Access to the os2ShmNode object is serialized by the caller */ + assert( sqlite3_mutex_held(pNode->mutex) || pNode->nRef==0 ); + + mode = 1; /* shared lock */ + timeout = 0; /* no wait */ + area.lOffset = ofst; + area.lRange = nByte; + + switch( lockType ) { + case _SHM_WRLCK_WAIT: + timeout = (ULONG)-1; /* wait forever */ + case _SHM_WRLCK: + mode = 0; /* exclusive lock */ + case _SHM_RDLCK: + rc = DosSetFileLocks(pNode->hLockFile, + NULL, &area, timeout, mode); + break; + /* case _SHM_UNLCK: */ + default: + rc = DosSetFileLocks(pNode->hLockFile, + &area, NULL, 0, 0); + break; + } + + OSTRACE(("SHM-LOCK %d %s %s 0x%08lx\n", + pNode->hLockFile, + rc==SQLITE_OK ? "ok" : "failed", + lockType==_SHM_UNLCK ? "Unlock" : "Lock", + rc)); + + ERR_TRACE(rc, ("os2ShmSystemLock: %d %s\n", rc, pNode->shmBaseName)) + + return ( rc == 0 ) ? SQLITE_OK : SQLITE_BUSY; +} + +/* +** Find an os2ShmNode in global list or allocate a new one, if not found. +** +** This is not a VFS shared-memory method; it is a utility function called +** by VFS shared-memory methods. +*/ +static int os2OpenSharedMemory( os2File *fd, int szRegion ) { + os2ShmLink *pLink; + os2ShmNode *pNode; + int cbShmName, rc = SQLITE_OK; + char shmName[CCHMAXPATH + 30]; +#ifndef SQLITE_OS2_NO_WAL_LOCK_FILE + ULONG action; +#endif + + /* We need some additional space at the end to append the region number */ + cbShmName = sprintf(shmName, "\\SHAREMEM\\%s", fd->zFullPathCp ); + if( cbShmName >= CCHMAXPATH-8 ) + return SQLITE_IOERR_SHMOPEN; + + /* Replace colon in file name to form a valid shared memory name */ + shmName[10+1] = '!'; + + /* Allocate link object (we free it later in case of failure) */ + pLink = sqlite3_malloc( sizeof(*pLink) ); + if( !pLink ) + return SQLITE_NOMEM; + + /* Access node list */ + os2ShmEnterMutex(); + + /* Find node by it's shared memory base name */ + for( pNode = os2ShmNodeList; + pNode && stricmp(shmName, pNode->shmBaseName) != 0; + pNode = pNode->pNext ) ; + + /* Not found: allocate a new node */ + if( !pNode ) { + pNode = sqlite3_malloc( sizeof(*pNode) + cbShmName ); + if( pNode ) { + memset(pNode, 0, sizeof(*pNode) ); + pNode->szRegion = szRegion; + pNode->hLockFile = (HFILE)-1; + strcpy(pNode->shmBaseName, shmName); + +#ifdef SQLITE_OS2_NO_WAL_LOCK_FILE + if( DosDupHandle(fd->h, &pNode->hLockFile) != 0 ) { +#else + sprintf(shmName, "%s-lck", fd->zFullPathCp); + if( DosOpen((PSZ)shmName, &pNode->hLockFile, &action, 0, FILE_NORMAL, + OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW, + OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE | + OPEN_FLAGS_NOINHERIT | OPEN_FLAGS_FAIL_ON_ERROR, + NULL) != 0 ) { +#endif + sqlite3_free(pNode); + rc = SQLITE_IOERR; + } else { + pNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); + if( !pNode->mutex ) { + sqlite3_free(pNode); + rc = SQLITE_NOMEM; + } + } + } else { + rc = SQLITE_NOMEM; + } + + if( rc == SQLITE_OK ) { + pNode->pNext = os2ShmNodeList; + os2ShmNodeList = pNode; + } else { + pNode = NULL; + } + } else if( pNode->szRegion != szRegion ) { + rc = SQLITE_IOERR_SHMSIZE; + pNode = NULL; + } + + if( pNode ) { + sqlite3_mutex_enter(pNode->mutex); + + memset(pLink, 0, sizeof(*pLink)); + + pLink->pShmNode = pNode; + pLink->pNext = pNode->pFirst; + pNode->pFirst = pLink; + pNode->nRef++; + + fd->pShmLink = pLink; + + sqlite3_mutex_leave(pNode->mutex); + + } else { + /* Error occured. Free our link object. */ + sqlite3_free(pLink); + } + + os2ShmLeaveMutex(); + + ERR_TRACE(rc, ("os2OpenSharedMemory: %d %s\n", rc, fd->zFullPathCp)) + + return rc; +} + +/* +** Purge the os2ShmNodeList list of all entries with nRef==0. +** +** This is not a VFS shared-memory method; it is a utility function called +** by VFS shared-memory methods. +*/ +static void os2PurgeShmNodes( int deleteFlag ) { + os2ShmNode *pNode; + os2ShmNode **ppNode; + + os2ShmEnterMutex(); + + ppNode = &os2ShmNodeList; + + while( *ppNode ) { + pNode = *ppNode; + + if( pNode->nRef == 0 ) { + *ppNode = pNode->pNext; + + if( pNode->apRegion ) { + /* Prevent other processes from resizing the shared memory */ + os2ShmSystemLock(pNode, _SHM_WRLCK_WAIT, OS2_SHM_DMS, 1); + + while( pNode->nRegion-- ) { +#ifdef SQLITE_DEBUG + int rc = +#endif + DosFreeMem(pNode->apRegion[pNode->nRegion]); + + OSTRACE(("SHM-PURGE pid-%d unmap region=%d %s\n", + (int)GetCurrentProcessId(), pNode->nRegion, + rc == 0 ? "ok" : "failed")); + } + + /* Allow other processes to resize the shared memory */ + os2ShmSystemLock(pNode, _SHM_UNLCK, OS2_SHM_DMS, 1); + + sqlite3_free(pNode->apRegion); + } + + DosClose(pNode->hLockFile); + +#ifndef SQLITE_OS2_NO_WAL_LOCK_FILE + if( deleteFlag ) { + char fileName[CCHMAXPATH]; + /* Skip "\\SHAREMEM\\" */ + sprintf(fileName, "%s-lck", pNode->shmBaseName + 10); + /* restore colon */ + fileName[1] = ':'; + + DosForceDelete(fileName); + } +#endif + + sqlite3_mutex_free(pNode->mutex); + + sqlite3_free(pNode); + + } else { + ppNode = &pNode->pNext; + } + } + + os2ShmLeaveMutex(); +} + +/* +** This function is called to obtain a pointer to region iRegion of the +** shared-memory associated with the database file id. Shared-memory regions +** are numbered starting from zero. Each shared-memory region is szRegion +** bytes in size. +** +** If an error occurs, an error code is returned and *pp is set to NULL. +** +** Otherwise, if the bExtend parameter is 0 and the requested shared-memory +** region has not been allocated (by any client, including one running in a +** separate process), then *pp is set to NULL and SQLITE_OK returned. If +** bExtend is non-zero and the requested shared-memory region has not yet +** been allocated, it is allocated by this function. +** +** If the shared-memory region has already been allocated or is allocated by +** this call as described above, then it is mapped into this processes +** address space (if it is not already), *pp is set to point to the mapped +** memory and SQLITE_OK returned. +*/ +static int os2ShmMap( + sqlite3_file *id, /* Handle open on database file */ + int iRegion, /* Region to retrieve */ + int szRegion, /* Size of regions */ + int bExtend, /* True to extend block if necessary */ + void volatile **pp /* OUT: Mapped memory */ +){ + PVOID pvTemp; + void **apRegion; + os2ShmNode *pNode; + int n, rc = SQLITE_OK; + char shmName[CCHMAXPATH]; + os2File *pFile = (os2File*)id; + + *pp = NULL; + + if( !pFile->pShmLink ) + rc = os2OpenSharedMemory( pFile, szRegion ); + + if( rc == SQLITE_OK ) { + pNode = pFile->pShmLink->pShmNode ; + + sqlite3_mutex_enter(pNode->mutex); + + assert( szRegion==pNode->szRegion ); + + /* Unmapped region ? */ + if( iRegion >= pNode->nRegion ) { + /* Prevent other processes from resizing the shared memory */ + os2ShmSystemLock(pNode, _SHM_WRLCK_WAIT, OS2_SHM_DMS, 1); + + apRegion = sqlite3_realloc( + pNode->apRegion, (iRegion + 1) * sizeof(apRegion[0])); + + if( apRegion ) { + pNode->apRegion = apRegion; + + while( pNode->nRegion <= iRegion ) { + sprintf(shmName, "%s-%u", + pNode->shmBaseName, pNode->nRegion); + + if( DosGetNamedSharedMem(&pvTemp, (PSZ)shmName, + PAG_READ | PAG_WRITE) != NO_ERROR ) { + if( !bExtend ) + break; + + if( DosAllocSharedMem(&pvTemp, (PSZ)shmName, szRegion, + PAG_READ | PAG_WRITE | PAG_COMMIT | OBJ_ANY) != NO_ERROR && + DosAllocSharedMem(&pvTemp, (PSZ)shmName, szRegion, + PAG_READ | PAG_WRITE | PAG_COMMIT) != NO_ERROR ) { + rc = SQLITE_NOMEM; + break; + } + } + + apRegion[pNode->nRegion++] = pvTemp; + } + + /* zero out remaining entries */ + for( n = pNode->nRegion; n <= iRegion; n++ ) + pNode->apRegion[n] = NULL; + + /* Return this region (maybe zero) */ + *pp = pNode->apRegion[iRegion]; + } else { + rc = SQLITE_NOMEM; + } + + /* Allow other processes to resize the shared memory */ + os2ShmSystemLock(pNode, _SHM_UNLCK, OS2_SHM_DMS, 1); + + } else { + /* Region has been mapped previously */ + *pp = pNode->apRegion[iRegion]; + } + + sqlite3_mutex_leave(pNode->mutex); + } + + ERR_TRACE(rc, ("os2ShmMap: %s iRgn = %d, szRgn = %d, bExt = %d : %d\n", + pFile->zFullPathCp, iRegion, szRegion, bExtend, rc)) + + return rc; +} + +/* +** Close a connection to shared-memory. Delete the underlying +** storage if deleteFlag is true. +** +** If there is no shared memory associated with the connection then this +** routine is a harmless no-op. +*/ +static int os2ShmUnmap( + sqlite3_file *id, /* The underlying database file */ + int deleteFlag /* Delete shared-memory if true */ +){ + os2File *pFile = (os2File*)id; + os2ShmLink *pLink = pFile->pShmLink; + + if( pLink ) { + int nRef = -1; + os2ShmLink **ppLink; + os2ShmNode *pNode = pLink->pShmNode; + + sqlite3_mutex_enter(pNode->mutex); + + for( ppLink = &pNode->pFirst; + *ppLink && *ppLink != pLink; + ppLink = &(*ppLink)->pNext ) ; + + assert(*ppLink); + + if( *ppLink ) { + *ppLink = pLink->pNext; + nRef = --pNode->nRef; + } else { + ERR_TRACE(1, ("os2ShmUnmap: link not found ! %s\n", + pNode->shmBaseName)) + } + + pFile->pShmLink = NULL; + sqlite3_free(pLink); + + sqlite3_mutex_leave(pNode->mutex); + + if( nRef == 0 ) + os2PurgeShmNodes( deleteFlag ); + } + + return SQLITE_OK; +} + +/* +** Change the lock state for a shared-memory segment. +** +** Note that the relationship between SHAREd and EXCLUSIVE locks is a little +** different here than in posix. In xShmLock(), one can go from unlocked +** to shared and back or from unlocked to exclusive and back. But one may +** not go from shared to exclusive or from exclusive to shared. +*/ +static int os2ShmLock( + sqlite3_file *id, /* Database file holding the shared memory */ + int ofst, /* First lock to acquire or release */ + int n, /* Number of locks to acquire or release */ + int flags /* What to do with the lock */ +){ + u32 mask; /* Mask of locks to take or release */ + int rc = SQLITE_OK; /* Result code */ + os2File *pFile = (os2File*)id; + os2ShmLink *p = pFile->pShmLink; /* The shared memory being locked */ + os2ShmLink *pX; /* For looping over all siblings */ + os2ShmNode *pShmNode = p->pShmNode; /* Our node */ + + assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); + assert( n>=1 ); + assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) + || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) + || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) + || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); + assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); + + mask = (u32)((1U<<(ofst+n)) - (1U<1 || mask==(1<mutex); + + if( flags & SQLITE_SHM_UNLOCK ){ + u32 allMask = 0; /* Mask of locks held by siblings */ + + /* See if any siblings hold this same lock */ + for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ + if( pX==p ) continue; + assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); + allMask |= pX->sharedMask; + } + + /* Unlock the system-level locks */ + if( (mask & allMask)==0 ){ + rc = os2ShmSystemLock(pShmNode, _SHM_UNLCK, ofst+OS2_SHM_BASE, n); + }else{ + rc = SQLITE_OK; + } + + /* Undo the local locks */ + if( rc==SQLITE_OK ){ + p->exclMask &= ~mask; + p->sharedMask &= ~mask; + } + }else if( flags & SQLITE_SHM_SHARED ){ + u32 allShared = 0; /* Union of locks held by connections other than "p" */ + + /* Find out which shared locks are already held by sibling connections. + ** If any sibling already holds an exclusive lock, go ahead and return + ** SQLITE_BUSY. + */ + for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ + if( (pX->exclMask & mask)!=0 ){ + rc = SQLITE_BUSY; + break; + } + allShared |= pX->sharedMask; + } + + /* Get shared locks at the system level, if necessary */ + if( rc==SQLITE_OK ){ + if( (allShared & mask)==0 ){ + rc = os2ShmSystemLock(pShmNode, _SHM_RDLCK, ofst+OS2_SHM_BASE, n); + }else{ + rc = SQLITE_OK; + } + } + + /* Get the local shared locks */ + if( rc==SQLITE_OK ){ + p->sharedMask |= mask; + } + }else{ + /* Make sure no sibling connections hold locks that will block this + ** lock. If any do, return SQLITE_BUSY right away. + */ + for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ + if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ + rc = SQLITE_BUSY; + break; + } + } + + /* Get the exclusive locks at the system level. Then if successful + ** also mark the local connection as being locked. + */ + if( rc==SQLITE_OK ){ + rc = os2ShmSystemLock(pShmNode, _SHM_WRLCK, ofst+OS2_SHM_BASE, n); + if( rc==SQLITE_OK ){ + assert( (p->sharedMask & mask)==0 ); + p->exclMask |= mask; + } + } + } + + sqlite3_mutex_leave(pShmNode->mutex); + + OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x %s\n", + p->id, (int)GetCurrentProcessId(), p->sharedMask, p->exclMask, + rc ? "failed" : "ok")); + + ERR_TRACE(rc, ("os2ShmLock: ofst = %d, n = %d, flags = 0x%x -> %d \n", + ofst, n, flags, rc)) + + return rc; +} + +/* +** Implement a memory barrier or memory fence on shared memory. +** +** All loads and stores begun before the barrier must complete before +** any load or store begun after the barrier. +*/ +static void os2ShmBarrier( + sqlite3_file *id /* Database file holding the shared memory */ +){ + UNUSED_PARAMETER(id); + os2ShmEnterMutex(); + os2ShmLeaveMutex(); +} + +#else +# define os2ShmMap 0 +# define os2ShmLock 0 +# define os2ShmBarrier 0 +# define os2ShmUnmap 0 +#endif /* #ifndef SQLITE_OMIT_WAL */ + + +/* +** This vector defines all the methods that can operate on an +** sqlite3_file for os2. +*/ +static const sqlite3_io_methods os2IoMethod = { + 2, /* iVersion */ + os2Close, /* xClose */ + os2Read, /* xRead */ + os2Write, /* xWrite */ + os2Truncate, /* xTruncate */ + os2Sync, /* xSync */ + os2FileSize, /* xFileSize */ + os2Lock, /* xLock */ + os2Unlock, /* xUnlock */ + os2CheckReservedLock, /* xCheckReservedLock */ + os2FileControl, /* xFileControl */ + os2SectorSize, /* xSectorSize */ + os2DeviceCharacteristics, /* xDeviceCharacteristics */ + os2ShmMap, /* xShmMap */ + os2ShmLock, /* xShmLock */ + os2ShmBarrier, /* xShmBarrier */ + os2ShmUnmap /* xShmUnmap */ +}; + + +/*************************************************************************** +** Here ends the I/O methods that form the sqlite3_io_methods object. +** +** The next block of code implements the VFS methods. +****************************************************************************/ + +/* +** Create a temporary file name in zBuf. zBuf must be big enough to +** hold at pVfs->mxPathname characters. +*/ +static int getTempname(int nBuf, char *zBuf ){ + static const char zChars[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789"; + int i, j; + PSZ zTempPathCp; + char zTempPath[CCHMAXPATH]; + ULONG ulDriveNum, ulDriveMap; + + /* It's odd to simulate an io-error here, but really this is just + ** using the io-error infrastructure to test that SQLite handles this + ** function failing. + */ + SimulateIOError( return SQLITE_IOERR ); + + if( sqlite3_temp_directory ) { + sqlite3_snprintf(CCHMAXPATH-30, zTempPath, "%s", sqlite3_temp_directory); + } else if( DosScanEnv( (PSZ)"TEMP", &zTempPathCp ) == NO_ERROR || + DosScanEnv( (PSZ)"TMP", &zTempPathCp ) == NO_ERROR || + DosScanEnv( (PSZ)"TMPDIR", &zTempPathCp ) == NO_ERROR ) { + char *zTempPathUTF = convertCpPathToUtf8( (char *)zTempPathCp ); + sqlite3_snprintf(CCHMAXPATH-30, zTempPath, "%s", zTempPathUTF); + free( zTempPathUTF ); + } else if( DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap ) == NO_ERROR ) { + zTempPath[0] = (char)('A' + ulDriveNum - 1); + zTempPath[1] = ':'; + zTempPath[2] = '\0'; + } else { + zTempPath[0] = '\0'; + } + + /* Strip off a trailing slashes or backslashes, otherwise we would get * + * multiple (back)slashes which causes DosOpen() to fail. * + * Trailing spaces are not allowed, either. */ + j = sqlite3Strlen30(zTempPath); + while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/' || + zTempPath[j-1] == ' ' ) ){ + j--; + } + zTempPath[j] = '\0'; + + /* We use 20 bytes to randomize the name */ + sqlite3_snprintf(nBuf-22, zBuf, + "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath); + j = sqlite3Strlen30(zBuf); + sqlite3_randomness( 20, &zBuf[j] ); + for( i = 0; i < 20; i++, j++ ){ + zBuf[j] = zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; + } + zBuf[j] = 0; + + OSTRACE(( "TEMP FILENAME: %s\n", zBuf )); + return SQLITE_OK; +} + + +/* +** Turn a relative pathname into a full pathname. Write the full +** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname +** bytes in size. +*/ +static int os2FullPathname( + sqlite3_vfs *pVfs, /* Pointer to vfs object */ + const char *zRelative, /* Possibly relative input path */ + int nFull, /* Size of output buffer in bytes */ + char *zFull /* Output buffer */ +){ + char *zRelativeCp = convertUtf8PathToCp( zRelative ); + char zFullCp[CCHMAXPATH] = "\0"; + char *zFullUTF; + APIRET rc = DosQueryPathInfo( (PSZ)zRelativeCp, FIL_QUERYFULLNAME, + zFullCp, CCHMAXPATH ); + free( zRelativeCp ); + zFullUTF = convertCpPathToUtf8( zFullCp ); + sqlite3_snprintf( nFull, zFull, zFullUTF ); + free( zFullUTF ); + return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR; +} + + +/* +** Open a file. +*/ +static int os2Open( + sqlite3_vfs *pVfs, /* Not used */ + const char *zName, /* Name of the file (UTF-8) */ + sqlite3_file *id, /* Write the SQLite file handle here */ + int flags, /* Open mode flags */ + int *pOutFlags /* Status return flags */ +){ + HFILE h; + ULONG ulOpenFlags = 0; + ULONG ulOpenMode = 0; + ULONG ulAction = 0; + ULONG rc; + os2File *pFile = (os2File*)id; + const char *zUtf8Name = zName; + char *zNameCp; + char zTmpname[CCHMAXPATH]; + + int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); + int isCreate = (flags & SQLITE_OPEN_CREATE); + int isReadWrite = (flags & SQLITE_OPEN_READWRITE); +#ifndef NDEBUG + int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); + int isReadonly = (flags & SQLITE_OPEN_READONLY); + int eType = (flags & 0xFFFFFF00); + int isOpenJournal = (isCreate && ( + eType==SQLITE_OPEN_MASTER_JOURNAL + || eType==SQLITE_OPEN_MAIN_JOURNAL + || eType==SQLITE_OPEN_WAL + )); +#endif + + UNUSED_PARAMETER(pVfs); + assert( id!=0 ); + + /* Check the following statements are true: + ** + ** (a) Exactly one of the READWRITE and READONLY flags must be set, and + ** (b) if CREATE is set, then READWRITE must also be set, and + ** (c) if EXCLUSIVE is set, then CREATE must also be set. + ** (d) if DELETEONCLOSE is set, then CREATE must also be set. + */ + assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); + assert(isCreate==0 || isReadWrite); + assert(isExclusive==0 || isCreate); + assert(isDelete==0 || isCreate); + + /* The main DB, main journal, WAL file and master journal are never + ** automatically deleted. Nor are they ever temporary files. */ + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); + + /* Assert that the upper layer has set one of the "file-type" flags. */ + assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB + || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL + || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL + || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL + ); + + memset( pFile, 0, sizeof(*pFile) ); + pFile->h = (HFILE)-1; + + /* If the second argument to this function is NULL, generate a + ** temporary file name to use + */ + if( !zUtf8Name ){ + assert(isDelete && !isOpenJournal); + rc = getTempname(CCHMAXPATH, zTmpname); + if( rc!=SQLITE_OK ){ + return rc; + } + zUtf8Name = zTmpname; + } + + if( isReadWrite ){ + ulOpenMode |= OPEN_ACCESS_READWRITE; + }else{ + ulOpenMode |= OPEN_ACCESS_READONLY; + } + + /* Open in random access mode for possibly better speed. Allow full + ** sharing because file locks will provide exclusive access when needed. + ** The handle should not be inherited by child processes and we don't + ** want popups from the critical error handler. + */ + ulOpenMode |= OPEN_FLAGS_RANDOM | OPEN_SHARE_DENYNONE | + OPEN_FLAGS_NOINHERIT | OPEN_FLAGS_FAIL_ON_ERROR; + + /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is + ** created. SQLite doesn't use it to indicate "exclusive access" + ** as it is usually understood. + */ + if( isExclusive ){ + /* Creates a new file, only if it does not already exist. */ + /* If the file exists, it fails. */ + ulOpenFlags |= OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_FAIL_IF_EXISTS; + }else if( isCreate ){ + /* Open existing file, or create if it doesn't exist */ + ulOpenFlags |= OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS; + }else{ + /* Opens a file, only if it exists. */ + ulOpenFlags |= OPEN_ACTION_FAIL_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS; + } + + zNameCp = convertUtf8PathToCp( zUtf8Name ); + rc = DosOpen( (PSZ)zNameCp, + &h, + &ulAction, + 0L, + FILE_NORMAL, + ulOpenFlags, + ulOpenMode, + (PEAOP2)NULL ); + free( zNameCp ); + + if( rc != NO_ERROR ){ + OSTRACE(( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulFlags=%#lx, ulMode=%#lx\n", + rc, zUtf8Name, ulAction, ulOpenFlags, ulOpenMode )); + + if( isReadWrite ){ + return os2Open( pVfs, zName, id, + ((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), + pOutFlags ); + }else{ + return SQLITE_CANTOPEN; + } + } + + if( pOutFlags ){ + *pOutFlags = isReadWrite ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY; + } + + os2FullPathname( pVfs, zUtf8Name, sizeof( zTmpname ), zTmpname ); + pFile->zFullPathCp = convertUtf8PathToCp( zTmpname ); + pFile->pMethod = &os2IoMethod; + pFile->flags = flags; + pFile->h = h; + + OpenCounter(+1); + OSTRACE(( "OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags )); + return SQLITE_OK; +} + +/* +** Delete the named file. +*/ +static int os2Delete( + sqlite3_vfs *pVfs, /* Not used on os2 */ + const char *zFilename, /* Name of file to delete */ + int syncDir /* Not used on os2 */ +){ + APIRET rc; + char *zFilenameCp; + SimulateIOError( return SQLITE_IOERR_DELETE ); + zFilenameCp = convertUtf8PathToCp( zFilename ); + rc = DosDelete( (PSZ)zFilenameCp ); + free( zFilenameCp ); + OSTRACE(( "DELETE \"%s\"\n", zFilename )); + return (rc == NO_ERROR || + rc == ERROR_FILE_NOT_FOUND || + rc == ERROR_PATH_NOT_FOUND ) ? SQLITE_OK : SQLITE_IOERR_DELETE; +} + +/* +** Check the existance and status of a file. +*/ +static int os2Access( + sqlite3_vfs *pVfs, /* Not used on os2 */ + const char *zFilename, /* Name of file to check */ + int flags, /* Type of test to make on this file */ + int *pOut /* Write results here */ +){ + APIRET rc; + FILESTATUS3 fsts3ConfigInfo; + char *zFilenameCp; + + UNUSED_PARAMETER(pVfs); + SimulateIOError( return SQLITE_IOERR_ACCESS; ); + + zFilenameCp = convertUtf8PathToCp( zFilename ); + rc = DosQueryPathInfo( (PSZ)zFilenameCp, FIL_STANDARD, + &fsts3ConfigInfo, sizeof(FILESTATUS3) ); + free( zFilenameCp ); + OSTRACE(( "ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n", + fsts3ConfigInfo.attrFile, flags, rc )); + + switch( flags ){ + case SQLITE_ACCESS_EXISTS: + /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file + ** as if it does not exist. + */ + if( fsts3ConfigInfo.cbFile == 0 ) + rc = ERROR_FILE_NOT_FOUND; + break; + case SQLITE_ACCESS_READ: + break; + case SQLITE_ACCESS_READWRITE: + if( fsts3ConfigInfo.attrFile & FILE_READONLY ) + rc = ERROR_ACCESS_DENIED; + break; + default: + rc = ERROR_FILE_NOT_FOUND; + assert( !"Invalid flags argument" ); + } + + *pOut = (rc == NO_ERROR); + OSTRACE(( "ACCESS %s flags %d: rc=%d\n", zFilename, flags, *pOut )); + + return SQLITE_OK; +} + + +#ifndef SQLITE_OMIT_LOAD_EXTENSION +/* +** Interfaces for opening a shared library, finding entry points +** within the shared library, and closing the shared library. +*/ +/* +** Interfaces for opening a shared library, finding entry points +** within the shared library, and closing the shared library. +*/ +static void *os2DlOpen(sqlite3_vfs *pVfs, const char *zFilename){ + HMODULE hmod; + APIRET rc; + char *zFilenameCp = convertUtf8PathToCp(zFilename); + rc = DosLoadModule(NULL, 0, (PSZ)zFilenameCp, &hmod); + free(zFilenameCp); + return rc != NO_ERROR ? 0 : (void*)hmod; +} +/* +** A no-op since the error code is returned on the DosLoadModule call. +** os2Dlopen returns zero if DosLoadModule is not successful. +*/ +static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ +/* no-op */ +} +static void (*os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol))(void){ + PFN pfn; + APIRET rc; + rc = DosQueryProcAddr((HMODULE)pHandle, 0L, (PSZ)zSymbol, &pfn); + if( rc != NO_ERROR ){ + /* if the symbol itself was not found, search again for the same + * symbol with an extra underscore, that might be needed depending + * on the calling convention */ + char _zSymbol[256] = "_"; + strncat(_zSymbol, zSymbol, 254); + rc = DosQueryProcAddr((HMODULE)pHandle, 0L, (PSZ)_zSymbol, &pfn); + } + return rc != NO_ERROR ? 0 : (void(*)(void))pfn; +} +static void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){ + DosFreeModule((HMODULE)pHandle); +} +#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ + #define os2DlOpen 0 + #define os2DlError 0 + #define os2DlSym 0 + #define os2DlClose 0 +#endif + + +/* +** Write up to nBuf bytes of randomness into zBuf. +*/ +static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){ + int n = 0; +#if defined(SQLITE_TEST) + n = nBuf; + memset(zBuf, 0, nBuf); +#else + int i; + PPIB ppib; + PTIB ptib; + DATETIME dt; + static unsigned c = 0; + /* Ordered by variation probability */ + static ULONG svIdx[6] = { QSV_MS_COUNT, QSV_TIME_LOW, + QSV_MAXPRMEM, QSV_MAXSHMEM, + QSV_TOTAVAILMEM, QSV_TOTRESMEM }; + + /* 8 bytes; timezone and weekday don't increase the randomness much */ + if( (int)sizeof(dt)-3 <= nBuf - n ){ + c += 0x0100; + DosGetDateTime(&dt); + dt.year = (USHORT)((dt.year - 1900) | c); + memcpy(&zBuf[n], &dt, sizeof(dt)-3); + n += sizeof(dt)-3; + } + + /* 4 bytes; PIDs and TIDs are 16 bit internally, so combine them */ + if( (int)sizeof(ULONG) <= nBuf - n ){ + DosGetInfoBlocks(&ptib, &ppib); + *(PULONG)&zBuf[n] = MAKELONG(ppib->pib_ulpid, + ptib->tib_ptib2->tib2_ultid); + n += sizeof(ULONG); + } + + /* Up to 6 * 4 bytes; variables depend on the system state */ + for( i = 0; i < 6 && (int)sizeof(ULONG) <= nBuf - n; i++ ){ + DosQuerySysInfo(svIdx[i], svIdx[i], + (PULONG)&zBuf[n], sizeof(ULONG)); + n += sizeof(ULONG); + } +#endif + + return n; +} + +/* +** Sleep for a little while. Return the amount of time slept. +** The argument is the number of microseconds we want to sleep. +** The return value is the number of microseconds of sleep actually +** requested from the underlying operating system, a number which +** might be greater than or equal to the argument, but not less +** than the argument. +*/ +static int os2Sleep( sqlite3_vfs *pVfs, int microsec ){ + DosSleep( (microsec/1000) ); + return microsec; +} + +/* +** The following variable, if set to a non-zero value, becomes the result +** returned from sqlite3OsCurrentTime(). This is used for testing. +*/ +#ifdef SQLITE_TEST +int sqlite3_current_time = 0; +#endif + +/* +** Find the current time (in Universal Coordinated Time). Write into *piNow +** the current time and date as a Julian Day number times 86_400_000. In +** other words, write into *piNow the number of milliseconds since the Julian +** epoch of noon in Greenwich on November 24, 4714 B.C according to the +** proleptic Gregorian calendar. +** +** On success, return 0. Return 1 if the time and date cannot be found. +*/ +static int os2CurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){ +#ifdef SQLITE_TEST + static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; +#endif + int year, month, datepart, timepart; + + DATETIME dt; + DosGetDateTime( &dt ); + + year = dt.year; + month = dt.month; + + /* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html + ** http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c + ** Calculate the Julian days + */ + datepart = (int)dt.day - 32076 + + 1461*(year + 4800 + (month - 14)/12)/4 + + 367*(month - 2 - (month - 14)/12*12)/12 - + 3*((year + 4900 + (month - 14)/12)/100)/4; + + /* Time in milliseconds, hours to noon added */ + timepart = 12*3600*1000 + dt.hundredths*10 + dt.seconds*1000 + + ((int)dt.minutes + dt.timezone)*60*1000 + dt.hours*3600*1000; + + *piNow = (sqlite3_int64)datepart*86400*1000 + timepart; + +#ifdef SQLITE_TEST + if( sqlite3_current_time ){ + *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; + } +#endif + + UNUSED_PARAMETER(pVfs); + return 0; +} + +/* +** Find the current time (in Universal Coordinated Time). Write the +** current time and date as a Julian Day number into *prNow and +** return 0. Return 1 if the time and date cannot be found. +*/ +static int os2CurrentTime( sqlite3_vfs *pVfs, double *prNow ){ + int rc; + sqlite3_int64 i; + rc = os2CurrentTimeInt64(pVfs, &i); + if( !rc ){ + *prNow = i/86400000.0; + } + return rc; +} + +/* +** The idea is that this function works like a combination of +** GetLastError() and FormatMessage() on windows (or errno and +** strerror_r() on unix). After an error is returned by an OS +** function, SQLite calls this function with zBuf pointing to +** a buffer of nBuf bytes. The OS layer should populate the +** buffer with a nul-terminated UTF-8 encoded error message +** describing the last IO error to have occurred within the calling +** thread. +** +** If the error message is too large for the supplied buffer, +** it should be truncated. The return value of xGetLastError +** is zero if the error message fits in the buffer, or non-zero +** otherwise (if the message was truncated). If non-zero is returned, +** then it is not necessary to include the nul-terminator character +** in the output buffer. +** +** Not supplying an error message will have no adverse effect +** on SQLite. It is fine to have an implementation that never +** returns an error message: +** +** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ +** assert(zBuf[0]=='\0'); +** return 0; +** } +** +** However if an error message is supplied, it will be incorporated +** by sqlite into the error message available to the user using +** sqlite3_errmsg(), possibly making IO errors easier to debug. +*/ +static int os2GetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ + assert(zBuf[0]=='\0'); + return 0; +} + +/* +** Initialize and deinitialize the operating system interface. +*/ +int sqlite3_os_init(void){ + static sqlite3_vfs os2Vfs = { + 3, /* iVersion */ + sizeof(os2File), /* szOsFile */ + CCHMAXPATH, /* mxPathname */ + 0, /* pNext */ + "os2", /* zName */ + 0, /* pAppData */ + + os2Open, /* xOpen */ + os2Delete, /* xDelete */ + os2Access, /* xAccess */ + os2FullPathname, /* xFullPathname */ + os2DlOpen, /* xDlOpen */ + os2DlError, /* xDlError */ + os2DlSym, /* xDlSym */ + os2DlClose, /* xDlClose */ + os2Randomness, /* xRandomness */ + os2Sleep, /* xSleep */ + os2CurrentTime, /* xCurrentTime */ + os2GetLastError, /* xGetLastError */ + os2CurrentTimeInt64, /* xCurrentTimeInt64 */ + 0, /* xSetSystemCall */ + 0, /* xGetSystemCall */ + 0 /* xNextSystemCall */ + }; + sqlite3_vfs_register(&os2Vfs, 1); + initUconvObjects(); +/* sqlite3OSTrace = 1; */ + return SQLITE_OK; +} +int sqlite3_os_end(void){ + freeUconvObjects(); + return SQLITE_OK; +} + +#endif /* SQLITE_OS_OS2 */ diff --git a/src/os_unix.c b/src/os_unix.c new file mode 100644 index 0000000..0ea6daf --- /dev/null +++ b/src/os_unix.c @@ -0,0 +1,6774 @@ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains the VFS implementation for unix-like operating systems +** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. +** +** There are actually several different VFS implementations in this file. +** The differences are in the way that file locking is done. The default +** implementation uses Posix Advisory Locks. Alternative implementations +** use flock(), dot-files, various proprietary locking schemas, or simply +** skip locking all together. +** +** This source file is organized into divisions where the logic for various +** subfunctions is contained within the appropriate division. PLEASE +** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed +** in the correct division and should be clearly labeled. +** +** The layout of divisions is as follows: +** +** * General-purpose declarations and utility functions. +** * Unique file ID logic used by VxWorks. +** * Various locking primitive implementations (all except proxy locking): +** + for Posix Advisory Locks +** + for no-op locks +** + for dot-file locks +** + for flock() locking +** + for named semaphore locks (VxWorks only) +** + for AFP filesystem locks (MacOSX only) +** * sqlite3_file methods not associated with locking. +** * Definitions of sqlite3_io_methods objects for all locking +** methods plus "finder" functions for each locking method. +** * sqlite3_vfs method implementations. +** * Locking primitives for the proxy uber-locking-method. (MacOSX only) +** * Definitions of sqlite3_vfs objects for all locking methods +** plus implementations of sqlite3_os_init() and sqlite3_os_end(). +*/ +#include "sqliteInt.h" +#if SQLITE_OS_UNIX /* This file is used on unix only */ + +/* +** There are various methods for file locking used for concurrency +** control: +** +** 1. POSIX locking (the default), +** 2. No locking, +** 3. Dot-file locking, +** 4. flock() locking, +** 5. AFP locking (OSX only), +** 6. Named POSIX semaphores (VXWorks only), +** 7. proxy locking. (OSX only) +** +** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE +** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic +** selection of the appropriate locking style based on the filesystem +** where the database is located. +*/ +#if !defined(SQLITE_ENABLE_LOCKING_STYLE) +# if defined(__APPLE__) +# define SQLITE_ENABLE_LOCKING_STYLE 1 +# else +# define SQLITE_ENABLE_LOCKING_STYLE 0 +# endif +#endif + +/* +** Define the OS_VXWORKS pre-processor macro to 1 if building on +** vxworks, or 0 otherwise. +*/ +#ifndef OS_VXWORKS +# if defined(__RTP__) || defined(_WRS_KERNEL) +# define OS_VXWORKS 1 +# else +# define OS_VXWORKS 0 +# endif +#endif + +/* +** These #defines should enable >2GB file support on Posix if the +** underlying operating system supports it. If the OS lacks +** large file support, these should be no-ops. +** +** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch +** on the compiler command line. This is necessary if you are compiling +** on a recent machine (ex: RedHat 7.2) but you want your code to work +** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 +** without this option, LFS is enable. But LFS does not exist in the kernel +** in RedHat 6.0, so the code won't work. Hence, for maximum binary +** portability you should omit LFS. +** +** The previous paragraph was written in 2005. (This paragraph is written +** on 2008-11-28.) These days, all Linux kernels support large files, so +** you should probably leave LFS enabled. But some embedded platforms might +** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. +*/ +#ifndef SQLITE_DISABLE_LFS +# define _LARGE_FILE 1 +# ifndef _FILE_OFFSET_BITS +# define _FILE_OFFSET_BITS 64 +# endif +# define _LARGEFILE_SOURCE 1 +#endif + +/* +** standard include files. +*/ +#include +#include +#include +#include +#include +#include +#include +#ifndef SQLITE_OMIT_WAL +#include +#endif + +#if SQLITE_ENABLE_LOCKING_STYLE +# include +# if OS_VXWORKS +# include +# include +# else +# include +# include +# endif +#endif /* SQLITE_ENABLE_LOCKING_STYLE */ + +#if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) +# include +#endif + +#ifdef HAVE_UTIME +# include +#endif + +/* +** Allowed values of unixFile.fsFlags +*/ +#define SQLITE_FSFLAGS_IS_MSDOS 0x1 + +/* +** If we are to be thread-safe, include the pthreads header and define +** the SQLITE_UNIX_THREADS macro. +*/ +#if SQLITE_THREADSAFE +# include +# define SQLITE_UNIX_THREADS 1 +#endif + +/* +** Default permissions when creating a new file +*/ +#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS +# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 +#endif + +/* + ** Default permissions when creating auto proxy dir + */ +#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS +# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 +#endif + +/* +** Maximum supported path-length. +*/ +#define MAX_PATHNAME 512 + +/* +** Only set the lastErrno if the error code is a real error and not +** a normal expected return code of SQLITE_BUSY or SQLITE_OK +*/ +#define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) + +/* Forward references */ +typedef struct unixShm unixShm; /* Connection shared memory */ +typedef struct unixShmNode unixShmNode; /* Shared memory instance */ +typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ +typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ + +/* +** Sometimes, after a file handle is closed by SQLite, the file descriptor +** cannot be closed immediately. In these cases, instances of the following +** structure are used to store the file descriptor while waiting for an +** opportunity to either close or reuse it. +*/ +struct UnixUnusedFd { + int fd; /* File descriptor to close */ + int flags; /* Flags this file descriptor was opened with */ + UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ +}; + +/* +** The unixFile structure is subclass of sqlite3_file specific to the unix +** VFS implementations. +*/ +typedef struct unixFile unixFile; +struct unixFile { + sqlite3_io_methods const *pMethod; /* Always the first entry */ + unixInodeInfo *pInode; /* Info about locks on this inode */ + int h; /* The file descriptor */ + unsigned char eFileLock; /* The type of lock held on this fd */ + unsigned char ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ + int lastErrno; /* The unix errno from last I/O error */ + void *lockingContext; /* Locking style specific state */ + UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ + const char *zPath; /* Name of the file */ + unixShm *pShm; /* Shared memory segment information */ + int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ +#if SQLITE_ENABLE_LOCKING_STYLE + int openFlags; /* The flags specified at open() */ +#endif +#if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) + unsigned fsFlags; /* cached details from statfs() */ +#endif +#if OS_VXWORKS + int isDelete; /* Delete on close if true */ + struct vxworksFileId *pId; /* Unique file ID */ +#endif +#ifndef NDEBUG + /* The next group of variables are used to track whether or not the + ** transaction counter in bytes 24-27 of database files are updated + ** whenever any part of the database changes. An assertion fault will + ** occur if a file is updated without also updating the transaction + ** counter. This test is made to avoid new problems similar to the + ** one described by ticket #3584. + */ + unsigned char transCntrChng; /* True if the transaction counter changed */ + unsigned char dbUpdate; /* True if any part of database file changed */ + unsigned char inNormalWrite; /* True if in a normal write operation */ +#endif +#ifdef SQLITE_TEST + /* In test mode, increase the size of this structure a bit so that + ** it is larger than the struct CrashFile defined in test6.c. + */ + char aPadding[32]; +#endif +}; + +/* +** Allowed values for the unixFile.ctrlFlags bitmask: +*/ +#define UNIXFILE_EXCL 0x01 /* Connections from one process only */ +#define UNIXFILE_RDONLY 0x02 /* Connection is read only */ +#define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ +#ifndef SQLITE_DISABLE_DIRSYNC +# define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ +#else +# define UNIXFILE_DIRSYNC 0x00 +#endif + +/* +** Include code that is common to all os_*.c files +*/ +#include "os_common.h" + +/* +** Define various macros that are missing from some systems. +*/ +#ifndef O_LARGEFILE +# define O_LARGEFILE 0 +#endif +#ifdef SQLITE_DISABLE_LFS +# undef O_LARGEFILE +# define O_LARGEFILE 0 +#endif +#ifndef O_NOFOLLOW +# define O_NOFOLLOW 0 +#endif +#ifndef O_BINARY +# define O_BINARY 0 +#endif + +/* +** The threadid macro resolves to the thread-id or to 0. Used for +** testing and debugging only. +*/ +#if SQLITE_THREADSAFE +#define threadid pthread_self() +#else +#define threadid 0 +#endif + +/* +** Different Unix systems declare open() in different ways. Same use +** open(const char*,int,mode_t). Others use open(const char*,int,...). +** The difference is important when using a pointer to the function. +** +** The safest way to deal with the problem is to always use this wrapper +** which always has the same well-defined interface. +*/ +static int posixOpen(const char *zFile, int flags, int mode){ + return open(zFile, flags, mode); +} + +/* Forward reference */ +static int openDirectory(const char*, int*); + +/* +** Many system calls are accessed through pointer-to-functions so that +** they may be overridden at runtime to facilitate fault injection during +** testing and sandboxing. The following array holds the names and pointers +** to all overrideable system calls. +*/ +static struct unix_syscall { + const char *zName; /* Name of the sytem call */ + sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ + sqlite3_syscall_ptr pDefault; /* Default value */ +} aSyscall[] = { + { "open", (sqlite3_syscall_ptr)posixOpen, 0 }, +#define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent) + + { "close", (sqlite3_syscall_ptr)close, 0 }, +#define osClose ((int(*)(int))aSyscall[1].pCurrent) + + { "access", (sqlite3_syscall_ptr)access, 0 }, +#define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) + + { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, +#define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) + + { "stat", (sqlite3_syscall_ptr)stat, 0 }, +#define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) + +/* +** The DJGPP compiler environment looks mostly like Unix, but it +** lacks the fcntl() system call. So redefine fcntl() to be something +** that always succeeds. This means that locking does not occur under +** DJGPP. But it is DOS - what did you expect? +*/ +#ifdef __DJGPP__ + { "fstat", 0, 0 }, +#define osFstat(a,b,c) 0 +#else + { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, +#define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) +#endif + + { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, +#define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) + + { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, +#define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) + + { "read", (sqlite3_syscall_ptr)read, 0 }, +#define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) + +#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE + { "pread", (sqlite3_syscall_ptr)pread, 0 }, +#else + { "pread", (sqlite3_syscall_ptr)0, 0 }, +#endif +#define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) + +#if defined(USE_PREAD64) + { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, +#else + { "pread64", (sqlite3_syscall_ptr)0, 0 }, +#endif +#define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent) + + { "write", (sqlite3_syscall_ptr)write, 0 }, +#define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) + +#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE + { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, +#else + { "pwrite", (sqlite3_syscall_ptr)0, 0 }, +#endif +#define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ + aSyscall[12].pCurrent) + +#if defined(USE_PREAD64) + { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, +#else + { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, +#endif +#define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\ + aSyscall[13].pCurrent) + +#if SQLITE_ENABLE_LOCKING_STYLE + { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, +#else + { "fchmod", (sqlite3_syscall_ptr)0, 0 }, +#endif +#define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) + +#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE + { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, +#else + { "fallocate", (sqlite3_syscall_ptr)0, 0 }, +#endif +#define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) + + { "unlink", (sqlite3_syscall_ptr)unlink, 0 }, +#define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent) + + { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 }, +#define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent) + +}; /* End of the overrideable system calls */ + +/* +** This is the xSetSystemCall() method of sqlite3_vfs for all of the +** "unix" VFSes. Return SQLITE_OK opon successfully updating the +** system call pointer, or SQLITE_NOTFOUND if there is no configurable +** system call named zName. +*/ +static int unixSetSystemCall( + sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ + const char *zName, /* Name of system call to override */ + sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ +){ + unsigned int i; + int rc = SQLITE_NOTFOUND; + + UNUSED_PARAMETER(pNotUsed); + if( zName==0 ){ + /* If no zName is given, restore all system calls to their default + ** settings and return NULL + */ + rc = SQLITE_OK; + for(i=0; il_type==F_RDLCK ){ + zType = "RDLCK"; + }else if( p->l_type==F_WRLCK ){ + zType = "WRLCK"; + }else if( p->l_type==F_UNLCK ){ + zType = "UNLCK"; + }else{ + assert( 0 ); + } + assert( p->l_whence==SEEK_SET ); + s = osFcntl(fd, op, p); + savedErrno = errno; + sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", + threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, + (int)p->l_pid, s); + if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ + struct flock l2; + l2 = *p; + osFcntl(fd, F_GETLK, &l2); + if( l2.l_type==F_RDLCK ){ + zType = "RDLCK"; + }else if( l2.l_type==F_WRLCK ){ + zType = "WRLCK"; + }else if( l2.l_type==F_UNLCK ){ + zType = "UNLCK"; + }else{ + assert( 0 ); + } + sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", + zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); + } + errno = savedErrno; + return s; +} +#undef osFcntl +#define osFcntl lockTrace +#endif /* SQLITE_LOCK_TRACE */ + +/* +** Retry ftruncate() calls that fail due to EINTR +*/ +static int robust_ftruncate(int h, sqlite3_int64 sz){ + int rc; + do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); + return rc; +} + +/* +** This routine translates a standard POSIX errno code into something +** useful to the clients of the sqlite3 functions. Specifically, it is +** intended to translate a variety of "try again" errors into SQLITE_BUSY +** and a variety of "please close the file descriptor NOW" errors into +** SQLITE_IOERR +** +** Errors during initialization of locks, or file system support for locks, +** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. +*/ +static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { + switch (posixError) { +#if 0 + /* At one point this code was not commented out. In theory, this branch + ** should never be hit, as this function should only be called after + ** a locking-related function (i.e. fcntl()) has returned non-zero with + ** the value of errno as the first argument. Since a system call has failed, + ** errno should be non-zero. + ** + ** Despite this, if errno really is zero, we still don't want to return + ** SQLITE_OK. The system call failed, and *some* SQLite error should be + ** propagated back to the caller. Commenting this branch out means errno==0 + ** will be handled by the "default:" case below. + */ + case 0: + return SQLITE_OK; +#endif + + case EAGAIN: + case ETIMEDOUT: + case EBUSY: + case EINTR: + case ENOLCK: + /* random NFS retry error, unless during file system support + * introspection, in which it actually means what it says */ + return SQLITE_BUSY; + + case EACCES: + /* EACCES is like EAGAIN during locking operations, but not any other time*/ + if( (sqliteIOErr == SQLITE_IOERR_LOCK) || + (sqliteIOErr == SQLITE_IOERR_UNLOCK) || + (sqliteIOErr == SQLITE_IOERR_RDLOCK) || + (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ + return SQLITE_BUSY; + } + /* else fall through */ + case EPERM: + return SQLITE_PERM; + + /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And + ** this module never makes such a call. And the code in SQLite itself + ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons + ** this case is also commented out. If the system does set errno to EDEADLK, + ** the default SQLITE_IOERR_XXX code will be returned. */ +#if 0 + case EDEADLK: + return SQLITE_IOERR_BLOCKED; +#endif + +#if EOPNOTSUPP!=ENOTSUP + case EOPNOTSUPP: + /* something went terribly awry, unless during file system support + * introspection, in which it actually means what it says */ +#endif +#ifdef ENOTSUP + case ENOTSUP: + /* invalid fd, unless during file system support introspection, in which + * it actually means what it says */ +#endif + case EIO: + case EBADF: + case EINVAL: + case ENOTCONN: + case ENODEV: + case ENXIO: + case ENOENT: +#ifdef ESTALE /* ESTALE is not defined on Interix systems */ + case ESTALE: +#endif + case ENOSYS: + /* these should force the client to close the file and reconnect */ + + default: + return sqliteIOErr; + } +} + + + +/****************************************************************************** +****************** Begin Unique File ID Utility Used By VxWorks *************** +** +** On most versions of unix, we can get a unique ID for a file by concatenating +** the device number and the inode number. But this does not work on VxWorks. +** On VxWorks, a unique file id must be based on the canonical filename. +** +** A pointer to an instance of the following structure can be used as a +** unique file ID in VxWorks. Each instance of this structure contains +** a copy of the canonical filename. There is also a reference count. +** The structure is reclaimed when the number of pointers to it drops to +** zero. +** +** There are never very many files open at one time and lookups are not +** a performance-critical path, so it is sufficient to put these +** structures on a linked list. +*/ +struct vxworksFileId { + struct vxworksFileId *pNext; /* Next in a list of them all */ + int nRef; /* Number of references to this one */ + int nName; /* Length of the zCanonicalName[] string */ + char *zCanonicalName; /* Canonical filename */ +}; + +#if OS_VXWORKS +/* +** All unique filenames are held on a linked list headed by this +** variable: +*/ +static struct vxworksFileId *vxworksFileList = 0; + +/* +** Simplify a filename into its canonical form +** by making the following changes: +** +** * removing any trailing and duplicate / +** * convert /./ into just / +** * convert /A/../ where A is any simple name into just / +** +** Changes are made in-place. Return the new name length. +** +** The original filename is in z[0..n-1]. Return the number of +** characters in the simplified name. +*/ +static int vxworksSimplifyName(char *z, int n){ + int i, j; + while( n>1 && z[n-1]=='/' ){ n--; } + for(i=j=0; i0 && z[j-1]!='/' ){ j--; } + if( j>0 ){ j--; } + i += 2; + continue; + } + } + z[j++] = z[i]; + } + z[j] = 0; + return j; +} + +/* +** Find a unique file ID for the given absolute pathname. Return +** a pointer to the vxworksFileId object. This pointer is the unique +** file ID. +** +** The nRef field of the vxworksFileId object is incremented before +** the object is returned. A new vxworksFileId object is created +** and added to the global list if necessary. +** +** If a memory allocation error occurs, return NULL. +*/ +static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ + struct vxworksFileId *pNew; /* search key and new file ID */ + struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ + int n; /* Length of zAbsoluteName string */ + + assert( zAbsoluteName[0]=='/' ); + n = (int)strlen(zAbsoluteName); + pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) ); + if( pNew==0 ) return 0; + pNew->zCanonicalName = (char*)&pNew[1]; + memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); + n = vxworksSimplifyName(pNew->zCanonicalName, n); + + /* Search for an existing entry that matching the canonical name. + ** If found, increment the reference count and return a pointer to + ** the existing file ID. + */ + unixEnterMutex(); + for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ + if( pCandidate->nName==n + && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 + ){ + sqlite3_free(pNew); + pCandidate->nRef++; + unixLeaveMutex(); + return pCandidate; + } + } + + /* No match was found. We will make a new file ID */ + pNew->nRef = 1; + pNew->nName = n; + pNew->pNext = vxworksFileList; + vxworksFileList = pNew; + unixLeaveMutex(); + return pNew; +} + +/* +** Decrement the reference count on a vxworksFileId object. Free +** the object when the reference count reaches zero. +*/ +static void vxworksReleaseFileId(struct vxworksFileId *pId){ + unixEnterMutex(); + assert( pId->nRef>0 ); + pId->nRef--; + if( pId->nRef==0 ){ + struct vxworksFileId **pp; + for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} + assert( *pp==pId ); + *pp = pId->pNext; + sqlite3_free(pId); + } + unixLeaveMutex(); +} +#endif /* OS_VXWORKS */ +/*************** End of Unique File ID Utility Used By VxWorks **************** +******************************************************************************/ + + +/****************************************************************************** +*************************** Posix Advisory Locking **************************** +** +** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) +** section 6.5.2.2 lines 483 through 490 specify that when a process +** sets or clears a lock, that operation overrides any prior locks set +** by the same process. It does not explicitly say so, but this implies +** that it overrides locks set by the same process using a different +** file descriptor. Consider this test case: +** +** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); +** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); +** +** Suppose ./file1 and ./file2 are really the same file (because +** one is a hard or symbolic link to the other) then if you set +** an exclusive lock on fd1, then try to get an exclusive lock +** on fd2, it works. I would have expected the second lock to +** fail since there was already a lock on the file due to fd1. +** But not so. Since both locks came from the same process, the +** second overrides the first, even though they were on different +** file descriptors opened on different file names. +** +** This means that we cannot use POSIX locks to synchronize file access +** among competing threads of the same process. POSIX locks will work fine +** to synchronize access for threads in separate processes, but not +** threads within the same process. +** +** To work around the problem, SQLite has to manage file locks internally +** on its own. Whenever a new database is opened, we have to find the +** specific inode of the database file (the inode is determined by the +** st_dev and st_ino fields of the stat structure that fstat() fills in) +** and check for locks already existing on that inode. When locks are +** created or removed, we have to look at our own internal record of the +** locks to see if another thread has previously set a lock on that same +** inode. +** +** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. +** For VxWorks, we have to use the alternative unique ID system based on +** canonical filename and implemented in the previous division.) +** +** The sqlite3_file structure for POSIX is no longer just an integer file +** descriptor. It is now a structure that holds the integer file +** descriptor and a pointer to a structure that describes the internal +** locks on the corresponding inode. There is one locking structure +** per inode, so if the same inode is opened twice, both unixFile structures +** point to the same locking structure. The locking structure keeps +** a reference count (so we will know when to delete it) and a "cnt" +** field that tells us its internal lock status. cnt==0 means the +** file is unlocked. cnt==-1 means the file has an exclusive lock. +** cnt>0 means there are cnt shared locks on the file. +** +** Any attempt to lock or unlock a file first checks the locking +** structure. The fcntl() system call is only invoked to set a +** POSIX lock if the internal lock structure transitions between +** a locked and an unlocked state. +** +** But wait: there are yet more problems with POSIX advisory locks. +** +** If you close a file descriptor that points to a file that has locks, +** all locks on that file that are owned by the current process are +** released. To work around this problem, each unixInodeInfo object +** maintains a count of the number of pending locks on tha inode. +** When an attempt is made to close an unixFile, if there are +** other unixFile open on the same inode that are holding locks, the call +** to close() the file descriptor is deferred until all of the locks clear. +** The unixInodeInfo structure keeps a list of file descriptors that need to +** be closed and that list is walked (and cleared) when the last lock +** clears. +** +** Yet another problem: LinuxThreads do not play well with posix locks. +** +** Many older versions of linux use the LinuxThreads library which is +** not posix compliant. Under LinuxThreads, a lock created by thread +** A cannot be modified or overridden by a different thread B. +** Only thread A can modify the lock. Locking behavior is correct +** if the appliation uses the newer Native Posix Thread Library (NPTL) +** on linux - with NPTL a lock created by thread A can override locks +** in thread B. But there is no way to know at compile-time which +** threading library is being used. So there is no way to know at +** compile-time whether or not thread A can override locks on thread B. +** One has to do a run-time check to discover the behavior of the +** current process. +** +** SQLite used to support LinuxThreads. But support for LinuxThreads +** was dropped beginning with version 3.7.0. SQLite will still work with +** LinuxThreads provided that (1) there is no more than one connection +** per database file in the same process and (2) database connections +** do not move across threads. +*/ + +/* +** An instance of the following structure serves as the key used +** to locate a particular unixInodeInfo object. +*/ +struct unixFileId { + dev_t dev; /* Device number */ +#if OS_VXWORKS + struct vxworksFileId *pId; /* Unique file ID for vxworks. */ +#else + ino_t ino; /* Inode number */ +#endif +}; + +/* +** An instance of the following structure is allocated for each open +** inode. Or, on LinuxThreads, there is one of these structures for +** each inode opened by each thread. +** +** A single inode can have multiple file descriptors, so each unixFile +** structure contains a pointer to an instance of this object and this +** object keeps a count of the number of unixFile pointing to it. +*/ +struct unixInodeInfo { + struct unixFileId fileId; /* The lookup key */ + int nShared; /* Number of SHARED locks held */ + unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ + unsigned char bProcessLock; /* An exclusive process lock is held */ + int nRef; /* Number of pointers to this structure */ + unixShmNode *pShmNode; /* Shared memory associated with this inode */ + int nLock; /* Number of outstanding file locks */ + UnixUnusedFd *pUnused; /* Unused file descriptors to close */ + unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ + unixInodeInfo *pPrev; /* .... doubly linked */ +#if SQLITE_ENABLE_LOCKING_STYLE + unsigned long long sharedByte; /* for AFP simulated shared lock */ +#endif +#if OS_VXWORKS + sem_t *pSem; /* Named POSIX semaphore */ + char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ +#endif +}; + +/* +** A lists of all unixInodeInfo objects. +*/ +static unixInodeInfo *inodeList = 0; + +/* +** +** This function - unixLogError_x(), is only ever called via the macro +** unixLogError(). +** +** It is invoked after an error occurs in an OS function and errno has been +** set. It logs a message using sqlite3_log() containing the current value of +** errno and, if possible, the human-readable equivalent from strerror() or +** strerror_r(). +** +** The first argument passed to the macro should be the error code that +** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). +** The two subsequent arguments should be the name of the OS function that +** failed (e.g. "unlink", "open") and the the associated file-system path, +** if any. +*/ +#define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) +static int unixLogErrorAtLine( + int errcode, /* SQLite error code */ + const char *zFunc, /* Name of OS function that failed */ + const char *zPath, /* File path associated with error */ + int iLine /* Source line number where error occurred */ +){ + char *zErr; /* Message from strerror() or equivalent */ + int iErrno = errno; /* Saved syscall error number */ + + /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use + ** the strerror() function to obtain the human-readable error message + ** equivalent to errno. Otherwise, use strerror_r(). + */ +#if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) + char aErr[80]; + memset(aErr, 0, sizeof(aErr)); + zErr = aErr; + + /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, + ** assume that the system provides the the GNU version of strerror_r() that + ** returns a pointer to a buffer containing the error message. That pointer + ** may point to aErr[], or it may point to some static storage somewhere. + ** Otherwise, assume that the system provides the POSIX version of + ** strerror_r(), which always writes an error message into aErr[]. + ** + ** If the code incorrectly assumes that it is the POSIX version that is + ** available, the error message will often be an empty string. Not a + ** huge problem. Incorrectly concluding that the GNU version is available + ** could lead to a segfault though. + */ +#if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) + zErr = +# endif + strerror_r(iErrno, aErr, sizeof(aErr)-1); + +#elif SQLITE_THREADSAFE + /* This is a threadsafe build, but strerror_r() is not available. */ + zErr = ""; +#else + /* Non-threadsafe build, use strerror(). */ + zErr = strerror(iErrno); +#endif + + assert( errcode!=SQLITE_OK ); + if( zPath==0 ) zPath = ""; + sqlite3_log(errcode, + "os_unix.c:%d: (%d) %s(%s) - %s", + iLine, iErrno, zFunc, zPath, zErr + ); + + return errcode; +} + +/* +** Close a file descriptor. +** +** We assume that close() almost always works, since it is only in a +** very sick application or on a very sick platform that it might fail. +** If it does fail, simply leak the file descriptor, but do log the +** error. +** +** Note that it is not safe to retry close() after EINTR since the +** file descriptor might have already been reused by another thread. +** So we don't even try to recover from an EINTR. Just log the error +** and move on. +*/ +static void robust_close(unixFile *pFile, int h, int lineno){ + if( osClose(h) ){ + unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", + pFile ? pFile->zPath : 0, lineno); + } +} + +/* +** Close all file descriptors accumuated in the unixInodeInfo->pUnused list. +*/ +static void closePendingFds(unixFile *pFile){ + unixInodeInfo *pInode = pFile->pInode; + UnixUnusedFd *p; + UnixUnusedFd *pNext; + for(p=pInode->pUnused; p; p=pNext){ + pNext = p->pNext; + robust_close(pFile, p->fd, __LINE__); + sqlite3_free(p); + } + pInode->pUnused = 0; +} + +/* +** Release a unixInodeInfo structure previously allocated by findInodeInfo(). +** +** The mutex entered using the unixEnterMutex() function must be held +** when this function is called. +*/ +static void releaseInodeInfo(unixFile *pFile){ + unixInodeInfo *pInode = pFile->pInode; + assert( unixMutexHeld() ); + if( ALWAYS(pInode) ){ + pInode->nRef--; + if( pInode->nRef==0 ){ + assert( pInode->pShmNode==0 ); + closePendingFds(pFile); + if( pInode->pPrev ){ + assert( pInode->pPrev->pNext==pInode ); + pInode->pPrev->pNext = pInode->pNext; + }else{ + assert( inodeList==pInode ); + inodeList = pInode->pNext; + } + if( pInode->pNext ){ + assert( pInode->pNext->pPrev==pInode ); + pInode->pNext->pPrev = pInode->pPrev; + } + sqlite3_free(pInode); + } + } +} + +/* +** Given a file descriptor, locate the unixInodeInfo object that +** describes that file descriptor. Create a new one if necessary. The +** return value might be uninitialized if an error occurs. +** +** The mutex entered using the unixEnterMutex() function must be held +** when this function is called. +** +** Return an appropriate error code. +*/ +static int findInodeInfo( + unixFile *pFile, /* Unix file with file desc used in the key */ + unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ +){ + int rc; /* System call return code */ + int fd; /* The file descriptor for pFile */ + struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ + struct stat statbuf; /* Low-level file information */ + unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ + + assert( unixMutexHeld() ); + + /* Get low-level information about the file that we can used to + ** create a unique name for the file. + */ + fd = pFile->h; + rc = osFstat(fd, &statbuf); + if( rc!=0 ){ + pFile->lastErrno = errno; +#ifdef EOVERFLOW + if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; +#endif + return SQLITE_IOERR; + } + +#ifdef __APPLE__ + /* On OS X on an msdos filesystem, the inode number is reported + ** incorrectly for zero-size files. See ticket #3260. To work + ** around this problem (we consider it a bug in OS X, not SQLite) + ** we always increase the file size to 1 by writing a single byte + ** prior to accessing the inode number. The one byte written is + ** an ASCII 'S' character which also happens to be the first byte + ** in the header of every SQLite database. In this way, if there + ** is a race condition such that another thread has already populated + ** the first page of the database, no damage is done. + */ + if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ + do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); + if( rc!=1 ){ + pFile->lastErrno = errno; + return SQLITE_IOERR; + } + rc = osFstat(fd, &statbuf); + if( rc!=0 ){ + pFile->lastErrno = errno; + return SQLITE_IOERR; + } + } +#endif + + memset(&fileId, 0, sizeof(fileId)); + fileId.dev = statbuf.st_dev; +#if OS_VXWORKS + fileId.pId = pFile->pId; +#else + fileId.ino = statbuf.st_ino; +#endif + pInode = inodeList; + while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ + pInode = pInode->pNext; + } + if( pInode==0 ){ + pInode = sqlite3_malloc( sizeof(*pInode) ); + if( pInode==0 ){ + return SQLITE_NOMEM; + } + memset(pInode, 0, sizeof(*pInode)); + memcpy(&pInode->fileId, &fileId, sizeof(fileId)); + pInode->nRef = 1; + pInode->pNext = inodeList; + pInode->pPrev = 0; + if( inodeList ) inodeList->pPrev = pInode; + inodeList = pInode; + }else{ + pInode->nRef++; + } + *ppInode = pInode; + return SQLITE_OK; +} + + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, set *pResOut +** to a non-zero value otherwise *pResOut is set to zero. The return value +** is set to SQLITE_OK unless an I/O error occurs during lock checking. +*/ +static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ + int rc = SQLITE_OK; + int reserved = 0; + unixFile *pFile = (unixFile*)id; + + SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); + + assert( pFile ); + unixEnterMutex(); /* Because pFile->pInode is shared across threads */ + + /* Check if a thread in this process holds such a lock */ + if( pFile->pInode->eFileLock>SHARED_LOCK ){ + reserved = 1; + } + + /* Otherwise see if some other process holds it. + */ +#ifndef __DJGPP__ + if( !reserved && !pFile->pInode->bProcessLock ){ + struct flock lock; + lock.l_whence = SEEK_SET; + lock.l_start = RESERVED_BYTE; + lock.l_len = 1; + lock.l_type = F_WRLCK; + if( osFcntl(pFile->h, F_GETLK, &lock) ){ + rc = SQLITE_IOERR_CHECKRESERVEDLOCK; + pFile->lastErrno = errno; + } else if( lock.l_type!=F_UNLCK ){ + reserved = 1; + } + } +#endif + + unixLeaveMutex(); + OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); + + *pResOut = reserved; + return rc; +} + +/* +** Attempt to set a system-lock on the file pFile. The lock is +** described by pLock. +** +** If the pFile was opened read/write from unix-excl, then the only lock +** ever obtained is an exclusive lock, and it is obtained exactly once +** the first time any lock is attempted. All subsequent system locking +** operations become no-ops. Locking operations still happen internally, +** in order to coordinate access between separate database connections +** within this process, but all of that is handled in memory and the +** operating system does not participate. +** +** This function is a pass-through to fcntl(F_SETLK) if pFile is using +** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" +** and is read-only. +** +** Zero is returned if the call completes successfully, or -1 if a call +** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). +*/ +static int unixFileLock(unixFile *pFile, struct flock *pLock){ + int rc; + unixInodeInfo *pInode = pFile->pInode; + assert( unixMutexHeld() ); + assert( pInode!=0 ); + if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock) + && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0) + ){ + if( pInode->bProcessLock==0 ){ + struct flock lock; + assert( pInode->nLock==0 ); + lock.l_whence = SEEK_SET; + lock.l_start = SHARED_FIRST; + lock.l_len = SHARED_SIZE; + lock.l_type = F_WRLCK; + rc = osFcntl(pFile->h, F_SETLK, &lock); + if( rc<0 ) return rc; + pInode->bProcessLock = 1; + pInode->nLock++; + }else{ + rc = 0; + } + }else{ + rc = osFcntl(pFile->h, F_SETLK, pLock); + } + return rc; +} + +/* +** Lock the file with the lock specified by parameter eFileLock - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. Use the sqlite3OsUnlock() +** routine to lower a locking level. +*/ +static int unixLock(sqlite3_file *id, int eFileLock){ + /* The following describes the implementation of the various locks and + ** lock transitions in terms of the POSIX advisory shared and exclusive + ** lock primitives (called read-locks and write-locks below, to avoid + ** confusion with SQLite lock names). The algorithms are complicated + ** slightly in order to be compatible with windows systems simultaneously + ** accessing the same database file, in case that is ever required. + ** + ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved + ** byte', each single bytes at well known offsets, and the 'shared byte + ** range', a range of 510 bytes at a well known offset. + ** + ** To obtain a SHARED lock, a read-lock is obtained on the 'pending + ** byte'. If this is successful, a random byte from the 'shared byte + ** range' is read-locked and the lock on the 'pending byte' released. + ** + ** A process may only obtain a RESERVED lock after it has a SHARED lock. + ** A RESERVED lock is implemented by grabbing a write-lock on the + ** 'reserved byte'. + ** + ** A process may only obtain a PENDING lock after it has obtained a + ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock + ** on the 'pending byte'. This ensures that no new SHARED locks can be + ** obtained, but existing SHARED locks are allowed to persist. A process + ** does not have to obtain a RESERVED lock on the way to a PENDING lock. + ** This property is used by the algorithm for rolling back a journal file + ** after a crash. + ** + ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is + ** implemented by obtaining a write-lock on the entire 'shared byte + ** range'. Since all other locks require a read-lock on one of the bytes + ** within this range, this ensures that no other locks are held on the + ** database. + ** + ** The reason a single byte cannot be used instead of the 'shared byte + ** range' is that some versions of windows do not support read-locks. By + ** locking a random byte from a range, concurrent SHARED locks may exist + ** even if the locking primitive used is always a write-lock. + */ + int rc = SQLITE_OK; + unixFile *pFile = (unixFile*)id; + unixInodeInfo *pInode; + struct flock lock; + int tErrno = 0; + + assert( pFile ); + OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, + azFileLock(eFileLock), azFileLock(pFile->eFileLock), + azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid())); + + /* If there is already a lock of this type or more restrictive on the + ** unixFile, do nothing. Don't use the end_lock: exit path, as + ** unixEnterMutex() hasn't been called yet. + */ + if( pFile->eFileLock>=eFileLock ){ + OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, + azFileLock(eFileLock))); + return SQLITE_OK; + } + + /* Make sure the locking sequence is correct. + ** (1) We never move from unlocked to anything higher than shared lock. + ** (2) SQLite never explicitly requests a pendig lock. + ** (3) A shared lock is always held when a reserve lock is requested. + */ + assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); + assert( eFileLock!=PENDING_LOCK ); + assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); + + /* This mutex is needed because pFile->pInode is shared across threads + */ + unixEnterMutex(); + pInode = pFile->pInode; + + /* If some thread using this PID has a lock via a different unixFile* + ** handle that precludes the requested lock, return BUSY. + */ + if( (pFile->eFileLock!=pInode->eFileLock && + (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) + ){ + rc = SQLITE_BUSY; + goto end_lock; + } + + /* If a SHARED lock is requested, and some thread using this PID already + ** has a SHARED or RESERVED lock, then increment reference counts and + ** return SQLITE_OK. + */ + if( eFileLock==SHARED_LOCK && + (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ + assert( eFileLock==SHARED_LOCK ); + assert( pFile->eFileLock==0 ); + assert( pInode->nShared>0 ); + pFile->eFileLock = SHARED_LOCK; + pInode->nShared++; + pInode->nLock++; + goto end_lock; + } + + + /* A PENDING lock is needed before acquiring a SHARED lock and before + ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will + ** be released. + */ + lock.l_len = 1L; + lock.l_whence = SEEK_SET; + if( eFileLock==SHARED_LOCK + || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLocklastErrno = tErrno; + } + goto end_lock; + } + } + + + /* If control gets to this point, then actually go ahead and make + ** operating system calls for the specified lock. + */ + if( eFileLock==SHARED_LOCK ){ + assert( pInode->nShared==0 ); + assert( pInode->eFileLock==0 ); + assert( rc==SQLITE_OK ); + + /* Now get the read-lock */ + lock.l_start = SHARED_FIRST; + lock.l_len = SHARED_SIZE; + if( unixFileLock(pFile, &lock) ){ + tErrno = errno; + rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); + } + + /* Drop the temporary PENDING lock */ + lock.l_start = PENDING_BYTE; + lock.l_len = 1L; + lock.l_type = F_UNLCK; + if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ + /* This could happen with a network mount */ + tErrno = errno; + rc = SQLITE_IOERR_UNLOCK; + } + + if( rc ){ + if( rc!=SQLITE_BUSY ){ + pFile->lastErrno = tErrno; + } + goto end_lock; + }else{ + pFile->eFileLock = SHARED_LOCK; + pInode->nLock++; + pInode->nShared = 1; + } + }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ + /* We are trying for an exclusive lock but another thread in this + ** same process is still holding a shared lock. */ + rc = SQLITE_BUSY; + }else{ + /* The request was for a RESERVED or EXCLUSIVE lock. It is + ** assumed that there is a SHARED or greater lock on the file + ** already. + */ + assert( 0!=pFile->eFileLock ); + lock.l_type = F_WRLCK; + + assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); + if( eFileLock==RESERVED_LOCK ){ + lock.l_start = RESERVED_BYTE; + lock.l_len = 1L; + }else{ + lock.l_start = SHARED_FIRST; + lock.l_len = SHARED_SIZE; + } + + if( unixFileLock(pFile, &lock) ){ + tErrno = errno; + rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); + if( rc!=SQLITE_BUSY ){ + pFile->lastErrno = tErrno; + } + } + } + + +#ifndef NDEBUG + /* Set up the transaction-counter change checking flags when + ** transitioning from a SHARED to a RESERVED lock. The change + ** from SHARED to RESERVED marks the beginning of a normal + ** write operation (not a hot journal rollback). + */ + if( rc==SQLITE_OK + && pFile->eFileLock<=SHARED_LOCK + && eFileLock==RESERVED_LOCK + ){ + pFile->transCntrChng = 0; + pFile->dbUpdate = 0; + pFile->inNormalWrite = 1; + } +#endif + + + if( rc==SQLITE_OK ){ + pFile->eFileLock = eFileLock; + pInode->eFileLock = eFileLock; + }else if( eFileLock==EXCLUSIVE_LOCK ){ + pFile->eFileLock = PENDING_LOCK; + pInode->eFileLock = PENDING_LOCK; + } + +end_lock: + unixLeaveMutex(); + OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), + rc==SQLITE_OK ? "ok" : "failed")); + return rc; +} + +/* +** Add the file descriptor used by file handle pFile to the corresponding +** pUnused list. +*/ +static void setPendingFd(unixFile *pFile){ + unixInodeInfo *pInode = pFile->pInode; + UnixUnusedFd *p = pFile->pUnused; + p->pNext = pInode->pUnused; + pInode->pUnused = p; + pFile->h = -1; + pFile->pUnused = 0; +} + +/* +** Lower the locking level on file descriptor pFile to eFileLock. eFileLock +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +** +** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED +** the byte range is divided into 2 parts and the first part is unlocked then +** set to a read lock, then the other part is simply unlocked. This works +** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to +** remove the write lock on a region when a read lock is set. +*/ +static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ + unixFile *pFile = (unixFile*)id; + unixInodeInfo *pInode; + struct flock lock; + int rc = SQLITE_OK; + + assert( pFile ); + OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, + pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, + getpid())); + + assert( eFileLock<=SHARED_LOCK ); + if( pFile->eFileLock<=eFileLock ){ + return SQLITE_OK; + } + unixEnterMutex(); + pInode = pFile->pInode; + assert( pInode->nShared!=0 ); + if( pFile->eFileLock>SHARED_LOCK ){ + assert( pInode->eFileLock==pFile->eFileLock ); + +#ifndef NDEBUG + /* When reducing a lock such that other processes can start + ** reading the database file again, make sure that the + ** transaction counter was updated if any part of the database + ** file changed. If the transaction counter is not updated, + ** other connections to the same file might not realize that + ** the file has changed and hence might not know to flush their + ** cache. The use of a stale cache can lead to database corruption. + */ + pFile->inNormalWrite = 0; +#endif + + /* downgrading to a shared lock on NFS involves clearing the write lock + ** before establishing the readlock - to avoid a race condition we downgrade + ** the lock in 2 blocks, so that part of the range will be covered by a + ** write lock until the rest is covered by a read lock: + ** 1: [WWWWW] + ** 2: [....W] + ** 3: [RRRRW] + ** 4: [RRRR.] + */ + if( eFileLock==SHARED_LOCK ){ + +#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE + (void)handleNFSUnlock; + assert( handleNFSUnlock==0 ); +#endif +#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE + if( handleNFSUnlock ){ + int tErrno; /* Error code from system call errors */ + off_t divSize = SHARED_SIZE - 1; + + lock.l_type = F_UNLCK; + lock.l_whence = SEEK_SET; + lock.l_start = SHARED_FIRST; + lock.l_len = divSize; + if( unixFileLock(pFile, &lock)==(-1) ){ + tErrno = errno; + rc = SQLITE_IOERR_UNLOCK; + if( IS_LOCK_ERROR(rc) ){ + pFile->lastErrno = tErrno; + } + goto end_unlock; + } + lock.l_type = F_RDLCK; + lock.l_whence = SEEK_SET; + lock.l_start = SHARED_FIRST; + lock.l_len = divSize; + if( unixFileLock(pFile, &lock)==(-1) ){ + tErrno = errno; + rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); + if( IS_LOCK_ERROR(rc) ){ + pFile->lastErrno = tErrno; + } + goto end_unlock; + } + lock.l_type = F_UNLCK; + lock.l_whence = SEEK_SET; + lock.l_start = SHARED_FIRST+divSize; + lock.l_len = SHARED_SIZE-divSize; + if( unixFileLock(pFile, &lock)==(-1) ){ + tErrno = errno; + rc = SQLITE_IOERR_UNLOCK; + if( IS_LOCK_ERROR(rc) ){ + pFile->lastErrno = tErrno; + } + goto end_unlock; + } + }else +#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ + { + lock.l_type = F_RDLCK; + lock.l_whence = SEEK_SET; + lock.l_start = SHARED_FIRST; + lock.l_len = SHARED_SIZE; + if( unixFileLock(pFile, &lock) ){ + /* In theory, the call to unixFileLock() cannot fail because another + ** process is holding an incompatible lock. If it does, this + ** indicates that the other process is not following the locking + ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning + ** SQLITE_BUSY would confuse the upper layer (in practice it causes + ** an assert to fail). */ + rc = SQLITE_IOERR_RDLOCK; + pFile->lastErrno = errno; + goto end_unlock; + } + } + } + lock.l_type = F_UNLCK; + lock.l_whence = SEEK_SET; + lock.l_start = PENDING_BYTE; + lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); + if( unixFileLock(pFile, &lock)==0 ){ + pInode->eFileLock = SHARED_LOCK; + }else{ + rc = SQLITE_IOERR_UNLOCK; + pFile->lastErrno = errno; + goto end_unlock; + } + } + if( eFileLock==NO_LOCK ){ + /* Decrement the shared lock counter. Release the lock using an + ** OS call only when all threads in this same process have released + ** the lock. + */ + pInode->nShared--; + if( pInode->nShared==0 ){ + lock.l_type = F_UNLCK; + lock.l_whence = SEEK_SET; + lock.l_start = lock.l_len = 0L; + if( unixFileLock(pFile, &lock)==0 ){ + pInode->eFileLock = NO_LOCK; + }else{ + rc = SQLITE_IOERR_UNLOCK; + pFile->lastErrno = errno; + pInode->eFileLock = NO_LOCK; + pFile->eFileLock = NO_LOCK; + } + } + + /* Decrement the count of locks against this same file. When the + ** count reaches zero, close any other file descriptors whose close + ** was deferred because of outstanding locks. + */ + pInode->nLock--; + assert( pInode->nLock>=0 ); + if( pInode->nLock==0 ){ + closePendingFds(pFile); + } + } + +end_unlock: + unixLeaveMutex(); + if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; + return rc; +} + +/* +** Lower the locking level on file descriptor pFile to eFileLock. eFileLock +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +*/ +static int unixUnlock(sqlite3_file *id, int eFileLock){ + return posixUnlock(id, eFileLock, 0); +} + +/* +** This function performs the parts of the "close file" operation +** common to all locking schemes. It closes the directory and file +** handles, if they are valid, and sets all fields of the unixFile +** structure to 0. +** +** It is *not* necessary to hold the mutex when this routine is called, +** even on VxWorks. A mutex will be acquired on VxWorks by the +** vxworksReleaseFileId() routine. +*/ +static int closeUnixFile(sqlite3_file *id){ + unixFile *pFile = (unixFile*)id; + if( pFile->h>=0 ){ + robust_close(pFile, pFile->h, __LINE__); + pFile->h = -1; + } +#if OS_VXWORKS + if( pFile->pId ){ + if( pFile->isDelete ){ + osUnlink(pFile->pId->zCanonicalName); + } + vxworksReleaseFileId(pFile->pId); + pFile->pId = 0; + } +#endif + OSTRACE(("CLOSE %-3d\n", pFile->h)); + OpenCounter(-1); + sqlite3_free(pFile->pUnused); + memset(pFile, 0, sizeof(unixFile)); + return SQLITE_OK; +} + +/* +** Close a file. +*/ +static int unixClose(sqlite3_file *id){ + int rc = SQLITE_OK; + unixFile *pFile = (unixFile *)id; + unixUnlock(id, NO_LOCK); + unixEnterMutex(); + + /* unixFile.pInode is always valid here. Otherwise, a different close + ** routine (e.g. nolockClose()) would be called instead. + */ + assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); + if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){ + /* If there are outstanding locks, do not actually close the file just + ** yet because that would clear those locks. Instead, add the file + ** descriptor to pInode->pUnused list. It will be automatically closed + ** when the last lock is cleared. + */ + setPendingFd(pFile); + } + releaseInodeInfo(pFile); + rc = closeUnixFile(id); + unixLeaveMutex(); + return rc; +} + +/************** End of the posix advisory lock implementation ***************** +******************************************************************************/ + +/****************************************************************************** +****************************** No-op Locking ********************************** +** +** Of the various locking implementations available, this is by far the +** simplest: locking is ignored. No attempt is made to lock the database +** file for reading or writing. +** +** This locking mode is appropriate for use on read-only databases +** (ex: databases that are burned into CD-ROM, for example.) It can +** also be used if the application employs some external mechanism to +** prevent simultaneous access of the same database by two or more +** database connections. But there is a serious risk of database +** corruption if this locking mode is used in situations where multiple +** database connections are accessing the same database file at the same +** time and one or more of those connections are writing. +*/ + +static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ + UNUSED_PARAMETER(NotUsed); + *pResOut = 0; + return SQLITE_OK; +} +static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ + UNUSED_PARAMETER2(NotUsed, NotUsed2); + return SQLITE_OK; +} +static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ + UNUSED_PARAMETER2(NotUsed, NotUsed2); + return SQLITE_OK; +} + +/* +** Close the file. +*/ +static int nolockClose(sqlite3_file *id) { + return closeUnixFile(id); +} + +/******************* End of the no-op lock implementation ********************* +******************************************************************************/ + +/****************************************************************************** +************************* Begin dot-file Locking ****************************** +** +** The dotfile locking implementation uses the existance of separate lock +** files in order to control access to the database. This works on just +** about every filesystem imaginable. But there are serious downsides: +** +** (1) There is zero concurrency. A single reader blocks all other +** connections from reading or writing the database. +** +** (2) An application crash or power loss can leave stale lock files +** sitting around that need to be cleared manually. +** +** Nevertheless, a dotlock is an appropriate locking mode for use if no +** other locking strategy is available. +** +** Dotfile locking works by creating a file in the same directory as the +** database and with the same name but with a ".lock" extension added. +** The existance of a lock file implies an EXCLUSIVE lock. All other lock +** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. +*/ + +/* +** The file suffix added to the data base filename in order to create the +** lock file. +*/ +#define DOTLOCK_SUFFIX ".lock" + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, set *pResOut +** to a non-zero value otherwise *pResOut is set to zero. The return value +** is set to SQLITE_OK unless an I/O error occurs during lock checking. +** +** In dotfile locking, either a lock exists or it does not. So in this +** variation of CheckReservedLock(), *pResOut is set to true if any lock +** is held on the file and false if the file is unlocked. +*/ +static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { + int rc = SQLITE_OK; + int reserved = 0; + unixFile *pFile = (unixFile*)id; + + SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); + + assert( pFile ); + + /* Check if a thread in this process holds such a lock */ + if( pFile->eFileLock>SHARED_LOCK ){ + /* Either this connection or some other connection in the same process + ** holds a lock on the file. No need to check further. */ + reserved = 1; + }else{ + /* The lock is held if and only if the lockfile exists */ + const char *zLockFile = (const char*)pFile->lockingContext; + reserved = osAccess(zLockFile, 0)==0; + } + OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); + *pResOut = reserved; + return rc; +} + +/* +** Lock the file with the lock specified by parameter eFileLock - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. Use the sqlite3OsUnlock() +** routine to lower a locking level. +** +** With dotfile locking, we really only support state (4): EXCLUSIVE. +** But we track the other locking levels internally. +*/ +static int dotlockLock(sqlite3_file *id, int eFileLock) { + unixFile *pFile = (unixFile*)id; + int fd; + char *zLockFile = (char *)pFile->lockingContext; + int rc = SQLITE_OK; + + + /* If we have any lock, then the lock file already exists. All we have + ** to do is adjust our internal record of the lock level. + */ + if( pFile->eFileLock > NO_LOCK ){ + pFile->eFileLock = eFileLock; + /* Always update the timestamp on the old file */ +#ifdef HAVE_UTIME + utime(zLockFile, NULL); +#else + utimes(zLockFile, NULL); +#endif + return SQLITE_OK; + } + + /* grab an exclusive lock */ + fd = robust_open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600); + if( fd<0 ){ + /* failed to open/create the file, someone else may have stolen the lock */ + int tErrno = errno; + if( EEXIST == tErrno ){ + rc = SQLITE_BUSY; + } else { + rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); + if( IS_LOCK_ERROR(rc) ){ + pFile->lastErrno = tErrno; + } + } + return rc; + } + robust_close(pFile, fd, __LINE__); + + /* got it, set the type and return ok */ + pFile->eFileLock = eFileLock; + return rc; +} + +/* +** Lower the locking level on file descriptor pFile to eFileLock. eFileLock +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +** +** When the locking level reaches NO_LOCK, delete the lock file. +*/ +static int dotlockUnlock(sqlite3_file *id, int eFileLock) { + unixFile *pFile = (unixFile*)id; + char *zLockFile = (char *)pFile->lockingContext; + + assert( pFile ); + OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, + pFile->eFileLock, getpid())); + assert( eFileLock<=SHARED_LOCK ); + + /* no-op if possible */ + if( pFile->eFileLock==eFileLock ){ + return SQLITE_OK; + } + + /* To downgrade to shared, simply update our internal notion of the + ** lock state. No need to mess with the file on disk. + */ + if( eFileLock==SHARED_LOCK ){ + pFile->eFileLock = SHARED_LOCK; + return SQLITE_OK; + } + + /* To fully unlock the database, delete the lock file */ + assert( eFileLock==NO_LOCK ); + if( osUnlink(zLockFile) ){ + int rc = 0; + int tErrno = errno; + if( ENOENT != tErrno ){ + rc = SQLITE_IOERR_UNLOCK; + } + if( IS_LOCK_ERROR(rc) ){ + pFile->lastErrno = tErrno; + } + return rc; + } + pFile->eFileLock = NO_LOCK; + return SQLITE_OK; +} + +/* +** Close a file. Make sure the lock has been released before closing. +*/ +static int dotlockClose(sqlite3_file *id) { + int rc; + if( id ){ + unixFile *pFile = (unixFile*)id; + dotlockUnlock(id, NO_LOCK); + sqlite3_free(pFile->lockingContext); + } + rc = closeUnixFile(id); + return rc; +} +/****************** End of the dot-file lock implementation ******************* +******************************************************************************/ + +/****************************************************************************** +************************** Begin flock Locking ******************************** +** +** Use the flock() system call to do file locking. +** +** flock() locking is like dot-file locking in that the various +** fine-grain locking levels supported by SQLite are collapsed into +** a single exclusive lock. In other words, SHARED, RESERVED, and +** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite +** still works when you do this, but concurrency is reduced since +** only a single process can be reading the database at a time. +** +** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if +** compiling for VXWORKS. +*/ +#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS + +/* +** Retry flock() calls that fail with EINTR +*/ +#ifdef EINTR +static int robust_flock(int fd, int op){ + int rc; + do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); + return rc; +} +#else +# define robust_flock(a,b) flock(a,b) +#endif + + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, set *pResOut +** to a non-zero value otherwise *pResOut is set to zero. The return value +** is set to SQLITE_OK unless an I/O error occurs during lock checking. +*/ +static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ + int rc = SQLITE_OK; + int reserved = 0; + unixFile *pFile = (unixFile*)id; + + SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); + + assert( pFile ); + + /* Check if a thread in this process holds such a lock */ + if( pFile->eFileLock>SHARED_LOCK ){ + reserved = 1; + } + + /* Otherwise see if some other process holds it. */ + if( !reserved ){ + /* attempt to get the lock */ + int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); + if( !lrc ){ + /* got the lock, unlock it */ + lrc = robust_flock(pFile->h, LOCK_UN); + if ( lrc ) { + int tErrno = errno; + /* unlock failed with an error */ + lrc = SQLITE_IOERR_UNLOCK; + if( IS_LOCK_ERROR(lrc) ){ + pFile->lastErrno = tErrno; + rc = lrc; + } + } + } else { + int tErrno = errno; + reserved = 1; + /* someone else might have it reserved */ + lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); + if( IS_LOCK_ERROR(lrc) ){ + pFile->lastErrno = tErrno; + rc = lrc; + } + } + } + OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); + +#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS + if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ + rc = SQLITE_OK; + reserved=1; + } +#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ + *pResOut = reserved; + return rc; +} + +/* +** Lock the file with the lock specified by parameter eFileLock - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** flock() only really support EXCLUSIVE locks. We track intermediate +** lock states in the sqlite3_file structure, but all locks SHARED or +** above are really EXCLUSIVE locks and exclude all other processes from +** access the file. +** +** This routine will only increase a lock. Use the sqlite3OsUnlock() +** routine to lower a locking level. +*/ +static int flockLock(sqlite3_file *id, int eFileLock) { + int rc = SQLITE_OK; + unixFile *pFile = (unixFile*)id; + + assert( pFile ); + + /* if we already have a lock, it is exclusive. + ** Just adjust level and punt on outta here. */ + if (pFile->eFileLock > NO_LOCK) { + pFile->eFileLock = eFileLock; + return SQLITE_OK; + } + + /* grab an exclusive lock */ + + if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { + int tErrno = errno; + /* didn't get, must be busy */ + rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); + if( IS_LOCK_ERROR(rc) ){ + pFile->lastErrno = tErrno; + } + } else { + /* got it, set the type and return ok */ + pFile->eFileLock = eFileLock; + } + OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), + rc==SQLITE_OK ? "ok" : "failed")); +#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS + if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ + rc = SQLITE_BUSY; + } +#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ + return rc; +} + + +/* +** Lower the locking level on file descriptor pFile to eFileLock. eFileLock +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +*/ +static int flockUnlock(sqlite3_file *id, int eFileLock) { + unixFile *pFile = (unixFile*)id; + + assert( pFile ); + OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, + pFile->eFileLock, getpid())); + assert( eFileLock<=SHARED_LOCK ); + + /* no-op if possible */ + if( pFile->eFileLock==eFileLock ){ + return SQLITE_OK; + } + + /* shared can just be set because we always have an exclusive */ + if (eFileLock==SHARED_LOCK) { + pFile->eFileLock = eFileLock; + return SQLITE_OK; + } + + /* no, really, unlock. */ + if( robust_flock(pFile->h, LOCK_UN) ){ +#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS + return SQLITE_OK; +#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ + return SQLITE_IOERR_UNLOCK; + }else{ + pFile->eFileLock = NO_LOCK; + return SQLITE_OK; + } +} + +/* +** Close a file. +*/ +static int flockClose(sqlite3_file *id) { + if( id ){ + flockUnlock(id, NO_LOCK); + } + return closeUnixFile(id); +} + +#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ + +/******************* End of the flock lock implementation ********************* +******************************************************************************/ + +/****************************************************************************** +************************ Begin Named Semaphore Locking ************************ +** +** Named semaphore locking is only supported on VxWorks. +** +** Semaphore locking is like dot-lock and flock in that it really only +** supports EXCLUSIVE locking. Only a single process can read or write +** the database file at a time. This reduces potential concurrency, but +** makes the lock implementation much easier. +*/ +#if OS_VXWORKS + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, set *pResOut +** to a non-zero value otherwise *pResOut is set to zero. The return value +** is set to SQLITE_OK unless an I/O error occurs during lock checking. +*/ +static int semCheckReservedLock(sqlite3_file *id, int *pResOut) { + int rc = SQLITE_OK; + int reserved = 0; + unixFile *pFile = (unixFile*)id; + + SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); + + assert( pFile ); + + /* Check if a thread in this process holds such a lock */ + if( pFile->eFileLock>SHARED_LOCK ){ + reserved = 1; + } + + /* Otherwise see if some other process holds it. */ + if( !reserved ){ + sem_t *pSem = pFile->pInode->pSem; + struct stat statBuf; + + if( sem_trywait(pSem)==-1 ){ + int tErrno = errno; + if( EAGAIN != tErrno ){ + rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); + pFile->lastErrno = tErrno; + } else { + /* someone else has the lock when we are in NO_LOCK */ + reserved = (pFile->eFileLock < SHARED_LOCK); + } + }else{ + /* we could have it if we want it */ + sem_post(pSem); + } + } + OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); + + *pResOut = reserved; + return rc; +} + +/* +** Lock the file with the lock specified by parameter eFileLock - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** Semaphore locks only really support EXCLUSIVE locks. We track intermediate +** lock states in the sqlite3_file structure, but all locks SHARED or +** above are really EXCLUSIVE locks and exclude all other processes from +** access the file. +** +** This routine will only increase a lock. Use the sqlite3OsUnlock() +** routine to lower a locking level. +*/ +static int semLock(sqlite3_file *id, int eFileLock) { + unixFile *pFile = (unixFile*)id; + int fd; + sem_t *pSem = pFile->pInode->pSem; + int rc = SQLITE_OK; + + /* if we already have a lock, it is exclusive. + ** Just adjust level and punt on outta here. */ + if (pFile->eFileLock > NO_LOCK) { + pFile->eFileLock = eFileLock; + rc = SQLITE_OK; + goto sem_end_lock; + } + + /* lock semaphore now but bail out when already locked. */ + if( sem_trywait(pSem)==-1 ){ + rc = SQLITE_BUSY; + goto sem_end_lock; + } + + /* got it, set the type and return ok */ + pFile->eFileLock = eFileLock; + + sem_end_lock: + return rc; +} + +/* +** Lower the locking level on file descriptor pFile to eFileLock. eFileLock +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +*/ +static int semUnlock(sqlite3_file *id, int eFileLock) { + unixFile *pFile = (unixFile*)id; + sem_t *pSem = pFile->pInode->pSem; + + assert( pFile ); + assert( pSem ); + OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, + pFile->eFileLock, getpid())); + assert( eFileLock<=SHARED_LOCK ); + + /* no-op if possible */ + if( pFile->eFileLock==eFileLock ){ + return SQLITE_OK; + } + + /* shared can just be set because we always have an exclusive */ + if (eFileLock==SHARED_LOCK) { + pFile->eFileLock = eFileLock; + return SQLITE_OK; + } + + /* no, really unlock. */ + if ( sem_post(pSem)==-1 ) { + int rc, tErrno = errno; + rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); + if( IS_LOCK_ERROR(rc) ){ + pFile->lastErrno = tErrno; + } + return rc; + } + pFile->eFileLock = NO_LOCK; + return SQLITE_OK; +} + +/* + ** Close a file. + */ +static int semClose(sqlite3_file *id) { + if( id ){ + unixFile *pFile = (unixFile*)id; + semUnlock(id, NO_LOCK); + assert( pFile ); + unixEnterMutex(); + releaseInodeInfo(pFile); + unixLeaveMutex(); + closeUnixFile(id); + } + return SQLITE_OK; +} + +#endif /* OS_VXWORKS */ +/* +** Named semaphore locking is only available on VxWorks. +** +*************** End of the named semaphore lock implementation **************** +******************************************************************************/ + + +/****************************************************************************** +*************************** Begin AFP Locking ********************************* +** +** AFP is the Apple Filing Protocol. AFP is a network filesystem found +** on Apple Macintosh computers - both OS9 and OSX. +** +** Third-party implementations of AFP are available. But this code here +** only works on OSX. +*/ + +#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE +/* +** The afpLockingContext structure contains all afp lock specific state +*/ +typedef struct afpLockingContext afpLockingContext; +struct afpLockingContext { + int reserved; + const char *dbPath; /* Name of the open file */ +}; + +struct ByteRangeLockPB2 +{ + unsigned long long offset; /* offset to first byte to lock */ + unsigned long long length; /* nbr of bytes to lock */ + unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ + unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ + unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ + int fd; /* file desc to assoc this lock with */ +}; + +#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) + +/* +** This is a utility for setting or clearing a bit-range lock on an +** AFP filesystem. +** +** Return SQLITE_OK on success, SQLITE_BUSY on failure. +*/ +static int afpSetLock( + const char *path, /* Name of the file to be locked or unlocked */ + unixFile *pFile, /* Open file descriptor on path */ + unsigned long long offset, /* First byte to be locked */ + unsigned long long length, /* Number of bytes to lock */ + int setLockFlag /* True to set lock. False to clear lock */ +){ + struct ByteRangeLockPB2 pb; + int err; + + pb.unLockFlag = setLockFlag ? 0 : 1; + pb.startEndFlag = 0; + pb.offset = offset; + pb.length = length; + pb.fd = pFile->h; + + OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", + (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), + offset, length)); + err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); + if ( err==-1 ) { + int rc; + int tErrno = errno; + OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", + path, tErrno, strerror(tErrno))); +#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS + rc = SQLITE_BUSY; +#else + rc = sqliteErrorFromPosixError(tErrno, + setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); +#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ + if( IS_LOCK_ERROR(rc) ){ + pFile->lastErrno = tErrno; + } + return rc; + } else { + return SQLITE_OK; + } +} + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, set *pResOut +** to a non-zero value otherwise *pResOut is set to zero. The return value +** is set to SQLITE_OK unless an I/O error occurs during lock checking. +*/ +static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ + int rc = SQLITE_OK; + int reserved = 0; + unixFile *pFile = (unixFile*)id; + afpLockingContext *context; + + SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); + + assert( pFile ); + context = (afpLockingContext *) pFile->lockingContext; + if( context->reserved ){ + *pResOut = 1; + return SQLITE_OK; + } + unixEnterMutex(); /* Because pFile->pInode is shared across threads */ + + /* Check if a thread in this process holds such a lock */ + if( pFile->pInode->eFileLock>SHARED_LOCK ){ + reserved = 1; + } + + /* Otherwise see if some other process holds it. + */ + if( !reserved ){ + /* lock the RESERVED byte */ + int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); + if( SQLITE_OK==lrc ){ + /* if we succeeded in taking the reserved lock, unlock it to restore + ** the original state */ + lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); + } else { + /* if we failed to get the lock then someone else must have it */ + reserved = 1; + } + if( IS_LOCK_ERROR(lrc) ){ + rc=lrc; + } + } + + unixLeaveMutex(); + OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); + + *pResOut = reserved; + return rc; +} + +/* +** Lock the file with the lock specified by parameter eFileLock - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. Use the sqlite3OsUnlock() +** routine to lower a locking level. +*/ +static int afpLock(sqlite3_file *id, int eFileLock){ + int rc = SQLITE_OK; + unixFile *pFile = (unixFile*)id; + unixInodeInfo *pInode = pFile->pInode; + afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; + + assert( pFile ); + OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, + azFileLock(eFileLock), azFileLock(pFile->eFileLock), + azFileLock(pInode->eFileLock), pInode->nShared , getpid())); + + /* If there is already a lock of this type or more restrictive on the + ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as + ** unixEnterMutex() hasn't been called yet. + */ + if( pFile->eFileLock>=eFileLock ){ + OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, + azFileLock(eFileLock))); + return SQLITE_OK; + } + + /* Make sure the locking sequence is correct + ** (1) We never move from unlocked to anything higher than shared lock. + ** (2) SQLite never explicitly requests a pendig lock. + ** (3) A shared lock is always held when a reserve lock is requested. + */ + assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); + assert( eFileLock!=PENDING_LOCK ); + assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); + + /* This mutex is needed because pFile->pInode is shared across threads + */ + unixEnterMutex(); + pInode = pFile->pInode; + + /* If some thread using this PID has a lock via a different unixFile* + ** handle that precludes the requested lock, return BUSY. + */ + if( (pFile->eFileLock!=pInode->eFileLock && + (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) + ){ + rc = SQLITE_BUSY; + goto afp_end_lock; + } + + /* If a SHARED lock is requested, and some thread using this PID already + ** has a SHARED or RESERVED lock, then increment reference counts and + ** return SQLITE_OK. + */ + if( eFileLock==SHARED_LOCK && + (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ + assert( eFileLock==SHARED_LOCK ); + assert( pFile->eFileLock==0 ); + assert( pInode->nShared>0 ); + pFile->eFileLock = SHARED_LOCK; + pInode->nShared++; + pInode->nLock++; + goto afp_end_lock; + } + + /* A PENDING lock is needed before acquiring a SHARED lock and before + ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will + ** be released. + */ + if( eFileLock==SHARED_LOCK + || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLockdbPath, pFile, PENDING_BYTE, 1, 1); + if (failed) { + rc = failed; + goto afp_end_lock; + } + } + + /* If control gets to this point, then actually go ahead and make + ** operating system calls for the specified lock. + */ + if( eFileLock==SHARED_LOCK ){ + int lrc1, lrc2, lrc1Errno = 0; + long lk, mask; + + assert( pInode->nShared==0 ); + assert( pInode->eFileLock==0 ); + + mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; + /* Now get the read-lock SHARED_LOCK */ + /* note that the quality of the randomness doesn't matter that much */ + lk = random(); + pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); + lrc1 = afpSetLock(context->dbPath, pFile, + SHARED_FIRST+pInode->sharedByte, 1, 1); + if( IS_LOCK_ERROR(lrc1) ){ + lrc1Errno = pFile->lastErrno; + } + /* Drop the temporary PENDING lock */ + lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); + + if( IS_LOCK_ERROR(lrc1) ) { + pFile->lastErrno = lrc1Errno; + rc = lrc1; + goto afp_end_lock; + } else if( IS_LOCK_ERROR(lrc2) ){ + rc = lrc2; + goto afp_end_lock; + } else if( lrc1 != SQLITE_OK ) { + rc = lrc1; + } else { + pFile->eFileLock = SHARED_LOCK; + pInode->nLock++; + pInode->nShared = 1; + } + }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ + /* We are trying for an exclusive lock but another thread in this + ** same process is still holding a shared lock. */ + rc = SQLITE_BUSY; + }else{ + /* The request was for a RESERVED or EXCLUSIVE lock. It is + ** assumed that there is a SHARED or greater lock on the file + ** already. + */ + int failed = 0; + assert( 0!=pFile->eFileLock ); + if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { + /* Acquire a RESERVED lock */ + failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); + if( !failed ){ + context->reserved = 1; + } + } + if (!failed && eFileLock == EXCLUSIVE_LOCK) { + /* Acquire an EXCLUSIVE lock */ + + /* Remove the shared lock before trying the range. we'll need to + ** reestablish the shared lock if we can't get the afpUnlock + */ + if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + + pInode->sharedByte, 1, 0)) ){ + int failed2 = SQLITE_OK; + /* now attemmpt to get the exclusive lock range */ + failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, + SHARED_SIZE, 1); + if( failed && (failed2 = afpSetLock(context->dbPath, pFile, + SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ + /* Can't reestablish the shared lock. Sqlite can't deal, this is + ** a critical I/O error + */ + rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 : + SQLITE_IOERR_LOCK; + goto afp_end_lock; + } + }else{ + rc = failed; + } + } + if( failed ){ + rc = failed; + } + } + + if( rc==SQLITE_OK ){ + pFile->eFileLock = eFileLock; + pInode->eFileLock = eFileLock; + }else if( eFileLock==EXCLUSIVE_LOCK ){ + pFile->eFileLock = PENDING_LOCK; + pInode->eFileLock = PENDING_LOCK; + } + +afp_end_lock: + unixLeaveMutex(); + OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), + rc==SQLITE_OK ? "ok" : "failed")); + return rc; +} + +/* +** Lower the locking level on file descriptor pFile to eFileLock. eFileLock +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +*/ +static int afpUnlock(sqlite3_file *id, int eFileLock) { + int rc = SQLITE_OK; + unixFile *pFile = (unixFile*)id; + unixInodeInfo *pInode; + afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; + int skipShared = 0; +#ifdef SQLITE_TEST + int h = pFile->h; +#endif + + assert( pFile ); + OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, + pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, + getpid())); + + assert( eFileLock<=SHARED_LOCK ); + if( pFile->eFileLock<=eFileLock ){ + return SQLITE_OK; + } + unixEnterMutex(); + pInode = pFile->pInode; + assert( pInode->nShared!=0 ); + if( pFile->eFileLock>SHARED_LOCK ){ + assert( pInode->eFileLock==pFile->eFileLock ); + SimulateIOErrorBenign(1); + SimulateIOError( h=(-1) ) + SimulateIOErrorBenign(0); + +#ifndef NDEBUG + /* When reducing a lock such that other processes can start + ** reading the database file again, make sure that the + ** transaction counter was updated if any part of the database + ** file changed. If the transaction counter is not updated, + ** other connections to the same file might not realize that + ** the file has changed and hence might not know to flush their + ** cache. The use of a stale cache can lead to database corruption. + */ + assert( pFile->inNormalWrite==0 + || pFile->dbUpdate==0 + || pFile->transCntrChng==1 ); + pFile->inNormalWrite = 0; +#endif + + if( pFile->eFileLock==EXCLUSIVE_LOCK ){ + rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); + if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ + /* only re-establish the shared lock if necessary */ + int sharedLockByte = SHARED_FIRST+pInode->sharedByte; + rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); + } else { + skipShared = 1; + } + } + if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ + rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); + } + if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ + rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); + if( !rc ){ + context->reserved = 0; + } + } + if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ + pInode->eFileLock = SHARED_LOCK; + } + } + if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ + + /* Decrement the shared lock counter. Release the lock using an + ** OS call only when all threads in this same process have released + ** the lock. + */ + unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; + pInode->nShared--; + if( pInode->nShared==0 ){ + SimulateIOErrorBenign(1); + SimulateIOError( h=(-1) ) + SimulateIOErrorBenign(0); + if( !skipShared ){ + rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); + } + if( !rc ){ + pInode->eFileLock = NO_LOCK; + pFile->eFileLock = NO_LOCK; + } + } + if( rc==SQLITE_OK ){ + pInode->nLock--; + assert( pInode->nLock>=0 ); + if( pInode->nLock==0 ){ + closePendingFds(pFile); + } + } + } + + unixLeaveMutex(); + if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; + return rc; +} + +/* +** Close a file & cleanup AFP specific locking context +*/ +static int afpClose(sqlite3_file *id) { + int rc = SQLITE_OK; + if( id ){ + unixFile *pFile = (unixFile*)id; + afpUnlock(id, NO_LOCK); + unixEnterMutex(); + if( pFile->pInode && pFile->pInode->nLock ){ + /* If there are outstanding locks, do not actually close the file just + ** yet because that would clear those locks. Instead, add the file + ** descriptor to pInode->aPending. It will be automatically closed when + ** the last lock is cleared. + */ + setPendingFd(pFile); + } + releaseInodeInfo(pFile); + sqlite3_free(pFile->lockingContext); + rc = closeUnixFile(id); + unixLeaveMutex(); + } + return rc; +} + +#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ +/* +** The code above is the AFP lock implementation. The code is specific +** to MacOSX and does not work on other unix platforms. No alternative +** is available. If you don't compile for a mac, then the "unix-afp" +** VFS is not available. +** +********************* End of the AFP lock implementation ********************** +******************************************************************************/ + +/****************************************************************************** +*************************** Begin NFS Locking ********************************/ + +#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE +/* + ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock + ** must be either NO_LOCK or SHARED_LOCK. + ** + ** If the locking level of the file descriptor is already at or below + ** the requested locking level, this routine is a no-op. + */ +static int nfsUnlock(sqlite3_file *id, int eFileLock){ + return posixUnlock(id, eFileLock, 1); +} + +#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ +/* +** The code above is the NFS lock implementation. The code is specific +** to MacOSX and does not work on other unix platforms. No alternative +** is available. +** +********************* End of the NFS lock implementation ********************** +******************************************************************************/ + +/****************************************************************************** +**************** Non-locking sqlite3_file methods ***************************** +** +** The next division contains implementations for all methods of the +** sqlite3_file object other than the locking methods. The locking +** methods were defined in divisions above (one locking method per +** division). Those methods that are common to all locking modes +** are gather together into this division. +*/ + +/* +** Seek to the offset passed as the second argument, then read cnt +** bytes into pBuf. Return the number of bytes actually read. +** +** NB: If you define USE_PREAD or USE_PREAD64, then it might also +** be necessary to define _XOPEN_SOURCE to be 500. This varies from +** one system to another. Since SQLite does not define USE_PREAD +** any any form by default, we will not attempt to define _XOPEN_SOURCE. +** See tickets #2741 and #2681. +** +** To avoid stomping the errno value on a failed read the lastErrno value +** is set before returning. +*/ +static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ + int got; +#if (!defined(USE_PREAD) && !defined(USE_PREAD64)) + i64 newOffset; +#endif + TIMER_START; +#if defined(USE_PREAD) + do{ got = osPread(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR ); + SimulateIOError( got = -1 ); +#elif defined(USE_PREAD64) + do{ got = osPread64(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR); + SimulateIOError( got = -1 ); +#else + newOffset = lseek(id->h, offset, SEEK_SET); + SimulateIOError( newOffset-- ); + if( newOffset!=offset ){ + if( newOffset == -1 ){ + ((unixFile*)id)->lastErrno = errno; + }else{ + ((unixFile*)id)->lastErrno = 0; + } + return -1; + } + do{ got = osRead(id->h, pBuf, cnt); }while( got<0 && errno==EINTR ); +#endif + TIMER_END; + if( got<0 ){ + ((unixFile*)id)->lastErrno = errno; + } + OSTRACE(("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); + return got; +} + +/* +** Read data from a file into a buffer. Return SQLITE_OK if all +** bytes were read successfully and SQLITE_IOERR if anything goes +** wrong. +*/ +static int unixRead( + sqlite3_file *id, + void *pBuf, + int amt, + sqlite3_int64 offset +){ + unixFile *pFile = (unixFile *)id; + int got; + assert( id ); + + /* If this is a database file (not a journal, master-journal or temp + ** file), the bytes in the locking range should never be read or written. */ +#if 0 + assert( pFile->pUnused==0 + || offset>=PENDING_BYTE+512 + || offset+amt<=PENDING_BYTE + ); +#endif + + got = seekAndRead(pFile, offset, pBuf, amt); + if( got==amt ){ + return SQLITE_OK; + }else if( got<0 ){ + /* lastErrno set by seekAndRead */ + return SQLITE_IOERR_READ; + }else{ + pFile->lastErrno = 0; /* not a system error */ + /* Unread parts of the buffer must be zero-filled */ + memset(&((char*)pBuf)[got], 0, amt-got); + return SQLITE_IOERR_SHORT_READ; + } +} + +/* +** Seek to the offset in id->offset then read cnt bytes into pBuf. +** Return the number of bytes actually read. Update the offset. +** +** To avoid stomping the errno value on a failed write the lastErrno value +** is set before returning. +*/ +static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ + int got; +#if (!defined(USE_PREAD) && !defined(USE_PREAD64)) + i64 newOffset; +#endif + TIMER_START; +#if defined(USE_PREAD) + do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR ); +#elif defined(USE_PREAD64) + do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR); +#else + do{ + newOffset = lseek(id->h, offset, SEEK_SET); + SimulateIOError( newOffset-- ); + if( newOffset!=offset ){ + if( newOffset == -1 ){ + ((unixFile*)id)->lastErrno = errno; + }else{ + ((unixFile*)id)->lastErrno = 0; + } + return -1; + } + got = osWrite(id->h, pBuf, cnt); + }while( got<0 && errno==EINTR ); +#endif + TIMER_END; + if( got<0 ){ + ((unixFile*)id)->lastErrno = errno; + } + + OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); + return got; +} + + +/* +** Write data from a buffer into a file. Return SQLITE_OK on success +** or some other error code on failure. +*/ +static int unixWrite( + sqlite3_file *id, + const void *pBuf, + int amt, + sqlite3_int64 offset +){ + unixFile *pFile = (unixFile*)id; + int wrote = 0; + assert( id ); + assert( amt>0 ); + + /* If this is a database file (not a journal, master-journal or temp + ** file), the bytes in the locking range should never be read or written. */ +#if 0 + assert( pFile->pUnused==0 + || offset>=PENDING_BYTE+512 + || offset+amt<=PENDING_BYTE + ); +#endif + +#ifndef NDEBUG + /* If we are doing a normal write to a database file (as opposed to + ** doing a hot-journal rollback or a write to some file other than a + ** normal database file) then record the fact that the database + ** has changed. If the transaction counter is modified, record that + ** fact too. + */ + if( pFile->inNormalWrite ){ + pFile->dbUpdate = 1; /* The database has been modified */ + if( offset<=24 && offset+amt>=27 ){ + int rc; + char oldCntr[4]; + SimulateIOErrorBenign(1); + rc = seekAndRead(pFile, 24, oldCntr, 4); + SimulateIOErrorBenign(0); + if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ + pFile->transCntrChng = 1; /* The transaction counter has changed */ + } + } + } +#endif + + while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){ + amt -= wrote; + offset += wrote; + pBuf = &((char*)pBuf)[wrote]; + } + SimulateIOError(( wrote=(-1), amt=1 )); + SimulateDiskfullError(( wrote=0, amt=1 )); + + if( amt>0 ){ + if( wrote<0 && pFile->lastErrno!=ENOSPC ){ + /* lastErrno set by seekAndWrite */ + return SQLITE_IOERR_WRITE; + }else{ + pFile->lastErrno = 0; /* not a system error */ + return SQLITE_FULL; + } + } + + return SQLITE_OK; +} + +#ifdef SQLITE_TEST +/* +** Count the number of fullsyncs and normal syncs. This is used to test +** that syncs and fullsyncs are occurring at the right times. +*/ +int sqlite3_sync_count = 0; +int sqlite3_fullsync_count = 0; +#endif + +/* +** We do not trust systems to provide a working fdatasync(). Some do. +** Others do no. To be safe, we will stick with the (slightly slower) +** fsync(). If you know that your system does support fdatasync() correctly, +** then simply compile with -Dfdatasync=fdatasync +*/ +#if !defined(fdatasync) +# define fdatasync fsync +#endif + +/* +** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not +** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently +** only available on Mac OS X. But that could change. +*/ +#ifdef F_FULLFSYNC +# define HAVE_FULLFSYNC 1 +#else +# define HAVE_FULLFSYNC 0 +#endif + + +/* +** The fsync() system call does not work as advertised on many +** unix systems. The following procedure is an attempt to make +** it work better. +** +** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful +** for testing when we want to run through the test suite quickly. +** You are strongly advised *not* to deploy with SQLITE_NO_SYNC +** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash +** or power failure will likely corrupt the database file. +** +** SQLite sets the dataOnly flag if the size of the file is unchanged. +** The idea behind dataOnly is that it should only write the file content +** to disk, not the inode. We only set dataOnly if the file size is +** unchanged since the file size is part of the inode. However, +** Ted Ts'o tells us that fdatasync() will also write the inode if the +** file size has changed. The only real difference between fdatasync() +** and fsync(), Ted tells us, is that fdatasync() will not flush the +** inode if the mtime or owner or other inode attributes have changed. +** We only care about the file size, not the other file attributes, so +** as far as SQLite is concerned, an fdatasync() is always adequate. +** So, we always use fdatasync() if it is available, regardless of +** the value of the dataOnly flag. +*/ +static int full_fsync(int fd, int fullSync, int dataOnly){ + int rc; + + /* The following "ifdef/elif/else/" block has the same structure as + ** the one below. It is replicated here solely to avoid cluttering + ** up the real code with the UNUSED_PARAMETER() macros. + */ +#ifdef SQLITE_NO_SYNC + UNUSED_PARAMETER(fd); + UNUSED_PARAMETER(fullSync); + UNUSED_PARAMETER(dataOnly); +#elif HAVE_FULLFSYNC + UNUSED_PARAMETER(dataOnly); +#else + UNUSED_PARAMETER(fullSync); + UNUSED_PARAMETER(dataOnly); +#endif + + /* Record the number of times that we do a normal fsync() and + ** FULLSYNC. This is used during testing to verify that this procedure + ** gets called with the correct arguments. + */ +#ifdef SQLITE_TEST + if( fullSync ) sqlite3_fullsync_count++; + sqlite3_sync_count++; +#endif + + /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a + ** no-op + */ +#ifdef SQLITE_NO_SYNC + rc = SQLITE_OK; +#elif HAVE_FULLFSYNC + if( fullSync ){ + rc = osFcntl(fd, F_FULLFSYNC, 0); + }else{ + rc = 1; + } + /* If the FULLFSYNC failed, fall back to attempting an fsync(). + ** It shouldn't be possible for fullfsync to fail on the local + ** file system (on OSX), so failure indicates that FULLFSYNC + ** isn't supported for this file system. So, attempt an fsync + ** and (for now) ignore the overhead of a superfluous fcntl call. + ** It'd be better to detect fullfsync support once and avoid + ** the fcntl call every time sync is called. + */ + if( rc ) rc = fsync(fd); + +#elif defined(__APPLE__) + /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly + ** so currently we default to the macro that redefines fdatasync to fsync + */ + rc = fsync(fd); +#else + rc = fdatasync(fd); +#if OS_VXWORKS + if( rc==-1 && errno==ENOTSUP ){ + rc = fsync(fd); + } +#endif /* OS_VXWORKS */ +#endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ + + if( OS_VXWORKS && rc!= -1 ){ + rc = 0; + } + return rc; +} + +/* +** Open a file descriptor to the directory containing file zFilename. +** If successful, *pFd is set to the opened file descriptor and +** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM +** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined +** value. +** +** The directory file descriptor is used for only one thing - to +** fsync() a directory to make sure file creation and deletion events +** are flushed to disk. Such fsyncs are not needed on newer +** journaling filesystems, but are required on older filesystems. +** +** This routine can be overridden using the xSetSysCall interface. +** The ability to override this routine was added in support of the +** chromium sandbox. Opening a directory is a security risk (we are +** told) so making it overrideable allows the chromium sandbox to +** replace this routine with a harmless no-op. To make this routine +** a no-op, replace it with a stub that returns SQLITE_OK but leaves +** *pFd set to a negative number. +** +** If SQLITE_OK is returned, the caller is responsible for closing +** the file descriptor *pFd using close(). +*/ +static int openDirectory(const char *zFilename, int *pFd){ + int ii; + int fd = -1; + char zDirname[MAX_PATHNAME+1]; + + sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); + for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--); + if( ii>0 ){ + zDirname[ii] = '\0'; + fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); + if( fd>=0 ){ +#ifdef FD_CLOEXEC + osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); +#endif + OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); + } + } + *pFd = fd; + return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname)); +} + +/* +** Make sure all writes to a particular file are committed to disk. +** +** If dataOnly==0 then both the file itself and its metadata (file +** size, access time, etc) are synced. If dataOnly!=0 then only the +** file data is synced. +** +** Under Unix, also make sure that the directory entry for the file +** has been created by fsync-ing the directory that contains the file. +** If we do not do this and we encounter a power failure, the directory +** entry for the journal might not exist after we reboot. The next +** SQLite to access the file will not know that the journal exists (because +** the directory entry for the journal was never created) and the transaction +** will not roll back - possibly leading to database corruption. +*/ +static int unixSync(sqlite3_file *id, int flags){ + int rc; + unixFile *pFile = (unixFile*)id; + + int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); + int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; + + /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ + assert((flags&0x0F)==SQLITE_SYNC_NORMAL + || (flags&0x0F)==SQLITE_SYNC_FULL + ); + + /* Unix cannot, but some systems may return SQLITE_FULL from here. This + ** line is to test that doing so does not cause any problems. + */ + SimulateDiskfullError( return SQLITE_FULL ); + + assert( pFile ); + OSTRACE(("SYNC %-3d\n", pFile->h)); + rc = full_fsync(pFile->h, isFullsync, isDataOnly); + SimulateIOError( rc=1 ); + if( rc ){ + pFile->lastErrno = errno; + return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); + } + + /* Also fsync the directory containing the file if the DIRSYNC flag + ** is set. This is a one-time occurrance. Many systems (examples: AIX) + ** are unable to fsync a directory, so ignore errors on the fsync. + */ + if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){ + int dirfd; + OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath, + HAVE_FULLFSYNC, isFullsync)); + rc = osOpenDirectory(pFile->zPath, &dirfd); + if( rc==SQLITE_OK && dirfd>=0 ){ + full_fsync(dirfd, 0, 0); + robust_close(pFile, dirfd, __LINE__); + }else if( rc==SQLITE_CANTOPEN ){ + rc = SQLITE_OK; + } + pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC; + } + return rc; +} + +/* +** Truncate an open file to a specified size +*/ +static int unixTruncate(sqlite3_file *id, i64 nByte){ + unixFile *pFile = (unixFile *)id; + int rc; + assert( pFile ); + SimulateIOError( return SQLITE_IOERR_TRUNCATE ); + + /* If the user has configured a chunk-size for this file, truncate the + ** file so that it consists of an integer number of chunks (i.e. the + ** actual file size after the operation may be larger than the requested + ** size). + */ + if( pFile->szChunk ){ + nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; + } + + rc = robust_ftruncate(pFile->h, (off_t)nByte); + if( rc ){ + pFile->lastErrno = errno; + return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); + }else{ +#ifndef NDEBUG + /* If we are doing a normal write to a database file (as opposed to + ** doing a hot-journal rollback or a write to some file other than a + ** normal database file) and we truncate the file to zero length, + ** that effectively updates the change counter. This might happen + ** when restoring a database using the backup API from a zero-length + ** source. + */ + if( pFile->inNormalWrite && nByte==0 ){ + pFile->transCntrChng = 1; + } +#endif + + return SQLITE_OK; + } +} + +/* +** Determine the current size of a file in bytes +*/ +static int unixFileSize(sqlite3_file *id, i64 *pSize){ + int rc; + struct stat buf; + assert( id ); + rc = osFstat(((unixFile*)id)->h, &buf); + SimulateIOError( rc=1 ); + if( rc!=0 ){ + ((unixFile*)id)->lastErrno = errno; + return SQLITE_IOERR_FSTAT; + } + *pSize = buf.st_size; + + /* When opening a zero-size database, the findInodeInfo() procedure + ** writes a single byte into that file in order to work around a bug + ** in the OS-X msdos filesystem. In order to avoid problems with upper + ** layers, we need to report this file size as zero even though it is + ** really 1. Ticket #3260. + */ + if( *pSize==1 ) *pSize = 0; + + + return SQLITE_OK; +} + +#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) +/* +** Handler for proxy-locking file-control verbs. Defined below in the +** proxying locking division. +*/ +static int proxyFileControl(sqlite3_file*,int,void*); +#endif + +/* +** This function is called to handle the SQLITE_FCNTL_SIZE_HINT +** file-control operation. Enlarge the database to nBytes in size +** (rounded up to the next chunk-size). If the database is already +** nBytes or larger, this routine is a no-op. +*/ +static int fcntlSizeHint(unixFile *pFile, i64 nByte){ + if( pFile->szChunk>0 ){ + i64 nSize; /* Required file size */ + struct stat buf; /* Used to hold return values of fstat() */ + + if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT; + + nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; + if( nSize>(i64)buf.st_size ){ + +#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE + /* The code below is handling the return value of osFallocate() + ** correctly. posix_fallocate() is defined to "returns zero on success, + ** or an error number on failure". See the manpage for details. */ + int err; + do{ + err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); + }while( err==EINTR ); + if( err ) return SQLITE_IOERR_WRITE; +#else + /* If the OS does not have posix_fallocate(), fake it. First use + ** ftruncate() to set the file size, then write a single byte to + ** the last byte in each block within the extended region. This + ** is the same technique used by glibc to implement posix_fallocate() + ** on systems that do not have a real fallocate() system call. + */ + int nBlk = buf.st_blksize; /* File-system block size */ + i64 iWrite; /* Next offset to write to */ + + if( robust_ftruncate(pFile->h, nSize) ){ + pFile->lastErrno = errno; + return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); + } + iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1; + while( iWriteeFileLock; + return SQLITE_OK; + } + case SQLITE_LAST_ERRNO: { + *(int*)pArg = pFile->lastErrno; + return SQLITE_OK; + } + case SQLITE_FCNTL_CHUNK_SIZE: { + pFile->szChunk = *(int *)pArg; + return SQLITE_OK; + } + case SQLITE_FCNTL_SIZE_HINT: { + int rc; + SimulateIOErrorBenign(1); + rc = fcntlSizeHint(pFile, *(i64 *)pArg); + SimulateIOErrorBenign(0); + return rc; + } + case SQLITE_FCNTL_PERSIST_WAL: { + int bPersist = *(int*)pArg; + if( bPersist<0 ){ + *(int*)pArg = (pFile->ctrlFlags & UNIXFILE_PERSIST_WAL)!=0; + }else if( bPersist==0 ){ + pFile->ctrlFlags &= ~UNIXFILE_PERSIST_WAL; + }else{ + pFile->ctrlFlags |= UNIXFILE_PERSIST_WAL; + } + return SQLITE_OK; + } +#ifndef NDEBUG + /* The pager calls this method to signal that it has done + ** a rollback and that the database is therefore unchanged and + ** it hence it is OK for the transaction change counter to be + ** unchanged. + */ + case SQLITE_FCNTL_DB_UNCHANGED: { + ((unixFile*)id)->dbUpdate = 0; + return SQLITE_OK; + } +#endif +#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) + case SQLITE_SET_LOCKPROXYFILE: + case SQLITE_GET_LOCKPROXYFILE: { + return proxyFileControl(id,op,pArg); + } +#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ + case SQLITE_FCNTL_SYNC_OMITTED: { + return SQLITE_OK; /* A no-op */ + } + } + return SQLITE_NOTFOUND; +} + +/* +** Return the sector size in bytes of the underlying block device for +** the specified file. This is almost always 512 bytes, but may be +** larger for some devices. +** +** SQLite code assumes this function cannot fail. It also assumes that +** if two files are created in the same file-system directory (i.e. +** a database and its journal file) that the sector size will be the +** same for both. +*/ +static int unixSectorSize(sqlite3_file *NotUsed){ + UNUSED_PARAMETER(NotUsed); + return SQLITE_DEFAULT_SECTOR_SIZE; +} + +/* +** Return the device characteristics for the file. This is always 0 for unix. +*/ +static int unixDeviceCharacteristics(sqlite3_file *NotUsed){ + UNUSED_PARAMETER(NotUsed); + return 0; +} + +#ifndef SQLITE_OMIT_WAL + + +/* +** Object used to represent an shared memory buffer. +** +** When multiple threads all reference the same wal-index, each thread +** has its own unixShm object, but they all point to a single instance +** of this unixShmNode object. In other words, each wal-index is opened +** only once per process. +** +** Each unixShmNode object is connected to a single unixInodeInfo object. +** We could coalesce this object into unixInodeInfo, but that would mean +** every open file that does not use shared memory (in other words, most +** open files) would have to carry around this extra information. So +** the unixInodeInfo object contains a pointer to this unixShmNode object +** and the unixShmNode object is created only when needed. +** +** unixMutexHeld() must be true when creating or destroying +** this object or while reading or writing the following fields: +** +** nRef +** +** The following fields are read-only after the object is created: +** +** fid +** zFilename +** +** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and +** unixMutexHeld() is true when reading or writing any other field +** in this structure. +*/ +struct unixShmNode { + unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ + sqlite3_mutex *mutex; /* Mutex to access this object */ + char *zFilename; /* Name of the mmapped file */ + int h; /* Open file descriptor */ + int szRegion; /* Size of shared-memory regions */ + u16 nRegion; /* Size of array apRegion */ + u8 isReadonly; /* True if read-only */ + char **apRegion; /* Array of mapped shared-memory regions */ + int nRef; /* Number of unixShm objects pointing to this */ + unixShm *pFirst; /* All unixShm objects pointing to this */ +#ifdef SQLITE_DEBUG + u8 exclMask; /* Mask of exclusive locks held */ + u8 sharedMask; /* Mask of shared locks held */ + u8 nextShmId; /* Next available unixShm.id value */ +#endif +}; + +/* +** Structure used internally by this VFS to record the state of an +** open shared memory connection. +** +** The following fields are initialized when this object is created and +** are read-only thereafter: +** +** unixShm.pFile +** unixShm.id +** +** All other fields are read/write. The unixShm.pFile->mutex must be held +** while accessing any read/write fields. +*/ +struct unixShm { + unixShmNode *pShmNode; /* The underlying unixShmNode object */ + unixShm *pNext; /* Next unixShm with the same unixShmNode */ + u8 hasMutex; /* True if holding the unixShmNode mutex */ + u8 id; /* Id of this connection within its unixShmNode */ + u16 sharedMask; /* Mask of shared locks held */ + u16 exclMask; /* Mask of exclusive locks held */ +}; + +/* +** Constants used for locking +*/ +#define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ +#define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ + +/* +** Apply posix advisory locks for all bytes from ofst through ofst+n-1. +** +** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking +** otherwise. +*/ +static int unixShmSystemLock( + unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */ + int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ + int ofst, /* First byte of the locking range */ + int n /* Number of bytes to lock */ +){ + struct flock f; /* The posix advisory locking structure */ + int rc = SQLITE_OK; /* Result code form fcntl() */ + + /* Access to the unixShmNode object is serialized by the caller */ + assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 ); + + /* Shared locks never span more than one byte */ + assert( n==1 || lockType!=F_RDLCK ); + + /* Locks are within range */ + assert( n>=1 && nh>=0 ){ + /* Initialize the locking parameters */ + memset(&f, 0, sizeof(f)); + f.l_type = lockType; + f.l_whence = SEEK_SET; + f.l_start = ofst; + f.l_len = n; + + rc = osFcntl(pShmNode->h, F_SETLK, &f); + rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; + } + + /* Update the global lock state and do debug tracing */ +#ifdef SQLITE_DEBUG + { u16 mask; + OSTRACE(("SHM-LOCK ")); + mask = (1<<(ofst+n)) - (1<exclMask &= ~mask; + pShmNode->sharedMask &= ~mask; + }else if( lockType==F_RDLCK ){ + OSTRACE(("read-lock %d ok", ofst)); + pShmNode->exclMask &= ~mask; + pShmNode->sharedMask |= mask; + }else{ + assert( lockType==F_WRLCK ); + OSTRACE(("write-lock %d ok", ofst)); + pShmNode->exclMask |= mask; + pShmNode->sharedMask &= ~mask; + } + }else{ + if( lockType==F_UNLCK ){ + OSTRACE(("unlock %d failed", ofst)); + }else if( lockType==F_RDLCK ){ + OSTRACE(("read-lock failed")); + }else{ + assert( lockType==F_WRLCK ); + OSTRACE(("write-lock %d failed", ofst)); + } + } + OSTRACE((" - afterwards %03x,%03x\n", + pShmNode->sharedMask, pShmNode->exclMask)); + } +#endif + + return rc; +} + + +/* +** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0. +** +** This is not a VFS shared-memory method; it is a utility function called +** by VFS shared-memory methods. +*/ +static void unixShmPurge(unixFile *pFd){ + unixShmNode *p = pFd->pInode->pShmNode; + assert( unixMutexHeld() ); + if( p && p->nRef==0 ){ + int i; + assert( p->pInode==pFd->pInode ); + sqlite3_mutex_free(p->mutex); + for(i=0; inRegion; i++){ + if( p->h>=0 ){ + munmap(p->apRegion[i], p->szRegion); + }else{ + sqlite3_free(p->apRegion[i]); + } + } + sqlite3_free(p->apRegion); + if( p->h>=0 ){ + robust_close(pFd, p->h, __LINE__); + p->h = -1; + } + p->pInode->pShmNode = 0; + sqlite3_free(p); + } +} + +/* +** Open a shared-memory area associated with open database file pDbFd. +** This particular implementation uses mmapped files. +** +** The file used to implement shared-memory is in the same directory +** as the open database file and has the same name as the open database +** file with the "-shm" suffix added. For example, if the database file +** is "/home/user1/config.db" then the file that is created and mmapped +** for shared memory will be called "/home/user1/config.db-shm". +** +** Another approach to is to use files in /dev/shm or /dev/tmp or an +** some other tmpfs mount. But if a file in a different directory +** from the database file is used, then differing access permissions +** or a chroot() might cause two different processes on the same +** database to end up using different files for shared memory - +** meaning that their memory would not really be shared - resulting +** in database corruption. Nevertheless, this tmpfs file usage +** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" +** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time +** option results in an incompatible build of SQLite; builds of SQLite +** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the +** same database file at the same time, database corruption will likely +** result. The SQLITE_SHM_DIRECTORY compile-time option is considered +** "unsupported" and may go away in a future SQLite release. +** +** When opening a new shared-memory file, if no other instances of that +** file are currently open, in this process or in other processes, then +** the file must be truncated to zero length or have its header cleared. +** +** If the original database file (pDbFd) is using the "unix-excl" VFS +** that means that an exclusive lock is held on the database file and +** that no other processes are able to read or write the database. In +** that case, we do not really need shared memory. No shared memory +** file is created. The shared memory will be simulated with heap memory. +*/ +static int unixOpenSharedMemory(unixFile *pDbFd){ + struct unixShm *p = 0; /* The connection to be opened */ + struct unixShmNode *pShmNode; /* The underlying mmapped file */ + int rc; /* Result code */ + unixInodeInfo *pInode; /* The inode of fd */ + char *zShmFilename; /* Name of the file used for SHM */ + int nShmFilename; /* Size of the SHM filename in bytes */ + + /* Allocate space for the new unixShm object. */ + p = sqlite3_malloc( sizeof(*p) ); + if( p==0 ) return SQLITE_NOMEM; + memset(p, 0, sizeof(*p)); + assert( pDbFd->pShm==0 ); + + /* Check to see if a unixShmNode object already exists. Reuse an existing + ** one if present. Create a new one if necessary. + */ + unixEnterMutex(); + pInode = pDbFd->pInode; + pShmNode = pInode->pShmNode; + if( pShmNode==0 ){ + struct stat sStat; /* fstat() info for database file */ + + /* Call fstat() to figure out the permissions on the database file. If + ** a new *-shm file is created, an attempt will be made to create it + ** with the same permissions. The actual permissions the file is created + ** with are subject to the current umask setting. + */ + if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){ + rc = SQLITE_IOERR_FSTAT; + goto shm_open_err; + } + +#ifdef SQLITE_SHM_DIRECTORY + nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 30; +#else + nShmFilename = 5 + (int)strlen(pDbFd->zPath); +#endif + pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename ); + if( pShmNode==0 ){ + rc = SQLITE_NOMEM; + goto shm_open_err; + } + memset(pShmNode, 0, sizeof(*pShmNode)); + zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1]; +#ifdef SQLITE_SHM_DIRECTORY + sqlite3_snprintf(nShmFilename, zShmFilename, + SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", + (u32)sStat.st_ino, (u32)sStat.st_dev); +#else + sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath); + sqlite3FileSuffix3(pDbFd->zPath, zShmFilename); +#endif + pShmNode->h = -1; + pDbFd->pInode->pShmNode = pShmNode; + pShmNode->pInode = pDbFd->pInode; + pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); + if( pShmNode->mutex==0 ){ + rc = SQLITE_NOMEM; + goto shm_open_err; + } + + if( pInode->bProcessLock==0 ){ + const char *zRO; + int openFlags = O_RDWR | O_CREAT; + zRO = sqlite3_uri_parameter(pDbFd->zPath, "readonly_shm"); + if( zRO && sqlite3GetBoolean(zRO) ){ + openFlags = O_RDONLY; + pShmNode->isReadonly = 1; + } + pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777)); + if( pShmNode->h<0 ){ + if( pShmNode->h<0 ){ + rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename); + goto shm_open_err; + } + } + + /* Check to see if another process is holding the dead-man switch. + ** If not, truncate the file to zero length. + */ + rc = SQLITE_OK; + if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){ + if( robust_ftruncate(pShmNode->h, 0) ){ + rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename); + } + } + if( rc==SQLITE_OK ){ + rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1); + } + if( rc ) goto shm_open_err; + } + } + + /* Make the new connection a child of the unixShmNode */ + p->pShmNode = pShmNode; +#ifdef SQLITE_DEBUG + p->id = pShmNode->nextShmId++; +#endif + pShmNode->nRef++; + pDbFd->pShm = p; + unixLeaveMutex(); + + /* The reference count on pShmNode has already been incremented under + ** the cover of the unixEnterMutex() mutex and the pointer from the + ** new (struct unixShm) object to the pShmNode has been set. All that is + ** left to do is to link the new object into the linked list starting + ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex + ** mutex. + */ + sqlite3_mutex_enter(pShmNode->mutex); + p->pNext = pShmNode->pFirst; + pShmNode->pFirst = p; + sqlite3_mutex_leave(pShmNode->mutex); + return SQLITE_OK; + + /* Jump here on any error */ +shm_open_err: + unixShmPurge(pDbFd); /* This call frees pShmNode if required */ + sqlite3_free(p); + unixLeaveMutex(); + return rc; +} + +/* +** This function is called to obtain a pointer to region iRegion of the +** shared-memory associated with the database file fd. Shared-memory regions +** are numbered starting from zero. Each shared-memory region is szRegion +** bytes in size. +** +** If an error occurs, an error code is returned and *pp is set to NULL. +** +** Otherwise, if the bExtend parameter is 0 and the requested shared-memory +** region has not been allocated (by any client, including one running in a +** separate process), then *pp is set to NULL and SQLITE_OK returned. If +** bExtend is non-zero and the requested shared-memory region has not yet +** been allocated, it is allocated by this function. +** +** If the shared-memory region has already been allocated or is allocated by +** this call as described above, then it is mapped into this processes +** address space (if it is not already), *pp is set to point to the mapped +** memory and SQLITE_OK returned. +*/ +static int unixShmMap( + sqlite3_file *fd, /* Handle open on database file */ + int iRegion, /* Region to retrieve */ + int szRegion, /* Size of regions */ + int bExtend, /* True to extend file if necessary */ + void volatile **pp /* OUT: Mapped memory */ +){ + unixFile *pDbFd = (unixFile*)fd; + unixShm *p; + unixShmNode *pShmNode; + int rc = SQLITE_OK; + + /* If the shared-memory file has not yet been opened, open it now. */ + if( pDbFd->pShm==0 ){ + rc = unixOpenSharedMemory(pDbFd); + if( rc!=SQLITE_OK ) return rc; + } + + p = pDbFd->pShm; + pShmNode = p->pShmNode; + sqlite3_mutex_enter(pShmNode->mutex); + assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); + assert( pShmNode->pInode==pDbFd->pInode ); + assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); + assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); + + if( pShmNode->nRegion<=iRegion ){ + char **apNew; /* New apRegion[] array */ + int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ + struct stat sStat; /* Used by fstat() */ + + pShmNode->szRegion = szRegion; + + if( pShmNode->h>=0 ){ + /* The requested region is not mapped into this processes address space. + ** Check to see if it has been allocated (i.e. if the wal-index file is + ** large enough to contain the requested region). + */ + if( osFstat(pShmNode->h, &sStat) ){ + rc = SQLITE_IOERR_SHMSIZE; + goto shmpage_out; + } + + if( sStat.st_sizeh, nByte) ){ + rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate", + pShmNode->zFilename); + goto shmpage_out; + } + } + } + + /* Map the requested memory region into this processes address space. */ + apNew = (char **)sqlite3_realloc( + pShmNode->apRegion, (iRegion+1)*sizeof(char *) + ); + if( !apNew ){ + rc = SQLITE_IOERR_NOMEM; + goto shmpage_out; + } + pShmNode->apRegion = apNew; + while(pShmNode->nRegion<=iRegion){ + void *pMem; + if( pShmNode->h>=0 ){ + pMem = mmap(0, szRegion, + pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, + MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion + ); + if( pMem==MAP_FAILED ){ + rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename); + goto shmpage_out; + } + }else{ + pMem = sqlite3_malloc(szRegion); + if( pMem==0 ){ + rc = SQLITE_NOMEM; + goto shmpage_out; + } + memset(pMem, 0, szRegion); + } + pShmNode->apRegion[pShmNode->nRegion] = pMem; + pShmNode->nRegion++; + } + } + +shmpage_out: + if( pShmNode->nRegion>iRegion ){ + *pp = pShmNode->apRegion[iRegion]; + }else{ + *pp = 0; + } + if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; + sqlite3_mutex_leave(pShmNode->mutex); + return rc; +} + +/* +** Change the lock state for a shared-memory segment. +** +** Note that the relationship between SHAREd and EXCLUSIVE locks is a little +** different here than in posix. In xShmLock(), one can go from unlocked +** to shared and back or from unlocked to exclusive and back. But one may +** not go from shared to exclusive or from exclusive to shared. +*/ +static int unixShmLock( + sqlite3_file *fd, /* Database file holding the shared memory */ + int ofst, /* First lock to acquire or release */ + int n, /* Number of locks to acquire or release */ + int flags /* What to do with the lock */ +){ + unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ + unixShm *p = pDbFd->pShm; /* The shared memory being locked */ + unixShm *pX; /* For looping over all siblings */ + unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */ + int rc = SQLITE_OK; /* Result code */ + u16 mask; /* Mask of locks to take or release */ + + assert( pShmNode==pDbFd->pInode->pShmNode ); + assert( pShmNode->pInode==pDbFd->pInode ); + assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); + assert( n>=1 ); + assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) + || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) + || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) + || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); + assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); + assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); + assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); + + mask = (1<<(ofst+n)) - (1<1 || mask==(1<mutex); + if( flags & SQLITE_SHM_UNLOCK ){ + u16 allMask = 0; /* Mask of locks held by siblings */ + + /* See if any siblings hold this same lock */ + for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ + if( pX==p ) continue; + assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); + allMask |= pX->sharedMask; + } + + /* Unlock the system-level locks */ + if( (mask & allMask)==0 ){ + rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n); + }else{ + rc = SQLITE_OK; + } + + /* Undo the local locks */ + if( rc==SQLITE_OK ){ + p->exclMask &= ~mask; + p->sharedMask &= ~mask; + } + }else if( flags & SQLITE_SHM_SHARED ){ + u16 allShared = 0; /* Union of locks held by connections other than "p" */ + + /* Find out which shared locks are already held by sibling connections. + ** If any sibling already holds an exclusive lock, go ahead and return + ** SQLITE_BUSY. + */ + for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ + if( (pX->exclMask & mask)!=0 ){ + rc = SQLITE_BUSY; + break; + } + allShared |= pX->sharedMask; + } + + /* Get shared locks at the system level, if necessary */ + if( rc==SQLITE_OK ){ + if( (allShared & mask)==0 ){ + rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n); + }else{ + rc = SQLITE_OK; + } + } + + /* Get the local shared locks */ + if( rc==SQLITE_OK ){ + p->sharedMask |= mask; + } + }else{ + /* Make sure no sibling connections hold locks that will block this + ** lock. If any do, return SQLITE_BUSY right away. + */ + for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ + if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ + rc = SQLITE_BUSY; + break; + } + } + + /* Get the exclusive locks at the system level. Then if successful + ** also mark the local connection as being locked. + */ + if( rc==SQLITE_OK ){ + rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n); + if( rc==SQLITE_OK ){ + assert( (p->sharedMask & mask)==0 ); + p->exclMask |= mask; + } + } + } + sqlite3_mutex_leave(pShmNode->mutex); + OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", + p->id, getpid(), p->sharedMask, p->exclMask)); + return rc; +} + +/* +** Implement a memory barrier or memory fence on shared memory. +** +** All loads and stores begun before the barrier must complete before +** any load or store begun after the barrier. +*/ +static void unixShmBarrier( + sqlite3_file *fd /* Database file holding the shared memory */ +){ + UNUSED_PARAMETER(fd); + unixEnterMutex(); + unixLeaveMutex(); +} + +/* +** Close a connection to shared-memory. Delete the underlying +** storage if deleteFlag is true. +** +** If there is no shared memory associated with the connection then this +** routine is a harmless no-op. +*/ +static int unixShmUnmap( + sqlite3_file *fd, /* The underlying database file */ + int deleteFlag /* Delete shared-memory if true */ +){ + unixShm *p; /* The connection to be closed */ + unixShmNode *pShmNode; /* The underlying shared-memory file */ + unixShm **pp; /* For looping over sibling connections */ + unixFile *pDbFd; /* The underlying database file */ + + pDbFd = (unixFile*)fd; + p = pDbFd->pShm; + if( p==0 ) return SQLITE_OK; + pShmNode = p->pShmNode; + + assert( pShmNode==pDbFd->pInode->pShmNode ); + assert( pShmNode->pInode==pDbFd->pInode ); + + /* Remove connection p from the set of connections associated + ** with pShmNode */ + sqlite3_mutex_enter(pShmNode->mutex); + for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} + *pp = p->pNext; + + /* Free the connection p */ + sqlite3_free(p); + pDbFd->pShm = 0; + sqlite3_mutex_leave(pShmNode->mutex); + + /* If pShmNode->nRef has reached 0, then close the underlying + ** shared-memory file, too */ + unixEnterMutex(); + assert( pShmNode->nRef>0 ); + pShmNode->nRef--; + if( pShmNode->nRef==0 ){ + if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename); + unixShmPurge(pDbFd); + } + unixLeaveMutex(); + + return SQLITE_OK; +} + + +#else +# define unixShmMap 0 +# define unixShmLock 0 +# define unixShmBarrier 0 +# define unixShmUnmap 0 +#endif /* #ifndef SQLITE_OMIT_WAL */ + +/* +** Here ends the implementation of all sqlite3_file methods. +** +********************** End sqlite3_file Methods ******************************* +******************************************************************************/ + +/* +** This division contains definitions of sqlite3_io_methods objects that +** implement various file locking strategies. It also contains definitions +** of "finder" functions. A finder-function is used to locate the appropriate +** sqlite3_io_methods object for a particular database file. The pAppData +** field of the sqlite3_vfs VFS objects are initialized to be pointers to +** the correct finder-function for that VFS. +** +** Most finder functions return a pointer to a fixed sqlite3_io_methods +** object. The only interesting finder-function is autolockIoFinder, which +** looks at the filesystem type and tries to guess the best locking +** strategy from that. +** +** For finder-funtion F, two objects are created: +** +** (1) The real finder-function named "FImpt()". +** +** (2) A constant pointer to this function named just "F". +** +** +** A pointer to the F pointer is used as the pAppData value for VFS +** objects. We have to do this instead of letting pAppData point +** directly at the finder-function since C90 rules prevent a void* +** from be cast into a function pointer. +** +** +** Each instance of this macro generates two objects: +** +** * A constant sqlite3_io_methods object call METHOD that has locking +** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. +** +** * An I/O method finder function called FINDER that returns a pointer +** to the METHOD object in the previous bullet. +*/ +#define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \ +static const sqlite3_io_methods METHOD = { \ + VERSION, /* iVersion */ \ + CLOSE, /* xClose */ \ + unixRead, /* xRead */ \ + unixWrite, /* xWrite */ \ + unixTruncate, /* xTruncate */ \ + unixSync, /* xSync */ \ + unixFileSize, /* xFileSize */ \ + LOCK, /* xLock */ \ + UNLOCK, /* xUnlock */ \ + CKLOCK, /* xCheckReservedLock */ \ + unixFileControl, /* xFileControl */ \ + unixSectorSize, /* xSectorSize */ \ + unixDeviceCharacteristics, /* xDeviceCapabilities */ \ + unixShmMap, /* xShmMap */ \ + unixShmLock, /* xShmLock */ \ + unixShmBarrier, /* xShmBarrier */ \ + unixShmUnmap /* xShmUnmap */ \ +}; \ +static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ + UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ + return &METHOD; \ +} \ +static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ + = FINDER##Impl; + +/* +** Here are all of the sqlite3_io_methods objects for each of the +** locking strategies. Functions that return pointers to these methods +** are also created. +*/ +IOMETHODS( + posixIoFinder, /* Finder function name */ + posixIoMethods, /* sqlite3_io_methods object name */ + 2, /* shared memory is enabled */ + unixClose, /* xClose method */ + unixLock, /* xLock method */ + unixUnlock, /* xUnlock method */ + unixCheckReservedLock /* xCheckReservedLock method */ +) +IOMETHODS( + nolockIoFinder, /* Finder function name */ + nolockIoMethods, /* sqlite3_io_methods object name */ + 1, /* shared memory is disabled */ + nolockClose, /* xClose method */ + nolockLock, /* xLock method */ + nolockUnlock, /* xUnlock method */ + nolockCheckReservedLock /* xCheckReservedLock method */ +) +IOMETHODS( + dotlockIoFinder, /* Finder function name */ + dotlockIoMethods, /* sqlite3_io_methods object name */ + 1, /* shared memory is disabled */ + dotlockClose, /* xClose method */ + dotlockLock, /* xLock method */ + dotlockUnlock, /* xUnlock method */ + dotlockCheckReservedLock /* xCheckReservedLock method */ +) + +#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS +IOMETHODS( + flockIoFinder, /* Finder function name */ + flockIoMethods, /* sqlite3_io_methods object name */ + 1, /* shared memory is disabled */ + flockClose, /* xClose method */ + flockLock, /* xLock method */ + flockUnlock, /* xUnlock method */ + flockCheckReservedLock /* xCheckReservedLock method */ +) +#endif + +#if OS_VXWORKS +IOMETHODS( + semIoFinder, /* Finder function name */ + semIoMethods, /* sqlite3_io_methods object name */ + 1, /* shared memory is disabled */ + semClose, /* xClose method */ + semLock, /* xLock method */ + semUnlock, /* xUnlock method */ + semCheckReservedLock /* xCheckReservedLock method */ +) +#endif + +#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE +IOMETHODS( + afpIoFinder, /* Finder function name */ + afpIoMethods, /* sqlite3_io_methods object name */ + 1, /* shared memory is disabled */ + afpClose, /* xClose method */ + afpLock, /* xLock method */ + afpUnlock, /* xUnlock method */ + afpCheckReservedLock /* xCheckReservedLock method */ +) +#endif + +/* +** The proxy locking method is a "super-method" in the sense that it +** opens secondary file descriptors for the conch and lock files and +** it uses proxy, dot-file, AFP, and flock() locking methods on those +** secondary files. For this reason, the division that implements +** proxy locking is located much further down in the file. But we need +** to go ahead and define the sqlite3_io_methods and finder function +** for proxy locking here. So we forward declare the I/O methods. +*/ +#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE +static int proxyClose(sqlite3_file*); +static int proxyLock(sqlite3_file*, int); +static int proxyUnlock(sqlite3_file*, int); +static int proxyCheckReservedLock(sqlite3_file*, int*); +IOMETHODS( + proxyIoFinder, /* Finder function name */ + proxyIoMethods, /* sqlite3_io_methods object name */ + 1, /* shared memory is disabled */ + proxyClose, /* xClose method */ + proxyLock, /* xLock method */ + proxyUnlock, /* xUnlock method */ + proxyCheckReservedLock /* xCheckReservedLock method */ +) +#endif + +/* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ +#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE +IOMETHODS( + nfsIoFinder, /* Finder function name */ + nfsIoMethods, /* sqlite3_io_methods object name */ + 1, /* shared memory is disabled */ + unixClose, /* xClose method */ + unixLock, /* xLock method */ + nfsUnlock, /* xUnlock method */ + unixCheckReservedLock /* xCheckReservedLock method */ +) +#endif + +#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE +/* +** This "finder" function attempts to determine the best locking strategy +** for the database file "filePath". It then returns the sqlite3_io_methods +** object that implements that strategy. +** +** This is for MacOSX only. +*/ +static const sqlite3_io_methods *autolockIoFinderImpl( + const char *filePath, /* name of the database file */ + unixFile *pNew /* open file object for the database file */ +){ + static const struct Mapping { + const char *zFilesystem; /* Filesystem type name */ + const sqlite3_io_methods *pMethods; /* Appropriate locking method */ + } aMap[] = { + { "hfs", &posixIoMethods }, + { "ufs", &posixIoMethods }, + { "afpfs", &afpIoMethods }, + { "smbfs", &afpIoMethods }, + { "webdav", &nolockIoMethods }, + { 0, 0 } + }; + int i; + struct statfs fsInfo; + struct flock lockInfo; + + if( !filePath ){ + /* If filePath==NULL that means we are dealing with a transient file + ** that does not need to be locked. */ + return &nolockIoMethods; + } + if( statfs(filePath, &fsInfo) != -1 ){ + if( fsInfo.f_flags & MNT_RDONLY ){ + return &nolockIoMethods; + } + for(i=0; aMap[i].zFilesystem; i++){ + if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ + return aMap[i].pMethods; + } + } + } + + /* Default case. Handles, amongst others, "nfs". + ** Test byte-range lock using fcntl(). If the call succeeds, + ** assume that the file-system supports POSIX style locks. + */ + lockInfo.l_len = 1; + lockInfo.l_start = 0; + lockInfo.l_whence = SEEK_SET; + lockInfo.l_type = F_RDLCK; + if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { + if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ + return &nfsIoMethods; + } else { + return &posixIoMethods; + } + }else{ + return &dotlockIoMethods; + } +} +static const sqlite3_io_methods + *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; + +#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ + +#if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE +/* +** This "finder" function attempts to determine the best locking strategy +** for the database file "filePath". It then returns the sqlite3_io_methods +** object that implements that strategy. +** +** This is for VXWorks only. +*/ +static const sqlite3_io_methods *autolockIoFinderImpl( + const char *filePath, /* name of the database file */ + unixFile *pNew /* the open file object */ +){ + struct flock lockInfo; + + if( !filePath ){ + /* If filePath==NULL that means we are dealing with a transient file + ** that does not need to be locked. */ + return &nolockIoMethods; + } + + /* Test if fcntl() is supported and use POSIX style locks. + ** Otherwise fall back to the named semaphore method. + */ + lockInfo.l_len = 1; + lockInfo.l_start = 0; + lockInfo.l_whence = SEEK_SET; + lockInfo.l_type = F_RDLCK; + if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { + return &posixIoMethods; + }else{ + return &semIoMethods; + } +} +static const sqlite3_io_methods + *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; + +#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */ + +/* +** An abstract type for a pointer to a IO method finder function: +*/ +typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); + + +/**************************************************************************** +**************************** sqlite3_vfs methods **************************** +** +** This division contains the implementation of methods on the +** sqlite3_vfs object. +*/ + +/* +** Initialize the contents of the unixFile structure pointed to by pId. +*/ +static int fillInUnixFile( + sqlite3_vfs *pVfs, /* Pointer to vfs object */ + int h, /* Open file descriptor of file being opened */ + int syncDir, /* True to sync directory on first sync */ + sqlite3_file *pId, /* Write to the unixFile structure here */ + const char *zFilename, /* Name of the file being opened */ + int noLock, /* Omit locking if true */ + int isDelete, /* Delete on close if true */ + int isReadOnly /* True if the file is opened read-only */ +){ + const sqlite3_io_methods *pLockingStyle; + unixFile *pNew = (unixFile *)pId; + int rc = SQLITE_OK; + + assert( pNew->pInode==NULL ); + + /* Parameter isDelete is only used on vxworks. Express this explicitly + ** here to prevent compiler warnings about unused parameters. + */ + UNUSED_PARAMETER(isDelete); + + /* Usually the path zFilename should not be a relative pathname. The + ** exception is when opening the proxy "conch" file in builds that + ** include the special Apple locking styles. + */ +#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE + assert( zFilename==0 || zFilename[0]=='/' + || pVfs->pAppData==(void*)&autolockIoFinder ); +#else + assert( zFilename==0 || zFilename[0]=='/' ); +#endif + + /* No locking occurs in temporary files */ + assert( zFilename!=0 || noLock ); + + OSTRACE(("OPEN %-3d %s\n", h, zFilename)); + pNew->h = h; + pNew->zPath = zFilename; + if( memcmp(pVfs->zName,"unix-excl",10)==0 ){ + pNew->ctrlFlags = UNIXFILE_EXCL; + }else{ + pNew->ctrlFlags = 0; + } + if( isReadOnly ){ + pNew->ctrlFlags |= UNIXFILE_RDONLY; + } + if( syncDir ){ + pNew->ctrlFlags |= UNIXFILE_DIRSYNC; + } + +#if OS_VXWORKS + pNew->pId = vxworksFindFileId(zFilename); + if( pNew->pId==0 ){ + noLock = 1; + rc = SQLITE_NOMEM; + } +#endif + + if( noLock ){ + pLockingStyle = &nolockIoMethods; + }else{ + pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); +#if SQLITE_ENABLE_LOCKING_STYLE + /* Cache zFilename in the locking context (AFP and dotlock override) for + ** proxyLock activation is possible (remote proxy is based on db name) + ** zFilename remains valid until file is closed, to support */ + pNew->lockingContext = (void*)zFilename; +#endif + } + + if( pLockingStyle == &posixIoMethods +#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE + || pLockingStyle == &nfsIoMethods +#endif + ){ + unixEnterMutex(); + rc = findInodeInfo(pNew, &pNew->pInode); + if( rc!=SQLITE_OK ){ + /* If an error occured in findInodeInfo(), close the file descriptor + ** immediately, before releasing the mutex. findInodeInfo() may fail + ** in two scenarios: + ** + ** (a) A call to fstat() failed. + ** (b) A malloc failed. + ** + ** Scenario (b) may only occur if the process is holding no other + ** file descriptors open on the same file. If there were other file + ** descriptors on this file, then no malloc would be required by + ** findInodeInfo(). If this is the case, it is quite safe to close + ** handle h - as it is guaranteed that no posix locks will be released + ** by doing so. + ** + ** If scenario (a) caused the error then things are not so safe. The + ** implicit assumption here is that if fstat() fails, things are in + ** such bad shape that dropping a lock or two doesn't matter much. + */ + robust_close(pNew, h, __LINE__); + h = -1; + } + unixLeaveMutex(); + } + +#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) + else if( pLockingStyle == &afpIoMethods ){ + /* AFP locking uses the file path so it needs to be included in + ** the afpLockingContext. + */ + afpLockingContext *pCtx; + pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) ); + if( pCtx==0 ){ + rc = SQLITE_NOMEM; + }else{ + /* NB: zFilename exists and remains valid until the file is closed + ** according to requirement F11141. So we do not need to make a + ** copy of the filename. */ + pCtx->dbPath = zFilename; + pCtx->reserved = 0; + srandomdev(); + unixEnterMutex(); + rc = findInodeInfo(pNew, &pNew->pInode); + if( rc!=SQLITE_OK ){ + sqlite3_free(pNew->lockingContext); + robust_close(pNew, h, __LINE__); + h = -1; + } + unixLeaveMutex(); + } + } +#endif + + else if( pLockingStyle == &dotlockIoMethods ){ + /* Dotfile locking uses the file path so it needs to be included in + ** the dotlockLockingContext + */ + char *zLockFile; + int nFilename; + assert( zFilename!=0 ); + nFilename = (int)strlen(zFilename) + 6; + zLockFile = (char *)sqlite3_malloc(nFilename); + if( zLockFile==0 ){ + rc = SQLITE_NOMEM; + }else{ + sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); + } + pNew->lockingContext = zLockFile; + } + +#if OS_VXWORKS + else if( pLockingStyle == &semIoMethods ){ + /* Named semaphore locking uses the file path so it needs to be + ** included in the semLockingContext + */ + unixEnterMutex(); + rc = findInodeInfo(pNew, &pNew->pInode); + if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ + char *zSemName = pNew->pInode->aSemName; + int n; + sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", + pNew->pId->zCanonicalName); + for( n=1; zSemName[n]; n++ ) + if( zSemName[n]=='/' ) zSemName[n] = '_'; + pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); + if( pNew->pInode->pSem == SEM_FAILED ){ + rc = SQLITE_NOMEM; + pNew->pInode->aSemName[0] = '\0'; + } + } + unixLeaveMutex(); + } +#endif + + pNew->lastErrno = 0; +#if OS_VXWORKS + if( rc!=SQLITE_OK ){ + if( h>=0 ) robust_close(pNew, h, __LINE__); + h = -1; + osUnlink(zFilename); + isDelete = 0; + } + pNew->isDelete = isDelete; +#endif + if( rc!=SQLITE_OK ){ + if( h>=0 ) robust_close(pNew, h, __LINE__); + }else{ + pNew->pMethod = pLockingStyle; + OpenCounter(+1); + } + return rc; +} + +/* +** Return the name of a directory in which to put temporary files. +** If no suitable temporary file directory can be found, return NULL. +*/ +static const char *unixTempFileDir(void){ + static const char *azDirs[] = { + 0, + 0, + "/var/tmp", + "/usr/tmp", + "/tmp", + 0 /* List terminator */ + }; + unsigned int i; + struct stat buf; + const char *zDir = 0; + + azDirs[0] = sqlite3_temp_directory; + if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR"); + for(i=0; imxPathname bytes. +*/ +static int unixGetTempname(int nBuf, char *zBuf){ + static const unsigned char zChars[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789"; + unsigned int i, j; + const char *zDir; + + /* It's odd to simulate an io-error here, but really this is just + ** using the io-error infrastructure to test that SQLite handles this + ** function failing. + */ + SimulateIOError( return SQLITE_IOERR ); + + zDir = unixTempFileDir(); + if( zDir==0 ) zDir = "."; + + /* Check that the output buffer is large enough for the temporary file + ** name. If it is not, return SQLITE_ERROR. + */ + if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){ + return SQLITE_ERROR; + } + + do{ + sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); + j = (int)strlen(zBuf); + sqlite3_randomness(15, &zBuf[j]); + for(i=0; i<15; i++, j++){ + zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; + } + zBuf[j] = 0; + }while( osAccess(zBuf,0)==0 ); + return SQLITE_OK; +} + +#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) +/* +** Routine to transform a unixFile into a proxy-locking unixFile. +** Implementation in the proxy-lock division, but used by unixOpen() +** if SQLITE_PREFER_PROXY_LOCKING is defined. +*/ +static int proxyTransformUnixFile(unixFile*, const char*); +#endif + +/* +** Search for an unused file descriptor that was opened on the database +** file (not a journal or master-journal file) identified by pathname +** zPath with SQLITE_OPEN_XXX flags matching those passed as the second +** argument to this function. +** +** Such a file descriptor may exist if a database connection was closed +** but the associated file descriptor could not be closed because some +** other file descriptor open on the same file is holding a file-lock. +** Refer to comments in the unixClose() function and the lengthy comment +** describing "Posix Advisory Locking" at the start of this file for +** further details. Also, ticket #4018. +** +** If a suitable file descriptor is found, then it is returned. If no +** such file descriptor is located, -1 is returned. +*/ +static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ + UnixUnusedFd *pUnused = 0; + + /* Do not search for an unused file descriptor on vxworks. Not because + ** vxworks would not benefit from the change (it might, we're not sure), + ** but because no way to test it is currently available. It is better + ** not to risk breaking vxworks support for the sake of such an obscure + ** feature. */ +#if !OS_VXWORKS + struct stat sStat; /* Results of stat() call */ + + /* A stat() call may fail for various reasons. If this happens, it is + ** almost certain that an open() call on the same path will also fail. + ** For this reason, if an error occurs in the stat() call here, it is + ** ignored and -1 is returned. The caller will try to open a new file + ** descriptor on the same path, fail, and return an error to SQLite. + ** + ** Even if a subsequent open() call does succeed, the consequences of + ** not searching for a resusable file descriptor are not dire. */ + if( 0==osStat(zPath, &sStat) ){ + unixInodeInfo *pInode; + + unixEnterMutex(); + pInode = inodeList; + while( pInode && (pInode->fileId.dev!=sStat.st_dev + || pInode->fileId.ino!=sStat.st_ino) ){ + pInode = pInode->pNext; + } + if( pInode ){ + UnixUnusedFd **pp; + for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); + pUnused = *pp; + if( pUnused ){ + *pp = pUnused->pNext; + } + } + unixLeaveMutex(); + } +#endif /* if !OS_VXWORKS */ + return pUnused; +} + +/* +** This function is called by unixOpen() to determine the unix permissions +** to create new files with. If no error occurs, then SQLITE_OK is returned +** and a value suitable for passing as the third argument to open(2) is +** written to *pMode. If an IO error occurs, an SQLite error code is +** returned and the value of *pMode is not modified. +** +** If the file being opened is a temporary file, it is always created with +** the octal permissions 0600 (read/writable by owner only). If the file +** is a database or master journal file, it is created with the permissions +** mask SQLITE_DEFAULT_FILE_PERMISSIONS. +** +** Finally, if the file being opened is a WAL or regular journal file, then +** this function queries the file-system for the permissions on the +** corresponding database file and sets *pMode to this value. Whenever +** possible, WAL and journal files are created using the same permissions +** as the associated database file. +** +** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the +** original filename is unavailable. But 8_3_NAMES is only used for +** FAT filesystems and permissions do not matter there, so just use +** the default permissions. +*/ +static int findCreateFileMode( + const char *zPath, /* Path of file (possibly) being created */ + int flags, /* Flags passed as 4th argument to xOpen() */ + mode_t *pMode /* OUT: Permissions to open file with */ +){ + int rc = SQLITE_OK; /* Return Code */ + *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS; + if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ + char zDb[MAX_PATHNAME+1]; /* Database file path */ + int nDb; /* Number of valid bytes in zDb */ + struct stat sStat; /* Output of stat() on database file */ + + /* zPath is a path to a WAL or journal file. The following block derives + ** the path to the associated database file from zPath. This block handles + ** the following naming conventions: + ** + ** "-journal" + ** "-wal" + ** "-journalNN" + ** "-walNN" + ** + ** where NN is a decimal number. The NN naming schemes are + ** used by the test_multiplex.c module. + */ + nDb = sqlite3Strlen30(zPath) - 1; +#ifdef SQLITE_ENABLE_8_3_NAMES + while( nDb>0 && !sqlite3Isalnum(zPath[nDb]) ) nDb--; + if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK; +#else + while( zPath[nDb]!='-' ){ + assert( nDb>0 ); + assert( zPath[nDb]!='\n' ); + nDb--; + } +#endif + memcpy(zDb, zPath, nDb); + zDb[nDb] = '\0'; + + if( 0==osStat(zDb, &sStat) ){ + *pMode = sStat.st_mode & 0777; + }else{ + rc = SQLITE_IOERR_FSTAT; + } + }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ + *pMode = 0600; + } + return rc; +} + +/* +** Open the file zPath. +** +** Previously, the SQLite OS layer used three functions in place of this +** one: +** +** sqlite3OsOpenReadWrite(); +** sqlite3OsOpenReadOnly(); +** sqlite3OsOpenExclusive(); +** +** These calls correspond to the following combinations of flags: +** +** ReadWrite() -> (READWRITE | CREATE) +** ReadOnly() -> (READONLY) +** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) +** +** The old OpenExclusive() accepted a boolean argument - "delFlag". If +** true, the file was configured to be automatically deleted when the +** file handle closed. To achieve the same effect using this new +** interface, add the DELETEONCLOSE flag to those specified above for +** OpenExclusive(). +*/ +static int unixOpen( + sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ + const char *zPath, /* Pathname of file to be opened */ + sqlite3_file *pFile, /* The file descriptor to be filled in */ + int flags, /* Input flags to control the opening */ + int *pOutFlags /* Output flags returned to SQLite core */ +){ + unixFile *p = (unixFile *)pFile; + int fd = -1; /* File descriptor returned by open() */ + int openFlags = 0; /* Flags to pass to open() */ + int eType = flags&0xFFFFFF00; /* Type of file to open */ + int noLock; /* True to omit locking primitives */ + int rc = SQLITE_OK; /* Function Return Code */ + + int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); + int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); + int isCreate = (flags & SQLITE_OPEN_CREATE); + int isReadonly = (flags & SQLITE_OPEN_READONLY); + int isReadWrite = (flags & SQLITE_OPEN_READWRITE); +#if SQLITE_ENABLE_LOCKING_STYLE + int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); +#endif +#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE + struct statfs fsInfo; +#endif + + /* If creating a master or main-file journal, this function will open + ** a file-descriptor on the directory too. The first time unixSync() + ** is called the directory file descriptor will be fsync()ed and close()d. + */ + int syncDir = (isCreate && ( + eType==SQLITE_OPEN_MASTER_JOURNAL + || eType==SQLITE_OPEN_MAIN_JOURNAL + || eType==SQLITE_OPEN_WAL + )); + + /* If argument zPath is a NULL pointer, this function is required to open + ** a temporary file. Use this buffer to store the file name in. + */ + char zTmpname[MAX_PATHNAME+1]; + const char *zName = zPath; + + /* Check the following statements are true: + ** + ** (a) Exactly one of the READWRITE and READONLY flags must be set, and + ** (b) if CREATE is set, then READWRITE must also be set, and + ** (c) if EXCLUSIVE is set, then CREATE must also be set. + ** (d) if DELETEONCLOSE is set, then CREATE must also be set. + */ + assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); + assert(isCreate==0 || isReadWrite); + assert(isExclusive==0 || isCreate); + assert(isDelete==0 || isCreate); + + /* The main DB, main journal, WAL file and master journal are never + ** automatically deleted. Nor are they ever temporary files. */ + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); + + /* Assert that the upper layer has set one of the "file-type" flags. */ + assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB + || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL + || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL + || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL + ); + + memset(p, 0, sizeof(unixFile)); + + if( eType==SQLITE_OPEN_MAIN_DB ){ + UnixUnusedFd *pUnused; + pUnused = findReusableFd(zName, flags); + if( pUnused ){ + fd = pUnused->fd; + }else{ + pUnused = sqlite3_malloc(sizeof(*pUnused)); + if( !pUnused ){ + return SQLITE_NOMEM; + } + } + p->pUnused = pUnused; + }else if( !zName ){ + /* If zName is NULL, the upper layer is requesting a temp file. */ + assert(isDelete && !syncDir); + rc = unixGetTempname(MAX_PATHNAME+1, zTmpname); + if( rc!=SQLITE_OK ){ + return rc; + } + zName = zTmpname; + } + + /* Determine the value of the flags parameter passed to POSIX function + ** open(). These must be calculated even if open() is not called, as + ** they may be stored as part of the file handle and used by the + ** 'conch file' locking functions later on. */ + if( isReadonly ) openFlags |= O_RDONLY; + if( isReadWrite ) openFlags |= O_RDWR; + if( isCreate ) openFlags |= O_CREAT; + if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); + openFlags |= (O_LARGEFILE|O_BINARY); + + if( fd<0 ){ + mode_t openMode; /* Permissions to create file with */ + rc = findCreateFileMode(zName, flags, &openMode); + if( rc!=SQLITE_OK ){ + assert( !p->pUnused ); + assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); + return rc; + } + fd = robust_open(zName, openFlags, openMode); + OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); + if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ + /* Failed to open the file for read/write access. Try read-only. */ + flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); + openFlags &= ~(O_RDWR|O_CREAT); + flags |= SQLITE_OPEN_READONLY; + openFlags |= O_RDONLY; + isReadonly = 1; + fd = robust_open(zName, openFlags, openMode); + } + if( fd<0 ){ + rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); + goto open_finished; + } + } + assert( fd>=0 ); + if( pOutFlags ){ + *pOutFlags = flags; + } + + if( p->pUnused ){ + p->pUnused->fd = fd; + p->pUnused->flags = flags; + } + + if( isDelete ){ +#if OS_VXWORKS + zPath = zName; +#else + osUnlink(zName); +#endif + } +#if SQLITE_ENABLE_LOCKING_STYLE + else{ + p->openFlags = openFlags; + } +#endif + +#ifdef FD_CLOEXEC + osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); +#endif + + noLock = eType!=SQLITE_OPEN_MAIN_DB; + + +#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE + if( fstatfs(fd, &fsInfo) == -1 ){ + ((unixFile*)pFile)->lastErrno = errno; + robust_close(p, fd, __LINE__); + return SQLITE_IOERR_ACCESS; + } + if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { + ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; + } +#endif + +#if SQLITE_ENABLE_LOCKING_STYLE +#if SQLITE_PREFER_PROXY_LOCKING + isAutoProxy = 1; +#endif + if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ + char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); + int useProxy = 0; + + /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means + ** never use proxy, NULL means use proxy for non-local files only. */ + if( envforce!=NULL ){ + useProxy = atoi(envforce)>0; + }else{ + if( statfs(zPath, &fsInfo) == -1 ){ + /* In theory, the close(fd) call is sub-optimal. If the file opened + ** with fd is a database file, and there are other connections open + ** on that file that are currently holding advisory locks on it, + ** then the call to close() will cancel those locks. In practice, + ** we're assuming that statfs() doesn't fail very often. At least + ** not while other file descriptors opened by the same process on + ** the same file are working. */ + p->lastErrno = errno; + robust_close(p, fd, __LINE__); + rc = SQLITE_IOERR_ACCESS; + goto open_finished; + } + useProxy = !(fsInfo.f_flags&MNT_LOCAL); + } + if( useProxy ){ + rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock, + isDelete, isReadonly); + if( rc==SQLITE_OK ){ + rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); + if( rc!=SQLITE_OK ){ + /* Use unixClose to clean up the resources added in fillInUnixFile + ** and clear all the structure's references. Specifically, + ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op + */ + unixClose(pFile); + return rc; + } + } + goto open_finished; + } + } +#endif + + rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock, + isDelete, isReadonly); +open_finished: + if( rc!=SQLITE_OK ){ + sqlite3_free(p->pUnused); + } + return rc; +} + + +/* +** Delete the file at zPath. If the dirSync argument is true, fsync() +** the directory after deleting the file. +*/ +static int unixDelete( + sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ + const char *zPath, /* Name of file to be deleted */ + int dirSync /* If true, fsync() directory after deleting file */ +){ + int rc = SQLITE_OK; + UNUSED_PARAMETER(NotUsed); + SimulateIOError(return SQLITE_IOERR_DELETE); + if( osUnlink(zPath)==(-1) && errno!=ENOENT ){ + return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); + } +#ifndef SQLITE_DISABLE_DIRSYNC + if( dirSync ){ + int fd; + rc = osOpenDirectory(zPath, &fd); + if( rc==SQLITE_OK ){ +#if OS_VXWORKS + if( fsync(fd)==-1 ) +#else + if( fsync(fd) ) +#endif + { + rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); + } + robust_close(0, fd, __LINE__); + }else if( rc==SQLITE_CANTOPEN ){ + rc = SQLITE_OK; + } + } +#endif + return rc; +} + +/* +** Test the existance of or access permissions of file zPath. The +** test performed depends on the value of flags: +** +** SQLITE_ACCESS_EXISTS: Return 1 if the file exists +** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. +** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. +** +** Otherwise return 0. +*/ +static int unixAccess( + sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ + const char *zPath, /* Path of the file to examine */ + int flags, /* What do we want to learn about the zPath file? */ + int *pResOut /* Write result boolean here */ +){ + int amode = 0; + UNUSED_PARAMETER(NotUsed); + SimulateIOError( return SQLITE_IOERR_ACCESS; ); + switch( flags ){ + case SQLITE_ACCESS_EXISTS: + amode = F_OK; + break; + case SQLITE_ACCESS_READWRITE: + amode = W_OK|R_OK; + break; + case SQLITE_ACCESS_READ: + amode = R_OK; + break; + + default: + assert(!"Invalid flags argument"); + } + *pResOut = (osAccess(zPath, amode)==0); + if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){ + struct stat buf; + if( 0==osStat(zPath, &buf) && buf.st_size==0 ){ + *pResOut = 0; + } + } + return SQLITE_OK; +} + + +/* +** Turn a relative pathname into a full pathname. The relative path +** is stored as a nul-terminated string in the buffer pointed to by +** zPath. +** +** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes +** (in this case, MAX_PATHNAME bytes). The full-path is written to +** this buffer before returning. +*/ +static int unixFullPathname( + sqlite3_vfs *pVfs, /* Pointer to vfs object */ + const char *zPath, /* Possibly relative input path */ + int nOut, /* Size of output buffer in bytes */ + char *zOut /* Output buffer */ +){ + + /* It's odd to simulate an io-error here, but really this is just + ** using the io-error infrastructure to test that SQLite handles this + ** function failing. This function could fail if, for example, the + ** current working directory has been unlinked. + */ + SimulateIOError( return SQLITE_ERROR ); + + assert( pVfs->mxPathname==MAX_PATHNAME ); + UNUSED_PARAMETER(pVfs); + + zOut[nOut-1] = '\0'; + if( zPath[0]=='/' ){ + sqlite3_snprintf(nOut, zOut, "%s", zPath); + }else{ + int nCwd; + if( osGetcwd(zOut, nOut-1)==0 ){ + return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); + } + nCwd = (int)strlen(zOut); + sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); + } + return SQLITE_OK; +} + + +#ifndef SQLITE_OMIT_LOAD_EXTENSION +/* +** Interfaces for opening a shared library, finding entry points +** within the shared library, and closing the shared library. +*/ +#include +static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ + UNUSED_PARAMETER(NotUsed); + return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); +} + +/* +** SQLite calls this function immediately after a call to unixDlSym() or +** unixDlOpen() fails (returns a null pointer). If a more detailed error +** message is available, it is written to zBufOut. If no error message +** is available, zBufOut is left unmodified and SQLite uses a default +** error message. +*/ +static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ + const char *zErr; + UNUSED_PARAMETER(NotUsed); + unixEnterMutex(); + zErr = dlerror(); + if( zErr ){ + sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); + } + unixLeaveMutex(); +} +static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ + /* + ** GCC with -pedantic-errors says that C90 does not allow a void* to be + ** cast into a pointer to a function. And yet the library dlsym() routine + ** returns a void* which is really a pointer to a function. So how do we + ** use dlsym() with -pedantic-errors? + ** + ** Variable x below is defined to be a pointer to a function taking + ** parameters void* and const char* and returning a pointer to a function. + ** We initialize x by assigning it a pointer to the dlsym() function. + ** (That assignment requires a cast.) Then we call the function that + ** x points to. + ** + ** This work-around is unlikely to work correctly on any system where + ** you really cannot cast a function pointer into void*. But then, on the + ** other hand, dlsym() will not work on such a system either, so we have + ** not really lost anything. + */ + void (*(*x)(void*,const char*))(void); + UNUSED_PARAMETER(NotUsed); + x = (void(*(*)(void*,const char*))(void))dlsym; + return (*x)(p, zSym); +} +static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ + UNUSED_PARAMETER(NotUsed); + dlclose(pHandle); +} +#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ + #define unixDlOpen 0 + #define unixDlError 0 + #define unixDlSym 0 + #define unixDlClose 0 +#endif + +/* +** Write nBuf bytes of random data to the supplied buffer zBuf. +*/ +static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ + UNUSED_PARAMETER(NotUsed); + assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); + + /* We have to initialize zBuf to prevent valgrind from reporting + ** errors. The reports issued by valgrind are incorrect - we would + ** prefer that the randomness be increased by making use of the + ** uninitialized space in zBuf - but valgrind errors tend to worry + ** some users. Rather than argue, it seems easier just to initialize + ** the whole array and silence valgrind, even if that means less randomness + ** in the random seed. + ** + ** When testing, initializing zBuf[] to zero is all we do. That means + ** that we always use the same random number sequence. This makes the + ** tests repeatable. + */ + memset(zBuf, 0, nBuf); +#if !defined(SQLITE_TEST) + { + int pid, fd; + fd = robust_open("/dev/urandom", O_RDONLY, 0); + if( fd<0 ){ + time_t t; + time(&t); + memcpy(zBuf, &t, sizeof(t)); + pid = getpid(); + memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid)); + assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf ); + nBuf = sizeof(t) + sizeof(pid); + }else{ + do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR ); + robust_close(0, fd, __LINE__); + } + } +#endif + return nBuf; +} + + +/* +** Sleep for a little while. Return the amount of time slept. +** The argument is the number of microseconds we want to sleep. +** The return value is the number of microseconds of sleep actually +** requested from the underlying operating system, a number which +** might be greater than or equal to the argument, but not less +** than the argument. +*/ +static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ +#if OS_VXWORKS + struct timespec sp; + + sp.tv_sec = microseconds / 1000000; + sp.tv_nsec = (microseconds % 1000000) * 1000; + nanosleep(&sp, NULL); + UNUSED_PARAMETER(NotUsed); + return microseconds; +#elif defined(HAVE_USLEEP) && HAVE_USLEEP + usleep(microseconds); + UNUSED_PARAMETER(NotUsed); + return microseconds; +#else + int seconds = (microseconds+999999)/1000000; + sleep(seconds); + UNUSED_PARAMETER(NotUsed); + return seconds*1000000; +#endif +} + +/* +** The following variable, if set to a non-zero value, is interpreted as +** the number of seconds since 1970 and is used to set the result of +** sqlite3OsCurrentTime() during testing. +*/ +#ifdef SQLITE_TEST +int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ +#endif + +/* +** Find the current time (in Universal Coordinated Time). Write into *piNow +** the current time and date as a Julian Day number times 86_400_000. In +** other words, write into *piNow the number of milliseconds since the Julian +** epoch of noon in Greenwich on November 24, 4714 B.C according to the +** proleptic Gregorian calendar. +** +** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date +** cannot be found. +*/ +static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ + static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; + int rc = SQLITE_OK; +#if defined(NO_GETTOD) + time_t t; + time(&t); + *piNow = ((sqlite3_int64)t)*1000 + unixEpoch; +#elif OS_VXWORKS + struct timespec sNow; + clock_gettime(CLOCK_REALTIME, &sNow); + *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; +#else + struct timeval sNow; + if( gettimeofday(&sNow, 0)==0 ){ + *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; + }else{ + rc = SQLITE_ERROR; + } +#endif + +#ifdef SQLITE_TEST + if( sqlite3_current_time ){ + *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; + } +#endif + UNUSED_PARAMETER(NotUsed); + return rc; +} + +/* +** Find the current time (in Universal Coordinated Time). Write the +** current time and date as a Julian Day number into *prNow and +** return 0. Return 1 if the time and date cannot be found. +*/ +static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ + sqlite3_int64 i = 0; + int rc; + UNUSED_PARAMETER(NotUsed); + rc = unixCurrentTimeInt64(0, &i); + *prNow = i/86400000.0; + return rc; +} + +/* +** We added the xGetLastError() method with the intention of providing +** better low-level error messages when operating-system problems come up +** during SQLite operation. But so far, none of that has been implemented +** in the core. So this routine is never called. For now, it is merely +** a place-holder. +*/ +static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ + UNUSED_PARAMETER(NotUsed); + UNUSED_PARAMETER(NotUsed2); + UNUSED_PARAMETER(NotUsed3); + return 0; +} + + +/* +************************ End of sqlite3_vfs methods *************************** +******************************************************************************/ + +/****************************************************************************** +************************** Begin Proxy Locking ******************************** +** +** Proxy locking is a "uber-locking-method" in this sense: It uses the +** other locking methods on secondary lock files. Proxy locking is a +** meta-layer over top of the primitive locking implemented above. For +** this reason, the division that implements of proxy locking is deferred +** until late in the file (here) after all of the other I/O methods have +** been defined - so that the primitive locking methods are available +** as services to help with the implementation of proxy locking. +** +**** +** +** The default locking schemes in SQLite use byte-range locks on the +** database file to coordinate safe, concurrent access by multiple readers +** and writers [http://sqlite.org/lockingv3.html]. The five file locking +** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented +** as POSIX read & write locks over fixed set of locations (via fsctl), +** on AFP and SMB only exclusive byte-range locks are available via fsctl +** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. +** To simulate a F_RDLCK on the shared range, on AFP a randomly selected +** address in the shared range is taken for a SHARED lock, the entire +** shared range is taken for an EXCLUSIVE lock): +** +** PENDING_BYTE 0x40000000 +** RESERVED_BYTE 0x40000001 +** SHARED_RANGE 0x40000002 -> 0x40000200 +** +** This works well on the local file system, but shows a nearly 100x +** slowdown in read performance on AFP because the AFP client disables +** the read cache when byte-range locks are present. Enabling the read +** cache exposes a cache coherency problem that is present on all OS X +** supported network file systems. NFS and AFP both observe the +** close-to-open semantics for ensuring cache coherency +** [http://nfs.sourceforge.net/#faq_a8], which does not effectively +** address the requirements for concurrent database access by multiple +** readers and writers +** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. +** +** To address the performance and cache coherency issues, proxy file locking +** changes the way database access is controlled by limiting access to a +** single host at a time and moving file locks off of the database file +** and onto a proxy file on the local file system. +** +** +** Using proxy locks +** ----------------- +** +** C APIs +** +** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE, +** | ":auto:"); +** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &); +** +** +** SQL pragmas +** +** PRAGMA [database.]lock_proxy_file= | :auto: +** PRAGMA [database.]lock_proxy_file +** +** Specifying ":auto:" means that if there is a conch file with a matching +** host ID in it, the proxy path in the conch file will be used, otherwise +** a proxy path based on the user's temp dir +** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the +** actual proxy file name is generated from the name and path of the +** database file. For example: +** +** For database path "/Users/me/foo.db" +** The lock path will be "/sqliteplocks/_Users_me_foo.db:auto:") +** +** Once a lock proxy is configured for a database connection, it can not +** be removed, however it may be switched to a different proxy path via +** the above APIs (assuming the conch file is not being held by another +** connection or process). +** +** +** How proxy locking works +** ----------------------- +** +** Proxy file locking relies primarily on two new supporting files: +** +** * conch file to limit access to the database file to a single host +** at a time +** +** * proxy file to act as a proxy for the advisory locks normally +** taken on the database +** +** The conch file - to use a proxy file, sqlite must first "hold the conch" +** by taking an sqlite-style shared lock on the conch file, reading the +** contents and comparing the host's unique host ID (see below) and lock +** proxy path against the values stored in the conch. The conch file is +** stored in the same directory as the database file and the file name +** is patterned after the database file name as ".-conch". +** If the conch file does not exist, or it's contents do not match the +** host ID and/or proxy path, then the lock is escalated to an exclusive +** lock and the conch file contents is updated with the host ID and proxy +** path and the lock is downgraded to a shared lock again. If the conch +** is held by another process (with a shared lock), the exclusive lock +** will fail and SQLITE_BUSY is returned. +** +** The proxy file - a single-byte file used for all advisory file locks +** normally taken on the database file. This allows for safe sharing +** of the database file for multiple readers and writers on the same +** host (the conch ensures that they all use the same local lock file). +** +** Requesting the lock proxy does not immediately take the conch, it is +** only taken when the first request to lock database file is made. +** This matches the semantics of the traditional locking behavior, where +** opening a connection to a database file does not take a lock on it. +** The shared lock and an open file descriptor are maintained until +** the connection to the database is closed. +** +** The proxy file and the lock file are never deleted so they only need +** to be created the first time they are used. +** +** Configuration options +** --------------------- +** +** SQLITE_PREFER_PROXY_LOCKING +** +** Database files accessed on non-local file systems are +** automatically configured for proxy locking, lock files are +** named automatically using the same logic as +** PRAGMA lock_proxy_file=":auto:" +** +** SQLITE_PROXY_DEBUG +** +** Enables the logging of error messages during host id file +** retrieval and creation +** +** LOCKPROXYDIR +** +** Overrides the default directory used for lock proxy files that +** are named automatically via the ":auto:" setting +** +** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS +** +** Permissions to use when creating a directory for storing the +** lock proxy files, only used when LOCKPROXYDIR is not set. +** +** +** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, +** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will +** force proxy locking to be used for every database file opened, and 0 +** will force automatic proxy locking to be disabled for all database +** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or +** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). +*/ + +/* +** Proxy locking is only available on MacOSX +*/ +#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE + +/* +** The proxyLockingContext has the path and file structures for the remote +** and local proxy files in it +*/ +typedef struct proxyLockingContext proxyLockingContext; +struct proxyLockingContext { + unixFile *conchFile; /* Open conch file */ + char *conchFilePath; /* Name of the conch file */ + unixFile *lockProxy; /* Open proxy lock file */ + char *lockProxyPath; /* Name of the proxy lock file */ + char *dbPath; /* Name of the open file */ + int conchHeld; /* 1 if the conch is held, -1 if lockless */ + void *oldLockingContext; /* Original lockingcontext to restore on close */ + sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ +}; + +/* +** The proxy lock file path for the database at dbPath is written into lPath, +** which must point to valid, writable memory large enough for a maxLen length +** file path. +*/ +static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ + int len; + int dbLen; + int i; + +#ifdef LOCKPROXYDIR + len = strlcpy(lPath, LOCKPROXYDIR, maxLen); +#else +# ifdef _CS_DARWIN_USER_TEMP_DIR + { + if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ + OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", + lPath, errno, getpid())); + return SQLITE_IOERR_LOCK; + } + len = strlcat(lPath, "sqliteplocks", maxLen); + } +# else + len = strlcpy(lPath, "/tmp/", maxLen); +# endif +#endif + + if( lPath[len-1]!='/' ){ + len = strlcat(lPath, "/", maxLen); + } + + /* transform the db path to a unique cache name */ + dbLen = (int)strlen(dbPath); + for( i=0; i 0) ){ + /* only mkdir if leaf dir != "." or "/" or ".." */ + if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') + || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ + buf[i]='\0'; + if( mkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ + int err=errno; + if( err!=EEXIST ) { + OSTRACE(("CREATELOCKPATH FAILED creating %s, " + "'%s' proxy lock path=%s pid=%d\n", + buf, strerror(err), lockPath, getpid())); + return err; + } + } + } + start=i+1; + } + buf[i] = lockPath[i]; + } + OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid())); + return 0; +} + +/* +** Create a new VFS file descriptor (stored in memory obtained from +** sqlite3_malloc) and open the file named "path" in the file descriptor. +** +** The caller is responsible not only for closing the file descriptor +** but also for freeing the memory associated with the file descriptor. +*/ +static int proxyCreateUnixFile( + const char *path, /* path for the new unixFile */ + unixFile **ppFile, /* unixFile created and returned by ref */ + int islockfile /* if non zero missing dirs will be created */ +) { + int fd = -1; + unixFile *pNew; + int rc = SQLITE_OK; + int openFlags = O_RDWR | O_CREAT; + sqlite3_vfs dummyVfs; + int terrno = 0; + UnixUnusedFd *pUnused = NULL; + + /* 1. first try to open/create the file + ** 2. if that fails, and this is a lock file (not-conch), try creating + ** the parent directories and then try again. + ** 3. if that fails, try to open the file read-only + ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file + */ + pUnused = findReusableFd(path, openFlags); + if( pUnused ){ + fd = pUnused->fd; + }else{ + pUnused = sqlite3_malloc(sizeof(*pUnused)); + if( !pUnused ){ + return SQLITE_NOMEM; + } + } + if( fd<0 ){ + fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); + terrno = errno; + if( fd<0 && errno==ENOENT && islockfile ){ + if( proxyCreateLockPath(path) == SQLITE_OK ){ + fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); + } + } + } + if( fd<0 ){ + openFlags = O_RDONLY; + fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); + terrno = errno; + } + if( fd<0 ){ + if( islockfile ){ + return SQLITE_BUSY; + } + switch (terrno) { + case EACCES: + return SQLITE_PERM; + case EIO: + return SQLITE_IOERR_LOCK; /* even though it is the conch */ + default: + return SQLITE_CANTOPEN_BKPT; + } + } + + pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew)); + if( pNew==NULL ){ + rc = SQLITE_NOMEM; + goto end_create_proxy; + } + memset(pNew, 0, sizeof(unixFile)); + pNew->openFlags = openFlags; + memset(&dummyVfs, 0, sizeof(dummyVfs)); + dummyVfs.pAppData = (void*)&autolockIoFinder; + dummyVfs.zName = "dummy"; + pUnused->fd = fd; + pUnused->flags = openFlags; + pNew->pUnused = pUnused; + + rc = fillInUnixFile(&dummyVfs, fd, 0, (sqlite3_file*)pNew, path, 0, 0, 0); + if( rc==SQLITE_OK ){ + *ppFile = pNew; + return SQLITE_OK; + } +end_create_proxy: + robust_close(pNew, fd, __LINE__); + sqlite3_free(pNew); + sqlite3_free(pUnused); + return rc; +} + +#ifdef SQLITE_TEST +/* simulate multiple hosts by creating unique hostid file paths */ +int sqlite3_hostid_num = 0; +#endif + +#define PROXY_HOSTIDLEN 16 /* conch file host id length */ + +/* Not always defined in the headers as it ought to be */ +extern int gethostuuid(uuid_t id, const struct timespec *wait); + +/* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN +** bytes of writable memory. +*/ +static int proxyGetHostID(unsigned char *pHostID, int *pError){ + assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); + memset(pHostID, 0, PROXY_HOSTIDLEN); +#if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\ + && __MAC_OS_X_VERSION_MIN_REQUIRED<1050 + { + static const struct timespec timeout = {1, 0}; /* 1 sec timeout */ + if( gethostuuid(pHostID, &timeout) ){ + int err = errno; + if( pError ){ + *pError = err; + } + return SQLITE_IOERR; + } + } +#else + UNUSED_PARAMETER(pError); +#endif +#ifdef SQLITE_TEST + /* simulate multiple hosts by creating unique hostid file paths */ + if( sqlite3_hostid_num != 0){ + pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); + } +#endif + + return SQLITE_OK; +} + +/* The conch file contains the header, host id and lock file path + */ +#define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ +#define PROXY_HEADERLEN 1 /* conch file header length */ +#define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) +#define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) + +/* +** Takes an open conch file, copies the contents to a new path and then moves +** it back. The newly created file's file descriptor is assigned to the +** conch file structure and finally the original conch file descriptor is +** closed. Returns zero if successful. +*/ +static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ + proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; + unixFile *conchFile = pCtx->conchFile; + char tPath[MAXPATHLEN]; + char buf[PROXY_MAXCONCHLEN]; + char *cPath = pCtx->conchFilePath; + size_t readLen = 0; + size_t pathLen = 0; + char errmsg[64] = ""; + int fd = -1; + int rc = -1; + UNUSED_PARAMETER(myHostID); + + /* create a new path by replace the trailing '-conch' with '-break' */ + pathLen = strlcpy(tPath, cPath, MAXPATHLEN); + if( pathLen>MAXPATHLEN || pathLen<6 || + (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ + sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); + goto end_breaklock; + } + /* read the conch content */ + readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); + if( readLenh, __LINE__); + conchFile->h = fd; + conchFile->openFlags = O_RDWR | O_CREAT; + +end_breaklock: + if( rc ){ + if( fd>=0 ){ + osUnlink(tPath); + robust_close(pFile, fd, __LINE__); + } + fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); + } + return rc; +} + +/* Take the requested lock on the conch file and break a stale lock if the +** host id matches. +*/ +static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ + proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; + unixFile *conchFile = pCtx->conchFile; + int rc = SQLITE_OK; + int nTries = 0; + struct timespec conchModTime; + + memset(&conchModTime, 0, sizeof(conchModTime)); + do { + rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); + nTries ++; + if( rc==SQLITE_BUSY ){ + /* If the lock failed (busy): + * 1st try: get the mod time of the conch, wait 0.5s and try again. + * 2nd try: fail if the mod time changed or host id is different, wait + * 10 sec and try again + * 3rd try: break the lock unless the mod time has changed. + */ + struct stat buf; + if( osFstat(conchFile->h, &buf) ){ + pFile->lastErrno = errno; + return SQLITE_IOERR_LOCK; + } + + if( nTries==1 ){ + conchModTime = buf.st_mtimespec; + usleep(500000); /* wait 0.5 sec and try the lock again*/ + continue; + } + + assert( nTries>1 ); + if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || + conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ + return SQLITE_BUSY; + } + + if( nTries==2 ){ + char tBuf[PROXY_MAXCONCHLEN]; + int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); + if( len<0 ){ + pFile->lastErrno = errno; + return SQLITE_IOERR_LOCK; + } + if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ + /* don't break the lock if the host id doesn't match */ + if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ + return SQLITE_BUSY; + } + }else{ + /* don't break the lock on short read or a version mismatch */ + return SQLITE_BUSY; + } + usleep(10000000); /* wait 10 sec and try the lock again */ + continue; + } + + assert( nTries==3 ); + if( 0==proxyBreakConchLock(pFile, myHostID) ){ + rc = SQLITE_OK; + if( lockType==EXCLUSIVE_LOCK ){ + rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK); + } + if( !rc ){ + rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); + } + } + } + } while( rc==SQLITE_BUSY && nTries<3 ); + + return rc; +} + +/* Takes the conch by taking a shared lock and read the contents conch, if +** lockPath is non-NULL, the host ID and lock file path must match. A NULL +** lockPath means that the lockPath in the conch file will be used if the +** host IDs match, or a new lock path will be generated automatically +** and written to the conch file. +*/ +static int proxyTakeConch(unixFile *pFile){ + proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; + + if( pCtx->conchHeld!=0 ){ + return SQLITE_OK; + }else{ + unixFile *conchFile = pCtx->conchFile; + uuid_t myHostID; + int pError = 0; + char readBuf[PROXY_MAXCONCHLEN]; + char lockPath[MAXPATHLEN]; + char *tempLockPath = NULL; + int rc = SQLITE_OK; + int createConch = 0; + int hostIdMatch = 0; + int readLen = 0; + int tryOldLockPath = 0; + int forceNewLockPath = 0; + + OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, + (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid())); + + rc = proxyGetHostID(myHostID, &pError); + if( (rc&0xff)==SQLITE_IOERR ){ + pFile->lastErrno = pError; + goto end_takeconch; + } + rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); + if( rc!=SQLITE_OK ){ + goto end_takeconch; + } + /* read the existing conch file */ + readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); + if( readLen<0 ){ + /* I/O error: lastErrno set by seekAndRead */ + pFile->lastErrno = conchFile->lastErrno; + rc = SQLITE_IOERR_READ; + goto end_takeconch; + }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || + readBuf[0]!=(char)PROXY_CONCHVERSION ){ + /* a short read or version format mismatch means we need to create a new + ** conch file. + */ + createConch = 1; + } + /* if the host id matches and the lock path already exists in the conch + ** we'll try to use the path there, if we can't open that path, we'll + ** retry with a new auto-generated path + */ + do { /* in case we need to try again for an :auto: named lock file */ + + if( !createConch && !forceNewLockPath ){ + hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, + PROXY_HOSTIDLEN); + /* if the conch has data compare the contents */ + if( !pCtx->lockProxyPath ){ + /* for auto-named local lock file, just check the host ID and we'll + ** use the local lock file path that's already in there + */ + if( hostIdMatch ){ + size_t pathLen = (readLen - PROXY_PATHINDEX); + + if( pathLen>=MAXPATHLEN ){ + pathLen=MAXPATHLEN-1; + } + memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); + lockPath[pathLen] = 0; + tempLockPath = lockPath; + tryOldLockPath = 1; + /* create a copy of the lock path if the conch is taken */ + goto end_takeconch; + } + }else if( hostIdMatch + && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], + readLen-PROXY_PATHINDEX) + ){ + /* conch host and lock path match */ + goto end_takeconch; + } + } + + /* if the conch isn't writable and doesn't match, we can't take it */ + if( (conchFile->openFlags&O_RDWR) == 0 ){ + rc = SQLITE_BUSY; + goto end_takeconch; + } + + /* either the conch didn't match or we need to create a new one */ + if( !pCtx->lockProxyPath ){ + proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); + tempLockPath = lockPath; + /* create a copy of the lock path _only_ if the conch is taken */ + } + + /* update conch with host and path (this will fail if other process + ** has a shared lock already), if the host id matches, use the big + ** stick. + */ + futimes(conchFile->h, NULL); + if( hostIdMatch && !createConch ){ + if( conchFile->pInode && conchFile->pInode->nShared>1 ){ + /* We are trying for an exclusive lock but another thread in this + ** same process is still holding a shared lock. */ + rc = SQLITE_BUSY; + } else { + rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); + } + }else{ + rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK); + } + if( rc==SQLITE_OK ){ + char writeBuffer[PROXY_MAXCONCHLEN]; + int writeSize = 0; + + writeBuffer[0] = (char)PROXY_CONCHVERSION; + memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); + if( pCtx->lockProxyPath!=NULL ){ + strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN); + }else{ + strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); + } + writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); + robust_ftruncate(conchFile->h, writeSize); + rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); + fsync(conchFile->h); + /* If we created a new conch file (not just updated the contents of a + ** valid conch file), try to match the permissions of the database + */ + if( rc==SQLITE_OK && createConch ){ + struct stat buf; + int err = osFstat(pFile->h, &buf); + if( err==0 ){ + mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | + S_IROTH|S_IWOTH); + /* try to match the database file R/W permissions, ignore failure */ +#ifndef SQLITE_PROXY_DEBUG + osFchmod(conchFile->h, cmode); +#else + do{ + rc = osFchmod(conchFile->h, cmode); + }while( rc==(-1) && errno==EINTR ); + if( rc!=0 ){ + int code = errno; + fprintf(stderr, "fchmod %o FAILED with %d %s\n", + cmode, code, strerror(code)); + } else { + fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); + } + }else{ + int code = errno; + fprintf(stderr, "STAT FAILED[%d] with %d %s\n", + err, code, strerror(code)); +#endif + } + } + } + conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); + + end_takeconch: + OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); + if( rc==SQLITE_OK && pFile->openFlags ){ + int fd; + if( pFile->h>=0 ){ + robust_close(pFile, pFile->h, __LINE__); + } + pFile->h = -1; + fd = robust_open(pCtx->dbPath, pFile->openFlags, + SQLITE_DEFAULT_FILE_PERMISSIONS); + OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); + if( fd>=0 ){ + pFile->h = fd; + }else{ + rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called + during locking */ + } + } + if( rc==SQLITE_OK && !pCtx->lockProxy ){ + char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; + rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); + if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ + /* we couldn't create the proxy lock file with the old lock file path + ** so try again via auto-naming + */ + forceNewLockPath = 1; + tryOldLockPath = 0; + continue; /* go back to the do {} while start point, try again */ + } + } + if( rc==SQLITE_OK ){ + /* Need to make a copy of path if we extracted the value + ** from the conch file or the path was allocated on the stack + */ + if( tempLockPath ){ + pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); + if( !pCtx->lockProxyPath ){ + rc = SQLITE_NOMEM; + } + } + } + if( rc==SQLITE_OK ){ + pCtx->conchHeld = 1; + + if( pCtx->lockProxy->pMethod == &afpIoMethods ){ + afpLockingContext *afpCtx; + afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; + afpCtx->dbPath = pCtx->lockProxyPath; + } + } else { + conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); + } + OSTRACE(("TAKECONCH %d %s\n", conchFile->h, + rc==SQLITE_OK?"ok":"failed")); + return rc; + } while (1); /* in case we need to retry the :auto: lock file - + ** we should never get here except via the 'continue' call. */ + } +} + +/* +** If pFile holds a lock on a conch file, then release that lock. +*/ +static int proxyReleaseConch(unixFile *pFile){ + int rc = SQLITE_OK; /* Subroutine return code */ + proxyLockingContext *pCtx; /* The locking context for the proxy lock */ + unixFile *conchFile; /* Name of the conch file */ + + pCtx = (proxyLockingContext *)pFile->lockingContext; + conchFile = pCtx->conchFile; + OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, + (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), + getpid())); + if( pCtx->conchHeld>0 ){ + rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); + } + pCtx->conchHeld = 0; + OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, + (rc==SQLITE_OK ? "ok" : "failed"))); + return rc; +} + +/* +** Given the name of a database file, compute the name of its conch file. +** Store the conch filename in memory obtained from sqlite3_malloc(). +** Make *pConchPath point to the new name. Return SQLITE_OK on success +** or SQLITE_NOMEM if unable to obtain memory. +** +** The caller is responsible for ensuring that the allocated memory +** space is eventually freed. +** +** *pConchPath is set to NULL if a memory allocation error occurs. +*/ +static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ + int i; /* Loop counter */ + int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ + char *conchPath; /* buffer in which to construct conch name */ + + /* Allocate space for the conch filename and initialize the name to + ** the name of the original database file. */ + *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8); + if( conchPath==0 ){ + return SQLITE_NOMEM; + } + memcpy(conchPath, dbPath, len+1); + + /* now insert a "." before the last / character */ + for( i=(len-1); i>=0; i-- ){ + if( conchPath[i]=='/' ){ + i++; + break; + } + } + conchPath[i]='.'; + while ( ilockingContext; + char *oldPath = pCtx->lockProxyPath; + int rc = SQLITE_OK; + + if( pFile->eFileLock!=NO_LOCK ){ + return SQLITE_BUSY; + } + + /* nothing to do if the path is NULL, :auto: or matches the existing path */ + if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || + (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ + return SQLITE_OK; + }else{ + unixFile *lockProxy = pCtx->lockProxy; + pCtx->lockProxy=NULL; + pCtx->conchHeld = 0; + if( lockProxy!=NULL ){ + rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); + if( rc ) return rc; + sqlite3_free(lockProxy); + } + sqlite3_free(oldPath); + pCtx->lockProxyPath = sqlite3DbStrDup(0, path); + } + + return rc; +} + +/* +** pFile is a file that has been opened by a prior xOpen call. dbPath +** is a string buffer at least MAXPATHLEN+1 characters in size. +** +** This routine find the filename associated with pFile and writes it +** int dbPath. +*/ +static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ +#if defined(__APPLE__) + if( pFile->pMethod == &afpIoMethods ){ + /* afp style keeps a reference to the db path in the filePath field + ** of the struct */ + assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); + strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN); + } else +#endif + if( pFile->pMethod == &dotlockIoMethods ){ + /* dot lock style uses the locking context to store the dot lock + ** file path */ + int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); + memcpy(dbPath, (char *)pFile->lockingContext, len + 1); + }else{ + /* all other styles use the locking context to store the db file path */ + assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); + strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); + } + return SQLITE_OK; +} + +/* +** Takes an already filled in unix file and alters it so all file locking +** will be performed on the local proxy lock file. The following fields +** are preserved in the locking context so that they can be restored and +** the unix structure properly cleaned up at close time: +** ->lockingContext +** ->pMethod +*/ +static int proxyTransformUnixFile(unixFile *pFile, const char *path) { + proxyLockingContext *pCtx; + char dbPath[MAXPATHLEN+1]; /* Name of the database file */ + char *lockPath=NULL; + int rc = SQLITE_OK; + + if( pFile->eFileLock!=NO_LOCK ){ + return SQLITE_BUSY; + } + proxyGetDbPathForUnixFile(pFile, dbPath); + if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ + lockPath=NULL; + }else{ + lockPath=(char *)path; + } + + OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, + (lockPath ? lockPath : ":auto:"), getpid())); + + pCtx = sqlite3_malloc( sizeof(*pCtx) ); + if( pCtx==0 ){ + return SQLITE_NOMEM; + } + memset(pCtx, 0, sizeof(*pCtx)); + + rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); + if( rc==SQLITE_OK ){ + rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); + if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ + /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and + ** (c) the file system is read-only, then enable no-locking access. + ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts + ** that openFlags will have only one of O_RDONLY or O_RDWR. + */ + struct statfs fsInfo; + struct stat conchInfo; + int goLockless = 0; + + if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { + int err = errno; + if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ + goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; + } + } + if( goLockless ){ + pCtx->conchHeld = -1; /* read only FS/ lockless */ + rc = SQLITE_OK; + } + } + } + if( rc==SQLITE_OK && lockPath ){ + pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); + } + + if( rc==SQLITE_OK ){ + pCtx->dbPath = sqlite3DbStrDup(0, dbPath); + if( pCtx->dbPath==NULL ){ + rc = SQLITE_NOMEM; + } + } + if( rc==SQLITE_OK ){ + /* all memory is allocated, proxys are created and assigned, + ** switch the locking context and pMethod then return. + */ + pCtx->oldLockingContext = pFile->lockingContext; + pFile->lockingContext = pCtx; + pCtx->pOldMethod = pFile->pMethod; + pFile->pMethod = &proxyIoMethods; + }else{ + if( pCtx->conchFile ){ + pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); + sqlite3_free(pCtx->conchFile); + } + sqlite3DbFree(0, pCtx->lockProxyPath); + sqlite3_free(pCtx->conchFilePath); + sqlite3_free(pCtx); + } + OSTRACE(("TRANSPROXY %d %s\n", pFile->h, + (rc==SQLITE_OK ? "ok" : "failed"))); + return rc; +} + + +/* +** This routine handles sqlite3_file_control() calls that are specific +** to proxy locking. +*/ +static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ + switch( op ){ + case SQLITE_GET_LOCKPROXYFILE: { + unixFile *pFile = (unixFile*)id; + if( pFile->pMethod == &proxyIoMethods ){ + proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; + proxyTakeConch(pFile); + if( pCtx->lockProxyPath ){ + *(const char **)pArg = pCtx->lockProxyPath; + }else{ + *(const char **)pArg = ":auto: (not held)"; + } + } else { + *(const char **)pArg = NULL; + } + return SQLITE_OK; + } + case SQLITE_SET_LOCKPROXYFILE: { + unixFile *pFile = (unixFile*)id; + int rc = SQLITE_OK; + int isProxyStyle = (pFile->pMethod == &proxyIoMethods); + if( pArg==NULL || (const char *)pArg==0 ){ + if( isProxyStyle ){ + /* turn off proxy locking - not supported */ + rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; + }else{ + /* turn off proxy locking - already off - NOOP */ + rc = SQLITE_OK; + } + }else{ + const char *proxyPath = (const char *)pArg; + if( isProxyStyle ){ + proxyLockingContext *pCtx = + (proxyLockingContext*)pFile->lockingContext; + if( !strcmp(pArg, ":auto:") + || (pCtx->lockProxyPath && + !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) + ){ + rc = SQLITE_OK; + }else{ + rc = switchLockProxyPath(pFile, proxyPath); + } + }else{ + /* turn on proxy file locking */ + rc = proxyTransformUnixFile(pFile, proxyPath); + } + } + return rc; + } + default: { + assert( 0 ); /* The call assures that only valid opcodes are sent */ + } + } + /*NOTREACHED*/ + return SQLITE_ERROR; +} + +/* +** Within this division (the proxying locking implementation) the procedures +** above this point are all utilities. The lock-related methods of the +** proxy-locking sqlite3_io_method object follow. +*/ + + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, set *pResOut +** to a non-zero value otherwise *pResOut is set to zero. The return value +** is set to SQLITE_OK unless an I/O error occurs during lock checking. +*/ +static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { + unixFile *pFile = (unixFile*)id; + int rc = proxyTakeConch(pFile); + if( rc==SQLITE_OK ){ + proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; + if( pCtx->conchHeld>0 ){ + unixFile *proxy = pCtx->lockProxy; + return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); + }else{ /* conchHeld < 0 is lockless */ + pResOut=0; + } + } + return rc; +} + +/* +** Lock the file with the lock specified by parameter eFileLock - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. Use the sqlite3OsUnlock() +** routine to lower a locking level. +*/ +static int proxyLock(sqlite3_file *id, int eFileLock) { + unixFile *pFile = (unixFile*)id; + int rc = proxyTakeConch(pFile); + if( rc==SQLITE_OK ){ + proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; + if( pCtx->conchHeld>0 ){ + unixFile *proxy = pCtx->lockProxy; + rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); + pFile->eFileLock = proxy->eFileLock; + }else{ + /* conchHeld < 0 is lockless */ + } + } + return rc; +} + + +/* +** Lower the locking level on file descriptor pFile to eFileLock. eFileLock +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +*/ +static int proxyUnlock(sqlite3_file *id, int eFileLock) { + unixFile *pFile = (unixFile*)id; + int rc = proxyTakeConch(pFile); + if( rc==SQLITE_OK ){ + proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; + if( pCtx->conchHeld>0 ){ + unixFile *proxy = pCtx->lockProxy; + rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); + pFile->eFileLock = proxy->eFileLock; + }else{ + /* conchHeld < 0 is lockless */ + } + } + return rc; +} + +/* +** Close a file that uses proxy locks. +*/ +static int proxyClose(sqlite3_file *id) { + if( id ){ + unixFile *pFile = (unixFile*)id; + proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; + unixFile *lockProxy = pCtx->lockProxy; + unixFile *conchFile = pCtx->conchFile; + int rc = SQLITE_OK; + + if( lockProxy ){ + rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); + if( rc ) return rc; + rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); + if( rc ) return rc; + sqlite3_free(lockProxy); + pCtx->lockProxy = 0; + } + if( conchFile ){ + if( pCtx->conchHeld ){ + rc = proxyReleaseConch(pFile); + if( rc ) return rc; + } + rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); + if( rc ) return rc; + sqlite3_free(conchFile); + } + sqlite3DbFree(0, pCtx->lockProxyPath); + sqlite3_free(pCtx->conchFilePath); + sqlite3DbFree(0, pCtx->dbPath); + /* restore the original locking context and pMethod then close it */ + pFile->lockingContext = pCtx->oldLockingContext; + pFile->pMethod = pCtx->pOldMethod; + sqlite3_free(pCtx); + return pFile->pMethod->xClose(id); + } + return SQLITE_OK; +} + + + +#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ +/* +** The proxy locking style is intended for use with AFP filesystems. +** And since AFP is only supported on MacOSX, the proxy locking is also +** restricted to MacOSX. +** +** +******************* End of the proxy lock implementation ********************** +******************************************************************************/ + +/* +** Initialize the operating system interface. +** +** This routine registers all VFS implementations for unix-like operating +** systems. This routine, and the sqlite3_os_end() routine that follows, +** should be the only routines in this file that are visible from other +** files. +** +** This routine is called once during SQLite initialization and by a +** single thread. The memory allocation and mutex subsystems have not +** necessarily been initialized when this routine is called, and so they +** should not be used. +*/ +int sqlite3_os_init(void){ + /* + ** The following macro defines an initializer for an sqlite3_vfs object. + ** The name of the VFS is NAME. The pAppData is a pointer to a pointer + ** to the "finder" function. (pAppData is a pointer to a pointer because + ** silly C90 rules prohibit a void* from being cast to a function pointer + ** and so we have to go through the intermediate pointer to avoid problems + ** when compiling with -pedantic-errors on GCC.) + ** + ** The FINDER parameter to this macro is the name of the pointer to the + ** finder-function. The finder-function returns a pointer to the + ** sqlite_io_methods object that implements the desired locking + ** behaviors. See the division above that contains the IOMETHODS + ** macro for addition information on finder-functions. + ** + ** Most finders simply return a pointer to a fixed sqlite3_io_methods + ** object. But the "autolockIoFinder" available on MacOSX does a little + ** more than that; it looks at the filesystem type that hosts the + ** database file and tries to choose an locking method appropriate for + ** that filesystem time. + */ + #define UNIXVFS(VFSNAME, FINDER) { \ + 3, /* iVersion */ \ + sizeof(unixFile), /* szOsFile */ \ + MAX_PATHNAME, /* mxPathname */ \ + 0, /* pNext */ \ + VFSNAME, /* zName */ \ + (void*)&FINDER, /* pAppData */ \ + unixOpen, /* xOpen */ \ + unixDelete, /* xDelete */ \ + unixAccess, /* xAccess */ \ + unixFullPathname, /* xFullPathname */ \ + unixDlOpen, /* xDlOpen */ \ + unixDlError, /* xDlError */ \ + unixDlSym, /* xDlSym */ \ + unixDlClose, /* xDlClose */ \ + unixRandomness, /* xRandomness */ \ + unixSleep, /* xSleep */ \ + unixCurrentTime, /* xCurrentTime */ \ + unixGetLastError, /* xGetLastError */ \ + unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ + unixSetSystemCall, /* xSetSystemCall */ \ + unixGetSystemCall, /* xGetSystemCall */ \ + unixNextSystemCall, /* xNextSystemCall */ \ + } + + /* + ** All default VFSes for unix are contained in the following array. + ** + ** Note that the sqlite3_vfs.pNext field of the VFS object is modified + ** by the SQLite core when the VFS is registered. So the following + ** array cannot be const. + */ + static sqlite3_vfs aVfs[] = { +#if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__)) + UNIXVFS("unix", autolockIoFinder ), +#else + UNIXVFS("unix", posixIoFinder ), +#endif + UNIXVFS("unix-none", nolockIoFinder ), + UNIXVFS("unix-dotfile", dotlockIoFinder ), + UNIXVFS("unix-excl", posixIoFinder ), +#if OS_VXWORKS + UNIXVFS("unix-namedsem", semIoFinder ), +#endif +#if SQLITE_ENABLE_LOCKING_STYLE + UNIXVFS("unix-posix", posixIoFinder ), +#if !OS_VXWORKS + UNIXVFS("unix-flock", flockIoFinder ), +#endif +#endif +#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) + UNIXVFS("unix-afp", afpIoFinder ), + UNIXVFS("unix-nfs", nfsIoFinder ), + UNIXVFS("unix-proxy", proxyIoFinder ), +#endif + }; + unsigned int i; /* Loop counter */ + + /* Double-check that the aSyscall[] array has been constructed + ** correctly. See ticket [bb3a86e890c8e96ab] */ + assert( ArraySize(aSyscall)==18 ); + + /* Register all VFSes defined in the aVfs[] array */ + for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ + sqlite3_vfs_register(&aVfs[i], i==0); + } + return SQLITE_OK; +} + +/* +** Shutdown the operating system interface. +** +** Some operating systems might need to do some cleanup in this routine, +** to release dynamically allocated objects. But not on unix. +** This routine is a no-op for unix. +*/ +int sqlite3_os_end(void){ + return SQLITE_OK; +} + +#endif /* SQLITE_OS_UNIX */ diff --git a/src/os_win.c b/src/os_win.c new file mode 100644 index 0000000..4518030 --- /dev/null +++ b/src/os_win.c @@ -0,0 +1,3204 @@ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains code that is specific to windows. +*/ +#include "sqliteInt.h" +#if SQLITE_OS_WIN /* This file is used for windows only */ + + +/* +** A Note About Memory Allocation: +** +** This driver uses malloc()/free() directly rather than going through +** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers +** are designed for use on embedded systems where memory is scarce and +** malloc failures happen frequently. Win32 does not typically run on +** embedded systems, and when it does the developers normally have bigger +** problems to worry about than running out of memory. So there is not +** a compelling need to use the wrappers. +** +** But there is a good reason to not use the wrappers. If we use the +** wrappers then we will get simulated malloc() failures within this +** driver. And that causes all kinds of problems for our tests. We +** could enhance SQLite to deal with simulated malloc failures within +** the OS driver, but the code to deal with those failure would not +** be exercised on Linux (which does not need to malloc() in the driver) +** and so we would have difficulty writing coverage tests for that +** code. Better to leave the code out, we think. +** +** The point of this discussion is as follows: When creating a new +** OS layer for an embedded system, if you use this file as an example, +** avoid the use of malloc()/free(). Those routines work ok on windows +** desktops but not so well in embedded systems. +*/ + +#include + +#ifdef __CYGWIN__ +# include +#endif + +/* +** Macros used to determine whether or not to use threads. +*/ +#if defined(THREADSAFE) && THREADSAFE +# define SQLITE_W32_THREADS 1 +#endif + +/* +** Include code that is common to all os_*.c files +*/ +#include "os_common.h" + +/* +** Some microsoft compilers lack this definition. +*/ +#ifndef INVALID_FILE_ATTRIBUTES +# define INVALID_FILE_ATTRIBUTES ((DWORD)-1) +#endif + +/* +** Determine if we are dealing with WindowsCE - which has a much +** reduced API. +*/ +#if SQLITE_OS_WINCE +# define AreFileApisANSI() 1 +# define FormatMessageW(a,b,c,d,e,f,g) 0 +#endif + +/* Forward references */ +typedef struct winShm winShm; /* A connection to shared-memory */ +typedef struct winShmNode winShmNode; /* A region of shared-memory */ + +/* +** WinCE lacks native support for file locking so we have to fake it +** with some code of our own. +*/ +#if SQLITE_OS_WINCE +typedef struct winceLock { + int nReaders; /* Number of reader locks obtained */ + BOOL bPending; /* Indicates a pending lock has been obtained */ + BOOL bReserved; /* Indicates a reserved lock has been obtained */ + BOOL bExclusive; /* Indicates an exclusive lock has been obtained */ +} winceLock; +#endif + +/* +** The winFile structure is a subclass of sqlite3_file* specific to the win32 +** portability layer. +*/ +typedef struct winFile winFile; +struct winFile { + const sqlite3_io_methods *pMethod; /*** Must be first ***/ + sqlite3_vfs *pVfs; /* The VFS used to open this file */ + HANDLE h; /* Handle for accessing the file */ + u8 locktype; /* Type of lock currently held on this file */ + short sharedLockByte; /* Randomly chosen byte used as a shared lock */ + u8 bPersistWal; /* True to persist WAL files */ + DWORD lastErrno; /* The Windows errno from the last I/O error */ + DWORD sectorSize; /* Sector size of the device file is on */ + winShm *pShm; /* Instance of shared memory on this file */ + const char *zPath; /* Full pathname of this file */ + int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ +#if SQLITE_OS_WINCE + WCHAR *zDeleteOnClose; /* Name of file to delete when closing */ + HANDLE hMutex; /* Mutex used to control access to shared lock */ + HANDLE hShared; /* Shared memory segment used for locking */ + winceLock local; /* Locks obtained by this instance of winFile */ + winceLock *shared; /* Global shared lock memory for the file */ +#endif +}; + +/* + * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the + * various Win32 API heap functions instead of our own. + */ +#ifdef SQLITE_WIN32_MALLOC +/* + * The initial size of the Win32-specific heap. This value may be zero. + */ +#ifndef SQLITE_WIN32_HEAP_INIT_SIZE +# define SQLITE_WIN32_HEAP_INIT_SIZE ((SQLITE_DEFAULT_CACHE_SIZE) * \ + (SQLITE_DEFAULT_PAGE_SIZE) + 4194304) +#endif + +/* + * The maximum size of the Win32-specific heap. This value may be zero. + */ +#ifndef SQLITE_WIN32_HEAP_MAX_SIZE +# define SQLITE_WIN32_HEAP_MAX_SIZE (0) +#endif + +/* + * The extra flags to use in calls to the Win32 heap APIs. This value may be + * zero for the default behavior. + */ +#ifndef SQLITE_WIN32_HEAP_FLAGS +# define SQLITE_WIN32_HEAP_FLAGS (0) +#endif + +/* +** The winMemData structure stores information required by the Win32-specific +** sqlite3_mem_methods implementation. +*/ +typedef struct winMemData winMemData; +struct winMemData { +#ifndef NDEBUG + u32 magic; /* Magic number to detect structure corruption. */ +#endif + HANDLE hHeap; /* The handle to our heap. */ + BOOL bOwned; /* Do we own the heap (i.e. destroy it on shutdown)? */ +}; + +#ifndef NDEBUG +#define WINMEM_MAGIC 0x42b2830b +#endif + +static struct winMemData win_mem_data = { +#ifndef NDEBUG + WINMEM_MAGIC, +#endif + NULL, FALSE +}; + +#ifndef NDEBUG +#define winMemAssertMagic() assert( win_mem_data.magic==WINMEM_MAGIC ) +#else +#define winMemAssertMagic() +#endif + +#define winMemGetHeap() win_mem_data.hHeap + +static void *winMemMalloc(int nBytes); +static void winMemFree(void *pPrior); +static void *winMemRealloc(void *pPrior, int nBytes); +static int winMemSize(void *p); +static int winMemRoundup(int n); +static int winMemInit(void *pAppData); +static void winMemShutdown(void *pAppData); + +const sqlite3_mem_methods *sqlite3MemGetWin32(void); +#endif /* SQLITE_WIN32_MALLOC */ + +/* +** Forward prototypes. +*/ +static int getSectorSize( + sqlite3_vfs *pVfs, + const char *zRelative /* UTF-8 file name */ +); + +/* +** The following variable is (normally) set once and never changes +** thereafter. It records whether the operating system is Win95 +** or WinNT. +** +** 0: Operating system unknown. +** 1: Operating system is Win95. +** 2: Operating system is WinNT. +** +** In order to facilitate testing on a WinNT system, the test fixture +** can manually set this value to 1 to emulate Win98 behavior. +*/ +#ifdef SQLITE_TEST +int sqlite3_os_type = 0; +#else +static int sqlite3_os_type = 0; +#endif + +/* +** Return true (non-zero) if we are running under WinNT, Win2K, WinXP, +** or WinCE. Return false (zero) for Win95, Win98, or WinME. +** +** Here is an interesting observation: Win95, Win98, and WinME lack +** the LockFileEx() API. But we can still statically link against that +** API as long as we don't call it when running Win95/98/ME. A call to +** this routine is used to determine if the host is Win95/98/ME or +** WinNT/2K/XP so that we will know whether or not we can safely call +** the LockFileEx() API. +*/ +#if SQLITE_OS_WINCE +# define isNT() (1) +#else + static int isNT(void){ + if( sqlite3_os_type==0 ){ + OSVERSIONINFO sInfo; + sInfo.dwOSVersionInfoSize = sizeof(sInfo); + GetVersionEx(&sInfo); + sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1; + } + return sqlite3_os_type==2; + } +#endif /* SQLITE_OS_WINCE */ + +#ifdef SQLITE_WIN32_MALLOC +/* +** Allocate nBytes of memory. +*/ +static void *winMemMalloc(int nBytes){ + HANDLE hHeap; + void *p; + + winMemAssertMagic(); + hHeap = winMemGetHeap(); + assert( hHeap!=0 ); + assert( hHeap!=INVALID_HANDLE_VALUE ); +#ifdef SQLITE_WIN32_MALLOC_VALIDATE + assert ( HeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); +#endif + assert( nBytes>=0 ); + p = HeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes); + if( !p ){ + sqlite3_log(SQLITE_NOMEM, "failed to HeapAlloc %u bytes (%d), heap=%p", + nBytes, GetLastError(), (void*)hHeap); + } + return p; +} + +/* +** Free memory. +*/ +static void winMemFree(void *pPrior){ + HANDLE hHeap; + + winMemAssertMagic(); + hHeap = winMemGetHeap(); + assert( hHeap!=0 ); + assert( hHeap!=INVALID_HANDLE_VALUE ); +#ifdef SQLITE_WIN32_MALLOC_VALIDATE + assert ( HeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ); +#endif + if( !pPrior ) return; /* Passing NULL to HeapFree is undefined. */ + if( !HeapFree(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ){ + sqlite3_log(SQLITE_NOMEM, "failed to HeapFree block %p (%d), heap=%p", + pPrior, GetLastError(), (void*)hHeap); + } +} + +/* +** Change the size of an existing memory allocation +*/ +static void *winMemRealloc(void *pPrior, int nBytes){ + HANDLE hHeap; + void *p; + + winMemAssertMagic(); + hHeap = winMemGetHeap(); + assert( hHeap!=0 ); + assert( hHeap!=INVALID_HANDLE_VALUE ); +#ifdef SQLITE_WIN32_MALLOC_VALIDATE + assert ( HeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ); +#endif + assert( nBytes>=0 ); + if( !pPrior ){ + p = HeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes); + }else{ + p = HeapReAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior, (SIZE_T)nBytes); + } + if( !p ){ + sqlite3_log(SQLITE_NOMEM, "failed to %s %u bytes (%d), heap=%p", + pPrior ? "HeapReAlloc" : "HeapAlloc", nBytes, GetLastError(), + (void*)hHeap); + } + return p; +} + +/* +** Return the size of an outstanding allocation, in bytes. +*/ +static int winMemSize(void *p){ + HANDLE hHeap; + SIZE_T n; + + winMemAssertMagic(); + hHeap = winMemGetHeap(); + assert( hHeap!=0 ); + assert( hHeap!=INVALID_HANDLE_VALUE ); +#ifdef SQLITE_WIN32_MALLOC_VALIDATE + assert ( HeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); +#endif + if( !p ) return 0; + n = HeapSize(hHeap, SQLITE_WIN32_HEAP_FLAGS, p); + if( n==(SIZE_T)-1 ){ + sqlite3_log(SQLITE_NOMEM, "failed to HeapSize block %p (%d), heap=%p", + p, GetLastError(), (void*)hHeap); + return 0; + } + return (int)n; +} + +/* +** Round up a request size to the next valid allocation size. +*/ +static int winMemRoundup(int n){ + return n; +} + +/* +** Initialize this module. +*/ +static int winMemInit(void *pAppData){ + winMemData *pWinMemData = (winMemData *)pAppData; + + if( !pWinMemData ) return SQLITE_ERROR; + assert( pWinMemData->magic==WINMEM_MAGIC ); + if( !pWinMemData->hHeap ){ + pWinMemData->hHeap = HeapCreate(SQLITE_WIN32_HEAP_FLAGS, + SQLITE_WIN32_HEAP_INIT_SIZE, + SQLITE_WIN32_HEAP_MAX_SIZE); + if( !pWinMemData->hHeap ){ + sqlite3_log(SQLITE_NOMEM, + "failed to HeapCreate (%d), flags=%u, initSize=%u, maxSize=%u", + GetLastError(), SQLITE_WIN32_HEAP_FLAGS, SQLITE_WIN32_HEAP_INIT_SIZE, + SQLITE_WIN32_HEAP_MAX_SIZE); + return SQLITE_NOMEM; + } + pWinMemData->bOwned = TRUE; + } + assert( pWinMemData->hHeap!=0 ); + assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE ); +#ifdef SQLITE_WIN32_MALLOC_VALIDATE + assert( HeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); +#endif + return SQLITE_OK; +} + +/* +** Deinitialize this module. +*/ +static void winMemShutdown(void *pAppData){ + winMemData *pWinMemData = (winMemData *)pAppData; + + if( !pWinMemData ) return; + if( pWinMemData->hHeap ){ + assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE ); +#ifdef SQLITE_WIN32_MALLOC_VALIDATE + assert( HeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); +#endif + if( pWinMemData->bOwned ){ + if( !HeapDestroy(pWinMemData->hHeap) ){ + sqlite3_log(SQLITE_NOMEM, "failed to HeapDestroy (%d), heap=%p", + GetLastError(), (void*)pWinMemData->hHeap); + } + pWinMemData->bOwned = FALSE; + } + pWinMemData->hHeap = NULL; + } +} + +/* +** Populate the low-level memory allocation function pointers in +** sqlite3GlobalConfig.m with pointers to the routines in this file. The +** arguments specify the block of memory to manage. +** +** This routine is only called by sqlite3_config(), and therefore +** is not required to be threadsafe (it is not). +*/ +const sqlite3_mem_methods *sqlite3MemGetWin32(void){ + static const sqlite3_mem_methods winMemMethods = { + winMemMalloc, + winMemFree, + winMemRealloc, + winMemSize, + winMemRoundup, + winMemInit, + winMemShutdown, + &win_mem_data + }; + return &winMemMethods; +} + +void sqlite3MemSetDefault(void){ + sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetWin32()); +} +#endif /* SQLITE_WIN32_MALLOC */ + +/* +** Convert a UTF-8 string to microsoft unicode (UTF-16?). +** +** Space to hold the returned string is obtained from malloc. +*/ +static WCHAR *utf8ToUnicode(const char *zFilename){ + int nChar; + WCHAR *zWideFilename; + + nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0); + zWideFilename = malloc( nChar*sizeof(zWideFilename[0]) ); + if( zWideFilename==0 ){ + return 0; + } + nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar); + if( nChar==0 ){ + free(zWideFilename); + zWideFilename = 0; + } + return zWideFilename; +} + +/* +** Convert microsoft unicode to UTF-8. Space to hold the returned string is +** obtained from malloc(). +*/ +static char *unicodeToUtf8(const WCHAR *zWideFilename){ + int nByte; + char *zFilename; + + nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0); + zFilename = malloc( nByte ); + if( zFilename==0 ){ + return 0; + } + nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte, + 0, 0); + if( nByte == 0 ){ + free(zFilename); + zFilename = 0; + } + return zFilename; +} + +/* +** Convert an ansi string to microsoft unicode, based on the +** current codepage settings for file apis. +** +** Space to hold the returned string is obtained +** from malloc. +*/ +static WCHAR *mbcsToUnicode(const char *zFilename){ + int nByte; + WCHAR *zMbcsFilename; + int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP; + + nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL,0)*sizeof(WCHAR); + zMbcsFilename = malloc( nByte*sizeof(zMbcsFilename[0]) ); + if( zMbcsFilename==0 ){ + return 0; + } + nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte); + if( nByte==0 ){ + free(zMbcsFilename); + zMbcsFilename = 0; + } + return zMbcsFilename; +} + +/* +** Convert microsoft unicode to multibyte character string, based on the +** user's Ansi codepage. +** +** Space to hold the returned string is obtained from +** malloc(). +*/ +static char *unicodeToMbcs(const WCHAR *zWideFilename){ + int nByte; + char *zFilename; + int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP; + + nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0); + zFilename = malloc( nByte ); + if( zFilename==0 ){ + return 0; + } + nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte, + 0, 0); + if( nByte == 0 ){ + free(zFilename); + zFilename = 0; + } + return zFilename; +} + +/* +** Convert multibyte character string to UTF-8. Space to hold the +** returned string is obtained from malloc(). +*/ +char *sqlite3_win32_mbcs_to_utf8(const char *zFilename){ + char *zFilenameUtf8; + WCHAR *zTmpWide; + + zTmpWide = mbcsToUnicode(zFilename); + if( zTmpWide==0 ){ + return 0; + } + zFilenameUtf8 = unicodeToUtf8(zTmpWide); + free(zTmpWide); + return zFilenameUtf8; +} + +/* +** Convert UTF-8 to multibyte character string. Space to hold the +** returned string is obtained from malloc(). +*/ +char *sqlite3_win32_utf8_to_mbcs(const char *zFilename){ + char *zFilenameMbcs; + WCHAR *zTmpWide; + + zTmpWide = utf8ToUnicode(zFilename); + if( zTmpWide==0 ){ + return 0; + } + zFilenameMbcs = unicodeToMbcs(zTmpWide); + free(zTmpWide); + return zFilenameMbcs; +} + + +/* +** The return value of getLastErrorMsg +** is zero if the error message fits in the buffer, or non-zero +** otherwise (if the message was truncated). +*/ +static int getLastErrorMsg(int nBuf, char *zBuf){ + /* FormatMessage returns 0 on failure. Otherwise it + ** returns the number of TCHARs written to the output + ** buffer, excluding the terminating null char. + */ + DWORD error = GetLastError(); + DWORD dwLen = 0; + char *zOut = 0; + + if( isNT() ){ + WCHAR *zTempWide = NULL; + dwLen = FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, + NULL, + error, + 0, + (LPWSTR) &zTempWide, + 0, + 0); + if( dwLen > 0 ){ + /* allocate a buffer and convert to UTF8 */ + zOut = unicodeToUtf8(zTempWide); + /* free the system buffer allocated by FormatMessage */ + LocalFree(zTempWide); + } +/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. +** Since the ASCII version of these Windows API do not exist for WINCE, +** it's important to not reference them for WINCE builds. +*/ +#if SQLITE_OS_WINCE==0 + }else{ + char *zTemp = NULL; + dwLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, + NULL, + error, + 0, + (LPSTR) &zTemp, + 0, + 0); + if( dwLen > 0 ){ + /* allocate a buffer and convert to UTF8 */ + zOut = sqlite3_win32_mbcs_to_utf8(zTemp); + /* free the system buffer allocated by FormatMessage */ + LocalFree(zTemp); + } +#endif + } + if( 0 == dwLen ){ + sqlite3_snprintf(nBuf, zBuf, "OsError 0x%x (%u)", error, error); + }else{ + /* copy a maximum of nBuf chars to output buffer */ + sqlite3_snprintf(nBuf, zBuf, "%s", zOut); + /* free the UTF8 buffer */ + free(zOut); + } + return 0; +} + +/* +** +** This function - winLogErrorAtLine() - is only ever called via the macro +** winLogError(). +** +** This routine is invoked after an error occurs in an OS function. +** It logs a message using sqlite3_log() containing the current value of +** error code and, if possible, the human-readable equivalent from +** FormatMessage. +** +** The first argument passed to the macro should be the error code that +** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). +** The two subsequent arguments should be the name of the OS function that +** failed and the the associated file-system path, if any. +*/ +#define winLogError(a,b,c) winLogErrorAtLine(a,b,c,__LINE__) +static int winLogErrorAtLine( + int errcode, /* SQLite error code */ + const char *zFunc, /* Name of OS function that failed */ + const char *zPath, /* File path associated with error */ + int iLine /* Source line number where error occurred */ +){ + char zMsg[500]; /* Human readable error text */ + int i; /* Loop counter */ + DWORD iErrno = GetLastError(); /* Error code */ + + zMsg[0] = 0; + getLastErrorMsg(sizeof(zMsg), zMsg); + assert( errcode!=SQLITE_OK ); + if( zPath==0 ) zPath = ""; + for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){} + zMsg[i] = 0; + sqlite3_log(errcode, + "os_win.c:%d: (%d) %s(%s) - %s", + iLine, iErrno, zFunc, zPath, zMsg + ); + + return errcode; +} + +/* +** The number of times that a ReadFile(), WriteFile(), and DeleteFile() +** will be retried following a locking error - probably caused by +** antivirus software. Also the initial delay before the first retry. +** The delay increases linearly with each retry. +*/ +#ifndef SQLITE_WIN32_IOERR_RETRY +# define SQLITE_WIN32_IOERR_RETRY 10 +#endif +#ifndef SQLITE_WIN32_IOERR_RETRY_DELAY +# define SQLITE_WIN32_IOERR_RETRY_DELAY 25 +#endif +static int win32IoerrRetry = SQLITE_WIN32_IOERR_RETRY; +static int win32IoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY; + +/* +** If a ReadFile() or WriteFile() error occurs, invoke this routine +** to see if it should be retried. Return TRUE to retry. Return FALSE +** to give up with an error. +*/ +static int retryIoerr(int *pnRetry){ + DWORD e; + if( *pnRetry>=win32IoerrRetry ){ + return 0; + } + e = GetLastError(); + if( e==ERROR_ACCESS_DENIED || + e==ERROR_LOCK_VIOLATION || + e==ERROR_SHARING_VIOLATION ){ + Sleep(win32IoerrRetryDelay*(1+*pnRetry)); + ++*pnRetry; + return 1; + } + return 0; +} + +/* +** Log a I/O error retry episode. +*/ +static void logIoerr(int nRetry){ + if( nRetry ){ + sqlite3_log(SQLITE_IOERR, + "delayed %dms for lock/sharing conflict", + win32IoerrRetryDelay*nRetry*(nRetry+1)/2 + ); + } +} + +#if SQLITE_OS_WINCE +/************************************************************************* +** This section contains code for WinCE only. +*/ +/* +** WindowsCE does not have a localtime() function. So create a +** substitute. +*/ +#include +struct tm *__cdecl localtime(const time_t *t) +{ + static struct tm y; + FILETIME uTm, lTm; + SYSTEMTIME pTm; + sqlite3_int64 t64; + t64 = *t; + t64 = (t64 + 11644473600)*10000000; + uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF); + uTm.dwHighDateTime= (DWORD)(t64 >> 32); + FileTimeToLocalFileTime(&uTm,&lTm); + FileTimeToSystemTime(&lTm,&pTm); + y.tm_year = pTm.wYear - 1900; + y.tm_mon = pTm.wMonth - 1; + y.tm_wday = pTm.wDayOfWeek; + y.tm_mday = pTm.wDay; + y.tm_hour = pTm.wHour; + y.tm_min = pTm.wMinute; + y.tm_sec = pTm.wSecond; + return &y; +} + +/* This will never be called, but defined to make the code compile */ +#define GetTempPathA(a,b) + +#define LockFile(a,b,c,d,e) winceLockFile(&a, b, c, d, e) +#define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e) +#define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f) + +#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)] + +/* +** Acquire a lock on the handle h +*/ +static void winceMutexAcquire(HANDLE h){ + DWORD dwErr; + do { + dwErr = WaitForSingleObject(h, INFINITE); + } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED); +} +/* +** Release a lock acquired by winceMutexAcquire() +*/ +#define winceMutexRelease(h) ReleaseMutex(h) + +/* +** Create the mutex and shared memory used for locking in the file +** descriptor pFile +*/ +static BOOL winceCreateLock(const char *zFilename, winFile *pFile){ + WCHAR *zTok; + WCHAR *zName = utf8ToUnicode(zFilename); + BOOL bInit = TRUE; + + /* Initialize the local lockdata */ + ZeroMemory(&pFile->local, sizeof(pFile->local)); + + /* Replace the backslashes from the filename and lowercase it + ** to derive a mutex name. */ + zTok = CharLowerW(zName); + for (;*zTok;zTok++){ + if (*zTok == '\\') *zTok = '_'; + } + + /* Create/open the named mutex */ + pFile->hMutex = CreateMutexW(NULL, FALSE, zName); + if (!pFile->hMutex){ + pFile->lastErrno = GetLastError(); + winLogError(SQLITE_ERROR, "winceCreateLock1", zFilename); + free(zName); + return FALSE; + } + + /* Acquire the mutex before continuing */ + winceMutexAcquire(pFile->hMutex); + + /* Since the names of named mutexes, semaphores, file mappings etc are + ** case-sensitive, take advantage of that by uppercasing the mutex name + ** and using that as the shared filemapping name. + */ + CharUpperW(zName); + pFile->hShared = CreateFileMappingW(INVALID_HANDLE_VALUE, NULL, + PAGE_READWRITE, 0, sizeof(winceLock), + zName); + + /* Set a flag that indicates we're the first to create the memory so it + ** must be zero-initialized */ + if (GetLastError() == ERROR_ALREADY_EXISTS){ + bInit = FALSE; + } + + free(zName); + + /* If we succeeded in making the shared memory handle, map it. */ + if (pFile->hShared){ + pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared, + FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock)); + /* If mapping failed, close the shared memory handle and erase it */ + if (!pFile->shared){ + pFile->lastErrno = GetLastError(); + winLogError(SQLITE_ERROR, "winceCreateLock2", zFilename); + CloseHandle(pFile->hShared); + pFile->hShared = NULL; + } + } + + /* If shared memory could not be created, then close the mutex and fail */ + if (pFile->hShared == NULL){ + winceMutexRelease(pFile->hMutex); + CloseHandle(pFile->hMutex); + pFile->hMutex = NULL; + return FALSE; + } + + /* Initialize the shared memory if we're supposed to */ + if (bInit) { + ZeroMemory(pFile->shared, sizeof(winceLock)); + } + + winceMutexRelease(pFile->hMutex); + return TRUE; +} + +/* +** Destroy the part of winFile that deals with wince locks +*/ +static void winceDestroyLock(winFile *pFile){ + if (pFile->hMutex){ + /* Acquire the mutex */ + winceMutexAcquire(pFile->hMutex); + + /* The following blocks should probably assert in debug mode, but they + are to cleanup in case any locks remained open */ + if (pFile->local.nReaders){ + pFile->shared->nReaders --; + } + if (pFile->local.bReserved){ + pFile->shared->bReserved = FALSE; + } + if (pFile->local.bPending){ + pFile->shared->bPending = FALSE; + } + if (pFile->local.bExclusive){ + pFile->shared->bExclusive = FALSE; + } + + /* De-reference and close our copy of the shared memory handle */ + UnmapViewOfFile(pFile->shared); + CloseHandle(pFile->hShared); + + /* Done with the mutex */ + winceMutexRelease(pFile->hMutex); + CloseHandle(pFile->hMutex); + pFile->hMutex = NULL; + } +} + +/* +** An implementation of the LockFile() API of windows for wince +*/ +static BOOL winceLockFile( + HANDLE *phFile, + DWORD dwFileOffsetLow, + DWORD dwFileOffsetHigh, + DWORD nNumberOfBytesToLockLow, + DWORD nNumberOfBytesToLockHigh +){ + winFile *pFile = HANDLE_TO_WINFILE(phFile); + BOOL bReturn = FALSE; + + UNUSED_PARAMETER(dwFileOffsetHigh); + UNUSED_PARAMETER(nNumberOfBytesToLockHigh); + + if (!pFile->hMutex) return TRUE; + winceMutexAcquire(pFile->hMutex); + + /* Wanting an exclusive lock? */ + if (dwFileOffsetLow == (DWORD)SHARED_FIRST + && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){ + if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){ + pFile->shared->bExclusive = TRUE; + pFile->local.bExclusive = TRUE; + bReturn = TRUE; + } + } + + /* Want a read-only lock? */ + else if (dwFileOffsetLow == (DWORD)SHARED_FIRST && + nNumberOfBytesToLockLow == 1){ + if (pFile->shared->bExclusive == 0){ + pFile->local.nReaders ++; + if (pFile->local.nReaders == 1){ + pFile->shared->nReaders ++; + } + bReturn = TRUE; + } + } + + /* Want a pending lock? */ + else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToLockLow == 1){ + /* If no pending lock has been acquired, then acquire it */ + if (pFile->shared->bPending == 0) { + pFile->shared->bPending = TRUE; + pFile->local.bPending = TRUE; + bReturn = TRUE; + } + } + + /* Want a reserved lock? */ + else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToLockLow == 1){ + if (pFile->shared->bReserved == 0) { + pFile->shared->bReserved = TRUE; + pFile->local.bReserved = TRUE; + bReturn = TRUE; + } + } + + winceMutexRelease(pFile->hMutex); + return bReturn; +} + +/* +** An implementation of the UnlockFile API of windows for wince +*/ +static BOOL winceUnlockFile( + HANDLE *phFile, + DWORD dwFileOffsetLow, + DWORD dwFileOffsetHigh, + DWORD nNumberOfBytesToUnlockLow, + DWORD nNumberOfBytesToUnlockHigh +){ + winFile *pFile = HANDLE_TO_WINFILE(phFile); + BOOL bReturn = FALSE; + + UNUSED_PARAMETER(dwFileOffsetHigh); + UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh); + + if (!pFile->hMutex) return TRUE; + winceMutexAcquire(pFile->hMutex); + + /* Releasing a reader lock or an exclusive lock */ + if (dwFileOffsetLow == (DWORD)SHARED_FIRST){ + /* Did we have an exclusive lock? */ + if (pFile->local.bExclusive){ + assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE); + pFile->local.bExclusive = FALSE; + pFile->shared->bExclusive = FALSE; + bReturn = TRUE; + } + + /* Did we just have a reader lock? */ + else if (pFile->local.nReaders){ + assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE || nNumberOfBytesToUnlockLow == 1); + pFile->local.nReaders --; + if (pFile->local.nReaders == 0) + { + pFile->shared->nReaders --; + } + bReturn = TRUE; + } + } + + /* Releasing a pending lock */ + else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){ + if (pFile->local.bPending){ + pFile->local.bPending = FALSE; + pFile->shared->bPending = FALSE; + bReturn = TRUE; + } + } + /* Releasing a reserved lock */ + else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){ + if (pFile->local.bReserved) { + pFile->local.bReserved = FALSE; + pFile->shared->bReserved = FALSE; + bReturn = TRUE; + } + } + + winceMutexRelease(pFile->hMutex); + return bReturn; +} + +/* +** An implementation of the LockFileEx() API of windows for wince +*/ +static BOOL winceLockFileEx( + HANDLE *phFile, + DWORD dwFlags, + DWORD dwReserved, + DWORD nNumberOfBytesToLockLow, + DWORD nNumberOfBytesToLockHigh, + LPOVERLAPPED lpOverlapped +){ + UNUSED_PARAMETER(dwReserved); + UNUSED_PARAMETER(nNumberOfBytesToLockHigh); + + /* If the caller wants a shared read lock, forward this call + ** to winceLockFile */ + if (lpOverlapped->Offset == (DWORD)SHARED_FIRST && + dwFlags == 1 && + nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){ + return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0); + } + return FALSE; +} +/* +** End of the special code for wince +*****************************************************************************/ +#endif /* SQLITE_OS_WINCE */ + +/***************************************************************************** +** The next group of routines implement the I/O methods specified +** by the sqlite3_io_methods object. +******************************************************************************/ + +/* +** Some microsoft compilers lack this definition. +*/ +#ifndef INVALID_SET_FILE_POINTER +# define INVALID_SET_FILE_POINTER ((DWORD)-1) +#endif + +/* +** Move the current position of the file handle passed as the first +** argument to offset iOffset within the file. If successful, return 0. +** Otherwise, set pFile->lastErrno and return non-zero. +*/ +static int seekWinFile(winFile *pFile, sqlite3_int64 iOffset){ + LONG upperBits; /* Most sig. 32 bits of new offset */ + LONG lowerBits; /* Least sig. 32 bits of new offset */ + DWORD dwRet; /* Value returned by SetFilePointer() */ + + upperBits = (LONG)((iOffset>>32) & 0x7fffffff); + lowerBits = (LONG)(iOffset & 0xffffffff); + + /* API oddity: If successful, SetFilePointer() returns a dword + ** containing the lower 32-bits of the new file-offset. Or, if it fails, + ** it returns INVALID_SET_FILE_POINTER. However according to MSDN, + ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine + ** whether an error has actually occured, it is also necessary to call + ** GetLastError(). + */ + dwRet = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN); + if( (dwRet==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR) ){ + pFile->lastErrno = GetLastError(); + winLogError(SQLITE_IOERR_SEEK, "seekWinFile", pFile->zPath); + return 1; + } + + return 0; +} + +/* +** Close a file. +** +** It is reported that an attempt to close a handle might sometimes +** fail. This is a very unreasonable result, but windows is notorious +** for being unreasonable so I do not doubt that it might happen. If +** the close fails, we pause for 100 milliseconds and try again. As +** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before +** giving up and returning an error. +*/ +#define MX_CLOSE_ATTEMPT 3 +static int winClose(sqlite3_file *id){ + int rc, cnt = 0; + winFile *pFile = (winFile*)id; + + assert( id!=0 ); + assert( pFile->pShm==0 ); + OSTRACE(("CLOSE %d\n", pFile->h)); + do{ + rc = CloseHandle(pFile->h); + /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */ + }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (Sleep(100), 1) ); +#if SQLITE_OS_WINCE +#define WINCE_DELETION_ATTEMPTS 3 + winceDestroyLock(pFile); + if( pFile->zDeleteOnClose ){ + int cnt = 0; + while( + DeleteFileW(pFile->zDeleteOnClose)==0 + && GetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff + && cnt++ < WINCE_DELETION_ATTEMPTS + ){ + Sleep(100); /* Wait a little before trying again */ + } + free(pFile->zDeleteOnClose); + } +#endif + OSTRACE(("CLOSE %d %s\n", pFile->h, rc ? "ok" : "failed")); + OpenCounter(-1); + return rc ? SQLITE_OK + : winLogError(SQLITE_IOERR_CLOSE, "winClose", pFile->zPath); +} + +/* +** Read data from a file into a buffer. Return SQLITE_OK if all +** bytes were read successfully and SQLITE_IOERR if anything goes +** wrong. +*/ +static int winRead( + sqlite3_file *id, /* File to read from */ + void *pBuf, /* Write content into this buffer */ + int amt, /* Number of bytes to read */ + sqlite3_int64 offset /* Begin reading at this offset */ +){ + winFile *pFile = (winFile*)id; /* file handle */ + DWORD nRead; /* Number of bytes actually read from file */ + int nRetry = 0; /* Number of retrys */ + + assert( id!=0 ); + SimulateIOError(return SQLITE_IOERR_READ); + OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype)); + + if( seekWinFile(pFile, offset) ){ + return SQLITE_FULL; + } + while( !ReadFile(pFile->h, pBuf, amt, &nRead, 0) ){ + if( retryIoerr(&nRetry) ) continue; + pFile->lastErrno = GetLastError(); + return winLogError(SQLITE_IOERR_READ, "winRead", pFile->zPath); + } + logIoerr(nRetry); + if( nRead<(DWORD)amt ){ + /* Unread parts of the buffer must be zero-filled */ + memset(&((char*)pBuf)[nRead], 0, amt-nRead); + return SQLITE_IOERR_SHORT_READ; + } + + return SQLITE_OK; +} + +/* +** Write data from a buffer into a file. Return SQLITE_OK on success +** or some other error code on failure. +*/ +static int winWrite( + sqlite3_file *id, /* File to write into */ + const void *pBuf, /* The bytes to be written */ + int amt, /* Number of bytes to write */ + sqlite3_int64 offset /* Offset into the file to begin writing at */ +){ + int rc; /* True if error has occured, else false */ + winFile *pFile = (winFile*)id; /* File handle */ + int nRetry = 0; /* Number of retries */ + + assert( amt>0 ); + assert( pFile ); + SimulateIOError(return SQLITE_IOERR_WRITE); + SimulateDiskfullError(return SQLITE_FULL); + + OSTRACE(("WRITE %d lock=%d\n", pFile->h, pFile->locktype)); + + rc = seekWinFile(pFile, offset); + if( rc==0 ){ + u8 *aRem = (u8 *)pBuf; /* Data yet to be written */ + int nRem = amt; /* Number of bytes yet to be written */ + DWORD nWrite; /* Bytes written by each WriteFile() call */ + + while( nRem>0 ){ + if( !WriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){ + if( retryIoerr(&nRetry) ) continue; + break; + } + if( nWrite<=0 ) break; + aRem += nWrite; + nRem -= nWrite; + } + if( nRem>0 ){ + pFile->lastErrno = GetLastError(); + rc = 1; + } + } + + if( rc ){ + if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ) + || ( pFile->lastErrno==ERROR_DISK_FULL )){ + return SQLITE_FULL; + } + return winLogError(SQLITE_IOERR_WRITE, "winWrite", pFile->zPath); + }else{ + logIoerr(nRetry); + } + return SQLITE_OK; +} + +/* +** Truncate an open file to a specified size +*/ +static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){ + winFile *pFile = (winFile*)id; /* File handle object */ + int rc = SQLITE_OK; /* Return code for this function */ + + assert( pFile ); + + OSTRACE(("TRUNCATE %d %lld\n", pFile->h, nByte)); + SimulateIOError(return SQLITE_IOERR_TRUNCATE); + + /* If the user has configured a chunk-size for this file, truncate the + ** file so that it consists of an integer number of chunks (i.e. the + ** actual file size after the operation may be larger than the requested + ** size). + */ + if( pFile->szChunk>0 ){ + nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; + } + + /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */ + if( seekWinFile(pFile, nByte) ){ + rc = winLogError(SQLITE_IOERR_TRUNCATE, "winTruncate1", pFile->zPath); + }else if( 0==SetEndOfFile(pFile->h) ){ + pFile->lastErrno = GetLastError(); + rc = winLogError(SQLITE_IOERR_TRUNCATE, "winTruncate2", pFile->zPath); + } + + OSTRACE(("TRUNCATE %d %lld %s\n", pFile->h, nByte, rc ? "failed" : "ok")); + return rc; +} + +#ifdef SQLITE_TEST +/* +** Count the number of fullsyncs and normal syncs. This is used to test +** that syncs and fullsyncs are occuring at the right times. +*/ +int sqlite3_sync_count = 0; +int sqlite3_fullsync_count = 0; +#endif + +/* +** Make sure all writes to a particular file are committed to disk. +*/ +static int winSync(sqlite3_file *id, int flags){ +#ifndef SQLITE_NO_SYNC + /* + ** Used only when SQLITE_NO_SYNC is not defined. + */ + BOOL rc; +#endif +#if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || \ + (defined(SQLITE_TEST) && defined(SQLITE_DEBUG)) + /* + ** Used when SQLITE_NO_SYNC is not defined and by the assert() and/or + ** OSTRACE() macros. + */ + winFile *pFile = (winFile*)id; +#else + UNUSED_PARAMETER(id); +#endif + + assert( pFile ); + /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ + assert((flags&0x0F)==SQLITE_SYNC_NORMAL + || (flags&0x0F)==SQLITE_SYNC_FULL + ); + + OSTRACE(("SYNC %d lock=%d\n", pFile->h, pFile->locktype)); + + /* Unix cannot, but some systems may return SQLITE_FULL from here. This + ** line is to test that doing so does not cause any problems. + */ + SimulateDiskfullError( return SQLITE_FULL ); + +#ifndef SQLITE_TEST + UNUSED_PARAMETER(flags); +#else + if( (flags&0x0F)==SQLITE_SYNC_FULL ){ + sqlite3_fullsync_count++; + } + sqlite3_sync_count++; +#endif + + /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a + ** no-op + */ +#ifdef SQLITE_NO_SYNC + return SQLITE_OK; +#else + rc = FlushFileBuffers(pFile->h); + SimulateIOError( rc=FALSE ); + if( rc ){ + return SQLITE_OK; + }else{ + pFile->lastErrno = GetLastError(); + return winLogError(SQLITE_IOERR_FSYNC, "winSync", pFile->zPath); + } +#endif +} + +/* +** Determine the current size of a file in bytes +*/ +static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){ + DWORD upperBits; + DWORD lowerBits; + winFile *pFile = (winFile*)id; + DWORD error; + + assert( id!=0 ); + SimulateIOError(return SQLITE_IOERR_FSTAT); + lowerBits = GetFileSize(pFile->h, &upperBits); + if( (lowerBits == INVALID_FILE_SIZE) + && ((error = GetLastError()) != NO_ERROR) ) + { + pFile->lastErrno = error; + return winLogError(SQLITE_IOERR_FSTAT, "winFileSize", pFile->zPath); + } + *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits; + return SQLITE_OK; +} + +/* +** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems. +*/ +#ifndef LOCKFILE_FAIL_IMMEDIATELY +# define LOCKFILE_FAIL_IMMEDIATELY 1 +#endif + +/* +** Acquire a reader lock. +** Different API routines are called depending on whether or not this +** is Win95 or WinNT. +*/ +static int getReadLock(winFile *pFile){ + int res; + if( isNT() ){ + OVERLAPPED ovlp; + ovlp.Offset = SHARED_FIRST; + ovlp.OffsetHigh = 0; + ovlp.hEvent = 0; + res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY, + 0, SHARED_SIZE, 0, &ovlp); +/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. +*/ +#if SQLITE_OS_WINCE==0 + }else{ + int lk; + sqlite3_randomness(sizeof(lk), &lk); + pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1)); + res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0); +#endif + } + if( res == 0 ){ + pFile->lastErrno = GetLastError(); + /* No need to log a failure to lock */ + } + return res; +} + +/* +** Undo a readlock +*/ +static int unlockReadLock(winFile *pFile){ + int res; + if( isNT() ){ + res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); +/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. +*/ +#if SQLITE_OS_WINCE==0 + }else{ + res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0); +#endif + } + if( res==0 && GetLastError()!=ERROR_NOT_LOCKED ){ + pFile->lastErrno = GetLastError(); + winLogError(SQLITE_IOERR_UNLOCK, "unlockReadLock", pFile->zPath); + } + return res; +} + +/* +** Lock the file with the lock specified by parameter locktype - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. The winUnlock() routine +** erases all locks at once and returns us immediately to locking level 0. +** It is not possible to lower the locking level one step at a time. You +** must go straight to locking level 0. +*/ +static int winLock(sqlite3_file *id, int locktype){ + int rc = SQLITE_OK; /* Return code from subroutines */ + int res = 1; /* Result of a windows lock call */ + int newLocktype; /* Set pFile->locktype to this value before exiting */ + int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */ + winFile *pFile = (winFile*)id; + DWORD error = NO_ERROR; + + assert( id!=0 ); + OSTRACE(("LOCK %d %d was %d(%d)\n", + pFile->h, locktype, pFile->locktype, pFile->sharedLockByte)); + + /* If there is already a lock of this type or more restrictive on the + ** OsFile, do nothing. Don't use the end_lock: exit path, as + ** sqlite3OsEnterMutex() hasn't been called yet. + */ + if( pFile->locktype>=locktype ){ + return SQLITE_OK; + } + + /* Make sure the locking sequence is correct + */ + assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); + assert( locktype!=PENDING_LOCK ); + assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); + + /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or + ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of + ** the PENDING_LOCK byte is temporary. + */ + newLocktype = pFile->locktype; + if( (pFile->locktype==NO_LOCK) + || ( (locktype==EXCLUSIVE_LOCK) + && (pFile->locktype==RESERVED_LOCK)) + ){ + int cnt = 3; + while( cnt-->0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0))==0 ){ + /* Try 3 times to get the pending lock. The pending lock might be + ** held by another reader process who will release it momentarily. + */ + OSTRACE(("could not get a PENDING lock. cnt=%d\n", cnt)); + Sleep(1); + } + gotPendingLock = res; + if( !res ){ + error = GetLastError(); + } + } + + /* Acquire a shared lock + */ + if( locktype==SHARED_LOCK && res ){ + assert( pFile->locktype==NO_LOCK ); + res = getReadLock(pFile); + if( res ){ + newLocktype = SHARED_LOCK; + }else{ + error = GetLastError(); + } + } + + /* Acquire a RESERVED lock + */ + if( locktype==RESERVED_LOCK && res ){ + assert( pFile->locktype==SHARED_LOCK ); + res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0); + if( res ){ + newLocktype = RESERVED_LOCK; + }else{ + error = GetLastError(); + } + } + + /* Acquire a PENDING lock + */ + if( locktype==EXCLUSIVE_LOCK && res ){ + newLocktype = PENDING_LOCK; + gotPendingLock = 0; + } + + /* Acquire an EXCLUSIVE lock + */ + if( locktype==EXCLUSIVE_LOCK && res ){ + assert( pFile->locktype>=SHARED_LOCK ); + res = unlockReadLock(pFile); + OSTRACE(("unreadlock = %d\n", res)); + res = LockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); + if( res ){ + newLocktype = EXCLUSIVE_LOCK; + }else{ + error = GetLastError(); + OSTRACE(("error-code = %d\n", error)); + getReadLock(pFile); + } + } + + /* If we are holding a PENDING lock that ought to be released, then + ** release it now. + */ + if( gotPendingLock && locktype==SHARED_LOCK ){ + UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0); + } + + /* Update the state of the lock has held in the file descriptor then + ** return the appropriate result code. + */ + if( res ){ + rc = SQLITE_OK; + }else{ + OSTRACE(("LOCK FAILED %d trying for %d but got %d\n", pFile->h, + locktype, newLocktype)); + pFile->lastErrno = error; + rc = SQLITE_BUSY; + } + pFile->locktype = (u8)newLocktype; + return rc; +} + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, return +** non-zero, otherwise zero. +*/ +static int winCheckReservedLock(sqlite3_file *id, int *pResOut){ + int rc; + winFile *pFile = (winFile*)id; + + SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); + + assert( id!=0 ); + if( pFile->locktype>=RESERVED_LOCK ){ + rc = 1; + OSTRACE(("TEST WR-LOCK %d %d (local)\n", pFile->h, rc)); + }else{ + rc = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0); + if( rc ){ + UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0); + } + rc = !rc; + OSTRACE(("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc)); + } + *pResOut = rc; + return SQLITE_OK; +} + +/* +** Lower the locking level on file descriptor id to locktype. locktype +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +** +** It is not possible for this routine to fail if the second argument +** is NO_LOCK. If the second argument is SHARED_LOCK then this routine +** might return SQLITE_IOERR; +*/ +static int winUnlock(sqlite3_file *id, int locktype){ + int type; + winFile *pFile = (winFile*)id; + int rc = SQLITE_OK; + assert( pFile!=0 ); + assert( locktype<=SHARED_LOCK ); + OSTRACE(("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype, + pFile->locktype, pFile->sharedLockByte)); + type = pFile->locktype; + if( type>=EXCLUSIVE_LOCK ){ + UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); + if( locktype==SHARED_LOCK && !getReadLock(pFile) ){ + /* This should never happen. We should always be able to + ** reacquire the read lock */ + rc = winLogError(SQLITE_IOERR_UNLOCK, "winUnlock", pFile->zPath); + } + } + if( type>=RESERVED_LOCK ){ + UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0); + } + if( locktype==NO_LOCK && type>=SHARED_LOCK ){ + unlockReadLock(pFile); + } + if( type>=PENDING_LOCK ){ + UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0); + } + pFile->locktype = (u8)locktype; + return rc; +} + +/* +** Control and query of the open file handle. +*/ +static int winFileControl(sqlite3_file *id, int op, void *pArg){ + winFile *pFile = (winFile*)id; + switch( op ){ + case SQLITE_FCNTL_LOCKSTATE: { + *(int*)pArg = pFile->locktype; + return SQLITE_OK; + } + case SQLITE_LAST_ERRNO: { + *(int*)pArg = (int)pFile->lastErrno; + return SQLITE_OK; + } + case SQLITE_FCNTL_CHUNK_SIZE: { + pFile->szChunk = *(int *)pArg; + return SQLITE_OK; + } + case SQLITE_FCNTL_SIZE_HINT: { + if( pFile->szChunk>0 ){ + sqlite3_int64 oldSz; + int rc = winFileSize(id, &oldSz); + if( rc==SQLITE_OK ){ + sqlite3_int64 newSz = *(sqlite3_int64*)pArg; + if( newSz>oldSz ){ + SimulateIOErrorBenign(1); + rc = winTruncate(id, newSz); + SimulateIOErrorBenign(0); + } + } + return rc; + } + return SQLITE_OK; + } + case SQLITE_FCNTL_PERSIST_WAL: { + int bPersist = *(int*)pArg; + if( bPersist<0 ){ + *(int*)pArg = pFile->bPersistWal; + }else{ + pFile->bPersistWal = bPersist!=0; + } + return SQLITE_OK; + } + case SQLITE_FCNTL_SYNC_OMITTED: { + return SQLITE_OK; + } + case SQLITE_FCNTL_WIN32_AV_RETRY: { + int *a = (int*)pArg; + if( a[0]>0 ){ + win32IoerrRetry = a[0]; + }else{ + a[0] = win32IoerrRetry; + } + if( a[1]>0 ){ + win32IoerrRetryDelay = a[1]; + }else{ + a[1] = win32IoerrRetryDelay; + } + return SQLITE_OK; + } + } + return SQLITE_NOTFOUND; +} + +/* +** Return the sector size in bytes of the underlying block device for +** the specified file. This is almost always 512 bytes, but may be +** larger for some devices. +** +** SQLite code assumes this function cannot fail. It also assumes that +** if two files are created in the same file-system directory (i.e. +** a database and its journal file) that the sector size will be the +** same for both. +*/ +static int winSectorSize(sqlite3_file *id){ + assert( id!=0 ); + return (int)(((winFile*)id)->sectorSize); +} + +/* +** Return a vector of device characteristics. +*/ +static int winDeviceCharacteristics(sqlite3_file *id){ + UNUSED_PARAMETER(id); + return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN; +} + +#ifndef SQLITE_OMIT_WAL + +/* +** Windows will only let you create file view mappings +** on allocation size granularity boundaries. +** During sqlite3_os_init() we do a GetSystemInfo() +** to get the granularity size. +*/ +SYSTEM_INFO winSysInfo; + +/* +** Helper functions to obtain and relinquish the global mutex. The +** global mutex is used to protect the winLockInfo objects used by +** this file, all of which may be shared by multiple threads. +** +** Function winShmMutexHeld() is used to assert() that the global mutex +** is held when required. This function is only used as part of assert() +** statements. e.g. +** +** winShmEnterMutex() +** assert( winShmMutexHeld() ); +** winShmLeaveMutex() +*/ +static void winShmEnterMutex(void){ + sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); +} +static void winShmLeaveMutex(void){ + sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); +} +#ifdef SQLITE_DEBUG +static int winShmMutexHeld(void) { + return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); +} +#endif + +/* +** Object used to represent a single file opened and mmapped to provide +** shared memory. When multiple threads all reference the same +** log-summary, each thread has its own winFile object, but they all +** point to a single instance of this object. In other words, each +** log-summary is opened only once per process. +** +** winShmMutexHeld() must be true when creating or destroying +** this object or while reading or writing the following fields: +** +** nRef +** pNext +** +** The following fields are read-only after the object is created: +** +** fid +** zFilename +** +** Either winShmNode.mutex must be held or winShmNode.nRef==0 and +** winShmMutexHeld() is true when reading or writing any other field +** in this structure. +** +*/ +struct winShmNode { + sqlite3_mutex *mutex; /* Mutex to access this object */ + char *zFilename; /* Name of the file */ + winFile hFile; /* File handle from winOpen */ + + int szRegion; /* Size of shared-memory regions */ + int nRegion; /* Size of array apRegion */ + struct ShmRegion { + HANDLE hMap; /* File handle from CreateFileMapping */ + void *pMap; + } *aRegion; + DWORD lastErrno; /* The Windows errno from the last I/O error */ + + int nRef; /* Number of winShm objects pointing to this */ + winShm *pFirst; /* All winShm objects pointing to this */ + winShmNode *pNext; /* Next in list of all winShmNode objects */ +#ifdef SQLITE_DEBUG + u8 nextShmId; /* Next available winShm.id value */ +#endif +}; + +/* +** A global array of all winShmNode objects. +** +** The winShmMutexHeld() must be true while reading or writing this list. +*/ +static winShmNode *winShmNodeList = 0; + +/* +** Structure used internally by this VFS to record the state of an +** open shared memory connection. +** +** The following fields are initialized when this object is created and +** are read-only thereafter: +** +** winShm.pShmNode +** winShm.id +** +** All other fields are read/write. The winShm.pShmNode->mutex must be held +** while accessing any read/write fields. +*/ +struct winShm { + winShmNode *pShmNode; /* The underlying winShmNode object */ + winShm *pNext; /* Next winShm with the same winShmNode */ + u8 hasMutex; /* True if holding the winShmNode mutex */ + u16 sharedMask; /* Mask of shared locks held */ + u16 exclMask; /* Mask of exclusive locks held */ +#ifdef SQLITE_DEBUG + u8 id; /* Id of this connection with its winShmNode */ +#endif +}; + +/* +** Constants used for locking +*/ +#define WIN_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ +#define WIN_SHM_DMS (WIN_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ + +/* +** Apply advisory locks for all n bytes beginning at ofst. +*/ +#define _SHM_UNLCK 1 +#define _SHM_RDLCK 2 +#define _SHM_WRLCK 3 +static int winShmSystemLock( + winShmNode *pFile, /* Apply locks to this open shared-memory segment */ + int lockType, /* _SHM_UNLCK, _SHM_RDLCK, or _SHM_WRLCK */ + int ofst, /* Offset to first byte to be locked/unlocked */ + int nByte /* Number of bytes to lock or unlock */ +){ + OVERLAPPED ovlp; + DWORD dwFlags; + int rc = 0; /* Result code form Lock/UnlockFileEx() */ + + /* Access to the winShmNode object is serialized by the caller */ + assert( sqlite3_mutex_held(pFile->mutex) || pFile->nRef==0 ); + + /* Initialize the locking parameters */ + dwFlags = LOCKFILE_FAIL_IMMEDIATELY; + if( lockType == _SHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK; + + memset(&ovlp, 0, sizeof(OVERLAPPED)); + ovlp.Offset = ofst; + + /* Release/Acquire the system-level lock */ + if( lockType==_SHM_UNLCK ){ + rc = UnlockFileEx(pFile->hFile.h, 0, nByte, 0, &ovlp); + }else{ + rc = LockFileEx(pFile->hFile.h, dwFlags, 0, nByte, 0, &ovlp); + } + + if( rc!= 0 ){ + rc = SQLITE_OK; + }else{ + pFile->lastErrno = GetLastError(); + rc = SQLITE_BUSY; + } + + OSTRACE(("SHM-LOCK %d %s %s 0x%08lx\n", + pFile->hFile.h, + rc==SQLITE_OK ? "ok" : "failed", + lockType==_SHM_UNLCK ? "UnlockFileEx" : "LockFileEx", + pFile->lastErrno)); + + return rc; +} + +/* Forward references to VFS methods */ +static int winOpen(sqlite3_vfs*,const char*,sqlite3_file*,int,int*); +static int winDelete(sqlite3_vfs *,const char*,int); + +/* +** Purge the winShmNodeList list of all entries with winShmNode.nRef==0. +** +** This is not a VFS shared-memory method; it is a utility function called +** by VFS shared-memory methods. +*/ +static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){ + winShmNode **pp; + winShmNode *p; + BOOL bRc; + assert( winShmMutexHeld() ); + pp = &winShmNodeList; + while( (p = *pp)!=0 ){ + if( p->nRef==0 ){ + int i; + if( p->mutex ) sqlite3_mutex_free(p->mutex); + for(i=0; inRegion; i++){ + bRc = UnmapViewOfFile(p->aRegion[i].pMap); + OSTRACE(("SHM-PURGE pid-%d unmap region=%d %s\n", + (int)GetCurrentProcessId(), i, + bRc ? "ok" : "failed")); + bRc = CloseHandle(p->aRegion[i].hMap); + OSTRACE(("SHM-PURGE pid-%d close region=%d %s\n", + (int)GetCurrentProcessId(), i, + bRc ? "ok" : "failed")); + } + if( p->hFile.h != INVALID_HANDLE_VALUE ){ + SimulateIOErrorBenign(1); + winClose((sqlite3_file *)&p->hFile); + SimulateIOErrorBenign(0); + } + if( deleteFlag ){ + SimulateIOErrorBenign(1); + winDelete(pVfs, p->zFilename, 0); + SimulateIOErrorBenign(0); + } + *pp = p->pNext; + sqlite3_free(p->aRegion); + sqlite3_free(p); + }else{ + pp = &p->pNext; + } + } +} + +/* +** Open the shared-memory area associated with database file pDbFd. +** +** When opening a new shared-memory file, if no other instances of that +** file are currently open, in this process or in other processes, then +** the file must be truncated to zero length or have its header cleared. +*/ +static int winOpenSharedMemory(winFile *pDbFd){ + struct winShm *p; /* The connection to be opened */ + struct winShmNode *pShmNode = 0; /* The underlying mmapped file */ + int rc; /* Result code */ + struct winShmNode *pNew; /* Newly allocated winShmNode */ + int nName; /* Size of zName in bytes */ + + assert( pDbFd->pShm==0 ); /* Not previously opened */ + + /* Allocate space for the new sqlite3_shm object. Also speculatively + ** allocate space for a new winShmNode and filename. + */ + p = sqlite3_malloc( sizeof(*p) ); + if( p==0 ) return SQLITE_NOMEM; + memset(p, 0, sizeof(*p)); + nName = sqlite3Strlen30(pDbFd->zPath); + pNew = sqlite3_malloc( sizeof(*pShmNode) + nName + 15 ); + if( pNew==0 ){ + sqlite3_free(p); + return SQLITE_NOMEM; + } + memset(pNew, 0, sizeof(*pNew)); + pNew->zFilename = (char*)&pNew[1]; + sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath); + sqlite3FileSuffix3(pDbFd->zPath, pNew->zFilename); + + /* Look to see if there is an existing winShmNode that can be used. + ** If no matching winShmNode currently exists, create a new one. + */ + winShmEnterMutex(); + for(pShmNode = winShmNodeList; pShmNode; pShmNode=pShmNode->pNext){ + /* TBD need to come up with better match here. Perhaps + ** use FILE_ID_BOTH_DIR_INFO Structure. + */ + if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break; + } + if( pShmNode ){ + sqlite3_free(pNew); + }else{ + pShmNode = pNew; + pNew = 0; + ((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE; + pShmNode->pNext = winShmNodeList; + winShmNodeList = pShmNode; + + pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); + if( pShmNode->mutex==0 ){ + rc = SQLITE_NOMEM; + goto shm_open_err; + } + + rc = winOpen(pDbFd->pVfs, + pShmNode->zFilename, /* Name of the file (UTF-8) */ + (sqlite3_file*)&pShmNode->hFile, /* File handle here */ + SQLITE_OPEN_WAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, /* Mode flags */ + 0); + if( SQLITE_OK!=rc ){ + rc = SQLITE_CANTOPEN_BKPT; + goto shm_open_err; + } + + /* Check to see if another process is holding the dead-man switch. + ** If not, truncate the file to zero length. + */ + if( winShmSystemLock(pShmNode, _SHM_WRLCK, WIN_SHM_DMS, 1)==SQLITE_OK ){ + rc = winTruncate((sqlite3_file *)&pShmNode->hFile, 0); + if( rc!=SQLITE_OK ){ + rc = winLogError(SQLITE_IOERR_SHMOPEN, "winOpenShm", pDbFd->zPath); + } + } + if( rc==SQLITE_OK ){ + winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1); + rc = winShmSystemLock(pShmNode, _SHM_RDLCK, WIN_SHM_DMS, 1); + } + if( rc ) goto shm_open_err; + } + + /* Make the new connection a child of the winShmNode */ + p->pShmNode = pShmNode; +#ifdef SQLITE_DEBUG + p->id = pShmNode->nextShmId++; +#endif + pShmNode->nRef++; + pDbFd->pShm = p; + winShmLeaveMutex(); + + /* The reference count on pShmNode has already been incremented under + ** the cover of the winShmEnterMutex() mutex and the pointer from the + ** new (struct winShm) object to the pShmNode has been set. All that is + ** left to do is to link the new object into the linked list starting + ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex + ** mutex. + */ + sqlite3_mutex_enter(pShmNode->mutex); + p->pNext = pShmNode->pFirst; + pShmNode->pFirst = p; + sqlite3_mutex_leave(pShmNode->mutex); + return SQLITE_OK; + + /* Jump here on any error */ +shm_open_err: + winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1); + winShmPurge(pDbFd->pVfs, 0); /* This call frees pShmNode if required */ + sqlite3_free(p); + sqlite3_free(pNew); + winShmLeaveMutex(); + return rc; +} + +/* +** Close a connection to shared-memory. Delete the underlying +** storage if deleteFlag is true. +*/ +static int winShmUnmap( + sqlite3_file *fd, /* Database holding shared memory */ + int deleteFlag /* Delete after closing if true */ +){ + winFile *pDbFd; /* Database holding shared-memory */ + winShm *p; /* The connection to be closed */ + winShmNode *pShmNode; /* The underlying shared-memory file */ + winShm **pp; /* For looping over sibling connections */ + + pDbFd = (winFile*)fd; + p = pDbFd->pShm; + if( p==0 ) return SQLITE_OK; + pShmNode = p->pShmNode; + + /* Remove connection p from the set of connections associated + ** with pShmNode */ + sqlite3_mutex_enter(pShmNode->mutex); + for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} + *pp = p->pNext; + + /* Free the connection p */ + sqlite3_free(p); + pDbFd->pShm = 0; + sqlite3_mutex_leave(pShmNode->mutex); + + /* If pShmNode->nRef has reached 0, then close the underlying + ** shared-memory file, too */ + winShmEnterMutex(); + assert( pShmNode->nRef>0 ); + pShmNode->nRef--; + if( pShmNode->nRef==0 ){ + winShmPurge(pDbFd->pVfs, deleteFlag); + } + winShmLeaveMutex(); + + return SQLITE_OK; +} + +/* +** Change the lock state for a shared-memory segment. +*/ +static int winShmLock( + sqlite3_file *fd, /* Database file holding the shared memory */ + int ofst, /* First lock to acquire or release */ + int n, /* Number of locks to acquire or release */ + int flags /* What to do with the lock */ +){ + winFile *pDbFd = (winFile*)fd; /* Connection holding shared memory */ + winShm *p = pDbFd->pShm; /* The shared memory being locked */ + winShm *pX; /* For looping over all siblings */ + winShmNode *pShmNode = p->pShmNode; + int rc = SQLITE_OK; /* Result code */ + u16 mask; /* Mask of locks to take or release */ + + assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); + assert( n>=1 ); + assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) + || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) + || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) + || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); + assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); + + mask = (u16)((1U<<(ofst+n)) - (1U<1 || mask==(1<mutex); + if( flags & SQLITE_SHM_UNLOCK ){ + u16 allMask = 0; /* Mask of locks held by siblings */ + + /* See if any siblings hold this same lock */ + for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ + if( pX==p ) continue; + assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); + allMask |= pX->sharedMask; + } + + /* Unlock the system-level locks */ + if( (mask & allMask)==0 ){ + rc = winShmSystemLock(pShmNode, _SHM_UNLCK, ofst+WIN_SHM_BASE, n); + }else{ + rc = SQLITE_OK; + } + + /* Undo the local locks */ + if( rc==SQLITE_OK ){ + p->exclMask &= ~mask; + p->sharedMask &= ~mask; + } + }else if( flags & SQLITE_SHM_SHARED ){ + u16 allShared = 0; /* Union of locks held by connections other than "p" */ + + /* Find out which shared locks are already held by sibling connections. + ** If any sibling already holds an exclusive lock, go ahead and return + ** SQLITE_BUSY. + */ + for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ + if( (pX->exclMask & mask)!=0 ){ + rc = SQLITE_BUSY; + break; + } + allShared |= pX->sharedMask; + } + + /* Get shared locks at the system level, if necessary */ + if( rc==SQLITE_OK ){ + if( (allShared & mask)==0 ){ + rc = winShmSystemLock(pShmNode, _SHM_RDLCK, ofst+WIN_SHM_BASE, n); + }else{ + rc = SQLITE_OK; + } + } + + /* Get the local shared locks */ + if( rc==SQLITE_OK ){ + p->sharedMask |= mask; + } + }else{ + /* Make sure no sibling connections hold locks that will block this + ** lock. If any do, return SQLITE_BUSY right away. + */ + for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ + if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ + rc = SQLITE_BUSY; + break; + } + } + + /* Get the exclusive locks at the system level. Then if successful + ** also mark the local connection as being locked. + */ + if( rc==SQLITE_OK ){ + rc = winShmSystemLock(pShmNode, _SHM_WRLCK, ofst+WIN_SHM_BASE, n); + if( rc==SQLITE_OK ){ + assert( (p->sharedMask & mask)==0 ); + p->exclMask |= mask; + } + } + } + sqlite3_mutex_leave(pShmNode->mutex); + OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x %s\n", + p->id, (int)GetCurrentProcessId(), p->sharedMask, p->exclMask, + rc ? "failed" : "ok")); + return rc; +} + +/* +** Implement a memory barrier or memory fence on shared memory. +** +** All loads and stores begun before the barrier must complete before +** any load or store begun after the barrier. +*/ +static void winShmBarrier( + sqlite3_file *fd /* Database holding the shared memory */ +){ + UNUSED_PARAMETER(fd); + /* MemoryBarrier(); // does not work -- do not know why not */ + winShmEnterMutex(); + winShmLeaveMutex(); +} + +/* +** This function is called to obtain a pointer to region iRegion of the +** shared-memory associated with the database file fd. Shared-memory regions +** are numbered starting from zero. Each shared-memory region is szRegion +** bytes in size. +** +** If an error occurs, an error code is returned and *pp is set to NULL. +** +** Otherwise, if the isWrite parameter is 0 and the requested shared-memory +** region has not been allocated (by any client, including one running in a +** separate process), then *pp is set to NULL and SQLITE_OK returned. If +** isWrite is non-zero and the requested shared-memory region has not yet +** been allocated, it is allocated by this function. +** +** If the shared-memory region has already been allocated or is allocated by +** this call as described above, then it is mapped into this processes +** address space (if it is not already), *pp is set to point to the mapped +** memory and SQLITE_OK returned. +*/ +static int winShmMap( + sqlite3_file *fd, /* Handle open on database file */ + int iRegion, /* Region to retrieve */ + int szRegion, /* Size of regions */ + int isWrite, /* True to extend file if necessary */ + void volatile **pp /* OUT: Mapped memory */ +){ + winFile *pDbFd = (winFile*)fd; + winShm *p = pDbFd->pShm; + winShmNode *pShmNode; + int rc = SQLITE_OK; + + if( !p ){ + rc = winOpenSharedMemory(pDbFd); + if( rc!=SQLITE_OK ) return rc; + p = pDbFd->pShm; + } + pShmNode = p->pShmNode; + + sqlite3_mutex_enter(pShmNode->mutex); + assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); + + if( pShmNode->nRegion<=iRegion ){ + struct ShmRegion *apNew; /* New aRegion[] array */ + int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ + sqlite3_int64 sz; /* Current size of wal-index file */ + + pShmNode->szRegion = szRegion; + + /* The requested region is not mapped into this processes address space. + ** Check to see if it has been allocated (i.e. if the wal-index file is + ** large enough to contain the requested region). + */ + rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz); + if( rc!=SQLITE_OK ){ + rc = winLogError(SQLITE_IOERR_SHMSIZE, "winShmMap1", pDbFd->zPath); + goto shmpage_out; + } + + if( szhFile, nByte); + if( rc!=SQLITE_OK ){ + rc = winLogError(SQLITE_IOERR_SHMSIZE, "winShmMap2", pDbFd->zPath); + goto shmpage_out; + } + } + + /* Map the requested memory region into this processes address space. */ + apNew = (struct ShmRegion *)sqlite3_realloc( + pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0]) + ); + if( !apNew ){ + rc = SQLITE_IOERR_NOMEM; + goto shmpage_out; + } + pShmNode->aRegion = apNew; + + while( pShmNode->nRegion<=iRegion ){ + HANDLE hMap; /* file-mapping handle */ + void *pMap = 0; /* Mapped memory region */ + + hMap = CreateFileMapping(pShmNode->hFile.h, + NULL, PAGE_READWRITE, 0, nByte, NULL + ); + OSTRACE(("SHM-MAP pid-%d create region=%d nbyte=%d %s\n", + (int)GetCurrentProcessId(), pShmNode->nRegion, nByte, + hMap ? "ok" : "failed")); + if( hMap ){ + int iOffset = pShmNode->nRegion*szRegion; + int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; + pMap = MapViewOfFile(hMap, FILE_MAP_WRITE | FILE_MAP_READ, + 0, iOffset - iOffsetShift, szRegion + iOffsetShift + ); + OSTRACE(("SHM-MAP pid-%d map region=%d offset=%d size=%d %s\n", + (int)GetCurrentProcessId(), pShmNode->nRegion, iOffset, szRegion, + pMap ? "ok" : "failed")); + } + if( !pMap ){ + pShmNode->lastErrno = GetLastError(); + rc = winLogError(SQLITE_IOERR_SHMMAP, "winShmMap3", pDbFd->zPath); + if( hMap ) CloseHandle(hMap); + goto shmpage_out; + } + + pShmNode->aRegion[pShmNode->nRegion].pMap = pMap; + pShmNode->aRegion[pShmNode->nRegion].hMap = hMap; + pShmNode->nRegion++; + } + } + +shmpage_out: + if( pShmNode->nRegion>iRegion ){ + int iOffset = iRegion*szRegion; + int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; + char *p = (char *)pShmNode->aRegion[iRegion].pMap; + *pp = (void *)&p[iOffsetShift]; + }else{ + *pp = 0; + } + sqlite3_mutex_leave(pShmNode->mutex); + return rc; +} + +#else +# define winShmMap 0 +# define winShmLock 0 +# define winShmBarrier 0 +# define winShmUnmap 0 +#endif /* #ifndef SQLITE_OMIT_WAL */ + +/* +** Here ends the implementation of all sqlite3_file methods. +** +********************** End sqlite3_file Methods ******************************* +******************************************************************************/ + +/* +** This vector defines all the methods that can operate on an +** sqlite3_file for win32. +*/ +static const sqlite3_io_methods winIoMethod = { + 2, /* iVersion */ + winClose, /* xClose */ + winRead, /* xRead */ + winWrite, /* xWrite */ + winTruncate, /* xTruncate */ + winSync, /* xSync */ + winFileSize, /* xFileSize */ + winLock, /* xLock */ + winUnlock, /* xUnlock */ + winCheckReservedLock, /* xCheckReservedLock */ + winFileControl, /* xFileControl */ + winSectorSize, /* xSectorSize */ + winDeviceCharacteristics, /* xDeviceCharacteristics */ + winShmMap, /* xShmMap */ + winShmLock, /* xShmLock */ + winShmBarrier, /* xShmBarrier */ + winShmUnmap /* xShmUnmap */ +}; + +/**************************************************************************** +**************************** sqlite3_vfs methods **************************** +** +** This division contains the implementation of methods on the +** sqlite3_vfs object. +*/ + +/* +** Convert a UTF-8 filename into whatever form the underlying +** operating system wants filenames in. Space to hold the result +** is obtained from malloc and must be freed by the calling +** function. +*/ +static void *convertUtf8Filename(const char *zFilename){ + void *zConverted = 0; + if( isNT() ){ + zConverted = utf8ToUnicode(zFilename); +/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. +*/ +#if SQLITE_OS_WINCE==0 + }else{ + zConverted = sqlite3_win32_utf8_to_mbcs(zFilename); +#endif + } + /* caller will handle out of memory */ + return zConverted; +} + +/* +** Create a temporary file name in zBuf. zBuf must be big enough to +** hold at pVfs->mxPathname characters. +*/ +static int getTempname(int nBuf, char *zBuf){ + static char zChars[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789"; + size_t i, j; + char zTempPath[MAX_PATH+1]; + + /* It's odd to simulate an io-error here, but really this is just + ** using the io-error infrastructure to test that SQLite handles this + ** function failing. + */ + SimulateIOError( return SQLITE_IOERR ); + + if( sqlite3_temp_directory ){ + sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory); + }else if( isNT() ){ + char *zMulti; + WCHAR zWidePath[MAX_PATH]; + GetTempPathW(MAX_PATH-30, zWidePath); + zMulti = unicodeToUtf8(zWidePath); + if( zMulti ){ + sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti); + free(zMulti); + }else{ + return SQLITE_NOMEM; + } +/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. +** Since the ASCII version of these Windows API do not exist for WINCE, +** it's important to not reference them for WINCE builds. +*/ +#if SQLITE_OS_WINCE==0 + }else{ + char *zUtf8; + char zMbcsPath[MAX_PATH]; + GetTempPathA(MAX_PATH-30, zMbcsPath); + zUtf8 = sqlite3_win32_mbcs_to_utf8(zMbcsPath); + if( zUtf8 ){ + sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8); + free(zUtf8); + }else{ + return SQLITE_NOMEM; + } +#endif + } + + /* Check that the output buffer is large enough for the temporary file + ** name. If it is not, return SQLITE_ERROR. + */ + if( (sqlite3Strlen30(zTempPath) + sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){ + return SQLITE_ERROR; + } + + for(i=sqlite3Strlen30(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){} + zTempPath[i] = 0; + + sqlite3_snprintf(nBuf-17, zBuf, + "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath); + j = sqlite3Strlen30(zBuf); + sqlite3_randomness(15, &zBuf[j]); + for(i=0; i<15; i++, j++){ + zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; + } + zBuf[j] = 0; + + OSTRACE(("TEMP FILENAME: %s\n", zBuf)); + return SQLITE_OK; +} + +/* +** Open a file. +*/ +static int winOpen( + sqlite3_vfs *pVfs, /* Not used */ + const char *zName, /* Name of the file (UTF-8) */ + sqlite3_file *id, /* Write the SQLite file handle here */ + int flags, /* Open mode flags */ + int *pOutFlags /* Status return flags */ +){ + HANDLE h; + DWORD dwDesiredAccess; + DWORD dwShareMode; + DWORD dwCreationDisposition; + DWORD dwFlagsAndAttributes = 0; +#if SQLITE_OS_WINCE + int isTemp = 0; +#endif + winFile *pFile = (winFile*)id; + void *zConverted; /* Filename in OS encoding */ + const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */ + int cnt = 0; + + /* If argument zPath is a NULL pointer, this function is required to open + ** a temporary file. Use this buffer to store the file name in. + */ + char zTmpname[MAX_PATH+1]; /* Buffer used to create temp filename */ + + int rc = SQLITE_OK; /* Function Return Code */ +#if !defined(NDEBUG) || SQLITE_OS_WINCE + int eType = flags&0xFFFFFF00; /* Type of file to open */ +#endif + + int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); + int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); + int isCreate = (flags & SQLITE_OPEN_CREATE); +#ifndef NDEBUG + int isReadonly = (flags & SQLITE_OPEN_READONLY); +#endif + int isReadWrite = (flags & SQLITE_OPEN_READWRITE); + +#ifndef NDEBUG + int isOpenJournal = (isCreate && ( + eType==SQLITE_OPEN_MASTER_JOURNAL + || eType==SQLITE_OPEN_MAIN_JOURNAL + || eType==SQLITE_OPEN_WAL + )); +#endif + + /* Check the following statements are true: + ** + ** (a) Exactly one of the READWRITE and READONLY flags must be set, and + ** (b) if CREATE is set, then READWRITE must also be set, and + ** (c) if EXCLUSIVE is set, then CREATE must also be set. + ** (d) if DELETEONCLOSE is set, then CREATE must also be set. + */ + assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); + assert(isCreate==0 || isReadWrite); + assert(isExclusive==0 || isCreate); + assert(isDelete==0 || isCreate); + + /* The main DB, main journal, WAL file and master journal are never + ** automatically deleted. Nor are they ever temporary files. */ + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); + assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); + + /* Assert that the upper layer has set one of the "file-type" flags. */ + assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB + || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL + || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL + || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL + ); + + assert( id!=0 ); + UNUSED_PARAMETER(pVfs); + + pFile->h = INVALID_HANDLE_VALUE; + + /* If the second argument to this function is NULL, generate a + ** temporary file name to use + */ + if( !zUtf8Name ){ + assert(isDelete && !isOpenJournal); + rc = getTempname(MAX_PATH+1, zTmpname); + if( rc!=SQLITE_OK ){ + return rc; + } + zUtf8Name = zTmpname; + } + + /* Convert the filename to the system encoding. */ + zConverted = convertUtf8Filename(zUtf8Name); + if( zConverted==0 ){ + return SQLITE_NOMEM; + } + + if( isReadWrite ){ + dwDesiredAccess = GENERIC_READ | GENERIC_WRITE; + }else{ + dwDesiredAccess = GENERIC_READ; + } + + /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is + ** created. SQLite doesn't use it to indicate "exclusive access" + ** as it is usually understood. + */ + if( isExclusive ){ + /* Creates a new file, only if it does not already exist. */ + /* If the file exists, it fails. */ + dwCreationDisposition = CREATE_NEW; + }else if( isCreate ){ + /* Open existing file, or create if it doesn't exist */ + dwCreationDisposition = OPEN_ALWAYS; + }else{ + /* Opens a file, only if it exists. */ + dwCreationDisposition = OPEN_EXISTING; + } + + dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE; + + if( isDelete ){ +#if SQLITE_OS_WINCE + dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN; + isTemp = 1; +#else + dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY + | FILE_ATTRIBUTE_HIDDEN + | FILE_FLAG_DELETE_ON_CLOSE; +#endif + }else{ + dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL; + } + /* Reports from the internet are that performance is always + ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */ +#if SQLITE_OS_WINCE + dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS; +#endif + + if( isNT() ){ + while( (h = CreateFileW((WCHAR*)zConverted, + dwDesiredAccess, + dwShareMode, NULL, + dwCreationDisposition, + dwFlagsAndAttributes, + NULL))==INVALID_HANDLE_VALUE && + retryIoerr(&cnt) ){} +/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. +** Since the ASCII version of these Windows API do not exist for WINCE, +** it's important to not reference them for WINCE builds. +*/ +#if SQLITE_OS_WINCE==0 + }else{ + while( (h = CreateFileA((char*)zConverted, + dwDesiredAccess, + dwShareMode, NULL, + dwCreationDisposition, + dwFlagsAndAttributes, + NULL))==INVALID_HANDLE_VALUE && + retryIoerr(&cnt) ){} +#endif + } + + logIoerr(cnt); + + OSTRACE(("OPEN %d %s 0x%lx %s\n", + h, zName, dwDesiredAccess, + h==INVALID_HANDLE_VALUE ? "failed" : "ok")); + + if( h==INVALID_HANDLE_VALUE ){ + pFile->lastErrno = GetLastError(); + winLogError(SQLITE_CANTOPEN, "winOpen", zUtf8Name); + free(zConverted); + if( isReadWrite && !isExclusive ){ + return winOpen(pVfs, zName, id, + ((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), pOutFlags); + }else{ + return SQLITE_CANTOPEN_BKPT; + } + } + + if( pOutFlags ){ + if( isReadWrite ){ + *pOutFlags = SQLITE_OPEN_READWRITE; + }else{ + *pOutFlags = SQLITE_OPEN_READONLY; + } + } + + memset(pFile, 0, sizeof(*pFile)); + pFile->pMethod = &winIoMethod; + pFile->h = h; + pFile->lastErrno = NO_ERROR; + pFile->pVfs = pVfs; + pFile->pShm = 0; + pFile->zPath = zName; + pFile->sectorSize = getSectorSize(pVfs, zUtf8Name); + +#if SQLITE_OS_WINCE + if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB + && !winceCreateLock(zName, pFile) + ){ + CloseHandle(h); + free(zConverted); + return SQLITE_CANTOPEN_BKPT; + } + if( isTemp ){ + pFile->zDeleteOnClose = zConverted; + }else +#endif + { + free(zConverted); + } + + OpenCounter(+1); + return rc; +} + +/* +** Delete the named file. +** +** Note that windows does not allow a file to be deleted if some other +** process has it open. Sometimes a virus scanner or indexing program +** will open a journal file shortly after it is created in order to do +** whatever it does. While this other process is holding the +** file open, we will be unable to delete it. To work around this +** problem, we delay 100 milliseconds and try to delete again. Up +** to MX_DELETION_ATTEMPTs deletion attempts are run before giving +** up and returning an error. +*/ +static int winDelete( + sqlite3_vfs *pVfs, /* Not used on win32 */ + const char *zFilename, /* Name of file to delete */ + int syncDir /* Not used on win32 */ +){ + int cnt = 0; + int rc; + void *zConverted; + UNUSED_PARAMETER(pVfs); + UNUSED_PARAMETER(syncDir); + + SimulateIOError(return SQLITE_IOERR_DELETE); + zConverted = convertUtf8Filename(zFilename); + if( zConverted==0 ){ + return SQLITE_NOMEM; + } + if( isNT() ){ + rc = 1; + while( GetFileAttributesW(zConverted)!=INVALID_FILE_ATTRIBUTES && + (rc = DeleteFileW(zConverted))==0 && retryIoerr(&cnt) ){} + rc = rc ? SQLITE_OK : SQLITE_ERROR; +/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. +** Since the ASCII version of these Windows API do not exist for WINCE, +** it's important to not reference them for WINCE builds. +*/ +#if SQLITE_OS_WINCE==0 + }else{ + rc = 1; + while( GetFileAttributesA(zConverted)!=INVALID_FILE_ATTRIBUTES && + (rc = DeleteFileA(zConverted))==0 && retryIoerr(&cnt) ){} + rc = rc ? SQLITE_OK : SQLITE_ERROR; +#endif + } + if( rc ){ + rc = winLogError(SQLITE_IOERR_DELETE, "winDelete", zFilename); + }else{ + logIoerr(cnt); + } + free(zConverted); + OSTRACE(("DELETE \"%s\" %s\n", zFilename, (rc ? "failed" : "ok" ))); + return rc; +} + +/* +** Check the existance and status of a file. +*/ +static int winAccess( + sqlite3_vfs *pVfs, /* Not used on win32 */ + const char *zFilename, /* Name of file to check */ + int flags, /* Type of test to make on this file */ + int *pResOut /* OUT: Result */ +){ + DWORD attr; + int rc = 0; + void *zConverted; + UNUSED_PARAMETER(pVfs); + + SimulateIOError( return SQLITE_IOERR_ACCESS; ); + zConverted = convertUtf8Filename(zFilename); + if( zConverted==0 ){ + return SQLITE_NOMEM; + } + if( isNT() ){ + int cnt = 0; + WIN32_FILE_ATTRIBUTE_DATA sAttrData; + memset(&sAttrData, 0, sizeof(sAttrData)); + while( !(rc = GetFileAttributesExW((WCHAR*)zConverted, + GetFileExInfoStandard, + &sAttrData)) && retryIoerr(&cnt) ){} + if( rc ){ + /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file + ** as if it does not exist. + */ + if( flags==SQLITE_ACCESS_EXISTS + && sAttrData.nFileSizeHigh==0 + && sAttrData.nFileSizeLow==0 ){ + attr = INVALID_FILE_ATTRIBUTES; + }else{ + attr = sAttrData.dwFileAttributes; + } + }else{ + logIoerr(cnt); + if( GetLastError()!=ERROR_FILE_NOT_FOUND ){ + winLogError(SQLITE_IOERR_ACCESS, "winAccess", zFilename); + free(zConverted); + return SQLITE_IOERR_ACCESS; + }else{ + attr = INVALID_FILE_ATTRIBUTES; + } + } +/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. +** Since the ASCII version of these Windows API do not exist for WINCE, +** it's important to not reference them for WINCE builds. +*/ +#if SQLITE_OS_WINCE==0 + }else{ + attr = GetFileAttributesA((char*)zConverted); +#endif + } + free(zConverted); + switch( flags ){ + case SQLITE_ACCESS_READ: + case SQLITE_ACCESS_EXISTS: + rc = attr!=INVALID_FILE_ATTRIBUTES; + break; + case SQLITE_ACCESS_READWRITE: + rc = attr!=INVALID_FILE_ATTRIBUTES && + (attr & FILE_ATTRIBUTE_READONLY)==0; + break; + default: + assert(!"Invalid flags argument"); + } + *pResOut = rc; + return SQLITE_OK; +} + + +/* +** Turn a relative pathname into a full pathname. Write the full +** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname +** bytes in size. +*/ +static int winFullPathname( + sqlite3_vfs *pVfs, /* Pointer to vfs object */ + const char *zRelative, /* Possibly relative input path */ + int nFull, /* Size of output buffer in bytes */ + char *zFull /* Output buffer */ +){ + +#if defined(__CYGWIN__) + SimulateIOError( return SQLITE_ERROR ); + UNUSED_PARAMETER(nFull); + cygwin_conv_to_full_win32_path(zRelative, zFull); + return SQLITE_OK; +#endif + +#if SQLITE_OS_WINCE + SimulateIOError( return SQLITE_ERROR ); + UNUSED_PARAMETER(nFull); + /* WinCE has no concept of a relative pathname, or so I am told. */ + sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative); + return SQLITE_OK; +#endif + +#if !SQLITE_OS_WINCE && !defined(__CYGWIN__) + int nByte; + void *zConverted; + char *zOut; + + /* If this path name begins with "/X:", where "X" is any alphabetic + ** character, discard the initial "/" from the pathname. + */ + if( zRelative[0]=='/' && sqlite3Isalpha(zRelative[1]) && zRelative[2]==':' ){ + zRelative++; + } + + /* It's odd to simulate an io-error here, but really this is just + ** using the io-error infrastructure to test that SQLite handles this + ** function failing. This function could fail if, for example, the + ** current working directory has been unlinked. + */ + SimulateIOError( return SQLITE_ERROR ); + UNUSED_PARAMETER(nFull); + zConverted = convertUtf8Filename(zRelative); + if( isNT() ){ + WCHAR *zTemp; + nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3; + zTemp = malloc( nByte*sizeof(zTemp[0]) ); + if( zTemp==0 ){ + free(zConverted); + return SQLITE_NOMEM; + } + GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0); + free(zConverted); + zOut = unicodeToUtf8(zTemp); + free(zTemp); +/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. +** Since the ASCII version of these Windows API do not exist for WINCE, +** it's important to not reference them for WINCE builds. +*/ +#if SQLITE_OS_WINCE==0 + }else{ + char *zTemp; + nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3; + zTemp = malloc( nByte*sizeof(zTemp[0]) ); + if( zTemp==0 ){ + free(zConverted); + return SQLITE_NOMEM; + } + GetFullPathNameA((char*)zConverted, nByte, zTemp, 0); + free(zConverted); + zOut = sqlite3_win32_mbcs_to_utf8(zTemp); + free(zTemp); +#endif + } + if( zOut ){ + sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut); + free(zOut); + return SQLITE_OK; + }else{ + return SQLITE_NOMEM; + } +#endif +} + +/* +** Get the sector size of the device used to store +** file. +*/ +static int getSectorSize( + sqlite3_vfs *pVfs, + const char *zRelative /* UTF-8 file name */ +){ + DWORD bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE; + /* GetDiskFreeSpace is not supported under WINCE */ +#if SQLITE_OS_WINCE + UNUSED_PARAMETER(pVfs); + UNUSED_PARAMETER(zRelative); +#else + char zFullpath[MAX_PATH+1]; + int rc; + DWORD dwRet = 0; + DWORD dwDummy; + + /* + ** We need to get the full path name of the file + ** to get the drive letter to look up the sector + ** size. + */ + SimulateIOErrorBenign(1); + rc = winFullPathname(pVfs, zRelative, MAX_PATH, zFullpath); + SimulateIOErrorBenign(0); + if( rc == SQLITE_OK ) + { + void *zConverted = convertUtf8Filename(zFullpath); + if( zConverted ){ + if( isNT() ){ + /* trim path to just drive reference */ + WCHAR *p = zConverted; + for(;*p;p++){ + if( *p == '\\' ){ + *p = '\0'; + break; + } + } + dwRet = GetDiskFreeSpaceW((WCHAR*)zConverted, + &dwDummy, + &bytesPerSector, + &dwDummy, + &dwDummy); + }else{ + /* trim path to just drive reference */ + char *p = (char *)zConverted; + for(;*p;p++){ + if( *p == '\\' ){ + *p = '\0'; + break; + } + } + dwRet = GetDiskFreeSpaceA((char*)zConverted, + &dwDummy, + &bytesPerSector, + &dwDummy, + &dwDummy); + } + free(zConverted); + } + if( !dwRet ){ + bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE; + } + } +#endif + return (int) bytesPerSector; +} + +#ifndef SQLITE_OMIT_LOAD_EXTENSION +/* +** Interfaces for opening a shared library, finding entry points +** within the shared library, and closing the shared library. +*/ +/* +** Interfaces for opening a shared library, finding entry points +** within the shared library, and closing the shared library. +*/ +static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ + HANDLE h; + void *zConverted = convertUtf8Filename(zFilename); + UNUSED_PARAMETER(pVfs); + if( zConverted==0 ){ + return 0; + } + if( isNT() ){ + h = LoadLibraryW((WCHAR*)zConverted); +/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. +** Since the ASCII version of these Windows API do not exist for WINCE, +** it's important to not reference them for WINCE builds. +*/ +#if SQLITE_OS_WINCE==0 + }else{ + h = LoadLibraryA((char*)zConverted); +#endif + } + free(zConverted); + return (void*)h; +} +static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ + UNUSED_PARAMETER(pVfs); + getLastErrorMsg(nBuf, zBufOut); +} +static void (*winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol))(void){ + UNUSED_PARAMETER(pVfs); +#if SQLITE_OS_WINCE + /* The GetProcAddressA() routine is only available on wince. */ + return (void(*)(void))GetProcAddressA((HANDLE)pHandle, zSymbol); +#else + /* All other windows platforms expect GetProcAddress() to take + ** an Ansi string regardless of the _UNICODE setting */ + return (void(*)(void))GetProcAddress((HANDLE)pHandle, zSymbol); +#endif +} +static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){ + UNUSED_PARAMETER(pVfs); + FreeLibrary((HANDLE)pHandle); +} +#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ + #define winDlOpen 0 + #define winDlError 0 + #define winDlSym 0 + #define winDlClose 0 +#endif + + +/* +** Write up to nBuf bytes of randomness into zBuf. +*/ +static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ + int n = 0; + UNUSED_PARAMETER(pVfs); +#if defined(SQLITE_TEST) + n = nBuf; + memset(zBuf, 0, nBuf); +#else + if( sizeof(SYSTEMTIME)<=nBuf-n ){ + SYSTEMTIME x; + GetSystemTime(&x); + memcpy(&zBuf[n], &x, sizeof(x)); + n += sizeof(x); + } + if( sizeof(DWORD)<=nBuf-n ){ + DWORD pid = GetCurrentProcessId(); + memcpy(&zBuf[n], &pid, sizeof(pid)); + n += sizeof(pid); + } + if( sizeof(DWORD)<=nBuf-n ){ + DWORD cnt = GetTickCount(); + memcpy(&zBuf[n], &cnt, sizeof(cnt)); + n += sizeof(cnt); + } + if( sizeof(LARGE_INTEGER)<=nBuf-n ){ + LARGE_INTEGER i; + QueryPerformanceCounter(&i); + memcpy(&zBuf[n], &i, sizeof(i)); + n += sizeof(i); + } +#endif + return n; +} + + +/* +** Sleep for a little while. Return the amount of time slept. +*/ +static int winSleep(sqlite3_vfs *pVfs, int microsec){ + Sleep((microsec+999)/1000); + UNUSED_PARAMETER(pVfs); + return ((microsec+999)/1000)*1000; +} + +/* +** The following variable, if set to a non-zero value, is interpreted as +** the number of seconds since 1970 and is used to set the result of +** sqlite3OsCurrentTime() during testing. +*/ +#ifdef SQLITE_TEST +int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ +#endif + +/* +** Find the current time (in Universal Coordinated Time). Write into *piNow +** the current time and date as a Julian Day number times 86_400_000. In +** other words, write into *piNow the number of milliseconds since the Julian +** epoch of noon in Greenwich on November 24, 4714 B.C according to the +** proleptic Gregorian calendar. +** +** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date +** cannot be found. +*/ +static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){ + /* FILETIME structure is a 64-bit value representing the number of + 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). + */ + FILETIME ft; + static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000; +#ifdef SQLITE_TEST + static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; +#endif + /* 2^32 - to avoid use of LL and warnings in gcc */ + static const sqlite3_int64 max32BitValue = + (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 + (sqlite3_int64)294967296; + +#if SQLITE_OS_WINCE + SYSTEMTIME time; + GetSystemTime(&time); + /* if SystemTimeToFileTime() fails, it returns zero. */ + if (!SystemTimeToFileTime(&time,&ft)){ + return SQLITE_ERROR; + } +#else + GetSystemTimeAsFileTime( &ft ); +#endif + + *piNow = winFiletimeEpoch + + ((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) + + (sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)10000; + +#ifdef SQLITE_TEST + if( sqlite3_current_time ){ + *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; + } +#endif + UNUSED_PARAMETER(pVfs); + return SQLITE_OK; +} + +/* +** Find the current time (in Universal Coordinated Time). Write the +** current time and date as a Julian Day number into *prNow and +** return 0. Return 1 if the time and date cannot be found. +*/ +static int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){ + int rc; + sqlite3_int64 i; + rc = winCurrentTimeInt64(pVfs, &i); + if( !rc ){ + *prNow = i/86400000.0; + } + return rc; +} + +/* +** The idea is that this function works like a combination of +** GetLastError() and FormatMessage() on windows (or errno and +** strerror_r() on unix). After an error is returned by an OS +** function, SQLite calls this function with zBuf pointing to +** a buffer of nBuf bytes. The OS layer should populate the +** buffer with a nul-terminated UTF-8 encoded error message +** describing the last IO error to have occurred within the calling +** thread. +** +** If the error message is too large for the supplied buffer, +** it should be truncated. The return value of xGetLastError +** is zero if the error message fits in the buffer, or non-zero +** otherwise (if the message was truncated). If non-zero is returned, +** then it is not necessary to include the nul-terminator character +** in the output buffer. +** +** Not supplying an error message will have no adverse effect +** on SQLite. It is fine to have an implementation that never +** returns an error message: +** +** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ +** assert(zBuf[0]=='\0'); +** return 0; +** } +** +** However if an error message is supplied, it will be incorporated +** by sqlite into the error message available to the user using +** sqlite3_errmsg(), possibly making IO errors easier to debug. +*/ +static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ + UNUSED_PARAMETER(pVfs); + return getLastErrorMsg(nBuf, zBuf); +} + + + +/* +** Initialize and deinitialize the operating system interface. +*/ +int sqlite3_os_init(void){ + static sqlite3_vfs winVfs = { + 3, /* iVersion */ + sizeof(winFile), /* szOsFile */ + MAX_PATH, /* mxPathname */ + 0, /* pNext */ + "win32", /* zName */ + 0, /* pAppData */ + winOpen, /* xOpen */ + winDelete, /* xDelete */ + winAccess, /* xAccess */ + winFullPathname, /* xFullPathname */ + winDlOpen, /* xDlOpen */ + winDlError, /* xDlError */ + winDlSym, /* xDlSym */ + winDlClose, /* xDlClose */ + winRandomness, /* xRandomness */ + winSleep, /* xSleep */ + winCurrentTime, /* xCurrentTime */ + winGetLastError, /* xGetLastError */ + winCurrentTimeInt64, /* xCurrentTimeInt64 */ + 0, /* xSetSystemCall */ + 0, /* xGetSystemCall */ + 0, /* xNextSystemCall */ + }; + +#ifndef SQLITE_OMIT_WAL + /* get memory map allocation granularity */ + memset(&winSysInfo, 0, sizeof(SYSTEM_INFO)); + GetSystemInfo(&winSysInfo); + assert(winSysInfo.dwAllocationGranularity > 0); +#endif + + sqlite3_vfs_register(&winVfs, 1); + return SQLITE_OK; +} +int sqlite3_os_end(void){ + return SQLITE_OK; +} + +#endif /* SQLITE_OS_WIN */ diff --git a/src/pager.c b/src/pager.c new file mode 100644 index 0000000..ad6f831 --- /dev/null +++ b/src/pager.c @@ -0,0 +1,6892 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the implementation of the page cache subsystem or "pager". +** +** The pager is used to access a database disk file. It implements +** atomic commit and rollback through the use of a journal file that +** is separate from the database file. The pager also implements file +** locking to prevent two processes from writing the same database +** file simultaneously, or one process from reading the database while +** another is writing. +*/ +#ifndef SQLITE_OMIT_DISKIO +#include "sqliteInt.h" +#include "wal.h" + + +/******************* NOTES ON THE DESIGN OF THE PAGER ************************ +** +** This comment block describes invariants that hold when using a rollback +** journal. These invariants do not apply for journal_mode=WAL, +** journal_mode=MEMORY, or journal_mode=OFF. +** +** Within this comment block, a page is deemed to have been synced +** automatically as soon as it is written when PRAGMA synchronous=OFF. +** Otherwise, the page is not synced until the xSync method of the VFS +** is called successfully on the file containing the page. +** +** Definition: A page of the database file is said to be "overwriteable" if +** one or more of the following are true about the page: +** +** (a) The original content of the page as it was at the beginning of +** the transaction has been written into the rollback journal and +** synced. +** +** (b) The page was a freelist leaf page at the start of the transaction. +** +** (c) The page number is greater than the largest page that existed in +** the database file at the start of the transaction. +** +** (1) A page of the database file is never overwritten unless one of the +** following are true: +** +** (a) The page and all other pages on the same sector are overwriteable. +** +** (b) The atomic page write optimization is enabled, and the entire +** transaction other than the update of the transaction sequence +** number consists of a single page change. +** +** (2) The content of a page written into the rollback journal exactly matches +** both the content in the database when the rollback journal was written +** and the content in the database at the beginning of the current +** transaction. +** +** (3) Writes to the database file are an integer multiple of the page size +** in length and are aligned on a page boundary. +** +** (4) Reads from the database file are either aligned on a page boundary and +** an integer multiple of the page size in length or are taken from the +** first 100 bytes of the database file. +** +** (5) All writes to the database file are synced prior to the rollback journal +** being deleted, truncated, or zeroed. +** +** (6) If a master journal file is used, then all writes to the database file +** are synced prior to the master journal being deleted. +** +** Definition: Two databases (or the same database at two points it time) +** are said to be "logically equivalent" if they give the same answer to +** all queries. Note in particular the the content of freelist leaf +** pages can be changed arbitarily without effecting the logical equivalence +** of the database. +** +** (7) At any time, if any subset, including the empty set and the total set, +** of the unsynced changes to a rollback journal are removed and the +** journal is rolled back, the resulting database file will be logical +** equivalent to the database file at the beginning of the transaction. +** +** (8) When a transaction is rolled back, the xTruncate method of the VFS +** is called to restore the database file to the same size it was at +** the beginning of the transaction. (In some VFSes, the xTruncate +** method is a no-op, but that does not change the fact the SQLite will +** invoke it.) +** +** (9) Whenever the database file is modified, at least one bit in the range +** of bytes from 24 through 39 inclusive will be changed prior to releasing +** the EXCLUSIVE lock, thus signaling other connections on the same +** database to flush their caches. +** +** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less +** than one billion transactions. +** +** (11) A database file is well-formed at the beginning and at the conclusion +** of every transaction. +** +** (12) An EXCLUSIVE lock is held on the database file when writing to +** the database file. +** +** (13) A SHARED lock is held on the database file while reading any +** content out of the database file. +** +******************************************************************************/ + +/* +** Macros for troubleshooting. Normally turned off +*/ +#if 0 +int sqlite3PagerTrace=1; /* True to enable tracing */ +#define sqlite3DebugPrintf printf +#define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } +#else +#define PAGERTRACE(X) +#endif + +/* +** The following two macros are used within the PAGERTRACE() macros above +** to print out file-descriptors. +** +** PAGERID() takes a pointer to a Pager struct as its argument. The +** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file +** struct as its argument. +*/ +#define PAGERID(p) ((int)(p->fd)) +#define FILEHANDLEID(fd) ((int)fd) + +/* +** The Pager.eState variable stores the current 'state' of a pager. A +** pager may be in any one of the seven states shown in the following +** state diagram. +** +** OPEN <------+------+ +** | | | +** V | | +** +---------> READER-------+ | +** | | | +** | V | +** |<-------WRITER_LOCKED------> ERROR +** | | ^ +** | V | +** |<------WRITER_CACHEMOD-------->| +** | | | +** | V | +** |<-------WRITER_DBMOD---------->| +** | | | +** | V | +** +<------WRITER_FINISHED-------->+ +** +** +** List of state transitions and the C [function] that performs each: +** +** OPEN -> READER [sqlite3PagerSharedLock] +** READER -> OPEN [pager_unlock] +** +** READER -> WRITER_LOCKED [sqlite3PagerBegin] +** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] +** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] +** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] +** WRITER_*** -> READER [pager_end_transaction] +** +** WRITER_*** -> ERROR [pager_error] +** ERROR -> OPEN [pager_unlock] +** +** +** OPEN: +** +** The pager starts up in this state. Nothing is guaranteed in this +** state - the file may or may not be locked and the database size is +** unknown. The database may not be read or written. +** +** * No read or write transaction is active. +** * Any lock, or no lock at all, may be held on the database file. +** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. +** +** READER: +** +** In this state all the requirements for reading the database in +** rollback (non-WAL) mode are met. Unless the pager is (or recently +** was) in exclusive-locking mode, a user-level read transaction is +** open. The database size is known in this state. +** +** A connection running with locking_mode=normal enters this state when +** it opens a read-transaction on the database and returns to state +** OPEN after the read-transaction is completed. However a connection +** running in locking_mode=exclusive (including temp databases) remains in +** this state even after the read-transaction is closed. The only way +** a locking_mode=exclusive connection can transition from READER to OPEN +** is via the ERROR state (see below). +** +** * A read transaction may be active (but a write-transaction cannot). +** * A SHARED or greater lock is held on the database file. +** * The dbSize variable may be trusted (even if a user-level read +** transaction is not active). The dbOrigSize and dbFileSize variables +** may not be trusted at this point. +** * If the database is a WAL database, then the WAL connection is open. +** * Even if a read-transaction is not open, it is guaranteed that +** there is no hot-journal in the file-system. +** +** WRITER_LOCKED: +** +** The pager moves to this state from READER when a write-transaction +** is first opened on the database. In WRITER_LOCKED state, all locks +** required to start a write-transaction are held, but no actual +** modifications to the cache or database have taken place. +** +** In rollback mode, a RESERVED or (if the transaction was opened with +** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when +** moving to this state, but the journal file is not written to or opened +** to in this state. If the transaction is committed or rolled back while +** in WRITER_LOCKED state, all that is required is to unlock the database +** file. +** +** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. +** If the connection is running with locking_mode=exclusive, an attempt +** is made to obtain an EXCLUSIVE lock on the database file. +** +** * A write transaction is active. +** * If the connection is open in rollback-mode, a RESERVED or greater +** lock is held on the database file. +** * If the connection is open in WAL-mode, a WAL write transaction +** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully +** called). +** * The dbSize, dbOrigSize and dbFileSize variables are all valid. +** * The contents of the pager cache have not been modified. +** * The journal file may or may not be open. +** * Nothing (not even the first header) has been written to the journal. +** +** WRITER_CACHEMOD: +** +** A pager moves from WRITER_LOCKED state to this state when a page is +** first modified by the upper layer. In rollback mode the journal file +** is opened (if it is not already open) and a header written to the +** start of it. The database file on disk has not been modified. +** +** * A write transaction is active. +** * A RESERVED or greater lock is held on the database file. +** * The journal file is open and the first header has been written +** to it, but the header has not been synced to disk. +** * The contents of the page cache have been modified. +** +** WRITER_DBMOD: +** +** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state +** when it modifies the contents of the database file. WAL connections +** never enter this state (since they do not modify the database file, +** just the log file). +** +** * A write transaction is active. +** * An EXCLUSIVE or greater lock is held on the database file. +** * The journal file is open and the first header has been written +** and synced to disk. +** * The contents of the page cache have been modified (and possibly +** written to disk). +** +** WRITER_FINISHED: +** +** It is not possible for a WAL connection to enter this state. +** +** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD +** state after the entire transaction has been successfully written into the +** database file. In this state the transaction may be committed simply +** by finalizing the journal file. Once in WRITER_FINISHED state, it is +** not possible to modify the database further. At this point, the upper +** layer must either commit or rollback the transaction. +** +** * A write transaction is active. +** * An EXCLUSIVE or greater lock is held on the database file. +** * All writing and syncing of journal and database data has finished. +** If no error occured, all that remains is to finalize the journal to +** commit the transaction. If an error did occur, the caller will need +** to rollback the transaction. +** +** ERROR: +** +** The ERROR state is entered when an IO or disk-full error (including +** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it +** difficult to be sure that the in-memory pager state (cache contents, +** db size etc.) are consistent with the contents of the file-system. +** +** Temporary pager files may enter the ERROR state, but in-memory pagers +** cannot. +** +** For example, if an IO error occurs while performing a rollback, +** the contents of the page-cache may be left in an inconsistent state. +** At this point it would be dangerous to change back to READER state +** (as usually happens after a rollback). Any subsequent readers might +** report database corruption (due to the inconsistent cache), and if +** they upgrade to writers, they may inadvertently corrupt the database +** file. To avoid this hazard, the pager switches into the ERROR state +** instead of READER following such an error. +** +** Once it has entered the ERROR state, any attempt to use the pager +** to read or write data returns an error. Eventually, once all +** outstanding transactions have been abandoned, the pager is able to +** transition back to OPEN state, discarding the contents of the +** page-cache and any other in-memory state at the same time. Everything +** is reloaded from disk (and, if necessary, hot-journal rollback peformed) +** when a read-transaction is next opened on the pager (transitioning +** the pager into READER state). At that point the system has recovered +** from the error. +** +** Specifically, the pager jumps into the ERROR state if: +** +** 1. An error occurs while attempting a rollback. This happens in +** function sqlite3PagerRollback(). +** +** 2. An error occurs while attempting to finalize a journal file +** following a commit in function sqlite3PagerCommitPhaseTwo(). +** +** 3. An error occurs while attempting to write to the journal or +** database file in function pagerStress() in order to free up +** memory. +** +** In other cases, the error is returned to the b-tree layer. The b-tree +** layer then attempts a rollback operation. If the error condition +** persists, the pager enters the ERROR state via condition (1) above. +** +** Condition (3) is necessary because it can be triggered by a read-only +** statement executed within a transaction. In this case, if the error +** code were simply returned to the user, the b-tree layer would not +** automatically attempt a rollback, as it assumes that an error in a +** read-only statement cannot leave the pager in an internally inconsistent +** state. +** +** * The Pager.errCode variable is set to something other than SQLITE_OK. +** * There are one or more outstanding references to pages (after the +** last reference is dropped the pager should move back to OPEN state). +** * The pager is not an in-memory pager. +** +** +** Notes: +** +** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the +** connection is open in WAL mode. A WAL connection is always in one +** of the first four states. +** +** * Normally, a connection open in exclusive mode is never in PAGER_OPEN +** state. There are two exceptions: immediately after exclusive-mode has +** been turned on (and before any read or write transactions are +** executed), and when the pager is leaving the "error state". +** +** * See also: assert_pager_state(). +*/ +#define PAGER_OPEN 0 +#define PAGER_READER 1 +#define PAGER_WRITER_LOCKED 2 +#define PAGER_WRITER_CACHEMOD 3 +#define PAGER_WRITER_DBMOD 4 +#define PAGER_WRITER_FINISHED 5 +#define PAGER_ERROR 6 + +/* +** The Pager.eLock variable is almost always set to one of the +** following locking-states, according to the lock currently held on +** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. +** This variable is kept up to date as locks are taken and released by +** the pagerLockDb() and pagerUnlockDb() wrappers. +** +** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY +** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not +** the operation was successful. In these circumstances pagerLockDb() and +** pagerUnlockDb() take a conservative approach - eLock is always updated +** when unlocking the file, and only updated when locking the file if the +** VFS call is successful. This way, the Pager.eLock variable may be set +** to a less exclusive (lower) value than the lock that is actually held +** at the system level, but it is never set to a more exclusive value. +** +** This is usually safe. If an xUnlock fails or appears to fail, there may +** be a few redundant xLock() calls or a lock may be held for longer than +** required, but nothing really goes wrong. +** +** The exception is when the database file is unlocked as the pager moves +** from ERROR to OPEN state. At this point there may be a hot-journal file +** in the file-system that needs to be rolled back (as part of a OPEN->SHARED +** transition, by the same pager or any other). If the call to xUnlock() +** fails at this point and the pager is left holding an EXCLUSIVE lock, this +** can confuse the call to xCheckReservedLock() call made later as part +** of hot-journal detection. +** +** xCheckReservedLock() is defined as returning true "if there is a RESERVED +** lock held by this process or any others". So xCheckReservedLock may +** return true because the caller itself is holding an EXCLUSIVE lock (but +** doesn't know it because of a previous error in xUnlock). If this happens +** a hot-journal may be mistaken for a journal being created by an active +** transaction in another process, causing SQLite to read from the database +** without rolling it back. +** +** To work around this, if a call to xUnlock() fails when unlocking the +** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It +** is only changed back to a real locking state after a successful call +** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition +** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK +** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE +** lock on the database file before attempting to roll it back. See function +** PagerSharedLock() for more detail. +** +** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in +** PAGER_OPEN state. +*/ +#define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) + +/* +** A macro used for invoking the codec if there is one +*/ +#ifdef SQLITE_HAS_CODEC +# define CODEC1(P,D,N,X,E) \ + if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; } +# define CODEC2(P,D,N,X,E,O) \ + if( P->xCodec==0 ){ O=(char*)D; }else \ + if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; } +#else +# define CODEC1(P,D,N,X,E) /* NO-OP */ +# define CODEC2(P,D,N,X,E,O) O=(char*)D +#endif + +/* +** The maximum allowed sector size. 64KiB. If the xSectorsize() method +** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. +** This could conceivably cause corruption following a power failure on +** such a system. This is currently an undocumented limit. +*/ +#define MAX_SECTOR_SIZE 0x10000 + +/* +** An instance of the following structure is allocated for each active +** savepoint and statement transaction in the system. All such structures +** are stored in the Pager.aSavepoint[] array, which is allocated and +** resized using sqlite3Realloc(). +** +** When a savepoint is created, the PagerSavepoint.iHdrOffset field is +** set to 0. If a journal-header is written into the main journal while +** the savepoint is active, then iHdrOffset is set to the byte offset +** immediately following the last journal record written into the main +** journal before the journal-header. This is required during savepoint +** rollback (see pagerPlaybackSavepoint()). +*/ +typedef struct PagerSavepoint PagerSavepoint; +struct PagerSavepoint { + i64 iOffset; /* Starting offset in main journal */ + i64 iHdrOffset; /* See above */ + Bitvec *pInSavepoint; /* Set of pages in this savepoint */ + Pgno nOrig; /* Original number of pages in file */ + Pgno iSubRec; /* Index of first record in sub-journal */ +#ifndef SQLITE_OMIT_WAL + u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ +#endif +}; + +/* +** A open page cache is an instance of struct Pager. A description of +** some of the more important member variables follows: +** +** eState +** +** The current 'state' of the pager object. See the comment and state +** diagram above for a description of the pager state. +** +** eLock +** +** For a real on-disk database, the current lock held on the database file - +** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. +** +** For a temporary or in-memory database (neither of which require any +** locks), this variable is always set to EXCLUSIVE_LOCK. Since such +** databases always have Pager.exclusiveMode==1, this tricks the pager +** logic into thinking that it already has all the locks it will ever +** need (and no reason to release them). +** +** In some (obscure) circumstances, this variable may also be set to +** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for +** details. +** +** changeCountDone +** +** This boolean variable is used to make sure that the change-counter +** (the 4-byte header field at byte offset 24 of the database file) is +** not updated more often than necessary. +** +** It is set to true when the change-counter field is updated, which +** can only happen if an exclusive lock is held on the database file. +** It is cleared (set to false) whenever an exclusive lock is +** relinquished on the database file. Each time a transaction is committed, +** The changeCountDone flag is inspected. If it is true, the work of +** updating the change-counter is omitted for the current transaction. +** +** This mechanism means that when running in exclusive mode, a connection +** need only update the change-counter once, for the first transaction +** committed. +** +** setMaster +** +** When PagerCommitPhaseOne() is called to commit a transaction, it may +** (or may not) specify a master-journal name to be written into the +** journal file before it is synced to disk. +** +** Whether or not a journal file contains a master-journal pointer affects +** the way in which the journal file is finalized after the transaction is +** committed or rolled back when running in "journal_mode=PERSIST" mode. +** If a journal file does not contain a master-journal pointer, it is +** finalized by overwriting the first journal header with zeroes. If +** it does contain a master-journal pointer the journal file is finalized +** by truncating it to zero bytes, just as if the connection were +** running in "journal_mode=truncate" mode. +** +** Journal files that contain master journal pointers cannot be finalized +** simply by overwriting the first journal-header with zeroes, as the +** master journal pointer could interfere with hot-journal rollback of any +** subsequently interrupted transaction that reuses the journal file. +** +** The flag is cleared as soon as the journal file is finalized (either +** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the +** journal file from being successfully finalized, the setMaster flag +** is cleared anyway (and the pager will move to ERROR state). +** +** doNotSpill, doNotSyncSpill +** +** These two boolean variables control the behaviour of cache-spills +** (calls made by the pcache module to the pagerStress() routine to +** write cached data to the file-system in order to free up memory). +** +** When doNotSpill is non-zero, writing to the database from pagerStress() +** is disabled altogether. This is done in a very obscure case that +** comes up during savepoint rollback that requires the pcache module +** to allocate a new page to prevent the journal file from being written +** while it is being traversed by code in pager_playback(). +** +** If doNotSyncSpill is non-zero, writing to the database from pagerStress() +** is permitted, but syncing the journal file is not. This flag is set +** by sqlite3PagerWrite() when the file-system sector-size is larger than +** the database page-size in order to prevent a journal sync from happening +** in between the journalling of two pages on the same sector. +** +** subjInMemory +** +** This is a boolean variable. If true, then any required sub-journal +** is opened as an in-memory journal file. If false, then in-memory +** sub-journals are only used for in-memory pager files. +** +** This variable is updated by the upper layer each time a new +** write-transaction is opened. +** +** dbSize, dbOrigSize, dbFileSize +** +** Variable dbSize is set to the number of pages in the database file. +** It is valid in PAGER_READER and higher states (all states except for +** OPEN and ERROR). +** +** dbSize is set based on the size of the database file, which may be +** larger than the size of the database (the value stored at offset +** 28 of the database header by the btree). If the size of the file +** is not an integer multiple of the page-size, the value stored in +** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). +** Except, any file that is greater than 0 bytes in size is considered +** to have at least one page. (i.e. a 1KB file with 2K page-size leads +** to dbSize==1). +** +** During a write-transaction, if pages with page-numbers greater than +** dbSize are modified in the cache, dbSize is updated accordingly. +** Similarly, if the database is truncated using PagerTruncateImage(), +** dbSize is updated. +** +** Variables dbOrigSize and dbFileSize are valid in states +** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize +** variable at the start of the transaction. It is used during rollback, +** and to determine whether or not pages need to be journalled before +** being modified. +** +** Throughout a write-transaction, dbFileSize contains the size of +** the file on disk in pages. It is set to a copy of dbSize when the +** write-transaction is first opened, and updated when VFS calls are made +** to write or truncate the database file on disk. +** +** The only reason the dbFileSize variable is required is to suppress +** unnecessary calls to xTruncate() after committing a transaction. If, +** when a transaction is committed, the dbFileSize variable indicates +** that the database file is larger than the database image (Pager.dbSize), +** pager_truncate() is called. The pager_truncate() call uses xFilesize() +** to measure the database file on disk, and then truncates it if required. +** dbFileSize is not used when rolling back a transaction. In this case +** pager_truncate() is called unconditionally (which means there may be +** a call to xFilesize() that is not strictly required). In either case, +** pager_truncate() may cause the file to become smaller or larger. +** +** dbHintSize +** +** The dbHintSize variable is used to limit the number of calls made to +** the VFS xFileControl(FCNTL_SIZE_HINT) method. +** +** dbHintSize is set to a copy of the dbSize variable when a +** write-transaction is opened (at the same time as dbFileSize and +** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, +** dbHintSize is increased to the number of pages that correspond to the +** size-hint passed to the method call. See pager_write_pagelist() for +** details. +** +** errCode +** +** The Pager.errCode variable is only ever used in PAGER_ERROR state. It +** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode +** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX +** sub-codes. +*/ +struct Pager { + sqlite3_vfs *pVfs; /* OS functions to use for IO */ + u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ + u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ + u8 useJournal; /* Use a rollback journal on this file */ + u8 noReadlock; /* Do not bother to obtain readlocks */ + u8 noSync; /* Do not sync the journal if true */ + u8 fullSync; /* Do extra syncs of the journal for robustness */ + u8 ckptSyncFlags; /* SYNC_NORMAL or SYNC_FULL for checkpoint */ + u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ + u8 tempFile; /* zFilename is a temporary file */ + u8 readOnly; /* True for a read-only database */ + u8 memDb; /* True to inhibit all file I/O */ + + /************************************************************************** + ** The following block contains those class members that change during + ** routine opertion. Class members not in this block are either fixed + ** when the pager is first created or else only change when there is a + ** significant mode change (such as changing the page_size, locking_mode, + ** or the journal_mode). From another view, these class members describe + ** the "state" of the pager, while other class members describe the + ** "configuration" of the pager. + */ + u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ + u8 eLock; /* Current lock held on database file */ + u8 changeCountDone; /* Set after incrementing the change-counter */ + u8 setMaster; /* True if a m-j name has been written to jrnl */ + u8 doNotSpill; /* Do not spill the cache when non-zero */ + u8 doNotSyncSpill; /* Do not do a spill that requires jrnl sync */ + u8 subjInMemory; /* True to use in-memory sub-journals */ + Pgno dbSize; /* Number of pages in the database */ + Pgno dbOrigSize; /* dbSize before the current transaction */ + Pgno dbFileSize; /* Number of pages in the database file */ + Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ + int errCode; /* One of several kinds of errors */ + int nRec; /* Pages journalled since last j-header written */ + u32 cksumInit; /* Quasi-random value added to every checksum */ + u32 nSubRec; /* Number of records written to sub-journal */ + Bitvec *pInJournal; /* One bit for each page in the database file */ + sqlite3_file *fd; /* File descriptor for database */ + sqlite3_file *jfd; /* File descriptor for main journal */ + sqlite3_file *sjfd; /* File descriptor for sub-journal */ + i64 journalOff; /* Current write offset in the journal file */ + i64 journalHdr; /* Byte offset to previous journal header */ + sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ + PagerSavepoint *aSavepoint; /* Array of active savepoints */ + int nSavepoint; /* Number of elements in aSavepoint[] */ + char dbFileVers[16]; /* Changes whenever database file changes */ + /* + ** End of the routinely-changing class members + ***************************************************************************/ + + u16 nExtra; /* Add this many bytes to each in-memory page */ + i16 nReserve; /* Number of unused bytes at end of each page */ + u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ + u32 sectorSize; /* Assumed sector size during rollback */ + int pageSize; /* Number of bytes in a page */ + Pgno mxPgno; /* Maximum allowed size of the database */ + i64 journalSizeLimit; /* Size limit for persistent journal files */ + char *zFilename; /* Name of the database file */ + char *zJournal; /* Name of the journal file */ + int (*xBusyHandler)(void*); /* Function to call when busy */ + void *pBusyHandlerArg; /* Context argument for xBusyHandler */ + int nHit, nMiss; /* Total cache hits and misses */ +#ifdef SQLITE_TEST + int nRead, nWrite; /* Database pages read/written */ +#endif + void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ +#ifdef SQLITE_HAS_CODEC + void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ + void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */ + void (*xCodecFree)(void*); /* Destructor for the codec */ + void *pCodec; /* First argument to xCodec... methods */ +#endif + char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ + PCache *pPCache; /* Pointer to page cache object */ +#ifndef SQLITE_OMIT_WAL + Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ + char *zWal; /* File name for write-ahead log */ +#endif +}; + +/* +** The following global variables hold counters used for +** testing purposes only. These variables do not exist in +** a non-testing build. These variables are not thread-safe. +*/ +#ifdef SQLITE_TEST +int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ +int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ +int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ +# define PAGER_INCR(v) v++ +#else +# define PAGER_INCR(v) +#endif + + + +/* +** Journal files begin with the following magic string. The data +** was obtained from /dev/random. It is used only as a sanity check. +** +** Since version 2.8.0, the journal format contains additional sanity +** checking information. If the power fails while the journal is being +** written, semi-random garbage data might appear in the journal +** file after power is restored. If an attempt is then made +** to roll the journal back, the database could be corrupted. The additional +** sanity checking data is an attempt to discover the garbage in the +** journal and ignore it. +** +** The sanity checking information for the new journal format consists +** of a 32-bit checksum on each page of data. The checksum covers both +** the page number and the pPager->pageSize bytes of data for the page. +** This cksum is initialized to a 32-bit random value that appears in the +** journal file right after the header. The random initializer is important, +** because garbage data that appears at the end of a journal is likely +** data that was once in other files that have now been deleted. If the +** garbage data came from an obsolete journal file, the checksums might +** be correct. But by initializing the checksum to random value which +** is different for every journal, we minimize that risk. +*/ +static const unsigned char aJournalMagic[] = { + 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, +}; + +/* +** The size of the of each page record in the journal is given by +** the following macro. +*/ +#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) + +/* +** The journal header size for this pager. This is usually the same +** size as a single disk sector. See also setSectorSize(). +*/ +#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) + +/* +** The macro MEMDB is true if we are dealing with an in-memory database. +** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, +** the value of MEMDB will be a constant and the compiler will optimize +** out code that would never execute. +*/ +#ifdef SQLITE_OMIT_MEMORYDB +# define MEMDB 0 +#else +# define MEMDB pPager->memDb +#endif + +/* +** The maximum legal page number is (2^31 - 1). +*/ +#define PAGER_MAX_PGNO 2147483647 + +/* +** The argument to this macro is a file descriptor (type sqlite3_file*). +** Return 0 if it is not open, or non-zero (but not 1) if it is. +** +** This is so that expressions can be written as: +** +** if( isOpen(pPager->jfd) ){ ... +** +** instead of +** +** if( pPager->jfd->pMethods ){ ... +*/ +#define isOpen(pFd) ((pFd)->pMethods) + +/* +** Return true if this pager uses a write-ahead log instead of the usual +** rollback journal. Otherwise false. +*/ +#ifndef SQLITE_OMIT_WAL +static int pagerUseWal(Pager *pPager){ + return (pPager->pWal!=0); +} +#else +# define pagerUseWal(x) 0 +# define pagerRollbackWal(x) 0 +# define pagerWalFrames(v,w,x,y,z) 0 +# define pagerOpenWalIfPresent(z) SQLITE_OK +# define pagerBeginReadTransaction(z) SQLITE_OK +#endif + +#ifndef NDEBUG +/* +** Usage: +** +** assert( assert_pager_state(pPager) ); +** +** This function runs many asserts to try to find inconsistencies in +** the internal state of the Pager object. +*/ +static int assert_pager_state(Pager *p){ + Pager *pPager = p; + + /* State must be valid. */ + assert( p->eState==PAGER_OPEN + || p->eState==PAGER_READER + || p->eState==PAGER_WRITER_LOCKED + || p->eState==PAGER_WRITER_CACHEMOD + || p->eState==PAGER_WRITER_DBMOD + || p->eState==PAGER_WRITER_FINISHED + || p->eState==PAGER_ERROR + ); + + /* Regardless of the current state, a temp-file connection always behaves + ** as if it has an exclusive lock on the database file. It never updates + ** the change-counter field, so the changeCountDone flag is always set. + */ + assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); + assert( p->tempFile==0 || pPager->changeCountDone ); + + /* If the useJournal flag is clear, the journal-mode must be "OFF". + ** And if the journal-mode is "OFF", the journal file must not be open. + */ + assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); + assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); + + /* Check that MEMDB implies noSync. And an in-memory journal. Since + ** this means an in-memory pager performs no IO at all, it cannot encounter + ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing + ** a journal file. (although the in-memory journal implementation may + ** return SQLITE_IOERR_NOMEM while the journal file is being written). It + ** is therefore not possible for an in-memory pager to enter the ERROR + ** state. + */ + if( MEMDB ){ + assert( p->noSync ); + assert( p->journalMode==PAGER_JOURNALMODE_OFF + || p->journalMode==PAGER_JOURNALMODE_MEMORY + ); + assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); + assert( pagerUseWal(p)==0 ); + } + + /* If changeCountDone is set, a RESERVED lock or greater must be held + ** on the file. + */ + assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); + assert( p->eLock!=PENDING_LOCK ); + + switch( p->eState ){ + case PAGER_OPEN: + assert( !MEMDB ); + assert( pPager->errCode==SQLITE_OK ); + assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); + break; + + case PAGER_READER: + assert( pPager->errCode==SQLITE_OK ); + assert( p->eLock!=UNKNOWN_LOCK ); + assert( p->eLock>=SHARED_LOCK || p->noReadlock ); + break; + + case PAGER_WRITER_LOCKED: + assert( p->eLock!=UNKNOWN_LOCK ); + assert( pPager->errCode==SQLITE_OK ); + if( !pagerUseWal(pPager) ){ + assert( p->eLock>=RESERVED_LOCK ); + } + assert( pPager->dbSize==pPager->dbOrigSize ); + assert( pPager->dbOrigSize==pPager->dbFileSize ); + assert( pPager->dbOrigSize==pPager->dbHintSize ); + assert( pPager->setMaster==0 ); + break; + + case PAGER_WRITER_CACHEMOD: + assert( p->eLock!=UNKNOWN_LOCK ); + assert( pPager->errCode==SQLITE_OK ); + if( !pagerUseWal(pPager) ){ + /* It is possible that if journal_mode=wal here that neither the + ** journal file nor the WAL file are open. This happens during + ** a rollback transaction that switches from journal_mode=off + ** to journal_mode=wal. + */ + assert( p->eLock>=RESERVED_LOCK ); + assert( isOpen(p->jfd) + || p->journalMode==PAGER_JOURNALMODE_OFF + || p->journalMode==PAGER_JOURNALMODE_WAL + ); + } + assert( pPager->dbOrigSize==pPager->dbFileSize ); + assert( pPager->dbOrigSize==pPager->dbHintSize ); + break; + + case PAGER_WRITER_DBMOD: + assert( p->eLock==EXCLUSIVE_LOCK ); + assert( pPager->errCode==SQLITE_OK ); + assert( !pagerUseWal(pPager) ); + assert( p->eLock>=EXCLUSIVE_LOCK ); + assert( isOpen(p->jfd) + || p->journalMode==PAGER_JOURNALMODE_OFF + || p->journalMode==PAGER_JOURNALMODE_WAL + ); + assert( pPager->dbOrigSize<=pPager->dbHintSize ); + break; + + case PAGER_WRITER_FINISHED: + assert( p->eLock==EXCLUSIVE_LOCK ); + assert( pPager->errCode==SQLITE_OK ); + assert( !pagerUseWal(pPager) ); + assert( isOpen(p->jfd) + || p->journalMode==PAGER_JOURNALMODE_OFF + || p->journalMode==PAGER_JOURNALMODE_WAL + ); + break; + + case PAGER_ERROR: + /* There must be at least one outstanding reference to the pager if + ** in ERROR state. Otherwise the pager should have already dropped + ** back to OPEN state. + */ + assert( pPager->errCode!=SQLITE_OK ); + assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); + break; + } + + return 1; +} +#endif /* ifndef NDEBUG */ + +#ifdef SQLITE_DEBUG +/* +** Return a pointer to a human readable string in a static buffer +** containing the state of the Pager object passed as an argument. This +** is intended to be used within debuggers. For example, as an alternative +** to "print *pPager" in gdb: +** +** (gdb) printf "%s", print_pager_state(pPager) +*/ +static char *print_pager_state(Pager *p){ + static char zRet[1024]; + + sqlite3_snprintf(1024, zRet, + "Filename: %s\n" + "State: %s errCode=%d\n" + "Lock: %s\n" + "Locking mode: locking_mode=%s\n" + "Journal mode: journal_mode=%s\n" + "Backing store: tempFile=%d memDb=%d useJournal=%d\n" + "Journal: journalOff=%lld journalHdr=%lld\n" + "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" + , p->zFilename + , p->eState==PAGER_OPEN ? "OPEN" : + p->eState==PAGER_READER ? "READER" : + p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : + p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : + p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : + p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : + p->eState==PAGER_ERROR ? "ERROR" : "?error?" + , (int)p->errCode + , p->eLock==NO_LOCK ? "NO_LOCK" : + p->eLock==RESERVED_LOCK ? "RESERVED" : + p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : + p->eLock==SHARED_LOCK ? "SHARED" : + p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" + , p->exclusiveMode ? "exclusive" : "normal" + , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : + p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : + p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : + p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : + p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : + p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" + , (int)p->tempFile, (int)p->memDb, (int)p->useJournal + , p->journalOff, p->journalHdr + , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize + ); + + return zRet; +} +#endif + +/* +** Return true if it is necessary to write page *pPg into the sub-journal. +** A page needs to be written into the sub-journal if there exists one +** or more open savepoints for which: +** +** * The page-number is less than or equal to PagerSavepoint.nOrig, and +** * The bit corresponding to the page-number is not set in +** PagerSavepoint.pInSavepoint. +*/ +static int subjRequiresPage(PgHdr *pPg){ + Pgno pgno = pPg->pgno; + Pager *pPager = pPg->pPager; + int i; + for(i=0; inSavepoint; i++){ + PagerSavepoint *p = &pPager->aSavepoint[i]; + if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){ + return 1; + } + } + return 0; +} + +/* +** Return true if the page is already in the journal file. +*/ +static int pageInJournal(PgHdr *pPg){ + return sqlite3BitvecTest(pPg->pPager->pInJournal, pPg->pgno); +} + +/* +** Read a 32-bit integer from the given file descriptor. Store the integer +** that is read in *pRes. Return SQLITE_OK if everything worked, or an +** error code is something goes wrong. +** +** All values are stored on disk as big-endian. +*/ +static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ + unsigned char ac[4]; + int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); + if( rc==SQLITE_OK ){ + *pRes = sqlite3Get4byte(ac); + } + return rc; +} + +/* +** Write a 32-bit integer into a string buffer in big-endian byte order. +*/ +#define put32bits(A,B) sqlite3Put4byte((u8*)A,B) + + +/* +** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK +** on success or an error code is something goes wrong. +*/ +static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ + char ac[4]; + put32bits(ac, val); + return sqlite3OsWrite(fd, ac, 4, offset); +} + +/* +** Unlock the database file to level eLock, which must be either NO_LOCK +** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() +** succeeds, set the Pager.eLock variable to match the (attempted) new lock. +** +** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is +** called, do not modify it. See the comment above the #define of +** UNKNOWN_LOCK for an explanation of this. +*/ +static int pagerUnlockDb(Pager *pPager, int eLock){ + int rc = SQLITE_OK; + + assert( !pPager->exclusiveMode || pPager->eLock==eLock ); + assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); + assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); + if( isOpen(pPager->fd) ){ + assert( pPager->eLock>=eLock ); + rc = sqlite3OsUnlock(pPager->fd, eLock); + if( pPager->eLock!=UNKNOWN_LOCK ){ + pPager->eLock = (u8)eLock; + } + IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) + } + return rc; +} + +/* +** Lock the database file to level eLock, which must be either SHARED_LOCK, +** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the +** Pager.eLock variable to the new locking state. +** +** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is +** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. +** See the comment above the #define of UNKNOWN_LOCK for an explanation +** of this. +*/ +static int pagerLockDb(Pager *pPager, int eLock){ + int rc = SQLITE_OK; + + assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); + if( pPager->eLockeLock==UNKNOWN_LOCK ){ + rc = sqlite3OsLock(pPager->fd, eLock); + if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ + pPager->eLock = (u8)eLock; + IOTRACE(("LOCK %p %d\n", pPager, eLock)) + } + } + return rc; +} + +/* +** This function determines whether or not the atomic-write optimization +** can be used with this pager. The optimization can be used if: +** +** (a) the value returned by OsDeviceCharacteristics() indicates that +** a database page may be written atomically, and +** (b) the value returned by OsSectorSize() is less than or equal +** to the page size. +** +** The optimization is also always enabled for temporary files. It is +** an error to call this function if pPager is opened on an in-memory +** database. +** +** If the optimization cannot be used, 0 is returned. If it can be used, +** then the value returned is the size of the journal file when it +** contains rollback data for exactly one page. +*/ +#ifdef SQLITE_ENABLE_ATOMIC_WRITE +static int jrnlBufferSize(Pager *pPager){ + assert( !MEMDB ); + if( !pPager->tempFile ){ + int dc; /* Device characteristics */ + int nSector; /* Sector size */ + int szPage; /* Page size */ + + assert( isOpen(pPager->fd) ); + dc = sqlite3OsDeviceCharacteristics(pPager->fd); + nSector = pPager->sectorSize; + szPage = pPager->pageSize; + + assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); + assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); + if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ + return 0; + } + } + + return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); +} +#endif + +/* +** If SQLITE_CHECK_PAGES is defined then we do some sanity checking +** on the cache using a hash function. This is used for testing +** and debugging only. +*/ +#ifdef SQLITE_CHECK_PAGES +/* +** Return a 32-bit hash of the page data for pPage. +*/ +static u32 pager_datahash(int nByte, unsigned char *pData){ + u32 hash = 0; + int i; + for(i=0; ipPager->pageSize, (unsigned char *)pPage->pData); +} +static void pager_set_pagehash(PgHdr *pPage){ + pPage->pageHash = pager_pagehash(pPage); +} + +/* +** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES +** is defined, and NDEBUG is not defined, an assert() statement checks +** that the page is either dirty or still matches the calculated page-hash. +*/ +#define CHECK_PAGE(x) checkPage(x) +static void checkPage(PgHdr *pPg){ + Pager *pPager = pPg->pPager; + assert( pPager->eState!=PAGER_ERROR ); + assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); +} + +#else +#define pager_datahash(X,Y) 0 +#define pager_pagehash(X) 0 +#define pager_set_pagehash(X) +#define CHECK_PAGE(x) +#endif /* SQLITE_CHECK_PAGES */ + +/* +** When this is called the journal file for pager pPager must be open. +** This function attempts to read a master journal file name from the +** end of the file and, if successful, copies it into memory supplied +** by the caller. See comments above writeMasterJournal() for the format +** used to store a master journal file name at the end of a journal file. +** +** zMaster must point to a buffer of at least nMaster bytes allocated by +** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is +** enough space to write the master journal name). If the master journal +** name in the journal is longer than nMaster bytes (including a +** nul-terminator), then this is handled as if no master journal name +** were present in the journal. +** +** If a master journal file name is present at the end of the journal +** file, then it is copied into the buffer pointed to by zMaster. A +** nul-terminator byte is appended to the buffer following the master +** journal file name. +** +** If it is determined that no master journal file name is present +** zMaster[0] is set to 0 and SQLITE_OK returned. +** +** If an error occurs while reading from the journal file, an SQLite +** error code is returned. +*/ +static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){ + int rc; /* Return code */ + u32 len; /* Length in bytes of master journal name */ + i64 szJ; /* Total size in bytes of journal file pJrnl */ + u32 cksum; /* MJ checksum value read from journal */ + u32 u; /* Unsigned loop counter */ + unsigned char aMagic[8]; /* A buffer to hold the magic header */ + zMaster[0] = '\0'; + + if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) + || szJ<16 + || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) + || len>=nMaster + || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) + || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) + || memcmp(aMagic, aJournalMagic, 8) + || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len)) + ){ + return rc; + } + + /* See if the checksum matches the master journal name */ + for(u=0; ujournalOff, assuming a sector +** size of pPager->sectorSize bytes. +** +** i.e for a sector size of 512: +** +** Pager.journalOff Return value +** --------------------------------------- +** 0 0 +** 512 512 +** 100 512 +** 2000 2048 +** +*/ +static i64 journalHdrOffset(Pager *pPager){ + i64 offset = 0; + i64 c = pPager->journalOff; + if( c ){ + offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); + } + assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); + assert( offset>=c ); + assert( (offset-c)jfd) ); + if( pPager->journalOff ){ + const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ + + IOTRACE(("JZEROHDR %p\n", pPager)) + if( doTruncate || iLimit==0 ){ + rc = sqlite3OsTruncate(pPager->jfd, 0); + }else{ + static const char zeroHdr[28] = {0}; + rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); + } + if( rc==SQLITE_OK && !pPager->noSync ){ + rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); + } + + /* At this point the transaction is committed but the write lock + ** is still held on the file. If there is a size limit configured for + ** the persistent journal and the journal file currently consumes more + ** space than that limit allows for, truncate it now. There is no need + ** to sync the file following this operation. + */ + if( rc==SQLITE_OK && iLimit>0 ){ + i64 sz; + rc = sqlite3OsFileSize(pPager->jfd, &sz); + if( rc==SQLITE_OK && sz>iLimit ){ + rc = sqlite3OsTruncate(pPager->jfd, iLimit); + } + } + } + return rc; +} + +/* +** The journal file must be open when this routine is called. A journal +** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the +** current location. +** +** The format for the journal header is as follows: +** - 8 bytes: Magic identifying journal format. +** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. +** - 4 bytes: Random number used for page hash. +** - 4 bytes: Initial database page count. +** - 4 bytes: Sector size used by the process that wrote this journal. +** - 4 bytes: Database page size. +** +** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. +*/ +static int writeJournalHdr(Pager *pPager){ + int rc = SQLITE_OK; /* Return code */ + char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ + u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ + u32 nWrite; /* Bytes of header sector written */ + int ii; /* Loop counter */ + + assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ + + if( nHeader>JOURNAL_HDR_SZ(pPager) ){ + nHeader = JOURNAL_HDR_SZ(pPager); + } + + /* If there are active savepoints and any of them were created + ** since the most recent journal header was written, update the + ** PagerSavepoint.iHdrOffset fields now. + */ + for(ii=0; iinSavepoint; ii++){ + if( pPager->aSavepoint[ii].iHdrOffset==0 ){ + pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; + } + } + + pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); + + /* + ** Write the nRec Field - the number of page records that follow this + ** journal header. Normally, zero is written to this value at this time. + ** After the records are added to the journal (and the journal synced, + ** if in full-sync mode), the zero is overwritten with the true number + ** of records (see syncJournal()). + ** + ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When + ** reading the journal this value tells SQLite to assume that the + ** rest of the journal file contains valid page records. This assumption + ** is dangerous, as if a failure occurred whilst writing to the journal + ** file it may contain some garbage data. There are two scenarios + ** where this risk can be ignored: + ** + ** * When the pager is in no-sync mode. Corruption can follow a + ** power failure in this case anyway. + ** + ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees + ** that garbage data is never appended to the journal file. + */ + assert( isOpen(pPager->fd) || pPager->noSync ); + if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) + || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) + ){ + memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); + put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); + }else{ + memset(zHeader, 0, sizeof(aJournalMagic)+4); + } + + /* The random check-hash initialiser */ + sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); + put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); + /* The initial database size */ + put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); + /* The assumed sector size for this process */ + put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); + + /* The page size */ + put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); + + /* Initializing the tail of the buffer is not necessary. Everything + ** works find if the following memset() is omitted. But initializing + ** the memory prevents valgrind from complaining, so we are willing to + ** take the performance hit. + */ + memset(&zHeader[sizeof(aJournalMagic)+20], 0, + nHeader-(sizeof(aJournalMagic)+20)); + + /* In theory, it is only necessary to write the 28 bytes that the + ** journal header consumes to the journal file here. Then increment the + ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next + ** record is written to the following sector (leaving a gap in the file + ** that will be implicitly filled in by the OS). + ** + ** However it has been discovered that on some systems this pattern can + ** be significantly slower than contiguously writing data to the file, + ** even if that means explicitly writing data to the block of + ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what + ** is done. + ** + ** The loop is required here in case the sector-size is larger than the + ** database page size. Since the zHeader buffer is only Pager.pageSize + ** bytes in size, more than one call to sqlite3OsWrite() may be required + ** to populate the entire journal header sector. + */ + for(nWrite=0; rc==SQLITE_OK&&nWritejournalHdr, nHeader)) + rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); + assert( pPager->journalHdr <= pPager->journalOff ); + pPager->journalOff += nHeader; + } + + return rc; +} + +/* +** The journal file must be open when this is called. A journal header file +** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal +** file. The current location in the journal file is given by +** pPager->journalOff. See comments above function writeJournalHdr() for +** a description of the journal header format. +** +** If the header is read successfully, *pNRec is set to the number of +** page records following this header and *pDbSize is set to the size of the +** database before the transaction began, in pages. Also, pPager->cksumInit +** is set to the value read from the journal header. SQLITE_OK is returned +** in this case. +** +** If the journal header file appears to be corrupted, SQLITE_DONE is +** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes +** cannot be read from the journal file an error code is returned. +*/ +static int readJournalHdr( + Pager *pPager, /* Pager object */ + int isHot, + i64 journalSize, /* Size of the open journal file in bytes */ + u32 *pNRec, /* OUT: Value read from the nRec field */ + u32 *pDbSize /* OUT: Value of original database size field */ +){ + int rc; /* Return code */ + unsigned char aMagic[8]; /* A buffer to hold the magic header */ + i64 iHdrOff; /* Offset of journal header being read */ + + assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ + + /* Advance Pager.journalOff to the start of the next sector. If the + ** journal file is too small for there to be a header stored at this + ** point, return SQLITE_DONE. + */ + pPager->journalOff = journalHdrOffset(pPager); + if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ + return SQLITE_DONE; + } + iHdrOff = pPager->journalOff; + + /* Read in the first 8 bytes of the journal header. If they do not match + ** the magic string found at the start of each journal header, return + ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, + ** proceed. + */ + if( isHot || iHdrOff!=pPager->journalHdr ){ + rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); + if( rc ){ + return rc; + } + if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ + return SQLITE_DONE; + } + } + + /* Read the first three 32-bit fields of the journal header: The nRec + ** field, the checksum-initializer and the database size at the start + ** of the transaction. Return an error code if anything goes wrong. + */ + if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) + || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) + || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) + ){ + return rc; + } + + if( pPager->journalOff==0 ){ + u32 iPageSize; /* Page-size field of journal header */ + u32 iSectorSize; /* Sector-size field of journal header */ + + /* Read the page-size and sector-size journal header fields. */ + if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) + || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) + ){ + return rc; + } + + /* Versions of SQLite prior to 3.5.8 set the page-size field of the + ** journal header to zero. In this case, assume that the Pager.pageSize + ** variable is already set to the correct page size. + */ + if( iPageSize==0 ){ + iPageSize = pPager->pageSize; + } + + /* Check that the values read from the page-size and sector-size fields + ** are within range. To be 'in range', both values need to be a power + ** of two greater than or equal to 512 or 32, and not greater than their + ** respective compile time maximum limits. + */ + if( iPageSize<512 || iSectorSize<32 + || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE + || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 + ){ + /* If the either the page-size or sector-size in the journal-header is + ** invalid, then the process that wrote the journal-header must have + ** crashed before the header was synced. In this case stop reading + ** the journal file here. + */ + return SQLITE_DONE; + } + + /* Update the page-size to match the value read from the journal. + ** Use a testcase() macro to make sure that malloc failure within + ** PagerSetPagesize() is tested. + */ + rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); + testcase( rc!=SQLITE_OK ); + + /* Update the assumed sector-size to match the value used by + ** the process that created this journal. If this journal was + ** created by a process other than this one, then this routine + ** is being called from within pager_playback(). The local value + ** of Pager.sectorSize is restored at the end of that routine. + */ + pPager->sectorSize = iSectorSize; + } + + pPager->journalOff += JOURNAL_HDR_SZ(pPager); + return rc; +} + + +/* +** Write the supplied master journal name into the journal file for pager +** pPager at the current location. The master journal name must be the last +** thing written to a journal file. If the pager is in full-sync mode, the +** journal file descriptor is advanced to the next sector boundary before +** anything is written. The format is: +** +** + 4 bytes: PAGER_MJ_PGNO. +** + N bytes: Master journal filename in utf-8. +** + 4 bytes: N (length of master journal name in bytes, no nul-terminator). +** + 4 bytes: Master journal name checksum. +** + 8 bytes: aJournalMagic[]. +** +** The master journal page checksum is the sum of the bytes in the master +** journal name, where each byte is interpreted as a signed 8-bit integer. +** +** If zMaster is a NULL pointer (occurs for a single database transaction), +** this call is a no-op. +*/ +static int writeMasterJournal(Pager *pPager, const char *zMaster){ + int rc; /* Return code */ + int nMaster; /* Length of string zMaster */ + i64 iHdrOff; /* Offset of header in journal file */ + i64 jrnlSize; /* Size of journal file on disk */ + u32 cksum = 0; /* Checksum of string zMaster */ + + assert( pPager->setMaster==0 ); + assert( !pagerUseWal(pPager) ); + + if( !zMaster + || pPager->journalMode==PAGER_JOURNALMODE_MEMORY + || pPager->journalMode==PAGER_JOURNALMODE_OFF + ){ + return SQLITE_OK; + } + pPager->setMaster = 1; + assert( isOpen(pPager->jfd) ); + assert( pPager->journalHdr <= pPager->journalOff ); + + /* Calculate the length in bytes and the checksum of zMaster */ + for(nMaster=0; zMaster[nMaster]; nMaster++){ + cksum += zMaster[nMaster]; + } + + /* If in full-sync mode, advance to the next disk sector before writing + ** the master journal name. This is in case the previous page written to + ** the journal has already been synced. + */ + if( pPager->fullSync ){ + pPager->journalOff = journalHdrOffset(pPager); + } + iHdrOff = pPager->journalOff; + + /* Write the master journal data to the end of the journal file. If + ** an error occurs, return the error code to the caller. + */ + if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) + || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) + || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) + || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) + || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8))) + ){ + return rc; + } + pPager->journalOff += (nMaster+20); + + /* If the pager is in peristent-journal mode, then the physical + ** journal-file may extend past the end of the master-journal name + ** and 8 bytes of magic data just written to the file. This is + ** dangerous because the code to rollback a hot-journal file + ** will not be able to find the master-journal name to determine + ** whether or not the journal is hot. + ** + ** Easiest thing to do in this scenario is to truncate the journal + ** file to the required size. + */ + if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) + && jrnlSize>pPager->journalOff + ){ + rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); + } + return rc; +} + +/* +** Find a page in the hash table given its page number. Return +** a pointer to the page or NULL if the requested page is not +** already in memory. +*/ +static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ + PgHdr *p; /* Return value */ + + /* It is not possible for a call to PcacheFetch() with createFlag==0 to + ** fail, since no attempt to allocate dynamic memory will be made. + */ + (void)sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p); + return p; +} + +/* +** Discard the entire contents of the in-memory page-cache. +*/ +static void pager_reset(Pager *pPager){ + sqlite3BackupRestart(pPager->pBackup); + sqlite3PcacheClear(pPager->pPCache); +} + +/* +** Free all structures in the Pager.aSavepoint[] array and set both +** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal +** if it is open and the pager is not in exclusive mode. +*/ +static void releaseAllSavepoints(Pager *pPager){ + int ii; /* Iterator for looping through Pager.aSavepoint */ + for(ii=0; iinSavepoint; ii++){ + sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); + } + if( !pPager->exclusiveMode || sqlite3IsMemJournal(pPager->sjfd) ){ + sqlite3OsClose(pPager->sjfd); + } + sqlite3_free(pPager->aSavepoint); + pPager->aSavepoint = 0; + pPager->nSavepoint = 0; + pPager->nSubRec = 0; +} + +/* +** Set the bit number pgno in the PagerSavepoint.pInSavepoint +** bitvecs of all open savepoints. Return SQLITE_OK if successful +** or SQLITE_NOMEM if a malloc failure occurs. +*/ +static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ + int ii; /* Loop counter */ + int rc = SQLITE_OK; /* Result code */ + + for(ii=0; iinSavepoint; ii++){ + PagerSavepoint *p = &pPager->aSavepoint[ii]; + if( pgno<=p->nOrig ){ + rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); + testcase( rc==SQLITE_NOMEM ); + assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); + } + } + return rc; +} + +/* +** This function is a no-op if the pager is in exclusive mode and not +** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN +** state. +** +** If the pager is not in exclusive-access mode, the database file is +** completely unlocked. If the file is unlocked and the file-system does +** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is +** closed (if it is open). +** +** If the pager is in ERROR state when this function is called, the +** contents of the pager cache are discarded before switching back to +** the OPEN state. Regardless of whether the pager is in exclusive-mode +** or not, any journal file left in the file-system will be treated +** as a hot-journal and rolled back the next time a read-transaction +** is opened (by this or by any other connection). +*/ +static void pager_unlock(Pager *pPager){ + + assert( pPager->eState==PAGER_READER + || pPager->eState==PAGER_OPEN + || pPager->eState==PAGER_ERROR + ); + + sqlite3BitvecDestroy(pPager->pInJournal); + pPager->pInJournal = 0; + releaseAllSavepoints(pPager); + + if( pagerUseWal(pPager) ){ + assert( !isOpen(pPager->jfd) ); + sqlite3WalEndReadTransaction(pPager->pWal); + pPager->eState = PAGER_OPEN; + }else if( !pPager->exclusiveMode ){ + int rc; /* Error code returned by pagerUnlockDb() */ + int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; + + /* If the operating system support deletion of open files, then + ** close the journal file when dropping the database lock. Otherwise + ** another connection with journal_mode=delete might delete the file + ** out from under us. + */ + assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); + assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); + assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); + assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); + assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); + assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); + if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) + || 1!=(pPager->journalMode & 5) + ){ + sqlite3OsClose(pPager->jfd); + } + + /* If the pager is in the ERROR state and the call to unlock the database + ** file fails, set the current lock to UNKNOWN_LOCK. See the comment + ** above the #define for UNKNOWN_LOCK for an explanation of why this + ** is necessary. + */ + rc = pagerUnlockDb(pPager, NO_LOCK); + if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ + pPager->eLock = UNKNOWN_LOCK; + } + + /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here + ** without clearing the error code. This is intentional - the error + ** code is cleared and the cache reset in the block below. + */ + assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); + pPager->changeCountDone = 0; + pPager->eState = PAGER_OPEN; + } + + /* If Pager.errCode is set, the contents of the pager cache cannot be + ** trusted. Now that there are no outstanding references to the pager, + ** it can safely move back to PAGER_OPEN state. This happens in both + ** normal and exclusive-locking mode. + */ + if( pPager->errCode ){ + assert( !MEMDB ); + pager_reset(pPager); + pPager->changeCountDone = pPager->tempFile; + pPager->eState = PAGER_OPEN; + pPager->errCode = SQLITE_OK; + } + + pPager->journalOff = 0; + pPager->journalHdr = 0; + pPager->setMaster = 0; +} + +/* +** This function is called whenever an IOERR or FULL error that requires +** the pager to transition into the ERROR state may ahve occurred. +** The first argument is a pointer to the pager structure, the second +** the error-code about to be returned by a pager API function. The +** value returned is a copy of the second argument to this function. +** +** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the +** IOERR sub-codes, the pager enters the ERROR state and the error code +** is stored in Pager.errCode. While the pager remains in the ERROR state, +** all major API calls on the Pager will immediately return Pager.errCode. +** +** The ERROR state indicates that the contents of the pager-cache +** cannot be trusted. This state can be cleared by completely discarding +** the contents of the pager-cache. If a transaction was active when +** the persistent error occurred, then the rollback journal may need +** to be replayed to restore the contents of the database file (as if +** it were a hot-journal). +*/ +static int pager_error(Pager *pPager, int rc){ + int rc2 = rc & 0xff; + assert( rc==SQLITE_OK || !MEMDB ); + assert( + pPager->errCode==SQLITE_FULL || + pPager->errCode==SQLITE_OK || + (pPager->errCode & 0xff)==SQLITE_IOERR + ); + if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ + pPager->errCode = rc; + pPager->eState = PAGER_ERROR; + } + return rc; +} + +/* +** This routine ends a transaction. A transaction is usually ended by +** either a COMMIT or a ROLLBACK operation. This routine may be called +** after rollback of a hot-journal, or if an error occurs while opening +** the journal file or writing the very first journal-header of a +** database transaction. +** +** This routine is never called in PAGER_ERROR state. If it is called +** in PAGER_NONE or PAGER_SHARED state and the lock held is less +** exclusive than a RESERVED lock, it is a no-op. +** +** Otherwise, any active savepoints are released. +** +** If the journal file is open, then it is "finalized". Once a journal +** file has been finalized it is not possible to use it to roll back a +** transaction. Nor will it be considered to be a hot-journal by this +** or any other database connection. Exactly how a journal is finalized +** depends on whether or not the pager is running in exclusive mode and +** the current journal-mode (Pager.journalMode value), as follows: +** +** journalMode==MEMORY +** Journal file descriptor is simply closed. This destroys an +** in-memory journal. +** +** journalMode==TRUNCATE +** Journal file is truncated to zero bytes in size. +** +** journalMode==PERSIST +** The first 28 bytes of the journal file are zeroed. This invalidates +** the first journal header in the file, and hence the entire journal +** file. An invalid journal file cannot be rolled back. +** +** journalMode==DELETE +** The journal file is closed and deleted using sqlite3OsDelete(). +** +** If the pager is running in exclusive mode, this method of finalizing +** the journal file is never used. Instead, if the journalMode is +** DELETE and the pager is in exclusive mode, the method described under +** journalMode==PERSIST is used instead. +** +** After the journal is finalized, the pager moves to PAGER_READER state. +** If running in non-exclusive rollback mode, the lock on the file is +** downgraded to a SHARED_LOCK. +** +** SQLITE_OK is returned if no error occurs. If an error occurs during +** any of the IO operations to finalize the journal file or unlock the +** database then the IO error code is returned to the user. If the +** operation to finalize the journal file fails, then the code still +** tries to unlock the database file if not in exclusive mode. If the +** unlock operation fails as well, then the first error code related +** to the first error encountered (the journal finalization one) is +** returned. +*/ +static int pager_end_transaction(Pager *pPager, int hasMaster){ + int rc = SQLITE_OK; /* Error code from journal finalization operation */ + int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ + + /* Do nothing if the pager does not have an open write transaction + ** or at least a RESERVED lock. This function may be called when there + ** is no write-transaction active but a RESERVED or greater lock is + ** held under two circumstances: + ** + ** 1. After a successful hot-journal rollback, it is called with + ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. + ** + ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE + ** lock switches back to locking_mode=normal and then executes a + ** read-transaction, this function is called with eState==PAGER_READER + ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. + */ + assert( assert_pager_state(pPager) ); + assert( pPager->eState!=PAGER_ERROR ); + if( pPager->eStateeLockjfd) || pPager->pInJournal==0 ); + if( isOpen(pPager->jfd) ){ + assert( !pagerUseWal(pPager) ); + + /* Finalize the journal file. */ + if( sqlite3IsMemJournal(pPager->jfd) ){ + assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); + sqlite3OsClose(pPager->jfd); + }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ + if( pPager->journalOff==0 ){ + rc = SQLITE_OK; + }else{ + rc = sqlite3OsTruncate(pPager->jfd, 0); + } + pPager->journalOff = 0; + }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST + || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) + ){ + rc = zeroJournalHdr(pPager, hasMaster); + pPager->journalOff = 0; + }else{ + /* This branch may be executed with Pager.journalMode==MEMORY if + ** a hot-journal was just rolled back. In this case the journal + ** file should be closed and deleted. If this connection writes to + ** the database file, it will do so using an in-memory journal. + */ + assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE + || pPager->journalMode==PAGER_JOURNALMODE_MEMORY + || pPager->journalMode==PAGER_JOURNALMODE_WAL + ); + sqlite3OsClose(pPager->jfd); + if( !pPager->tempFile ){ + rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); + } + } + } + +#ifdef SQLITE_CHECK_PAGES + sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); + if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ + PgHdr *p = pager_lookup(pPager, 1); + if( p ){ + p->pageHash = 0; + sqlite3PagerUnref(p); + } + } +#endif + + sqlite3BitvecDestroy(pPager->pInJournal); + pPager->pInJournal = 0; + pPager->nRec = 0; + sqlite3PcacheCleanAll(pPager->pPCache); + sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); + + if( pagerUseWal(pPager) ){ + /* Drop the WAL write-lock, if any. Also, if the connection was in + ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE + ** lock held on the database file. + */ + rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); + assert( rc2==SQLITE_OK ); + } + if( !pPager->exclusiveMode + && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) + ){ + rc2 = pagerUnlockDb(pPager, SHARED_LOCK); + pPager->changeCountDone = 0; + } + pPager->eState = PAGER_READER; + pPager->setMaster = 0; + + return (rc==SQLITE_OK?rc2:rc); +} + +/* +** Execute a rollback if a transaction is active and unlock the +** database file. +** +** If the pager has already entered the ERROR state, do not attempt +** the rollback at this time. Instead, pager_unlock() is called. The +** call to pager_unlock() will discard all in-memory pages, unlock +** the database file and move the pager back to OPEN state. If this +** means that there is a hot-journal left in the file-system, the next +** connection to obtain a shared lock on the pager (which may be this one) +** will roll it back. +** +** If the pager has not already entered the ERROR state, but an IO or +** malloc error occurs during a rollback, then this will itself cause +** the pager to enter the ERROR state. Which will be cleared by the +** call to pager_unlock(), as described above. +*/ +static void pagerUnlockAndRollback(Pager *pPager){ + if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ + assert( assert_pager_state(pPager) ); + if( pPager->eState>=PAGER_WRITER_LOCKED ){ + sqlite3BeginBenignMalloc(); + sqlite3PagerRollback(pPager); + sqlite3EndBenignMalloc(); + }else if( !pPager->exclusiveMode ){ + assert( pPager->eState==PAGER_READER ); + pager_end_transaction(pPager, 0); + } + } + pager_unlock(pPager); +} + +/* +** Parameter aData must point to a buffer of pPager->pageSize bytes +** of data. Compute and return a checksum based ont the contents of the +** page of data and the current value of pPager->cksumInit. +** +** This is not a real checksum. It is really just the sum of the +** random initial value (pPager->cksumInit) and every 200th byte +** of the page data, starting with byte offset (pPager->pageSize%200). +** Each byte is interpreted as an 8-bit unsigned integer. +** +** Changing the formula used to compute this checksum results in an +** incompatible journal file format. +** +** If journal corruption occurs due to a power failure, the most likely +** scenario is that one end or the other of the record will be changed. +** It is much less likely that the two ends of the journal record will be +** correct and the middle be corrupt. Thus, this "checksum" scheme, +** though fast and simple, catches the mostly likely kind of corruption. +*/ +static u32 pager_cksum(Pager *pPager, const u8 *aData){ + u32 cksum = pPager->cksumInit; /* Checksum value to return */ + int i = pPager->pageSize-200; /* Loop counter */ + while( i>0 ){ + cksum += aData[i]; + i -= 200; + } + return cksum; +} + +/* +** Report the current page size and number of reserved bytes back +** to the codec. +*/ +#ifdef SQLITE_HAS_CODEC +static void pagerReportSize(Pager *pPager){ + if( pPager->xCodecSizeChng ){ + pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize, + (int)pPager->nReserve); + } +} +#else +# define pagerReportSize(X) /* No-op if we do not support a codec */ +#endif + +/* +** Read a single page from either the journal file (if isMainJrnl==1) or +** from the sub-journal (if isMainJrnl==0) and playback that page. +** The page begins at offset *pOffset into the file. The *pOffset +** value is increased to the start of the next page in the journal. +** +** The main rollback journal uses checksums - the statement journal does +** not. +** +** If the page number of the page record read from the (sub-)journal file +** is greater than the current value of Pager.dbSize, then playback is +** skipped and SQLITE_OK is returned. +** +** If pDone is not NULL, then it is a record of pages that have already +** been played back. If the page at *pOffset has already been played back +** (if the corresponding pDone bit is set) then skip the playback. +** Make sure the pDone bit corresponding to the *pOffset page is set +** prior to returning. +** +** If the page record is successfully read from the (sub-)journal file +** and played back, then SQLITE_OK is returned. If an IO error occurs +** while reading the record from the (sub-)journal file or while writing +** to the database file, then the IO error code is returned. If data +** is successfully read from the (sub-)journal file but appears to be +** corrupted, SQLITE_DONE is returned. Data is considered corrupted in +** two circumstances: +** +** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or +** * If the record is being rolled back from the main journal file +** and the checksum field does not match the record content. +** +** Neither of these two scenarios are possible during a savepoint rollback. +** +** If this is a savepoint rollback, then memory may have to be dynamically +** allocated by this function. If this is the case and an allocation fails, +** SQLITE_NOMEM is returned. +*/ +static int pager_playback_one_page( + Pager *pPager, /* The pager being played back */ + i64 *pOffset, /* Offset of record to playback */ + Bitvec *pDone, /* Bitvec of pages already played back */ + int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ + int isSavepnt /* True for a savepoint rollback */ +){ + int rc; + PgHdr *pPg; /* An existing page in the cache */ + Pgno pgno; /* The page number of a page in journal */ + u32 cksum; /* Checksum used for sanity checking */ + char *aData; /* Temporary storage for the page */ + sqlite3_file *jfd; /* The file descriptor for the journal file */ + int isSynced; /* True if journal page is synced */ + + assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ + assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ + assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ + assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ + + aData = pPager->pTmpSpace; + assert( aData ); /* Temp storage must have already been allocated */ + assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); + + /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction + ** or savepoint rollback done at the request of the caller) or this is + ** a hot-journal rollback. If it is a hot-journal rollback, the pager + ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback + ** only reads from the main journal, not the sub-journal. + */ + assert( pPager->eState>=PAGER_WRITER_CACHEMOD + || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) + ); + assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); + + /* Read the page number and page data from the journal or sub-journal + ** file. Return an error code to the caller if an IO error occurs. + */ + jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; + rc = read32bits(jfd, *pOffset, &pgno); + if( rc!=SQLITE_OK ) return rc; + rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); + if( rc!=SQLITE_OK ) return rc; + *pOffset += pPager->pageSize + 4 + isMainJrnl*4; + + /* Sanity checking on the page. This is more important that I originally + ** thought. If a power failure occurs while the journal is being written, + ** it could cause invalid data to be written into the journal. We need to + ** detect this invalid data (with high probability) and ignore it. + */ + if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ + assert( !isSavepnt ); + return SQLITE_DONE; + } + if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ + return SQLITE_OK; + } + if( isMainJrnl ){ + rc = read32bits(jfd, (*pOffset)-4, &cksum); + if( rc ) return rc; + if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ + return SQLITE_DONE; + } + } + + /* If this page has already been played by before during the current + ** rollback, then don't bother to play it back again. + */ + if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ + return rc; + } + + /* When playing back page 1, restore the nReserve setting + */ + if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ + pPager->nReserve = ((u8*)aData)[20]; + pagerReportSize(pPager); + } + + /* If the pager is in CACHEMOD state, then there must be a copy of this + ** page in the pager cache. In this case just update the pager cache, + ** not the database file. The page is left marked dirty in this case. + ** + ** An exception to the above rule: If the database is in no-sync mode + ** and a page is moved during an incremental vacuum then the page may + ** not be in the pager cache. Later: if a malloc() or IO error occurs + ** during a Movepage() call, then the page may not be in the cache + ** either. So the condition described in the above paragraph is not + ** assert()able. + ** + ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the + ** pager cache if it exists and the main file. The page is then marked + ** not dirty. Since this code is only executed in PAGER_OPEN state for + ** a hot-journal rollback, it is guaranteed that the page-cache is empty + ** if the pager is in OPEN state. + ** + ** Ticket #1171: The statement journal might contain page content that is + ** different from the page content at the start of the transaction. + ** This occurs when a page is changed prior to the start of a statement + ** then changed again within the statement. When rolling back such a + ** statement we must not write to the original database unless we know + ** for certain that original page contents are synced into the main rollback + ** journal. Otherwise, a power loss might leave modified data in the + ** database file without an entry in the rollback journal that can + ** restore the database to its original form. Two conditions must be + ** met before writing to the database files. (1) the database must be + ** locked. (2) we know that the original page content is fully synced + ** in the main journal either because the page is not in cache or else + ** the page is marked as needSync==0. + ** + ** 2008-04-14: When attempting to vacuum a corrupt database file, it + ** is possible to fail a statement on a database that does not yet exist. + ** Do not attempt to write if database file has never been opened. + */ + if( pagerUseWal(pPager) ){ + pPg = 0; + }else{ + pPg = pager_lookup(pPager, pgno); + } + assert( pPg || !MEMDB ); + assert( pPager->eState!=PAGER_OPEN || pPg==0 ); + PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", + PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), + (isMainJrnl?"main-journal":"sub-journal") + )); + if( isMainJrnl ){ + isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); + }else{ + isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); + } + if( isOpen(pPager->fd) + && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) + && isSynced + ){ + i64 ofst = (pgno-1)*(i64)pPager->pageSize; + testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); + assert( !pagerUseWal(pPager) ); + rc = sqlite3OsWrite(pPager->fd, (u8*)aData, pPager->pageSize, ofst); + if( pgno>pPager->dbFileSize ){ + pPager->dbFileSize = pgno; + } + if( pPager->pBackup ){ + CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM); + sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); + CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM, aData); + } + }else if( !isMainJrnl && pPg==0 ){ + /* If this is a rollback of a savepoint and data was not written to + ** the database and the page is not in-memory, there is a potential + ** problem. When the page is next fetched by the b-tree layer, it + ** will be read from the database file, which may or may not be + ** current. + ** + ** There are a couple of different ways this can happen. All are quite + ** obscure. When running in synchronous mode, this can only happen + ** if the page is on the free-list at the start of the transaction, then + ** populated, then moved using sqlite3PagerMovepage(). + ** + ** The solution is to add an in-memory page to the cache containing + ** the data just read from the sub-journal. Mark the page as dirty + ** and if the pager requires a journal-sync, then mark the page as + ** requiring a journal-sync before it is written. + */ + assert( isSavepnt ); + assert( pPager->doNotSpill==0 ); + pPager->doNotSpill++; + rc = sqlite3PagerAcquire(pPager, pgno, &pPg, 1); + assert( pPager->doNotSpill==1 ); + pPager->doNotSpill--; + if( rc!=SQLITE_OK ) return rc; + pPg->flags &= ~PGHDR_NEED_READ; + sqlite3PcacheMakeDirty(pPg); + } + if( pPg ){ + /* No page should ever be explicitly rolled back that is in use, except + ** for page 1 which is held in use in order to keep the lock on the + ** database active. However such a page may be rolled back as a result + ** of an internal error resulting in an automatic call to + ** sqlite3PagerRollback(). + */ + void *pData; + pData = pPg->pData; + memcpy(pData, (u8*)aData, pPager->pageSize); + pPager->xReiniter(pPg); + if( isMainJrnl && (!isSavepnt || *pOffset<=pPager->journalHdr) ){ + /* If the contents of this page were just restored from the main + ** journal file, then its content must be as they were when the + ** transaction was first opened. In this case we can mark the page + ** as clean, since there will be no need to write it out to the + ** database. + ** + ** There is one exception to this rule. If the page is being rolled + ** back as part of a savepoint (or statement) rollback from an + ** unsynced portion of the main journal file, then it is not safe + ** to mark the page as clean. This is because marking the page as + ** clean will clear the PGHDR_NEED_SYNC flag. Since the page is + ** already in the journal file (recorded in Pager.pInJournal) and + ** the PGHDR_NEED_SYNC flag is cleared, if the page is written to + ** again within this transaction, it will be marked as dirty but + ** the PGHDR_NEED_SYNC flag will not be set. It could then potentially + ** be written out into the database file before its journal file + ** segment is synced. If a crash occurs during or following this, + ** database corruption may ensue. + */ + assert( !pagerUseWal(pPager) ); + sqlite3PcacheMakeClean(pPg); + } + pager_set_pagehash(pPg); + + /* If this was page 1, then restore the value of Pager.dbFileVers. + ** Do this before any decoding. */ + if( pgno==1 ){ + memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); + } + + /* Decode the page just read from disk */ + CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM); + sqlite3PcacheRelease(pPg); + } + return rc; +} + +/* +** Parameter zMaster is the name of a master journal file. A single journal +** file that referred to the master journal file has just been rolled back. +** This routine checks if it is possible to delete the master journal file, +** and does so if it is. +** +** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not +** available for use within this function. +** +** When a master journal file is created, it is populated with the names +** of all of its child journals, one after another, formatted as utf-8 +** encoded text. The end of each child journal file is marked with a +** nul-terminator byte (0x00). i.e. the entire contents of a master journal +** file for a transaction involving two databases might be: +** +** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" +** +** A master journal file may only be deleted once all of its child +** journals have been rolled back. +** +** This function reads the contents of the master-journal file into +** memory and loops through each of the child journal names. For +** each child journal, it checks if: +** +** * if the child journal exists, and if so +** * if the child journal contains a reference to master journal +** file zMaster +** +** If a child journal can be found that matches both of the criteria +** above, this function returns without doing anything. Otherwise, if +** no such child journal can be found, file zMaster is deleted from +** the file-system using sqlite3OsDelete(). +** +** If an IO error within this function, an error code is returned. This +** function allocates memory by calling sqlite3Malloc(). If an allocation +** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors +** occur, SQLITE_OK is returned. +** +** TODO: This function allocates a single block of memory to load +** the entire contents of the master journal file. This could be +** a couple of kilobytes or so - potentially larger than the page +** size. +*/ +static int pager_delmaster(Pager *pPager, const char *zMaster){ + sqlite3_vfs *pVfs = pPager->pVfs; + int rc; /* Return code */ + sqlite3_file *pMaster; /* Malloc'd master-journal file descriptor */ + sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ + char *zMasterJournal = 0; /* Contents of master journal file */ + i64 nMasterJournal; /* Size of master journal file */ + char *zJournal; /* Pointer to one journal within MJ file */ + char *zMasterPtr; /* Space to hold MJ filename from a journal file */ + int nMasterPtr; /* Amount of space allocated to zMasterPtr[] */ + + /* Allocate space for both the pJournal and pMaster file descriptors. + ** If successful, open the master journal file for reading. + */ + pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); + pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); + if( !pMaster ){ + rc = SQLITE_NOMEM; + }else{ + const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); + rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); + } + if( rc!=SQLITE_OK ) goto delmaster_out; + + /* Load the entire master journal file into space obtained from + ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain + ** sufficient space (in zMasterPtr) to hold the names of master + ** journal files extracted from regular rollback-journals. + */ + rc = sqlite3OsFileSize(pMaster, &nMasterJournal); + if( rc!=SQLITE_OK ) goto delmaster_out; + nMasterPtr = pVfs->mxPathname+1; + zMasterJournal = sqlite3Malloc((int)nMasterJournal + nMasterPtr + 1); + if( !zMasterJournal ){ + rc = SQLITE_NOMEM; + goto delmaster_out; + } + zMasterPtr = &zMasterJournal[nMasterJournal+1]; + rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0); + if( rc!=SQLITE_OK ) goto delmaster_out; + zMasterJournal[nMasterJournal] = 0; + + zJournal = zMasterJournal; + while( (zJournal-zMasterJournal)pageSize bytes). +** If the file on disk is currently larger than nPage pages, then use the VFS +** xTruncate() method to truncate it. +** +** Or, it might might be the case that the file on disk is smaller than +** nPage pages. Some operating system implementations can get confused if +** you try to truncate a file to some size that is larger than it +** currently is, so detect this case and write a single zero byte to +** the end of the new file instead. +** +** If successful, return SQLITE_OK. If an IO error occurs while modifying +** the database file, return the error code to the caller. +*/ +static int pager_truncate(Pager *pPager, Pgno nPage){ + int rc = SQLITE_OK; + assert( pPager->eState!=PAGER_ERROR ); + assert( pPager->eState!=PAGER_READER ); + + if( isOpen(pPager->fd) + && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) + ){ + i64 currentSize, newSize; + int szPage = pPager->pageSize; + assert( pPager->eLock==EXCLUSIVE_LOCK ); + /* TODO: Is it safe to use Pager.dbFileSize here? */ + rc = sqlite3OsFileSize(pPager->fd, ¤tSize); + newSize = szPage*(i64)nPage; + if( rc==SQLITE_OK && currentSize!=newSize ){ + if( currentSize>newSize ){ + rc = sqlite3OsTruncate(pPager->fd, newSize); + }else{ + char *pTmp = pPager->pTmpSpace; + memset(pTmp, 0, szPage); + testcase( (newSize-szPage) < currentSize ); + testcase( (newSize-szPage) == currentSize ); + testcase( (newSize-szPage) > currentSize ); + rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); + } + if( rc==SQLITE_OK ){ + pPager->dbFileSize = nPage; + } + } + } + return rc; +} + +/* +** Set the value of the Pager.sectorSize variable for the given +** pager based on the value returned by the xSectorSize method +** of the open database file. The sector size will be used used +** to determine the size and alignment of journal header and +** master journal pointers within created journal files. +** +** For temporary files the effective sector size is always 512 bytes. +** +** Otherwise, for non-temporary files, the effective sector size is +** the value returned by the xSectorSize() method rounded up to 32 if +** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it +** is greater than MAX_SECTOR_SIZE. +*/ +static void setSectorSize(Pager *pPager){ + assert( isOpen(pPager->fd) || pPager->tempFile ); + + if( !pPager->tempFile ){ + /* Sector size doesn't matter for temporary files. Also, the file + ** may not have been opened yet, in which case the OsSectorSize() + ** call will segfault. + */ + pPager->sectorSize = sqlite3OsSectorSize(pPager->fd); + } + if( pPager->sectorSize<32 ){ + pPager->sectorSize = 512; + } + if( pPager->sectorSize>MAX_SECTOR_SIZE ){ + assert( MAX_SECTOR_SIZE>=512 ); + pPager->sectorSize = MAX_SECTOR_SIZE; + } +} + +/* +** Playback the journal and thus restore the database file to +** the state it was in before we started making changes. +** +** The journal file format is as follows: +** +** (1) 8 byte prefix. A copy of aJournalMagic[]. +** (2) 4 byte big-endian integer which is the number of valid page records +** in the journal. If this value is 0xffffffff, then compute the +** number of page records from the journal size. +** (3) 4 byte big-endian integer which is the initial value for the +** sanity checksum. +** (4) 4 byte integer which is the number of pages to truncate the +** database to during a rollback. +** (5) 4 byte big-endian integer which is the sector size. The header +** is this many bytes in size. +** (6) 4 byte big-endian integer which is the page size. +** (7) zero padding out to the next sector size. +** (8) Zero or more pages instances, each as follows: +** + 4 byte page number. +** + pPager->pageSize bytes of data. +** + 4 byte checksum +** +** When we speak of the journal header, we mean the first 7 items above. +** Each entry in the journal is an instance of the 8th item. +** +** Call the value from the second bullet "nRec". nRec is the number of +** valid page entries in the journal. In most cases, you can compute the +** value of nRec from the size of the journal file. But if a power +** failure occurred while the journal was being written, it could be the +** case that the size of the journal file had already been increased but +** the extra entries had not yet made it safely to disk. In such a case, +** the value of nRec computed from the file size would be too large. For +** that reason, we always use the nRec value in the header. +** +** If the nRec value is 0xffffffff it means that nRec should be computed +** from the file size. This value is used when the user selects the +** no-sync option for the journal. A power failure could lead to corruption +** in this case. But for things like temporary table (which will be +** deleted when the power is restored) we don't care. +** +** If the file opened as the journal file is not a well-formed +** journal file then all pages up to the first corrupted page are rolled +** back (or no pages if the journal header is corrupted). The journal file +** is then deleted and SQLITE_OK returned, just as if no corruption had +** been encountered. +** +** If an I/O or malloc() error occurs, the journal-file is not deleted +** and an error code is returned. +** +** The isHot parameter indicates that we are trying to rollback a journal +** that might be a hot journal. Or, it could be that the journal is +** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. +** If the journal really is hot, reset the pager cache prior rolling +** back any content. If the journal is merely persistent, no reset is +** needed. +*/ +static int pager_playback(Pager *pPager, int isHot){ + sqlite3_vfs *pVfs = pPager->pVfs; + i64 szJ; /* Size of the journal file in bytes */ + u32 nRec; /* Number of Records in the journal */ + u32 u; /* Unsigned loop counter */ + Pgno mxPg = 0; /* Size of the original file in pages */ + int rc; /* Result code of a subroutine */ + int res = 1; /* Value returned by sqlite3OsAccess() */ + char *zMaster = 0; /* Name of master journal file if any */ + int needPagerReset; /* True to reset page prior to first page rollback */ + + /* Figure out how many records are in the journal. Abort early if + ** the journal is empty. + */ + assert( isOpen(pPager->jfd) ); + rc = sqlite3OsFileSize(pPager->jfd, &szJ); + if( rc!=SQLITE_OK ){ + goto end_playback; + } + + /* Read the master journal name from the journal, if it is present. + ** If a master journal file name is specified, but the file is not + ** present on disk, then the journal is not hot and does not need to be + ** played back. + ** + ** TODO: Technically the following is an error because it assumes that + ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that + ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, + ** mxPathname is 512, which is the same as the minimum allowable value + ** for pageSize. + */ + zMaster = pPager->pTmpSpace; + rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); + if( rc==SQLITE_OK && zMaster[0] ){ + rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); + } + zMaster = 0; + if( rc!=SQLITE_OK || !res ){ + goto end_playback; + } + pPager->journalOff = 0; + needPagerReset = isHot; + + /* This loop terminates either when a readJournalHdr() or + ** pager_playback_one_page() call returns SQLITE_DONE or an IO error + ** occurs. + */ + while( 1 ){ + /* Read the next journal header from the journal file. If there are + ** not enough bytes left in the journal file for a complete header, or + ** it is corrupted, then a process must have failed while writing it. + ** This indicates nothing more needs to be rolled back. + */ + rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_DONE ){ + rc = SQLITE_OK; + } + goto end_playback; + } + + /* If nRec is 0xffffffff, then this journal was created by a process + ** working in no-sync mode. This means that the rest of the journal + ** file consists of pages, there are no more journal headers. Compute + ** the value of nRec based on this assumption. + */ + if( nRec==0xffffffff ){ + assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); + nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); + } + + /* If nRec is 0 and this rollback is of a transaction created by this + ** process and if this is the final header in the journal, then it means + ** that this part of the journal was being filled but has not yet been + ** synced to disk. Compute the number of pages based on the remaining + ** size of the file. + ** + ** The third term of the test was added to fix ticket #2565. + ** When rolling back a hot journal, nRec==0 always means that the next + ** chunk of the journal contains zero pages to be rolled back. But + ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in + ** the journal, it means that the journal might contain additional + ** pages that need to be rolled back and that the number of pages + ** should be computed based on the journal file size. + */ + if( nRec==0 && !isHot && + pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ + nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); + } + + /* If this is the first header read from the journal, truncate the + ** database file back to its original size. + */ + if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ + rc = pager_truncate(pPager, mxPg); + if( rc!=SQLITE_OK ){ + goto end_playback; + } + pPager->dbSize = mxPg; + } + + /* Copy original pages out of the journal and back into the + ** database file and/or page cache. + */ + for(u=0; ujournalOff,0,1,0); + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_DONE ){ + pPager->journalOff = szJ; + break; + }else if( rc==SQLITE_IOERR_SHORT_READ ){ + /* If the journal has been truncated, simply stop reading and + ** processing the journal. This might happen if the journal was + ** not completely written and synced prior to a crash. In that + ** case, the database should have never been written in the + ** first place so it is OK to simply abandon the rollback. */ + rc = SQLITE_OK; + goto end_playback; + }else{ + /* If we are unable to rollback, quit and return the error + ** code. This will cause the pager to enter the error state + ** so that no further harm will be done. Perhaps the next + ** process to come along will be able to rollback the database. + */ + goto end_playback; + } + } + } + } + /*NOTREACHED*/ + assert( 0 ); + +end_playback: + /* Following a rollback, the database file should be back in its original + ** state prior to the start of the transaction, so invoke the + ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the + ** assertion that the transaction counter was modified. + */ + assert( + pPager->fd->pMethods==0 || + sqlite3OsFileControl(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0)>=SQLITE_OK + ); + + /* If this playback is happening automatically as a result of an IO or + ** malloc error that occurred after the change-counter was updated but + ** before the transaction was committed, then the change-counter + ** modification may just have been reverted. If this happens in exclusive + ** mode, then subsequent transactions performed by the connection will not + ** update the change-counter at all. This may lead to cache inconsistency + ** problems for other processes at some point in the future. So, just + ** in case this has happened, clear the changeCountDone flag now. + */ + pPager->changeCountDone = pPager->tempFile; + + if( rc==SQLITE_OK ){ + zMaster = pPager->pTmpSpace; + rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); + testcase( rc!=SQLITE_OK ); + } + if( rc==SQLITE_OK + && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) + ){ + rc = sqlite3PagerSync(pPager); + } + if( rc==SQLITE_OK ){ + rc = pager_end_transaction(pPager, zMaster[0]!='\0'); + testcase( rc!=SQLITE_OK ); + } + if( rc==SQLITE_OK && zMaster[0] && res ){ + /* If there was a master journal and this routine will return success, + ** see if it is possible to delete the master journal. + */ + rc = pager_delmaster(pPager, zMaster); + testcase( rc!=SQLITE_OK ); + } + + /* The Pager.sectorSize variable may have been updated while rolling + ** back a journal created by a process with a different sector size + ** value. Reset it to the correct value for this process. + */ + setSectorSize(pPager); + return rc; +} + + +/* +** Read the content for page pPg out of the database file and into +** pPg->pData. A shared lock or greater must be held on the database +** file before this function is called. +** +** If page 1 is read, then the value of Pager.dbFileVers[] is set to +** the value read from the database file. +** +** If an IO error occurs, then the IO error is returned to the caller. +** Otherwise, SQLITE_OK is returned. +*/ +static int readDbPage(PgHdr *pPg){ + Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ + Pgno pgno = pPg->pgno; /* Page number to read */ + int rc = SQLITE_OK; /* Return code */ + int isInWal = 0; /* True if page is in log file */ + int pgsz = pPager->pageSize; /* Number of bytes to read */ + + assert( pPager->eState>=PAGER_READER && !MEMDB ); + assert( isOpen(pPager->fd) ); + + if( NEVER(!isOpen(pPager->fd)) ){ + assert( pPager->tempFile ); + memset(pPg->pData, 0, pPager->pageSize); + return SQLITE_OK; + } + + if( pagerUseWal(pPager) ){ + /* Try to pull the page from the write-ahead log. */ + rc = sqlite3WalRead(pPager->pWal, pgno, &isInWal, pgsz, pPg->pData); + } + if( rc==SQLITE_OK && !isInWal ){ + i64 iOffset = (pgno-1)*(i64)pPager->pageSize; + rc = sqlite3OsRead(pPager->fd, pPg->pData, pgsz, iOffset); + if( rc==SQLITE_IOERR_SHORT_READ ){ + rc = SQLITE_OK; + } + } + + if( pgno==1 ){ + if( rc ){ + /* If the read is unsuccessful, set the dbFileVers[] to something + ** that will never be a valid file version. dbFileVers[] is a copy + ** of bytes 24..39 of the database. Bytes 28..31 should always be + ** zero or the size of the database in page. Bytes 32..35 and 35..39 + ** should be page numbers which are never 0xffffffff. So filling + ** pPager->dbFileVers[] with all 0xff bytes should suffice. + ** + ** For an encrypted database, the situation is more complex: bytes + ** 24..39 of the database are white noise. But the probability of + ** white noising equaling 16 bytes of 0xff is vanishingly small so + ** we should still be ok. + */ + memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); + }else{ + u8 *dbFileVers = &((u8*)pPg->pData)[24]; + memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); + } + } + CODEC1(pPager, pPg->pData, pgno, 3, rc = SQLITE_NOMEM); + + PAGER_INCR(sqlite3_pager_readdb_count); + PAGER_INCR(pPager->nRead); + IOTRACE(("PGIN %p %d\n", pPager, pgno)); + PAGERTRACE(("FETCH %d page %d hash(%08x)\n", + PAGERID(pPager), pgno, pager_pagehash(pPg))); + + return rc; +} + +/* +** Update the value of the change-counter at offsets 24 and 92 in +** the header and the sqlite version number at offset 96. +** +** This is an unconditional update. See also the pager_incr_changecounter() +** routine which only updates the change-counter if the update is actually +** needed, as determined by the pPager->changeCountDone state variable. +*/ +static void pager_write_changecounter(PgHdr *pPg){ + u32 change_counter; + + /* Increment the value just read and write it back to byte 24. */ + change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; + put32bits(((char*)pPg->pData)+24, change_counter); + + /* Also store the SQLite version number in bytes 96..99 and in + ** bytes 92..95 store the change counter for which the version number + ** is valid. */ + put32bits(((char*)pPg->pData)+92, change_counter); + put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); +} + +#ifndef SQLITE_OMIT_WAL +/* +** This function is invoked once for each page that has already been +** written into the log file when a WAL transaction is rolled back. +** Parameter iPg is the page number of said page. The pCtx argument +** is actually a pointer to the Pager structure. +** +** If page iPg is present in the cache, and has no outstanding references, +** it is discarded. Otherwise, if there are one or more outstanding +** references, the page content is reloaded from the database. If the +** attempt to reload content from the database is required and fails, +** return an SQLite error code. Otherwise, SQLITE_OK. +*/ +static int pagerUndoCallback(void *pCtx, Pgno iPg){ + int rc = SQLITE_OK; + Pager *pPager = (Pager *)pCtx; + PgHdr *pPg; + + pPg = sqlite3PagerLookup(pPager, iPg); + if( pPg ){ + if( sqlite3PcachePageRefcount(pPg)==1 ){ + sqlite3PcacheDrop(pPg); + }else{ + rc = readDbPage(pPg); + if( rc==SQLITE_OK ){ + pPager->xReiniter(pPg); + } + sqlite3PagerUnref(pPg); + } + } + + /* Normally, if a transaction is rolled back, any backup processes are + ** updated as data is copied out of the rollback journal and into the + ** database. This is not generally possible with a WAL database, as + ** rollback involves simply truncating the log file. Therefore, if one + ** or more frames have already been written to the log (and therefore + ** also copied into the backup databases) as part of this transaction, + ** the backups must be restarted. + */ + sqlite3BackupRestart(pPager->pBackup); + + return rc; +} + +/* +** This function is called to rollback a transaction on a WAL database. +*/ +static int pagerRollbackWal(Pager *pPager){ + int rc; /* Return Code */ + PgHdr *pList; /* List of dirty pages to revert */ + + /* For all pages in the cache that are currently dirty or have already + ** been written (but not committed) to the log file, do one of the + ** following: + ** + ** + Discard the cached page (if refcount==0), or + ** + Reload page content from the database (if refcount>0). + */ + pPager->dbSize = pPager->dbOrigSize; + rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); + pList = sqlite3PcacheDirtyList(pPager->pPCache); + while( pList && rc==SQLITE_OK ){ + PgHdr *pNext = pList->pDirty; + rc = pagerUndoCallback((void *)pPager, pList->pgno); + pList = pNext; + } + + return rc; +} + +/* +** This function is a wrapper around sqlite3WalFrames(). As well as logging +** the contents of the list of pages headed by pList (connected by pDirty), +** this function notifies any active backup processes that the pages have +** changed. +** +** The list of pages passed into this routine is always sorted by page number. +** Hence, if page 1 appears anywhere on the list, it will be the first page. +*/ +static int pagerWalFrames( + Pager *pPager, /* Pager object */ + PgHdr *pList, /* List of frames to log */ + Pgno nTruncate, /* Database size after this commit */ + int isCommit, /* True if this is a commit */ + int syncFlags /* Flags to pass to OsSync() (or 0) */ +){ + int rc; /* Return code */ +#if defined(SQLITE_DEBUG) || defined(SQLITE_CHECK_PAGES) + PgHdr *p; /* For looping over pages */ +#endif + + assert( pPager->pWal ); + assert( pList ); +#ifdef SQLITE_DEBUG + /* Verify that the page list is in accending order */ + for(p=pList; p && p->pDirty; p=p->pDirty){ + assert( p->pgno < p->pDirty->pgno ); + } +#endif + + if( isCommit ){ + /* If a WAL transaction is being committed, there is no point in writing + ** any pages with page numbers greater than nTruncate into the WAL file. + ** They will never be read by any client. So remove them from the pDirty + ** list here. */ + PgHdr *p; + PgHdr **ppNext = &pList; + for(p=pList; (*ppNext = p); p=p->pDirty){ + if( p->pgno<=nTruncate ) ppNext = &p->pDirty; + } + assert( pList ); + } + + if( pList->pgno==1 ) pager_write_changecounter(pList); + rc = sqlite3WalFrames(pPager->pWal, + pPager->pageSize, pList, nTruncate, isCommit, syncFlags + ); + if( rc==SQLITE_OK && pPager->pBackup ){ + PgHdr *p; + for(p=pList; p; p=p->pDirty){ + sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); + } + } + +#ifdef SQLITE_CHECK_PAGES + pList = sqlite3PcacheDirtyList(pPager->pPCache); + for(p=pList; p; p=p->pDirty){ + pager_set_pagehash(p); + } +#endif + + return rc; +} + +/* +** Begin a read transaction on the WAL. +** +** This routine used to be called "pagerOpenSnapshot()" because it essentially +** makes a snapshot of the database at the current point in time and preserves +** that snapshot for use by the reader in spite of concurrently changes by +** other writers or checkpointers. +*/ +static int pagerBeginReadTransaction(Pager *pPager){ + int rc; /* Return code */ + int changed = 0; /* True if cache must be reset */ + + assert( pagerUseWal(pPager) ); + assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); + + /* sqlite3WalEndReadTransaction() was not called for the previous + ** transaction in locking_mode=EXCLUSIVE. So call it now. If we + ** are in locking_mode=NORMAL and EndRead() was previously called, + ** the duplicate call is harmless. + */ + sqlite3WalEndReadTransaction(pPager->pWal); + + rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); + if( rc!=SQLITE_OK || changed ){ + pager_reset(pPager); + } + + return rc; +} +#endif + +/* +** This function is called as part of the transition from PAGER_OPEN +** to PAGER_READER state to determine the size of the database file +** in pages (assuming the page size currently stored in Pager.pageSize). +** +** If no error occurs, SQLITE_OK is returned and the size of the database +** in pages is stored in *pnPage. Otherwise, an error code (perhaps +** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. +*/ +static int pagerPagecount(Pager *pPager, Pgno *pnPage){ + Pgno nPage; /* Value to return via *pnPage */ + + /* Query the WAL sub-system for the database size. The WalDbsize() + ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or + ** if the database size is not available. The database size is not + ** available from the WAL sub-system if the log file is empty or + ** contains no valid committed transactions. + */ + assert( pPager->eState==PAGER_OPEN ); + assert( pPager->eLock>=SHARED_LOCK || pPager->noReadlock ); + nPage = sqlite3WalDbsize(pPager->pWal); + + /* If the database size was not available from the WAL sub-system, + ** determine it based on the size of the database file. If the size + ** of the database file is not an integer multiple of the page-size, + ** round down to the nearest page. Except, any file larger than 0 + ** bytes in size is considered to contain at least one page. + */ + if( nPage==0 ){ + i64 n = 0; /* Size of db file in bytes */ + assert( isOpen(pPager->fd) || pPager->tempFile ); + if( isOpen(pPager->fd) ){ + int rc = sqlite3OsFileSize(pPager->fd, &n); + if( rc!=SQLITE_OK ){ + return rc; + } + } + nPage = (Pgno)(n / pPager->pageSize); + if( nPage==0 && n>0 ){ + nPage = 1; + } + } + + /* If the current number of pages in the file is greater than the + ** configured maximum pager number, increase the allowed limit so + ** that the file can be read. + */ + if( nPage>pPager->mxPgno ){ + pPager->mxPgno = (Pgno)nPage; + } + + *pnPage = nPage; + return SQLITE_OK; +} + +#ifndef SQLITE_OMIT_WAL +/* +** Check if the *-wal file that corresponds to the database opened by pPager +** exists if the database is not empy, or verify that the *-wal file does +** not exist (by deleting it) if the database file is empty. +** +** If the database is not empty and the *-wal file exists, open the pager +** in WAL mode. If the database is empty or if no *-wal file exists and +** if no error occurs, make sure Pager.journalMode is not set to +** PAGER_JOURNALMODE_WAL. +** +** Return SQLITE_OK or an error code. +** +** The caller must hold a SHARED lock on the database file to call this +** function. Because an EXCLUSIVE lock on the db file is required to delete +** a WAL on a none-empty database, this ensures there is no race condition +** between the xAccess() below and an xDelete() being executed by some +** other connection. +*/ +static int pagerOpenWalIfPresent(Pager *pPager){ + int rc = SQLITE_OK; + assert( pPager->eState==PAGER_OPEN ); + assert( pPager->eLock>=SHARED_LOCK || pPager->noReadlock ); + + if( !pPager->tempFile ){ + int isWal; /* True if WAL file exists */ + Pgno nPage; /* Size of the database file */ + + rc = pagerPagecount(pPager, &nPage); + if( rc ) return rc; + if( nPage==0 ){ + rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); + isWal = 0; + }else{ + rc = sqlite3OsAccess( + pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal + ); + } + if( rc==SQLITE_OK ){ + if( isWal ){ + testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); + rc = sqlite3PagerOpenWal(pPager, 0); + }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ + pPager->journalMode = PAGER_JOURNALMODE_DELETE; + } + } + } + return rc; +} +#endif + +/* +** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback +** the entire master journal file. The case pSavepoint==NULL occurs when +** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction +** savepoint. +** +** When pSavepoint is not NULL (meaning a non-transaction savepoint is +** being rolled back), then the rollback consists of up to three stages, +** performed in the order specified: +** +** * Pages are played back from the main journal starting at byte +** offset PagerSavepoint.iOffset and continuing to +** PagerSavepoint.iHdrOffset, or to the end of the main journal +** file if PagerSavepoint.iHdrOffset is zero. +** +** * If PagerSavepoint.iHdrOffset is not zero, then pages are played +** back starting from the journal header immediately following +** PagerSavepoint.iHdrOffset to the end of the main journal file. +** +** * Pages are then played back from the sub-journal file, starting +** with the PagerSavepoint.iSubRec and continuing to the end of +** the journal file. +** +** Throughout the rollback process, each time a page is rolled back, the +** corresponding bit is set in a bitvec structure (variable pDone in the +** implementation below). This is used to ensure that a page is only +** rolled back the first time it is encountered in either journal. +** +** If pSavepoint is NULL, then pages are only played back from the main +** journal file. There is no need for a bitvec in this case. +** +** In either case, before playback commences the Pager.dbSize variable +** is reset to the value that it held at the start of the savepoint +** (or transaction). No page with a page-number greater than this value +** is played back. If one is encountered it is simply skipped. +*/ +static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ + i64 szJ; /* Effective size of the main journal */ + i64 iHdrOff; /* End of first segment of main-journal records */ + int rc = SQLITE_OK; /* Return code */ + Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ + + assert( pPager->eState!=PAGER_ERROR ); + assert( pPager->eState>=PAGER_WRITER_LOCKED ); + + /* Allocate a bitvec to use to store the set of pages rolled back */ + if( pSavepoint ){ + pDone = sqlite3BitvecCreate(pSavepoint->nOrig); + if( !pDone ){ + return SQLITE_NOMEM; + } + } + + /* Set the database size back to the value it was before the savepoint + ** being reverted was opened. + */ + pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; + pPager->changeCountDone = pPager->tempFile; + + if( !pSavepoint && pagerUseWal(pPager) ){ + return pagerRollbackWal(pPager); + } + + /* Use pPager->journalOff as the effective size of the main rollback + ** journal. The actual file might be larger than this in + ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything + ** past pPager->journalOff is off-limits to us. + */ + szJ = pPager->journalOff; + assert( pagerUseWal(pPager)==0 || szJ==0 ); + + /* Begin by rolling back records from the main journal starting at + ** PagerSavepoint.iOffset and continuing to the next journal header. + ** There might be records in the main journal that have a page number + ** greater than the current database size (pPager->dbSize) but those + ** will be skipped automatically. Pages are added to pDone as they + ** are played back. + */ + if( pSavepoint && !pagerUseWal(pPager) ){ + iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; + pPager->journalOff = pSavepoint->iOffset; + while( rc==SQLITE_OK && pPager->journalOffjournalOff, pDone, 1, 1); + } + assert( rc!=SQLITE_DONE ); + }else{ + pPager->journalOff = 0; + } + + /* Continue rolling back records out of the main journal starting at + ** the first journal header seen and continuing until the effective end + ** of the main journal file. Continue to skip out-of-range pages and + ** continue adding pages rolled back to pDone. + */ + while( rc==SQLITE_OK && pPager->journalOffjournalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" + ** test is related to ticket #2565. See the discussion in the + ** pager_playback() function for additional information. + */ + if( nJRec==0 + && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff + ){ + nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); + } + for(ii=0; rc==SQLITE_OK && iijournalOffjournalOff, pDone, 1, 1); + } + assert( rc!=SQLITE_DONE ); + } + assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); + + /* Finally, rollback pages from the sub-journal. Page that were + ** previously rolled back out of the main journal (and are hence in pDone) + ** will be skipped. Out-of-range pages are also skipped. + */ + if( pSavepoint ){ + u32 ii; /* Loop counter */ + i64 offset = pSavepoint->iSubRec*(4+pPager->pageSize); + + if( pagerUseWal(pPager) ){ + rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); + } + for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && iinSubRec; ii++){ + assert( offset==ii*(4+pPager->pageSize) ); + rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); + } + assert( rc!=SQLITE_DONE ); + } + + sqlite3BitvecDestroy(pDone); + if( rc==SQLITE_OK ){ + pPager->journalOff = szJ; + } + + return rc; +} + +/* +** Change the maximum number of in-memory pages that are allowed. +*/ +void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ + sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); +} + +/* +** Adjust the robustness of the database to damage due to OS crashes +** or power failures by changing the number of syncs()s when writing +** the rollback journal. There are three levels: +** +** OFF sqlite3OsSync() is never called. This is the default +** for temporary and transient files. +** +** NORMAL The journal is synced once before writes begin on the +** database. This is normally adequate protection, but +** it is theoretically possible, though very unlikely, +** that an inopertune power failure could leave the journal +** in a state which would cause damage to the database +** when it is rolled back. +** +** FULL The journal is synced twice before writes begin on the +** database (with some additional information - the nRec field +** of the journal header - being written in between the two +** syncs). If we assume that writing a +** single disk sector is atomic, then this mode provides +** assurance that the journal will not be corrupted to the +** point of causing damage to the database during rollback. +** +** The above is for a rollback-journal mode. For WAL mode, OFF continues +** to mean that no syncs ever occur. NORMAL means that the WAL is synced +** prior to the start of checkpoint and that the database file is synced +** at the conclusion of the checkpoint if the entire content of the WAL +** was written back into the database. But no sync operations occur for +** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL +** file is synced following each commit operation, in addition to the +** syncs associated with NORMAL. +** +** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The +** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync +** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an +** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL +** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the +** synchronous=FULL versus synchronous=NORMAL setting determines when +** the xSync primitive is called and is relevant to all platforms. +** +** Numeric values associated with these states are OFF==1, NORMAL=2, +** and FULL=3. +*/ +#ifndef SQLITE_OMIT_PAGER_PRAGMAS +void sqlite3PagerSetSafetyLevel( + Pager *pPager, /* The pager to set safety level for */ + int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */ + int bFullFsync, /* PRAGMA fullfsync */ + int bCkptFullFsync /* PRAGMA checkpoint_fullfsync */ +){ + assert( level>=1 && level<=3 ); + pPager->noSync = (level==1 || pPager->tempFile) ?1:0; + pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0; + if( pPager->noSync ){ + pPager->syncFlags = 0; + pPager->ckptSyncFlags = 0; + }else if( bFullFsync ){ + pPager->syncFlags = SQLITE_SYNC_FULL; + pPager->ckptSyncFlags = SQLITE_SYNC_FULL; + }else if( bCkptFullFsync ){ + pPager->syncFlags = SQLITE_SYNC_NORMAL; + pPager->ckptSyncFlags = SQLITE_SYNC_FULL; + }else{ + pPager->syncFlags = SQLITE_SYNC_NORMAL; + pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; + } +} +#endif + +/* +** The following global variable is incremented whenever the library +** attempts to open a temporary file. This information is used for +** testing and analysis only. +*/ +#ifdef SQLITE_TEST +int sqlite3_opentemp_count = 0; +#endif + +/* +** Open a temporary file. +** +** Write the file descriptor into *pFile. Return SQLITE_OK on success +** or some other error code if we fail. The OS will automatically +** delete the temporary file when it is closed. +** +** The flags passed to the VFS layer xOpen() call are those specified +** by parameter vfsFlags ORed with the following: +** +** SQLITE_OPEN_READWRITE +** SQLITE_OPEN_CREATE +** SQLITE_OPEN_EXCLUSIVE +** SQLITE_OPEN_DELETEONCLOSE +*/ +static int pagerOpentemp( + Pager *pPager, /* The pager object */ + sqlite3_file *pFile, /* Write the file descriptor here */ + int vfsFlags /* Flags passed through to the VFS */ +){ + int rc; /* Return code */ + +#ifdef SQLITE_TEST + sqlite3_opentemp_count++; /* Used for testing and analysis only */ +#endif + + vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | + SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; + rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); + assert( rc!=SQLITE_OK || isOpen(pFile) ); + return rc; +} + +/* +** Set the busy handler function. +** +** The pager invokes the busy-handler if sqlite3OsLock() returns +** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, +** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE +** lock. It does *not* invoke the busy handler when upgrading from +** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE +** (which occurs during hot-journal rollback). Summary: +** +** Transition | Invokes xBusyHandler +** -------------------------------------------------------- +** NO_LOCK -> SHARED_LOCK | Yes +** SHARED_LOCK -> RESERVED_LOCK | No +** SHARED_LOCK -> EXCLUSIVE_LOCK | No +** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes +** +** If the busy-handler callback returns non-zero, the lock is +** retried. If it returns zero, then the SQLITE_BUSY error is +** returned to the caller of the pager API function. +*/ +void sqlite3PagerSetBusyhandler( + Pager *pPager, /* Pager object */ + int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ + void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ +){ + pPager->xBusyHandler = xBusyHandler; + pPager->pBusyHandlerArg = pBusyHandlerArg; +} + +/* +** Change the page size used by the Pager object. The new page size +** is passed in *pPageSize. +** +** If the pager is in the error state when this function is called, it +** is a no-op. The value returned is the error state error code (i.e. +** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). +** +** Otherwise, if all of the following are true: +** +** * the new page size (value of *pPageSize) is valid (a power +** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and +** +** * there are no outstanding page references, and +** +** * the database is either not an in-memory database or it is +** an in-memory database that currently consists of zero pages. +** +** then the pager object page size is set to *pPageSize. +** +** If the page size is changed, then this function uses sqlite3PagerMalloc() +** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt +** fails, SQLITE_NOMEM is returned and the page size remains unchanged. +** In all other cases, SQLITE_OK is returned. +** +** If the page size is not changed, either because one of the enumerated +** conditions above is not true, the pager was in error state when this +** function was called, or because the memory allocation attempt failed, +** then *pPageSize is set to the old, retained page size before returning. +*/ +int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ + int rc = SQLITE_OK; + + /* It is not possible to do a full assert_pager_state() here, as this + ** function may be called from within PagerOpen(), before the state + ** of the Pager object is internally consistent. + ** + ** At one point this function returned an error if the pager was in + ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that + ** there is at least one outstanding page reference, this function + ** is a no-op for that case anyhow. + */ + + u32 pageSize = *pPageSize; + assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); + if( (pPager->memDb==0 || pPager->dbSize==0) + && sqlite3PcacheRefCount(pPager->pPCache)==0 + && pageSize && pageSize!=(u32)pPager->pageSize + ){ + char *pNew = NULL; /* New temp space */ + i64 nByte = 0; + + if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ + rc = sqlite3OsFileSize(pPager->fd, &nByte); + } + if( rc==SQLITE_OK ){ + pNew = (char *)sqlite3PageMalloc(pageSize); + if( !pNew ) rc = SQLITE_NOMEM; + } + + if( rc==SQLITE_OK ){ + pager_reset(pPager); + pPager->dbSize = (Pgno)(nByte/pageSize); + pPager->pageSize = pageSize; + sqlite3PageFree(pPager->pTmpSpace); + pPager->pTmpSpace = pNew; + sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); + } + } + + *pPageSize = pPager->pageSize; + if( rc==SQLITE_OK ){ + if( nReserve<0 ) nReserve = pPager->nReserve; + assert( nReserve>=0 && nReserve<1000 ); + pPager->nReserve = (i16)nReserve; + pagerReportSize(pPager); + } + return rc; +} + +/* +** Return a pointer to the "temporary page" buffer held internally +** by the pager. This is a buffer that is big enough to hold the +** entire content of a database page. This buffer is used internally +** during rollback and will be overwritten whenever a rollback +** occurs. But other modules are free to use it too, as long as +** no rollbacks are happening. +*/ +void *sqlite3PagerTempSpace(Pager *pPager){ + return pPager->pTmpSpace; +} + +/* +** Attempt to set the maximum database page count if mxPage is positive. +** Make no changes if mxPage is zero or negative. And never reduce the +** maximum page count below the current size of the database. +** +** Regardless of mxPage, return the current maximum page count. +*/ +int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ + if( mxPage>0 ){ + pPager->mxPgno = mxPage; + } + assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ + assert( pPager->mxPgno>=pPager->dbSize ); /* OP_MaxPgcnt enforces this */ + return pPager->mxPgno; +} + +/* +** The following set of routines are used to disable the simulated +** I/O error mechanism. These routines are used to avoid simulated +** errors in places where we do not care about errors. +** +** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops +** and generate no code. +*/ +#ifdef SQLITE_TEST +extern int sqlite3_io_error_pending; +extern int sqlite3_io_error_hit; +static int saved_cnt; +void disable_simulated_io_errors(void){ + saved_cnt = sqlite3_io_error_pending; + sqlite3_io_error_pending = -1; +} +void enable_simulated_io_errors(void){ + sqlite3_io_error_pending = saved_cnt; +} +#else +# define disable_simulated_io_errors() +# define enable_simulated_io_errors() +#endif + +/* +** Read the first N bytes from the beginning of the file into memory +** that pDest points to. +** +** If the pager was opened on a transient file (zFilename==""), or +** opened on a file less than N bytes in size, the output buffer is +** zeroed and SQLITE_OK returned. The rationale for this is that this +** function is used to read database headers, and a new transient or +** zero sized database has a header than consists entirely of zeroes. +** +** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, +** the error code is returned to the caller and the contents of the +** output buffer undefined. +*/ +int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ + int rc = SQLITE_OK; + memset(pDest, 0, N); + assert( isOpen(pPager->fd) || pPager->tempFile ); + + /* This routine is only called by btree immediately after creating + ** the Pager object. There has not been an opportunity to transition + ** to WAL mode yet. + */ + assert( !pagerUseWal(pPager) ); + + if( isOpen(pPager->fd) ){ + IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) + rc = sqlite3OsRead(pPager->fd, pDest, N, 0); + if( rc==SQLITE_IOERR_SHORT_READ ){ + rc = SQLITE_OK; + } + } + return rc; +} + +/* +** This function may only be called when a read-transaction is open on +** the pager. It returns the total number of pages in the database. +** +** However, if the file is between 1 and bytes in size, then +** this is considered a 1 page file. +*/ +void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ + assert( pPager->eState>=PAGER_READER ); + assert( pPager->eState!=PAGER_WRITER_FINISHED ); + *pnPage = (int)pPager->dbSize; +} + + +/* +** Try to obtain a lock of type locktype on the database file. If +** a similar or greater lock is already held, this function is a no-op +** (returning SQLITE_OK immediately). +** +** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke +** the busy callback if the lock is currently not available. Repeat +** until the busy callback returns false or until the attempt to +** obtain the lock succeeds. +** +** Return SQLITE_OK on success and an error code if we cannot obtain +** the lock. If the lock is obtained successfully, set the Pager.state +** variable to locktype before returning. +*/ +static int pager_wait_on_lock(Pager *pPager, int locktype){ + int rc; /* Return code */ + + /* Check that this is either a no-op (because the requested lock is + ** already held, or one of the transistions that the busy-handler + ** may be invoked during, according to the comment above + ** sqlite3PagerSetBusyhandler(). + */ + assert( (pPager->eLock>=locktype) + || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) + || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) + ); + + do { + rc = pagerLockDb(pPager, locktype); + }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); + return rc; +} + +/* +** Function assertTruncateConstraint(pPager) checks that one of the +** following is true for all dirty pages currently in the page-cache: +** +** a) The page number is less than or equal to the size of the +** current database image, in pages, OR +** +** b) if the page content were written at this time, it would not +** be necessary to write the current content out to the sub-journal +** (as determined by function subjRequiresPage()). +** +** If the condition asserted by this function were not true, and the +** dirty page were to be discarded from the cache via the pagerStress() +** routine, pagerStress() would not write the current page content to +** the database file. If a savepoint transaction were rolled back after +** this happened, the correct behaviour would be to restore the current +** content of the page. However, since this content is not present in either +** the database file or the portion of the rollback journal and +** sub-journal rolled back the content could not be restored and the +** database image would become corrupt. It is therefore fortunate that +** this circumstance cannot arise. +*/ +#if defined(SQLITE_DEBUG) +static void assertTruncateConstraintCb(PgHdr *pPg){ + assert( pPg->flags&PGHDR_DIRTY ); + assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize ); +} +static void assertTruncateConstraint(Pager *pPager){ + sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); +} +#else +# define assertTruncateConstraint(pPager) +#endif + +/* +** Truncate the in-memory database file image to nPage pages. This +** function does not actually modify the database file on disk. It +** just sets the internal state of the pager object so that the +** truncation will be done when the current transaction is committed. +*/ +void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ + assert( pPager->dbSize>=nPage ); + assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); + pPager->dbSize = nPage; + assertTruncateConstraint(pPager); +} + + +/* +** This function is called before attempting a hot-journal rollback. It +** syncs the journal file to disk, then sets pPager->journalHdr to the +** size of the journal file so that the pager_playback() routine knows +** that the entire journal file has been synced. +** +** Syncing a hot-journal to disk before attempting to roll it back ensures +** that if a power-failure occurs during the rollback, the process that +** attempts rollback following system recovery sees the same journal +** content as this process. +** +** If everything goes as planned, SQLITE_OK is returned. Otherwise, +** an SQLite error code. +*/ +static int pagerSyncHotJournal(Pager *pPager){ + int rc = SQLITE_OK; + if( !pPager->noSync ){ + rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); + } + if( rc==SQLITE_OK ){ + rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); + } + return rc; +} + +/* +** Shutdown the page cache. Free all memory and close all files. +** +** If a transaction was in progress when this routine is called, that +** transaction is rolled back. All outstanding pages are invalidated +** and their memory is freed. Any attempt to use a page associated +** with this page cache after this function returns will likely +** result in a coredump. +** +** This function always succeeds. If a transaction is active an attempt +** is made to roll it back. If an error occurs during the rollback +** a hot journal may be left in the filesystem but no error is returned +** to the caller. +*/ +int sqlite3PagerClose(Pager *pPager){ + u8 *pTmp = (u8 *)pPager->pTmpSpace; + + assert( assert_pager_state(pPager) ); + disable_simulated_io_errors(); + sqlite3BeginBenignMalloc(); + /* pPager->errCode = 0; */ + pPager->exclusiveMode = 0; +#ifndef SQLITE_OMIT_WAL + sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags, pPager->pageSize, pTmp); + pPager->pWal = 0; +#endif + pager_reset(pPager); + if( MEMDB ){ + pager_unlock(pPager); + }else{ + /* If it is open, sync the journal file before calling UnlockAndRollback. + ** If this is not done, then an unsynced portion of the open journal + ** file may be played back into the database. If a power failure occurs + ** while this is happening, the database could become corrupt. + ** + ** If an error occurs while trying to sync the journal, shift the pager + ** into the ERROR state. This causes UnlockAndRollback to unlock the + ** database and close the journal file without attempting to roll it + ** back or finalize it. The next database user will have to do hot-journal + ** rollback before accessing the database file. + */ + if( isOpen(pPager->jfd) ){ + pager_error(pPager, pagerSyncHotJournal(pPager)); + } + pagerUnlockAndRollback(pPager); + } + sqlite3EndBenignMalloc(); + enable_simulated_io_errors(); + PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); + IOTRACE(("CLOSE %p\n", pPager)) + sqlite3OsClose(pPager->jfd); + sqlite3OsClose(pPager->fd); + sqlite3PageFree(pTmp); + sqlite3PcacheClose(pPager->pPCache); + +#ifdef SQLITE_HAS_CODEC + if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); +#endif + + assert( !pPager->aSavepoint && !pPager->pInJournal ); + assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); + + sqlite3_free(pPager); + return SQLITE_OK; +} + +#if !defined(NDEBUG) || defined(SQLITE_TEST) +/* +** Return the page number for page pPg. +*/ +Pgno sqlite3PagerPagenumber(DbPage *pPg){ + return pPg->pgno; +} +#endif + +/* +** Increment the reference count for page pPg. +*/ +void sqlite3PagerRef(DbPage *pPg){ + sqlite3PcacheRef(pPg); +} + +/* +** Sync the journal. In other words, make sure all the pages that have +** been written to the journal have actually reached the surface of the +** disk and can be restored in the event of a hot-journal rollback. +** +** If the Pager.noSync flag is set, then this function is a no-op. +** Otherwise, the actions required depend on the journal-mode and the +** device characteristics of the the file-system, as follows: +** +** * If the journal file is an in-memory journal file, no action need +** be taken. +** +** * Otherwise, if the device does not support the SAFE_APPEND property, +** then the nRec field of the most recently written journal header +** is updated to contain the number of journal records that have +** been written following it. If the pager is operating in full-sync +** mode, then the journal file is synced before this field is updated. +** +** * If the device does not support the SEQUENTIAL property, then +** journal file is synced. +** +** Or, in pseudo-code: +** +** if( NOT ){ +** if( NOT SAFE_APPEND ){ +** if( ) xSync(); +** +** } +** if( NOT SEQUENTIAL ) xSync(); +** } +** +** If successful, this routine clears the PGHDR_NEED_SYNC flag of every +** page currently held in memory before returning SQLITE_OK. If an IO +** error is encountered, then the IO error code is returned to the caller. +*/ +static int syncJournal(Pager *pPager, int newHdr){ + int rc; /* Return code */ + + assert( pPager->eState==PAGER_WRITER_CACHEMOD + || pPager->eState==PAGER_WRITER_DBMOD + ); + assert( assert_pager_state(pPager) ); + assert( !pagerUseWal(pPager) ); + + rc = sqlite3PagerExclusiveLock(pPager); + if( rc!=SQLITE_OK ) return rc; + + if( !pPager->noSync ){ + assert( !pPager->tempFile ); + if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ + const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); + assert( isOpen(pPager->jfd) ); + + if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ + /* This block deals with an obscure problem. If the last connection + ** that wrote to this database was operating in persistent-journal + ** mode, then the journal file may at this point actually be larger + ** than Pager.journalOff bytes. If the next thing in the journal + ** file happens to be a journal-header (written as part of the + ** previous connection's transaction), and a crash or power-failure + ** occurs after nRec is updated but before this connection writes + ** anything else to the journal file (or commits/rolls back its + ** transaction), then SQLite may become confused when doing the + ** hot-journal rollback following recovery. It may roll back all + ** of this connections data, then proceed to rolling back the old, + ** out-of-date data that follows it. Database corruption. + ** + ** To work around this, if the journal file does appear to contain + ** a valid header following Pager.journalOff, then write a 0x00 + ** byte to the start of it to prevent it from being recognized. + ** + ** Variable iNextHdrOffset is set to the offset at which this + ** problematic header will occur, if it exists. aMagic is used + ** as a temporary buffer to inspect the first couple of bytes of + ** the potential journal header. + */ + i64 iNextHdrOffset; + u8 aMagic[8]; + u8 zHeader[sizeof(aJournalMagic)+4]; + + memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); + put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); + + iNextHdrOffset = journalHdrOffset(pPager); + rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); + if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ + static const u8 zerobyte = 0; + rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); + } + if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ + return rc; + } + + /* Write the nRec value into the journal file header. If in + ** full-synchronous mode, sync the journal first. This ensures that + ** all data has really hit the disk before nRec is updated to mark + ** it as a candidate for rollback. + ** + ** This is not required if the persistent media supports the + ** SAFE_APPEND property. Because in this case it is not possible + ** for garbage data to be appended to the file, the nRec field + ** is populated with 0xFFFFFFFF when the journal header is written + ** and never needs to be updated. + */ + if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ + PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); + IOTRACE(("JSYNC %p\n", pPager)) + rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); + if( rc!=SQLITE_OK ) return rc; + } + IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); + rc = sqlite3OsWrite( + pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr + ); + if( rc!=SQLITE_OK ) return rc; + } + if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ + PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); + IOTRACE(("JSYNC %p\n", pPager)) + rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| + (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) + ); + if( rc!=SQLITE_OK ) return rc; + } + + pPager->journalHdr = pPager->journalOff; + if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ + pPager->nRec = 0; + rc = writeJournalHdr(pPager); + if( rc!=SQLITE_OK ) return rc; + } + }else{ + pPager->journalHdr = pPager->journalOff; + } + } + + /* Unless the pager is in noSync mode, the journal file was just + ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on + ** all pages. + */ + sqlite3PcacheClearSyncFlags(pPager->pPCache); + pPager->eState = PAGER_WRITER_DBMOD; + assert( assert_pager_state(pPager) ); + return SQLITE_OK; +} + +/* +** The argument is the first in a linked list of dirty pages connected +** by the PgHdr.pDirty pointer. This function writes each one of the +** in-memory pages in the list to the database file. The argument may +** be NULL, representing an empty list. In this case this function is +** a no-op. +** +** The pager must hold at least a RESERVED lock when this function +** is called. Before writing anything to the database file, this lock +** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, +** SQLITE_BUSY is returned and no data is written to the database file. +** +** If the pager is a temp-file pager and the actual file-system file +** is not yet open, it is created and opened before any data is +** written out. +** +** Once the lock has been upgraded and, if necessary, the file opened, +** the pages are written out to the database file in list order. Writing +** a page is skipped if it meets either of the following criteria: +** +** * The page number is greater than Pager.dbSize, or +** * The PGHDR_DONT_WRITE flag is set on the page. +** +** If writing out a page causes the database file to grow, Pager.dbFileSize +** is updated accordingly. If page 1 is written out, then the value cached +** in Pager.dbFileVers[] is updated to match the new value stored in +** the database file. +** +** If everything is successful, SQLITE_OK is returned. If an IO error +** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot +** be obtained, SQLITE_BUSY is returned. +*/ +static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ + int rc = SQLITE_OK; /* Return code */ + + /* This function is only called for rollback pagers in WRITER_DBMOD state. */ + assert( !pagerUseWal(pPager) ); + assert( pPager->eState==PAGER_WRITER_DBMOD ); + assert( pPager->eLock==EXCLUSIVE_LOCK ); + + /* If the file is a temp-file has not yet been opened, open it now. It + ** is not possible for rc to be other than SQLITE_OK if this branch + ** is taken, as pager_wait_on_lock() is a no-op for temp-files. + */ + if( !isOpen(pPager->fd) ){ + assert( pPager->tempFile && rc==SQLITE_OK ); + rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); + } + + /* Before the first write, give the VFS a hint of what the final + ** file size will be. + */ + assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); + if( rc==SQLITE_OK && pPager->dbSize>pPager->dbHintSize ){ + sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; + sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); + pPager->dbHintSize = pPager->dbSize; + } + + while( rc==SQLITE_OK && pList ){ + Pgno pgno = pList->pgno; + + /* If there are dirty pages in the page cache with page numbers greater + ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to + ** make the file smaller (presumably by auto-vacuum code). Do not write + ** any such pages to the file. + ** + ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag + ** set (set by sqlite3PagerDontWrite()). + */ + if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ + i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ + char *pData; /* Data to write */ + + assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); + if( pList->pgno==1 ) pager_write_changecounter(pList); + + /* Encode the database */ + CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM, pData); + + /* Write out the page data. */ + rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); + + /* If page 1 was just written, update Pager.dbFileVers to match + ** the value now stored in the database file. If writing this + ** page caused the database file to grow, update dbFileSize. + */ + if( pgno==1 ){ + memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); + } + if( pgno>pPager->dbFileSize ){ + pPager->dbFileSize = pgno; + } + + /* Update any backup objects copying the contents of this pager. */ + sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); + + PAGERTRACE(("STORE %d page %d hash(%08x)\n", + PAGERID(pPager), pgno, pager_pagehash(pList))); + IOTRACE(("PGOUT %p %d\n", pPager, pgno)); + PAGER_INCR(sqlite3_pager_writedb_count); + PAGER_INCR(pPager->nWrite); + }else{ + PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); + } + pager_set_pagehash(pList); + pList = pList->pDirty; + } + + return rc; +} + +/* +** Ensure that the sub-journal file is open. If it is already open, this +** function is a no-op. +** +** SQLITE_OK is returned if everything goes according to plan. An +** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() +** fails. +*/ +static int openSubJournal(Pager *pPager){ + int rc = SQLITE_OK; + if( !isOpen(pPager->sjfd) ){ + if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ + sqlite3MemJournalOpen(pPager->sjfd); + }else{ + rc = pagerOpentemp(pPager, pPager->sjfd, SQLITE_OPEN_SUBJOURNAL); + } + } + return rc; +} + +/* +** Append a record of the current state of page pPg to the sub-journal. +** It is the callers responsibility to use subjRequiresPage() to check +** that it is really required before calling this function. +** +** If successful, set the bit corresponding to pPg->pgno in the bitvecs +** for all open savepoints before returning. +** +** This function returns SQLITE_OK if everything is successful, an IO +** error code if the attempt to write to the sub-journal fails, or +** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint +** bitvec. +*/ +static int subjournalPage(PgHdr *pPg){ + int rc = SQLITE_OK; + Pager *pPager = pPg->pPager; + if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ + + /* Open the sub-journal, if it has not already been opened */ + assert( pPager->useJournal ); + assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); + assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); + assert( pagerUseWal(pPager) + || pageInJournal(pPg) + || pPg->pgno>pPager->dbOrigSize + ); + rc = openSubJournal(pPager); + + /* If the sub-journal was opened successfully (or was already open), + ** write the journal record into the file. */ + if( rc==SQLITE_OK ){ + void *pData = pPg->pData; + i64 offset = pPager->nSubRec*(4+pPager->pageSize); + char *pData2; + + CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); + PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); + rc = write32bits(pPager->sjfd, offset, pPg->pgno); + if( rc==SQLITE_OK ){ + rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); + } + } + } + if( rc==SQLITE_OK ){ + pPager->nSubRec++; + assert( pPager->nSavepoint>0 ); + rc = addToSavepointBitvecs(pPager, pPg->pgno); + } + return rc; +} + +/* +** This function is called by the pcache layer when it has reached some +** soft memory limit. The first argument is a pointer to a Pager object +** (cast as a void*). The pager is always 'purgeable' (not an in-memory +** database). The second argument is a reference to a page that is +** currently dirty but has no outstanding references. The page +** is always associated with the Pager object passed as the first +** argument. +** +** The job of this function is to make pPg clean by writing its contents +** out to the database file, if possible. This may involve syncing the +** journal file. +** +** If successful, sqlite3PcacheMakeClean() is called on the page and +** SQLITE_OK returned. If an IO error occurs while trying to make the +** page clean, the IO error code is returned. If the page cannot be +** made clean for some other reason, but no error occurs, then SQLITE_OK +** is returned by sqlite3PcacheMakeClean() is not called. +*/ +static int pagerStress(void *p, PgHdr *pPg){ + Pager *pPager = (Pager *)p; + int rc = SQLITE_OK; + + assert( pPg->pPager==pPager ); + assert( pPg->flags&PGHDR_DIRTY ); + + /* The doNotSyncSpill flag is set during times when doing a sync of + ** journal (and adding a new header) is not allowed. This occurs + ** during calls to sqlite3PagerWrite() while trying to journal multiple + ** pages belonging to the same sector. + ** + ** The doNotSpill flag inhibits all cache spilling regardless of whether + ** or not a sync is required. This is set during a rollback. + ** + ** Spilling is also prohibited when in an error state since that could + ** lead to database corruption. In the current implementaton it + ** is impossible for sqlite3PcacheFetch() to be called with createFlag==1 + ** while in the error state, hence it is impossible for this routine to + ** be called in the error state. Nevertheless, we include a NEVER() + ** test for the error state as a safeguard against future changes. + */ + if( NEVER(pPager->errCode) ) return SQLITE_OK; + if( pPager->doNotSpill ) return SQLITE_OK; + if( pPager->doNotSyncSpill && (pPg->flags & PGHDR_NEED_SYNC)!=0 ){ + return SQLITE_OK; + } + + pPg->pDirty = 0; + if( pagerUseWal(pPager) ){ + /* Write a single frame for this page to the log. */ + if( subjRequiresPage(pPg) ){ + rc = subjournalPage(pPg); + } + if( rc==SQLITE_OK ){ + rc = pagerWalFrames(pPager, pPg, 0, 0, 0); + } + }else{ + + /* Sync the journal file if required. */ + if( pPg->flags&PGHDR_NEED_SYNC + || pPager->eState==PAGER_WRITER_CACHEMOD + ){ + rc = syncJournal(pPager, 1); + } + + /* If the page number of this page is larger than the current size of + ** the database image, it may need to be written to the sub-journal. + ** This is because the call to pager_write_pagelist() below will not + ** actually write data to the file in this case. + ** + ** Consider the following sequence of events: + ** + ** BEGIN; + ** + ** + ** SAVEPOINT sp; + ** + ** pagerStress(page X) + ** ROLLBACK TO sp; + ** + ** If (X>Y), then when pagerStress is called page X will not be written + ** out to the database file, but will be dropped from the cache. Then, + ** following the "ROLLBACK TO sp" statement, reading page X will read + ** data from the database file. This will be the copy of page X as it + ** was when the transaction started, not as it was when "SAVEPOINT sp" + ** was executed. + ** + ** The solution is to write the current data for page X into the + ** sub-journal file now (if it is not already there), so that it will + ** be restored to its current value when the "ROLLBACK TO sp" is + ** executed. + */ + if( NEVER( + rc==SQLITE_OK && pPg->pgno>pPager->dbSize && subjRequiresPage(pPg) + ) ){ + rc = subjournalPage(pPg); + } + + /* Write the contents of the page out to the database file. */ + if( rc==SQLITE_OK ){ + assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); + rc = pager_write_pagelist(pPager, pPg); + } + } + + /* Mark the page as clean. */ + if( rc==SQLITE_OK ){ + PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); + sqlite3PcacheMakeClean(pPg); + } + + return pager_error(pPager, rc); +} + + +/* +** Allocate and initialize a new Pager object and put a pointer to it +** in *ppPager. The pager should eventually be freed by passing it +** to sqlite3PagerClose(). +** +** The zFilename argument is the path to the database file to open. +** If zFilename is NULL then a randomly-named temporary file is created +** and used as the file to be cached. Temporary files are be deleted +** automatically when they are closed. If zFilename is ":memory:" then +** all information is held in cache. It is never written to disk. +** This can be used to implement an in-memory database. +** +** The nExtra parameter specifies the number of bytes of space allocated +** along with each page reference. This space is available to the user +** via the sqlite3PagerGetExtra() API. +** +** The flags argument is used to specify properties that affect the +** operation of the pager. It should be passed some bitwise combination +** of the PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK flags. +** +** The vfsFlags parameter is a bitmask to pass to the flags parameter +** of the xOpen() method of the supplied VFS when opening files. +** +** If the pager object is allocated and the specified file opened +** successfully, SQLITE_OK is returned and *ppPager set to point to +** the new pager object. If an error occurs, *ppPager is set to NULL +** and error code returned. This function may return SQLITE_NOMEM +** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or +** various SQLITE_IO_XXX errors. +*/ +int sqlite3PagerOpen( + sqlite3_vfs *pVfs, /* The virtual file system to use */ + Pager **ppPager, /* OUT: Return the Pager structure here */ + const char *zFilename, /* Name of the database file to open */ + int nExtra, /* Extra bytes append to each in-memory page */ + int flags, /* flags controlling this file */ + int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ + void (*xReinit)(DbPage*) /* Function to reinitialize pages */ +){ + u8 *pPtr; + Pager *pPager = 0; /* Pager object to allocate and return */ + int rc = SQLITE_OK; /* Return code */ + int tempFile = 0; /* True for temp files (incl. in-memory files) */ + int memDb = 0; /* True if this is an in-memory file */ + int readOnly = 0; /* True if this is a read-only file */ + int journalFileSize; /* Bytes to allocate for each journal fd */ + char *zPathname = 0; /* Full path to database file */ + int nPathname = 0; /* Number of bytes in zPathname */ + int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ + int noReadlock = (flags & PAGER_NO_READLOCK)!=0; /* True to omit read-lock */ + int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ + u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ + const char *zUri = 0; /* URI args to copy */ + int nUri = 0; /* Number of bytes of URI args at *zUri */ + + /* Figure out how much space is required for each journal file-handle + ** (there are two of them, the main journal and the sub-journal). This + ** is the maximum space required for an in-memory journal file handle + ** and a regular journal file-handle. Note that a "regular journal-handle" + ** may be a wrapper capable of caching the first portion of the journal + ** file in memory to implement the atomic-write optimization (see + ** source file journal.c). + */ + if( sqlite3JournalSize(pVfs)>sqlite3MemJournalSize() ){ + journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); + }else{ + journalFileSize = ROUND8(sqlite3MemJournalSize()); + } + + /* Set the output variable to NULL in case an error occurs. */ + *ppPager = 0; + +#ifndef SQLITE_OMIT_MEMORYDB + if( flags & PAGER_MEMORY ){ + memDb = 1; + zFilename = 0; + } +#endif + + /* Compute and store the full pathname in an allocated buffer pointed + ** to by zPathname, length nPathname. Or, if this is a temporary file, + ** leave both nPathname and zPathname set to 0. + */ + if( zFilename && zFilename[0] ){ + const char *z; + nPathname = pVfs->mxPathname+1; + zPathname = sqlite3Malloc(nPathname*2); + if( zPathname==0 ){ + return SQLITE_NOMEM; + } + zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ + rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); + nPathname = sqlite3Strlen30(zPathname); + z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; + while( *z ){ + z += sqlite3Strlen30(z)+1; + z += sqlite3Strlen30(z)+1; + } + nUri = &z[1] - zUri; + if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ + /* This branch is taken when the journal path required by + ** the database being opened will be more than pVfs->mxPathname + ** bytes in length. This means the database cannot be opened, + ** as it will not be possible to open the journal file or even + ** check for a hot-journal before reading. + */ + rc = SQLITE_CANTOPEN_BKPT; + } + if( rc!=SQLITE_OK ){ + sqlite3_free(zPathname); + return rc; + } + } + + /* Allocate memory for the Pager structure, PCache object, the + ** three file descriptors, the database file name and the journal + ** file name. The layout in memory is as follows: + ** + ** Pager object (sizeof(Pager) bytes) + ** PCache object (sqlite3PcacheSize() bytes) + ** Database file handle (pVfs->szOsFile bytes) + ** Sub-journal file handle (journalFileSize bytes) + ** Main journal file handle (journalFileSize bytes) + ** Database file name (nPathname+1 bytes) + ** Journal file name (nPathname+8+1 bytes) + */ + pPtr = (u8 *)sqlite3MallocZero( + ROUND8(sizeof(*pPager)) + /* Pager structure */ + ROUND8(pcacheSize) + /* PCache object */ + ROUND8(pVfs->szOsFile) + /* The main db file */ + journalFileSize * 2 + /* The two journal files */ + nPathname + 1 + nUri + /* zFilename */ + nPathname + 8 + 1 /* zJournal */ +#ifndef SQLITE_OMIT_WAL + + nPathname + 4 + 1 /* zWal */ +#endif + ); + assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); + if( !pPtr ){ + sqlite3_free(zPathname); + return SQLITE_NOMEM; + } + pPager = (Pager*)(pPtr); + pPager->pPCache = (PCache*)(pPtr += ROUND8(sizeof(*pPager))); + pPager->fd = (sqlite3_file*)(pPtr += ROUND8(pcacheSize)); + pPager->sjfd = (sqlite3_file*)(pPtr += ROUND8(pVfs->szOsFile)); + pPager->jfd = (sqlite3_file*)(pPtr += journalFileSize); + pPager->zFilename = (char*)(pPtr += journalFileSize); + assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); + + /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */ + if( zPathname ){ + assert( nPathname>0 ); + pPager->zJournal = (char*)(pPtr += nPathname + 1 + nUri); + memcpy(pPager->zFilename, zPathname, nPathname); + memcpy(&pPager->zFilename[nPathname+1], zUri, nUri); + memcpy(pPager->zJournal, zPathname, nPathname); + memcpy(&pPager->zJournal[nPathname], "-journal", 8); + sqlite3FileSuffix3(pPager->zFilename, pPager->zJournal); +#ifndef SQLITE_OMIT_WAL + pPager->zWal = &pPager->zJournal[nPathname+8+1]; + memcpy(pPager->zWal, zPathname, nPathname); + memcpy(&pPager->zWal[nPathname], "-wal", 4); + sqlite3FileSuffix3(pPager->zFilename, pPager->zWal); +#endif + sqlite3_free(zPathname); + } + pPager->pVfs = pVfs; + pPager->vfsFlags = vfsFlags; + + /* Open the pager file. + */ + if( zFilename && zFilename[0] ){ + int fout = 0; /* VFS flags returned by xOpen() */ + rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); + assert( !memDb ); + readOnly = (fout&SQLITE_OPEN_READONLY); + + /* If the file was successfully opened for read/write access, + ** choose a default page size in case we have to create the + ** database file. The default page size is the maximum of: + ** + ** + SQLITE_DEFAULT_PAGE_SIZE, + ** + The value returned by sqlite3OsSectorSize() + ** + The largest page size that can be written atomically. + */ + if( rc==SQLITE_OK && !readOnly ){ + setSectorSize(pPager); + assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); + if( szPageDfltsectorSize ){ + if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ + szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; + }else{ + szPageDflt = (u32)pPager->sectorSize; + } + } +#ifdef SQLITE_ENABLE_ATOMIC_WRITE + { + int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); + int ii; + assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); + assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); + assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); + for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ + if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ + szPageDflt = ii; + } + } + } +#endif + } + }else{ + /* If a temporary file is requested, it is not opened immediately. + ** In this case we accept the default page size and delay actually + ** opening the file until the first call to OsWrite(). + ** + ** This branch is also run for an in-memory database. An in-memory + ** database is the same as a temp-file that is never written out to + ** disk and uses an in-memory rollback journal. + */ + tempFile = 1; + pPager->eState = PAGER_READER; + pPager->eLock = EXCLUSIVE_LOCK; + readOnly = (vfsFlags&SQLITE_OPEN_READONLY); + } + + /* The following call to PagerSetPagesize() serves to set the value of + ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. + */ + if( rc==SQLITE_OK ){ + assert( pPager->memDb==0 ); + rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); + testcase( rc!=SQLITE_OK ); + } + + /* If an error occurred in either of the blocks above, free the + ** Pager structure and close the file. + */ + if( rc!=SQLITE_OK ){ + assert( !pPager->pTmpSpace ); + sqlite3OsClose(pPager->fd); + sqlite3_free(pPager); + return rc; + } + + /* Initialize the PCache object. */ + assert( nExtra<1000 ); + nExtra = ROUND8(nExtra); + sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, + !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); + + PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); + IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) + + pPager->useJournal = (u8)useJournal; + pPager->noReadlock = (noReadlock && readOnly) ?1:0; + /* pPager->stmtOpen = 0; */ + /* pPager->stmtInUse = 0; */ + /* pPager->nRef = 0; */ + /* pPager->stmtSize = 0; */ + /* pPager->stmtJSize = 0; */ + /* pPager->nPage = 0; */ + pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; + /* pPager->state = PAGER_UNLOCK; */ +#if 0 + assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); +#endif + /* pPager->errMask = 0; */ + pPager->tempFile = (u8)tempFile; + assert( tempFile==PAGER_LOCKINGMODE_NORMAL + || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); + assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); + pPager->exclusiveMode = (u8)tempFile; + pPager->changeCountDone = pPager->tempFile; + pPager->memDb = (u8)memDb; + pPager->readOnly = (u8)readOnly; + assert( useJournal || pPager->tempFile ); + pPager->noSync = pPager->tempFile; + pPager->fullSync = pPager->noSync ?0:1; + pPager->syncFlags = pPager->noSync ? 0 : SQLITE_SYNC_NORMAL; + pPager->ckptSyncFlags = pPager->syncFlags; + /* pPager->pFirst = 0; */ + /* pPager->pFirstSynced = 0; */ + /* pPager->pLast = 0; */ + pPager->nExtra = (u16)nExtra; + pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; + assert( isOpen(pPager->fd) || tempFile ); + setSectorSize(pPager); + if( !useJournal ){ + pPager->journalMode = PAGER_JOURNALMODE_OFF; + }else if( memDb ){ + pPager->journalMode = PAGER_JOURNALMODE_MEMORY; + } + /* pPager->xBusyHandler = 0; */ + /* pPager->pBusyHandlerArg = 0; */ + pPager->xReiniter = xReinit; + /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ + + *ppPager = pPager; + return SQLITE_OK; +} + + + +/* +** This function is called after transitioning from PAGER_UNLOCK to +** PAGER_SHARED state. It tests if there is a hot journal present in +** the file-system for the given pager. A hot journal is one that +** needs to be played back. According to this function, a hot-journal +** file exists if the following criteria are met: +** +** * The journal file exists in the file system, and +** * No process holds a RESERVED or greater lock on the database file, and +** * The database file itself is greater than 0 bytes in size, and +** * The first byte of the journal file exists and is not 0x00. +** +** If the current size of the database file is 0 but a journal file +** exists, that is probably an old journal left over from a prior +** database with the same name. In this case the journal file is +** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK +** is returned. +** +** This routine does not check if there is a master journal filename +** at the end of the file. If there is, and that master journal file +** does not exist, then the journal file is not really hot. In this +** case this routine will return a false-positive. The pager_playback() +** routine will discover that the journal file is not really hot and +** will not roll it back. +** +** If a hot-journal file is found to exist, *pExists is set to 1 and +** SQLITE_OK returned. If no hot-journal file is present, *pExists is +** set to 0 and SQLITE_OK returned. If an IO error occurs while trying +** to determine whether or not a hot-journal file exists, the IO error +** code is returned and the value of *pExists is undefined. +*/ +static int hasHotJournal(Pager *pPager, int *pExists){ + sqlite3_vfs * const pVfs = pPager->pVfs; + int rc = SQLITE_OK; /* Return code */ + int exists = 1; /* True if a journal file is present */ + int jrnlOpen = !!isOpen(pPager->jfd); + + assert( pPager->useJournal ); + assert( isOpen(pPager->fd) ); + assert( pPager->eState==PAGER_OPEN ); + + assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & + SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN + )); + + *pExists = 0; + if( !jrnlOpen ){ + rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); + } + if( rc==SQLITE_OK && exists ){ + int locked = 0; /* True if some process holds a RESERVED lock */ + + /* Race condition here: Another process might have been holding the + ** the RESERVED lock and have a journal open at the sqlite3OsAccess() + ** call above, but then delete the journal and drop the lock before + ** we get to the following sqlite3OsCheckReservedLock() call. If that + ** is the case, this routine might think there is a hot journal when + ** in fact there is none. This results in a false-positive which will + ** be dealt with by the playback routine. Ticket #3883. + */ + rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); + if( rc==SQLITE_OK && !locked ){ + Pgno nPage; /* Number of pages in database file */ + + /* Check the size of the database file. If it consists of 0 pages, + ** then delete the journal file. See the header comment above for + ** the reasoning here. Delete the obsolete journal file under + ** a RESERVED lock to avoid race conditions and to avoid violating + ** [H33020]. + */ + rc = pagerPagecount(pPager, &nPage); + if( rc==SQLITE_OK ){ + if( nPage==0 ){ + sqlite3BeginBenignMalloc(); + if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ + sqlite3OsDelete(pVfs, pPager->zJournal, 0); + if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); + } + sqlite3EndBenignMalloc(); + }else{ + /* The journal file exists and no other connection has a reserved + ** or greater lock on the database file. Now check that there is + ** at least one non-zero bytes at the start of the journal file. + ** If there is, then we consider this journal to be hot. If not, + ** it can be ignored. + */ + if( !jrnlOpen ){ + int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; + rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); + } + if( rc==SQLITE_OK ){ + u8 first = 0; + rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); + if( rc==SQLITE_IOERR_SHORT_READ ){ + rc = SQLITE_OK; + } + if( !jrnlOpen ){ + sqlite3OsClose(pPager->jfd); + } + *pExists = (first!=0); + }else if( rc==SQLITE_CANTOPEN ){ + /* If we cannot open the rollback journal file in order to see if + ** its has a zero header, that might be due to an I/O error, or + ** it might be due to the race condition described above and in + ** ticket #3883. Either way, assume that the journal is hot. + ** This might be a false positive. But if it is, then the + ** automatic journal playback and recovery mechanism will deal + ** with it under an EXCLUSIVE lock where we do not need to + ** worry so much with race conditions. + */ + *pExists = 1; + rc = SQLITE_OK; + } + } + } + } + } + + return rc; +} + +/* +** This function is called to obtain a shared lock on the database file. +** It is illegal to call sqlite3PagerAcquire() until after this function +** has been successfully called. If a shared-lock is already held when +** this function is called, it is a no-op. +** +** The following operations are also performed by this function. +** +** 1) If the pager is currently in PAGER_OPEN state (no lock held +** on the database file), then an attempt is made to obtain a +** SHARED lock on the database file. Immediately after obtaining +** the SHARED lock, the file-system is checked for a hot-journal, +** which is played back if present. Following any hot-journal +** rollback, the contents of the cache are validated by checking +** the 'change-counter' field of the database file header and +** discarded if they are found to be invalid. +** +** 2) If the pager is running in exclusive-mode, and there are currently +** no outstanding references to any pages, and is in the error state, +** then an attempt is made to clear the error state by discarding +** the contents of the page cache and rolling back any open journal +** file. +** +** If everything is successful, SQLITE_OK is returned. If an IO error +** occurs while locking the database, checking for a hot-journal file or +** rolling back a journal file, the IO error code is returned. +*/ +int sqlite3PagerSharedLock(Pager *pPager){ + int rc = SQLITE_OK; /* Return code */ + + /* This routine is only called from b-tree and only when there are no + ** outstanding pages. This implies that the pager state should either + ** be OPEN or READER. READER is only possible if the pager is or was in + ** exclusive access mode. + */ + assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); + assert( assert_pager_state(pPager) ); + assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); + if( NEVER(MEMDB && pPager->errCode) ){ return pPager->errCode; } + + if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ + int bHotJournal = 1; /* True if there exists a hot journal-file */ + + assert( !MEMDB ); + assert( pPager->noReadlock==0 || pPager->readOnly ); + + if( pPager->noReadlock==0 ){ + rc = pager_wait_on_lock(pPager, SHARED_LOCK); + if( rc!=SQLITE_OK ){ + assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); + goto failed; + } + } + + /* If a journal file exists, and there is no RESERVED lock on the + ** database file, then it either needs to be played back or deleted. + */ + if( pPager->eLock<=SHARED_LOCK ){ + rc = hasHotJournal(pPager, &bHotJournal); + } + if( rc!=SQLITE_OK ){ + goto failed; + } + if( bHotJournal ){ + /* Get an EXCLUSIVE lock on the database file. At this point it is + ** important that a RESERVED lock is not obtained on the way to the + ** EXCLUSIVE lock. If it were, another process might open the + ** database file, detect the RESERVED lock, and conclude that the + ** database is safe to read while this process is still rolling the + ** hot-journal back. + ** + ** Because the intermediate RESERVED lock is not requested, any + ** other process attempting to access the database file will get to + ** this point in the code and fail to obtain its own EXCLUSIVE lock + ** on the database file. + ** + ** Unless the pager is in locking_mode=exclusive mode, the lock is + ** downgraded to SHARED_LOCK before this function returns. + */ + rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); + if( rc!=SQLITE_OK ){ + goto failed; + } + + /* If it is not already open and the file exists on disk, open the + ** journal for read/write access. Write access is required because + ** in exclusive-access mode the file descriptor will be kept open + ** and possibly used for a transaction later on. Also, write-access + ** is usually required to finalize the journal in journal_mode=persist + ** mode (and also for journal_mode=truncate on some systems). + ** + ** If the journal does not exist, it usually means that some + ** other connection managed to get in and roll it back before + ** this connection obtained the exclusive lock above. Or, it + ** may mean that the pager was in the error-state when this + ** function was called and the journal file does not exist. + */ + if( !isOpen(pPager->jfd) ){ + sqlite3_vfs * const pVfs = pPager->pVfs; + int bExists; /* True if journal file exists */ + rc = sqlite3OsAccess( + pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); + if( rc==SQLITE_OK && bExists ){ + int fout = 0; + int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; + assert( !pPager->tempFile ); + rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); + assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); + if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ + rc = SQLITE_CANTOPEN_BKPT; + sqlite3OsClose(pPager->jfd); + } + } + } + + /* Playback and delete the journal. Drop the database write + ** lock and reacquire the read lock. Purge the cache before + ** playing back the hot-journal so that we don't end up with + ** an inconsistent cache. Sync the hot journal before playing + ** it back since the process that crashed and left the hot journal + ** probably did not sync it and we are required to always sync + ** the journal before playing it back. + */ + if( isOpen(pPager->jfd) ){ + assert( rc==SQLITE_OK ); + rc = pagerSyncHotJournal(pPager); + if( rc==SQLITE_OK ){ + rc = pager_playback(pPager, 1); + pPager->eState = PAGER_OPEN; + } + }else if( !pPager->exclusiveMode ){ + pagerUnlockDb(pPager, SHARED_LOCK); + } + + if( rc!=SQLITE_OK ){ + /* This branch is taken if an error occurs while trying to open + ** or roll back a hot-journal while holding an EXCLUSIVE lock. The + ** pager_unlock() routine will be called before returning to unlock + ** the file. If the unlock attempt fails, then Pager.eLock must be + ** set to UNKNOWN_LOCK (see the comment above the #define for + ** UNKNOWN_LOCK above for an explanation). + ** + ** In order to get pager_unlock() to do this, set Pager.eState to + ** PAGER_ERROR now. This is not actually counted as a transition + ** to ERROR state in the state diagram at the top of this file, + ** since we know that the same call to pager_unlock() will very + ** shortly transition the pager object to the OPEN state. Calling + ** assert_pager_state() would fail now, as it should not be possible + ** to be in ERROR state when there are zero outstanding page + ** references. + */ + pager_error(pPager, rc); + goto failed; + } + + assert( pPager->eState==PAGER_OPEN ); + assert( (pPager->eLock==SHARED_LOCK) + || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) + ); + } + + if( !pPager->tempFile + && (pPager->pBackup || sqlite3PcachePagecount(pPager->pPCache)>0) + ){ + /* The shared-lock has just been acquired on the database file + ** and there are already pages in the cache (from a previous + ** read or write transaction). Check to see if the database + ** has been modified. If the database has changed, flush the + ** cache. + ** + ** Database changes is detected by looking at 15 bytes beginning + ** at offset 24 into the file. The first 4 of these 16 bytes are + ** a 32-bit counter that is incremented with each change. The + ** other bytes change randomly with each file change when + ** a codec is in use. + ** + ** There is a vanishingly small chance that a change will not be + ** detected. The chance of an undetected change is so small that + ** it can be neglected. + */ + Pgno nPage = 0; + char dbFileVers[sizeof(pPager->dbFileVers)]; + + rc = pagerPagecount(pPager, &nPage); + if( rc ) goto failed; + + if( nPage>0 ){ + IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); + rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); + if( rc!=SQLITE_OK ){ + goto failed; + } + }else{ + memset(dbFileVers, 0, sizeof(dbFileVers)); + } + + if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ + pager_reset(pPager); + } + } + + /* If there is a WAL file in the file-system, open this database in WAL + ** mode. Otherwise, the following function call is a no-op. + */ + rc = pagerOpenWalIfPresent(pPager); +#ifndef SQLITE_OMIT_WAL + assert( pPager->pWal==0 || rc==SQLITE_OK ); +#endif + } + + if( pagerUseWal(pPager) ){ + assert( rc==SQLITE_OK ); + rc = pagerBeginReadTransaction(pPager); + } + + if( pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ + rc = pagerPagecount(pPager, &pPager->dbSize); + } + + failed: + if( rc!=SQLITE_OK ){ + assert( !MEMDB ); + pager_unlock(pPager); + assert( pPager->eState==PAGER_OPEN ); + }else{ + pPager->eState = PAGER_READER; + } + return rc; +} + +/* +** If the reference count has reached zero, rollback any active +** transaction and unlock the pager. +** +** Except, in locking_mode=EXCLUSIVE when there is nothing to in +** the rollback journal, the unlock is not performed and there is +** nothing to rollback, so this routine is a no-op. +*/ +static void pagerUnlockIfUnused(Pager *pPager){ + if( (sqlite3PcacheRefCount(pPager->pPCache)==0) ){ + pagerUnlockAndRollback(pPager); + } +} + +/* +** Acquire a reference to page number pgno in pager pPager (a page +** reference has type DbPage*). If the requested reference is +** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. +** +** If the requested page is already in the cache, it is returned. +** Otherwise, a new page object is allocated and populated with data +** read from the database file. In some cases, the pcache module may +** choose not to allocate a new page object and may reuse an existing +** object with no outstanding references. +** +** The extra data appended to a page is always initialized to zeros the +** first time a page is loaded into memory. If the page requested is +** already in the cache when this function is called, then the extra +** data is left as it was when the page object was last used. +** +** If the database image is smaller than the requested page or if a +** non-zero value is passed as the noContent parameter and the +** requested page is not already stored in the cache, then no +** actual disk read occurs. In this case the memory image of the +** page is initialized to all zeros. +** +** If noContent is true, it means that we do not care about the contents +** of the page. This occurs in two seperate scenarios: +** +** a) When reading a free-list leaf page from the database, and +** +** b) When a savepoint is being rolled back and we need to load +** a new page into the cache to be filled with the data read +** from the savepoint journal. +** +** If noContent is true, then the data returned is zeroed instead of +** being read from the database. Additionally, the bits corresponding +** to pgno in Pager.pInJournal (bitvec of pages already written to the +** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open +** savepoints are set. This means if the page is made writable at any +** point in the future, using a call to sqlite3PagerWrite(), its contents +** will not be journaled. This saves IO. +** +** The acquisition might fail for several reasons. In all cases, +** an appropriate error code is returned and *ppPage is set to NULL. +** +** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt +** to find a page in the in-memory cache first. If the page is not already +** in memory, this routine goes to disk to read it in whereas Lookup() +** just returns 0. This routine acquires a read-lock the first time it +** has to go to disk, and could also playback an old journal if necessary. +** Since Lookup() never goes to disk, it never has to deal with locks +** or journal files. +*/ +int sqlite3PagerAcquire( + Pager *pPager, /* The pager open on the database file */ + Pgno pgno, /* Page number to fetch */ + DbPage **ppPage, /* Write a pointer to the page here */ + int noContent /* Do not bother reading content from disk if true */ +){ + int rc; + PgHdr *pPg; + + assert( pPager->eState>=PAGER_READER ); + assert( assert_pager_state(pPager) ); + + if( pgno==0 ){ + return SQLITE_CORRUPT_BKPT; + } + + /* If the pager is in the error state, return an error immediately. + ** Otherwise, request the page from the PCache layer. */ + if( pPager->errCode!=SQLITE_OK ){ + rc = pPager->errCode; + }else{ + rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, ppPage); + } + + if( rc!=SQLITE_OK ){ + /* Either the call to sqlite3PcacheFetch() returned an error or the + ** pager was already in the error-state when this function was called. + ** Set pPg to 0 and jump to the exception handler. */ + pPg = 0; + goto pager_acquire_err; + } + assert( (*ppPage)->pgno==pgno ); + assert( (*ppPage)->pPager==pPager || (*ppPage)->pPager==0 ); + + if( (*ppPage)->pPager && !noContent ){ + /* In this case the pcache already contains an initialized copy of + ** the page. Return without further ado. */ + assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); + pPager->nHit++; + return SQLITE_OK; + + }else{ + /* The pager cache has created a new page. Its content needs to + ** be initialized. */ + + pPg = *ppPage; + pPg->pPager = pPager; + + /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page + ** number greater than this, or the unused locking-page, is requested. */ + if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){ + rc = SQLITE_CORRUPT_BKPT; + goto pager_acquire_err; + } + + if( MEMDB || pPager->dbSizefd) ){ + if( pgno>pPager->mxPgno ){ + rc = SQLITE_FULL; + goto pager_acquire_err; + } + if( noContent ){ + /* Failure to set the bits in the InJournal bit-vectors is benign. + ** It merely means that we might do some extra work to journal a + ** page that does not need to be journaled. Nevertheless, be sure + ** to test the case where a malloc error occurs while trying to set + ** a bit in a bit vector. + */ + sqlite3BeginBenignMalloc(); + if( pgno<=pPager->dbOrigSize ){ + TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); + testcase( rc==SQLITE_NOMEM ); + } + TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); + testcase( rc==SQLITE_NOMEM ); + sqlite3EndBenignMalloc(); + } + memset(pPg->pData, 0, pPager->pageSize); + IOTRACE(("ZERO %p %d\n", pPager, pgno)); + }else{ + assert( pPg->pPager==pPager ); + pPager->nMiss++; + rc = readDbPage(pPg); + if( rc!=SQLITE_OK ){ + goto pager_acquire_err; + } + } + pager_set_pagehash(pPg); + } + + return SQLITE_OK; + +pager_acquire_err: + assert( rc!=SQLITE_OK ); + if( pPg ){ + sqlite3PcacheDrop(pPg); + } + pagerUnlockIfUnused(pPager); + + *ppPage = 0; + return rc; +} + +/* +** Acquire a page if it is already in the in-memory cache. Do +** not read the page from disk. Return a pointer to the page, +** or 0 if the page is not in cache. +** +** See also sqlite3PagerGet(). The difference between this routine +** and sqlite3PagerGet() is that _get() will go to the disk and read +** in the page if the page is not already in cache. This routine +** returns NULL if the page is not in cache or if a disk I/O error +** has ever happened. +*/ +DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ + PgHdr *pPg = 0; + assert( pPager!=0 ); + assert( pgno!=0 ); + assert( pPager->pPCache!=0 ); + assert( pPager->eState>=PAGER_READER && pPager->eState!=PAGER_ERROR ); + sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg); + return pPg; +} + +/* +** Release a page reference. +** +** If the number of references to the page drop to zero, then the +** page is added to the LRU list. When all references to all pages +** are released, a rollback occurs and the lock on the database is +** removed. +*/ +void sqlite3PagerUnref(DbPage *pPg){ + if( pPg ){ + Pager *pPager = pPg->pPager; + sqlite3PcacheRelease(pPg); + pagerUnlockIfUnused(pPager); + } +} + +/* +** This function is called at the start of every write transaction. +** There must already be a RESERVED or EXCLUSIVE lock on the database +** file when this routine is called. +** +** Open the journal file for pager pPager and write a journal header +** to the start of it. If there are active savepoints, open the sub-journal +** as well. This function is only used when the journal file is being +** opened to write a rollback log for a transaction. It is not used +** when opening a hot journal file to roll it back. +** +** If the journal file is already open (as it may be in exclusive mode), +** then this function just writes a journal header to the start of the +** already open file. +** +** Whether or not the journal file is opened by this function, the +** Pager.pInJournal bitvec structure is allocated. +** +** Return SQLITE_OK if everything is successful. Otherwise, return +** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or +** an IO error code if opening or writing the journal file fails. +*/ +static int pager_open_journal(Pager *pPager){ + int rc = SQLITE_OK; /* Return code */ + sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ + + assert( pPager->eState==PAGER_WRITER_LOCKED ); + assert( assert_pager_state(pPager) ); + assert( pPager->pInJournal==0 ); + + /* If already in the error state, this function is a no-op. But on + ** the other hand, this routine is never called if we are already in + ** an error state. */ + if( NEVER(pPager->errCode) ) return pPager->errCode; + + if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ + pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); + if( pPager->pInJournal==0 ){ + return SQLITE_NOMEM; + } + + /* Open the journal file if it is not already open. */ + if( !isOpen(pPager->jfd) ){ + if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ + sqlite3MemJournalOpen(pPager->jfd); + }else{ + const int flags = /* VFS flags to open journal file */ + SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| + (pPager->tempFile ? + (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL): + (SQLITE_OPEN_MAIN_JOURNAL) + ); + #ifdef SQLITE_ENABLE_ATOMIC_WRITE + rc = sqlite3JournalOpen( + pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) + ); + #else + rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); + #endif + } + assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); + } + + + /* Write the first journal header to the journal file and open + ** the sub-journal if necessary. + */ + if( rc==SQLITE_OK ){ + /* TODO: Check if all of these are really required. */ + pPager->nRec = 0; + pPager->journalOff = 0; + pPager->setMaster = 0; + pPager->journalHdr = 0; + rc = writeJournalHdr(pPager); + } + } + + if( rc!=SQLITE_OK ){ + sqlite3BitvecDestroy(pPager->pInJournal); + pPager->pInJournal = 0; + }else{ + assert( pPager->eState==PAGER_WRITER_LOCKED ); + pPager->eState = PAGER_WRITER_CACHEMOD; + } + + return rc; +} + +/* +** Begin a write-transaction on the specified pager object. If a +** write-transaction has already been opened, this function is a no-op. +** +** If the exFlag argument is false, then acquire at least a RESERVED +** lock on the database file. If exFlag is true, then acquire at least +** an EXCLUSIVE lock. If such a lock is already held, no locking +** functions need be called. +** +** If the subjInMemory argument is non-zero, then any sub-journal opened +** within this transaction will be opened as an in-memory file. This +** has no effect if the sub-journal is already opened (as it may be when +** running in exclusive mode) or if the transaction does not require a +** sub-journal. If the subjInMemory argument is zero, then any required +** sub-journal is implemented in-memory if pPager is an in-memory database, +** or using a temporary file otherwise. +*/ +int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ + int rc = SQLITE_OK; + + if( pPager->errCode ) return pPager->errCode; + assert( pPager->eState>=PAGER_READER && pPager->eStatesubjInMemory = (u8)subjInMemory; + + if( ALWAYS(pPager->eState==PAGER_READER) ){ + assert( pPager->pInJournal==0 ); + + if( pagerUseWal(pPager) ){ + /* If the pager is configured to use locking_mode=exclusive, and an + ** exclusive lock on the database is not already held, obtain it now. + */ + if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ + rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); + if( rc!=SQLITE_OK ){ + return rc; + } + sqlite3WalExclusiveMode(pPager->pWal, 1); + } + + /* Grab the write lock on the log file. If successful, upgrade to + ** PAGER_RESERVED state. Otherwise, return an error code to the caller. + ** The busy-handler is not invoked if another connection already + ** holds the write-lock. If possible, the upper layer will call it. + */ + rc = sqlite3WalBeginWriteTransaction(pPager->pWal); + }else{ + /* Obtain a RESERVED lock on the database file. If the exFlag parameter + ** is true, then immediately upgrade this to an EXCLUSIVE lock. The + ** busy-handler callback can be used when upgrading to the EXCLUSIVE + ** lock, but not when obtaining the RESERVED lock. + */ + rc = pagerLockDb(pPager, RESERVED_LOCK); + if( rc==SQLITE_OK && exFlag ){ + rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); + } + } + + if( rc==SQLITE_OK ){ + /* Change to WRITER_LOCKED state. + ** + ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD + ** when it has an open transaction, but never to DBMOD or FINISHED. + ** This is because in those states the code to roll back savepoint + ** transactions may copy data from the sub-journal into the database + ** file as well as into the page cache. Which would be incorrect in + ** WAL mode. + */ + pPager->eState = PAGER_WRITER_LOCKED; + pPager->dbHintSize = pPager->dbSize; + pPager->dbFileSize = pPager->dbSize; + pPager->dbOrigSize = pPager->dbSize; + pPager->journalOff = 0; + } + + assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); + assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); + assert( assert_pager_state(pPager) ); + } + + PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); + return rc; +} + +/* +** Mark a single data page as writeable. The page is written into the +** main journal or sub-journal as required. If the page is written into +** one of the journals, the corresponding bit is set in the +** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs +** of any open savepoints as appropriate. +*/ +static int pager_write(PgHdr *pPg){ + void *pData = pPg->pData; + Pager *pPager = pPg->pPager; + int rc = SQLITE_OK; + + /* This routine is not called unless a write-transaction has already + ** been started. The journal file may or may not be open at this point. + ** It is never called in the ERROR state. + */ + assert( pPager->eState==PAGER_WRITER_LOCKED + || pPager->eState==PAGER_WRITER_CACHEMOD + || pPager->eState==PAGER_WRITER_DBMOD + ); + assert( assert_pager_state(pPager) ); + + /* If an error has been previously detected, report the same error + ** again. This should not happen, but the check provides robustness. */ + if( NEVER(pPager->errCode) ) return pPager->errCode; + + /* Higher-level routines never call this function if database is not + ** writable. But check anyway, just for robustness. */ + if( NEVER(pPager->readOnly) ) return SQLITE_PERM; + + CHECK_PAGE(pPg); + + /* The journal file needs to be opened. Higher level routines have already + ** obtained the necessary locks to begin the write-transaction, but the + ** rollback journal might not yet be open. Open it now if this is the case. + ** + ** This is done before calling sqlite3PcacheMakeDirty() on the page. + ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then + ** an error might occur and the pager would end up in WRITER_LOCKED state + ** with pages marked as dirty in the cache. + */ + if( pPager->eState==PAGER_WRITER_LOCKED ){ + rc = pager_open_journal(pPager); + if( rc!=SQLITE_OK ) return rc; + } + assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); + assert( assert_pager_state(pPager) ); + + /* Mark the page as dirty. If the page has already been written + ** to the journal then we can return right away. + */ + sqlite3PcacheMakeDirty(pPg); + if( pageInJournal(pPg) && !subjRequiresPage(pPg) ){ + assert( !pagerUseWal(pPager) ); + }else{ + + /* The transaction journal now exists and we have a RESERVED or an + ** EXCLUSIVE lock on the main database file. Write the current page to + ** the transaction journal if it is not there already. + */ + if( !pageInJournal(pPg) && !pagerUseWal(pPager) ){ + assert( pagerUseWal(pPager)==0 ); + if( pPg->pgno<=pPager->dbOrigSize && isOpen(pPager->jfd) ){ + u32 cksum; + char *pData2; + i64 iOff = pPager->journalOff; + + /* We should never write to the journal file the page that + ** contains the database locks. The following assert verifies + ** that we do not. */ + assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); + + assert( pPager->journalHdr<=pPager->journalOff ); + CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); + cksum = pager_cksum(pPager, (u8*)pData2); + + /* Even if an IO or diskfull error occurs while journalling the + ** page in the block above, set the need-sync flag for the page. + ** Otherwise, when the transaction is rolled back, the logic in + ** playback_one_page() will think that the page needs to be restored + ** in the database file. And if an IO error occurs while doing so, + ** then corruption may follow. + */ + pPg->flags |= PGHDR_NEED_SYNC; + + rc = write32bits(pPager->jfd, iOff, pPg->pgno); + if( rc!=SQLITE_OK ) return rc; + rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); + if( rc!=SQLITE_OK ) return rc; + rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); + if( rc!=SQLITE_OK ) return rc; + + IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, + pPager->journalOff, pPager->pageSize)); + PAGER_INCR(sqlite3_pager_writej_count); + PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", + PAGERID(pPager), pPg->pgno, + ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); + + pPager->journalOff += 8 + pPager->pageSize; + pPager->nRec++; + assert( pPager->pInJournal!=0 ); + rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); + testcase( rc==SQLITE_NOMEM ); + assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); + rc |= addToSavepointBitvecs(pPager, pPg->pgno); + if( rc!=SQLITE_OK ){ + assert( rc==SQLITE_NOMEM ); + return rc; + } + }else{ + if( pPager->eState!=PAGER_WRITER_DBMOD ){ + pPg->flags |= PGHDR_NEED_SYNC; + } + PAGERTRACE(("APPEND %d page %d needSync=%d\n", + PAGERID(pPager), pPg->pgno, + ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); + } + } + + /* If the statement journal is open and the page is not in it, + ** then write the current page to the statement journal. Note that + ** the statement journal format differs from the standard journal format + ** in that it omits the checksums and the header. + */ + if( subjRequiresPage(pPg) ){ + rc = subjournalPage(pPg); + } + } + + /* Update the database size and return. + */ + if( pPager->dbSizepgno ){ + pPager->dbSize = pPg->pgno; + } + return rc; +} + +/* +** Mark a data page as writeable. This routine must be called before +** making changes to a page. The caller must check the return value +** of this function and be careful not to change any page data unless +** this routine returns SQLITE_OK. +** +** The difference between this function and pager_write() is that this +** function also deals with the special case where 2 or more pages +** fit on a single disk sector. In this case all co-resident pages +** must have been written to the journal file before returning. +** +** If an error occurs, SQLITE_NOMEM or an IO error code is returned +** as appropriate. Otherwise, SQLITE_OK. +*/ +int sqlite3PagerWrite(DbPage *pDbPage){ + int rc = SQLITE_OK; + + PgHdr *pPg = pDbPage; + Pager *pPager = pPg->pPager; + Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); + + assert( pPager->eState>=PAGER_WRITER_LOCKED ); + assert( pPager->eState!=PAGER_ERROR ); + assert( assert_pager_state(pPager) ); + + if( nPagePerSector>1 ){ + Pgno nPageCount; /* Total number of pages in database file */ + Pgno pg1; /* First page of the sector pPg is located on. */ + int nPage = 0; /* Number of pages starting at pg1 to journal */ + int ii; /* Loop counter */ + int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ + + /* Set the doNotSyncSpill flag to 1. This is because we cannot allow + ** a journal header to be written between the pages journaled by + ** this function. + */ + assert( !MEMDB ); + assert( pPager->doNotSyncSpill==0 ); + pPager->doNotSyncSpill++; + + /* This trick assumes that both the page-size and sector-size are + ** an integer power of 2. It sets variable pg1 to the identifier + ** of the first page of the sector pPg is located on. + */ + pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; + + nPageCount = pPager->dbSize; + if( pPg->pgno>nPageCount ){ + nPage = (pPg->pgno - pg1)+1; + }else if( (pg1+nPagePerSector-1)>nPageCount ){ + nPage = nPageCount+1-pg1; + }else{ + nPage = nPagePerSector; + } + assert(nPage>0); + assert(pg1<=pPg->pgno); + assert((pg1+nPage)>pPg->pgno); + + for(ii=0; iipgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ + if( pg!=PAGER_MJ_PGNO(pPager) ){ + rc = sqlite3PagerGet(pPager, pg, &pPage); + if( rc==SQLITE_OK ){ + rc = pager_write(pPage); + if( pPage->flags&PGHDR_NEED_SYNC ){ + needSync = 1; + } + sqlite3PagerUnref(pPage); + } + } + }else if( (pPage = pager_lookup(pPager, pg))!=0 ){ + if( pPage->flags&PGHDR_NEED_SYNC ){ + needSync = 1; + } + sqlite3PagerUnref(pPage); + } + } + + /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages + ** starting at pg1, then it needs to be set for all of them. Because + ** writing to any of these nPage pages may damage the others, the + ** journal file must contain sync()ed copies of all of them + ** before any of them can be written out to the database file. + */ + if( rc==SQLITE_OK && needSync ){ + assert( !MEMDB ); + for(ii=0; iiflags |= PGHDR_NEED_SYNC; + sqlite3PagerUnref(pPage); + } + } + } + + assert( pPager->doNotSyncSpill==1 ); + pPager->doNotSyncSpill--; + }else{ + rc = pager_write(pDbPage); + } + return rc; +} + +/* +** Return TRUE if the page given in the argument was previously passed +** to sqlite3PagerWrite(). In other words, return TRUE if it is ok +** to change the content of the page. +*/ +#ifndef NDEBUG +int sqlite3PagerIswriteable(DbPage *pPg){ + return pPg->flags&PGHDR_DIRTY; +} +#endif + +/* +** A call to this routine tells the pager that it is not necessary to +** write the information on page pPg back to the disk, even though +** that page might be marked as dirty. This happens, for example, when +** the page has been added as a leaf of the freelist and so its +** content no longer matters. +** +** The overlying software layer calls this routine when all of the data +** on the given page is unused. The pager marks the page as clean so +** that it does not get written to disk. +** +** Tests show that this optimization can quadruple the speed of large +** DELETE operations. +*/ +void sqlite3PagerDontWrite(PgHdr *pPg){ + Pager *pPager = pPg->pPager; + if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ + PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); + IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) + pPg->flags |= PGHDR_DONT_WRITE; + pager_set_pagehash(pPg); + } +} + +/* +** This routine is called to increment the value of the database file +** change-counter, stored as a 4-byte big-endian integer starting at +** byte offset 24 of the pager file. The secondary change counter at +** 92 is also updated, as is the SQLite version number at offset 96. +** +** But this only happens if the pPager->changeCountDone flag is false. +** To avoid excess churning of page 1, the update only happens once. +** See also the pager_write_changecounter() routine that does an +** unconditional update of the change counters. +** +** If the isDirectMode flag is zero, then this is done by calling +** sqlite3PagerWrite() on page 1, then modifying the contents of the +** page data. In this case the file will be updated when the current +** transaction is committed. +** +** The isDirectMode flag may only be non-zero if the library was compiled +** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, +** if isDirect is non-zero, then the database file is updated directly +** by writing an updated version of page 1 using a call to the +** sqlite3OsWrite() function. +*/ +static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ + int rc = SQLITE_OK; + + assert( pPager->eState==PAGER_WRITER_CACHEMOD + || pPager->eState==PAGER_WRITER_DBMOD + ); + assert( assert_pager_state(pPager) ); + + /* Declare and initialize constant integer 'isDirect'. If the + ** atomic-write optimization is enabled in this build, then isDirect + ** is initialized to the value passed as the isDirectMode parameter + ** to this function. Otherwise, it is always set to zero. + ** + ** The idea is that if the atomic-write optimization is not + ** enabled at compile time, the compiler can omit the tests of + ** 'isDirect' below, as well as the block enclosed in the + ** "if( isDirect )" condition. + */ +#ifndef SQLITE_ENABLE_ATOMIC_WRITE +# define DIRECT_MODE 0 + assert( isDirectMode==0 ); + UNUSED_PARAMETER(isDirectMode); +#else +# define DIRECT_MODE isDirectMode +#endif + + if( !pPager->changeCountDone && pPager->dbSize>0 ){ + PgHdr *pPgHdr; /* Reference to page 1 */ + + assert( !pPager->tempFile && isOpen(pPager->fd) ); + + /* Open page 1 of the file for writing. */ + rc = sqlite3PagerGet(pPager, 1, &pPgHdr); + assert( pPgHdr==0 || rc==SQLITE_OK ); + + /* If page one was fetched successfully, and this function is not + ** operating in direct-mode, make page 1 writable. When not in + ** direct mode, page 1 is always held in cache and hence the PagerGet() + ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. + */ + if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ + rc = sqlite3PagerWrite(pPgHdr); + } + + if( rc==SQLITE_OK ){ + /* Actually do the update of the change counter */ + pager_write_changecounter(pPgHdr); + + /* If running in direct mode, write the contents of page 1 to the file. */ + if( DIRECT_MODE ){ + const void *zBuf; + assert( pPager->dbFileSize>0 ); + CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM, zBuf); + if( rc==SQLITE_OK ){ + rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); + } + if( rc==SQLITE_OK ){ + pPager->changeCountDone = 1; + } + }else{ + pPager->changeCountDone = 1; + } + } + + /* Release the page reference. */ + sqlite3PagerUnref(pPgHdr); + } + return rc; +} + +/* +** Sync the database file to disk. This is a no-op for in-memory databases +** or pages with the Pager.noSync flag set. +** +** If successful, or if called on a pager for which it is a no-op, this +** function returns SQLITE_OK. Otherwise, an IO error code is returned. +*/ +int sqlite3PagerSync(Pager *pPager){ + int rc = SQLITE_OK; + if( !pPager->noSync ){ + assert( !MEMDB ); + rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); + }else if( isOpen(pPager->fd) ){ + assert( !MEMDB ); + sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC_OMITTED, (void *)&rc); + } + return rc; +} + +/* +** This function may only be called while a write-transaction is active in +** rollback. If the connection is in WAL mode, this call is a no-op. +** Otherwise, if the connection does not already have an EXCLUSIVE lock on +** the database file, an attempt is made to obtain one. +** +** If the EXCLUSIVE lock is already held or the attempt to obtain it is +** successful, or the connection is in WAL mode, SQLITE_OK is returned. +** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is +** returned. +*/ +int sqlite3PagerExclusiveLock(Pager *pPager){ + int rc = SQLITE_OK; + assert( pPager->eState==PAGER_WRITER_CACHEMOD + || pPager->eState==PAGER_WRITER_DBMOD + || pPager->eState==PAGER_WRITER_LOCKED + ); + assert( assert_pager_state(pPager) ); + if( 0==pagerUseWal(pPager) ){ + rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); + } + return rc; +} + +/* +** Sync the database file for the pager pPager. zMaster points to the name +** of a master journal file that should be written into the individual +** journal file. zMaster may be NULL, which is interpreted as no master +** journal (a single database transaction). +** +** This routine ensures that: +** +** * The database file change-counter is updated, +** * the journal is synced (unless the atomic-write optimization is used), +** * all dirty pages are written to the database file, +** * the database file is truncated (if required), and +** * the database file synced. +** +** The only thing that remains to commit the transaction is to finalize +** (delete, truncate or zero the first part of) the journal file (or +** delete the master journal file if specified). +** +** Note that if zMaster==NULL, this does not overwrite a previous value +** passed to an sqlite3PagerCommitPhaseOne() call. +** +** If the final parameter - noSync - is true, then the database file itself +** is not synced. The caller must call sqlite3PagerSync() directly to +** sync the database file before calling CommitPhaseTwo() to delete the +** journal file in this case. +*/ +int sqlite3PagerCommitPhaseOne( + Pager *pPager, /* Pager object */ + const char *zMaster, /* If not NULL, the master journal name */ + int noSync /* True to omit the xSync on the db file */ +){ + int rc = SQLITE_OK; /* Return code */ + + assert( pPager->eState==PAGER_WRITER_LOCKED + || pPager->eState==PAGER_WRITER_CACHEMOD + || pPager->eState==PAGER_WRITER_DBMOD + || pPager->eState==PAGER_ERROR + ); + assert( assert_pager_state(pPager) ); + + /* If a prior error occurred, report that error again. */ + if( NEVER(pPager->errCode) ) return pPager->errCode; + + PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n", + pPager->zFilename, zMaster, pPager->dbSize)); + + /* If no database changes have been made, return early. */ + if( pPager->eStatepBackup); + }else{ + if( pagerUseWal(pPager) ){ + PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); + PgHdr *pPageOne = 0; + if( pList==0 ){ + /* Must have at least one page for the WAL commit flag. + ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ + rc = sqlite3PagerGet(pPager, 1, &pPageOne); + pList = pPageOne; + pList->pDirty = 0; + } + assert( rc==SQLITE_OK ); + if( ALWAYS(pList) ){ + rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1, + (pPager->fullSync ? pPager->syncFlags : 0) + ); + } + sqlite3PagerUnref(pPageOne); + if( rc==SQLITE_OK ){ + sqlite3PcacheCleanAll(pPager->pPCache); + } + }else{ + /* The following block updates the change-counter. Exactly how it + ** does this depends on whether or not the atomic-update optimization + ** was enabled at compile time, and if this transaction meets the + ** runtime criteria to use the operation: + ** + ** * The file-system supports the atomic-write property for + ** blocks of size page-size, and + ** * This commit is not part of a multi-file transaction, and + ** * Exactly one page has been modified and store in the journal file. + ** + ** If the optimization was not enabled at compile time, then the + ** pager_incr_changecounter() function is called to update the change + ** counter in 'indirect-mode'. If the optimization is compiled in but + ** is not applicable to this transaction, call sqlite3JournalCreate() + ** to make sure the journal file has actually been created, then call + ** pager_incr_changecounter() to update the change-counter in indirect + ** mode. + ** + ** Otherwise, if the optimization is both enabled and applicable, + ** then call pager_incr_changecounter() to update the change-counter + ** in 'direct' mode. In this case the journal file will never be + ** created for this transaction. + */ + #ifdef SQLITE_ENABLE_ATOMIC_WRITE + PgHdr *pPg; + assert( isOpen(pPager->jfd) + || pPager->journalMode==PAGER_JOURNALMODE_OFF + || pPager->journalMode==PAGER_JOURNALMODE_WAL + ); + if( !zMaster && isOpen(pPager->jfd) + && pPager->journalOff==jrnlBufferSize(pPager) + && pPager->dbSize>=pPager->dbOrigSize + && (0==(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) + ){ + /* Update the db file change counter via the direct-write method. The + ** following call will modify the in-memory representation of page 1 + ** to include the updated change counter and then write page 1 + ** directly to the database file. Because of the atomic-write + ** property of the host file-system, this is safe. + */ + rc = pager_incr_changecounter(pPager, 1); + }else{ + rc = sqlite3JournalCreate(pPager->jfd); + if( rc==SQLITE_OK ){ + rc = pager_incr_changecounter(pPager, 0); + } + } + #else + rc = pager_incr_changecounter(pPager, 0); + #endif + if( rc!=SQLITE_OK ) goto commit_phase_one_exit; + + /* If this transaction has made the database smaller, then all pages + ** being discarded by the truncation must be written to the journal + ** file. This can only happen in auto-vacuum mode. + ** + ** Before reading the pages with page numbers larger than the + ** current value of Pager.dbSize, set dbSize back to the value + ** that it took at the start of the transaction. Otherwise, the + ** calls to sqlite3PagerGet() return zeroed pages instead of + ** reading data from the database file. + */ + #ifndef SQLITE_OMIT_AUTOVACUUM + if( pPager->dbSizedbOrigSize + && pPager->journalMode!=PAGER_JOURNALMODE_OFF + ){ + Pgno i; /* Iterator variable */ + const Pgno iSkip = PAGER_MJ_PGNO(pPager); /* Pending lock page */ + const Pgno dbSize = pPager->dbSize; /* Database image size */ + pPager->dbSize = pPager->dbOrigSize; + for( i=dbSize+1; i<=pPager->dbOrigSize; i++ ){ + if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){ + PgHdr *pPage; /* Page to journal */ + rc = sqlite3PagerGet(pPager, i, &pPage); + if( rc!=SQLITE_OK ) goto commit_phase_one_exit; + rc = sqlite3PagerWrite(pPage); + sqlite3PagerUnref(pPage); + if( rc!=SQLITE_OK ) goto commit_phase_one_exit; + } + } + pPager->dbSize = dbSize; + } + #endif + + /* Write the master journal name into the journal file. If a master + ** journal file name has already been written to the journal file, + ** or if zMaster is NULL (no master journal), then this call is a no-op. + */ + rc = writeMasterJournal(pPager, zMaster); + if( rc!=SQLITE_OK ) goto commit_phase_one_exit; + + /* Sync the journal file and write all dirty pages to the database. + ** If the atomic-update optimization is being used, this sync will not + ** create the journal file or perform any real IO. + ** + ** Because the change-counter page was just modified, unless the + ** atomic-update optimization is used it is almost certain that the + ** journal requires a sync here. However, in locking_mode=exclusive + ** on a system under memory pressure it is just possible that this is + ** not the case. In this case it is likely enough that the redundant + ** xSync() call will be changed to a no-op by the OS anyhow. + */ + rc = syncJournal(pPager, 0); + if( rc!=SQLITE_OK ) goto commit_phase_one_exit; + + rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache)); + if( rc!=SQLITE_OK ){ + assert( rc!=SQLITE_IOERR_BLOCKED ); + goto commit_phase_one_exit; + } + sqlite3PcacheCleanAll(pPager->pPCache); + + /* If the file on disk is not the same size as the database image, + ** then use pager_truncate to grow or shrink the file here. + */ + if( pPager->dbSize!=pPager->dbFileSize ){ + Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); + assert( pPager->eState==PAGER_WRITER_DBMOD ); + rc = pager_truncate(pPager, nNew); + if( rc!=SQLITE_OK ) goto commit_phase_one_exit; + } + + /* Finally, sync the database file. */ + if( !noSync ){ + rc = sqlite3PagerSync(pPager); + } + IOTRACE(("DBSYNC %p\n", pPager)) + } + } + +commit_phase_one_exit: + if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ + pPager->eState = PAGER_WRITER_FINISHED; + } + return rc; +} + + +/* +** When this function is called, the database file has been completely +** updated to reflect the changes made by the current transaction and +** synced to disk. The journal file still exists in the file-system +** though, and if a failure occurs at this point it will eventually +** be used as a hot-journal and the current transaction rolled back. +** +** This function finalizes the journal file, either by deleting, +** truncating or partially zeroing it, so that it cannot be used +** for hot-journal rollback. Once this is done the transaction is +** irrevocably committed. +** +** If an error occurs, an IO error code is returned and the pager +** moves into the error state. Otherwise, SQLITE_OK is returned. +*/ +int sqlite3PagerCommitPhaseTwo(Pager *pPager){ + int rc = SQLITE_OK; /* Return code */ + + /* This routine should not be called if a prior error has occurred. + ** But if (due to a coding error elsewhere in the system) it does get + ** called, just return the same error code without doing anything. */ + if( NEVER(pPager->errCode) ) return pPager->errCode; + + assert( pPager->eState==PAGER_WRITER_LOCKED + || pPager->eState==PAGER_WRITER_FINISHED + || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) + ); + assert( assert_pager_state(pPager) ); + + /* An optimization. If the database was not actually modified during + ** this transaction, the pager is running in exclusive-mode and is + ** using persistent journals, then this function is a no-op. + ** + ** The start of the journal file currently contains a single journal + ** header with the nRec field set to 0. If such a journal is used as + ** a hot-journal during hot-journal rollback, 0 changes will be made + ** to the database file. So there is no need to zero the journal + ** header. Since the pager is in exclusive mode, there is no need + ** to drop any locks either. + */ + if( pPager->eState==PAGER_WRITER_LOCKED + && pPager->exclusiveMode + && pPager->journalMode==PAGER_JOURNALMODE_PERSIST + ){ + assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); + pPager->eState = PAGER_READER; + return SQLITE_OK; + } + + PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); + rc = pager_end_transaction(pPager, pPager->setMaster); + return pager_error(pPager, rc); +} + +/* +** If a write transaction is open, then all changes made within the +** transaction are reverted and the current write-transaction is closed. +** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR +** state if an error occurs. +** +** If the pager is already in PAGER_ERROR state when this function is called, +** it returns Pager.errCode immediately. No work is performed in this case. +** +** Otherwise, in rollback mode, this function performs two functions: +** +** 1) It rolls back the journal file, restoring all database file and +** in-memory cache pages to the state they were in when the transaction +** was opened, and +** +** 2) It finalizes the journal file, so that it is not used for hot +** rollback at any point in the future. +** +** Finalization of the journal file (task 2) is only performed if the +** rollback is successful. +** +** In WAL mode, all cache-entries containing data modified within the +** current transaction are either expelled from the cache or reverted to +** their pre-transaction state by re-reading data from the database or +** WAL files. The WAL transaction is then closed. +*/ +int sqlite3PagerRollback(Pager *pPager){ + int rc = SQLITE_OK; /* Return code */ + PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); + + /* PagerRollback() is a no-op if called in READER or OPEN state. If + ** the pager is already in the ERROR state, the rollback is not + ** attempted here. Instead, the error code is returned to the caller. + */ + assert( assert_pager_state(pPager) ); + if( pPager->eState==PAGER_ERROR ) return pPager->errCode; + if( pPager->eState<=PAGER_READER ) return SQLITE_OK; + + if( pagerUseWal(pPager) ){ + int rc2; + rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); + rc2 = pager_end_transaction(pPager, pPager->setMaster); + if( rc==SQLITE_OK ) rc = rc2; + }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ + int eState = pPager->eState; + rc = pager_end_transaction(pPager, 0); + if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ + /* This can happen using journal_mode=off. Move the pager to the error + ** state to indicate that the contents of the cache may not be trusted. + ** Any active readers will get SQLITE_ABORT. + */ + pPager->errCode = SQLITE_ABORT; + pPager->eState = PAGER_ERROR; + return rc; + } + }else{ + rc = pager_playback(pPager, 0); + } + + assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); + assert( rc==SQLITE_OK || rc==SQLITE_FULL || (rc&0xFF)==SQLITE_IOERR ); + + /* If an error occurs during a ROLLBACK, we can no longer trust the pager + ** cache. So call pager_error() on the way out to make any error persistent. + */ + return pager_error(pPager, rc); +} + +/* +** Return TRUE if the database file is opened read-only. Return FALSE +** if the database is (in theory) writable. +*/ +u8 sqlite3PagerIsreadonly(Pager *pPager){ + return pPager->readOnly; +} + +/* +** Return the number of references to the pager. +*/ +int sqlite3PagerRefcount(Pager *pPager){ + return sqlite3PcacheRefCount(pPager->pPCache); +} + +/* +** Return the approximate number of bytes of memory currently +** used by the pager and its associated cache. +*/ +int sqlite3PagerMemUsed(Pager *pPager){ + int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) + + 5*sizeof(void*); + return perPageSize*sqlite3PcachePagecount(pPager->pPCache) + + sqlite3MallocSize(pPager) + + pPager->pageSize; +} + +/* +** Return the number of references to the specified page. +*/ +int sqlite3PagerPageRefcount(DbPage *pPage){ + return sqlite3PcachePageRefcount(pPage); +} + +#ifdef SQLITE_TEST +/* +** This routine is used for testing and analysis only. +*/ +int *sqlite3PagerStats(Pager *pPager){ + static int a[11]; + a[0] = sqlite3PcacheRefCount(pPager->pPCache); + a[1] = sqlite3PcachePagecount(pPager->pPCache); + a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); + a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; + a[4] = pPager->eState; + a[5] = pPager->errCode; + a[6] = pPager->nHit; + a[7] = pPager->nMiss; + a[8] = 0; /* Used to be pPager->nOvfl */ + a[9] = pPager->nRead; + a[10] = pPager->nWrite; + return a; +} +#endif + +/* +** Parameter eStat must be either SQLITE_DBSTATUS_CACHE_HIT or +** SQLITE_DBSTATUS_CACHE_MISS. Before returning, *pnVal is incremented by the +** current cache hit or miss count, according to the value of eStat. If the +** reset parameter is non-zero, the cache hit or miss count is zeroed before +** returning. +*/ +void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ + int *piStat; + + assert( eStat==SQLITE_DBSTATUS_CACHE_HIT + || eStat==SQLITE_DBSTATUS_CACHE_MISS + ); + if( eStat==SQLITE_DBSTATUS_CACHE_HIT ){ + piStat = &pPager->nHit; + }else{ + piStat = &pPager->nMiss; + } + + *pnVal += *piStat; + if( reset ){ + *piStat = 0; + } +} + +/* +** Return true if this is an in-memory pager. +*/ +int sqlite3PagerIsMemdb(Pager *pPager){ + return MEMDB; +} + +/* +** Check that there are at least nSavepoint savepoints open. If there are +** currently less than nSavepoints open, then open one or more savepoints +** to make up the difference. If the number of savepoints is already +** equal to nSavepoint, then this function is a no-op. +** +** If a memory allocation fails, SQLITE_NOMEM is returned. If an error +** occurs while opening the sub-journal file, then an IO error code is +** returned. Otherwise, SQLITE_OK. +*/ +int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ + int rc = SQLITE_OK; /* Return code */ + int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ + + assert( pPager->eState>=PAGER_WRITER_LOCKED ); + assert( assert_pager_state(pPager) ); + + if( nSavepoint>nCurrent && pPager->useJournal ){ + int ii; /* Iterator variable */ + PagerSavepoint *aNew; /* New Pager.aSavepoint array */ + + /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM + ** if the allocation fails. Otherwise, zero the new portion in case a + ** malloc failure occurs while populating it in the for(...) loop below. + */ + aNew = (PagerSavepoint *)sqlite3Realloc( + pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint + ); + if( !aNew ){ + return SQLITE_NOMEM; + } + memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); + pPager->aSavepoint = aNew; + + /* Populate the PagerSavepoint structures just allocated. */ + for(ii=nCurrent; iidbSize; + if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ + aNew[ii].iOffset = pPager->journalOff; + }else{ + aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); + } + aNew[ii].iSubRec = pPager->nSubRec; + aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); + if( !aNew[ii].pInSavepoint ){ + return SQLITE_NOMEM; + } + if( pagerUseWal(pPager) ){ + sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); + } + pPager->nSavepoint = ii+1; + } + assert( pPager->nSavepoint==nSavepoint ); + assertTruncateConstraint(pPager); + } + + return rc; +} + +/* +** This function is called to rollback or release (commit) a savepoint. +** The savepoint to release or rollback need not be the most recently +** created savepoint. +** +** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. +** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with +** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes +** that have occurred since the specified savepoint was created. +** +** The savepoint to rollback or release is identified by parameter +** iSavepoint. A value of 0 means to operate on the outermost savepoint +** (the first created). A value of (Pager.nSavepoint-1) means operate +** on the most recently created savepoint. If iSavepoint is greater than +** (Pager.nSavepoint-1), then this function is a no-op. +** +** If a negative value is passed to this function, then the current +** transaction is rolled back. This is different to calling +** sqlite3PagerRollback() because this function does not terminate +** the transaction or unlock the database, it just restores the +** contents of the database to its original state. +** +** In any case, all savepoints with an index greater than iSavepoint +** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), +** then savepoint iSavepoint is also destroyed. +** +** This function may return SQLITE_NOMEM if a memory allocation fails, +** or an IO error code if an IO error occurs while rolling back a +** savepoint. If no errors occur, SQLITE_OK is returned. +*/ +int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ + int rc = pPager->errCode; /* Return code */ + + assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); + assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); + + if( rc==SQLITE_OK && iSavepointnSavepoint ){ + int ii; /* Iterator variable */ + int nNew; /* Number of remaining savepoints after this op. */ + + /* Figure out how many savepoints will still be active after this + ** operation. Store this value in nNew. Then free resources associated + ** with any savepoints that are destroyed by this operation. + */ + nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); + for(ii=nNew; iinSavepoint; ii++){ + sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); + } + pPager->nSavepoint = nNew; + + /* If this is a release of the outermost savepoint, truncate + ** the sub-journal to zero bytes in size. */ + if( op==SAVEPOINT_RELEASE ){ + if( nNew==0 && isOpen(pPager->sjfd) ){ + /* Only truncate if it is an in-memory sub-journal. */ + if( sqlite3IsMemJournal(pPager->sjfd) ){ + rc = sqlite3OsTruncate(pPager->sjfd, 0); + assert( rc==SQLITE_OK ); + } + pPager->nSubRec = 0; + } + } + /* Else this is a rollback operation, playback the specified savepoint. + ** If this is a temp-file, it is possible that the journal file has + ** not yet been opened. In this case there have been no changes to + ** the database file, so the playback operation can be skipped. + */ + else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ + PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; + rc = pagerPlaybackSavepoint(pPager, pSavepoint); + assert(rc!=SQLITE_DONE); + } + } + + return rc; +} + +/* +** Return the full pathname of the database file. +*/ +const char *sqlite3PagerFilename(Pager *pPager){ + return pPager->zFilename; +} + +/* +** Return the VFS structure for the pager. +*/ +const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ + return pPager->pVfs; +} + +/* +** Return the file handle for the database file associated +** with the pager. This might return NULL if the file has +** not yet been opened. +*/ +sqlite3_file *sqlite3PagerFile(Pager *pPager){ + return pPager->fd; +} + +/* +** Return the full pathname of the journal file. +*/ +const char *sqlite3PagerJournalname(Pager *pPager){ + return pPager->zJournal; +} + +/* +** Return true if fsync() calls are disabled for this pager. Return FALSE +** if fsync()s are executed normally. +*/ +int sqlite3PagerNosync(Pager *pPager){ + return pPager->noSync; +} + +#ifdef SQLITE_HAS_CODEC +/* +** Set or retrieve the codec for this pager +*/ +void sqlite3PagerSetCodec( + Pager *pPager, + void *(*xCodec)(void*,void*,Pgno,int), + void (*xCodecSizeChng)(void*,int,int), + void (*xCodecFree)(void*), + void *pCodec +){ + if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); + pPager->xCodec = pPager->memDb ? 0 : xCodec; + pPager->xCodecSizeChng = xCodecSizeChng; + pPager->xCodecFree = xCodecFree; + pPager->pCodec = pCodec; + pagerReportSize(pPager); +} +void *sqlite3PagerGetCodec(Pager *pPager){ + return pPager->pCodec; +} +#endif + +#ifndef SQLITE_OMIT_AUTOVACUUM +/* +** Move the page pPg to location pgno in the file. +** +** There must be no references to the page previously located at +** pgno (which we call pPgOld) though that page is allowed to be +** in cache. If the page previously located at pgno is not already +** in the rollback journal, it is not put there by by this routine. +** +** References to the page pPg remain valid. Updating any +** meta-data associated with pPg (i.e. data stored in the nExtra bytes +** allocated along with the page) is the responsibility of the caller. +** +** A transaction must be active when this routine is called. It used to be +** required that a statement transaction was not active, but this restriction +** has been removed (CREATE INDEX needs to move a page when a statement +** transaction is active). +** +** If the fourth argument, isCommit, is non-zero, then this page is being +** moved as part of a database reorganization just before the transaction +** is being committed. In this case, it is guaranteed that the database page +** pPg refers to will not be written to again within this transaction. +** +** This function may return SQLITE_NOMEM or an IO error code if an error +** occurs. Otherwise, it returns SQLITE_OK. +*/ +int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ + PgHdr *pPgOld; /* The page being overwritten. */ + Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ + int rc; /* Return code */ + Pgno origPgno; /* The original page number */ + + assert( pPg->nRef>0 ); + assert( pPager->eState==PAGER_WRITER_CACHEMOD + || pPager->eState==PAGER_WRITER_DBMOD + ); + assert( assert_pager_state(pPager) ); + + /* In order to be able to rollback, an in-memory database must journal + ** the page we are moving from. + */ + if( MEMDB ){ + rc = sqlite3PagerWrite(pPg); + if( rc ) return rc; + } + + /* If the page being moved is dirty and has not been saved by the latest + ** savepoint, then save the current contents of the page into the + ** sub-journal now. This is required to handle the following scenario: + ** + ** BEGIN; + ** + ** SAVEPOINT one; + ** + ** ROLLBACK TO one; + ** + ** If page X were not written to the sub-journal here, it would not + ** be possible to restore its contents when the "ROLLBACK TO one" + ** statement were is processed. + ** + ** subjournalPage() may need to allocate space to store pPg->pgno into + ** one or more savepoint bitvecs. This is the reason this function + ** may return SQLITE_NOMEM. + */ + if( pPg->flags&PGHDR_DIRTY + && subjRequiresPage(pPg) + && SQLITE_OK!=(rc = subjournalPage(pPg)) + ){ + return rc; + } + + PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", + PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); + IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) + + /* If the journal needs to be sync()ed before page pPg->pgno can + ** be written to, store pPg->pgno in local variable needSyncPgno. + ** + ** If the isCommit flag is set, there is no need to remember that + ** the journal needs to be sync()ed before database page pPg->pgno + ** can be written to. The caller has already promised not to write to it. + */ + if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ + needSyncPgno = pPg->pgno; + assert( pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize ); + assert( pPg->flags&PGHDR_DIRTY ); + } + + /* If the cache contains a page with page-number pgno, remove it + ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for + ** page pgno before the 'move' operation, it needs to be retained + ** for the page moved there. + */ + pPg->flags &= ~PGHDR_NEED_SYNC; + pPgOld = pager_lookup(pPager, pgno); + assert( !pPgOld || pPgOld->nRef==1 ); + if( pPgOld ){ + pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); + if( MEMDB ){ + /* Do not discard pages from an in-memory database since we might + ** need to rollback later. Just move the page out of the way. */ + sqlite3PcacheMove(pPgOld, pPager->dbSize+1); + }else{ + sqlite3PcacheDrop(pPgOld); + } + } + + origPgno = pPg->pgno; + sqlite3PcacheMove(pPg, pgno); + sqlite3PcacheMakeDirty(pPg); + + /* For an in-memory database, make sure the original page continues + ** to exist, in case the transaction needs to roll back. Use pPgOld + ** as the original page since it has already been allocated. + */ + if( MEMDB ){ + assert( pPgOld ); + sqlite3PcacheMove(pPgOld, origPgno); + sqlite3PagerUnref(pPgOld); + } + + if( needSyncPgno ){ + /* If needSyncPgno is non-zero, then the journal file needs to be + ** sync()ed before any data is written to database file page needSyncPgno. + ** Currently, no such page exists in the page-cache and the + ** "is journaled" bitvec flag has been set. This needs to be remedied by + ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC + ** flag. + ** + ** If the attempt to load the page into the page-cache fails, (due + ** to a malloc() or IO failure), clear the bit in the pInJournal[] + ** array. Otherwise, if the page is loaded and written again in + ** this transaction, it may be written to the database file before + ** it is synced into the journal file. This way, it may end up in + ** the journal file twice, but that is not a problem. + */ + PgHdr *pPgHdr; + rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); + if( rc!=SQLITE_OK ){ + if( needSyncPgno<=pPager->dbOrigSize ){ + assert( pPager->pTmpSpace!=0 ); + sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); + } + return rc; + } + pPgHdr->flags |= PGHDR_NEED_SYNC; + sqlite3PcacheMakeDirty(pPgHdr); + sqlite3PagerUnref(pPgHdr); + } + + return SQLITE_OK; +} +#endif + +/* +** Return a pointer to the data for the specified page. +*/ +void *sqlite3PagerGetData(DbPage *pPg){ + assert( pPg->nRef>0 || pPg->pPager->memDb ); + return pPg->pData; +} + +/* +** Return a pointer to the Pager.nExtra bytes of "extra" space +** allocated along with the specified page. +*/ +void *sqlite3PagerGetExtra(DbPage *pPg){ + return pPg->pExtra; +} + +/* +** Get/set the locking-mode for this pager. Parameter eMode must be one +** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or +** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then +** the locking-mode is set to the value specified. +** +** The returned value is either PAGER_LOCKINGMODE_NORMAL or +** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) +** locking-mode. +*/ +int sqlite3PagerLockingMode(Pager *pPager, int eMode){ + assert( eMode==PAGER_LOCKINGMODE_QUERY + || eMode==PAGER_LOCKINGMODE_NORMAL + || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); + assert( PAGER_LOCKINGMODE_QUERY<0 ); + assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); + assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); + if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ + pPager->exclusiveMode = (u8)eMode; + } + return (int)pPager->exclusiveMode; +} + +/* +** Set the journal-mode for this pager. Parameter eMode must be one of: +** +** PAGER_JOURNALMODE_DELETE +** PAGER_JOURNALMODE_TRUNCATE +** PAGER_JOURNALMODE_PERSIST +** PAGER_JOURNALMODE_OFF +** PAGER_JOURNALMODE_MEMORY +** PAGER_JOURNALMODE_WAL +** +** The journalmode is set to the value specified if the change is allowed. +** The change may be disallowed for the following reasons: +** +** * An in-memory database can only have its journal_mode set to _OFF +** or _MEMORY. +** +** * Temporary databases cannot have _WAL journalmode. +** +** The returned indicate the current (possibly updated) journal-mode. +*/ +int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ + u8 eOld = pPager->journalMode; /* Prior journalmode */ + +#ifdef SQLITE_DEBUG + /* The print_pager_state() routine is intended to be used by the debugger + ** only. We invoke it once here to suppress a compiler warning. */ + print_pager_state(pPager); +#endif + + + /* The eMode parameter is always valid */ + assert( eMode==PAGER_JOURNALMODE_DELETE + || eMode==PAGER_JOURNALMODE_TRUNCATE + || eMode==PAGER_JOURNALMODE_PERSIST + || eMode==PAGER_JOURNALMODE_OFF + || eMode==PAGER_JOURNALMODE_WAL + || eMode==PAGER_JOURNALMODE_MEMORY ); + + /* This routine is only called from the OP_JournalMode opcode, and + ** the logic there will never allow a temporary file to be changed + ** to WAL mode. + */ + assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); + + /* Do allow the journalmode of an in-memory database to be set to + ** anything other than MEMORY or OFF + */ + if( MEMDB ){ + assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); + if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ + eMode = eOld; + } + } + + if( eMode!=eOld ){ + + /* Change the journal mode. */ + assert( pPager->eState!=PAGER_ERROR ); + pPager->journalMode = (u8)eMode; + + /* When transistioning from TRUNCATE or PERSIST to any other journal + ** mode except WAL, unless the pager is in locking_mode=exclusive mode, + ** delete the journal file. + */ + assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); + assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); + assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); + assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); + assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); + assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); + + assert( isOpen(pPager->fd) || pPager->exclusiveMode ); + if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ + + /* In this case we would like to delete the journal file. If it is + ** not possible, then that is not a problem. Deleting the journal file + ** here is an optimization only. + ** + ** Before deleting the journal file, obtain a RESERVED lock on the + ** database file. This ensures that the journal file is not deleted + ** while it is in use by some other client. + */ + sqlite3OsClose(pPager->jfd); + if( pPager->eLock>=RESERVED_LOCK ){ + sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); + }else{ + int rc = SQLITE_OK; + int state = pPager->eState; + assert( state==PAGER_OPEN || state==PAGER_READER ); + if( state==PAGER_OPEN ){ + rc = sqlite3PagerSharedLock(pPager); + } + if( pPager->eState==PAGER_READER ){ + assert( rc==SQLITE_OK ); + rc = pagerLockDb(pPager, RESERVED_LOCK); + } + if( rc==SQLITE_OK ){ + sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); + } + if( rc==SQLITE_OK && state==PAGER_READER ){ + pagerUnlockDb(pPager, SHARED_LOCK); + }else if( state==PAGER_OPEN ){ + pager_unlock(pPager); + } + assert( state==pPager->eState ); + } + } + } + + /* Return the new journal mode */ + return (int)pPager->journalMode; +} + +/* +** Return the current journal mode. +*/ +int sqlite3PagerGetJournalMode(Pager *pPager){ + return (int)pPager->journalMode; +} + +/* +** Return TRUE if the pager is in a state where it is OK to change the +** journalmode. Journalmode changes can only happen when the database +** is unmodified. +*/ +int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ + assert( assert_pager_state(pPager) ); + if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; + if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; + return 1; +} + +/* +** Get/set the size-limit used for persistent journal files. +** +** Setting the size limit to -1 means no limit is enforced. +** An attempt to set a limit smaller than -1 is a no-op. +*/ +i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ + if( iLimit>=-1 ){ + pPager->journalSizeLimit = iLimit; + sqlite3WalLimit(pPager->pWal, iLimit); + } + return pPager->journalSizeLimit; +} + +/* +** Return a pointer to the pPager->pBackup variable. The backup module +** in backup.c maintains the content of this variable. This module +** uses it opaquely as an argument to sqlite3BackupRestart() and +** sqlite3BackupUpdate() only. +*/ +sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ + return &pPager->pBackup; +} + +#ifndef SQLITE_OMIT_WAL +/* +** This function is called when the user invokes "PRAGMA wal_checkpoint", +** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() +** or wal_blocking_checkpoint() API functions. +** +** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. +*/ +int sqlite3PagerCheckpoint(Pager *pPager, int eMode, int *pnLog, int *pnCkpt){ + int rc = SQLITE_OK; + if( pPager->pWal ){ + rc = sqlite3WalCheckpoint(pPager->pWal, eMode, + pPager->xBusyHandler, pPager->pBusyHandlerArg, + pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, + pnLog, pnCkpt + ); + } + return rc; +} + +int sqlite3PagerWalCallback(Pager *pPager){ + return sqlite3WalCallback(pPager->pWal); +} + +/* +** Return true if the underlying VFS for the given pager supports the +** primitives necessary for write-ahead logging. +*/ +int sqlite3PagerWalSupported(Pager *pPager){ + const sqlite3_io_methods *pMethods = pPager->fd->pMethods; + return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); +} + +/* +** Attempt to take an exclusive lock on the database file. If a PENDING lock +** is obtained instead, immediately release it. +*/ +static int pagerExclusiveLock(Pager *pPager){ + int rc; /* Return code */ + + assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); + rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); + if( rc!=SQLITE_OK ){ + /* If the attempt to grab the exclusive lock failed, release the + ** pending lock that may have been obtained instead. */ + pagerUnlockDb(pPager, SHARED_LOCK); + } + + return rc; +} + +/* +** Call sqlite3WalOpen() to open the WAL handle. If the pager is in +** exclusive-locking mode when this function is called, take an EXCLUSIVE +** lock on the database file and use heap-memory to store the wal-index +** in. Otherwise, use the normal shared-memory. +*/ +static int pagerOpenWal(Pager *pPager){ + int rc = SQLITE_OK; + + assert( pPager->pWal==0 && pPager->tempFile==0 ); + assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK || pPager->noReadlock); + + /* If the pager is already in exclusive-mode, the WAL module will use + ** heap-memory for the wal-index instead of the VFS shared-memory + ** implementation. Take the exclusive lock now, before opening the WAL + ** file, to make sure this is safe. + */ + if( pPager->exclusiveMode ){ + rc = pagerExclusiveLock(pPager); + } + + /* Open the connection to the log file. If this operation fails, + ** (e.g. due to malloc() failure), return an error code. + */ + if( rc==SQLITE_OK ){ + rc = sqlite3WalOpen(pPager->pVfs, + pPager->fd, pPager->zWal, pPager->exclusiveMode, + pPager->journalSizeLimit, &pPager->pWal + ); + } + + return rc; +} + + +/* +** The caller must be holding a SHARED lock on the database file to call +** this function. +** +** If the pager passed as the first argument is open on a real database +** file (not a temp file or an in-memory database), and the WAL file +** is not already open, make an attempt to open it now. If successful, +** return SQLITE_OK. If an error occurs or the VFS used by the pager does +** not support the xShmXXX() methods, return an error code. *pbOpen is +** not modified in either case. +** +** If the pager is open on a temp-file (or in-memory database), or if +** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK +** without doing anything. +*/ +int sqlite3PagerOpenWal( + Pager *pPager, /* Pager object */ + int *pbOpen /* OUT: Set to true if call is a no-op */ +){ + int rc = SQLITE_OK; /* Return code */ + + assert( assert_pager_state(pPager) ); + assert( pPager->eState==PAGER_OPEN || pbOpen ); + assert( pPager->eState==PAGER_READER || !pbOpen ); + assert( pbOpen==0 || *pbOpen==0 ); + assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); + + if( !pPager->tempFile && !pPager->pWal ){ + if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; + + /* Close any rollback journal previously open */ + sqlite3OsClose(pPager->jfd); + + rc = pagerOpenWal(pPager); + if( rc==SQLITE_OK ){ + pPager->journalMode = PAGER_JOURNALMODE_WAL; + pPager->eState = PAGER_OPEN; + } + }else{ + *pbOpen = 1; + } + + return rc; +} + +/* +** This function is called to close the connection to the log file prior +** to switching from WAL to rollback mode. +** +** Before closing the log file, this function attempts to take an +** EXCLUSIVE lock on the database file. If this cannot be obtained, an +** error (SQLITE_BUSY) is returned and the log connection is not closed. +** If successful, the EXCLUSIVE lock is not released before returning. +*/ +int sqlite3PagerCloseWal(Pager *pPager){ + int rc = SQLITE_OK; + + assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); + + /* If the log file is not already open, but does exist in the file-system, + ** it may need to be checkpointed before the connection can switch to + ** rollback mode. Open it now so this can happen. + */ + if( !pPager->pWal ){ + int logexists = 0; + rc = pagerLockDb(pPager, SHARED_LOCK); + if( rc==SQLITE_OK ){ + rc = sqlite3OsAccess( + pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists + ); + } + if( rc==SQLITE_OK && logexists ){ + rc = pagerOpenWal(pPager); + } + } + + /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on + ** the database file, the log and log-summary files will be deleted. + */ + if( rc==SQLITE_OK && pPager->pWal ){ + rc = pagerExclusiveLock(pPager); + if( rc==SQLITE_OK ){ + rc = sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags, + pPager->pageSize, (u8*)pPager->pTmpSpace); + pPager->pWal = 0; + } + } + return rc; +} + +/* +** Unless this is an in-memory or temporary database, clear the pager cache. +*/ +void sqlite3PagerClearCache(Pager *pPager){ + if( !MEMDB && pPager->tempFile==0 ) pager_reset(pPager); +} + +#ifdef SQLITE_HAS_CODEC +/* +** This function is called by the wal module when writing page content +** into the log file. +** +** This function returns a pointer to a buffer containing the encrypted +** page content. If a malloc fails, this function may return NULL. +*/ +void *sqlite3PagerCodec(PgHdr *pPg){ + void *aData = 0; + CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData); + return aData; +} +#endif /* SQLITE_HAS_CODEC */ + +#endif /* !SQLITE_OMIT_WAL */ + +#endif /* SQLITE_OMIT_DISKIO */ + +/* BEGIN CRYPTO */ +#ifdef SQLITE_HAS_CODEC +void sqlite3pager_get_codec(Pager *pPager, void **ctx) { + *ctx = pPager->pCodec; +} + +int sqlite3pager_is_mj_pgno(Pager *pPager, Pgno pgno) { + return (PAGER_MJ_PGNO(pPager) == pgno) ? 1 : 0; +} + +sqlite3_file *sqlite3Pager_get_fd(Pager *pPager) { + return (isOpen(pPager->fd)) ? pPager->fd : NULL; +} + +void sqlite3pager_sqlite3PagerSetCodec( + Pager *pPager, + void *(*xCodec)(void*,void*,Pgno,int), + void (*xCodecSizeChng)(void*,int,int), + void (*xCodecFree)(void*), + void *pCodec +){ + sqlite3PagerSetCodec(pPager, xCodec, xCodecSizeChng, xCodecFree, pCodec); +} + + +#endif +/* END CRYPTO */ + diff --git a/src/pager.h b/src/pager.h new file mode 100644 index 0000000..e36e6c2 --- /dev/null +++ b/src/pager.h @@ -0,0 +1,183 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite page cache +** subsystem. The page cache subsystem reads and writes a file a page +** at a time and provides a journal for rollback. +*/ + +#ifndef _PAGER_H_ +#define _PAGER_H_ + +/* +** Default maximum size for persistent journal files. A negative +** value means no limit. This value may be overridden using the +** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit". +*/ +#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT + #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1 +#endif + +/* +** The type used to represent a page number. The first page in a file +** is called page 1. 0 is used to represent "not a page". +*/ +typedef u32 Pgno; + +/* +** Each open file is managed by a separate instance of the "Pager" structure. +*/ +typedef struct Pager Pager; + +/* +** Handle type for pages. +*/ +typedef struct PgHdr DbPage; + +/* +** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is +** reserved for working around a windows/posix incompatibility). It is +** used in the journal to signify that the remainder of the journal file +** is devoted to storing a master journal name - there are no more pages to +** roll back. See comments for function writeMasterJournal() in pager.c +** for details. +*/ +#define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1)) + +/* +** Allowed values for the flags parameter to sqlite3PagerOpen(). +** +** NOTE: These values must match the corresponding BTREE_ values in btree.h. +*/ +#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */ +#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */ +#define PAGER_MEMORY 0x0004 /* In-memory database */ + +/* +** Valid values for the second argument to sqlite3PagerLockingMode(). +*/ +#define PAGER_LOCKINGMODE_QUERY -1 +#define PAGER_LOCKINGMODE_NORMAL 0 +#define PAGER_LOCKINGMODE_EXCLUSIVE 1 + +/* +** Numeric constants that encode the journalmode. +*/ +#define PAGER_JOURNALMODE_QUERY (-1) /* Query the value of journalmode */ +#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */ +#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */ +#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */ +#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */ +#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */ +#define PAGER_JOURNALMODE_WAL 5 /* Use write-ahead logging */ + +/* +** The remainder of this file contains the declarations of the functions +** that make up the Pager sub-system API. See source code comments for +** a detailed description of each routine. +*/ + +/* Open and close a Pager connection. */ +int sqlite3PagerOpen( + sqlite3_vfs*, + Pager **ppPager, + const char*, + int, + int, + int, + void(*)(DbPage*) +); +int sqlite3PagerClose(Pager *pPager); +int sqlite3PagerReadFileheader(Pager*, int, unsigned char*); + +/* Functions used to configure a Pager object. */ +void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *); +int sqlite3PagerSetPagesize(Pager*, u32*, int); +int sqlite3PagerMaxPageCount(Pager*, int); +void sqlite3PagerSetCachesize(Pager*, int); +void sqlite3PagerSetSafetyLevel(Pager*,int,int,int); +int sqlite3PagerLockingMode(Pager *, int); +int sqlite3PagerSetJournalMode(Pager *, int); +int sqlite3PagerGetJournalMode(Pager*); +int sqlite3PagerOkToChangeJournalMode(Pager*); +i64 sqlite3PagerJournalSizeLimit(Pager *, i64); +sqlite3_backup **sqlite3PagerBackupPtr(Pager*); + +/* Functions used to obtain and release page references. */ +int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag); +#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0) +DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno); +void sqlite3PagerRef(DbPage*); +void sqlite3PagerUnref(DbPage*); + +/* Operations on page references. */ +int sqlite3PagerWrite(DbPage*); +void sqlite3PagerDontWrite(DbPage*); +int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int); +int sqlite3PagerPageRefcount(DbPage*); +void *sqlite3PagerGetData(DbPage *); +void *sqlite3PagerGetExtra(DbPage *); + +/* Functions used to manage pager transactions and savepoints. */ +void sqlite3PagerPagecount(Pager*, int*); +int sqlite3PagerBegin(Pager*, int exFlag, int); +int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int); +int sqlite3PagerExclusiveLock(Pager*); +int sqlite3PagerSync(Pager *pPager); +int sqlite3PagerCommitPhaseTwo(Pager*); +int sqlite3PagerRollback(Pager*); +int sqlite3PagerOpenSavepoint(Pager *pPager, int n); +int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); +int sqlite3PagerSharedLock(Pager *pPager); + +int sqlite3PagerCheckpoint(Pager *pPager, int, int*, int*); +int sqlite3PagerWalSupported(Pager *pPager); +int sqlite3PagerWalCallback(Pager *pPager); +int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen); +int sqlite3PagerCloseWal(Pager *pPager); + +/* Functions used to query pager state and configuration. */ +u8 sqlite3PagerIsreadonly(Pager*); +int sqlite3PagerRefcount(Pager*); +int sqlite3PagerMemUsed(Pager*); +const char *sqlite3PagerFilename(Pager*); +const sqlite3_vfs *sqlite3PagerVfs(Pager*); +sqlite3_file *sqlite3PagerFile(Pager*); +const char *sqlite3PagerJournalname(Pager*); +int sqlite3PagerNosync(Pager*); +void *sqlite3PagerTempSpace(Pager*); +int sqlite3PagerIsMemdb(Pager*); +void sqlite3PagerCacheStat(Pager *, int, int, int *); +void sqlite3PagerClearCache(Pager *); + +/* Functions used to truncate the database file. */ +void sqlite3PagerTruncateImage(Pager*,Pgno); + +#if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL) +void *sqlite3PagerCodec(DbPage *); +#endif + +/* Functions to support testing and debugging. */ +#if !defined(NDEBUG) || defined(SQLITE_TEST) + Pgno sqlite3PagerPagenumber(DbPage*); + int sqlite3PagerIswriteable(DbPage*); +#endif +#ifdef SQLITE_TEST + int *sqlite3PagerStats(Pager*); + void sqlite3PagerRefdump(Pager*); + void disable_simulated_io_errors(void); + void enable_simulated_io_errors(void); +#else +# define disable_simulated_io_errors() +# define enable_simulated_io_errors() +#endif + +#endif /* _PAGER_H_ */ diff --git a/src/parse.y b/src/parse.y new file mode 100644 index 0000000..92abd5c --- /dev/null +++ b/src/parse.y @@ -0,0 +1,1371 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains SQLite's grammar for SQL. Process this file +** using the lemon parser generator to generate C code that runs +** the parser. Lemon will also generate a header file containing +** numeric codes for all of the tokens. +*/ + +// All token codes are small integers with #defines that begin with "TK_" +%token_prefix TK_ + +// The type of the data attached to each token is Token. This is also the +// default type for non-terminals. +// +%token_type {Token} +%default_type {Token} + +// The generated parser function takes a 4th argument as follows: +%extra_argument {Parse *pParse} + +// This code runs whenever there is a syntax error +// +%syntax_error { + UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ + assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ + sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); + pParse->parseError = 1; +} +%stack_overflow { + UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ + sqlite3ErrorMsg(pParse, "parser stack overflow"); + pParse->parseError = 1; +} + +// The name of the generated procedure that implements the parser +// is as follows: +%name sqlite3Parser + +// The following text is included near the beginning of the C source +// code file that implements the parser. +// +%include { +#include "sqliteInt.h" + +/* +** Disable all error recovery processing in the parser push-down +** automaton. +*/ +#define YYNOERRORRECOVERY 1 + +/* +** Make yytestcase() the same as testcase() +*/ +#define yytestcase(X) testcase(X) + +/* +** An instance of this structure holds information about the +** LIMIT clause of a SELECT statement. +*/ +struct LimitVal { + Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ + Expr *pOffset; /* The OFFSET expression. NULL if there is none */ +}; + +/* +** An instance of this structure is used to store the LIKE, +** GLOB, NOT LIKE, and NOT GLOB operators. +*/ +struct LikeOp { + Token eOperator; /* "like" or "glob" or "regexp" */ + int not; /* True if the NOT keyword is present */ +}; + +/* +** An instance of the following structure describes the event of a +** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, +** TK_DELETE, or TK_INSTEAD. If the event is of the form +** +** UPDATE ON (a,b,c) +** +** Then the "b" IdList records the list "a,b,c". +*/ +struct TrigEvent { int a; IdList * b; }; + +/* +** An instance of this structure holds the ATTACH key and the key type. +*/ +struct AttachKey { int type; Token key; }; + +} // end %include + +// Input is a single SQL command +input ::= cmdlist. +cmdlist ::= cmdlist ecmd. +cmdlist ::= ecmd. +ecmd ::= SEMI. +ecmd ::= explain cmdx SEMI. +explain ::= . { sqlite3BeginParse(pParse, 0); } +%ifndef SQLITE_OMIT_EXPLAIN +explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } +explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } +%endif SQLITE_OMIT_EXPLAIN +cmdx ::= cmd. { sqlite3FinishCoding(pParse); } + +///////////////////// Begin and end transactions. //////////////////////////// +// + +cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} +trans_opt ::= . +trans_opt ::= TRANSACTION. +trans_opt ::= TRANSACTION nm. +%type transtype {int} +transtype(A) ::= . {A = TK_DEFERRED;} +transtype(A) ::= DEFERRED(X). {A = @X;} +transtype(A) ::= IMMEDIATE(X). {A = @X;} +transtype(A) ::= EXCLUSIVE(X). {A = @X;} +cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} +cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} +cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} + +savepoint_opt ::= SAVEPOINT. +savepoint_opt ::= . +cmd ::= SAVEPOINT nm(X). { + sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); +} +cmd ::= RELEASE savepoint_opt nm(X). { + sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); +} +cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { + sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); +} + +///////////////////// The CREATE TABLE statement //////////////////////////// +// +cmd ::= create_table create_table_args. +create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { + sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); +} +createkw(A) ::= CREATE(X). { + pParse->db->lookaside.bEnabled = 0; + A = X; +} +%type ifnotexists {int} +ifnotexists(A) ::= . {A = 0;} +ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} +%type temp {int} +%ifndef SQLITE_OMIT_TEMPDB +temp(A) ::= TEMP. {A = 1;} +%endif SQLITE_OMIT_TEMPDB +temp(A) ::= . {A = 0;} +create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { + sqlite3EndTable(pParse,&X,&Y,0); +} +create_table_args ::= AS select(S). { + sqlite3EndTable(pParse,0,0,S); + sqlite3SelectDelete(pParse->db, S); +} +columnlist ::= columnlist COMMA column. +columnlist ::= column. + +// A "column" is a complete description of a single column in a +// CREATE TABLE statement. This includes the column name, its +// datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, +// NOT NULL and so forth. +// +column(A) ::= columnid(X) type carglist. { + A.z = X.z; + A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; +} +columnid(A) ::= nm(X). { + sqlite3AddColumn(pParse,&X); + A = X; +} + + +// An IDENTIFIER can be a generic identifier, or one of several +// keywords. Any non-standard keyword can also be an identifier. +// +%type id {Token} +id(A) ::= ID(X). {A = X;} +id(A) ::= INDEXED(X). {A = X;} + +// The following directive causes tokens ABORT, AFTER, ASC, etc. to +// fallback to ID if they will not parse as their original value. +// This obviates the need for the "id" nonterminal. +// +%fallback ID + ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW + CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR + IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN + QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK + SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL +%ifdef SQLITE_OMIT_COMPOUND_SELECT + EXCEPT INTERSECT UNION +%endif SQLITE_OMIT_COMPOUND_SELECT + REINDEX RENAME CTIME_KW IF + . +%wildcard ANY. + +// Define operator precedence early so that this is the first occurance +// of the operator tokens in the grammer. Keeping the operators together +// causes them to be assigned integer values that are close together, +// which keeps parser tables smaller. +// +// The token values assigned to these symbols is determined by the order +// in which lemon first sees them. It must be the case that ISNULL/NOTNULL, +// NE/EQ, GT/LE, and GE/LT are separated by only a single value. See +// the sqlite3ExprIfFalse() routine for additional information on this +// constraint. +// +%left OR. +%left AND. +%right NOT. +%left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. +%left GT LE LT GE. +%right ESCAPE. +%left BITAND BITOR LSHIFT RSHIFT. +%left PLUS MINUS. +%left STAR SLASH REM. +%left CONCAT. +%left COLLATE. +%right BITNOT. + +// And "ids" is an identifer-or-string. +// +%type ids {Token} +ids(A) ::= ID|STRING(X). {A = X;} + +// The name of a column or table can be any of the following: +// +%type nm {Token} +nm(A) ::= id(X). {A = X;} +nm(A) ::= STRING(X). {A = X;} +nm(A) ::= JOIN_KW(X). {A = X;} + +// A typetoken is really one or more tokens that form a type name such +// as can be found after the column name in a CREATE TABLE statement. +// Multiple tokens are concatenated to form the value of the typetoken. +// +%type typetoken {Token} +type ::= . +type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} +typetoken(A) ::= typename(X). {A = X;} +typetoken(A) ::= typename(X) LP signed RP(Y). { + A.z = X.z; + A.n = (int)(&Y.z[Y.n] - X.z); +} +typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { + A.z = X.z; + A.n = (int)(&Y.z[Y.n] - X.z); +} +%type typename {Token} +typename(A) ::= ids(X). {A = X;} +typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} +signed ::= plus_num. +signed ::= minus_num. + +// "carglist" is a list of additional constraints that come after the +// column name and column type in a CREATE TABLE statement. +// +carglist ::= carglist carg. +carglist ::= . +carg ::= CONSTRAINT nm ccons. +carg ::= ccons. +ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} +ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} +ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} +ccons ::= DEFAULT MINUS(A) term(X). { + ExprSpan v; + v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); + v.zStart = A.z; + v.zEnd = X.zEnd; + sqlite3AddDefaultValue(pParse,&v); +} +ccons ::= DEFAULT id(X). { + ExprSpan v; + spanExpr(&v, pParse, TK_STRING, &X); + sqlite3AddDefaultValue(pParse,&v); +} + +// In addition to the type name, we also care about the primary key and +// UNIQUE constraints. +// +ccons ::= NULL onconf. +ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} +ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). + {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} +ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} +ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} +ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). + {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} +ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} +ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} + +// The optional AUTOINCREMENT keyword +%type autoinc {int} +autoinc(X) ::= . {X = 0;} +autoinc(X) ::= AUTOINCR. {X = 1;} + +// The next group of rules parses the arguments to a REFERENCES clause +// that determine if the referential integrity checking is deferred or +// or immediate and which determine what action to take if a ref-integ +// check fails. +// +%type refargs {int} +refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} +refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } +%type refarg {struct {int value; int mask;}} +refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } +refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } +refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } +refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } +%type refact {int} +refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} +refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} +refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} +refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} +refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} +%type defer_subclause {int} +defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} +defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} +%type init_deferred_pred_opt {int} +init_deferred_pred_opt(A) ::= . {A = 0;} +init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} +init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} + +// For the time being, the only constraint we care about is the primary +// key and UNIQUE. Both create indices. +// +conslist_opt(A) ::= . {A.n = 0; A.z = 0;} +conslist_opt(A) ::= COMMA(X) conslist. {A = X;} +conslist ::= conslist COMMA tcons. +conslist ::= conslist tcons. +conslist ::= tcons. +tcons ::= CONSTRAINT nm. +tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). + {sqlite3AddPrimaryKey(pParse,X,R,I,0);} +tcons ::= UNIQUE LP idxlist(X) RP onconf(R). + {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} +tcons ::= CHECK LP expr(E) RP onconf. + {sqlite3AddCheckConstraint(pParse,E.pExpr);} +tcons ::= FOREIGN KEY LP idxlist(FA) RP + REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { + sqlite3CreateForeignKey(pParse, FA, &T, TA, R); + sqlite3DeferForeignKey(pParse, D); +} +%type defer_subclause_opt {int} +defer_subclause_opt(A) ::= . {A = 0;} +defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} + +// The following is a non-standard extension that allows us to declare the +// default behavior when there is a constraint conflict. +// +%type onconf {int} +%type orconf {u8} +%type resolvetype {int} +onconf(A) ::= . {A = OE_Default;} +onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} +orconf(A) ::= . {A = OE_Default;} +orconf(A) ::= OR resolvetype(X). {A = (u8)X;} +resolvetype(A) ::= raisetype(X). {A = X;} +resolvetype(A) ::= IGNORE. {A = OE_Ignore;} +resolvetype(A) ::= REPLACE. {A = OE_Replace;} + +////////////////////////// The DROP TABLE ///////////////////////////////////// +// +cmd ::= DROP TABLE ifexists(E) fullname(X). { + sqlite3DropTable(pParse, X, 0, E); +} +%type ifexists {int} +ifexists(A) ::= IF EXISTS. {A = 1;} +ifexists(A) ::= . {A = 0;} + +///////////////////// The CREATE VIEW statement ///////////////////////////// +// +%ifndef SQLITE_OMIT_VIEW +cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { + sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); +} +cmd ::= DROP VIEW ifexists(E) fullname(X). { + sqlite3DropTable(pParse, X, 1, E); +} +%endif SQLITE_OMIT_VIEW + +//////////////////////// The SELECT statement ///////////////////////////////// +// +cmd ::= select(X). { + SelectDest dest = {SRT_Output, 0, 0, 0, 0}; + sqlite3Select(pParse, X, &dest); + sqlite3SelectDelete(pParse->db, X); +} + +%type select {Select*} +%destructor select {sqlite3SelectDelete(pParse->db, $$);} +%type oneselect {Select*} +%destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} + +select(A) ::= oneselect(X). {A = X;} +%ifndef SQLITE_OMIT_COMPOUND_SELECT +select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { + if( Z ){ + Z->op = (u8)Y; + Z->pPrior = X; + }else{ + sqlite3SelectDelete(pParse->db, X); + } + A = Z; +} +%type multiselect_op {int} +multiselect_op(A) ::= UNION(OP). {A = @OP;} +multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} +multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} +%endif SQLITE_OMIT_COMPOUND_SELECT +oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) + groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { + A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); +} + +// The "distinct" nonterminal is true (1) if the DISTINCT keyword is +// present and false (0) if it is not. +// +%type distinct {int} +distinct(A) ::= DISTINCT. {A = 1;} +distinct(A) ::= ALL. {A = 0;} +distinct(A) ::= . {A = 0;} + +// selcollist is a list of expressions that are to become the return +// values of the SELECT statement. The "*" in statements like +// "SELECT * FROM ..." is encoded as a special expression with an +// opcode of TK_ALL. +// +%type selcollist {ExprList*} +%destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} +%type sclp {ExprList*} +%destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} +sclp(A) ::= selcollist(X) COMMA. {A = X;} +sclp(A) ::= . {A = 0;} +selcollist(A) ::= sclp(P) expr(X) as(Y). { + A = sqlite3ExprListAppend(pParse, P, X.pExpr); + if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); + sqlite3ExprListSetSpan(pParse,A,&X); +} +selcollist(A) ::= sclp(P) STAR. { + Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); + A = sqlite3ExprListAppend(pParse, P, p); +} +selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { + Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); + Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); + Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); + A = sqlite3ExprListAppend(pParse,P, pDot); +} + +// An option "AS " phrase that can follow one of the expressions that +// define the result set, or one of the tables in the FROM clause. +// +%type as {Token} +as(X) ::= AS nm(Y). {X = Y;} +as(X) ::= ids(Y). {X = Y;} +as(X) ::= . {X.n = 0;} + + +%type seltablist {SrcList*} +%destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} +%type stl_prefix {SrcList*} +%destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} +%type from {SrcList*} +%destructor from {sqlite3SrcListDelete(pParse->db, $$);} + +// A complete FROM clause. +// +from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} +from(A) ::= FROM seltablist(X). { + A = X; + sqlite3SrcListShiftJoinType(A); +} + +// "seltablist" is a "Select Table List" - the content of the FROM clause +// in a SELECT statement. "stl_prefix" is a prefix of this list. +// +stl_prefix(A) ::= seltablist(X) joinop(Y). { + A = X; + if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; +} +stl_prefix(A) ::= . {A = 0;} +seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). { + A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); + sqlite3SrcListIndexedBy(pParse, A, &I); +} +%ifndef SQLITE_OMIT_SUBQUERY + seltablist(A) ::= stl_prefix(X) LP select(S) RP + as(Z) on_opt(N) using_opt(U). { + A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); + } + seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP + as(Z) on_opt(N) using_opt(U). { + if( X==0 && Z.n==0 && N==0 && U==0 ){ + A = F; + }else{ + Select *pSubquery; + sqlite3SrcListShiftJoinType(F); + pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); + A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); + } + } + + // A seltablist_paren nonterminal represents anything in a FROM that + // is contained inside parentheses. This can be either a subquery or + // a grouping of table and subqueries. + // +// %type seltablist_paren {Select*} +// %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);} +// seltablist_paren(A) ::= select(S). {A = S;} +// seltablist_paren(A) ::= seltablist(F). { +// sqlite3SrcListShiftJoinType(F); +// A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); +// } +%endif SQLITE_OMIT_SUBQUERY + +%type dbnm {Token} +dbnm(A) ::= . {A.z=0; A.n=0;} +dbnm(A) ::= DOT nm(X). {A = X;} + +%type fullname {SrcList*} +%destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} +fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} + +%type joinop {int} +%type joinop2 {int} +joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } +joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } +joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } +joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. + { X = sqlite3JoinType(pParse,&A,&B,&C); } + +%type on_opt {Expr*} +%destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} +on_opt(N) ::= ON expr(E). {N = E.pExpr;} +on_opt(N) ::= . {N = 0;} + +// Note that this block abuses the Token type just a little. If there is +// no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If +// there is an INDEXED BY clause, then the token is populated as per normal, +// with z pointing to the token data and n containing the number of bytes +// in the token. +// +// If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is +// normally illegal. The sqlite3SrcListIndexedBy() function +// recognizes and interprets this as a special case. +// +%type indexed_opt {Token} +indexed_opt(A) ::= . {A.z=0; A.n=0;} +indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} +indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} + +%type using_opt {IdList*} +%destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} +using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} +using_opt(U) ::= . {U = 0;} + + +%type orderby_opt {ExprList*} +%destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} +%type sortlist {ExprList*} +%destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} +%type sortitem {Expr*} +%destructor sortitem {sqlite3ExprDelete(pParse->db, $$);} + +orderby_opt(A) ::= . {A = 0;} +orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} +sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). { + A = sqlite3ExprListAppend(pParse,X,Y); + if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; +} +sortlist(A) ::= sortitem(Y) sortorder(Z). { + A = sqlite3ExprListAppend(pParse,0,Y); + if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; +} +sortitem(A) ::= expr(X). {A = X.pExpr;} + +%type sortorder {int} + +sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} +sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} +sortorder(A) ::= . {A = SQLITE_SO_ASC;} + +%type groupby_opt {ExprList*} +%destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} +groupby_opt(A) ::= . {A = 0;} +groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} + +%type having_opt {Expr*} +%destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} +having_opt(A) ::= . {A = 0;} +having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} + +%type limit_opt {struct LimitVal} + +// The destructor for limit_opt will never fire in the current grammar. +// The limit_opt non-terminal only occurs at the end of a single production +// rule for SELECT statements. As soon as the rule that create the +// limit_opt non-terminal reduces, the SELECT statement rule will also +// reduce. So there is never a limit_opt non-terminal on the stack +// except as a transient. So there is never anything to destroy. +// +//%destructor limit_opt { +// sqlite3ExprDelete(pParse->db, $$.pLimit); +// sqlite3ExprDelete(pParse->db, $$.pOffset); +//} +limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} +limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} +limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). + {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} +limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). + {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} + +/////////////////////////// The DELETE statement ///////////////////////////// +// +%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT +cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W) + orderby_opt(O) limit_opt(L). { + sqlite3SrcListIndexedBy(pParse, X, &I); + W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); + sqlite3DeleteFrom(pParse,X,W); +} +%endif +%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT +cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { + sqlite3SrcListIndexedBy(pParse, X, &I); + sqlite3DeleteFrom(pParse,X,W); +} +%endif + +%type where_opt {Expr*} +%destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} + +where_opt(A) ::= . {A = 0;} +where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} + +////////////////////////// The UPDATE command //////////////////////////////// +// +%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT +cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). { + sqlite3SrcListIndexedBy(pParse, X, &I); + sqlite3ExprListCheckLength(pParse,Y,"set list"); + W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); + sqlite3Update(pParse,X,Y,W,R); +} +%endif +%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT +cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). { + sqlite3SrcListIndexedBy(pParse, X, &I); + sqlite3ExprListCheckLength(pParse,Y,"set list"); + sqlite3Update(pParse,X,Y,W,R); +} +%endif + +%type setlist {ExprList*} +%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} + +setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { + A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); + sqlite3ExprListSetName(pParse, A, &X, 1); +} +setlist(A) ::= nm(X) EQ expr(Y). { + A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); + sqlite3ExprListSetName(pParse, A, &X, 1); +} + +////////////////////////// The INSERT command ///////////////////////////////// +// +cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) + VALUES LP itemlist(Y) RP. + {sqlite3Insert(pParse, X, Y, 0, F, R);} +cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). + {sqlite3Insert(pParse, X, 0, S, F, R);} +cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. + {sqlite3Insert(pParse, X, 0, 0, F, R);} + +%type insert_cmd {u8} +insert_cmd(A) ::= INSERT orconf(R). {A = R;} +insert_cmd(A) ::= REPLACE. {A = OE_Replace;} + + +%type itemlist {ExprList*} +%destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);} + +itemlist(A) ::= itemlist(X) COMMA expr(Y). + {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} +itemlist(A) ::= expr(X). + {A = sqlite3ExprListAppend(pParse,0,X.pExpr);} + +%type inscollist_opt {IdList*} +%destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} +%type inscollist {IdList*} +%destructor inscollist {sqlite3IdListDelete(pParse->db, $$);} + +inscollist_opt(A) ::= . {A = 0;} +inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} +inscollist(A) ::= inscollist(X) COMMA nm(Y). + {A = sqlite3IdListAppend(pParse->db,X,&Y);} +inscollist(A) ::= nm(Y). + {A = sqlite3IdListAppend(pParse->db,0,&Y);} + +/////////////////////////// Expression Processing ///////////////////////////// +// + +%type expr {ExprSpan} +%destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} +%type term {ExprSpan} +%destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} + +%include { + /* This is a utility routine used to set the ExprSpan.zStart and + ** ExprSpan.zEnd values of pOut so that the span covers the complete + ** range of text beginning with pStart and going to the end of pEnd. + */ + static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ + pOut->zStart = pStart->z; + pOut->zEnd = &pEnd->z[pEnd->n]; + } + + /* Construct a new Expr object from a single identifier. Use the + ** new Expr to populate pOut. Set the span of pOut to be the identifier + ** that created the expression. + */ + static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ + pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); + pOut->zStart = pValue->z; + pOut->zEnd = &pValue->z[pValue->n]; + } +} + +expr(A) ::= term(X). {A = X;} +expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} +term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} +expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} +expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} +expr(A) ::= nm(X) DOT nm(Y). { + Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); + Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); + A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); + spanSet(&A,&X,&Y); +} +expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { + Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); + Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); + Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); + Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); + A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); + spanSet(&A,&X,&Z); +} +term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} +term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} +expr(A) ::= REGISTER(X). { + /* When doing a nested parse, one can include terms in an expression + ** that look like this: #1 #2 ... These terms refer to registers + ** in the virtual machine. #N is the N-th register. */ + if( pParse->nested==0 ){ + sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); + A.pExpr = 0; + }else{ + A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); + if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); + } + spanSet(&A, &X, &X); +} +expr(A) ::= VARIABLE(X). { + spanExpr(&A, pParse, TK_VARIABLE, &X); + sqlite3ExprAssignVarNumber(pParse, A.pExpr); + spanSet(&A, &X, &X); +} +expr(A) ::= expr(E) COLLATE ids(C). { + A.pExpr = sqlite3ExprSetCollByToken(pParse, E.pExpr, &C); + A.zStart = E.zStart; + A.zEnd = &C.z[C.n]; +} +%ifndef SQLITE_OMIT_CAST +expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { + A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); + spanSet(&A,&X,&Y); +} +%endif SQLITE_OMIT_CAST +expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { + if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ + sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); + } + A.pExpr = sqlite3ExprFunction(pParse, Y, &X); + spanSet(&A,&X,&E); + if( D && A.pExpr ){ + A.pExpr->flags |= EP_Distinct; + } +} +expr(A) ::= ID(X) LP STAR RP(E). { + A.pExpr = sqlite3ExprFunction(pParse, 0, &X); + spanSet(&A,&X,&E); +} +term(A) ::= CTIME_KW(OP). { + /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are + ** treated as functions that return constants */ + A.pExpr = sqlite3ExprFunction(pParse, 0,&OP); + if( A.pExpr ){ + A.pExpr->op = TK_CONST_FUNC; + } + spanSet(&A, &OP, &OP); +} + +%include { + /* This routine constructs a binary expression node out of two ExprSpan + ** objects and uses the result to populate a new ExprSpan object. + */ + static void spanBinaryExpr( + ExprSpan *pOut, /* Write the result here */ + Parse *pParse, /* The parsing context. Errors accumulate here */ + int op, /* The binary operation */ + ExprSpan *pLeft, /* The left operand */ + ExprSpan *pRight /* The right operand */ + ){ + pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); + pOut->zStart = pLeft->zStart; + pOut->zEnd = pRight->zEnd; + } +} + +expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} +expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} +expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). + {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} +expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} +expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). + {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} +expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). + {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} +expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). + {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} +expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} +%type likeop {struct LikeOp} +likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;} +likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;} +likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;} +likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;} +expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { + ExprList *pList; + pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); + pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); + A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); + if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); + A.zStart = X.zStart; + A.zEnd = Y.zEnd; + if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; +} +expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { + ExprList *pList; + pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); + pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); + pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); + A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); + if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); + A.zStart = X.zStart; + A.zEnd = E.zEnd; + if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; +} + +%include { + /* Construct an expression node for a unary postfix operator + */ + static void spanUnaryPostfix( + ExprSpan *pOut, /* Write the new expression node here */ + Parse *pParse, /* Parsing context to record errors */ + int op, /* The operator */ + ExprSpan *pOperand, /* The operand */ + Token *pPostOp /* The operand token for setting the span */ + ){ + pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); + pOut->zStart = pOperand->zStart; + pOut->zEnd = &pPostOp->z[pPostOp->n]; + } +} + +expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} +expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} + +%include { + /* A routine to convert a binary TK_IS or TK_ISNOT expression into a + ** unary TK_ISNULL or TK_NOTNULL expression. */ + static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ + sqlite3 *db = pParse->db; + if( db->mallocFailed==0 && pY->op==TK_NULL ){ + pA->op = (u8)op; + sqlite3ExprDelete(db, pA->pRight); + pA->pRight = 0; + } + } +} + +// expr1 IS expr2 +// expr1 IS NOT expr2 +// +// If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 +// is any other expression, code as TK_IS or TK_ISNOT. +// +expr(A) ::= expr(X) IS expr(Y). { + spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); + binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); +} +expr(A) ::= expr(X) IS NOT expr(Y). { + spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); + binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); +} + +%include { + /* Construct an expression node for a unary prefix operator + */ + static void spanUnaryPrefix( + ExprSpan *pOut, /* Write the new expression node here */ + Parse *pParse, /* Parsing context to record errors */ + int op, /* The operator */ + ExprSpan *pOperand, /* The operand */ + Token *pPreOp /* The operand token for setting the span */ + ){ + pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); + pOut->zStart = pPreOp->z; + pOut->zEnd = pOperand->zEnd; + } +} + + + +expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} +expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} +expr(A) ::= MINUS(B) expr(X). [BITNOT] + {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} +expr(A) ::= PLUS(B) expr(X). [BITNOT] + {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} + +%type between_op {int} +between_op(A) ::= BETWEEN. {A = 0;} +between_op(A) ::= NOT BETWEEN. {A = 1;} +expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { + ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); + pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); + A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); + if( A.pExpr ){ + A.pExpr->x.pList = pList; + }else{ + sqlite3ExprListDelete(pParse->db, pList); + } + if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); + A.zStart = W.zStart; + A.zEnd = Y.zEnd; +} +%ifndef SQLITE_OMIT_SUBQUERY + %type in_op {int} + in_op(A) ::= IN. {A = 0;} + in_op(A) ::= NOT IN. {A = 1;} + expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { + if( Y==0 ){ + /* Expressions of the form + ** + ** expr1 IN () + ** expr1 NOT IN () + ** + ** simplify to constants 0 (false) and 1 (true), respectively, + ** regardless of the value of expr1. + */ + A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); + sqlite3ExprDelete(pParse->db, X.pExpr); + }else{ + A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); + if( A.pExpr ){ + A.pExpr->x.pList = Y; + sqlite3ExprSetHeight(pParse, A.pExpr); + }else{ + sqlite3ExprListDelete(pParse->db, Y); + } + if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); + } + A.zStart = X.zStart; + A.zEnd = &E.z[E.n]; + } + expr(A) ::= LP(B) select(X) RP(E). { + A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); + if( A.pExpr ){ + A.pExpr->x.pSelect = X; + ExprSetProperty(A.pExpr, EP_xIsSelect); + sqlite3ExprSetHeight(pParse, A.pExpr); + }else{ + sqlite3SelectDelete(pParse->db, X); + } + A.zStart = B.z; + A.zEnd = &E.z[E.n]; + } + expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { + A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); + if( A.pExpr ){ + A.pExpr->x.pSelect = Y; + ExprSetProperty(A.pExpr, EP_xIsSelect); + sqlite3ExprSetHeight(pParse, A.pExpr); + }else{ + sqlite3SelectDelete(pParse->db, Y); + } + if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); + A.zStart = X.zStart; + A.zEnd = &E.z[E.n]; + } + expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { + SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); + A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); + if( A.pExpr ){ + A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); + ExprSetProperty(A.pExpr, EP_xIsSelect); + sqlite3ExprSetHeight(pParse, A.pExpr); + }else{ + sqlite3SrcListDelete(pParse->db, pSrc); + } + if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); + A.zStart = X.zStart; + A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; + } + expr(A) ::= EXISTS(B) LP select(Y) RP(E). { + Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); + if( p ){ + p->x.pSelect = Y; + ExprSetProperty(p, EP_xIsSelect); + sqlite3ExprSetHeight(pParse, p); + }else{ + sqlite3SelectDelete(pParse->db, Y); + } + A.zStart = B.z; + A.zEnd = &E.z[E.n]; + } +%endif SQLITE_OMIT_SUBQUERY + +/* CASE expressions */ +expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { + A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); + if( A.pExpr ){ + A.pExpr->x.pList = Y; + sqlite3ExprSetHeight(pParse, A.pExpr); + }else{ + sqlite3ExprListDelete(pParse->db, Y); + } + A.zStart = C.z; + A.zEnd = &E.z[E.n]; +} +%type case_exprlist {ExprList*} +%destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} +case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { + A = sqlite3ExprListAppend(pParse,X, Y.pExpr); + A = sqlite3ExprListAppend(pParse,A, Z.pExpr); +} +case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { + A = sqlite3ExprListAppend(pParse,0, Y.pExpr); + A = sqlite3ExprListAppend(pParse,A, Z.pExpr); +} +%type case_else {Expr*} +%destructor case_else {sqlite3ExprDelete(pParse->db, $$);} +case_else(A) ::= ELSE expr(X). {A = X.pExpr;} +case_else(A) ::= . {A = 0;} +%type case_operand {Expr*} +%destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} +case_operand(A) ::= expr(X). {A = X.pExpr;} +case_operand(A) ::= . {A = 0;} + +%type exprlist {ExprList*} +%destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} +%type nexprlist {ExprList*} +%destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} + +exprlist(A) ::= nexprlist(X). {A = X;} +exprlist(A) ::= . {A = 0;} +nexprlist(A) ::= nexprlist(X) COMMA expr(Y). + {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} +nexprlist(A) ::= expr(Y). + {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} + + +///////////////////////////// The CREATE INDEX command /////////////////////// +// +cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) + ON nm(Y) LP idxlist(Z) RP(E). { + sqlite3CreateIndex(pParse, &X, &D, + sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, + &S, &E, SQLITE_SO_ASC, NE); +} + +%type uniqueflag {int} +uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} +uniqueflag(A) ::= . {A = OE_None;} + +%type idxlist {ExprList*} +%destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} +%type idxlist_opt {ExprList*} +%destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} + +idxlist_opt(A) ::= . {A = 0;} +idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} +idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { + Expr *p = 0; + if( C.n>0 ){ + p = sqlite3Expr(pParse->db, TK_COLUMN, 0); + sqlite3ExprSetCollByToken(pParse, p, &C); + } + A = sqlite3ExprListAppend(pParse,X, p); + sqlite3ExprListSetName(pParse,A,&Y,1); + sqlite3ExprListCheckLength(pParse, A, "index"); + if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; +} +idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { + Expr *p = 0; + if( C.n>0 ){ + p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); + sqlite3ExprSetCollByToken(pParse, p, &C); + } + A = sqlite3ExprListAppend(pParse,0, p); + sqlite3ExprListSetName(pParse, A, &Y, 1); + sqlite3ExprListCheckLength(pParse, A, "index"); + if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; +} + +%type collate {Token} +collate(C) ::= . {C.z = 0; C.n = 0;} +collate(C) ::= COLLATE ids(X). {C = X;} + + +///////////////////////////// The DROP INDEX command ///////////////////////// +// +cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} + +///////////////////////////// The VACUUM command ///////////////////////////// +// +%ifndef SQLITE_OMIT_VACUUM +%ifndef SQLITE_OMIT_ATTACH +cmd ::= VACUUM. {sqlite3Vacuum(pParse);} +cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} +%endif SQLITE_OMIT_ATTACH +%endif SQLITE_OMIT_VACUUM + +///////////////////////////// The PRAGMA command ///////////////////////////// +// +%ifndef SQLITE_OMIT_PRAGMA +cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} +cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} +cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} +cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). + {sqlite3Pragma(pParse,&X,&Z,&Y,1);} +cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. + {sqlite3Pragma(pParse,&X,&Z,&Y,1);} + +nmnum(A) ::= plus_num(X). {A = X;} +nmnum(A) ::= nm(X). {A = X;} +nmnum(A) ::= ON(X). {A = X;} +nmnum(A) ::= DELETE(X). {A = X;} +nmnum(A) ::= DEFAULT(X). {A = X;} +%endif SQLITE_OMIT_PRAGMA +plus_num(A) ::= plus_opt number(X). {A = X;} +minus_num(A) ::= MINUS number(X). {A = X;} +number(A) ::= INTEGER|FLOAT(X). {A = X;} +plus_opt ::= PLUS. +plus_opt ::= . + +//////////////////////////// The CREATE TRIGGER command ///////////////////// + +%ifndef SQLITE_OMIT_TRIGGER + +cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { + Token all; + all.z = A.z; + all.n = (int)(Z.z - A.z) + Z.n; + sqlite3FinishTrigger(pParse, S, &all); +} + +trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) + trigger_time(C) trigger_event(D) + ON fullname(E) foreach_clause when_clause(G). { + sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); + A = (Z.n==0?B:Z); +} + +%type trigger_time {int} +trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } +trigger_time(A) ::= AFTER. { A = TK_AFTER; } +trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} +trigger_time(A) ::= . { A = TK_BEFORE; } + +%type trigger_event {struct TrigEvent} +%destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} +trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} +trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} +trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} + +foreach_clause ::= . +foreach_clause ::= FOR EACH ROW. + +%type when_clause {Expr*} +%destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} +when_clause(A) ::= . { A = 0; } +when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } + +%type trigger_cmd_list {TriggerStep*} +%destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} +trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { + assert( Y!=0 ); + Y->pLast->pNext = X; + Y->pLast = X; + A = Y; +} +trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { + assert( X!=0 ); + X->pLast = X; + A = X; +} + +// Disallow qualified table names on INSERT, UPDATE, and DELETE statements +// within a trigger. The table to INSERT, UPDATE, or DELETE is always in +// the same database as the table that the trigger fires on. +// +%type trnm {Token} +trnm(A) ::= nm(X). {A = X;} +trnm(A) ::= nm DOT nm(X). { + A = X; + sqlite3ErrorMsg(pParse, + "qualified table names are not allowed on INSERT, UPDATE, and DELETE " + "statements within triggers"); +} + +// Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE +// statements within triggers. We make a specific error message for this +// since it is an exception to the default grammar rules. +// +tridxby ::= . +tridxby ::= INDEXED BY nm. { + sqlite3ErrorMsg(pParse, + "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " + "within triggers"); +} +tridxby ::= NOT INDEXED. { + sqlite3ErrorMsg(pParse, + "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " + "within triggers"); +} + + + +%type trigger_cmd {TriggerStep*} +%destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} +// UPDATE +trigger_cmd(A) ::= + UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). + { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } + +// INSERT +trigger_cmd(A) ::= + insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. + {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);} + +trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). + {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} + +// DELETE +trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). + {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} + +// SELECT +trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } + +// The special RAISE expression that may occur in trigger programs +expr(A) ::= RAISE(X) LP IGNORE RP(Y). { + A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); + if( A.pExpr ){ + A.pExpr->affinity = OE_Ignore; + } + A.zStart = X.z; + A.zEnd = &Y.z[Y.n]; +} +expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { + A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); + if( A.pExpr ) { + A.pExpr->affinity = (char)T; + } + A.zStart = X.z; + A.zEnd = &Y.z[Y.n]; +} +%endif !SQLITE_OMIT_TRIGGER + +%type raisetype {int} +raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} +raisetype(A) ::= ABORT. {A = OE_Abort;} +raisetype(A) ::= FAIL. {A = OE_Fail;} + + +//////////////////////// DROP TRIGGER statement ////////////////////////////// +%ifndef SQLITE_OMIT_TRIGGER +cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { + sqlite3DropTrigger(pParse,X,NOERR); +} +%endif !SQLITE_OMIT_TRIGGER + +//////////////////////// ATTACH DATABASE file AS name ///////////////////////// +%ifndef SQLITE_OMIT_ATTACH +cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { + sqlite3Attach(pParse, F.pExpr, D.pExpr, K); +} +cmd ::= DETACH database_kw_opt expr(D). { + sqlite3Detach(pParse, D.pExpr); +} + +%type key_opt {Expr*} +%destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} +key_opt(A) ::= . { A = 0; } +key_opt(A) ::= KEY expr(X). { A = X.pExpr; } + +database_kw_opt ::= DATABASE. +database_kw_opt ::= . +%endif SQLITE_OMIT_ATTACH + +////////////////////////// REINDEX collation ////////////////////////////////// +%ifndef SQLITE_OMIT_REINDEX +cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} +cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} +%endif SQLITE_OMIT_REINDEX + +/////////////////////////////////// ANALYZE /////////////////////////////////// +%ifndef SQLITE_OMIT_ANALYZE +cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} +cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} +%endif + +//////////////////////// ALTER TABLE table ... //////////////////////////////// +%ifndef SQLITE_OMIT_ALTERTABLE +cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { + sqlite3AlterRenameTable(pParse,X,&Z); +} +cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { + sqlite3AlterFinishAddColumn(pParse, &Y); +} +add_column_fullname ::= fullname(X). { + pParse->db->lookaside.bEnabled = 0; + sqlite3AlterBeginAddColumn(pParse, X); +} +kwcolumn_opt ::= . +kwcolumn_opt ::= COLUMNKW. +%endif SQLITE_OMIT_ALTERTABLE + +//////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// +%ifndef SQLITE_OMIT_VIRTUALTABLE +cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} +cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} +create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). { + sqlite3VtabBeginParse(pParse, &X, &Y, &Z); +} +vtabarglist ::= vtabarg. +vtabarglist ::= vtabarglist COMMA vtabarg. +vtabarg ::= . {sqlite3VtabArgInit(pParse);} +vtabarg ::= vtabarg vtabargtoken. +vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} +vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} +lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} +anylist ::= . +anylist ::= anylist LP anylist RP. +anylist ::= anylist ANY. +%endif SQLITE_OMIT_VIRTUALTABLE diff --git a/src/pcache.c b/src/pcache.c new file mode 100644 index 0000000..f37511e --- /dev/null +++ b/src/pcache.c @@ -0,0 +1,594 @@ +/* +** 2008 August 05 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file implements that page cache. +*/ +#include "sqliteInt.h" + +/* +** A complete page cache is an instance of this structure. +*/ +struct PCache { + PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ + PgHdr *pSynced; /* Last synced page in dirty page list */ + int nRef; /* Number of referenced pages */ + int nMax; /* Configured cache size */ + int szPage; /* Size of every page in this cache */ + int szExtra; /* Size of extra space for each page */ + int bPurgeable; /* True if pages are on backing store */ + int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ + void *pStress; /* Argument to xStress */ + sqlite3_pcache *pCache; /* Pluggable cache module */ + PgHdr *pPage1; /* Reference to page 1 */ +}; + +/* +** Some of the assert() macros in this code are too expensive to run +** even during normal debugging. Use them only rarely on long-running +** tests. Enable the expensive asserts using the +** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option. +*/ +#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT +# define expensive_assert(X) assert(X) +#else +# define expensive_assert(X) +#endif + +/********************************** Linked List Management ********************/ + +#if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT) +/* +** Check that the pCache->pSynced variable is set correctly. If it +** is not, either fail an assert or return zero. Otherwise, return +** non-zero. This is only used in debugging builds, as follows: +** +** expensive_assert( pcacheCheckSynced(pCache) ); +*/ +static int pcacheCheckSynced(PCache *pCache){ + PgHdr *p; + for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){ + assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) ); + } + return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0); +} +#endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */ + +/* +** Remove page pPage from the list of dirty pages. +*/ +static void pcacheRemoveFromDirtyList(PgHdr *pPage){ + PCache *p = pPage->pCache; + + assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); + assert( pPage->pDirtyPrev || pPage==p->pDirty ); + + /* Update the PCache1.pSynced variable if necessary. */ + if( p->pSynced==pPage ){ + PgHdr *pSynced = pPage->pDirtyPrev; + while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){ + pSynced = pSynced->pDirtyPrev; + } + p->pSynced = pSynced; + } + + if( pPage->pDirtyNext ){ + pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; + }else{ + assert( pPage==p->pDirtyTail ); + p->pDirtyTail = pPage->pDirtyPrev; + } + if( pPage->pDirtyPrev ){ + pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; + }else{ + assert( pPage==p->pDirty ); + p->pDirty = pPage->pDirtyNext; + } + pPage->pDirtyNext = 0; + pPage->pDirtyPrev = 0; + + expensive_assert( pcacheCheckSynced(p) ); +} + +/* +** Add page pPage to the head of the dirty list (PCache1.pDirty is set to +** pPage). +*/ +static void pcacheAddToDirtyList(PgHdr *pPage){ + PCache *p = pPage->pCache; + + assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); + + pPage->pDirtyNext = p->pDirty; + if( pPage->pDirtyNext ){ + assert( pPage->pDirtyNext->pDirtyPrev==0 ); + pPage->pDirtyNext->pDirtyPrev = pPage; + } + p->pDirty = pPage; + if( !p->pDirtyTail ){ + p->pDirtyTail = pPage; + } + if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ + p->pSynced = pPage; + } + expensive_assert( pcacheCheckSynced(p) ); +} + +/* +** Wrapper around the pluggable caches xUnpin method. If the cache is +** being used for an in-memory database, this function is a no-op. +*/ +static void pcacheUnpin(PgHdr *p){ + PCache *pCache = p->pCache; + if( pCache->bPurgeable ){ + if( p->pgno==1 ){ + pCache->pPage1 = 0; + } + sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 0); + } +} + +/*************************************************** General Interfaces ****** +** +** Initialize and shutdown the page cache subsystem. Neither of these +** functions are threadsafe. +*/ +int sqlite3PcacheInitialize(void){ + if( sqlite3GlobalConfig.pcache.xInit==0 ){ + /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the + ** built-in default page cache is used instead of the application defined + ** page cache. */ + sqlite3PCacheSetDefault(); + } + return sqlite3GlobalConfig.pcache.xInit(sqlite3GlobalConfig.pcache.pArg); +} +void sqlite3PcacheShutdown(void){ + if( sqlite3GlobalConfig.pcache.xShutdown ){ + /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ + sqlite3GlobalConfig.pcache.xShutdown(sqlite3GlobalConfig.pcache.pArg); + } +} + +/* +** Return the size in bytes of a PCache object. +*/ +int sqlite3PcacheSize(void){ return sizeof(PCache); } + +/* +** Create a new PCache object. Storage space to hold the object +** has already been allocated and is passed in as the p pointer. +** The caller discovers how much space needs to be allocated by +** calling sqlite3PcacheSize(). +*/ +void sqlite3PcacheOpen( + int szPage, /* Size of every page */ + int szExtra, /* Extra space associated with each page */ + int bPurgeable, /* True if pages are on backing store */ + int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ + void *pStress, /* Argument to xStress */ + PCache *p /* Preallocated space for the PCache */ +){ + memset(p, 0, sizeof(PCache)); + p->szPage = szPage; + p->szExtra = szExtra; + p->bPurgeable = bPurgeable; + p->xStress = xStress; + p->pStress = pStress; + p->nMax = 100; +} + +/* +** Change the page size for PCache object. The caller must ensure that there +** are no outstanding page references when this function is called. +*/ +void sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ + assert( pCache->nRef==0 && pCache->pDirty==0 ); + if( pCache->pCache ){ + sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache); + pCache->pCache = 0; + pCache->pPage1 = 0; + } + pCache->szPage = szPage; +} + +/* +** Try to obtain a page from the cache. +*/ +int sqlite3PcacheFetch( + PCache *pCache, /* Obtain the page from this cache */ + Pgno pgno, /* Page number to obtain */ + int createFlag, /* If true, create page if it does not exist already */ + PgHdr **ppPage /* Write the page here */ +){ + PgHdr *pPage = 0; + int eCreate; + + assert( pCache!=0 ); + assert( createFlag==1 || createFlag==0 ); + assert( pgno>0 ); + + /* If the pluggable cache (sqlite3_pcache*) has not been allocated, + ** allocate it now. + */ + if( !pCache->pCache && createFlag ){ + sqlite3_pcache *p; + int nByte; + nByte = pCache->szPage + pCache->szExtra + sizeof(PgHdr); + p = sqlite3GlobalConfig.pcache.xCreate(nByte, pCache->bPurgeable); + if( !p ){ + return SQLITE_NOMEM; + } + sqlite3GlobalConfig.pcache.xCachesize(p, pCache->nMax); + pCache->pCache = p; + } + + eCreate = createFlag * (1 + (!pCache->bPurgeable || !pCache->pDirty)); + if( pCache->pCache ){ + pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, eCreate); + } + + if( !pPage && eCreate==1 ){ + PgHdr *pPg; + + /* Find a dirty page to write-out and recycle. First try to find a + ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC + ** cleared), but if that is not possible settle for any other + ** unreferenced dirty page. + */ + expensive_assert( pcacheCheckSynced(pCache) ); + for(pPg=pCache->pSynced; + pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); + pPg=pPg->pDirtyPrev + ); + pCache->pSynced = pPg; + if( !pPg ){ + for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); + } + if( pPg ){ + int rc; +#ifdef SQLITE_LOG_CACHE_SPILL + sqlite3_log(SQLITE_FULL, + "spill page %d making room for %d - cache used: %d/%d", + pPg->pgno, pgno, + sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), + pCache->nMax); +#endif + rc = pCache->xStress(pCache->pStress, pPg); + if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ + return rc; + } + } + + pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, 2); + } + + if( pPage ){ + if( !pPage->pData ){ + memset(pPage, 0, sizeof(PgHdr)); + pPage->pData = (void *)&pPage[1]; + pPage->pExtra = (void*)&((char *)pPage->pData)[pCache->szPage]; + memset(pPage->pExtra, 0, pCache->szExtra); + pPage->pCache = pCache; + pPage->pgno = pgno; + } + assert( pPage->pCache==pCache ); + assert( pPage->pgno==pgno ); + assert( pPage->pData==(void *)&pPage[1] ); + assert( pPage->pExtra==(void *)&((char *)&pPage[1])[pCache->szPage] ); + + if( 0==pPage->nRef ){ + pCache->nRef++; + } + pPage->nRef++; + if( pgno==1 ){ + pCache->pPage1 = pPage; + } + } + *ppPage = pPage; + return (pPage==0 && eCreate) ? SQLITE_NOMEM : SQLITE_OK; +} + +/* +** Decrement the reference count on a page. If the page is clean and the +** reference count drops to 0, then it is made elible for recycling. +*/ +void sqlite3PcacheRelease(PgHdr *p){ + assert( p->nRef>0 ); + p->nRef--; + if( p->nRef==0 ){ + PCache *pCache = p->pCache; + pCache->nRef--; + if( (p->flags&PGHDR_DIRTY)==0 ){ + pcacheUnpin(p); + }else{ + /* Move the page to the head of the dirty list. */ + pcacheRemoveFromDirtyList(p); + pcacheAddToDirtyList(p); + } + } +} + +/* +** Increase the reference count of a supplied page by 1. +*/ +void sqlite3PcacheRef(PgHdr *p){ + assert(p->nRef>0); + p->nRef++; +} + +/* +** Drop a page from the cache. There must be exactly one reference to the +** page. This function deletes that reference, so after it returns the +** page pointed to by p is invalid. +*/ +void sqlite3PcacheDrop(PgHdr *p){ + PCache *pCache; + assert( p->nRef==1 ); + if( p->flags&PGHDR_DIRTY ){ + pcacheRemoveFromDirtyList(p); + } + pCache = p->pCache; + pCache->nRef--; + if( p->pgno==1 ){ + pCache->pPage1 = 0; + } + sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 1); +} + +/* +** Make sure the page is marked as dirty. If it isn't dirty already, +** make it so. +*/ +void sqlite3PcacheMakeDirty(PgHdr *p){ + p->flags &= ~PGHDR_DONT_WRITE; + assert( p->nRef>0 ); + if( 0==(p->flags & PGHDR_DIRTY) ){ + p->flags |= PGHDR_DIRTY; + pcacheAddToDirtyList( p); + } +} + +/* +** Make sure the page is marked as clean. If it isn't clean already, +** make it so. +*/ +void sqlite3PcacheMakeClean(PgHdr *p){ + if( (p->flags & PGHDR_DIRTY) ){ + pcacheRemoveFromDirtyList(p); + p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC); + if( p->nRef==0 ){ + pcacheUnpin(p); + } + } +} + +/* +** Make every page in the cache clean. +*/ +void sqlite3PcacheCleanAll(PCache *pCache){ + PgHdr *p; + while( (p = pCache->pDirty)!=0 ){ + sqlite3PcacheMakeClean(p); + } +} + +/* +** Clear the PGHDR_NEED_SYNC flag from all dirty pages. +*/ +void sqlite3PcacheClearSyncFlags(PCache *pCache){ + PgHdr *p; + for(p=pCache->pDirty; p; p=p->pDirtyNext){ + p->flags &= ~PGHDR_NEED_SYNC; + } + pCache->pSynced = pCache->pDirtyTail; +} + +/* +** Change the page number of page p to newPgno. +*/ +void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ + PCache *pCache = p->pCache; + assert( p->nRef>0 ); + assert( newPgno>0 ); + sqlite3GlobalConfig.pcache.xRekey(pCache->pCache, p, p->pgno, newPgno); + p->pgno = newPgno; + if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ + pcacheRemoveFromDirtyList(p); + pcacheAddToDirtyList(p); + } +} + +/* +** Drop every cache entry whose page number is greater than "pgno". The +** caller must ensure that there are no outstanding references to any pages +** other than page 1 with a page number greater than pgno. +** +** If there is a reference to page 1 and the pgno parameter passed to this +** function is 0, then the data area associated with page 1 is zeroed, but +** the page object is not dropped. +*/ +void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ + if( pCache->pCache ){ + PgHdr *p; + PgHdr *pNext; + for(p=pCache->pDirty; p; p=pNext){ + pNext = p->pDirtyNext; + /* This routine never gets call with a positive pgno except right + ** after sqlite3PcacheCleanAll(). So if there are dirty pages, + ** it must be that pgno==0. + */ + assert( p->pgno>0 ); + if( ALWAYS(p->pgno>pgno) ){ + assert( p->flags&PGHDR_DIRTY ); + sqlite3PcacheMakeClean(p); + } + } + if( pgno==0 && pCache->pPage1 ){ + memset(pCache->pPage1->pData, 0, pCache->szPage); + pgno = 1; + } + sqlite3GlobalConfig.pcache.xTruncate(pCache->pCache, pgno+1); + } +} + +/* +** Close a cache. +*/ +void sqlite3PcacheClose(PCache *pCache){ + if( pCache->pCache ){ + sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache); + } +} + +/* +** Discard the contents of the cache. +*/ +void sqlite3PcacheClear(PCache *pCache){ + sqlite3PcacheTruncate(pCache, 0); +} + +/* +** Merge two lists of pages connected by pDirty and in pgno order. +** Do not both fixing the pDirtyPrev pointers. +*/ +static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ + PgHdr result, *pTail; + pTail = &result; + while( pA && pB ){ + if( pA->pgnopgno ){ + pTail->pDirty = pA; + pTail = pA; + pA = pA->pDirty; + }else{ + pTail->pDirty = pB; + pTail = pB; + pB = pB->pDirty; + } + } + if( pA ){ + pTail->pDirty = pA; + }else if( pB ){ + pTail->pDirty = pB; + }else{ + pTail->pDirty = 0; + } + return result.pDirty; +} + +/* +** Sort the list of pages in accending order by pgno. Pages are +** connected by pDirty pointers. The pDirtyPrev pointers are +** corrupted by this sort. +** +** Since there cannot be more than 2^31 distinct pages in a database, +** there cannot be more than 31 buckets required by the merge sorter. +** One extra bucket is added to catch overflow in case something +** ever changes to make the previous sentence incorrect. +*/ +#define N_SORT_BUCKET 32 +static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ + PgHdr *a[N_SORT_BUCKET], *p; + int i; + memset(a, 0, sizeof(a)); + while( pIn ){ + p = pIn; + pIn = p->pDirty; + p->pDirty = 0; + for(i=0; ALWAYS(ipDirty; p; p=p->pDirtyNext){ + p->pDirty = p->pDirtyNext; + } + return pcacheSortDirtyList(pCache->pDirty); +} + +/* +** Return the total number of referenced pages held by the cache. +*/ +int sqlite3PcacheRefCount(PCache *pCache){ + return pCache->nRef; +} + +/* +** Return the number of references to the page supplied as an argument. +*/ +int sqlite3PcachePageRefcount(PgHdr *p){ + return p->nRef; +} + +/* +** Return the total number of pages in the cache. +*/ +int sqlite3PcachePagecount(PCache *pCache){ + int nPage = 0; + if( pCache->pCache ){ + nPage = sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache); + } + return nPage; +} + +#ifdef SQLITE_TEST +/* +** Get the suggested cache-size value. +*/ +int sqlite3PcacheGetCachesize(PCache *pCache){ + return pCache->nMax; +} +#endif + +/* +** Set the suggested cache-size value. +*/ +void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ + pCache->nMax = mxPage; + if( pCache->pCache ){ + sqlite3GlobalConfig.pcache.xCachesize(pCache->pCache, mxPage); + } +} + +#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) +/* +** For all dirty pages currently in the cache, invoke the specified +** callback. This is only used if the SQLITE_CHECK_PAGES macro is +** defined. +*/ +void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ + PgHdr *pDirty; + for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ + xIter(pDirty); + } +} +#endif diff --git a/src/pcache.h b/src/pcache.h new file mode 100644 index 0000000..33735d2 --- /dev/null +++ b/src/pcache.h @@ -0,0 +1,155 @@ +/* +** 2008 August 05 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite page cache +** subsystem. +*/ + +#ifndef _PCACHE_H_ + +typedef struct PgHdr PgHdr; +typedef struct PCache PCache; + +/* +** Every page in the cache is controlled by an instance of the following +** structure. +*/ +struct PgHdr { + void *pData; /* Content of this page */ + void *pExtra; /* Extra content */ + PgHdr *pDirty; /* Transient list of dirty pages */ + Pgno pgno; /* Page number for this page */ + Pager *pPager; /* The pager this page is part of */ +#ifdef SQLITE_CHECK_PAGES + u32 pageHash; /* Hash of page content */ +#endif + u16 flags; /* PGHDR flags defined below */ + + /********************************************************************** + ** Elements above are public. All that follows is private to pcache.c + ** and should not be accessed by other modules. + */ + i16 nRef; /* Number of users of this page */ + PCache *pCache; /* Cache that owns this page */ + + PgHdr *pDirtyNext; /* Next element in list of dirty pages */ + PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ +}; + +/* Bit values for PgHdr.flags */ +#define PGHDR_DIRTY 0x002 /* Page has changed */ +#define PGHDR_NEED_SYNC 0x004 /* Fsync the rollback journal before + ** writing this page to the database */ +#define PGHDR_NEED_READ 0x008 /* Content is unread */ +#define PGHDR_REUSE_UNLIKELY 0x010 /* A hint that reuse is unlikely */ +#define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */ + +/* Initialize and shutdown the page cache subsystem */ +int sqlite3PcacheInitialize(void); +void sqlite3PcacheShutdown(void); + +/* Page cache buffer management: +** These routines implement SQLITE_CONFIG_PAGECACHE. +*/ +void sqlite3PCacheBufferSetup(void *, int sz, int n); + +/* Create a new pager cache. +** Under memory stress, invoke xStress to try to make pages clean. +** Only clean and unpinned pages can be reclaimed. +*/ +void sqlite3PcacheOpen( + int szPage, /* Size of every page */ + int szExtra, /* Extra space associated with each page */ + int bPurgeable, /* True if pages are on backing store */ + int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */ + void *pStress, /* Argument to xStress */ + PCache *pToInit /* Preallocated space for the PCache */ +); + +/* Modify the page-size after the cache has been created. */ +void sqlite3PcacheSetPageSize(PCache *, int); + +/* Return the size in bytes of a PCache object. Used to preallocate +** storage space. +*/ +int sqlite3PcacheSize(void); + +/* One release per successful fetch. Page is pinned until released. +** Reference counted. +*/ +int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**); +void sqlite3PcacheRelease(PgHdr*); + +void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */ +void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */ +void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */ +void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */ + +/* Change a page number. Used by incr-vacuum. */ +void sqlite3PcacheMove(PgHdr*, Pgno); + +/* Remove all pages with pgno>x. Reset the cache if x==0 */ +void sqlite3PcacheTruncate(PCache*, Pgno x); + +/* Get a list of all dirty pages in the cache, sorted by page number */ +PgHdr *sqlite3PcacheDirtyList(PCache*); + +/* Reset and close the cache object */ +void sqlite3PcacheClose(PCache*); + +/* Clear flags from pages of the page cache */ +void sqlite3PcacheClearSyncFlags(PCache *); + +/* Discard the contents of the cache */ +void sqlite3PcacheClear(PCache*); + +/* Return the total number of outstanding page references */ +int sqlite3PcacheRefCount(PCache*); + +/* Increment the reference count of an existing page */ +void sqlite3PcacheRef(PgHdr*); + +int sqlite3PcachePageRefcount(PgHdr*); + +/* Return the total number of pages stored in the cache */ +int sqlite3PcachePagecount(PCache*); + +#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) +/* Iterate through all dirty pages currently stored in the cache. This +** interface is only available if SQLITE_CHECK_PAGES is defined when the +** library is built. +*/ +void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)); +#endif + +/* Set and get the suggested cache-size for the specified pager-cache. +** +** If no global maximum is configured, then the system attempts to limit +** the total number of pages cached by purgeable pager-caches to the sum +** of the suggested cache-sizes. +*/ +void sqlite3PcacheSetCachesize(PCache *, int); +#ifdef SQLITE_TEST +int sqlite3PcacheGetCachesize(PCache *); +#endif + +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT +/* Try to return memory used by the pcache module to the main memory heap */ +int sqlite3PcacheReleaseMemory(int); +#endif + +#ifdef SQLITE_TEST +void sqlite3PcacheStats(int*,int*,int*,int*); +#endif + +void sqlite3PCacheSetDefault(void); + +#endif /* _PCACHE_H_ */ diff --git a/src/pcache1.c b/src/pcache1.c new file mode 100644 index 0000000..077a7b2 --- /dev/null +++ b/src/pcache1.c @@ -0,0 +1,972 @@ +/* +** 2008 November 05 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file implements the default page cache implementation (the +** sqlite3_pcache interface). It also contains part of the implementation +** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. +** If the default page cache implementation is overriden, then neither of +** these two features are available. +*/ + +#include "sqliteInt.h" + +typedef struct PCache1 PCache1; +typedef struct PgHdr1 PgHdr1; +typedef struct PgFreeslot PgFreeslot; +typedef struct PGroup PGroup; + + +/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set +** of one or more PCaches that are able to recycle each others unpinned +** pages when they are under memory pressure. A PGroup is an instance of +** the following object. +** +** This page cache implementation works in one of two modes: +** +** (1) Every PCache is the sole member of its own PGroup. There is +** one PGroup per PCache. +** +** (2) There is a single global PGroup that all PCaches are a member +** of. +** +** Mode 1 uses more memory (since PCache instances are not able to rob +** unused pages from other PCaches) but it also operates without a mutex, +** and is therefore often faster. Mode 2 requires a mutex in order to be +** threadsafe, but is able recycle pages more efficient. +** +** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single +** PGroup which is the pcache1.grp global variable and its mutex is +** SQLITE_MUTEX_STATIC_LRU. +*/ +struct PGroup { + sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ + int nMaxPage; /* Sum of nMax for purgeable caches */ + int nMinPage; /* Sum of nMin for purgeable caches */ + int mxPinned; /* nMaxpage + 10 - nMinPage */ + int nCurrentPage; /* Number of purgeable pages allocated */ + PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */ +}; + +/* Each page cache is an instance of the following object. Every +** open database file (including each in-memory database and each +** temporary or transient database) has a single page cache which +** is an instance of this object. +** +** Pointers to structures of this type are cast and returned as +** opaque sqlite3_pcache* handles. +*/ +struct PCache1 { + /* Cache configuration parameters. Page size (szPage) and the purgeable + ** flag (bPurgeable) are set when the cache is created. nMax may be + ** modified at any time by a call to the pcache1CacheSize() method. + ** The PGroup mutex must be held when accessing nMax. + */ + PGroup *pGroup; /* PGroup this cache belongs to */ + int szPage; /* Size of allocated pages in bytes */ + int bPurgeable; /* True if cache is purgeable */ + unsigned int nMin; /* Minimum number of pages reserved */ + unsigned int nMax; /* Configured "cache_size" value */ + unsigned int n90pct; /* nMax*9/10 */ + + /* Hash table of all pages. The following variables may only be accessed + ** when the accessor is holding the PGroup mutex. + */ + unsigned int nRecyclable; /* Number of pages in the LRU list */ + unsigned int nPage; /* Total number of pages in apHash */ + unsigned int nHash; /* Number of slots in apHash[] */ + PgHdr1 **apHash; /* Hash table for fast lookup by key */ + + unsigned int iMaxKey; /* Largest key seen since xTruncate() */ +}; + +/* +** Each cache entry is represented by an instance of the following +** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated +** directly before this structure in memory (see the PGHDR1_TO_PAGE() +** macro below). +*/ +struct PgHdr1 { + unsigned int iKey; /* Key value (page number) */ + PgHdr1 *pNext; /* Next in hash table chain */ + PCache1 *pCache; /* Cache that currently owns this page */ + PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ + PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ +}; + +/* +** Free slots in the allocator used to divide up the buffer provided using +** the SQLITE_CONFIG_PAGECACHE mechanism. +*/ +struct PgFreeslot { + PgFreeslot *pNext; /* Next free slot */ +}; + +/* +** Global data used by this cache. +*/ +static SQLITE_WSD struct PCacheGlobal { + PGroup grp; /* The global PGroup for mode (2) */ + + /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The + ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all + ** fixed at sqlite3_initialize() time and do not require mutex protection. + ** The nFreeSlot and pFree values do require mutex protection. + */ + int isInit; /* True if initialized */ + int szSlot; /* Size of each free slot */ + int nSlot; /* The number of pcache slots */ + int nReserve; /* Try to keep nFreeSlot above this */ + void *pStart, *pEnd; /* Bounds of pagecache malloc range */ + /* Above requires no mutex. Use mutex below for variable that follow. */ + sqlite3_mutex *mutex; /* Mutex for accessing the following: */ + int nFreeSlot; /* Number of unused pcache slots */ + PgFreeslot *pFree; /* Free page blocks */ + /* The following value requires a mutex to change. We skip the mutex on + ** reading because (1) most platforms read a 32-bit integer atomically and + ** (2) even if an incorrect value is read, no great harm is done since this + ** is really just an optimization. */ + int bUnderPressure; /* True if low on PAGECACHE memory */ +} pcache1_g; + +/* +** All code in this file should access the global structure above via the +** alias "pcache1". This ensures that the WSD emulation is used when +** compiling for systems that do not support real WSD. +*/ +#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) + +/* +** When a PgHdr1 structure is allocated, the associated PCache1.szPage +** bytes of data are located directly before it in memory (i.e. the total +** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The +** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as +** an argument and returns a pointer to the associated block of szPage +** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is +** a pointer to a block of szPage bytes of data and the return value is +** a pointer to the associated PgHdr1 structure. +** +** assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(pCache, X))==X ); +*/ +#define PGHDR1_TO_PAGE(p) (void*)(((char*)p) - p->pCache->szPage) +#define PAGE_TO_PGHDR1(c, p) (PgHdr1*)(((char*)p) + c->szPage) + +/* +** Macros to enter and leave the PCache LRU mutex. +*/ +#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) +#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) + +/******************************************************************************/ +/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ + +/* +** This function is called during initialization if a static buffer is +** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE +** verb to sqlite3_config(). Parameter pBuf points to an allocation large +** enough to contain 'n' buffers of 'sz' bytes each. +** +** This routine is called from sqlite3_initialize() and so it is guaranteed +** to be serialized already. There is no need for further mutexing. +*/ +void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ + if( pcache1.isInit ){ + PgFreeslot *p; + sz = ROUNDDOWN8(sz); + pcache1.szSlot = sz; + pcache1.nSlot = pcache1.nFreeSlot = n; + pcache1.nReserve = n>90 ? 10 : (n/10 + 1); + pcache1.pStart = pBuf; + pcache1.pFree = 0; + pcache1.bUnderPressure = 0; + while( n-- ){ + p = (PgFreeslot*)pBuf; + p->pNext = pcache1.pFree; + pcache1.pFree = p; + pBuf = (void*)&((char*)pBuf)[sz]; + } + pcache1.pEnd = pBuf; + } +} + +/* +** Malloc function used within this file to allocate space from the buffer +** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no +** such buffer exists or there is no space left in it, this function falls +** back to sqlite3Malloc(). +** +** Multiple threads can run this routine at the same time. Global variables +** in pcache1 need to be protected via mutex. +*/ +static void *pcache1Alloc(int nByte){ + void *p = 0; + assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); + sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte); + if( nByte<=pcache1.szSlot ){ + sqlite3_mutex_enter(pcache1.mutex); + p = (PgHdr1 *)pcache1.pFree; + if( p ){ + pcache1.pFree = pcache1.pFree->pNext; + pcache1.nFreeSlot--; + pcache1.bUnderPressure = pcache1.nFreeSlot=0 ); + sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1); + } + sqlite3_mutex_leave(pcache1.mutex); + } + if( p==0 ){ + /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get + ** it from sqlite3Malloc instead. + */ + p = sqlite3Malloc(nByte); + if( p ){ + int sz = sqlite3MallocSize(p); + sqlite3_mutex_enter(pcache1.mutex); + sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); + sqlite3_mutex_leave(pcache1.mutex); + } + sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); + } + return p; +} + +/* +** Free an allocated buffer obtained from pcache1Alloc(). +*/ +static void pcache1Free(void *p){ + if( p==0 ) return; + if( p>=pcache1.pStart && ppNext = pcache1.pFree; + pcache1.pFree = pSlot; + pcache1.nFreeSlot++; + pcache1.bUnderPressure = pcache1.nFreeSlot=pcache1.pStart && pszPage; + PgHdr1 *p = 0; + void *pPg; + + /* The group mutex must be released before pcache1Alloc() is called. This + ** is because it may call sqlite3_release_memory(), which assumes that + ** this mutex is not held. */ + assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); + pcache1LeaveMutex(pCache->pGroup); + pPg = pcache1Alloc(nByte); + pcache1EnterMutex(pCache->pGroup); + + if( pPg ){ + p = PAGE_TO_PGHDR1(pCache, pPg); + if( pCache->bPurgeable ){ + pCache->pGroup->nCurrentPage++; + } + } + return p; +} + +/* +** Free a page object allocated by pcache1AllocPage(). +** +** The pointer is allowed to be NULL, which is prudent. But it turns out +** that the current implementation happens to never call this routine +** with a NULL pointer, so we mark the NULL test with ALWAYS(). +*/ +static void pcache1FreePage(PgHdr1 *p){ + if( ALWAYS(p) ){ + PCache1 *pCache = p->pCache; + assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); + pcache1Free(PGHDR1_TO_PAGE(p)); + if( pCache->bPurgeable ){ + pCache->pGroup->nCurrentPage--; + } + } +} + +/* +** Malloc function used by SQLite to obtain space from the buffer configured +** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer +** exists, this function falls back to sqlite3Malloc(). +*/ +void *sqlite3PageMalloc(int sz){ + return pcache1Alloc(sz); +} + +/* +** Free an allocated buffer obtained from sqlite3PageMalloc(). +*/ +void sqlite3PageFree(void *p){ + pcache1Free(p); +} + + +/* +** Return true if it desirable to avoid allocating a new page cache +** entry. +** +** If memory was allocated specifically to the page cache using +** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then +** it is desirable to avoid allocating a new page cache entry because +** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient +** for all page cache needs and we should not need to spill the +** allocation onto the heap. +** +** Or, the heap is used for all page cache memory put the heap is +** under memory pressure, then again it is desirable to avoid +** allocating a new page cache entry in order to avoid stressing +** the heap even further. +*/ +static int pcache1UnderMemoryPressure(PCache1 *pCache){ + if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){ + return pcache1.bUnderPressure; + }else{ + return sqlite3HeapNearlyFull(); + } +} + +/******************************************************************************/ +/******** General Implementation Functions ************************************/ + +/* +** This function is used to resize the hash table used by the cache passed +** as the first argument. +** +** The PCache mutex must be held when this function is called. +*/ +static int pcache1ResizeHash(PCache1 *p){ + PgHdr1 **apNew; + unsigned int nNew; + unsigned int i; + + assert( sqlite3_mutex_held(p->pGroup->mutex) ); + + nNew = p->nHash*2; + if( nNew<256 ){ + nNew = 256; + } + + pcache1LeaveMutex(p->pGroup); + if( p->nHash ){ sqlite3BeginBenignMalloc(); } + apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew); + if( p->nHash ){ sqlite3EndBenignMalloc(); } + pcache1EnterMutex(p->pGroup); + if( apNew ){ + memset(apNew, 0, sizeof(PgHdr1 *)*nNew); + for(i=0; inHash; i++){ + PgHdr1 *pPage; + PgHdr1 *pNext = p->apHash[i]; + while( (pPage = pNext)!=0 ){ + unsigned int h = pPage->iKey % nNew; + pNext = pPage->pNext; + pPage->pNext = apNew[h]; + apNew[h] = pPage; + } + } + sqlite3_free(p->apHash); + p->apHash = apNew; + p->nHash = nNew; + } + + return (p->apHash ? SQLITE_OK : SQLITE_NOMEM); +} + +/* +** This function is used internally to remove the page pPage from the +** PGroup LRU list, if is part of it. If pPage is not part of the PGroup +** LRU list, then this function is a no-op. +** +** The PGroup mutex must be held when this function is called. +** +** If pPage is NULL then this routine is a no-op. +*/ +static void pcache1PinPage(PgHdr1 *pPage){ + PCache1 *pCache; + PGroup *pGroup; + + if( pPage==0 ) return; + pCache = pPage->pCache; + pGroup = pCache->pGroup; + assert( sqlite3_mutex_held(pGroup->mutex) ); + if( pPage->pLruNext || pPage==pGroup->pLruTail ){ + if( pPage->pLruPrev ){ + pPage->pLruPrev->pLruNext = pPage->pLruNext; + } + if( pPage->pLruNext ){ + pPage->pLruNext->pLruPrev = pPage->pLruPrev; + } + if( pGroup->pLruHead==pPage ){ + pGroup->pLruHead = pPage->pLruNext; + } + if( pGroup->pLruTail==pPage ){ + pGroup->pLruTail = pPage->pLruPrev; + } + pPage->pLruNext = 0; + pPage->pLruPrev = 0; + pPage->pCache->nRecyclable--; + } +} + + +/* +** Remove the page supplied as an argument from the hash table +** (PCache1.apHash structure) that it is currently stored in. +** +** The PGroup mutex must be held when this function is called. +*/ +static void pcache1RemoveFromHash(PgHdr1 *pPage){ + unsigned int h; + PCache1 *pCache = pPage->pCache; + PgHdr1 **pp; + + assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); + h = pPage->iKey % pCache->nHash; + for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); + *pp = (*pp)->pNext; + + pCache->nPage--; +} + +/* +** If there are currently more than nMaxPage pages allocated, try +** to recycle pages to reduce the number allocated to nMaxPage. +*/ +static void pcache1EnforceMaxPage(PGroup *pGroup){ + assert( sqlite3_mutex_held(pGroup->mutex) ); + while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){ + PgHdr1 *p = pGroup->pLruTail; + assert( p->pCache->pGroup==pGroup ); + pcache1PinPage(p); + pcache1RemoveFromHash(p); + pcache1FreePage(p); + } +} + +/* +** Discard all pages from cache pCache with a page number (key value) +** greater than or equal to iLimit. Any pinned pages that meet this +** criteria are unpinned before they are discarded. +** +** The PCache mutex must be held when this function is called. +*/ +static void pcache1TruncateUnsafe( + PCache1 *pCache, /* The cache to truncate */ + unsigned int iLimit /* Drop pages with this pgno or larger */ +){ + TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */ + unsigned int h; + assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); + for(h=0; hnHash; h++){ + PgHdr1 **pp = &pCache->apHash[h]; + PgHdr1 *pPage; + while( (pPage = *pp)!=0 ){ + if( pPage->iKey>=iLimit ){ + pCache->nPage--; + *pp = pPage->pNext; + pcache1PinPage(pPage); + pcache1FreePage(pPage); + }else{ + pp = &pPage->pNext; + TESTONLY( nPage++; ) + } + } + } + assert( pCache->nPage==nPage ); +} + +/******************************************************************************/ +/******** sqlite3_pcache Methods **********************************************/ + +/* +** Implementation of the sqlite3_pcache.xInit method. +*/ +static int pcache1Init(void *NotUsed){ + UNUSED_PARAMETER(NotUsed); + assert( pcache1.isInit==0 ); + memset(&pcache1, 0, sizeof(pcache1)); + if( sqlite3GlobalConfig.bCoreMutex ){ + pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); + pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); + } + pcache1.grp.mxPinned = 10; + pcache1.isInit = 1; + return SQLITE_OK; +} + +/* +** Implementation of the sqlite3_pcache.xShutdown method. +** Note that the static mutex allocated in xInit does +** not need to be freed. +*/ +static void pcache1Shutdown(void *NotUsed){ + UNUSED_PARAMETER(NotUsed); + assert( pcache1.isInit!=0 ); + memset(&pcache1, 0, sizeof(pcache1)); +} + +/* +** Implementation of the sqlite3_pcache.xCreate method. +** +** Allocate a new cache. +*/ +static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){ + PCache1 *pCache; /* The newly created page cache */ + PGroup *pGroup; /* The group the new page cache will belong to */ + int sz; /* Bytes of memory required to allocate the new cache */ + + /* + ** The seperateCache variable is true if each PCache has its own private + ** PGroup. In other words, separateCache is true for mode (1) where no + ** mutexing is required. + ** + ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT + ** + ** * Always use a unified cache in single-threaded applications + ** + ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off) + ** use separate caches (mode-1) + */ +#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 + const int separateCache = 0; +#else + int separateCache = sqlite3GlobalConfig.bCoreMutex>0; +#endif + + sz = sizeof(PCache1) + sizeof(PGroup)*separateCache; + pCache = (PCache1 *)sqlite3_malloc(sz); + if( pCache ){ + memset(pCache, 0, sz); + if( separateCache ){ + pGroup = (PGroup*)&pCache[1]; + pGroup->mxPinned = 10; + }else{ + pGroup = &pcache1.grp; + } + pCache->pGroup = pGroup; + pCache->szPage = szPage; + pCache->bPurgeable = (bPurgeable ? 1 : 0); + if( bPurgeable ){ + pCache->nMin = 10; + pcache1EnterMutex(pGroup); + pGroup->nMinPage += pCache->nMin; + pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; + pcache1LeaveMutex(pGroup); + } + } + return (sqlite3_pcache *)pCache; +} + +/* +** Implementation of the sqlite3_pcache.xCachesize method. +** +** Configure the cache_size limit for a cache. +*/ +static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ + PCache1 *pCache = (PCache1 *)p; + if( pCache->bPurgeable ){ + PGroup *pGroup = pCache->pGroup; + pcache1EnterMutex(pGroup); + pGroup->nMaxPage += (nMax - pCache->nMax); + pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; + pCache->nMax = nMax; + pCache->n90pct = pCache->nMax*9/10; + pcache1EnforceMaxPage(pGroup); + pcache1LeaveMutex(pGroup); + } +} + +/* +** Implementation of the sqlite3_pcache.xPagecount method. +*/ +static int pcache1Pagecount(sqlite3_pcache *p){ + int n; + PCache1 *pCache = (PCache1*)p; + pcache1EnterMutex(pCache->pGroup); + n = pCache->nPage; + pcache1LeaveMutex(pCache->pGroup); + return n; +} + +/* +** Implementation of the sqlite3_pcache.xFetch method. +** +** Fetch a page by key value. +** +** Whether or not a new page may be allocated by this function depends on +** the value of the createFlag argument. 0 means do not allocate a new +** page. 1 means allocate a new page if space is easily available. 2 +** means to try really hard to allocate a new page. +** +** For a non-purgeable cache (a cache used as the storage for an in-memory +** database) there is really no difference between createFlag 1 and 2. So +** the calling function (pcache.c) will never have a createFlag of 1 on +** a non-purgable cache. +** +** There are three different approaches to obtaining space for a page, +** depending on the value of parameter createFlag (which may be 0, 1 or 2). +** +** 1. Regardless of the value of createFlag, the cache is searched for a +** copy of the requested page. If one is found, it is returned. +** +** 2. If createFlag==0 and the page is not already in the cache, NULL is +** returned. +** +** 3. If createFlag is 1, and the page is not already in the cache, then +** return NULL (do not allocate a new page) if any of the following +** conditions are true: +** +** (a) the number of pages pinned by the cache is greater than +** PCache1.nMax, or +** +** (b) the number of pages pinned by the cache is greater than +** the sum of nMax for all purgeable caches, less the sum of +** nMin for all other purgeable caches, or +** +** 4. If none of the first three conditions apply and the cache is marked +** as purgeable, and if one of the following is true: +** +** (a) The number of pages allocated for the cache is already +** PCache1.nMax, or +** +** (b) The number of pages allocated for all purgeable caches is +** already equal to or greater than the sum of nMax for all +** purgeable caches, +** +** (c) The system is under memory pressure and wants to avoid +** unnecessary pages cache entry allocations +** +** then attempt to recycle a page from the LRU list. If it is the right +** size, return the recycled buffer. Otherwise, free the buffer and +** proceed to step 5. +** +** 5. Otherwise, allocate and return a new page buffer. +*/ +static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){ + int nPinned; + PCache1 *pCache = (PCache1 *)p; + PGroup *pGroup; + PgHdr1 *pPage = 0; + + assert( pCache->bPurgeable || createFlag!=1 ); + assert( pCache->bPurgeable || pCache->nMin==0 ); + assert( pCache->bPurgeable==0 || pCache->nMin==10 ); + assert( pCache->nMin==0 || pCache->bPurgeable ); + pcache1EnterMutex(pGroup = pCache->pGroup); + + /* Step 1: Search the hash table for an existing entry. */ + if( pCache->nHash>0 ){ + unsigned int h = iKey % pCache->nHash; + for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext); + } + + /* Step 2: Abort if no existing page is found and createFlag is 0 */ + if( pPage || createFlag==0 ){ + pcache1PinPage(pPage); + goto fetch_out; + } + + /* The pGroup local variable will normally be initialized by the + ** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined, + ** then pcache1EnterMutex() is a no-op, so we have to initialize the + ** local variable here. Delaying the initialization of pGroup is an + ** optimization: The common case is to exit the module before reaching + ** this point. + */ +#ifdef SQLITE_MUTEX_OMIT + pGroup = pCache->pGroup; +#endif + + + /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ + nPinned = pCache->nPage - pCache->nRecyclable; + assert( nPinned>=0 ); + assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); + assert( pCache->n90pct == pCache->nMax*9/10 ); + if( createFlag==1 && ( + nPinned>=pGroup->mxPinned + || nPinned>=(int)pCache->n90pct + || pcache1UnderMemoryPressure(pCache) + )){ + goto fetch_out; + } + + if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){ + goto fetch_out; + } + + /* Step 4. Try to recycle a page. */ + if( pCache->bPurgeable && pGroup->pLruTail && ( + (pCache->nPage+1>=pCache->nMax) + || pGroup->nCurrentPage>=pGroup->nMaxPage + || pcache1UnderMemoryPressure(pCache) + )){ + PCache1 *pOtherCache; + pPage = pGroup->pLruTail; + pcache1RemoveFromHash(pPage); + pcache1PinPage(pPage); + if( (pOtherCache = pPage->pCache)->szPage!=pCache->szPage ){ + pcache1FreePage(pPage); + pPage = 0; + }else{ + pGroup->nCurrentPage -= + (pOtherCache->bPurgeable - pCache->bPurgeable); + } + } + + /* Step 5. If a usable page buffer has still not been found, + ** attempt to allocate a new one. + */ + if( !pPage ){ + if( createFlag==1 ) sqlite3BeginBenignMalloc(); + pPage = pcache1AllocPage(pCache); + if( createFlag==1 ) sqlite3EndBenignMalloc(); + } + + if( pPage ){ + unsigned int h = iKey % pCache->nHash; + pCache->nPage++; + pPage->iKey = iKey; + pPage->pNext = pCache->apHash[h]; + pPage->pCache = pCache; + pPage->pLruPrev = 0; + pPage->pLruNext = 0; + *(void **)(PGHDR1_TO_PAGE(pPage)) = 0; + pCache->apHash[h] = pPage; + } + +fetch_out: + if( pPage && iKey>pCache->iMaxKey ){ + pCache->iMaxKey = iKey; + } + pcache1LeaveMutex(pGroup); + return (pPage ? PGHDR1_TO_PAGE(pPage) : 0); +} + + +/* +** Implementation of the sqlite3_pcache.xUnpin method. +** +** Mark a page as unpinned (eligible for asynchronous recycling). +*/ +static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){ + PCache1 *pCache = (PCache1 *)p; + PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg); + PGroup *pGroup = pCache->pGroup; + + assert( pPage->pCache==pCache ); + pcache1EnterMutex(pGroup); + + /* It is an error to call this function if the page is already + ** part of the PGroup LRU list. + */ + assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); + assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); + + if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ + pcache1RemoveFromHash(pPage); + pcache1FreePage(pPage); + }else{ + /* Add the page to the PGroup LRU list. */ + if( pGroup->pLruHead ){ + pGroup->pLruHead->pLruPrev = pPage; + pPage->pLruNext = pGroup->pLruHead; + pGroup->pLruHead = pPage; + }else{ + pGroup->pLruTail = pPage; + pGroup->pLruHead = pPage; + } + pCache->nRecyclable++; + } + + pcache1LeaveMutex(pCache->pGroup); +} + +/* +** Implementation of the sqlite3_pcache.xRekey method. +*/ +static void pcache1Rekey( + sqlite3_pcache *p, + void *pPg, + unsigned int iOld, + unsigned int iNew +){ + PCache1 *pCache = (PCache1 *)p; + PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg); + PgHdr1 **pp; + unsigned int h; + assert( pPage->iKey==iOld ); + assert( pPage->pCache==pCache ); + + pcache1EnterMutex(pCache->pGroup); + + h = iOld%pCache->nHash; + pp = &pCache->apHash[h]; + while( (*pp)!=pPage ){ + pp = &(*pp)->pNext; + } + *pp = pPage->pNext; + + h = iNew%pCache->nHash; + pPage->iKey = iNew; + pPage->pNext = pCache->apHash[h]; + pCache->apHash[h] = pPage; + if( iNew>pCache->iMaxKey ){ + pCache->iMaxKey = iNew; + } + + pcache1LeaveMutex(pCache->pGroup); +} + +/* +** Implementation of the sqlite3_pcache.xTruncate method. +** +** Discard all unpinned pages in the cache with a page number equal to +** or greater than parameter iLimit. Any pinned pages with a page number +** equal to or greater than iLimit are implicitly unpinned. +*/ +static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ + PCache1 *pCache = (PCache1 *)p; + pcache1EnterMutex(pCache->pGroup); + if( iLimit<=pCache->iMaxKey ){ + pcache1TruncateUnsafe(pCache, iLimit); + pCache->iMaxKey = iLimit-1; + } + pcache1LeaveMutex(pCache->pGroup); +} + +/* +** Implementation of the sqlite3_pcache.xDestroy method. +** +** Destroy a cache allocated using pcache1Create(). +*/ +static void pcache1Destroy(sqlite3_pcache *p){ + PCache1 *pCache = (PCache1 *)p; + PGroup *pGroup = pCache->pGroup; + assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); + pcache1EnterMutex(pGroup); + pcache1TruncateUnsafe(pCache, 0); + pGroup->nMaxPage -= pCache->nMax; + pGroup->nMinPage -= pCache->nMin; + pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; + pcache1EnforceMaxPage(pGroup); + pcache1LeaveMutex(pGroup); + sqlite3_free(pCache->apHash); + sqlite3_free(pCache); +} + +/* +** This function is called during initialization (sqlite3_initialize()) to +** install the default pluggable cache module, assuming the user has not +** already provided an alternative. +*/ +void sqlite3PCacheSetDefault(void){ + static const sqlite3_pcache_methods defaultMethods = { + 0, /* pArg */ + pcache1Init, /* xInit */ + pcache1Shutdown, /* xShutdown */ + pcache1Create, /* xCreate */ + pcache1Cachesize, /* xCachesize */ + pcache1Pagecount, /* xPagecount */ + pcache1Fetch, /* xFetch */ + pcache1Unpin, /* xUnpin */ + pcache1Rekey, /* xRekey */ + pcache1Truncate, /* xTruncate */ + pcache1Destroy /* xDestroy */ + }; + sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods); +} + +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT +/* +** This function is called to free superfluous dynamically allocated memory +** held by the pager system. Memory in use by any SQLite pager allocated +** by the current thread may be sqlite3_free()ed. +** +** nReq is the number of bytes of memory required. Once this much has +** been released, the function returns. The return value is the total number +** of bytes of memory released. +*/ +int sqlite3PcacheReleaseMemory(int nReq){ + int nFree = 0; + assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); + assert( sqlite3_mutex_notheld(pcache1.mutex) ); + if( pcache1.pStart==0 ){ + PgHdr1 *p; + pcache1EnterMutex(&pcache1.grp); + while( (nReq<0 || nFreepLruNext){ + nRecyclable++; + } + *pnCurrent = pcache1.grp.nCurrentPage; + *pnMax = pcache1.grp.nMaxPage; + *pnMin = pcache1.grp.nMinPage; + *pnRecyclable = nRecyclable; +} +#endif diff --git a/src/pragma.c b/src/pragma.c new file mode 100644 index 0000000..d9047e1 --- /dev/null +++ b/src/pragma.c @@ -0,0 +1,1562 @@ +/* +** 2003 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the PRAGMA command. +*/ +#include "sqliteInt.h" + +/* +** Interpret the given string as a safety level. Return 0 for OFF, +** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or +** unrecognized string argument. +** +** Note that the values returned are one less that the values that +** should be passed into sqlite3BtreeSetSafetyLevel(). The is done +** to support legacy SQL code. The safety level used to be boolean +** and older scripts may have used numbers 0 for OFF and 1 for ON. +*/ +static u8 getSafetyLevel(const char *z){ + /* 123456789 123456789 */ + static const char zText[] = "onoffalseyestruefull"; + static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16}; + static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4}; + static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 2}; + int i, n; + if( sqlite3Isdigit(*z) ){ + return (u8)sqlite3Atoi(z); + } + n = sqlite3Strlen30(z); + for(i=0; i=0&&i<=2)?i:0); +} +#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ + +#ifndef SQLITE_OMIT_PAGER_PRAGMAS +/* +** Interpret the given string as a temp db location. Return 1 for file +** backed temporary databases, 2 for the Red-Black tree in memory database +** and 0 to use the compile-time default. +*/ +static int getTempStore(const char *z){ + if( z[0]>='0' && z[0]<='2' ){ + return z[0] - '0'; + }else if( sqlite3StrICmp(z, "file")==0 ){ + return 1; + }else if( sqlite3StrICmp(z, "memory")==0 ){ + return 2; + }else{ + return 0; + } +} +#endif /* SQLITE_PAGER_PRAGMAS */ + +#ifndef SQLITE_OMIT_PAGER_PRAGMAS +/* +** Invalidate temp storage, either when the temp storage is changed +** from default, or when 'file' and the temp_store_directory has changed +*/ +static int invalidateTempStorage(Parse *pParse){ + sqlite3 *db = pParse->db; + if( db->aDb[1].pBt!=0 ){ + if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){ + sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " + "from within a transaction"); + return SQLITE_ERROR; + } + sqlite3BtreeClose(db->aDb[1].pBt); + db->aDb[1].pBt = 0; + sqlite3ResetInternalSchema(db, -1); + } + return SQLITE_OK; +} +#endif /* SQLITE_PAGER_PRAGMAS */ + +#ifndef SQLITE_OMIT_PAGER_PRAGMAS +/* +** If the TEMP database is open, close it and mark the database schema +** as needing reloading. This must be done when using the SQLITE_TEMP_STORE +** or DEFAULT_TEMP_STORE pragmas. +*/ +static int changeTempStorage(Parse *pParse, const char *zStorageType){ + int ts = getTempStore(zStorageType); + sqlite3 *db = pParse->db; + if( db->temp_store==ts ) return SQLITE_OK; + if( invalidateTempStorage( pParse ) != SQLITE_OK ){ + return SQLITE_ERROR; + } + db->temp_store = (u8)ts; + return SQLITE_OK; +} +#endif /* SQLITE_PAGER_PRAGMAS */ + +/* +** Generate code to return a single integer value. +*/ +static void returnSingleInt(Parse *pParse, const char *zLabel, i64 value){ + Vdbe *v = sqlite3GetVdbe(pParse); + int mem = ++pParse->nMem; + i64 *pI64 = sqlite3DbMallocRaw(pParse->db, sizeof(value)); + if( pI64 ){ + memcpy(pI64, &value, sizeof(value)); + } + sqlite3VdbeAddOp4(v, OP_Int64, 0, mem, 0, (char*)pI64, P4_INT64); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC); + sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1); +} + +#ifndef SQLITE_OMIT_FLAG_PRAGMAS +/* +** Check to see if zRight and zLeft refer to a pragma that queries +** or changes one of the flags in db->flags. Return 1 if so and 0 if not. +** Also, implement the pragma. +*/ +static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){ + static const struct sPragmaType { + const char *zName; /* Name of the pragma */ + int mask; /* Mask for the db->flags value */ + } aPragma[] = { + { "full_column_names", SQLITE_FullColNames }, + { "short_column_names", SQLITE_ShortColNames }, + { "count_changes", SQLITE_CountRows }, + { "empty_result_callbacks", SQLITE_NullCallback }, + { "legacy_file_format", SQLITE_LegacyFileFmt }, + { "fullfsync", SQLITE_FullFSync }, + { "checkpoint_fullfsync", SQLITE_CkptFullFSync }, + { "reverse_unordered_selects", SQLITE_ReverseOrder }, +#ifndef SQLITE_OMIT_AUTOMATIC_INDEX + { "automatic_index", SQLITE_AutoIndex }, +#endif +#ifdef SQLITE_DEBUG + { "sql_trace", SQLITE_SqlTrace }, + { "vdbe_listing", SQLITE_VdbeListing }, + { "vdbe_trace", SQLITE_VdbeTrace }, +#endif +#ifndef SQLITE_OMIT_CHECK + { "ignore_check_constraints", SQLITE_IgnoreChecks }, +#endif + /* The following is VERY experimental */ + { "writable_schema", SQLITE_WriteSchema|SQLITE_RecoveryMode }, + { "omit_readlock", SQLITE_NoReadlock }, + + /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted + ** flag if there are any active statements. */ + { "read_uncommitted", SQLITE_ReadUncommitted }, + { "recursive_triggers", SQLITE_RecTriggers }, + + /* This flag may only be set if both foreign-key and trigger support + ** are present in the build. */ +#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) + { "foreign_keys", SQLITE_ForeignKeys }, +#endif + }; + int i; + const struct sPragmaType *p; + for(i=0, p=aPragma; izName)==0 ){ + sqlite3 *db = pParse->db; + Vdbe *v; + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); /* Already allocated by sqlite3Pragma() */ + if( ALWAYS(v) ){ + if( zRight==0 ){ + returnSingleInt(pParse, p->zName, (db->flags & p->mask)!=0 ); + }else{ + int mask = p->mask; /* Mask of bits to set or clear. */ + if( db->autoCommit==0 ){ + /* Foreign key support may not be enabled or disabled while not + ** in auto-commit mode. */ + mask &= ~(SQLITE_ForeignKeys); + } + + if( sqlite3GetBoolean(zRight) ){ + db->flags |= mask; + }else{ + db->flags &= ~mask; + } + + /* Many of the flag-pragmas modify the code generated by the SQL + ** compiler (eg. count_changes). So add an opcode to expire all + ** compiled SQL statements after modifying a pragma value. + */ + sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); + } + } + + return 1; + } + } + return 0; +} +#endif /* SQLITE_OMIT_FLAG_PRAGMAS */ + +/* +** Return a human-readable name for a constraint resolution action. +*/ +#ifndef SQLITE_OMIT_FOREIGN_KEY +static const char *actionName(u8 action){ + const char *zName; + switch( action ){ + case OE_SetNull: zName = "SET NULL"; break; + case OE_SetDflt: zName = "SET DEFAULT"; break; + case OE_Cascade: zName = "CASCADE"; break; + case OE_Restrict: zName = "RESTRICT"; break; + default: zName = "NO ACTION"; + assert( action==OE_None ); break; + } + return zName; +} +#endif + + +/* +** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants +** defined in pager.h. This function returns the associated lowercase +** journal-mode name. +*/ +const char *sqlite3JournalModename(int eMode){ + static char * const azModeName[] = { + "delete", "persist", "off", "truncate", "memory" +#ifndef SQLITE_OMIT_WAL + , "wal" +#endif + }; + assert( PAGER_JOURNALMODE_DELETE==0 ); + assert( PAGER_JOURNALMODE_PERSIST==1 ); + assert( PAGER_JOURNALMODE_OFF==2 ); + assert( PAGER_JOURNALMODE_TRUNCATE==3 ); + assert( PAGER_JOURNALMODE_MEMORY==4 ); + assert( PAGER_JOURNALMODE_WAL==5 ); + assert( eMode>=0 && eMode<=ArraySize(azModeName) ); + + if( eMode==ArraySize(azModeName) ) return 0; + return azModeName[eMode]; +} + +/* +** Process a pragma statement. +** +** Pragmas are of this form: +** +** PRAGMA [database.]id [= value] +** +** The identifier might also be a string. The value is a string, and +** identifier, or a number. If minusFlag is true, then the value is +** a number that was preceded by a minus sign. +** +** If the left side is "database.id" then pId1 is the database name +** and pId2 is the id. If the left side is just "id" then pId1 is the +** id and pId2 is any empty string. +*/ +void sqlite3Pragma( + Parse *pParse, + Token *pId1, /* First part of [database.]id field */ + Token *pId2, /* Second part of [database.]id field, or NULL */ + Token *pValue, /* Token for , or NULL */ + int minusFlag /* True if a '-' sign preceded */ +){ + char *zLeft = 0; /* Nul-terminated UTF-8 string */ + char *zRight = 0; /* Nul-terminated UTF-8 string , or NULL */ + const char *zDb = 0; /* The database name */ + Token *pId; /* Pointer to token */ + int iDb; /* Database index for */ + sqlite3 *db = pParse->db; + Db *pDb; + Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db); + if( v==0 ) return; + sqlite3VdbeRunOnlyOnce(v); + pParse->nMem = 2; + + /* Interpret the [database.] part of the pragma statement. iDb is the + ** index of the database this pragma is being applied to in db.aDb[]. */ + iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); + if( iDb<0 ) return; + pDb = &db->aDb[iDb]; + + /* If the temp database has been explicitly named as part of the + ** pragma, make sure it is open. + */ + if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ + return; + } + + zLeft = sqlite3NameFromToken(db, pId); + if( !zLeft ) return; + if( minusFlag ){ + zRight = sqlite3MPrintf(db, "-%T", pValue); + }else{ + zRight = sqlite3NameFromToken(db, pValue); + } + + assert( pId2 ); + zDb = pId2->n>0 ? pDb->zName : 0; + if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ + goto pragma_out; + } + +#ifndef SQLITE_OMIT_PAGER_PRAGMAS + /* + ** PRAGMA [database.]default_cache_size + ** PRAGMA [database.]default_cache_size=N + ** + ** The first form reports the current persistent setting for the + ** page cache size. The value returned is the maximum number of + ** pages in the page cache. The second form sets both the current + ** page cache size value and the persistent page cache size value + ** stored in the database file. + ** + ** Older versions of SQLite would set the default cache size to a + ** negative number to indicate synchronous=OFF. These days, synchronous + ** is always on by default regardless of the sign of the default cache + ** size. But continue to take the absolute value of the default cache + ** size of historical compatibility. + */ + if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){ + static const VdbeOpList getCacheSize[] = { + { OP_Transaction, 0, 0, 0}, /* 0 */ + { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ + { OP_IfPos, 1, 7, 0}, + { OP_Integer, 0, 2, 0}, + { OP_Subtract, 1, 2, 1}, + { OP_IfPos, 1, 7, 0}, + { OP_Integer, 0, 1, 0}, /* 6 */ + { OP_ResultRow, 1, 1, 0}, + }; + int addr; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3VdbeUsesBtree(v, iDb); + if( !zRight ){ + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC); + pParse->nMem += 2; + addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); + sqlite3VdbeChangeP1(v, addr, iDb); + sqlite3VdbeChangeP1(v, addr+1, iDb); + sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE); + }else{ + int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3VdbeAddOp2(v, OP_Integer, size, 1); + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, 1); + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + pDb->pSchema->cache_size = size; + sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); + } + }else + + /* + ** PRAGMA [database.]page_size + ** PRAGMA [database.]page_size=N + ** + ** The first form reports the current setting for the + ** database page size in bytes. The second form sets the + ** database page size value. The value can only be set if + ** the database has not yet been created. + */ + if( sqlite3StrICmp(zLeft,"page_size")==0 ){ + Btree *pBt = pDb->pBt; + assert( pBt!=0 ); + if( !zRight ){ + int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; + returnSingleInt(pParse, "page_size", size); + }else{ + /* Malloc may fail when setting the page-size, as there is an internal + ** buffer that the pager module resizes using sqlite3_realloc(). + */ + db->nextPagesize = sqlite3Atoi(zRight); + if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ + db->mallocFailed = 1; + } + } + }else + + /* + ** PRAGMA [database.]secure_delete + ** PRAGMA [database.]secure_delete=ON/OFF + ** + ** The first form reports the current setting for the + ** secure_delete flag. The second form changes the secure_delete + ** flag setting and reports thenew value. + */ + if( sqlite3StrICmp(zLeft,"secure_delete")==0 ){ + Btree *pBt = pDb->pBt; + int b = -1; + assert( pBt!=0 ); + if( zRight ){ + b = sqlite3GetBoolean(zRight); + } + if( pId2->n==0 && b>=0 ){ + int ii; + for(ii=0; iinDb; ii++){ + sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); + } + } + b = sqlite3BtreeSecureDelete(pBt, b); + returnSingleInt(pParse, "secure_delete", b); + }else + + /* + ** PRAGMA [database.]max_page_count + ** PRAGMA [database.]max_page_count=N + ** + ** The first form reports the current setting for the + ** maximum number of pages in the database file. The + ** second form attempts to change this setting. Both + ** forms return the current setting. + ** + ** PRAGMA [database.]page_count + ** + ** Return the number of pages in the specified database. + */ + if( sqlite3StrICmp(zLeft,"page_count")==0 + || sqlite3StrICmp(zLeft,"max_page_count")==0 + ){ + int iReg; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3CodeVerifySchema(pParse, iDb); + iReg = ++pParse->nMem; + if( sqlite3Tolower(zLeft[0])=='p' ){ + sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); + }else{ + sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, sqlite3Atoi(zRight)); + } + sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT); + }else + + /* + ** PRAGMA [database.]locking_mode + ** PRAGMA [database.]locking_mode = (normal|exclusive) + */ + if( sqlite3StrICmp(zLeft,"locking_mode")==0 ){ + const char *zRet = "normal"; + int eMode = getLockingMode(zRight); + + if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ + /* Simple "PRAGMA locking_mode;" statement. This is a query for + ** the current default locking mode (which may be different to + ** the locking-mode of the main database). + */ + eMode = db->dfltLockMode; + }else{ + Pager *pPager; + if( pId2->n==0 ){ + /* This indicates that no database name was specified as part + ** of the PRAGMA command. In this case the locking-mode must be + ** set on all attached databases, as well as the main db file. + ** + ** Also, the sqlite3.dfltLockMode variable is set so that + ** any subsequently attached databases also use the specified + ** locking mode. + */ + int ii; + assert(pDb==&db->aDb[0]); + for(ii=2; iinDb; ii++){ + pPager = sqlite3BtreePager(db->aDb[ii].pBt); + sqlite3PagerLockingMode(pPager, eMode); + } + db->dfltLockMode = (u8)eMode; + } + pPager = sqlite3BtreePager(pDb->pBt); + eMode = sqlite3PagerLockingMode(pPager, eMode); + } + + assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE); + if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ + zRet = "exclusive"; + } + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", SQLITE_STATIC); + sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); + }else + + /* + ** PRAGMA [database.]journal_mode + ** PRAGMA [database.]journal_mode = + ** (delete|persist|off|truncate|memory|wal|off) + */ + if( sqlite3StrICmp(zLeft,"journal_mode")==0 ){ + int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */ + int ii; /* Loop counter */ + + /* Force the schema to be loaded on all databases. This causes all + ** database files to be opened and the journal_modes set. This is + ** necessary because subsequent processing must know if the databases + ** are in WAL mode. */ + if( sqlite3ReadSchema(pParse) ){ + goto pragma_out; + } + + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", SQLITE_STATIC); + + if( zRight==0 ){ + /* If there is no "=MODE" part of the pragma, do a query for the + ** current mode */ + eMode = PAGER_JOURNALMODE_QUERY; + }else{ + const char *zMode; + int n = sqlite3Strlen30(zRight); + for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ + if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; + } + if( !zMode ){ + /* If the "=MODE" part does not match any known journal mode, + ** then do a query */ + eMode = PAGER_JOURNALMODE_QUERY; + } + } + if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ + /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ + iDb = 0; + pId2->n = 1; + } + for(ii=db->nDb-1; ii>=0; ii--){ + if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ + sqlite3VdbeUsesBtree(v, ii); + sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); + } + } + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); + }else + + /* + ** PRAGMA [database.]journal_size_limit + ** PRAGMA [database.]journal_size_limit=N + ** + ** Get or set the size limit on rollback journal files. + */ + if( sqlite3StrICmp(zLeft,"journal_size_limit")==0 ){ + Pager *pPager = sqlite3BtreePager(pDb->pBt); + i64 iLimit = -2; + if( zRight ){ + sqlite3Atoi64(zRight, &iLimit, 1000000, SQLITE_UTF8); + if( iLimit<-1 ) iLimit = -1; + } + iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); + returnSingleInt(pParse, "journal_size_limit", iLimit); + }else + +#endif /* SQLITE_OMIT_PAGER_PRAGMAS */ + + /* + ** PRAGMA [database.]auto_vacuum + ** PRAGMA [database.]auto_vacuum=N + ** + ** Get or set the value of the database 'auto-vacuum' parameter. + ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL + */ +#ifndef SQLITE_OMIT_AUTOVACUUM + if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){ + Btree *pBt = pDb->pBt; + assert( pBt!=0 ); + if( sqlite3ReadSchema(pParse) ){ + goto pragma_out; + } + if( !zRight ){ + int auto_vacuum; + if( ALWAYS(pBt) ){ + auto_vacuum = sqlite3BtreeGetAutoVacuum(pBt); + }else{ + auto_vacuum = SQLITE_DEFAULT_AUTOVACUUM; + } + returnSingleInt(pParse, "auto_vacuum", auto_vacuum); + }else{ + int eAuto = getAutoVacuum(zRight); + assert( eAuto>=0 && eAuto<=2 ); + db->nextAutovac = (u8)eAuto; + if( ALWAYS(eAuto>=0) ){ + /* Call SetAutoVacuum() to set initialize the internal auto and + ** incr-vacuum flags. This is required in case this connection + ** creates the database file. It is important that it is created + ** as an auto-vacuum capable db. + */ + int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); + if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ + /* When setting the auto_vacuum mode to either "full" or + ** "incremental", write the value of meta[6] in the database + ** file. Before writing to meta[6], check that meta[3] indicates + ** that this really is an auto-vacuum capable database. + */ + static const VdbeOpList setMeta6[] = { + { OP_Transaction, 0, 1, 0}, /* 0 */ + { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, + { OP_If, 1, 0, 0}, /* 2 */ + { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ + { OP_Integer, 0, 1, 0}, /* 4 */ + { OP_SetCookie, 0, BTREE_INCR_VACUUM, 1}, /* 5 */ + }; + int iAddr; + iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6); + sqlite3VdbeChangeP1(v, iAddr, iDb); + sqlite3VdbeChangeP1(v, iAddr+1, iDb); + sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4); + sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1); + sqlite3VdbeChangeP1(v, iAddr+5, iDb); + sqlite3VdbeUsesBtree(v, iDb); + } + } + } + }else +#endif + + /* + ** PRAGMA [database.]incremental_vacuum(N) + ** + ** Do N steps of incremental vacuuming on a database. + */ +#ifndef SQLITE_OMIT_AUTOVACUUM + if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){ + int iLimit, addr; + if( sqlite3ReadSchema(pParse) ){ + goto pragma_out; + } + if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ + iLimit = 0x7fffffff; + } + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); + addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); + sqlite3VdbeAddOp1(v, OP_ResultRow, 1); + sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); + sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); + sqlite3VdbeJumpHere(v, addr); + }else +#endif + +#ifndef SQLITE_OMIT_PAGER_PRAGMAS + /* + ** PRAGMA [database.]cache_size + ** PRAGMA [database.]cache_size=N + ** + ** The first form reports the current local setting for the + ** page cache size. The local setting can be different from + ** the persistent cache size value that is stored in the database + ** file itself. The value returned is the maximum number of + ** pages in the page cache. The second form sets the local + ** page cache size value. It does not change the persistent + ** cache size stored on the disk so the cache size will revert + ** to its default value when the database is closed and reopened. + ** N should be a positive integer. + */ + if( sqlite3StrICmp(zLeft,"cache_size")==0 ){ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + if( !zRight ){ + returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size); + }else{ + int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); + pDb->pSchema->cache_size = size; + sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); + } + }else + + /* + ** PRAGMA temp_store + ** PRAGMA temp_store = "default"|"memory"|"file" + ** + ** Return or set the local value of the temp_store flag. Changing + ** the local value does not make changes to the disk file and the default + ** value will be restored the next time the database is opened. + ** + ** Note that it is possible for the library compile-time options to + ** override this setting + */ + if( sqlite3StrICmp(zLeft, "temp_store")==0 ){ + if( !zRight ){ + returnSingleInt(pParse, "temp_store", db->temp_store); + }else{ + changeTempStorage(pParse, zRight); + } + }else + + /* + ** PRAGMA temp_store_directory + ** PRAGMA temp_store_directory = ""|"directory_name" + ** + ** Return or set the local value of the temp_store_directory flag. Changing + ** the value sets a specific directory to be used for temporary files. + ** Setting to a null string reverts to the default temporary directory search. + ** If temporary directory is changed, then invalidateTempStorage. + ** + */ + if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){ + if( !zRight ){ + if( sqlite3_temp_directory ){ + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, + "temp_store_directory", SQLITE_STATIC); + sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); + } + }else{ +#ifndef SQLITE_OMIT_WSD + if( zRight[0] ){ + int rc; + int res; + rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); + if( rc!=SQLITE_OK || res==0 ){ + sqlite3ErrorMsg(pParse, "not a writable directory"); + goto pragma_out; + } + } + if( SQLITE_TEMP_STORE==0 + || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) + || (SQLITE_TEMP_STORE==2 && db->temp_store==1) + ){ + invalidateTempStorage(pParse); + } + sqlite3_free(sqlite3_temp_directory); + if( zRight[0] ){ + sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); + }else{ + sqlite3_temp_directory = 0; + } +#endif /* SQLITE_OMIT_WSD */ + } + }else + +#if !defined(SQLITE_ENABLE_LOCKING_STYLE) +# if defined(__APPLE__) +# define SQLITE_ENABLE_LOCKING_STYLE 1 +# else +# define SQLITE_ENABLE_LOCKING_STYLE 0 +# endif +#endif +#if SQLITE_ENABLE_LOCKING_STYLE + /* + ** PRAGMA [database.]lock_proxy_file + ** PRAGMA [database.]lock_proxy_file = ":auto:"|"lock_file_path" + ** + ** Return or set the value of the lock_proxy_file flag. Changing + ** the value sets a specific file to be used for database access locks. + ** + */ + if( sqlite3StrICmp(zLeft, "lock_proxy_file")==0 ){ + if( !zRight ){ + Pager *pPager = sqlite3BtreePager(pDb->pBt); + char *proxy_file_path = NULL; + sqlite3_file *pFile = sqlite3PagerFile(pPager); + sqlite3OsFileControl(pFile, SQLITE_GET_LOCKPROXYFILE, + &proxy_file_path); + + if( proxy_file_path ){ + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, + "lock_proxy_file", SQLITE_STATIC); + sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, proxy_file_path, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); + } + }else{ + Pager *pPager = sqlite3BtreePager(pDb->pBt); + sqlite3_file *pFile = sqlite3PagerFile(pPager); + int res; + if( zRight[0] ){ + res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, + zRight); + } else { + res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, + NULL); + } + if( res!=SQLITE_OK ){ + sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); + goto pragma_out; + } + } + }else +#endif /* SQLITE_ENABLE_LOCKING_STYLE */ + + /* + ** PRAGMA [database.]synchronous + ** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL + ** + ** Return or set the local value of the synchronous flag. Changing + ** the local value does not make changes to the disk file and the + ** default value will be restored the next time the database is + ** opened. + */ + if( sqlite3StrICmp(zLeft,"synchronous")==0 ){ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + if( !zRight ){ + returnSingleInt(pParse, "synchronous", pDb->safety_level-1); + }else{ + if( !db->autoCommit ){ + sqlite3ErrorMsg(pParse, + "Safety level may not be changed inside a transaction"); + }else{ + pDb->safety_level = getSafetyLevel(zRight)+1; + } + } + }else +#endif /* SQLITE_OMIT_PAGER_PRAGMAS */ + +#ifndef SQLITE_OMIT_FLAG_PRAGMAS + if( flagPragma(pParse, zLeft, zRight) ){ + /* The flagPragma() subroutine also generates any necessary code + ** there is nothing more to do here */ + }else +#endif /* SQLITE_OMIT_FLAG_PRAGMAS */ + +#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS + /* + ** PRAGMA table_info(
  • ) + ** + ** Return a single row for each column of the named table. The columns of + ** the returned data set are: + ** + ** cid: Column id (numbered from left to right, starting at 0) + ** name: Column name + ** type: Column declaration type. + ** notnull: True if 'NOT NULL' is part of column declaration + ** dflt_value: The default value for the column, if any. + */ + if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){ + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pTab = sqlite3FindTable(db, zRight, zDb); + if( pTab ){ + int i; + int nHidden = 0; + Column *pCol; + sqlite3VdbeSetNumCols(v, 6); + pParse->nMem = 6; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", SQLITE_STATIC); + sqlite3ViewGetColumnNames(pParse, pTab); + for(i=0, pCol=pTab->aCol; inCol; i++, pCol++){ + if( IsHiddenColumn(pCol) ){ + nHidden++; + continue; + } + sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1); + sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0); + sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, + pCol->zType ? pCol->zType : "", 0); + sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4); + if( pCol->zDflt ){ + sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0); + }else{ + sqlite3VdbeAddOp2(v, OP_Null, 0, 5); + } + sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6); + } + } + }else + + if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){ + Index *pIdx; + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pIdx = sqlite3FindIndex(db, zRight, zDb); + if( pIdx ){ + int i; + pTab = pIdx->pTable; + sqlite3VdbeSetNumCols(v, 3); + pParse->nMem = 3; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC); + for(i=0; inColumn; i++){ + int cnum = pIdx->aiColumn[i]; + sqlite3VdbeAddOp2(v, OP_Integer, i, 1); + sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2); + assert( pTab->nCol>cnum ); + sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); + } + } + }else + + if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){ + Index *pIdx; + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pTab = sqlite3FindTable(db, zRight, zDb); + if( pTab ){ + v = sqlite3GetVdbe(pParse); + pIdx = pTab->pIndex; + if( pIdx ){ + int i = 0; + sqlite3VdbeSetNumCols(v, 3); + pParse->nMem = 3; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC); + while(pIdx){ + sqlite3VdbeAddOp2(v, OP_Integer, i, 1); + sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0); + sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); + ++i; + pIdx = pIdx->pNext; + } + } + } + }else + + if( sqlite3StrICmp(zLeft, "database_list")==0 ){ + int i; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3VdbeSetNumCols(v, 3); + pParse->nMem = 3; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", SQLITE_STATIC); + for(i=0; inDb; i++){ + if( db->aDb[i].pBt==0 ) continue; + assert( db->aDb[i].zName!=0 ); + sqlite3VdbeAddOp2(v, OP_Integer, i, 1); + sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0); + sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, + sqlite3BtreeGetFilename(db->aDb[i].pBt), 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); + } + }else + + if( sqlite3StrICmp(zLeft, "collation_list")==0 ){ + int i = 0; + HashElem *p; + sqlite3VdbeSetNumCols(v, 2); + pParse->nMem = 2; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); + for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ + CollSeq *pColl = (CollSeq *)sqliteHashData(p); + sqlite3VdbeAddOp2(v, OP_Integer, i++, 1); + sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); + } + }else +#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ + +#ifndef SQLITE_OMIT_FOREIGN_KEY + if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){ + FKey *pFK; + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pTab = sqlite3FindTable(db, zRight, zDb); + if( pTab ){ + v = sqlite3GetVdbe(pParse); + pFK = pTab->pFKey; + if( pFK ){ + int i = 0; + sqlite3VdbeSetNumCols(v, 8); + pParse->nMem = 8; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "on_update", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 6, COLNAME_NAME, "on_delete", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 7, COLNAME_NAME, "match", SQLITE_STATIC); + while(pFK){ + int j; + for(j=0; jnCol; j++){ + char *zCol = pFK->aCol[j].zCol; + char *zOnDelete = (char *)actionName(pFK->aAction[0]); + char *zOnUpdate = (char *)actionName(pFK->aAction[1]); + sqlite3VdbeAddOp2(v, OP_Integer, i, 1); + sqlite3VdbeAddOp2(v, OP_Integer, j, 2); + sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0); + sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, + pTab->aCol[pFK->aCol[j].iFrom].zName, 0); + sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0); + sqlite3VdbeAddOp4(v, OP_String8, 0, 6, 0, zOnUpdate, 0); + sqlite3VdbeAddOp4(v, OP_String8, 0, 7, 0, zOnDelete, 0); + sqlite3VdbeAddOp4(v, OP_String8, 0, 8, 0, "NONE", 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8); + } + ++i; + pFK = pFK->pNextFrom; + } + } + } + }else +#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ + +#ifndef NDEBUG + if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){ + if( zRight ){ + if( sqlite3GetBoolean(zRight) ){ + sqlite3ParserTrace(stderr, "parser: "); + }else{ + sqlite3ParserTrace(0, 0); + } + } + }else +#endif + + /* Reinstall the LIKE and GLOB functions. The variant of LIKE + ** used will be case sensitive or not depending on the RHS. + */ + if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){ + if( zRight ){ + sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight)); + } + }else + +#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX +# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 +#endif + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK + /* Pragma "quick_check" is an experimental reduced version of + ** integrity_check designed to detect most database corruption + ** without most of the overhead of a full integrity-check. + */ + if( sqlite3StrICmp(zLeft, "integrity_check")==0 + || sqlite3StrICmp(zLeft, "quick_check")==0 + ){ + int i, j, addr, mxErr; + + /* Code that appears at the end of the integrity check. If no error + ** messages have been generated, output OK. Otherwise output the + ** error message + */ + static const VdbeOpList endCode[] = { + { OP_AddImm, 1, 0, 0}, /* 0 */ + { OP_IfNeg, 1, 0, 0}, /* 1 */ + { OP_String8, 0, 3, 0}, /* 2 */ + { OP_ResultRow, 3, 1, 0}, + }; + + int isQuick = (sqlite3Tolower(zLeft[0])=='q'); + + /* Initialize the VDBE program */ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pParse->nMem = 6; + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", SQLITE_STATIC); + + /* Set the maximum error count */ + mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; + if( zRight ){ + sqlite3GetInt32(zRight, &mxErr); + if( mxErr<=0 ){ + mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; + } + } + sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */ + + /* Do an integrity check on each database file */ + for(i=0; inDb; i++){ + HashElem *x; + Hash *pTbls; + int cnt = 0; + + if( OMIT_TEMPDB && i==1 ) continue; + + sqlite3CodeVerifySchema(pParse, i); + addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */ + sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); + sqlite3VdbeJumpHere(v, addr); + + /* Do an integrity check of the B-Tree + ** + ** Begin by filling registers 2, 3, ... with the root pages numbers + ** for all tables and indices in the database. + */ + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + pTbls = &db->aDb[i].pSchema->tblHash; + for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ + Table *pTab = sqliteHashData(x); + Index *pIdx; + sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt); + cnt++; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt); + cnt++; + } + } + + /* Make sure sufficient number of registers have been allocated */ + if( pParse->nMem < cnt+4 ){ + pParse->nMem = cnt+4; + } + + /* Do the b-tree integrity checks */ + sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); + sqlite3VdbeChangeP5(v, (u8)i); + addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); + sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, + sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName), + P4_DYNAMIC); + sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1); + sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2); + sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1); + sqlite3VdbeJumpHere(v, addr); + + /* Make sure all the indices are constructed correctly. + */ + for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){ + Table *pTab = sqliteHashData(x); + Index *pIdx; + int loopTop; + + if( pTab->pIndex==0 ) continue; + addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ + sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); + sqlite3VdbeJumpHere(v, addr); + sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead); + sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */ + loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0); + sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */ + for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ + int jmp2; + int r1; + static const VdbeOpList idxErr[] = { + { OP_AddImm, 1, -1, 0}, + { OP_String8, 0, 3, 0}, /* 1 */ + { OP_Rowid, 1, 4, 0}, + { OP_String8, 0, 5, 0}, /* 3 */ + { OP_String8, 0, 6, 0}, /* 4 */ + { OP_Concat, 4, 3, 3}, + { OP_Concat, 5, 3, 3}, + { OP_Concat, 6, 3, 3}, + { OP_ResultRow, 3, 1, 0}, + { OP_IfPos, 1, 0, 0}, /* 9 */ + { OP_Halt, 0, 0, 0}, + }; + r1 = sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 0); + jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, j+2, 0, r1, pIdx->nColumn+1); + addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); + sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC); + sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC); + sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_TRANSIENT); + sqlite3VdbeJumpHere(v, addr+9); + sqlite3VdbeJumpHere(v, jmp2); + } + sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1); + sqlite3VdbeJumpHere(v, loopTop); + for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ + static const VdbeOpList cntIdx[] = { + { OP_Integer, 0, 3, 0}, + { OP_Rewind, 0, 0, 0}, /* 1 */ + { OP_AddImm, 3, 1, 0}, + { OP_Next, 0, 0, 0}, /* 3 */ + { OP_Eq, 2, 0, 3}, /* 4 */ + { OP_AddImm, 1, -1, 0}, + { OP_String8, 0, 2, 0}, /* 6 */ + { OP_String8, 0, 3, 0}, /* 7 */ + { OP_Concat, 3, 2, 2}, + { OP_ResultRow, 2, 1, 0}, + }; + addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); + sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); + sqlite3VdbeJumpHere(v, addr); + addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx); + sqlite3VdbeChangeP1(v, addr+1, j+2); + sqlite3VdbeChangeP2(v, addr+1, addr+4); + sqlite3VdbeChangeP1(v, addr+3, j+2); + sqlite3VdbeChangeP2(v, addr+3, addr+2); + sqlite3VdbeJumpHere(v, addr+4); + sqlite3VdbeChangeP4(v, addr+6, + "wrong # of entries in index ", P4_STATIC); + sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_TRANSIENT); + } + } + } + addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode); + sqlite3VdbeChangeP2(v, addr, -mxErr); + sqlite3VdbeJumpHere(v, addr+1); + sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC); + }else +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +#ifndef SQLITE_OMIT_UTF16 + /* + ** PRAGMA encoding + ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" + ** + ** In its first form, this pragma returns the encoding of the main + ** database. If the database is not initialized, it is initialized now. + ** + ** The second form of this pragma is a no-op if the main database file + ** has not already been initialized. In this case it sets the default + ** encoding that will be used for the main database file if a new file + ** is created. If an existing main database file is opened, then the + ** default text encoding for the existing database is used. + ** + ** In all cases new databases created using the ATTACH command are + ** created to use the same default text encoding as the main database. If + ** the main database has not been initialized and/or created when ATTACH + ** is executed, this is done before the ATTACH operation. + ** + ** In the second form this pragma sets the text encoding to be used in + ** new database files created using this database handle. It is only + ** useful if invoked immediately after the main database i + */ + if( sqlite3StrICmp(zLeft, "encoding")==0 ){ + static const struct EncName { + char *zName; + u8 enc; + } encnames[] = { + { "UTF8", SQLITE_UTF8 }, + { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */ + { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */ + { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */ + { "UTF16le", SQLITE_UTF16LE }, + { "UTF16be", SQLITE_UTF16BE }, + { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ + { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ + { 0, 0 } + }; + const struct EncName *pEnc; + if( !zRight ){ /* "PRAGMA encoding" */ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", SQLITE_STATIC); + sqlite3VdbeAddOp2(v, OP_String8, 0, 1); + assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); + assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); + assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); + sqlite3VdbeChangeP4(v, -1, encnames[ENC(pParse->db)].zName, P4_STATIC); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); + }else{ /* "PRAGMA encoding = XXX" */ + /* Only change the value of sqlite.enc if the database handle is not + ** initialized. If the main database exists, the new sqlite.enc value + ** will be overwritten when the schema is next loaded. If it does not + ** already exists, it will be created to use the new encoding value. + */ + if( + !(DbHasProperty(db, 0, DB_SchemaLoaded)) || + DbHasProperty(db, 0, DB_Empty) + ){ + for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ + if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ + ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; + break; + } + } + if( !pEnc->zName ){ + sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); + } + } + } + }else +#endif /* SQLITE_OMIT_UTF16 */ + +#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS + /* + ** PRAGMA [database.]schema_version + ** PRAGMA [database.]schema_version = + ** + ** PRAGMA [database.]user_version + ** PRAGMA [database.]user_version = + ** + ** The pragma's schema_version and user_version are used to set or get + ** the value of the schema-version and user-version, respectively. Both + ** the schema-version and the user-version are 32-bit signed integers + ** stored in the database header. + ** + ** The schema-cookie is usually only manipulated internally by SQLite. It + ** is incremented by SQLite whenever the database schema is modified (by + ** creating or dropping a table or index). The schema version is used by + ** SQLite each time a query is executed to ensure that the internal cache + ** of the schema used when compiling the SQL query matches the schema of + ** the database against which the compiled query is actually executed. + ** Subverting this mechanism by using "PRAGMA schema_version" to modify + ** the schema-version is potentially dangerous and may lead to program + ** crashes or database corruption. Use with caution! + ** + ** The user-version is not used internally by SQLite. It may be used by + ** applications for any purpose. + */ + if( sqlite3StrICmp(zLeft, "schema_version")==0 + || sqlite3StrICmp(zLeft, "user_version")==0 + || sqlite3StrICmp(zLeft, "freelist_count")==0 + ){ + int iCookie; /* Cookie index. 1 for schema-cookie, 6 for user-cookie. */ + sqlite3VdbeUsesBtree(v, iDb); + switch( zLeft[0] ){ + case 'f': case 'F': + iCookie = BTREE_FREE_PAGE_COUNT; + break; + case 's': case 'S': + iCookie = BTREE_SCHEMA_VERSION; + break; + default: + iCookie = BTREE_USER_VERSION; + break; + } + + if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){ + /* Write the specified cookie value */ + static const VdbeOpList setCookie[] = { + { OP_Transaction, 0, 1, 0}, /* 0 */ + { OP_Integer, 0, 1, 0}, /* 1 */ + { OP_SetCookie, 0, 0, 1}, /* 2 */ + }; + int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie); + sqlite3VdbeChangeP1(v, addr, iDb); + sqlite3VdbeChangeP1(v, addr+1, sqlite3Atoi(zRight)); + sqlite3VdbeChangeP1(v, addr+2, iDb); + sqlite3VdbeChangeP2(v, addr+2, iCookie); + }else{ + /* Read the specified cookie value */ + static const VdbeOpList readCookie[] = { + { OP_Transaction, 0, 0, 0}, /* 0 */ + { OP_ReadCookie, 0, 1, 0}, /* 1 */ + { OP_ResultRow, 1, 1, 0} + }; + int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie); + sqlite3VdbeChangeP1(v, addr, iDb); + sqlite3VdbeChangeP1(v, addr+1, iDb); + sqlite3VdbeChangeP3(v, addr+1, iCookie); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT); + } + }else +#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ + +#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS + /* + ** PRAGMA compile_options + ** + ** Return the names of all compile-time options used in this build, + ** one option per row. + */ + if( sqlite3StrICmp(zLeft, "compile_options")==0 ){ + int i = 0; + const char *zOpt; + sqlite3VdbeSetNumCols(v, 1); + pParse->nMem = 1; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "compile_option", SQLITE_STATIC); + while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ + sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zOpt, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); + } + }else +#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ + +#ifndef SQLITE_OMIT_WAL + /* + ** PRAGMA [database.]wal_checkpoint = passive|full|restart + ** + ** Checkpoint the database. + */ + if( sqlite3StrICmp(zLeft, "wal_checkpoint")==0 ){ + int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED); + int eMode = SQLITE_CHECKPOINT_PASSIVE; + if( zRight ){ + if( sqlite3StrICmp(zRight, "full")==0 ){ + eMode = SQLITE_CHECKPOINT_FULL; + }else if( sqlite3StrICmp(zRight, "restart")==0 ){ + eMode = SQLITE_CHECKPOINT_RESTART; + } + } + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3VdbeSetNumCols(v, 3); + pParse->nMem = 3; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "busy", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "log", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "checkpointed", SQLITE_STATIC); + + sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); + }else + + /* + ** PRAGMA wal_autocheckpoint + ** PRAGMA wal_autocheckpoint = N + ** + ** Configure a database connection to automatically checkpoint a database + ** after accumulating N frames in the log. Or query for the current value + ** of N. + */ + if( sqlite3StrICmp(zLeft, "wal_autocheckpoint")==0 ){ + if( zRight ){ + sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); + } + returnSingleInt(pParse, "wal_autocheckpoint", + db->xWalCallback==sqlite3WalDefaultHook ? + SQLITE_PTR_TO_INT(db->pWalArg) : 0); + }else +#endif + +#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) + /* + ** Report the current state of file logs for all databases + */ + if( sqlite3StrICmp(zLeft, "lock_status")==0 ){ + static const char *const azLockName[] = { + "unlocked", "shared", "reserved", "pending", "exclusive" + }; + int i; + sqlite3VdbeSetNumCols(v, 2); + pParse->nMem = 2; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", SQLITE_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", SQLITE_STATIC); + for(i=0; inDb; i++){ + Btree *pBt; + Pager *pPager; + const char *zState = "unknown"; + int j; + if( db->aDb[i].zName==0 ) continue; + sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC); + pBt = db->aDb[i].pBt; + if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){ + zState = "closed"; + }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0, + SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ + zState = azLockName[j]; + } + sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); + } + + }else +#endif + +#ifdef SQLITE_HAS_CODEC + if( sqlite3StrICmp(zLeft, "key")==0 && zRight ){ + sqlite3_key(db, zRight, sqlite3Strlen30(zRight)); + }else + if( sqlite3StrICmp(zLeft, "rekey")==0 && zRight ){ + sqlite3_rekey(db, zRight, sqlite3Strlen30(zRight)); + }else + if( zRight && (sqlite3StrICmp(zLeft, "hexkey")==0 || + sqlite3StrICmp(zLeft, "hexrekey")==0) ){ + int i, h1, h2; + char zKey[40]; + for(i=0; (h1 = zRight[i])!=0 && (h2 = zRight[i+1])!=0; i+=2){ + h1 += 9*(1&(h1>>6)); + h2 += 9*(1&(h2>>6)); + zKey[i/2] = (h2 & 0x0f) | ((h1 & 0xf)<<4); + } + if( (zLeft[3] & 0xf)==0xb ){ + sqlite3_key(db, zKey, i/2); + }else{ + sqlite3_rekey(db, zKey, i/2); + } + }else +/** BEGIN CRYPTO **/ + if( sqlite3StrICmp(zLeft, "cipher")==0 && zRight ){ + extern int codec_set_cipher_name(sqlite3*, int, const char *, int); + codec_set_cipher_name(db, iDb, zRight, 2); // change cipher for both + }else + if( sqlite3StrICmp(zLeft, "rekey_cipher")==0 && zRight ){ + extern int codec_set_cipher_name(sqlite3*, int, const char *, int); + codec_set_cipher_name(db, iDb, zRight, 1); // change write cipher only + }else + if( sqlite3StrICmp(zLeft, "kdf_iter")==0 && zRight ){ + extern int codec_set_kdf_iter(sqlite3*, int, int, int); + codec_set_kdf_iter(db, iDb, atoi(zRight), 2); // change of RW PBKDF2 iteration + }else + if( sqlite3StrICmp(zLeft, "fast_kdf_iter")==0 && zRight ){ + extern int codec_set_fast_kdf_iter(sqlite3*, int, int, int); + codec_set_fast_kdf_iter(db, iDb, atoi(zRight), 2); // change of RW PBKDF2 iteration + }else + if( sqlite3StrICmp(zLeft, "rekey_kdf_iter")==0 && zRight ){ + extern int codec_set_kdf_iter(sqlite3*, int, int, int); + codec_set_kdf_iter(db, iDb, atoi(zRight), 1); // change # if W iterations + }else + if( sqlite3StrICmp(zLeft,"cipher_page_size")==0 ){ + extern int codec_set_page_size(sqlite3*, int, int); + codec_set_page_size(db, iDb, atoi(zRight)); // change page size + }else + if( sqlite3StrICmp(zLeft,"cipher_use_hmac")==0 ){ + extern int codec_set_use_hmac(sqlite3*, int, int); + if(sqlite3GetBoolean(zRight)) { + codec_set_use_hmac(db, iDb, 1); + } else { + codec_set_use_hmac(db, iDb, 0); + } + }else +/** END CRYPTO **/ +#endif +#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) + if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){ +#ifdef SQLITE_HAS_CODEC + if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ + sqlite3_activate_see(&zRight[4]); + } +#endif +#ifdef SQLITE_ENABLE_CEROD + if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ + sqlite3_activate_cerod(&zRight[6]); + } +#endif + }else +#endif + + + {/* Empty ELSE clause */} + + /* + ** Reset the safety level, in case the fullfsync flag or synchronous + ** setting changed. + */ +#ifndef SQLITE_OMIT_PAGER_PRAGMAS + if( db->autoCommit ){ + sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level, + (db->flags&SQLITE_FullFSync)!=0, + (db->flags&SQLITE_CkptFullFSync)!=0); + } +#endif +pragma_out: + sqlite3DbFree(db, zLeft); + sqlite3DbFree(db, zRight); +} + +#endif /* SQLITE_OMIT_PRAGMA */ diff --git a/src/prepare.c b/src/prepare.c new file mode 100644 index 0000000..fc45b8e --- /dev/null +++ b/src/prepare.c @@ -0,0 +1,858 @@ +/* +** 2005 May 25 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the implementation of the sqlite3_prepare() +** interface, and routines that contribute to loading the database schema +** from disk. +*/ +#include "sqliteInt.h" + +/* +** Fill the InitData structure with an error message that indicates +** that the database is corrupt. +*/ +static void corruptSchema( + InitData *pData, /* Initialization context */ + const char *zObj, /* Object being parsed at the point of error */ + const char *zExtra /* Error information */ +){ + sqlite3 *db = pData->db; + if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ){ + if( zObj==0 ) zObj = "?"; + sqlite3SetString(pData->pzErrMsg, db, + "malformed database schema (%s)", zObj); + if( zExtra ){ + *pData->pzErrMsg = sqlite3MAppendf(db, *pData->pzErrMsg, + "%s - %s", *pData->pzErrMsg, zExtra); + } + } + pData->rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_CORRUPT_BKPT; +} + +/* +** This is the callback routine for the code that initializes the +** database. See sqlite3Init() below for additional information. +** This routine is also called from the OP_ParseSchema opcode of the VDBE. +** +** Each callback contains the following information: +** +** argv[0] = name of thing being created +** argv[1] = root page number for table or index. 0 for trigger or view. +** argv[2] = SQL text for the CREATE statement. +** +*/ +int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ + InitData *pData = (InitData*)pInit; + sqlite3 *db = pData->db; + int iDb = pData->iDb; + + assert( argc==3 ); + UNUSED_PARAMETER2(NotUsed, argc); + assert( sqlite3_mutex_held(db->mutex) ); + DbClearProperty(db, iDb, DB_Empty); + if( db->mallocFailed ){ + corruptSchema(pData, argv[0], 0); + return 1; + } + + assert( iDb>=0 && iDbnDb ); + if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ + if( argv[1]==0 ){ + corruptSchema(pData, argv[0], 0); + }else if( argv[2] && argv[2][0] ){ + /* Call the parser to process a CREATE TABLE, INDEX or VIEW. + ** But because db->init.busy is set to 1, no VDBE code is generated + ** or executed. All the parser does is build the internal data + ** structures that describe the table, index, or view. + */ + int rc; + sqlite3_stmt *pStmt; + TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ + + assert( db->init.busy ); + db->init.iDb = iDb; + db->init.newTnum = sqlite3Atoi(argv[1]); + db->init.orphanTrigger = 0; + TESTONLY(rcp = ) sqlite3_prepare(db, argv[2], -1, &pStmt, 0); + rc = db->errCode; + assert( (rc&0xFF)==(rcp&0xFF) ); + db->init.iDb = 0; + if( SQLITE_OK!=rc ){ + if( db->init.orphanTrigger ){ + assert( iDb==1 ); + }else{ + pData->rc = rc; + if( rc==SQLITE_NOMEM ){ + db->mallocFailed = 1; + }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ + corruptSchema(pData, argv[0], sqlite3_errmsg(db)); + } + } + } + sqlite3_finalize(pStmt); + }else if( argv[0]==0 ){ + corruptSchema(pData, 0, 0); + }else{ + /* If the SQL column is blank it means this is an index that + ** was created to be the PRIMARY KEY or to fulfill a UNIQUE + ** constraint for a CREATE TABLE. The index should have already + ** been created when we processed the CREATE TABLE. All we have + ** to do here is record the root page number for that index. + */ + Index *pIndex; + pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName); + if( pIndex==0 ){ + /* This can occur if there exists an index on a TEMP table which + ** has the same name as another index on a permanent index. Since + ** the permanent table is hidden by the TEMP table, we can also + ** safely ignore the index on the permanent table. + */ + /* Do Nothing */; + }else if( sqlite3GetInt32(argv[1], &pIndex->tnum)==0 ){ + corruptSchema(pData, argv[0], "invalid rootpage"); + } + } + return 0; +} + +/* +** Attempt to read the database schema and initialize internal +** data structures for a single database file. The index of the +** database file is given by iDb. iDb==0 is used for the main +** database. iDb==1 should never be used. iDb>=2 is used for +** auxiliary databases. Return one of the SQLITE_ error codes to +** indicate success or failure. +*/ +static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){ + int rc; + int i; + int size; + Table *pTab; + Db *pDb; + char const *azArg[4]; + int meta[5]; + InitData initData; + char const *zMasterSchema; + char const *zMasterName; + int openedTransaction = 0; + + /* + ** The master database table has a structure like this + */ + static const char master_schema[] = + "CREATE TABLE sqlite_master(\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")" + ; +#ifndef SQLITE_OMIT_TEMPDB + static const char temp_master_schema[] = + "CREATE TEMP TABLE sqlite_temp_master(\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")" + ; +#else + #define temp_master_schema 0 +#endif + + assert( iDb>=0 && iDbnDb ); + assert( db->aDb[iDb].pSchema ); + assert( sqlite3_mutex_held(db->mutex) ); + assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); + + /* zMasterSchema and zInitScript are set to point at the master schema + ** and initialisation script appropriate for the database being + ** initialised. zMasterName is the name of the master table. + */ + if( !OMIT_TEMPDB && iDb==1 ){ + zMasterSchema = temp_master_schema; + }else{ + zMasterSchema = master_schema; + } + zMasterName = SCHEMA_TABLE(iDb); + + /* Construct the schema tables. */ + azArg[0] = zMasterName; + azArg[1] = "1"; + azArg[2] = zMasterSchema; + azArg[3] = 0; + initData.db = db; + initData.iDb = iDb; + initData.rc = SQLITE_OK; + initData.pzErrMsg = pzErrMsg; + sqlite3InitCallback(&initData, 3, (char **)azArg, 0); + if( initData.rc ){ + rc = initData.rc; + goto error_out; + } + pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName); + if( ALWAYS(pTab) ){ + pTab->tabFlags |= TF_Readonly; + } + + /* Create a cursor to hold the database open + */ + pDb = &db->aDb[iDb]; + if( pDb->pBt==0 ){ + if( !OMIT_TEMPDB && ALWAYS(iDb==1) ){ + DbSetProperty(db, 1, DB_SchemaLoaded); + } + return SQLITE_OK; + } + + /* If there is not already a read-only (or read-write) transaction opened + ** on the b-tree database, open one now. If a transaction is opened, it + ** will be closed before this function returns. */ + sqlite3BtreeEnter(pDb->pBt); + if( !sqlite3BtreeIsInReadTrans(pDb->pBt) ){ + rc = sqlite3BtreeBeginTrans(pDb->pBt, 0); + if( rc!=SQLITE_OK ){ + sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc)); + goto initone_error_out; + } + openedTransaction = 1; + } + + /* Get the database meta information. + ** + ** Meta values are as follows: + ** meta[0] Schema cookie. Changes with each schema change. + ** meta[1] File format of schema layer. + ** meta[2] Size of the page cache. + ** meta[3] Largest rootpage (auto/incr_vacuum mode) + ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE + ** meta[5] User version + ** meta[6] Incremental vacuum mode + ** meta[7] unused + ** meta[8] unused + ** meta[9] unused + ** + ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to + ** the possible values of meta[4]. + */ + for(i=0; ipBt, i+1, (u32 *)&meta[i]); + } + pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; + + /* If opening a non-empty database, check the text encoding. For the + ** main database, set sqlite3.enc to the encoding of the main database. + ** For an attached db, it is an error if the encoding is not the same + ** as sqlite3.enc. + */ + if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ + if( iDb==0 ){ + u8 encoding; + /* If opening the main database, set ENC(db). */ + encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; + if( encoding==0 ) encoding = SQLITE_UTF8; + ENC(db) = encoding; + db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); + }else{ + /* If opening an attached database, the encoding much match ENC(db) */ + if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){ + sqlite3SetString(pzErrMsg, db, "attached databases must use the same" + " text encoding as main database"); + rc = SQLITE_ERROR; + goto initone_error_out; + } + } + }else{ + DbSetProperty(db, iDb, DB_Empty); + } + pDb->pSchema->enc = ENC(db); + + if( pDb->pSchema->cache_size==0 ){ + size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); + if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } + pDb->pSchema->cache_size = size; + sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); + } + + /* + ** file_format==1 Version 3.0.0. + ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN + ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults + ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants + */ + pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; + if( pDb->pSchema->file_format==0 ){ + pDb->pSchema->file_format = 1; + } + if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ + sqlite3SetString(pzErrMsg, db, "unsupported file format"); + rc = SQLITE_ERROR; + goto initone_error_out; + } + + /* Ticket #2804: When we open a database in the newer file format, + ** clear the legacy_file_format pragma flag so that a VACUUM will + ** not downgrade the database and thus invalidate any descending + ** indices that the user might have created. + */ + if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ + db->flags &= ~SQLITE_LegacyFileFmt; + } + + /* Read the schema information out of the schema tables + */ + assert( db->init.busy ); + { + char *zSql; + zSql = sqlite3MPrintf(db, + "SELECT name, rootpage, sql FROM '%q'.%s ORDER BY rowid", + db->aDb[iDb].zName, zMasterName); +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); + xAuth = db->xAuth; + db->xAuth = 0; +#endif + rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); +#ifndef SQLITE_OMIT_AUTHORIZATION + db->xAuth = xAuth; + } +#endif + if( rc==SQLITE_OK ) rc = initData.rc; + sqlite3DbFree(db, zSql); +#ifndef SQLITE_OMIT_ANALYZE + if( rc==SQLITE_OK ){ + sqlite3AnalysisLoad(db, iDb); + } +#endif + } + if( db->mallocFailed ){ + rc = SQLITE_NOMEM; + sqlite3ResetInternalSchema(db, -1); + } + if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){ + /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider + ** the schema loaded, even if errors occurred. In this situation the + ** current sqlite3_prepare() operation will fail, but the following one + ** will attempt to compile the supplied statement against whatever subset + ** of the schema was loaded before the error occurred. The primary + ** purpose of this is to allow access to the sqlite_master table + ** even when its contents have been corrupted. + */ + DbSetProperty(db, iDb, DB_SchemaLoaded); + rc = SQLITE_OK; + } + + /* Jump here for an error that occurs after successfully allocating + ** curMain and calling sqlite3BtreeEnter(). For an error that occurs + ** before that point, jump to error_out. + */ +initone_error_out: + if( openedTransaction ){ + sqlite3BtreeCommit(pDb->pBt); + } + sqlite3BtreeLeave(pDb->pBt); + +error_out: + if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ + db->mallocFailed = 1; + } + return rc; +} + +/* +** Initialize all database files - the main database file, the file +** used to store temporary tables, and any additional database files +** created using ATTACH statements. Return a success code. If an +** error occurs, write an error message into *pzErrMsg. +** +** After a database is initialized, the DB_SchemaLoaded bit is set +** bit is set in the flags field of the Db structure. If the database +** file was of zero-length, then the DB_Empty flag is also set. +*/ +int sqlite3Init(sqlite3 *db, char **pzErrMsg){ + int i, rc; + int commit_internal = !(db->flags&SQLITE_InternChanges); + + assert( sqlite3_mutex_held(db->mutex) ); + rc = SQLITE_OK; + db->init.busy = 1; + for(i=0; rc==SQLITE_OK && inDb; i++){ + if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue; + rc = sqlite3InitOne(db, i, pzErrMsg); + if( rc ){ + sqlite3ResetInternalSchema(db, i); + } + } + + /* Once all the other databases have been initialised, load the schema + ** for the TEMP database. This is loaded last, as the TEMP database + ** schema may contain references to objects in other databases. + */ +#ifndef SQLITE_OMIT_TEMPDB + if( rc==SQLITE_OK && ALWAYS(db->nDb>1) + && !DbHasProperty(db, 1, DB_SchemaLoaded) ){ + rc = sqlite3InitOne(db, 1, pzErrMsg); + if( rc ){ + sqlite3ResetInternalSchema(db, 1); + } + } +#endif + + db->init.busy = 0; + if( rc==SQLITE_OK && commit_internal ){ + sqlite3CommitInternalChanges(db); + } + + return rc; +} + +/* +** This routine is a no-op if the database schema is already initialised. +** Otherwise, the schema is loaded. An error code is returned. +*/ +int sqlite3ReadSchema(Parse *pParse){ + int rc = SQLITE_OK; + sqlite3 *db = pParse->db; + assert( sqlite3_mutex_held(db->mutex) ); + if( !db->init.busy ){ + rc = sqlite3Init(db, &pParse->zErrMsg); + } + if( rc!=SQLITE_OK ){ + pParse->rc = rc; + pParse->nErr++; + } + return rc; +} + + +/* +** Check schema cookies in all databases. If any cookie is out +** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies +** make no changes to pParse->rc. +*/ +static void schemaIsValid(Parse *pParse){ + sqlite3 *db = pParse->db; + int iDb; + int rc; + int cookie; + + assert( pParse->checkSchema ); + assert( sqlite3_mutex_held(db->mutex) ); + for(iDb=0; iDbnDb; iDb++){ + int openedTransaction = 0; /* True if a transaction is opened */ + Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ + if( pBt==0 ) continue; + + /* If there is not already a read-only (or read-write) transaction opened + ** on the b-tree database, open one now. If a transaction is opened, it + ** will be closed immediately after reading the meta-value. */ + if( !sqlite3BtreeIsInReadTrans(pBt) ){ + rc = sqlite3BtreeBeginTrans(pBt, 0); + if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ + db->mallocFailed = 1; + } + if( rc!=SQLITE_OK ) return; + openedTransaction = 1; + } + + /* Read the schema cookie from the database. If it does not match the + ** value stored as part of the in-memory schema representation, + ** set Parse.rc to SQLITE_SCHEMA. */ + sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); + assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); + if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ + sqlite3ResetInternalSchema(db, iDb); + pParse->rc = SQLITE_SCHEMA; + } + + /* Close the transaction, if one was opened. */ + if( openedTransaction ){ + sqlite3BtreeCommit(pBt); + } + } +} + +/* +** Convert a schema pointer into the iDb index that indicates +** which database file in db->aDb[] the schema refers to. +** +** If the same database is attached more than once, the first +** attached database is returned. +*/ +int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ + int i = -1000000; + + /* If pSchema is NULL, then return -1000000. This happens when code in + ** expr.c is trying to resolve a reference to a transient table (i.e. one + ** created by a sub-select). In this case the return value of this + ** function should never be used. + ** + ** We return -1000000 instead of the more usual -1 simply because using + ** -1000000 as the incorrect index into db->aDb[] is much + ** more likely to cause a segfault than -1 (of course there are assert() + ** statements too, but it never hurts to play the odds). + */ + assert( sqlite3_mutex_held(db->mutex) ); + if( pSchema ){ + for(i=0; ALWAYS(inDb); i++){ + if( db->aDb[i].pSchema==pSchema ){ + break; + } + } + assert( i>=0 && inDb ); + } + return i; +} + +/* +** Compile the UTF-8 encoded SQL statement zSql into a statement handle. +*/ +static int sqlite3Prepare( + sqlite3 *db, /* Database handle. */ + const char *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ + Vdbe *pReprepare, /* VM being reprepared */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const char **pzTail /* OUT: End of parsed string */ +){ + Parse *pParse; /* Parsing context */ + char *zErrMsg = 0; /* Error message */ + int rc = SQLITE_OK; /* Result code */ + int i; /* Loop counter */ + + /* Allocate the parsing context */ + pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); + if( pParse==0 ){ + rc = SQLITE_NOMEM; + goto end_prepare; + } + pParse->pReprepare = pReprepare; + assert( ppStmt && *ppStmt==0 ); + assert( !db->mallocFailed ); + assert( sqlite3_mutex_held(db->mutex) ); + + /* Check to verify that it is possible to get a read lock on all + ** database schemas. The inability to get a read lock indicates that + ** some other database connection is holding a write-lock, which in + ** turn means that the other connection has made uncommitted changes + ** to the schema. + ** + ** Were we to proceed and prepare the statement against the uncommitted + ** schema changes and if those schema changes are subsequently rolled + ** back and different changes are made in their place, then when this + ** prepared statement goes to run the schema cookie would fail to detect + ** the schema change. Disaster would follow. + ** + ** This thread is currently holding mutexes on all Btrees (because + ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it + ** is not possible for another thread to start a new schema change + ** while this routine is running. Hence, we do not need to hold + ** locks on the schema, we just need to make sure nobody else is + ** holding them. + ** + ** Note that setting READ_UNCOMMITTED overrides most lock detection, + ** but it does *not* override schema lock detection, so this all still + ** works even if READ_UNCOMMITTED is set. + */ + for(i=0; inDb; i++) { + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + assert( sqlite3BtreeHoldsMutex(pBt) ); + rc = sqlite3BtreeSchemaLocked(pBt); + if( rc ){ + const char *zDb = db->aDb[i].zName; + sqlite3Error(db, rc, "database schema is locked: %s", zDb); + testcase( db->flags & SQLITE_ReadUncommitted ); + goto end_prepare; + } + } + } + + sqlite3VtabUnlockList(db); + + pParse->db = db; + pParse->nQueryLoop = (double)1; + if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ + char *zSqlCopy; + int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; + testcase( nBytes==mxLen ); + testcase( nBytes==mxLen+1 ); + if( nBytes>mxLen ){ + sqlite3Error(db, SQLITE_TOOBIG, "statement too long"); + rc = sqlite3ApiExit(db, SQLITE_TOOBIG); + goto end_prepare; + } + zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); + if( zSqlCopy ){ + sqlite3RunParser(pParse, zSqlCopy, &zErrMsg); + sqlite3DbFree(db, zSqlCopy); + pParse->zTail = &zSql[pParse->zTail-zSqlCopy]; + }else{ + pParse->zTail = &zSql[nBytes]; + } + }else{ + sqlite3RunParser(pParse, zSql, &zErrMsg); + } + assert( 1==(int)pParse->nQueryLoop ); + + if( db->mallocFailed ){ + pParse->rc = SQLITE_NOMEM; + } + if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK; + if( pParse->checkSchema ){ + schemaIsValid(pParse); + } + if( db->mallocFailed ){ + pParse->rc = SQLITE_NOMEM; + } + if( pzTail ){ + *pzTail = pParse->zTail; + } + rc = pParse->rc; + +#ifndef SQLITE_OMIT_EXPLAIN + if( rc==SQLITE_OK && pParse->pVdbe && pParse->explain ){ + static const char * const azColName[] = { + "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", + "selectid", "order", "from", "detail" + }; + int iFirst, mx; + if( pParse->explain==2 ){ + sqlite3VdbeSetNumCols(pParse->pVdbe, 4); + iFirst = 8; + mx = 12; + }else{ + sqlite3VdbeSetNumCols(pParse->pVdbe, 8); + iFirst = 0; + mx = 8; + } + for(i=iFirst; ipVdbe, i-iFirst, COLNAME_NAME, + azColName[i], SQLITE_STATIC); + } + } +#endif + + assert( db->init.busy==0 || saveSqlFlag==0 ); + if( db->init.busy==0 ){ + Vdbe *pVdbe = pParse->pVdbe; + sqlite3VdbeSetSql(pVdbe, zSql, (int)(pParse->zTail-zSql), saveSqlFlag); + } + if( pParse->pVdbe && (rc!=SQLITE_OK || db->mallocFailed) ){ + sqlite3VdbeFinalize(pParse->pVdbe); + assert(!(*ppStmt)); + }else{ + *ppStmt = (sqlite3_stmt*)pParse->pVdbe; + } + + if( zErrMsg ){ + sqlite3Error(db, rc, "%s", zErrMsg); + sqlite3DbFree(db, zErrMsg); + }else{ + sqlite3Error(db, rc, 0); + } + + /* Delete any TriggerPrg structures allocated while parsing this statement. */ + while( pParse->pTriggerPrg ){ + TriggerPrg *pT = pParse->pTriggerPrg; + pParse->pTriggerPrg = pT->pNext; + sqlite3DbFree(db, pT); + } + +end_prepare: + + sqlite3StackFree(db, pParse); + rc = sqlite3ApiExit(db, rc); + assert( (rc&db->errMask)==rc ); + return rc; +} +static int sqlite3LockAndPrepare( + sqlite3 *db, /* Database handle. */ + const char *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ + Vdbe *pOld, /* VM being reprepared */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const char **pzTail /* OUT: End of parsed string */ +){ + int rc; + assert( ppStmt!=0 ); + *ppStmt = 0; + if( !sqlite3SafetyCheckOk(db) ){ + return SQLITE_MISUSE_BKPT; + } + sqlite3_mutex_enter(db->mutex); + sqlite3BtreeEnterAll(db); + rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail); + if( rc==SQLITE_SCHEMA ){ + sqlite3_finalize(*ppStmt); + rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail); + } + sqlite3BtreeLeaveAll(db); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Rerun the compilation of a statement after a schema change. +** +** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, +** if the statement cannot be recompiled because another connection has +** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error +** occurs, return SQLITE_SCHEMA. +*/ +int sqlite3Reprepare(Vdbe *p){ + int rc; + sqlite3_stmt *pNew; + const char *zSql; + sqlite3 *db; + + assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); + zSql = sqlite3_sql((sqlite3_stmt *)p); + assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ + db = sqlite3VdbeDb(p); + assert( sqlite3_mutex_held(db->mutex) ); + rc = sqlite3LockAndPrepare(db, zSql, -1, 0, p, &pNew, 0); + if( rc ){ + if( rc==SQLITE_NOMEM ){ + db->mallocFailed = 1; + } + assert( pNew==0 ); + return rc; + }else{ + assert( pNew!=0 ); + } + sqlite3VdbeSwap((Vdbe*)pNew, p); + sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); + sqlite3VdbeResetStepResult((Vdbe*)pNew); + sqlite3VdbeFinalize((Vdbe*)pNew); + return SQLITE_OK; +} + + +/* +** Two versions of the official API. Legacy and new use. In the legacy +** version, the original SQL text is not saved in the prepared statement +** and so if a schema change occurs, SQLITE_SCHEMA is returned by +** sqlite3_step(). In the new version, the original SQL text is retained +** and the statement is automatically recompiled if an schema change +** occurs. +*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle. */ + const char *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const char **pzTail /* OUT: End of parsed string */ +){ + int rc; + rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); + assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ + return rc; +} +int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle. */ + const char *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const char **pzTail /* OUT: End of parsed string */ +){ + int rc; + rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,0,ppStmt,pzTail); + assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ + return rc; +} + + +#ifndef SQLITE_OMIT_UTF16 +/* +** Compile the UTF-16 encoded SQL statement zSql into a statement handle. +*/ +static int sqlite3Prepare16( + sqlite3 *db, /* Database handle. */ + const void *zSql, /* UTF-16 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + int saveSqlFlag, /* True to save SQL text into the sqlite3_stmt */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const void **pzTail /* OUT: End of parsed string */ +){ + /* This function currently works by first transforming the UTF-16 + ** encoded string to UTF-8, then invoking sqlite3_prepare(). The + ** tricky bit is figuring out the pointer to return in *pzTail. + */ + char *zSql8; + const char *zTail8 = 0; + int rc = SQLITE_OK; + + assert( ppStmt ); + *ppStmt = 0; + if( !sqlite3SafetyCheckOk(db) ){ + return SQLITE_MISUSE_BKPT; + } + sqlite3_mutex_enter(db->mutex); + zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); + if( zSql8 ){ + rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, 0, ppStmt, &zTail8); + } + + if( zTail8 && pzTail ){ + /* If sqlite3_prepare returns a tail pointer, we calculate the + ** equivalent pointer into the UTF-16 string by counting the unicode + ** characters between zSql8 and zTail8, and then returning a pointer + ** the same number of characters into the UTF-16 string. + */ + int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); + *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); + } + sqlite3DbFree(db, zSql8); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Two versions of the official API. Legacy and new use. In the legacy +** version, the original SQL text is not saved in the prepared statement +** and so if a schema change occurs, SQLITE_SCHEMA is returned by +** sqlite3_step(). In the new version, the original SQL text is retained +** and the statement is automatically recompiled if an schema change +** occurs. +*/ +int sqlite3_prepare16( + sqlite3 *db, /* Database handle. */ + const void *zSql, /* UTF-16 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const void **pzTail /* OUT: End of parsed string */ +){ + int rc; + rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); + assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ + return rc; +} +int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle. */ + const void *zSql, /* UTF-16 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const void **pzTail /* OUT: End of parsed string */ +){ + int rc; + rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail); + assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ + return rc; +} + +#endif /* SQLITE_OMIT_UTF16 */ diff --git a/src/printf.c b/src/printf.c new file mode 100644 index 0000000..0babee5 --- /dev/null +++ b/src/printf.c @@ -0,0 +1,970 @@ +/* +** The "printf" code that follows dates from the 1980's. It is in +** the public domain. The original comments are included here for +** completeness. They are very out-of-date but might be useful as +** an historical reference. Most of the "enhancements" have been backed +** out so that the functionality is now the same as standard printf(). +** +************************************************************************** +** +** This file contains code for a set of "printf"-like routines. These +** routines format strings much like the printf() from the standard C +** library, though the implementation here has enhancements to support +** SQLlite. +*/ +#include "sqliteInt.h" + +/* +** Conversion types fall into various categories as defined by the +** following enumeration. +*/ +#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ +#define etFLOAT 2 /* Floating point. %f */ +#define etEXP 3 /* Exponentional notation. %e and %E */ +#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ +#define etSIZE 5 /* Return number of characters processed so far. %n */ +#define etSTRING 6 /* Strings. %s */ +#define etDYNSTRING 7 /* Dynamically allocated strings. %z */ +#define etPERCENT 8 /* Percent symbol. %% */ +#define etCHARX 9 /* Characters. %c */ +/* The rest are extensions, not normally found in printf() */ +#define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */ +#define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '', + NULL pointers replaced by SQL NULL. %Q */ +#define etTOKEN 12 /* a pointer to a Token structure */ +#define etSRCLIST 13 /* a pointer to a SrcList */ +#define etPOINTER 14 /* The %p conversion */ +#define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */ +#define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ + +#define etINVALID 0 /* Any unrecognized conversion type */ + + +/* +** An "etByte" is an 8-bit unsigned value. +*/ +typedef unsigned char etByte; + +/* +** Each builtin conversion character (ex: the 'd' in "%d") is described +** by an instance of the following structure +*/ +typedef struct et_info { /* Information about each format field */ + char fmttype; /* The format field code letter */ + etByte base; /* The base for radix conversion */ + etByte flags; /* One or more of FLAG_ constants below */ + etByte type; /* Conversion paradigm */ + etByte charset; /* Offset into aDigits[] of the digits string */ + etByte prefix; /* Offset into aPrefix[] of the prefix string */ +} et_info; + +/* +** Allowed values for et_info.flags +*/ +#define FLAG_SIGNED 1 /* True if the value to convert is signed */ +#define FLAG_INTERN 2 /* True if for internal use only */ +#define FLAG_STRING 4 /* Allow infinity precision */ + + +/* +** The following table is searched linearly, so it is good to put the +** most frequently used conversion types first. +*/ +static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; +static const char aPrefix[] = "-x0\000X0"; +static const et_info fmtinfo[] = { + { 'd', 10, 1, etRADIX, 0, 0 }, + { 's', 0, 4, etSTRING, 0, 0 }, + { 'g', 0, 1, etGENERIC, 30, 0 }, + { 'z', 0, 4, etDYNSTRING, 0, 0 }, + { 'q', 0, 4, etSQLESCAPE, 0, 0 }, + { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, + { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, + { 'c', 0, 0, etCHARX, 0, 0 }, + { 'o', 8, 0, etRADIX, 0, 2 }, + { 'u', 10, 0, etRADIX, 0, 0 }, + { 'x', 16, 0, etRADIX, 16, 1 }, + { 'X', 16, 0, etRADIX, 0, 4 }, +#ifndef SQLITE_OMIT_FLOATING_POINT + { 'f', 0, 1, etFLOAT, 0, 0 }, + { 'e', 0, 1, etEXP, 30, 0 }, + { 'E', 0, 1, etEXP, 14, 0 }, + { 'G', 0, 1, etGENERIC, 14, 0 }, +#endif + { 'i', 10, 1, etRADIX, 0, 0 }, + { 'n', 0, 0, etSIZE, 0, 0 }, + { '%', 0, 0, etPERCENT, 0, 0 }, + { 'p', 16, 0, etPOINTER, 0, 1 }, + +/* All the rest have the FLAG_INTERN bit set and are thus for internal +** use only */ + { 'T', 0, 2, etTOKEN, 0, 0 }, + { 'S', 0, 2, etSRCLIST, 0, 0 }, + { 'r', 10, 3, etORDINAL, 0, 0 }, +}; + +/* +** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point +** conversions will work. +*/ +#ifndef SQLITE_OMIT_FLOATING_POINT +/* +** "*val" is a double such that 0.1 <= *val < 10.0 +** Return the ascii code for the leading digit of *val, then +** multiply "*val" by 10.0 to renormalize. +** +** Example: +** input: *val = 3.14159 +** output: *val = 1.4159 function return = '3' +** +** The counter *cnt is incremented each time. After counter exceeds +** 16 (the number of significant digits in a 64-bit float) '0' is +** always returned. +*/ +static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ + int digit; + LONGDOUBLE_TYPE d; + if( (*cnt)++ >= 16 ) return '0'; + digit = (int)*val; + d = digit; + digit += '0'; + *val = (*val - d)*10.0; + return (char)digit; +} +#endif /* SQLITE_OMIT_FLOATING_POINT */ + +/* +** Append N space characters to the given string buffer. +*/ +static void appendSpace(StrAccum *pAccum, int N){ + static const char zSpaces[] = " "; + while( N>=(int)sizeof(zSpaces)-1 ){ + sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1); + N -= sizeof(zSpaces)-1; + } + if( N>0 ){ + sqlite3StrAccumAppend(pAccum, zSpaces, N); + } +} + +/* +** On machines with a small stack size, you can redefine the +** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. +*/ +#ifndef SQLITE_PRINT_BUF_SIZE +# define SQLITE_PRINT_BUF_SIZE 70 +#endif +#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ + +/* +** Render a string given by "fmt" into the StrAccum object. +*/ +void sqlite3VXPrintf( + StrAccum *pAccum, /* Accumulate results here */ + int useExtended, /* Allow extended %-conversions */ + const char *fmt, /* Format string */ + va_list ap /* arguments */ +){ + int c; /* Next character in the format string */ + char *bufpt; /* Pointer to the conversion buffer */ + int precision; /* Precision of the current field */ + int length; /* Length of the field */ + int idx; /* A general purpose loop counter */ + int width; /* Width of the current field */ + etByte flag_leftjustify; /* True if "-" flag is present */ + etByte flag_plussign; /* True if "+" flag is present */ + etByte flag_blanksign; /* True if " " flag is present */ + etByte flag_alternateform; /* True if "#" flag is present */ + etByte flag_altform2; /* True if "!" flag is present */ + etByte flag_zeropad; /* True if field width constant starts with zero */ + etByte flag_long; /* True if "l" flag is present */ + etByte flag_longlong; /* True if the "ll" flag is present */ + etByte done; /* Loop termination flag */ + etByte xtype = 0; /* Conversion paradigm */ + char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ + sqlite_uint64 longvalue; /* Value for integer types */ + LONGDOUBLE_TYPE realvalue; /* Value for real types */ + const et_info *infop; /* Pointer to the appropriate info structure */ + char *zOut; /* Rendering buffer */ + int nOut; /* Size of the rendering buffer */ + char *zExtra; /* Malloced memory used by some conversion */ +#ifndef SQLITE_OMIT_FLOATING_POINT + int exp, e2; /* exponent of real numbers */ + int nsd; /* Number of significant digits returned */ + double rounder; /* Used for rounding floating point values */ + etByte flag_dp; /* True if decimal point should be shown */ + etByte flag_rtz; /* True if trailing zeros should be removed */ +#endif + char buf[etBUFSIZE]; /* Conversion buffer */ + + bufpt = 0; + for(; (c=(*fmt))!=0; ++fmt){ + if( c!='%' ){ + int amt; + bufpt = (char *)fmt; + amt = 1; + while( (c=(*++fmt))!='%' && c!=0 ) amt++; + sqlite3StrAccumAppend(pAccum, bufpt, amt); + if( c==0 ) break; + } + if( (c=(*++fmt))==0 ){ + sqlite3StrAccumAppend(pAccum, "%", 1); + break; + } + /* Find out what flags are present */ + flag_leftjustify = flag_plussign = flag_blanksign = + flag_alternateform = flag_altform2 = flag_zeropad = 0; + done = 0; + do{ + switch( c ){ + case '-': flag_leftjustify = 1; break; + case '+': flag_plussign = 1; break; + case ' ': flag_blanksign = 1; break; + case '#': flag_alternateform = 1; break; + case '!': flag_altform2 = 1; break; + case '0': flag_zeropad = 1; break; + default: done = 1; break; + } + }while( !done && (c=(*++fmt))!=0 ); + /* Get the field width */ + width = 0; + if( c=='*' ){ + width = va_arg(ap,int); + if( width<0 ){ + flag_leftjustify = 1; + width = -width; + } + c = *++fmt; + }else{ + while( c>='0' && c<='9' ){ + width = width*10 + c - '0'; + c = *++fmt; + } + } + /* Get the precision */ + if( c=='.' ){ + precision = 0; + c = *++fmt; + if( c=='*' ){ + precision = va_arg(ap,int); + if( precision<0 ) precision = -precision; + c = *++fmt; + }else{ + while( c>='0' && c<='9' ){ + precision = precision*10 + c - '0'; + c = *++fmt; + } + } + }else{ + precision = -1; + } + /* Get the conversion type modifier */ + if( c=='l' ){ + flag_long = 1; + c = *++fmt; + if( c=='l' ){ + flag_longlong = 1; + c = *++fmt; + }else{ + flag_longlong = 0; + } + }else{ + flag_long = flag_longlong = 0; + } + /* Fetch the info entry for the field */ + infop = &fmtinfo[0]; + xtype = etINVALID; + for(idx=0; idxflags & FLAG_INTERN)==0 ){ + xtype = infop->type; + }else{ + return; + } + break; + } + } + zExtra = 0; + + /* + ** At this point, variables are initialized as follows: + ** + ** flag_alternateform TRUE if a '#' is present. + ** flag_altform2 TRUE if a '!' is present. + ** flag_plussign TRUE if a '+' is present. + ** flag_leftjustify TRUE if a '-' is present or if the + ** field width was negative. + ** flag_zeropad TRUE if the width began with 0. + ** flag_long TRUE if the letter 'l' (ell) prefixed + ** the conversion character. + ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed + ** the conversion character. + ** flag_blanksign TRUE if a ' ' is present. + ** width The specified field width. This is + ** always non-negative. Zero is the default. + ** precision The specified precision. The default + ** is -1. + ** xtype The class of the conversion. + ** infop Pointer to the appropriate info struct. + */ + switch( xtype ){ + case etPOINTER: + flag_longlong = sizeof(char*)==sizeof(i64); + flag_long = sizeof(char*)==sizeof(long int); + /* Fall through into the next case */ + case etORDINAL: + case etRADIX: + if( infop->flags & FLAG_SIGNED ){ + i64 v; + if( flag_longlong ){ + v = va_arg(ap,i64); + }else if( flag_long ){ + v = va_arg(ap,long int); + }else{ + v = va_arg(ap,int); + } + if( v<0 ){ + if( v==SMALLEST_INT64 ){ + longvalue = ((u64)1)<<63; + }else{ + longvalue = -v; + } + prefix = '-'; + }else{ + longvalue = v; + if( flag_plussign ) prefix = '+'; + else if( flag_blanksign ) prefix = ' '; + else prefix = 0; + } + }else{ + if( flag_longlong ){ + longvalue = va_arg(ap,u64); + }else if( flag_long ){ + longvalue = va_arg(ap,unsigned long int); + }else{ + longvalue = va_arg(ap,unsigned int); + } + prefix = 0; + } + if( longvalue==0 ) flag_alternateform = 0; + if( flag_zeropad && precisionmallocFailed = 1; + return; + } + } + bufpt = &zOut[nOut-1]; + if( xtype==etORDINAL ){ + static const char zOrd[] = "thstndrd"; + int x = (int)(longvalue % 10); + if( x>=4 || (longvalue/10)%10==1 ){ + x = 0; + } + *(--bufpt) = zOrd[x*2+1]; + *(--bufpt) = zOrd[x*2]; + } + { + register const char *cset; /* Use registers for speed */ + register int base; + cset = &aDigits[infop->charset]; + base = infop->base; + do{ /* Convert to ascii */ + *(--bufpt) = cset[longvalue%base]; + longvalue = longvalue/base; + }while( longvalue>0 ); + } + length = (int)(&zOut[nOut-1]-bufpt); + for(idx=precision-length; idx>0; idx--){ + *(--bufpt) = '0'; /* Zero pad */ + } + if( prefix ) *(--bufpt) = prefix; /* Add sign */ + if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ + const char *pre; + char x; + pre = &aPrefix[infop->prefix]; + for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; + } + length = (int)(&zOut[nOut-1]-bufpt); + break; + case etFLOAT: + case etEXP: + case etGENERIC: + realvalue = va_arg(ap,double); +#ifdef SQLITE_OMIT_FLOATING_POINT + length = 0; +#else + if( precision<0 ) precision = 6; /* Set default precision */ + if( realvalue<0.0 ){ + realvalue = -realvalue; + prefix = '-'; + }else{ + if( flag_plussign ) prefix = '+'; + else if( flag_blanksign ) prefix = ' '; + else prefix = 0; + } + if( xtype==etGENERIC && precision>0 ) precision--; +#if 0 + /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ + for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); +#else + /* It makes more sense to use 0.5 */ + for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} +#endif + if( xtype==etFLOAT ) realvalue += rounder; + /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ + exp = 0; + if( sqlite3IsNaN((double)realvalue) ){ + bufpt = "NaN"; + length = 3; + break; + } + if( realvalue>0.0 ){ + while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; } + while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } + while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } + while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } + while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } + if( exp>350 ){ + if( prefix=='-' ){ + bufpt = "-Inf"; + }else if( prefix=='+' ){ + bufpt = "+Inf"; + }else{ + bufpt = "Inf"; + } + length = sqlite3Strlen30(bufpt); + break; + } + } + bufpt = buf; + /* + ** If the field type is etGENERIC, then convert to either etEXP + ** or etFLOAT, as appropriate. + */ + if( xtype!=etFLOAT ){ + realvalue += rounder; + if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } + } + if( xtype==etGENERIC ){ + flag_rtz = !flag_alternateform; + if( exp<-4 || exp>precision ){ + xtype = etEXP; + }else{ + precision = precision - exp; + xtype = etFLOAT; + } + }else{ + flag_rtz = 0; + } + if( xtype==etEXP ){ + e2 = 0; + }else{ + e2 = exp; + } + if( e2+precision+width > etBUFSIZE - 15 ){ + bufpt = zExtra = sqlite3Malloc( e2+precision+width+15 ); + if( bufpt==0 ){ + pAccum->mallocFailed = 1; + return; + } + } + zOut = bufpt; + nsd = 0; + flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; + /* The sign in front of the number */ + if( prefix ){ + *(bufpt++) = prefix; + } + /* Digits prior to the decimal point */ + if( e2<0 ){ + *(bufpt++) = '0'; + }else{ + for(; e2>=0; e2--){ + *(bufpt++) = et_getdigit(&realvalue,&nsd); + } + } + /* The decimal point */ + if( flag_dp ){ + *(bufpt++) = '.'; + } + /* "0" digits after the decimal point but before the first + ** significant digit of the number */ + for(e2++; e2<0; precision--, e2++){ + assert( precision>0 ); + *(bufpt++) = '0'; + } + /* Significant digits after the decimal point */ + while( (precision--)>0 ){ + *(bufpt++) = et_getdigit(&realvalue,&nsd); + } + /* Remove trailing zeros and the "." if no digits follow the "." */ + if( flag_rtz && flag_dp ){ + while( bufpt[-1]=='0' ) *(--bufpt) = 0; + assert( bufpt>zOut ); + if( bufpt[-1]=='.' ){ + if( flag_altform2 ){ + *(bufpt++) = '0'; + }else{ + *(--bufpt) = 0; + } + } + } + /* Add the "eNNN" suffix */ + if( xtype==etEXP ){ + *(bufpt++) = aDigits[infop->charset]; + if( exp<0 ){ + *(bufpt++) = '-'; exp = -exp; + }else{ + *(bufpt++) = '+'; + } + if( exp>=100 ){ + *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ + exp %= 100; + } + *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ + *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ + } + *bufpt = 0; + + /* The converted number is in buf[] and zero terminated. Output it. + ** Note that the number is in the usual order, not reversed as with + ** integer conversions. */ + length = (int)(bufpt-zOut); + bufpt = zOut; + + /* Special case: Add leading zeros if the flag_zeropad flag is + ** set and we are not left justified */ + if( flag_zeropad && !flag_leftjustify && length < width){ + int i; + int nPad = width - length; + for(i=width; i>=nPad; i--){ + bufpt[i] = bufpt[i-nPad]; + } + i = prefix!=0; + while( nPad-- ) bufpt[i++] = '0'; + length = width; + } +#endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */ + break; + case etSIZE: + *(va_arg(ap,int*)) = pAccum->nChar; + length = width = 0; + break; + case etPERCENT: + buf[0] = '%'; + bufpt = buf; + length = 1; + break; + case etCHARX: + c = va_arg(ap,int); + buf[0] = (char)c; + if( precision>=0 ){ + for(idx=1; idx=0 ){ + for(length=0; lengthetBUFSIZE ){ + bufpt = zExtra = sqlite3Malloc( n ); + if( bufpt==0 ){ + pAccum->mallocFailed = 1; + return; + } + }else{ + bufpt = buf; + } + j = 0; + if( needQuote ) bufpt[j++] = q; + k = i; + for(i=0; i=0 && precisionz, pToken->n); + } + length = width = 0; + break; + } + case etSRCLIST: { + SrcList *pSrc = va_arg(ap, SrcList*); + int k = va_arg(ap, int); + struct SrcList_item *pItem = &pSrc->a[k]; + assert( k>=0 && knSrc ); + if( pItem->zDatabase ){ + sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1); + sqlite3StrAccumAppend(pAccum, ".", 1); + } + sqlite3StrAccumAppend(pAccum, pItem->zName, -1); + length = width = 0; + break; + } + default: { + assert( xtype==etINVALID ); + return; + } + }/* End switch over the format type */ + /* + ** The text of the conversion is pointed to by "bufpt" and is + ** "length" characters long. The field width is "width". Do + ** the output. + */ + if( !flag_leftjustify ){ + register int nspace; + nspace = width-length; + if( nspace>0 ){ + appendSpace(pAccum, nspace); + } + } + if( length>0 ){ + sqlite3StrAccumAppend(pAccum, bufpt, length); + } + if( flag_leftjustify ){ + register int nspace; + nspace = width-length; + if( nspace>0 ){ + appendSpace(pAccum, nspace); + } + } + sqlite3_free(zExtra); + }/* End for loop over the format string */ +} /* End of function */ + +/* +** Append N bytes of text from z to the StrAccum object. +*/ +void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ + assert( z!=0 || N==0 ); + if( p->tooBig | p->mallocFailed ){ + testcase(p->tooBig); + testcase(p->mallocFailed); + return; + } + assert( p->zText!=0 || p->nChar==0 ); + if( N<0 ){ + N = sqlite3Strlen30(z); + } + if( N==0 || NEVER(z==0) ){ + return; + } + if( p->nChar+N >= p->nAlloc ){ + char *zNew; + if( !p->useMalloc ){ + p->tooBig = 1; + N = p->nAlloc - p->nChar - 1; + if( N<=0 ){ + return; + } + }else{ + char *zOld = (p->zText==p->zBase ? 0 : p->zText); + i64 szNew = p->nChar; + szNew += N + 1; + if( szNew > p->mxAlloc ){ + sqlite3StrAccumReset(p); + p->tooBig = 1; + return; + }else{ + p->nAlloc = (int)szNew; + } + if( p->useMalloc==1 ){ + zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); + }else{ + zNew = sqlite3_realloc(zOld, p->nAlloc); + } + if( zNew ){ + if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); + p->zText = zNew; + }else{ + p->mallocFailed = 1; + sqlite3StrAccumReset(p); + return; + } + } + } + assert( p->zText ); + memcpy(&p->zText[p->nChar], z, N); + p->nChar += N; +} + +/* +** Finish off a string by making sure it is zero-terminated. +** Return a pointer to the resulting string. Return a NULL +** pointer if any kind of error was encountered. +*/ +char *sqlite3StrAccumFinish(StrAccum *p){ + if( p->zText ){ + p->zText[p->nChar] = 0; + if( p->useMalloc && p->zText==p->zBase ){ + if( p->useMalloc==1 ){ + p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); + }else{ + p->zText = sqlite3_malloc(p->nChar+1); + } + if( p->zText ){ + memcpy(p->zText, p->zBase, p->nChar+1); + }else{ + p->mallocFailed = 1; + } + } + } + return p->zText; +} + +/* +** Reset an StrAccum string. Reclaim all malloced memory. +*/ +void sqlite3StrAccumReset(StrAccum *p){ + if( p->zText!=p->zBase ){ + if( p->useMalloc==1 ){ + sqlite3DbFree(p->db, p->zText); + }else{ + sqlite3_free(p->zText); + } + } + p->zText = 0; +} + +/* +** Initialize a string accumulator +*/ +void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){ + p->zText = p->zBase = zBase; + p->db = 0; + p->nChar = 0; + p->nAlloc = n; + p->mxAlloc = mx; + p->useMalloc = 1; + p->tooBig = 0; + p->mallocFailed = 0; +} + +/* +** Print into memory obtained from sqliteMalloc(). Use the internal +** %-conversion extensions. +*/ +char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ + char *z; + char zBase[SQLITE_PRINT_BUF_SIZE]; + StrAccum acc; + assert( db!=0 ); + sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), + db->aLimit[SQLITE_LIMIT_LENGTH]); + acc.db = db; + sqlite3VXPrintf(&acc, 1, zFormat, ap); + z = sqlite3StrAccumFinish(&acc); + if( acc.mallocFailed ){ + db->mallocFailed = 1; + } + return z; +} + +/* +** Print into memory obtained from sqliteMalloc(). Use the internal +** %-conversion extensions. +*/ +char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ + va_list ap; + char *z; + va_start(ap, zFormat); + z = sqlite3VMPrintf(db, zFormat, ap); + va_end(ap); + return z; +} + +/* +** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting +** the string and before returnning. This routine is intended to be used +** to modify an existing string. For example: +** +** x = sqlite3MPrintf(db, x, "prefix %s suffix", x); +** +*/ +char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){ + va_list ap; + char *z; + va_start(ap, zFormat); + z = sqlite3VMPrintf(db, zFormat, ap); + va_end(ap); + sqlite3DbFree(db, zStr); + return z; +} + +/* +** Print into memory obtained from sqlite3_malloc(). Omit the internal +** %-conversion extensions. +*/ +char *sqlite3_vmprintf(const char *zFormat, va_list ap){ + char *z; + char zBase[SQLITE_PRINT_BUF_SIZE]; + StrAccum acc; +#ifndef SQLITE_OMIT_AUTOINIT + if( sqlite3_initialize() ) return 0; +#endif + sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); + acc.useMalloc = 2; + sqlite3VXPrintf(&acc, 0, zFormat, ap); + z = sqlite3StrAccumFinish(&acc); + return z; +} + +/* +** Print into memory obtained from sqlite3_malloc()(). Omit the internal +** %-conversion extensions. +*/ +char *sqlite3_mprintf(const char *zFormat, ...){ + va_list ap; + char *z; +#ifndef SQLITE_OMIT_AUTOINIT + if( sqlite3_initialize() ) return 0; +#endif + va_start(ap, zFormat); + z = sqlite3_vmprintf(zFormat, ap); + va_end(ap); + return z; +} + +/* +** sqlite3_snprintf() works like snprintf() except that it ignores the +** current locale settings. This is important for SQLite because we +** are not able to use a "," as the decimal point in place of "." as +** specified by some locales. +** +** Oops: The first two arguments of sqlite3_snprintf() are backwards +** from the snprintf() standard. Unfortunately, it is too late to change +** this without breaking compatibility, so we just have to live with the +** mistake. +** +** sqlite3_vsnprintf() is the varargs version. +*/ +char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ + StrAccum acc; + if( n<=0 ) return zBuf; + sqlite3StrAccumInit(&acc, zBuf, n, 0); + acc.useMalloc = 0; + sqlite3VXPrintf(&acc, 0, zFormat, ap); + return sqlite3StrAccumFinish(&acc); +} +char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ + char *z; + va_list ap; + va_start(ap,zFormat); + z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); + va_end(ap); + return z; +} + +/* +** This is the routine that actually formats the sqlite3_log() message. +** We house it in a separate routine from sqlite3_log() to avoid using +** stack space on small-stack systems when logging is disabled. +** +** sqlite3_log() must render into a static buffer. It cannot dynamically +** allocate memory because it might be called while the memory allocator +** mutex is held. +*/ +static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ + StrAccum acc; /* String accumulator */ + char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ + + sqlite3StrAccumInit(&acc, zMsg, sizeof(zMsg), 0); + acc.useMalloc = 0; + sqlite3VXPrintf(&acc, 0, zFormat, ap); + sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, + sqlite3StrAccumFinish(&acc)); +} + +/* +** Format and write a message to the log if logging is enabled. +*/ +void sqlite3_log(int iErrCode, const char *zFormat, ...){ + va_list ap; /* Vararg list */ + if( sqlite3GlobalConfig.xLog ){ + va_start(ap, zFormat); + renderLogMsg(iErrCode, zFormat, ap); + va_end(ap); + } +} + +#if defined(SQLITE_DEBUG) +/* +** A version of printf() that understands %lld. Used for debugging. +** The printf() built into some versions of windows does not understand %lld +** and segfaults if you give it a long long int. +*/ +void sqlite3DebugPrintf(const char *zFormat, ...){ + va_list ap; + StrAccum acc; + char zBuf[500]; + sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0); + acc.useMalloc = 0; + va_start(ap,zFormat); + sqlite3VXPrintf(&acc, 0, zFormat, ap); + va_end(ap); + sqlite3StrAccumFinish(&acc); + fprintf(stdout,"%s", zBuf); + fflush(stdout); +} +#endif + +#ifndef SQLITE_OMIT_TRACE +/* +** variable-argument wrapper around sqlite3VXPrintf(). +*/ +void sqlite3XPrintf(StrAccum *p, const char *zFormat, ...){ + va_list ap; + va_start(ap,zFormat); + sqlite3VXPrintf(p, 1, zFormat, ap); + va_end(ap); +} +#endif diff --git a/src/random.c b/src/random.c new file mode 100644 index 0000000..234ebdf --- /dev/null +++ b/src/random.c @@ -0,0 +1,145 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code to implement a pseudo-random number +** generator (PRNG) for SQLite. +** +** Random numbers are used by some of the database backends in order +** to generate random integer keys for tables or random filenames. +*/ +#include "sqliteInt.h" + + +/* All threads share a single random number generator. +** This structure is the current state of the generator. +*/ +static SQLITE_WSD struct sqlite3PrngType { + unsigned char isInit; /* True if initialized */ + unsigned char i, j; /* State variables */ + unsigned char s[256]; /* State variables */ +} sqlite3Prng; + +/* +** Get a single 8-bit random value from the RC4 PRNG. The Mutex +** must be held while executing this routine. +** +** Why not just use a library random generator like lrand48() for this? +** Because the OP_NewRowid opcode in the VDBE depends on having a very +** good source of random numbers. The lrand48() library function may +** well be good enough. But maybe not. Or maybe lrand48() has some +** subtle problems on some systems that could cause problems. It is hard +** to know. To minimize the risk of problems due to bad lrand48() +** implementations, SQLite uses this random number generator based +** on RC4, which we know works very well. +** +** (Later): Actually, OP_NewRowid does not depend on a good source of +** randomness any more. But we will leave this code in all the same. +*/ +static u8 randomByte(void){ + unsigned char t; + + + /* The "wsdPrng" macro will resolve to the pseudo-random number generator + ** state vector. If writable static data is unsupported on the target, + ** we have to locate the state vector at run-time. In the more common + ** case where writable static data is supported, wsdPrng can refer directly + ** to the "sqlite3Prng" state vector declared above. + */ +#ifdef SQLITE_OMIT_WSD + struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng); +# define wsdPrng p[0] +#else +# define wsdPrng sqlite3Prng +#endif + + + /* Initialize the state of the random number generator once, + ** the first time this routine is called. The seed value does + ** not need to contain a lot of randomness since we are not + ** trying to do secure encryption or anything like that... + ** + ** Nothing in this file or anywhere else in SQLite does any kind of + ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random + ** number generator) not as an encryption device. + */ + if( !wsdPrng.isInit ){ + int i; + char k[256]; + wsdPrng.j = 0; + wsdPrng.i = 0; + sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k); + for(i=0; i<256; i++){ + wsdPrng.s[i] = (u8)i; + } + for(i=0; i<256; i++){ + wsdPrng.j += wsdPrng.s[i] + k[i]; + t = wsdPrng.s[wsdPrng.j]; + wsdPrng.s[wsdPrng.j] = wsdPrng.s[i]; + wsdPrng.s[i] = t; + } + wsdPrng.isInit = 1; + } + + /* Generate and return single random byte + */ + wsdPrng.i++; + t = wsdPrng.s[wsdPrng.i]; + wsdPrng.j += t; + wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j]; + wsdPrng.s[wsdPrng.j] = t; + t += wsdPrng.s[wsdPrng.i]; + return wsdPrng.s[t]; +} + +/* +** Return N random bytes. +*/ +void sqlite3_randomness(int N, void *pBuf){ + unsigned char *zBuf = pBuf; +#if SQLITE_THREADSAFE + sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG); +#endif + sqlite3_mutex_enter(mutex); + while( N-- ){ + *(zBuf++) = randomByte(); + } + sqlite3_mutex_leave(mutex); +} + +#ifndef SQLITE_OMIT_BUILTIN_TEST +/* +** For testing purposes, we sometimes want to preserve the state of +** PRNG and restore the PRNG to its saved state at a later time, or +** to reset the PRNG to its initial state. These routines accomplish +** those tasks. +** +** The sqlite3_test_control() interface calls these routines to +** control the PRNG. +*/ +static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng; +void sqlite3PrngSaveState(void){ + memcpy( + &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng), + &GLOBAL(struct sqlite3PrngType, sqlite3Prng), + sizeof(sqlite3Prng) + ); +} +void sqlite3PrngRestoreState(void){ + memcpy( + &GLOBAL(struct sqlite3PrngType, sqlite3Prng), + &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng), + sizeof(sqlite3Prng) + ); +} +void sqlite3PrngResetState(void){ + GLOBAL(struct sqlite3PrngType, sqlite3Prng).isInit = 0; +} +#endif /* SQLITE_OMIT_BUILTIN_TEST */ diff --git a/src/resolve.c b/src/resolve.c new file mode 100644 index 0000000..6d857f0 --- /dev/null +++ b/src/resolve.c @@ -0,0 +1,1223 @@ +/* +** 2008 August 18 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains routines used for walking the parser tree and +** resolve all identifiers by associating them with a particular +** table and column. +*/ +#include "sqliteInt.h" +#include +#include + +/* +** Turn the pExpr expression into an alias for the iCol-th column of the +** result set in pEList. +** +** If the result set column is a simple column reference, then this routine +** makes an exact copy. But for any other kind of expression, this +** routine make a copy of the result set column as the argument to the +** TK_AS operator. The TK_AS operator causes the expression to be +** evaluated just once and then reused for each alias. +** +** The reason for suppressing the TK_AS term when the expression is a simple +** column reference is so that the column reference will be recognized as +** usable by indices within the WHERE clause processing logic. +** +** Hack: The TK_AS operator is inhibited if zType[0]=='G'. This means +** that in a GROUP BY clause, the expression is evaluated twice. Hence: +** +** SELECT random()%5 AS x, count(*) FROM tab GROUP BY x +** +** Is equivalent to: +** +** SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5 +** +** The result of random()%5 in the GROUP BY clause is probably different +** from the result in the result-set. We might fix this someday. Or +** then again, we might not... +*/ +static void resolveAlias( + Parse *pParse, /* Parsing context */ + ExprList *pEList, /* A result set */ + int iCol, /* A column in the result set. 0..pEList->nExpr-1 */ + Expr *pExpr, /* Transform this into an alias to the result set */ + const char *zType /* "GROUP" or "ORDER" or "" */ +){ + Expr *pOrig; /* The iCol-th column of the result set */ + Expr *pDup; /* Copy of pOrig */ + sqlite3 *db; /* The database connection */ + + assert( iCol>=0 && iColnExpr ); + pOrig = pEList->a[iCol].pExpr; + assert( pOrig!=0 ); + assert( pOrig->flags & EP_Resolved ); + db = pParse->db; + if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){ + pDup = sqlite3ExprDup(db, pOrig, 0); + pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0); + if( pDup==0 ) return; + if( pEList->a[iCol].iAlias==0 ){ + pEList->a[iCol].iAlias = (u16)(++pParse->nAlias); + } + pDup->iTable = pEList->a[iCol].iAlias; + }else if( ExprHasProperty(pOrig, EP_IntValue) || pOrig->u.zToken==0 ){ + pDup = sqlite3ExprDup(db, pOrig, 0); + if( pDup==0 ) return; + }else{ + char *zToken = pOrig->u.zToken; + assert( zToken!=0 ); + pOrig->u.zToken = 0; + pDup = sqlite3ExprDup(db, pOrig, 0); + pOrig->u.zToken = zToken; + if( pDup==0 ) return; + assert( (pDup->flags & (EP_Reduced|EP_TokenOnly))==0 ); + pDup->flags2 |= EP2_MallocedToken; + pDup->u.zToken = sqlite3DbStrDup(db, zToken); + } + if( pExpr->flags & EP_ExpCollate ){ + pDup->pColl = pExpr->pColl; + pDup->flags |= EP_ExpCollate; + } + + /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This + ** prevents ExprDelete() from deleting the Expr structure itself, + ** allowing it to be repopulated by the memcpy() on the following line. + */ + ExprSetProperty(pExpr, EP_Static); + sqlite3ExprDelete(db, pExpr); + memcpy(pExpr, pDup, sizeof(*pExpr)); + sqlite3DbFree(db, pDup); +} + + +/* +** Return TRUE if the name zCol occurs anywhere in the USING clause. +** +** Return FALSE if the USING clause is NULL or if it does not contain +** zCol. +*/ +static int nameInUsingClause(IdList *pUsing, const char *zCol){ + if( pUsing ){ + int k; + for(k=0; knId; k++){ + if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ) return 1; + } + } + return 0; +} + + +/* +** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up +** that name in the set of source tables in pSrcList and make the pExpr +** expression node refer back to that source column. The following changes +** are made to pExpr: +** +** pExpr->iDb Set the index in db->aDb[] of the database X +** (even if X is implied). +** pExpr->iTable Set to the cursor number for the table obtained +** from pSrcList. +** pExpr->pTab Points to the Table structure of X.Y (even if +** X and/or Y are implied.) +** pExpr->iColumn Set to the column number within the table. +** pExpr->op Set to TK_COLUMN. +** pExpr->pLeft Any expression this points to is deleted +** pExpr->pRight Any expression this points to is deleted. +** +** The zDb variable is the name of the database (the "X"). This value may be +** NULL meaning that name is of the form Y.Z or Z. Any available database +** can be used. The zTable variable is the name of the table (the "Y"). This +** value can be NULL if zDb is also NULL. If zTable is NULL it +** means that the form of the name is Z and that columns from any table +** can be used. +** +** If the name cannot be resolved unambiguously, leave an error message +** in pParse and return WRC_Abort. Return WRC_Prune on success. +*/ +static int lookupName( + Parse *pParse, /* The parsing context */ + const char *zDb, /* Name of the database containing table, or NULL */ + const char *zTab, /* Name of table containing column, or NULL */ + const char *zCol, /* Name of the column. */ + NameContext *pNC, /* The name context used to resolve the name */ + Expr *pExpr /* Make this EXPR node point to the selected column */ +){ + int i, j; /* Loop counters */ + int cnt = 0; /* Number of matching column names */ + int cntTab = 0; /* Number of matching table names */ + sqlite3 *db = pParse->db; /* The database connection */ + struct SrcList_item *pItem; /* Use for looping over pSrcList items */ + struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ + NameContext *pTopNC = pNC; /* First namecontext in the list */ + Schema *pSchema = 0; /* Schema of the expression */ + int isTrigger = 0; + + assert( pNC ); /* the name context cannot be NULL. */ + assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ + assert( ~ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); + + /* Initialize the node to no-match */ + pExpr->iTable = -1; + pExpr->pTab = 0; + ExprSetIrreducible(pExpr); + + /* Start at the inner-most context and move outward until a match is found */ + while( pNC && cnt==0 ){ + ExprList *pEList; + SrcList *pSrcList = pNC->pSrcList; + + if( pSrcList ){ + for(i=0, pItem=pSrcList->a; inSrc; i++, pItem++){ + Table *pTab; + int iDb; + Column *pCol; + + pTab = pItem->pTab; + assert( pTab!=0 && pTab->zName!=0 ); + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( pTab->nCol>0 ); + if( zTab ){ + if( pItem->zAlias ){ + char *zTabName = pItem->zAlias; + if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; + }else{ + char *zTabName = pTab->zName; + if( NEVER(zTabName==0) || sqlite3StrICmp(zTabName, zTab)!=0 ){ + continue; + } + if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ + continue; + } + } + } + if( 0==(cntTab++) ){ + pExpr->iTable = pItem->iCursor; + pExpr->pTab = pTab; + pSchema = pTab->pSchema; + pMatch = pItem; + } + for(j=0, pCol=pTab->aCol; jnCol; j++, pCol++){ + if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ + /* If there has been exactly one prior match and this match + ** is for the right-hand table of a NATURAL JOIN or is in a + ** USING clause, then skip this match. + */ + if( cnt==1 ){ + if( pItem->jointype & JT_NATURAL ) continue; + if( nameInUsingClause(pItem->pUsing, zCol) ) continue; + } + cnt++; + pExpr->iTable = pItem->iCursor; + pExpr->pTab = pTab; + pMatch = pItem; + pSchema = pTab->pSchema; + /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ + pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j; + break; + } + } + } + } + +#ifndef SQLITE_OMIT_TRIGGER + /* If we have not already resolved the name, then maybe + ** it is a new.* or old.* trigger argument reference + */ + if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){ + int op = pParse->eTriggerOp; + Table *pTab = 0; + assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); + if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){ + pExpr->iTable = 1; + pTab = pParse->pTriggerTab; + }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){ + pExpr->iTable = 0; + pTab = pParse->pTriggerTab; + } + + if( pTab ){ + int iCol; + pSchema = pTab->pSchema; + cntTab++; + for(iCol=0; iColnCol; iCol++){ + Column *pCol = &pTab->aCol[iCol]; + if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ + if( iCol==pTab->iPKey ){ + iCol = -1; + } + break; + } + } + if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) ){ + iCol = -1; /* IMP: R-44911-55124 */ + } + if( iColnCol ){ + cnt++; + if( iCol<0 ){ + pExpr->affinity = SQLITE_AFF_INTEGER; + }else if( pExpr->iTable==0 ){ + testcase( iCol==31 ); + testcase( iCol==32 ); + pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<iColumn = (i16)iCol; + pExpr->pTab = pTab; + isTrigger = 1; + } + } + } +#endif /* !defined(SQLITE_OMIT_TRIGGER) */ + + /* + ** Perhaps the name is a reference to the ROWID + */ + if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ + cnt = 1; + pExpr->iColumn = -1; /* IMP: R-44911-55124 */ + pExpr->affinity = SQLITE_AFF_INTEGER; + } + + /* + ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z + ** might refer to an result-set alias. This happens, for example, when + ** we are resolving names in the WHERE clause of the following command: + ** + ** SELECT a+b AS x FROM table WHERE x<10; + ** + ** In cases like this, replace pExpr with a copy of the expression that + ** forms the result set entry ("a+b" in the example) and return immediately. + ** Note that the expression in the result set should have already been + ** resolved by the time the WHERE clause is resolved. + */ + if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ + for(j=0; jnExpr; j++){ + char *zAs = pEList->a[j].zName; + if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ + Expr *pOrig; + assert( pExpr->pLeft==0 && pExpr->pRight==0 ); + assert( pExpr->x.pList==0 ); + assert( pExpr->x.pSelect==0 ); + pOrig = pEList->a[j].pExpr; + if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ + sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); + return WRC_Abort; + } + resolveAlias(pParse, pEList, j, pExpr, ""); + cnt = 1; + pMatch = 0; + assert( zTab==0 && zDb==0 ); + goto lookupname_end; + } + } + } + + /* Advance to the next name context. The loop will exit when either + ** we have a match (cnt>0) or when we run out of name contexts. + */ + if( cnt==0 ){ + pNC = pNC->pNext; + } + } + + /* + ** If X and Y are NULL (in other words if only the column name Z is + ** supplied) and the value of Z is enclosed in double-quotes, then + ** Z is a string literal if it doesn't match any column names. In that + ** case, we need to return right away and not make any changes to + ** pExpr. + ** + ** Because no reference was made to outer contexts, the pNC->nRef + ** fields are not changed in any context. + */ + if( cnt==0 && zTab==0 && ExprHasProperty(pExpr,EP_DblQuoted) ){ + pExpr->op = TK_STRING; + pExpr->pTab = 0; + return WRC_Prune; + } + + /* + ** cnt==0 means there was not match. cnt>1 means there were two or + ** more matches. Either way, we have an error. + */ + if( cnt!=1 ){ + const char *zErr; + zErr = cnt==0 ? "no such column" : "ambiguous column name"; + if( zDb ){ + sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); + }else if( zTab ){ + sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); + }else{ + sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); + } + pParse->checkSchema = 1; + pTopNC->nErr++; + } + + /* If a column from a table in pSrcList is referenced, then record + ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes + ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the + ** column number is greater than the number of bits in the bitmask + ** then set the high-order bit of the bitmask. + */ + if( pExpr->iColumn>=0 && pMatch!=0 ){ + int n = pExpr->iColumn; + testcase( n==BMS-1 ); + if( n>=BMS ){ + n = BMS-1; + } + assert( pMatch->iCursor==pExpr->iTable ); + pMatch->colUsed |= ((Bitmask)1)<pLeft); + pExpr->pLeft = 0; + sqlite3ExprDelete(db, pExpr->pRight); + pExpr->pRight = 0; + pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN); +lookupname_end: + if( cnt==1 ){ + assert( pNC!=0 ); + sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); + /* Increment the nRef value on all name contexts from TopNC up to + ** the point where the name matched. */ + for(;;){ + assert( pTopNC!=0 ); + pTopNC->nRef++; + if( pTopNC==pNC ) break; + pTopNC = pTopNC->pNext; + } + return WRC_Prune; + } else { + return WRC_Abort; + } +} + +/* +** Allocate and return a pointer to an expression to load the column iCol +** from datasource iSrc in SrcList pSrc. +*/ +Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){ + Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0); + if( p ){ + struct SrcList_item *pItem = &pSrc->a[iSrc]; + p->pTab = pItem->pTab; + p->iTable = pItem->iCursor; + if( p->pTab->iPKey==iCol ){ + p->iColumn = -1; + }else{ + p->iColumn = (ynVar)iCol; + testcase( iCol==BMS ); + testcase( iCol==BMS-1 ); + pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); + } + ExprSetProperty(p, EP_Resolved); + } + return p; +} + +/* +** This routine is callback for sqlite3WalkExpr(). +** +** Resolve symbolic names into TK_COLUMN operators for the current +** node in the expression tree. Return 0 to continue the search down +** the tree or 2 to abort the tree walk. +** +** This routine also does error checking and name resolution for +** function names. The operator for aggregate functions is changed +** to TK_AGG_FUNCTION. +*/ +static int resolveExprStep(Walker *pWalker, Expr *pExpr){ + NameContext *pNC; + Parse *pParse; + + pNC = pWalker->u.pNC; + assert( pNC!=0 ); + pParse = pNC->pParse; + assert( pParse==pWalker->pParse ); + + if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return WRC_Prune; + ExprSetProperty(pExpr, EP_Resolved); +#ifndef NDEBUG + if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ + SrcList *pSrcList = pNC->pSrcList; + int i; + for(i=0; ipSrcList->nSrc; i++){ + assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursornTab); + } + } +#endif + switch( pExpr->op ){ + +#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) + /* The special operator TK_ROW means use the rowid for the first + ** column in the FROM clause. This is used by the LIMIT and ORDER BY + ** clause processing on UPDATE and DELETE statements. + */ + case TK_ROW: { + SrcList *pSrcList = pNC->pSrcList; + struct SrcList_item *pItem; + assert( pSrcList && pSrcList->nSrc==1 ); + pItem = pSrcList->a; + pExpr->op = TK_COLUMN; + pExpr->pTab = pItem->pTab; + pExpr->iTable = pItem->iCursor; + pExpr->iColumn = -1; + pExpr->affinity = SQLITE_AFF_INTEGER; + break; + } +#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */ + + /* A lone identifier is the name of a column. + */ + case TK_ID: { + return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr); + } + + /* A table name and column name: ID.ID + ** Or a database, table and column: ID.ID.ID + */ + case TK_DOT: { + const char *zColumn; + const char *zTable; + const char *zDb; + Expr *pRight; + + /* if( pSrcList==0 ) break; */ + pRight = pExpr->pRight; + if( pRight->op==TK_ID ){ + zDb = 0; + zTable = pExpr->pLeft->u.zToken; + zColumn = pRight->u.zToken; + }else{ + assert( pRight->op==TK_DOT ); + zDb = pExpr->pLeft->u.zToken; + zTable = pRight->pLeft->u.zToken; + zColumn = pRight->pRight->u.zToken; + } + return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr); + } + + /* Resolve function names + */ + case TK_CONST_FUNC: + case TK_FUNCTION: { + ExprList *pList = pExpr->x.pList; /* The argument list */ + int n = pList ? pList->nExpr : 0; /* Number of arguments */ + int no_such_func = 0; /* True if no such function exists */ + int wrong_num_args = 0; /* True if wrong number of arguments */ + int is_agg = 0; /* True if is an aggregate function */ + int auth; /* Authorization to use the function */ + int nId; /* Number of characters in function name */ + const char *zId; /* The function name. */ + FuncDef *pDef; /* Information about the function */ + u8 enc = ENC(pParse->db); /* The database encoding */ + + testcase( pExpr->op==TK_CONST_FUNC ); + assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); + zId = pExpr->u.zToken; + nId = sqlite3Strlen30(zId); + pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); + if( pDef==0 ){ + pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); + if( pDef==0 ){ + no_such_func = 1; + }else{ + wrong_num_args = 1; + } + }else{ + is_agg = pDef->xFunc==0; + } +#ifndef SQLITE_OMIT_AUTHORIZATION + if( pDef ){ + auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); + if( auth!=SQLITE_OK ){ + if( auth==SQLITE_DENY ){ + sqlite3ErrorMsg(pParse, "not authorized to use function: %s", + pDef->zName); + pNC->nErr++; + } + pExpr->op = TK_NULL; + return WRC_Prune; + } + } +#endif + if( is_agg && !pNC->allowAgg ){ + sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); + pNC->nErr++; + is_agg = 0; + }else if( no_such_func ){ + sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); + pNC->nErr++; + }else if( wrong_num_args ){ + sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", + nId, zId); + pNC->nErr++; + } + if( is_agg ){ + pExpr->op = TK_AGG_FUNCTION; + pNC->hasAgg = 1; + } + if( is_agg ) pNC->allowAgg = 0; + sqlite3WalkExprList(pWalker, pList); + if( is_agg ) pNC->allowAgg = 1; + /* FIX ME: Compute pExpr->affinity based on the expected return + ** type of the function + */ + return WRC_Prune; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_SELECT: + case TK_EXISTS: testcase( pExpr->op==TK_EXISTS ); +#endif + case TK_IN: { + testcase( pExpr->op==TK_IN ); + if( ExprHasProperty(pExpr, EP_xIsSelect) ){ + int nRef = pNC->nRef; +#ifndef SQLITE_OMIT_CHECK + if( pNC->isCheck ){ + sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); + } +#endif + sqlite3WalkSelect(pWalker, pExpr->x.pSelect); + assert( pNC->nRef>=nRef ); + if( nRef!=pNC->nRef ){ + ExprSetProperty(pExpr, EP_VarSelect); + } + } + break; + } +#ifndef SQLITE_OMIT_CHECK + case TK_VARIABLE: { + if( pNC->isCheck ){ + sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); + } + break; + } +#endif + } + return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue; +} + +/* +** pEList is a list of expressions which are really the result set of the +** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause. +** This routine checks to see if pE is a simple identifier which corresponds +** to the AS-name of one of the terms of the expression list. If it is, +** this routine return an integer between 1 and N where N is the number of +** elements in pEList, corresponding to the matching entry. If there is +** no match, or if pE is not a simple identifier, then this routine +** return 0. +** +** pEList has been resolved. pE has not. +*/ +static int resolveAsName( + Parse *pParse, /* Parsing context for error messages */ + ExprList *pEList, /* List of expressions to scan */ + Expr *pE /* Expression we are trying to match */ +){ + int i; /* Loop counter */ + + UNUSED_PARAMETER(pParse); + + if( pE->op==TK_ID ){ + char *zCol = pE->u.zToken; + for(i=0; inExpr; i++){ + char *zAs = pEList->a[i].zName; + if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ + return i+1; + } + } + } + return 0; +} + +/* +** pE is a pointer to an expression which is a single term in the +** ORDER BY of a compound SELECT. The expression has not been +** name resolved. +** +** At the point this routine is called, we already know that the +** ORDER BY term is not an integer index into the result set. That +** case is handled by the calling routine. +** +** Attempt to match pE against result set columns in the left-most +** SELECT statement. Return the index i of the matching column, +** as an indication to the caller that it should sort by the i-th column. +** The left-most column is 1. In other words, the value returned is the +** same integer value that would be used in the SQL statement to indicate +** the column. +** +** If there is no match, return 0. Return -1 if an error occurs. +*/ +static int resolveOrderByTermToExprList( + Parse *pParse, /* Parsing context for error messages */ + Select *pSelect, /* The SELECT statement with the ORDER BY clause */ + Expr *pE /* The specific ORDER BY term */ +){ + int i; /* Loop counter */ + ExprList *pEList; /* The columns of the result set */ + NameContext nc; /* Name context for resolving pE */ + sqlite3 *db; /* Database connection */ + int rc; /* Return code from subprocedures */ + u8 savedSuppErr; /* Saved value of db->suppressErr */ + + assert( sqlite3ExprIsInteger(pE, &i)==0 ); + pEList = pSelect->pEList; + + /* Resolve all names in the ORDER BY term expression + */ + memset(&nc, 0, sizeof(nc)); + nc.pParse = pParse; + nc.pSrcList = pSelect->pSrc; + nc.pEList = pEList; + nc.allowAgg = 1; + nc.nErr = 0; + db = pParse->db; + savedSuppErr = db->suppressErr; + db->suppressErr = 1; + rc = sqlite3ResolveExprNames(&nc, pE); + db->suppressErr = savedSuppErr; + if( rc ) return 0; + + /* Try to match the ORDER BY expression against an expression + ** in the result set. Return an 1-based index of the matching + ** result-set entry. + */ + for(i=0; inExpr; i++){ + if( sqlite3ExprCompare(pEList->a[i].pExpr, pE)<2 ){ + return i+1; + } + } + + /* If no match, return 0. */ + return 0; +} + +/* +** Generate an ORDER BY or GROUP BY term out-of-range error. +*/ +static void resolveOutOfRangeError( + Parse *pParse, /* The error context into which to write the error */ + const char *zType, /* "ORDER" or "GROUP" */ + int i, /* The index (1-based) of the term out of range */ + int mx /* Largest permissible value of i */ +){ + sqlite3ErrorMsg(pParse, + "%r %s BY term out of range - should be " + "between 1 and %d", i, zType, mx); +} + +/* +** Analyze the ORDER BY clause in a compound SELECT statement. Modify +** each term of the ORDER BY clause is a constant integer between 1 +** and N where N is the number of columns in the compound SELECT. +** +** ORDER BY terms that are already an integer between 1 and N are +** unmodified. ORDER BY terms that are integers outside the range of +** 1 through N generate an error. ORDER BY terms that are expressions +** are matched against result set expressions of compound SELECT +** beginning with the left-most SELECT and working toward the right. +** At the first match, the ORDER BY expression is transformed into +** the integer column number. +** +** Return the number of errors seen. +*/ +static int resolveCompoundOrderBy( + Parse *pParse, /* Parsing context. Leave error messages here */ + Select *pSelect /* The SELECT statement containing the ORDER BY */ +){ + int i; + ExprList *pOrderBy; + ExprList *pEList; + sqlite3 *db; + int moreToDo = 1; + + pOrderBy = pSelect->pOrderBy; + if( pOrderBy==0 ) return 0; + db = pParse->db; +#if SQLITE_MAX_COLUMN + if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ + sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); + return 1; + } +#endif + for(i=0; inExpr; i++){ + pOrderBy->a[i].done = 0; + } + pSelect->pNext = 0; + while( pSelect->pPrior ){ + pSelect->pPrior->pNext = pSelect; + pSelect = pSelect->pPrior; + } + while( pSelect && moreToDo ){ + struct ExprList_item *pItem; + moreToDo = 0; + pEList = pSelect->pEList; + assert( pEList!=0 ); + for(i=0, pItem=pOrderBy->a; inExpr; i++, pItem++){ + int iCol = -1; + Expr *pE, *pDup; + if( pItem->done ) continue; + pE = pItem->pExpr; + if( sqlite3ExprIsInteger(pE, &iCol) ){ + if( iCol<=0 || iCol>pEList->nExpr ){ + resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr); + return 1; + } + }else{ + iCol = resolveAsName(pParse, pEList, pE); + if( iCol==0 ){ + pDup = sqlite3ExprDup(db, pE, 0); + if( !db->mallocFailed ){ + assert(pDup); + iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup); + } + sqlite3ExprDelete(db, pDup); + } + } + if( iCol>0 ){ + CollSeq *pColl = pE->pColl; + int flags = pE->flags & EP_ExpCollate; + sqlite3ExprDelete(db, pE); + pItem->pExpr = pE = sqlite3Expr(db, TK_INTEGER, 0); + if( pE==0 ) return 1; + pE->pColl = pColl; + pE->flags |= EP_IntValue | flags; + pE->u.iValue = iCol; + pItem->iCol = (u16)iCol; + pItem->done = 1; + }else{ + moreToDo = 1; + } + } + pSelect = pSelect->pNext; + } + for(i=0; inExpr; i++){ + if( pOrderBy->a[i].done==0 ){ + sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " + "column in the result set", i+1); + return 1; + } + } + return 0; +} + +/* +** Check every term in the ORDER BY or GROUP BY clause pOrderBy of +** the SELECT statement pSelect. If any term is reference to a +** result set expression (as determined by the ExprList.a.iCol field) +** then convert that term into a copy of the corresponding result set +** column. +** +** If any errors are detected, add an error message to pParse and +** return non-zero. Return zero if no errors are seen. +*/ +int sqlite3ResolveOrderGroupBy( + Parse *pParse, /* Parsing context. Leave error messages here */ + Select *pSelect, /* The SELECT statement containing the clause */ + ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ + const char *zType /* "ORDER" or "GROUP" */ +){ + int i; + sqlite3 *db = pParse->db; + ExprList *pEList; + struct ExprList_item *pItem; + + if( pOrderBy==0 || pParse->db->mallocFailed ) return 0; +#if SQLITE_MAX_COLUMN + if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ + sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); + return 1; + } +#endif + pEList = pSelect->pEList; + assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */ + for(i=0, pItem=pOrderBy->a; inExpr; i++, pItem++){ + if( pItem->iCol ){ + if( pItem->iCol>pEList->nExpr ){ + resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr); + return 1; + } + resolveAlias(pParse, pEList, pItem->iCol-1, pItem->pExpr, zType); + } + } + return 0; +} + +/* +** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect. +** The Name context of the SELECT statement is pNC. zType is either +** "ORDER" or "GROUP" depending on which type of clause pOrderBy is. +** +** This routine resolves each term of the clause into an expression. +** If the order-by term is an integer I between 1 and N (where N is the +** number of columns in the result set of the SELECT) then the expression +** in the resolution is a copy of the I-th result-set expression. If +** the order-by term is an identify that corresponds to the AS-name of +** a result-set expression, then the term resolves to a copy of the +** result-set expression. Otherwise, the expression is resolved in +** the usual way - using sqlite3ResolveExprNames(). +** +** This routine returns the number of errors. If errors occur, then +** an appropriate error message might be left in pParse. (OOM errors +** excepted.) +*/ +static int resolveOrderGroupBy( + NameContext *pNC, /* The name context of the SELECT statement */ + Select *pSelect, /* The SELECT statement holding pOrderBy */ + ExprList *pOrderBy, /* An ORDER BY or GROUP BY clause to resolve */ + const char *zType /* Either "ORDER" or "GROUP", as appropriate */ +){ + int i; /* Loop counter */ + int iCol; /* Column number */ + struct ExprList_item *pItem; /* A term of the ORDER BY clause */ + Parse *pParse; /* Parsing context */ + int nResult; /* Number of terms in the result set */ + + if( pOrderBy==0 ) return 0; + nResult = pSelect->pEList->nExpr; + pParse = pNC->pParse; + for(i=0, pItem=pOrderBy->a; inExpr; i++, pItem++){ + Expr *pE = pItem->pExpr; + iCol = resolveAsName(pParse, pSelect->pEList, pE); + if( iCol>0 ){ + /* If an AS-name match is found, mark this ORDER BY column as being + ** a copy of the iCol-th result-set column. The subsequent call to + ** sqlite3ResolveOrderGroupBy() will convert the expression to a + ** copy of the iCol-th result-set expression. */ + pItem->iCol = (u16)iCol; + continue; + } + if( sqlite3ExprIsInteger(pE, &iCol) ){ + /* The ORDER BY term is an integer constant. Again, set the column + ** number so that sqlite3ResolveOrderGroupBy() will convert the + ** order-by term to a copy of the result-set expression */ + if( iCol<1 ){ + resolveOutOfRangeError(pParse, zType, i+1, nResult); + return 1; + } + pItem->iCol = (u16)iCol; + continue; + } + + /* Otherwise, treat the ORDER BY term as an ordinary expression */ + pItem->iCol = 0; + if( sqlite3ResolveExprNames(pNC, pE) ){ + return 1; + } + } + return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); +} + +/* +** Resolve names in the SELECT statement p and all of its descendents. +*/ +static int resolveSelectStep(Walker *pWalker, Select *p){ + NameContext *pOuterNC; /* Context that contains this SELECT */ + NameContext sNC; /* Name context of this SELECT */ + int isCompound; /* True if p is a compound select */ + int nCompound; /* Number of compound terms processed so far */ + Parse *pParse; /* Parsing context */ + ExprList *pEList; /* Result set expression list */ + int i; /* Loop counter */ + ExprList *pGroupBy; /* The GROUP BY clause */ + Select *pLeftmost; /* Left-most of SELECT of a compound */ + sqlite3 *db; /* Database connection */ + + + assert( p!=0 ); + if( p->selFlags & SF_Resolved ){ + return WRC_Prune; + } + pOuterNC = pWalker->u.pNC; + pParse = pWalker->pParse; + db = pParse->db; + + /* Normally sqlite3SelectExpand() will be called first and will have + ** already expanded this SELECT. However, if this is a subquery within + ** an expression, sqlite3ResolveExprNames() will be called without a + ** prior call to sqlite3SelectExpand(). When that happens, let + ** sqlite3SelectPrep() do all of the processing for this SELECT. + ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and + ** this routine in the correct order. + */ + if( (p->selFlags & SF_Expanded)==0 ){ + sqlite3SelectPrep(pParse, p, pOuterNC); + return (pParse->nErr || db->mallocFailed) ? WRC_Abort : WRC_Prune; + } + + isCompound = p->pPrior!=0; + nCompound = 0; + pLeftmost = p; + while( p ){ + assert( (p->selFlags & SF_Expanded)!=0 ); + assert( (p->selFlags & SF_Resolved)==0 ); + p->selFlags |= SF_Resolved; + + /* Resolve the expressions in the LIMIT and OFFSET clauses. These + ** are not allowed to refer to any names, so pass an empty NameContext. + */ + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + if( sqlite3ResolveExprNames(&sNC, p->pLimit) || + sqlite3ResolveExprNames(&sNC, p->pOffset) ){ + return WRC_Abort; + } + + /* Set up the local name-context to pass to sqlite3ResolveExprNames() to + ** resolve the result-set expression list. + */ + sNC.allowAgg = 1; + sNC.pSrcList = p->pSrc; + sNC.pNext = pOuterNC; + + /* Resolve names in the result set. */ + pEList = p->pEList; + assert( pEList!=0 ); + for(i=0; inExpr; i++){ + Expr *pX = pEList->a[i].pExpr; + if( sqlite3ResolveExprNames(&sNC, pX) ){ + return WRC_Abort; + } + } + + /* Recursively resolve names in all subqueries + */ + for(i=0; ipSrc->nSrc; i++){ + struct SrcList_item *pItem = &p->pSrc->a[i]; + if( pItem->pSelect ){ + NameContext *pNC; /* Used to iterate name contexts */ + int nRef = 0; /* Refcount for pOuterNC and outer contexts */ + const char *zSavedContext = pParse->zAuthContext; + + /* Count the total number of references to pOuterNC and all of its + ** parent contexts. After resolving references to expressions in + ** pItem->pSelect, check if this value has changed. If so, then + ** SELECT statement pItem->pSelect must be correlated. Set the + ** pItem->isCorrelated flag if this is the case. */ + for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef += pNC->nRef; + + if( pItem->zName ) pParse->zAuthContext = pItem->zName; + sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC); + pParse->zAuthContext = zSavedContext; + if( pParse->nErr || db->mallocFailed ) return WRC_Abort; + + for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef; + assert( pItem->isCorrelated==0 && nRef<=0 ); + pItem->isCorrelated = (nRef!=0); + } + } + + /* If there are no aggregate functions in the result-set, and no GROUP BY + ** expression, do not allow aggregates in any of the other expressions. + */ + assert( (p->selFlags & SF_Aggregate)==0 ); + pGroupBy = p->pGroupBy; + if( pGroupBy || sNC.hasAgg ){ + p->selFlags |= SF_Aggregate; + }else{ + sNC.allowAgg = 0; + } + + /* If a HAVING clause is present, then there must be a GROUP BY clause. + */ + if( p->pHaving && !pGroupBy ){ + sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); + return WRC_Abort; + } + + /* Add the expression list to the name-context before parsing the + ** other expressions in the SELECT statement. This is so that + ** expressions in the WHERE clause (etc.) can refer to expressions by + ** aliases in the result set. + ** + ** Minor point: If this is the case, then the expression will be + ** re-evaluated for each reference to it. + */ + sNC.pEList = p->pEList; + if( sqlite3ResolveExprNames(&sNC, p->pWhere) || + sqlite3ResolveExprNames(&sNC, p->pHaving) + ){ + return WRC_Abort; + } + + /* The ORDER BY and GROUP BY clauses may not refer to terms in + ** outer queries + */ + sNC.pNext = 0; + sNC.allowAgg = 1; + + /* Process the ORDER BY clause for singleton SELECT statements. + ** The ORDER BY clause for compounds SELECT statements is handled + ** below, after all of the result-sets for all of the elements of + ** the compound have been resolved. + */ + if( !isCompound && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){ + return WRC_Abort; + } + if( db->mallocFailed ){ + return WRC_Abort; + } + + /* Resolve the GROUP BY clause. At the same time, make sure + ** the GROUP BY clause does not contain aggregate functions. + */ + if( pGroupBy ){ + struct ExprList_item *pItem; + + if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){ + return WRC_Abort; + } + for(i=0, pItem=pGroupBy->a; inExpr; i++, pItem++){ + if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ + sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " + "the GROUP BY clause"); + return WRC_Abort; + } + } + } + + /* Advance to the next term of the compound + */ + p = p->pPrior; + nCompound++; + } + + /* Resolve the ORDER BY on a compound SELECT after all terms of + ** the compound have been resolved. + */ + if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){ + return WRC_Abort; + } + + return WRC_Prune; +} + +/* +** This routine walks an expression tree and resolves references to +** table columns and result-set columns. At the same time, do error +** checking on function usage and set a flag if any aggregate functions +** are seen. +** +** To resolve table columns references we look for nodes (or subtrees) of the +** form X.Y.Z or Y.Z or just Z where +** +** X: The name of a database. Ex: "main" or "temp" or +** the symbolic name assigned to an ATTACH-ed database. +** +** Y: The name of a table in a FROM clause. Or in a trigger +** one of the special names "old" or "new". +** +** Z: The name of a column in table Y. +** +** The node at the root of the subtree is modified as follows: +** +** Expr.op Changed to TK_COLUMN +** Expr.pTab Points to the Table object for X.Y +** Expr.iColumn The column index in X.Y. -1 for the rowid. +** Expr.iTable The VDBE cursor number for X.Y +** +** +** To resolve result-set references, look for expression nodes of the +** form Z (with no X and Y prefix) where the Z matches the right-hand +** size of an AS clause in the result-set of a SELECT. The Z expression +** is replaced by a copy of the left-hand side of the result-set expression. +** Table-name and function resolution occurs on the substituted expression +** tree. For example, in: +** +** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x; +** +** The "x" term of the order by is replaced by "a+b" to render: +** +** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b; +** +** Function calls are checked to make sure that the function is +** defined and that the correct number of arguments are specified. +** If the function is an aggregate function, then the pNC->hasAgg is +** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION. +** If an expression contains aggregate functions then the EP_Agg +** property on the expression is set. +** +** An error message is left in pParse if anything is amiss. The number +** if errors is returned. +*/ +int sqlite3ResolveExprNames( + NameContext *pNC, /* Namespace to resolve expressions in. */ + Expr *pExpr /* The expression to be analyzed. */ +){ + int savedHasAgg; + Walker w; + + if( pExpr==0 ) return 0; +#if SQLITE_MAX_EXPR_DEPTH>0 + { + Parse *pParse = pNC->pParse; + if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){ + return 1; + } + pParse->nHeight += pExpr->nHeight; + } +#endif + savedHasAgg = pNC->hasAgg; + pNC->hasAgg = 0; + w.xExprCallback = resolveExprStep; + w.xSelectCallback = resolveSelectStep; + w.pParse = pNC->pParse; + w.u.pNC = pNC; + sqlite3WalkExpr(&w, pExpr); +#if SQLITE_MAX_EXPR_DEPTH>0 + pNC->pParse->nHeight -= pExpr->nHeight; +#endif + if( pNC->nErr>0 || w.pParse->nErr>0 ){ + ExprSetProperty(pExpr, EP_Error); + } + if( pNC->hasAgg ){ + ExprSetProperty(pExpr, EP_Agg); + }else if( savedHasAgg ){ + pNC->hasAgg = 1; + } + return ExprHasProperty(pExpr, EP_Error); +} + + +/* +** Resolve all names in all expressions of a SELECT and in all +** decendents of the SELECT, including compounds off of p->pPrior, +** subqueries in expressions, and subqueries used as FROM clause +** terms. +** +** See sqlite3ResolveExprNames() for a description of the kinds of +** transformations that occur. +** +** All SELECT statements should have been expanded using +** sqlite3SelectExpand() prior to invoking this routine. +*/ +void sqlite3ResolveSelectNames( + Parse *pParse, /* The parser context */ + Select *p, /* The SELECT statement being coded. */ + NameContext *pOuterNC /* Name context for parent SELECT statement */ +){ + Walker w; + + assert( p!=0 ); + w.xExprCallback = resolveExprStep; + w.xSelectCallback = resolveSelectStep; + w.pParse = pParse; + w.u.pNC = pOuterNC; + sqlite3WalkSelect(&w, p); +} diff --git a/src/rowset.c b/src/rowset.c new file mode 100644 index 0000000..d84bb93 --- /dev/null +++ b/src/rowset.c @@ -0,0 +1,422 @@ +/* +** 2008 December 3 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This module implements an object we call a "RowSet". +** +** The RowSet object is a collection of rowids. Rowids +** are inserted into the RowSet in an arbitrary order. Inserts +** can be intermixed with tests to see if a given rowid has been +** previously inserted into the RowSet. +** +** After all inserts are finished, it is possible to extract the +** elements of the RowSet in sorted order. Once this extraction +** process has started, no new elements may be inserted. +** +** Hence, the primitive operations for a RowSet are: +** +** CREATE +** INSERT +** TEST +** SMALLEST +** DESTROY +** +** The CREATE and DESTROY primitives are the constructor and destructor, +** obviously. The INSERT primitive adds a new element to the RowSet. +** TEST checks to see if an element is already in the RowSet. SMALLEST +** extracts the least value from the RowSet. +** +** The INSERT primitive might allocate additional memory. Memory is +** allocated in chunks so most INSERTs do no allocation. There is an +** upper bound on the size of allocated memory. No memory is freed +** until DESTROY. +** +** The TEST primitive includes a "batch" number. The TEST primitive +** will only see elements that were inserted before the last change +** in the batch number. In other words, if an INSERT occurs between +** two TESTs where the TESTs have the same batch nubmer, then the +** value added by the INSERT will not be visible to the second TEST. +** The initial batch number is zero, so if the very first TEST contains +** a non-zero batch number, it will see all prior INSERTs. +** +** No INSERTs may occurs after a SMALLEST. An assertion will fail if +** that is attempted. +** +** The cost of an INSERT is roughly constant. (Sometime new memory +** has to be allocated on an INSERT.) The cost of a TEST with a new +** batch number is O(NlogN) where N is the number of elements in the RowSet. +** The cost of a TEST using the same batch number is O(logN). The cost +** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST +** primitives are constant time. The cost of DESTROY is O(N). +** +** There is an added cost of O(N) when switching between TEST and +** SMALLEST primitives. +*/ +#include "sqliteInt.h" + + +/* +** Target size for allocation chunks. +*/ +#define ROWSET_ALLOCATION_SIZE 1024 + +/* +** The number of rowset entries per allocation chunk. +*/ +#define ROWSET_ENTRY_PER_CHUNK \ + ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry)) + +/* +** Each entry in a RowSet is an instance of the following object. +*/ +struct RowSetEntry { + i64 v; /* ROWID value for this entry */ + struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */ + struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */ +}; + +/* +** RowSetEntry objects are allocated in large chunks (instances of the +** following structure) to reduce memory allocation overhead. The +** chunks are kept on a linked list so that they can be deallocated +** when the RowSet is destroyed. +*/ +struct RowSetChunk { + struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */ + struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */ +}; + +/* +** A RowSet in an instance of the following structure. +** +** A typedef of this structure if found in sqliteInt.h. +*/ +struct RowSet { + struct RowSetChunk *pChunk; /* List of all chunk allocations */ + sqlite3 *db; /* The database connection */ + struct RowSetEntry *pEntry; /* List of entries using pRight */ + struct RowSetEntry *pLast; /* Last entry on the pEntry list */ + struct RowSetEntry *pFresh; /* Source of new entry objects */ + struct RowSetEntry *pTree; /* Binary tree of entries */ + u16 nFresh; /* Number of objects on pFresh */ + u8 isSorted; /* True if pEntry is sorted */ + u8 iBatch; /* Current insert batch */ +}; + +/* +** Turn bulk memory into a RowSet object. N bytes of memory +** are available at pSpace. The db pointer is used as a memory context +** for any subsequent allocations that need to occur. +** Return a pointer to the new RowSet object. +** +** It must be the case that N is sufficient to make a Rowset. If not +** an assertion fault occurs. +** +** If N is larger than the minimum, use the surplus as an initial +** allocation of entries available to be filled. +*/ +RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){ + RowSet *p; + assert( N >= ROUND8(sizeof(*p)) ); + p = pSpace; + p->pChunk = 0; + p->db = db; + p->pEntry = 0; + p->pLast = 0; + p->pTree = 0; + p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p); + p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry)); + p->isSorted = 1; + p->iBatch = 0; + return p; +} + +/* +** Deallocate all chunks from a RowSet. This frees all memory that +** the RowSet has allocated over its lifetime. This routine is +** the destructor for the RowSet. +*/ +void sqlite3RowSetClear(RowSet *p){ + struct RowSetChunk *pChunk, *pNextChunk; + for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){ + pNextChunk = pChunk->pNextChunk; + sqlite3DbFree(p->db, pChunk); + } + p->pChunk = 0; + p->nFresh = 0; + p->pEntry = 0; + p->pLast = 0; + p->pTree = 0; + p->isSorted = 1; +} + +/* +** Insert a new value into a RowSet. +** +** The mallocFailed flag of the database connection is set if a +** memory allocation fails. +*/ +void sqlite3RowSetInsert(RowSet *p, i64 rowid){ + struct RowSetEntry *pEntry; /* The new entry */ + struct RowSetEntry *pLast; /* The last prior entry */ + assert( p!=0 ); + if( p->nFresh==0 ){ + struct RowSetChunk *pNew; + pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew)); + if( pNew==0 ){ + return; + } + pNew->pNextChunk = p->pChunk; + p->pChunk = pNew; + p->pFresh = pNew->aEntry; + p->nFresh = ROWSET_ENTRY_PER_CHUNK; + } + pEntry = p->pFresh++; + p->nFresh--; + pEntry->v = rowid; + pEntry->pRight = 0; + pLast = p->pLast; + if( pLast ){ + if( p->isSorted && rowid<=pLast->v ){ + p->isSorted = 0; + } + pLast->pRight = pEntry; + }else{ + assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */ + p->pEntry = pEntry; + } + p->pLast = pEntry; +} + +/* +** Merge two lists of RowSetEntry objects. Remove duplicates. +** +** The input lists are connected via pRight pointers and are +** assumed to each already be in sorted order. +*/ +static struct RowSetEntry *rowSetMerge( + struct RowSetEntry *pA, /* First sorted list to be merged */ + struct RowSetEntry *pB /* Second sorted list to be merged */ +){ + struct RowSetEntry head; + struct RowSetEntry *pTail; + + pTail = &head; + while( pA && pB ){ + assert( pA->pRight==0 || pA->v<=pA->pRight->v ); + assert( pB->pRight==0 || pB->v<=pB->pRight->v ); + if( pA->vv ){ + pTail->pRight = pA; + pA = pA->pRight; + pTail = pTail->pRight; + }else if( pB->vv ){ + pTail->pRight = pB; + pB = pB->pRight; + pTail = pTail->pRight; + }else{ + pA = pA->pRight; + } + } + if( pA ){ + assert( pA->pRight==0 || pA->v<=pA->pRight->v ); + pTail->pRight = pA; + }else{ + assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v ); + pTail->pRight = pB; + } + return head.pRight; +} + +/* +** Sort all elements on the pEntry list of the RowSet into ascending order. +*/ +static void rowSetSort(RowSet *p){ + unsigned int i; + struct RowSetEntry *pEntry; + struct RowSetEntry *aBucket[40]; + + assert( p->isSorted==0 ); + memset(aBucket, 0, sizeof(aBucket)); + while( p->pEntry ){ + pEntry = p->pEntry; + p->pEntry = pEntry->pRight; + pEntry->pRight = 0; + for(i=0; aBucket[i]; i++){ + pEntry = rowSetMerge(aBucket[i], pEntry); + aBucket[i] = 0; + } + aBucket[i] = pEntry; + } + pEntry = 0; + for(i=0; ipEntry = pEntry; + p->pLast = 0; + p->isSorted = 1; +} + + +/* +** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects. +** Convert this tree into a linked list connected by the pRight pointers +** and return pointers to the first and last elements of the new list. +*/ +static void rowSetTreeToList( + struct RowSetEntry *pIn, /* Root of the input tree */ + struct RowSetEntry **ppFirst, /* Write head of the output list here */ + struct RowSetEntry **ppLast /* Write tail of the output list here */ +){ + assert( pIn!=0 ); + if( pIn->pLeft ){ + struct RowSetEntry *p; + rowSetTreeToList(pIn->pLeft, ppFirst, &p); + p->pRight = pIn; + }else{ + *ppFirst = pIn; + } + if( pIn->pRight ){ + rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast); + }else{ + *ppLast = pIn; + } + assert( (*ppLast)->pRight==0 ); +} + + +/* +** Convert a sorted list of elements (connected by pRight) into a binary +** tree with depth of iDepth. A depth of 1 means the tree contains a single +** node taken from the head of *ppList. A depth of 2 means a tree with +** three nodes. And so forth. +** +** Use as many entries from the input list as required and update the +** *ppList to point to the unused elements of the list. If the input +** list contains too few elements, then construct an incomplete tree +** and leave *ppList set to NULL. +** +** Return a pointer to the root of the constructed binary tree. +*/ +static struct RowSetEntry *rowSetNDeepTree( + struct RowSetEntry **ppList, + int iDepth +){ + struct RowSetEntry *p; /* Root of the new tree */ + struct RowSetEntry *pLeft; /* Left subtree */ + if( *ppList==0 ){ + return 0; + } + if( iDepth==1 ){ + p = *ppList; + *ppList = p->pRight; + p->pLeft = p->pRight = 0; + return p; + } + pLeft = rowSetNDeepTree(ppList, iDepth-1); + p = *ppList; + if( p==0 ){ + return pLeft; + } + p->pLeft = pLeft; + *ppList = p->pRight; + p->pRight = rowSetNDeepTree(ppList, iDepth-1); + return p; +} + +/* +** Convert a sorted list of elements into a binary tree. Make the tree +** as deep as it needs to be in order to contain the entire list. +*/ +static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){ + int iDepth; /* Depth of the tree so far */ + struct RowSetEntry *p; /* Current tree root */ + struct RowSetEntry *pLeft; /* Left subtree */ + + assert( pList!=0 ); + p = pList; + pList = p->pRight; + p->pLeft = p->pRight = 0; + for(iDepth=1; pList; iDepth++){ + pLeft = p; + p = pList; + pList = p->pRight; + p->pLeft = pLeft; + p->pRight = rowSetNDeepTree(&pList, iDepth); + } + return p; +} + +/* +** Convert the list in p->pEntry into a sorted list if it is not +** sorted already. If there is a binary tree on p->pTree, then +** convert it into a list too and merge it into the p->pEntry list. +*/ +static void rowSetToList(RowSet *p){ + if( !p->isSorted ){ + rowSetSort(p); + } + if( p->pTree ){ + struct RowSetEntry *pHead, *pTail; + rowSetTreeToList(p->pTree, &pHead, &pTail); + p->pTree = 0; + p->pEntry = rowSetMerge(p->pEntry, pHead); + } +} + +/* +** Extract the smallest element from the RowSet. +** Write the element into *pRowid. Return 1 on success. Return +** 0 if the RowSet is already empty. +** +** After this routine has been called, the sqlite3RowSetInsert() +** routine may not be called again. +*/ +int sqlite3RowSetNext(RowSet *p, i64 *pRowid){ + rowSetToList(p); + if( p->pEntry ){ + *pRowid = p->pEntry->v; + p->pEntry = p->pEntry->pRight; + if( p->pEntry==0 ){ + sqlite3RowSetClear(p); + } + return 1; + }else{ + return 0; + } +} + +/* +** Check to see if element iRowid was inserted into the the rowset as +** part of any insert batch prior to iBatch. Return 1 or 0. +*/ +int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){ + struct RowSetEntry *p; + if( iBatch!=pRowSet->iBatch ){ + if( pRowSet->pEntry ){ + rowSetToList(pRowSet); + pRowSet->pTree = rowSetListToTree(pRowSet->pEntry); + pRowSet->pEntry = 0; + pRowSet->pLast = 0; + } + pRowSet->iBatch = iBatch; + } + p = pRowSet->pTree; + while( p ){ + if( p->vpRight; + }else if( p->v>iRowid ){ + p = p->pLeft; + }else{ + return 1; + } + } + return 0; +} diff --git a/src/select.c b/src/select.c new file mode 100644 index 0000000..571a778 --- /dev/null +++ b/src/select.c @@ -0,0 +1,4591 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle SELECT statements in SQLite. +*/ +#include "sqliteInt.h" + + +/* +** Delete all the content of a Select structure but do not deallocate +** the select structure itself. +*/ +static void clearSelect(sqlite3 *db, Select *p){ + sqlite3ExprListDelete(db, p->pEList); + sqlite3SrcListDelete(db, p->pSrc); + sqlite3ExprDelete(db, p->pWhere); + sqlite3ExprListDelete(db, p->pGroupBy); + sqlite3ExprDelete(db, p->pHaving); + sqlite3ExprListDelete(db, p->pOrderBy); + sqlite3SelectDelete(db, p->pPrior); + sqlite3ExprDelete(db, p->pLimit); + sqlite3ExprDelete(db, p->pOffset); +} + +/* +** Initialize a SelectDest structure. +*/ +void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ + pDest->eDest = (u8)eDest; + pDest->iParm = iParm; + pDest->affinity = 0; + pDest->iMem = 0; + pDest->nMem = 0; +} + + +/* +** Allocate a new Select structure and return a pointer to that +** structure. +*/ +Select *sqlite3SelectNew( + Parse *pParse, /* Parsing context */ + ExprList *pEList, /* which columns to include in the result */ + SrcList *pSrc, /* the FROM clause -- which tables to scan */ + Expr *pWhere, /* the WHERE clause */ + ExprList *pGroupBy, /* the GROUP BY clause */ + Expr *pHaving, /* the HAVING clause */ + ExprList *pOrderBy, /* the ORDER BY clause */ + int isDistinct, /* true if the DISTINCT keyword is present */ + Expr *pLimit, /* LIMIT value. NULL means not used */ + Expr *pOffset /* OFFSET value. NULL means no offset */ +){ + Select *pNew; + Select standin; + sqlite3 *db = pParse->db; + pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); + assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ + if( pNew==0 ){ + assert( db->mallocFailed ); + pNew = &standin; + memset(pNew, 0, sizeof(*pNew)); + } + if( pEList==0 ){ + pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); + } + pNew->pEList = pEList; + pNew->pSrc = pSrc; + pNew->pWhere = pWhere; + pNew->pGroupBy = pGroupBy; + pNew->pHaving = pHaving; + pNew->pOrderBy = pOrderBy; + pNew->selFlags = isDistinct ? SF_Distinct : 0; + pNew->op = TK_SELECT; + pNew->pLimit = pLimit; + pNew->pOffset = pOffset; + assert( pOffset==0 || pLimit!=0 ); + pNew->addrOpenEphm[0] = -1; + pNew->addrOpenEphm[1] = -1; + pNew->addrOpenEphm[2] = -1; + if( db->mallocFailed ) { + clearSelect(db, pNew); + if( pNew!=&standin ) sqlite3DbFree(db, pNew); + pNew = 0; + }else{ + assert( pNew->pSrc!=0 || pParse->nErr>0 ); + } + assert( pNew!=&standin ); + return pNew; +} + +/* +** Delete the given Select structure and all of its substructures. +*/ +void sqlite3SelectDelete(sqlite3 *db, Select *p){ + if( p ){ + clearSelect(db, p); + sqlite3DbFree(db, p); + } +} + +/* +** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the +** type of join. Return an integer constant that expresses that type +** in terms of the following bit values: +** +** JT_INNER +** JT_CROSS +** JT_OUTER +** JT_NATURAL +** JT_LEFT +** JT_RIGHT +** +** A full outer join is the combination of JT_LEFT and JT_RIGHT. +** +** If an illegal or unsupported join type is seen, then still return +** a join type, but put an error in the pParse structure. +*/ +int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ + int jointype = 0; + Token *apAll[3]; + Token *p; + /* 0123456789 123456789 123456789 123 */ + static const char zKeyText[] = "naturaleftouterightfullinnercross"; + static const struct { + u8 i; /* Beginning of keyword text in zKeyText[] */ + u8 nChar; /* Length of the keyword in characters */ + u8 code; /* Join type mask */ + } aKeyword[] = { + /* natural */ { 0, 7, JT_NATURAL }, + /* left */ { 6, 4, JT_LEFT|JT_OUTER }, + /* outer */ { 10, 5, JT_OUTER }, + /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, + /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, + /* inner */ { 23, 5, JT_INNER }, + /* cross */ { 28, 5, JT_INNER|JT_CROSS }, + }; + int i, j; + apAll[0] = pA; + apAll[1] = pB; + apAll[2] = pC; + for(i=0; i<3 && apAll[i]; i++){ + p = apAll[i]; + for(j=0; jn==aKeyword[j].nChar + && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ + jointype |= aKeyword[j].code; + break; + } + } + testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); + if( j>=ArraySize(aKeyword) ){ + jointype |= JT_ERROR; + break; + } + } + if( + (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || + (jointype & JT_ERROR)!=0 + ){ + const char *zSp = " "; + assert( pB!=0 ); + if( pC==0 ){ zSp++; } + sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " + "%T %T%s%T", pA, pB, zSp, pC); + jointype = JT_INNER; + }else if( (jointype & JT_OUTER)!=0 + && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ + sqlite3ErrorMsg(pParse, + "RIGHT and FULL OUTER JOINs are not currently supported"); + jointype = JT_INNER; + } + return jointype; +} + +/* +** Return the index of a column in a table. Return -1 if the column +** is not contained in the table. +*/ +static int columnIndex(Table *pTab, const char *zCol){ + int i; + for(i=0; inCol; i++){ + if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; + } + return -1; +} + +/* +** Search the first N tables in pSrc, from left to right, looking for a +** table that has a column named zCol. +** +** When found, set *piTab and *piCol to the table index and column index +** of the matching column and return TRUE. +** +** If not found, return FALSE. +*/ +static int tableAndColumnIndex( + SrcList *pSrc, /* Array of tables to search */ + int N, /* Number of tables in pSrc->a[] to search */ + const char *zCol, /* Name of the column we are looking for */ + int *piTab, /* Write index of pSrc->a[] here */ + int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ +){ + int i; /* For looping over tables in pSrc */ + int iCol; /* Index of column matching zCol */ + + assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ + for(i=0; ia[i].pTab, zCol); + if( iCol>=0 ){ + if( piTab ){ + *piTab = i; + *piCol = iCol; + } + return 1; + } + } + return 0; +} + +/* +** This function is used to add terms implied by JOIN syntax to the +** WHERE clause expression of a SELECT statement. The new term, which +** is ANDed with the existing WHERE clause, is of the form: +** +** (tab1.col1 = tab2.col2) +** +** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the +** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is +** column iColRight of tab2. +*/ +static void addWhereTerm( + Parse *pParse, /* Parsing context */ + SrcList *pSrc, /* List of tables in FROM clause */ + int iLeft, /* Index of first table to join in pSrc */ + int iColLeft, /* Index of column in first table */ + int iRight, /* Index of second table in pSrc */ + int iColRight, /* Index of column in second table */ + int isOuterJoin, /* True if this is an OUTER join */ + Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ +){ + sqlite3 *db = pParse->db; + Expr *pE1; + Expr *pE2; + Expr *pEq; + + assert( iLeftnSrc>iRight ); + assert( pSrc->a[iLeft].pTab ); + assert( pSrc->a[iRight].pTab ); + + pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); + pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); + + pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); + if( pEq && isOuterJoin ){ + ExprSetProperty(pEq, EP_FromJoin); + assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); + ExprSetIrreducible(pEq); + pEq->iRightJoinTable = (i16)pE2->iTable; + } + *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); +} + +/* +** Set the EP_FromJoin property on all terms of the given expression. +** And set the Expr.iRightJoinTable to iTable for every term in the +** expression. +** +** The EP_FromJoin property is used on terms of an expression to tell +** the LEFT OUTER JOIN processing logic that this term is part of the +** join restriction specified in the ON or USING clause and not a part +** of the more general WHERE clause. These terms are moved over to the +** WHERE clause during join processing but we need to remember that they +** originated in the ON or USING clause. +** +** The Expr.iRightJoinTable tells the WHERE clause processing that the +** expression depends on table iRightJoinTable even if that table is not +** explicitly mentioned in the expression. That information is needed +** for cases like this: +** +** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 +** +** The where clause needs to defer the handling of the t1.x=5 +** term until after the t2 loop of the join. In that way, a +** NULL t2 row will be inserted whenever t1.x!=5. If we do not +** defer the handling of t1.x=5, it will be processed immediately +** after the t1 loop and rows with t1.x!=5 will never appear in +** the output, which is incorrect. +*/ +static void setJoinExpr(Expr *p, int iTable){ + while( p ){ + ExprSetProperty(p, EP_FromJoin); + assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); + ExprSetIrreducible(p); + p->iRightJoinTable = (i16)iTable; + setJoinExpr(p->pLeft, iTable); + p = p->pRight; + } +} + +/* +** This routine processes the join information for a SELECT statement. +** ON and USING clauses are converted into extra terms of the WHERE clause. +** NATURAL joins also create extra WHERE clause terms. +** +** The terms of a FROM clause are contained in the Select.pSrc structure. +** The left most table is the first entry in Select.pSrc. The right-most +** table is the last entry. The join operator is held in the entry to +** the left. Thus entry 0 contains the join operator for the join between +** entries 0 and 1. Any ON or USING clauses associated with the join are +** also attached to the left entry. +** +** This routine returns the number of errors encountered. +*/ +static int sqliteProcessJoin(Parse *pParse, Select *p){ + SrcList *pSrc; /* All tables in the FROM clause */ + int i, j; /* Loop counters */ + struct SrcList_item *pLeft; /* Left table being joined */ + struct SrcList_item *pRight; /* Right table being joined */ + + pSrc = p->pSrc; + pLeft = &pSrc->a[0]; + pRight = &pLeft[1]; + for(i=0; inSrc-1; i++, pRight++, pLeft++){ + Table *pLeftTab = pLeft->pTab; + Table *pRightTab = pRight->pTab; + int isOuter; + + if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; + isOuter = (pRight->jointype & JT_OUTER)!=0; + + /* When the NATURAL keyword is present, add WHERE clause terms for + ** every column that the two tables have in common. + */ + if( pRight->jointype & JT_NATURAL ){ + if( pRight->pOn || pRight->pUsing ){ + sqlite3ErrorMsg(pParse, "a NATURAL join may not have " + "an ON or USING clause", 0); + return 1; + } + for(j=0; jnCol; j++){ + char *zName; /* Name of column in the right table */ + int iLeft; /* Matching left table */ + int iLeftCol; /* Matching column in the left table */ + + zName = pRightTab->aCol[j].zName; + if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ + addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, + isOuter, &p->pWhere); + } + } + } + + /* Disallow both ON and USING clauses in the same join + */ + if( pRight->pOn && pRight->pUsing ){ + sqlite3ErrorMsg(pParse, "cannot have both ON and USING " + "clauses in the same join"); + return 1; + } + + /* Add the ON clause to the end of the WHERE clause, connected by + ** an AND operator. + */ + if( pRight->pOn ){ + if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); + p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); + pRight->pOn = 0; + } + + /* Create extra terms on the WHERE clause for each column named + ** in the USING clause. Example: If the two tables to be joined are + ** A and B and the USING clause names X, Y, and Z, then add this + ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z + ** Report an error if any column mentioned in the USING clause is + ** not contained in both tables to be joined. + */ + if( pRight->pUsing ){ + IdList *pList = pRight->pUsing; + for(j=0; jnId; j++){ + char *zName; /* Name of the term in the USING clause */ + int iLeft; /* Table on the left with matching column name */ + int iLeftCol; /* Column number of matching column on the left */ + int iRightCol; /* Column number of matching column on the right */ + + zName = pList->a[j].zName; + iRightCol = columnIndex(pRightTab, zName); + if( iRightCol<0 + || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) + ){ + sqlite3ErrorMsg(pParse, "cannot join using column %s - column " + "not present in both tables", zName); + return 1; + } + addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, + isOuter, &p->pWhere); + } + } + } + return 0; +} + +/* +** Insert code into "v" that will push the record on the top of the +** stack into the sorter. +*/ +static void pushOntoSorter( + Parse *pParse, /* Parser context */ + ExprList *pOrderBy, /* The ORDER BY clause */ + Select *pSelect, /* The whole SELECT statement */ + int regData /* Register holding data to be sorted */ +){ + Vdbe *v = pParse->pVdbe; + int nExpr = pOrderBy->nExpr; + int regBase = sqlite3GetTempRange(pParse, nExpr+2); + int regRecord = sqlite3GetTempReg(pParse); + int op; + sqlite3ExprCacheClear(pParse); + sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); + sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); + sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); + if( pSelect->selFlags & SF_UseSorter ){ + op = OP_SorterInsert; + }else{ + op = OP_IdxInsert; + } + sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord); + sqlite3ReleaseTempReg(pParse, regRecord); + sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); + if( pSelect->iLimit ){ + int addr1, addr2; + int iLimit; + if( pSelect->iOffset ){ + iLimit = pSelect->iOffset+1; + }else{ + iLimit = pSelect->iLimit; + } + addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); + sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); + addr2 = sqlite3VdbeAddOp0(v, OP_Goto); + sqlite3VdbeJumpHere(v, addr1); + sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); + sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); + sqlite3VdbeJumpHere(v, addr2); + } +} + +/* +** Add code to implement the OFFSET +*/ +static void codeOffset( + Vdbe *v, /* Generate code into this VM */ + Select *p, /* The SELECT statement being coded */ + int iContinue /* Jump here to skip the current record */ +){ + if( p->iOffset && iContinue!=0 ){ + int addr; + sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); + addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); + sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); + VdbeComment((v, "skip OFFSET records")); + sqlite3VdbeJumpHere(v, addr); + } +} + +/* +** Add code that will check to make sure the N registers starting at iMem +** form a distinct entry. iTab is a sorting index that holds previously +** seen combinations of the N values. A new entry is made in iTab +** if the current N values are new. +** +** A jump to addrRepeat is made and the N+1 values are popped from the +** stack if the top N elements are not distinct. +*/ +static void codeDistinct( + Parse *pParse, /* Parsing and code generating context */ + int iTab, /* A sorting index used to test for distinctness */ + int addrRepeat, /* Jump to here if not distinct */ + int N, /* Number of elements */ + int iMem /* First element */ +){ + Vdbe *v; + int r1; + + v = pParse->pVdbe; + r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); + sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); + sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); + sqlite3ReleaseTempReg(pParse, r1); +} + +#ifndef SQLITE_OMIT_SUBQUERY +/* +** Generate an error message when a SELECT is used within a subexpression +** (example: "a IN (SELECT * FROM table)") but it has more than 1 result +** column. We do this in a subroutine because the error used to occur +** in multiple places. (The error only occurs in one place now, but we +** retain the subroutine to minimize code disruption.) +*/ +static int checkForMultiColumnSelectError( + Parse *pParse, /* Parse context. */ + SelectDest *pDest, /* Destination of SELECT results */ + int nExpr /* Number of result columns returned by SELECT */ +){ + int eDest = pDest->eDest; + if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ + sqlite3ErrorMsg(pParse, "only a single result allowed for " + "a SELECT that is part of an expression"); + return 1; + }else{ + return 0; + } +} +#endif + +/* +** This routine generates the code for the inside of the inner loop +** of a SELECT. +** +** If srcTab and nColumn are both zero, then the pEList expressions +** are evaluated in order to get the data for this row. If nColumn>0 +** then data is pulled from srcTab and pEList is used only to get the +** datatypes for each column. +*/ +static void selectInnerLoop( + Parse *pParse, /* The parser context */ + Select *p, /* The complete select statement being coded */ + ExprList *pEList, /* List of values being extracted */ + int srcTab, /* Pull data from this table */ + int nColumn, /* Number of columns in the source table */ + ExprList *pOrderBy, /* If not NULL, sort results using this key */ + int distinct, /* If >=0, make sure results are distinct */ + SelectDest *pDest, /* How to dispose of the results */ + int iContinue, /* Jump here to continue with next row */ + int iBreak /* Jump here to break out of the inner loop */ +){ + Vdbe *v = pParse->pVdbe; + int i; + int hasDistinct; /* True if the DISTINCT keyword is present */ + int regResult; /* Start of memory holding result set */ + int eDest = pDest->eDest; /* How to dispose of results */ + int iParm = pDest->iParm; /* First argument to disposal method */ + int nResultCol; /* Number of result columns */ + + assert( v ); + if( NEVER(v==0) ) return; + assert( pEList!=0 ); + hasDistinct = distinct>=0; + if( pOrderBy==0 && !hasDistinct ){ + codeOffset(v, p, iContinue); + } + + /* Pull the requested columns. + */ + if( nColumn>0 ){ + nResultCol = nColumn; + }else{ + nResultCol = pEList->nExpr; + } + if( pDest->iMem==0 ){ + pDest->iMem = pParse->nMem+1; + pDest->nMem = nResultCol; + pParse->nMem += nResultCol; + }else{ + assert( pDest->nMem==nResultCol ); + } + regResult = pDest->iMem; + if( nColumn>0 ){ + for(i=0; inExpr==nColumn ); + codeDistinct(pParse, distinct, iContinue, nColumn, regResult); + if( pOrderBy==0 ){ + codeOffset(v, p, iContinue); + } + } + + switch( eDest ){ + /* In this mode, write each query result to the key of the temporary + ** table iParm. + */ +#ifndef SQLITE_OMIT_COMPOUND_SELECT + case SRT_Union: { + int r1; + r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); + sqlite3ReleaseTempReg(pParse, r1); + break; + } + + /* Construct a record from the query result, but instead of + ** saving that record, use it as a key to delete elements from + ** the temporary table iParm. + */ + case SRT_Except: { + sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); + break; + } +#endif + + /* Store the result as data using a unique key. + */ + case SRT_Table: + case SRT_EphemTab: { + int r1 = sqlite3GetTempReg(pParse); + testcase( eDest==SRT_Table ); + testcase( eDest==SRT_EphemTab ); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); + if( pOrderBy ){ + pushOntoSorter(pParse, pOrderBy, p, r1); + }else{ + int r2 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); + sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + sqlite3ReleaseTempReg(pParse, r2); + } + sqlite3ReleaseTempReg(pParse, r1); + break; + } + +#ifndef SQLITE_OMIT_SUBQUERY + /* If we are creating a set for an "expr IN (SELECT ...)" construct, + ** then there should be a single item on the stack. Write this + ** item into the set table with bogus data. + */ + case SRT_Set: { + assert( nColumn==1 ); + p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); + if( pOrderBy ){ + /* At first glance you would think we could optimize out the + ** ORDER BY in this case since the order of entries in the set + ** does not matter. But there might be a LIMIT clause, in which + ** case the order does matter */ + pushOntoSorter(pParse, pOrderBy, p, regResult); + }else{ + int r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); + sqlite3ExprCacheAffinityChange(pParse, regResult, 1); + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); + sqlite3ReleaseTempReg(pParse, r1); + } + break; + } + + /* If any row exist in the result set, record that fact and abort. + */ + case SRT_Exists: { + sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); + /* The LIMIT clause will terminate the loop for us */ + break; + } + + /* If this is a scalar select that is part of an expression, then + ** store the results in the appropriate memory cell and break out + ** of the scan loop. + */ + case SRT_Mem: { + assert( nColumn==1 ); + if( pOrderBy ){ + pushOntoSorter(pParse, pOrderBy, p, regResult); + }else{ + sqlite3ExprCodeMove(pParse, regResult, iParm, 1); + /* The LIMIT clause will jump out of the loop for us */ + } + break; + } +#endif /* #ifndef SQLITE_OMIT_SUBQUERY */ + + /* Send the data to the callback function or to a subroutine. In the + ** case of a subroutine, the subroutine itself is responsible for + ** popping the data from the stack. + */ + case SRT_Coroutine: + case SRT_Output: { + testcase( eDest==SRT_Coroutine ); + testcase( eDest==SRT_Output ); + if( pOrderBy ){ + int r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); + pushOntoSorter(pParse, pOrderBy, p, r1); + sqlite3ReleaseTempReg(pParse, r1); + }else if( eDest==SRT_Coroutine ){ + sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); + }else{ + sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); + sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); + } + break; + } + +#if !defined(SQLITE_OMIT_TRIGGER) + /* Discard the results. This is used for SELECT statements inside + ** the body of a TRIGGER. The purpose of such selects is to call + ** user-defined functions that have side effects. We do not care + ** about the actual results of the select. + */ + default: { + assert( eDest==SRT_Discard ); + break; + } +#endif + } + + /* Jump to the end of the loop if the LIMIT is reached. Except, if + ** there is a sorter, in which case the sorter has already limited + ** the output for us. + */ + if( pOrderBy==0 && p->iLimit ){ + sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); + } +} + +/* +** Given an expression list, generate a KeyInfo structure that records +** the collating sequence for each expression in that expression list. +** +** If the ExprList is an ORDER BY or GROUP BY clause then the resulting +** KeyInfo structure is appropriate for initializing a virtual index to +** implement that clause. If the ExprList is the result set of a SELECT +** then the KeyInfo structure is appropriate for initializing a virtual +** index to implement a DISTINCT test. +** +** Space to hold the KeyInfo structure is obtain from malloc. The calling +** function is responsible for seeing that this structure is eventually +** freed. Add the KeyInfo structure to the P4 field of an opcode using +** P4_KEYINFO_HANDOFF is the usual way of dealing with this. +*/ +static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ + sqlite3 *db = pParse->db; + int nExpr; + KeyInfo *pInfo; + struct ExprList_item *pItem; + int i; + + nExpr = pList->nExpr; + pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); + if( pInfo ){ + pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; + pInfo->nField = (u16)nExpr; + pInfo->enc = ENC(db); + pInfo->db = db; + for(i=0, pItem=pList->a; ipExpr); + if( !pColl ){ + pColl = db->pDfltColl; + } + pInfo->aColl[i] = pColl; + pInfo->aSortOrder[i] = pItem->sortOrder; + } + } + return pInfo; +} + +#ifndef SQLITE_OMIT_COMPOUND_SELECT +/* +** Name of the connection operator, used for error messages. +*/ +static const char *selectOpName(int id){ + char *z; + switch( id ){ + case TK_ALL: z = "UNION ALL"; break; + case TK_INTERSECT: z = "INTERSECT"; break; + case TK_EXCEPT: z = "EXCEPT"; break; + default: z = "UNION"; break; + } + return z; +} +#endif /* SQLITE_OMIT_COMPOUND_SELECT */ + +#ifndef SQLITE_OMIT_EXPLAIN +/* +** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function +** is a no-op. Otherwise, it adds a single row of output to the EQP result, +** where the caption is of the form: +** +** "USE TEMP B-TREE FOR xxx" +** +** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which +** is determined by the zUsage argument. +*/ +static void explainTempTable(Parse *pParse, const char *zUsage){ + if( pParse->explain==2 ){ + Vdbe *v = pParse->pVdbe; + char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); + sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); + } +} + +/* +** Assign expression b to lvalue a. A second, no-op, version of this macro +** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code +** in sqlite3Select() to assign values to structure member variables that +** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the +** code with #ifndef directives. +*/ +# define explainSetInteger(a, b) a = b + +#else +/* No-op versions of the explainXXX() functions and macros. */ +# define explainTempTable(y,z) +# define explainSetInteger(y,z) +#endif + +#if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) +/* +** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function +** is a no-op. Otherwise, it adds a single row of output to the EQP result, +** where the caption is of one of the two forms: +** +** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" +** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" +** +** where iSub1 and iSub2 are the integers passed as the corresponding +** function parameters, and op is the text representation of the parameter +** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, +** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is +** false, or the second form if it is true. +*/ +static void explainComposite( + Parse *pParse, /* Parse context */ + int op, /* One of TK_UNION, TK_EXCEPT etc. */ + int iSub1, /* Subquery id 1 */ + int iSub2, /* Subquery id 2 */ + int bUseTmp /* True if a temp table was used */ +){ + assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); + if( pParse->explain==2 ){ + Vdbe *v = pParse->pVdbe; + char *zMsg = sqlite3MPrintf( + pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, + bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) + ); + sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); + } +} +#else +/* No-op versions of the explainXXX() functions and macros. */ +# define explainComposite(v,w,x,y,z) +#endif + +/* +** If the inner loop was generated using a non-null pOrderBy argument, +** then the results were placed in a sorter. After the loop is terminated +** we need to run the sorter and output the results. The following +** routine generates the code needed to do that. +*/ +static void generateSortTail( + Parse *pParse, /* Parsing context */ + Select *p, /* The SELECT statement */ + Vdbe *v, /* Generate code into this VDBE */ + int nColumn, /* Number of columns of data */ + SelectDest *pDest /* Write the sorted results here */ +){ + int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ + int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ + int addr; + int iTab; + int pseudoTab = 0; + ExprList *pOrderBy = p->pOrderBy; + + int eDest = pDest->eDest; + int iParm = pDest->iParm; + + int regRow; + int regRowid; + + iTab = pOrderBy->iECursor; + regRow = sqlite3GetTempReg(pParse); + if( eDest==SRT_Output || eDest==SRT_Coroutine ){ + pseudoTab = pParse->nTab++; + sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); + regRowid = 0; + }else{ + regRowid = sqlite3GetTempReg(pParse); + } + if( p->selFlags & SF_UseSorter ){ + int regSortOut = ++pParse->nMem; + int ptab2 = pParse->nTab++; + sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); + addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); + codeOffset(v, p, addrContinue); + sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); + sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); + sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); + }else{ + addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); + codeOffset(v, p, addrContinue); + sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow); + } + switch( eDest ){ + case SRT_Table: + case SRT_EphemTab: { + testcase( eDest==SRT_Table ); + testcase( eDest==SRT_EphemTab ); + sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); + sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + break; + } +#ifndef SQLITE_OMIT_SUBQUERY + case SRT_Set: { + assert( nColumn==1 ); + sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); + sqlite3ExprCacheAffinityChange(pParse, regRow, 1); + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); + break; + } + case SRT_Mem: { + assert( nColumn==1 ); + sqlite3ExprCodeMove(pParse, regRow, iParm, 1); + /* The LIMIT clause will terminate the loop for us */ + break; + } +#endif + default: { + int i; + assert( eDest==SRT_Output || eDest==SRT_Coroutine ); + testcase( eDest==SRT_Output ); + testcase( eDest==SRT_Coroutine ); + for(i=0; iiMem+i ); + sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); + if( i==0 ){ + sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); + } + } + if( eDest==SRT_Output ){ + sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); + sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); + }else{ + sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); + } + break; + } + } + sqlite3ReleaseTempReg(pParse, regRow); + sqlite3ReleaseTempReg(pParse, regRowid); + + /* The bottom of the loop + */ + sqlite3VdbeResolveLabel(v, addrContinue); + if( p->selFlags & SF_UseSorter ){ + sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); + }else{ + sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); + } + sqlite3VdbeResolveLabel(v, addrBreak); + if( eDest==SRT_Output || eDest==SRT_Coroutine ){ + sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); + } +} + +/* +** Return a pointer to a string containing the 'declaration type' of the +** expression pExpr. The string may be treated as static by the caller. +** +** The declaration type is the exact datatype definition extracted from the +** original CREATE TABLE statement if the expression is a column. The +** declaration type for a ROWID field is INTEGER. Exactly when an expression +** is considered a column can be complex in the presence of subqueries. The +** result-set expression in all of the following SELECT statements is +** considered a column by this function. +** +** SELECT col FROM tbl; +** SELECT (SELECT col FROM tbl; +** SELECT (SELECT col FROM tbl); +** SELECT abc FROM (SELECT col AS abc FROM tbl); +** +** The declaration type for any expression other than a column is NULL. +*/ +static const char *columnType( + NameContext *pNC, + Expr *pExpr, + const char **pzOriginDb, + const char **pzOriginTab, + const char **pzOriginCol +){ + char const *zType = 0; + char const *zOriginDb = 0; + char const *zOriginTab = 0; + char const *zOriginCol = 0; + int j; + if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; + + switch( pExpr->op ){ + case TK_AGG_COLUMN: + case TK_COLUMN: { + /* The expression is a column. Locate the table the column is being + ** extracted from in NameContext.pSrcList. This table may be real + ** database table or a subquery. + */ + Table *pTab = 0; /* Table structure column is extracted from */ + Select *pS = 0; /* Select the column is extracted from */ + int iCol = pExpr->iColumn; /* Index of column in pTab */ + testcase( pExpr->op==TK_AGG_COLUMN ); + testcase( pExpr->op==TK_COLUMN ); + while( pNC && !pTab ){ + SrcList *pTabList = pNC->pSrcList; + for(j=0;jnSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); + if( jnSrc ){ + pTab = pTabList->a[j].pTab; + pS = pTabList->a[j].pSelect; + }else{ + pNC = pNC->pNext; + } + } + + if( pTab==0 ){ + /* At one time, code such as "SELECT new.x" within a trigger would + ** cause this condition to run. Since then, we have restructured how + ** trigger code is generated and so this condition is no longer + ** possible. However, it can still be true for statements like + ** the following: + ** + ** CREATE TABLE t1(col INTEGER); + ** SELECT (SELECT t1.col) FROM FROM t1; + ** + ** when columnType() is called on the expression "t1.col" in the + ** sub-select. In this case, set the column type to NULL, even + ** though it should really be "INTEGER". + ** + ** This is not a problem, as the column type of "t1.col" is never + ** used. When columnType() is called on the expression + ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT + ** branch below. */ + break; + } + + assert( pTab && pExpr->pTab==pTab ); + if( pS ){ + /* The "table" is actually a sub-select or a view in the FROM clause + ** of the SELECT statement. Return the declaration type and origin + ** data for the result-set column of the sub-select. + */ + if( iCol>=0 && ALWAYS(iColpEList->nExpr) ){ + /* If iCol is less than zero, then the expression requests the + ** rowid of the sub-select or view. This expression is legal (see + ** test case misc2.2.2) - it always evaluates to NULL. + */ + NameContext sNC; + Expr *p = pS->pEList->a[iCol].pExpr; + sNC.pSrcList = pS->pSrc; + sNC.pNext = pNC; + sNC.pParse = pNC->pParse; + zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); + } + }else if( ALWAYS(pTab->pSchema) ){ + /* A real table */ + assert( !pS ); + if( iCol<0 ) iCol = pTab->iPKey; + assert( iCol==-1 || (iCol>=0 && iColnCol) ); + if( iCol<0 ){ + zType = "INTEGER"; + zOriginCol = "rowid"; + }else{ + zType = pTab->aCol[iCol].zType; + zOriginCol = pTab->aCol[iCol].zName; + } + zOriginTab = pTab->zName; + if( pNC->pParse ){ + int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); + zOriginDb = pNC->pParse->db->aDb[iDb].zName; + } + } + break; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_SELECT: { + /* The expression is a sub-select. Return the declaration type and + ** origin info for the single column in the result set of the SELECT + ** statement. + */ + NameContext sNC; + Select *pS = pExpr->x.pSelect; + Expr *p = pS->pEList->a[0].pExpr; + assert( ExprHasProperty(pExpr, EP_xIsSelect) ); + sNC.pSrcList = pS->pSrc; + sNC.pNext = pNC; + sNC.pParse = pNC->pParse; + zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); + break; + } +#endif + } + + if( pzOriginDb ){ + assert( pzOriginTab && pzOriginCol ); + *pzOriginDb = zOriginDb; + *pzOriginTab = zOriginTab; + *pzOriginCol = zOriginCol; + } + return zType; +} + +/* +** Generate code that will tell the VDBE the declaration types of columns +** in the result set. +*/ +static void generateColumnTypes( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* List of tables */ + ExprList *pEList /* Expressions defining the result set */ +){ +#ifndef SQLITE_OMIT_DECLTYPE + Vdbe *v = pParse->pVdbe; + int i; + NameContext sNC; + sNC.pSrcList = pTabList; + sNC.pParse = pParse; + for(i=0; inExpr; i++){ + Expr *p = pEList->a[i].pExpr; + const char *zType; +#ifdef SQLITE_ENABLE_COLUMN_METADATA + const char *zOrigDb = 0; + const char *zOrigTab = 0; + const char *zOrigCol = 0; + zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); + + /* The vdbe must make its own copy of the column-type and other + ** column specific strings, in case the schema is reset before this + ** virtual machine is deleted. + */ + sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); + sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); + sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); +#else + zType = columnType(&sNC, p, 0, 0, 0); +#endif + sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); + } +#endif /* SQLITE_OMIT_DECLTYPE */ +} + +/* +** Generate code that will tell the VDBE the names of columns +** in the result set. This information is used to provide the +** azCol[] values in the callback. +*/ +static void generateColumnNames( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* List of tables */ + ExprList *pEList /* Expressions defining the result set */ +){ + Vdbe *v = pParse->pVdbe; + int i, j; + sqlite3 *db = pParse->db; + int fullNames, shortNames; + +#ifndef SQLITE_OMIT_EXPLAIN + /* If this is an EXPLAIN, skip this step */ + if( pParse->explain ){ + return; + } +#endif + + if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; + pParse->colNamesSet = 1; + fullNames = (db->flags & SQLITE_FullColNames)!=0; + shortNames = (db->flags & SQLITE_ShortColNames)!=0; + sqlite3VdbeSetNumCols(v, pEList->nExpr); + for(i=0; inExpr; i++){ + Expr *p; + p = pEList->a[i].pExpr; + if( NEVER(p==0) ) continue; + if( pEList->a[i].zName ){ + char *zName = pEList->a[i].zName; + sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); + }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ + Table *pTab; + char *zCol; + int iCol = p->iColumn; + for(j=0; ALWAYS(jnSrc); j++){ + if( pTabList->a[j].iCursor==p->iTable ) break; + } + assert( jnSrc ); + pTab = pTabList->a[j].pTab; + if( iCol<0 ) iCol = pTab->iPKey; + assert( iCol==-1 || (iCol>=0 && iColnCol) ); + if( iCol<0 ){ + zCol = "rowid"; + }else{ + zCol = pTab->aCol[iCol].zName; + } + if( !shortNames && !fullNames ){ + sqlite3VdbeSetColName(v, i, COLNAME_NAME, + sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); + }else if( fullNames ){ + char *zName = 0; + zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); + sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); + }else{ + sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); + } + }else{ + sqlite3VdbeSetColName(v, i, COLNAME_NAME, + sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); + } + } + generateColumnTypes(pParse, pTabList, pEList); +} + +/* +** Given a an expression list (which is really the list of expressions +** that form the result set of a SELECT statement) compute appropriate +** column names for a table that would hold the expression list. +** +** All column names will be unique. +** +** Only the column names are computed. Column.zType, Column.zColl, +** and other fields of Column are zeroed. +** +** Return SQLITE_OK on success. If a memory allocation error occurs, +** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. +*/ +static int selectColumnsFromExprList( + Parse *pParse, /* Parsing context */ + ExprList *pEList, /* Expr list from which to derive column names */ + int *pnCol, /* Write the number of columns here */ + Column **paCol /* Write the new column list here */ +){ + sqlite3 *db = pParse->db; /* Database connection */ + int i, j; /* Loop counters */ + int cnt; /* Index added to make the name unique */ + Column *aCol, *pCol; /* For looping over result columns */ + int nCol; /* Number of columns in the result set */ + Expr *p; /* Expression for a single result column */ + char *zName; /* Column name */ + int nName; /* Size of name in zName[] */ + + *pnCol = nCol = pEList->nExpr; + aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); + if( aCol==0 ) return SQLITE_NOMEM; + for(i=0, pCol=aCol; ia[i].pExpr; + assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) + || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); + if( (zName = pEList->a[i].zName)!=0 ){ + /* If the column contains an "AS " phrase, use as the name */ + zName = sqlite3DbStrDup(db, zName); + }else{ + Expr *pColExpr = p; /* The expression that is the result column name */ + Table *pTab; /* Table associated with this expression */ + while( pColExpr->op==TK_DOT ){ + pColExpr = pColExpr->pRight; + assert( pColExpr!=0 ); + } + if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ + /* For columns use the column name name */ + int iCol = pColExpr->iColumn; + pTab = pColExpr->pTab; + if( iCol<0 ) iCol = pTab->iPKey; + zName = sqlite3MPrintf(db, "%s", + iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); + }else if( pColExpr->op==TK_ID ){ + assert( !ExprHasProperty(pColExpr, EP_IntValue) ); + zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); + }else{ + /* Use the original text of the column expression as its name */ + zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); + } + } + if( db->mallocFailed ){ + sqlite3DbFree(db, zName); + break; + } + + /* Make sure the column name is unique. If the name is not unique, + ** append a integer to the name so that it becomes unique. + */ + nName = sqlite3Strlen30(zName); + for(j=cnt=0; jzName = zName; + } + if( db->mallocFailed ){ + for(j=0; jdb; + NameContext sNC; + Column *pCol; + CollSeq *pColl; + int i; + Expr *p; + struct ExprList_item *a; + + assert( pSelect!=0 ); + assert( (pSelect->selFlags & SF_Resolved)!=0 ); + assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); + if( db->mallocFailed ) return; + memset(&sNC, 0, sizeof(sNC)); + sNC.pSrcList = pSelect->pSrc; + a = pSelect->pEList->a; + for(i=0, pCol=aCol; izType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); + pCol->affinity = sqlite3ExprAffinity(p); + if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; + pColl = sqlite3ExprCollSeq(pParse, p); + if( pColl ){ + pCol->zColl = sqlite3DbStrDup(db, pColl->zName); + } + } +} + +/* +** Given a SELECT statement, generate a Table structure that describes +** the result set of that SELECT. +*/ +Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ + Table *pTab; + sqlite3 *db = pParse->db; + int savedFlags; + + savedFlags = db->flags; + db->flags &= ~SQLITE_FullColNames; + db->flags |= SQLITE_ShortColNames; + sqlite3SelectPrep(pParse, pSelect, 0); + if( pParse->nErr ) return 0; + while( pSelect->pPrior ) pSelect = pSelect->pPrior; + db->flags = savedFlags; + pTab = sqlite3DbMallocZero(db, sizeof(Table) ); + if( pTab==0 ){ + return 0; + } + /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside + ** is disabled */ + assert( db->lookaside.bEnabled==0 ); + pTab->nRef = 1; + pTab->zName = 0; + pTab->nRowEst = 1000000; + selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); + selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); + pTab->iPKey = -1; + if( db->mallocFailed ){ + sqlite3DeleteTable(db, pTab); + return 0; + } + return pTab; +} + +/* +** Get a VDBE for the given parser context. Create a new one if necessary. +** If an error occurs, return NULL and leave a message in pParse. +*/ +Vdbe *sqlite3GetVdbe(Parse *pParse){ + Vdbe *v = pParse->pVdbe; + if( v==0 ){ + v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); +#ifndef SQLITE_OMIT_TRACE + if( v ){ + sqlite3VdbeAddOp0(v, OP_Trace); + } +#endif + } + return v; +} + + +/* +** Compute the iLimit and iOffset fields of the SELECT based on the +** pLimit and pOffset expressions. pLimit and pOffset hold the expressions +** that appear in the original SQL statement after the LIMIT and OFFSET +** keywords. Or NULL if those keywords are omitted. iLimit and iOffset +** are the integer memory register numbers for counters used to compute +** the limit and offset. If there is no limit and/or offset, then +** iLimit and iOffset are negative. +** +** This routine changes the values of iLimit and iOffset only if +** a limit or offset is defined by pLimit and pOffset. iLimit and +** iOffset should have been preset to appropriate default values +** (usually but not always -1) prior to calling this routine. +** Only if pLimit!=0 or pOffset!=0 do the limit registers get +** redefined. The UNION ALL operator uses this property to force +** the reuse of the same limit and offset registers across multiple +** SELECT statements. +*/ +static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ + Vdbe *v = 0; + int iLimit = 0; + int iOffset; + int addr1, n; + if( p->iLimit ) return; + + /* + ** "LIMIT -1" always shows all rows. There is some + ** contraversy about what the correct behavior should be. + ** The current implementation interprets "LIMIT 0" to mean + ** no rows. + */ + sqlite3ExprCacheClear(pParse); + assert( p->pOffset==0 || p->pLimit!=0 ); + if( p->pLimit ){ + p->iLimit = iLimit = ++pParse->nMem; + v = sqlite3GetVdbe(pParse); + if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ + if( sqlite3ExprIsInteger(p->pLimit, &n) ){ + sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); + VdbeComment((v, "LIMIT counter")); + if( n==0 ){ + sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); + }else{ + if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; + } + }else{ + sqlite3ExprCode(pParse, p->pLimit, iLimit); + sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); + VdbeComment((v, "LIMIT counter")); + sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); + } + if( p->pOffset ){ + p->iOffset = iOffset = ++pParse->nMem; + pParse->nMem++; /* Allocate an extra register for limit+offset */ + sqlite3ExprCode(pParse, p->pOffset, iOffset); + sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); + VdbeComment((v, "OFFSET counter")); + addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); + sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); + sqlite3VdbeJumpHere(v, addr1); + sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); + VdbeComment((v, "LIMIT+OFFSET")); + addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); + sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); + sqlite3VdbeJumpHere(v, addr1); + } + } +} + +#ifndef SQLITE_OMIT_COMPOUND_SELECT +/* +** Return the appropriate collating sequence for the iCol-th column of +** the result set for the compound-select statement "p". Return NULL if +** the column has no default collating sequence. +** +** The collating sequence for the compound select is taken from the +** left-most term of the select that has a collating sequence. +*/ +static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ + CollSeq *pRet; + if( p->pPrior ){ + pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); + }else{ + pRet = 0; + } + assert( iCol>=0 ); + if( pRet==0 && iColpEList->nExpr ){ + pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); + } + return pRet; +} +#endif /* SQLITE_OMIT_COMPOUND_SELECT */ + +/* Forward reference */ +static int multiSelectOrderBy( + Parse *pParse, /* Parsing context */ + Select *p, /* The right-most of SELECTs to be coded */ + SelectDest *pDest /* What to do with query results */ +); + + +#ifndef SQLITE_OMIT_COMPOUND_SELECT +/* +** This routine is called to process a compound query form from +** two or more separate queries using UNION, UNION ALL, EXCEPT, or +** INTERSECT +** +** "p" points to the right-most of the two queries. the query on the +** left is p->pPrior. The left query could also be a compound query +** in which case this routine will be called recursively. +** +** The results of the total query are to be written into a destination +** of type eDest with parameter iParm. +** +** Example 1: Consider a three-way compound SQL statement. +** +** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 +** +** This statement is parsed up as follows: +** +** SELECT c FROM t3 +** | +** `-----> SELECT b FROM t2 +** | +** `------> SELECT a FROM t1 +** +** The arrows in the diagram above represent the Select.pPrior pointer. +** So if this routine is called with p equal to the t3 query, then +** pPrior will be the t2 query. p->op will be TK_UNION in this case. +** +** Notice that because of the way SQLite parses compound SELECTs, the +** individual selects always group from left to right. +*/ +static int multiSelect( + Parse *pParse, /* Parsing context */ + Select *p, /* The right-most of SELECTs to be coded */ + SelectDest *pDest /* What to do with query results */ +){ + int rc = SQLITE_OK; /* Success code from a subroutine */ + Select *pPrior; /* Another SELECT immediately to our left */ + Vdbe *v; /* Generate code to this VDBE */ + SelectDest dest; /* Alternative data destination */ + Select *pDelete = 0; /* Chain of simple selects to delete */ + sqlite3 *db; /* Database connection */ +#ifndef SQLITE_OMIT_EXPLAIN + int iSub1; /* EQP id of left-hand query */ + int iSub2; /* EQP id of right-hand query */ +#endif + + /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only + ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. + */ + assert( p && p->pPrior ); /* Calling function guarantees this much */ + db = pParse->db; + pPrior = p->pPrior; + assert( pPrior->pRightmost!=pPrior ); + assert( pPrior->pRightmost==p->pRightmost ); + dest = *pDest; + if( pPrior->pOrderBy ){ + sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", + selectOpName(p->op)); + rc = 1; + goto multi_select_end; + } + if( pPrior->pLimit ){ + sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", + selectOpName(p->op)); + rc = 1; + goto multi_select_end; + } + + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); /* The VDBE already created by calling function */ + + /* Create the destination temporary table if necessary + */ + if( dest.eDest==SRT_EphemTab ){ + assert( p->pEList ); + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); + sqlite3VdbeChangeP5(v, BTREE_UNORDERED); + dest.eDest = SRT_Table; + } + + /* Make sure all SELECTs in the statement have the same number of elements + ** in their result sets. + */ + assert( p->pEList && pPrior->pEList ); + if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ + sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" + " do not have the same number of result columns", selectOpName(p->op)); + rc = 1; + goto multi_select_end; + } + + /* Compound SELECTs that have an ORDER BY clause are handled separately. + */ + if( p->pOrderBy ){ + return multiSelectOrderBy(pParse, p, pDest); + } + + /* Generate code for the left and right SELECT statements. + */ + switch( p->op ){ + case TK_ALL: { + int addr = 0; + int nLimit; + assert( !pPrior->pLimit ); + pPrior->pLimit = p->pLimit; + pPrior->pOffset = p->pOffset; + explainSetInteger(iSub1, pParse->iNextSelectId); + rc = sqlite3Select(pParse, pPrior, &dest); + p->pLimit = 0; + p->pOffset = 0; + if( rc ){ + goto multi_select_end; + } + p->pPrior = 0; + p->iLimit = pPrior->iLimit; + p->iOffset = pPrior->iOffset; + if( p->iLimit ){ + addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); + VdbeComment((v, "Jump ahead if LIMIT reached")); + } + explainSetInteger(iSub2, pParse->iNextSelectId); + rc = sqlite3Select(pParse, p, &dest); + testcase( rc!=SQLITE_OK ); + pDelete = p->pPrior; + p->pPrior = pPrior; + p->nSelectRow += pPrior->nSelectRow; + if( pPrior->pLimit + && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) + && p->nSelectRow > (double)nLimit + ){ + p->nSelectRow = (double)nLimit; + } + if( addr ){ + sqlite3VdbeJumpHere(v, addr); + } + break; + } + case TK_EXCEPT: + case TK_UNION: { + int unionTab; /* Cursor number of the temporary table holding result */ + u8 op = 0; /* One of the SRT_ operations to apply to self */ + int priorOp; /* The SRT_ operation to apply to prior selects */ + Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ + int addr; + SelectDest uniondest; + + testcase( p->op==TK_EXCEPT ); + testcase( p->op==TK_UNION ); + priorOp = SRT_Union; + if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ + /* We can reuse a temporary table generated by a SELECT to our + ** right. + */ + assert( p->pRightmost!=p ); /* Can only happen for leftward elements + ** of a 3-way or more compound */ + assert( p->pLimit==0 ); /* Not allowed on leftward elements */ + assert( p->pOffset==0 ); /* Not allowed on leftward elements */ + unionTab = dest.iParm; + }else{ + /* We will need to create our own temporary table to hold the + ** intermediate results. + */ + unionTab = pParse->nTab++; + assert( p->pOrderBy==0 ); + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); + assert( p->addrOpenEphm[0] == -1 ); + p->addrOpenEphm[0] = addr; + p->pRightmost->selFlags |= SF_UsesEphemeral; + assert( p->pEList ); + } + + /* Code the SELECT statements to our left + */ + assert( !pPrior->pOrderBy ); + sqlite3SelectDestInit(&uniondest, priorOp, unionTab); + explainSetInteger(iSub1, pParse->iNextSelectId); + rc = sqlite3Select(pParse, pPrior, &uniondest); + if( rc ){ + goto multi_select_end; + } + + /* Code the current SELECT statement + */ + if( p->op==TK_EXCEPT ){ + op = SRT_Except; + }else{ + assert( p->op==TK_UNION ); + op = SRT_Union; + } + p->pPrior = 0; + pLimit = p->pLimit; + p->pLimit = 0; + pOffset = p->pOffset; + p->pOffset = 0; + uniondest.eDest = op; + explainSetInteger(iSub2, pParse->iNextSelectId); + rc = sqlite3Select(pParse, p, &uniondest); + testcase( rc!=SQLITE_OK ); + /* Query flattening in sqlite3Select() might refill p->pOrderBy. + ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ + sqlite3ExprListDelete(db, p->pOrderBy); + pDelete = p->pPrior; + p->pPrior = pPrior; + p->pOrderBy = 0; + if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; + sqlite3ExprDelete(db, p->pLimit); + p->pLimit = pLimit; + p->pOffset = pOffset; + p->iLimit = 0; + p->iOffset = 0; + + /* Convert the data in the temporary table into whatever form + ** it is that we currently need. + */ + assert( unionTab==dest.iParm || dest.eDest!=priorOp ); + if( dest.eDest!=priorOp ){ + int iCont, iBreak, iStart; + assert( p->pEList ); + if( dest.eDest==SRT_Output ){ + Select *pFirst = p; + while( pFirst->pPrior ) pFirst = pFirst->pPrior; + generateColumnNames(pParse, 0, pFirst->pEList); + } + iBreak = sqlite3VdbeMakeLabel(v); + iCont = sqlite3VdbeMakeLabel(v); + computeLimitRegisters(pParse, p, iBreak); + sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); + iStart = sqlite3VdbeCurrentAddr(v); + selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, + 0, -1, &dest, iCont, iBreak); + sqlite3VdbeResolveLabel(v, iCont); + sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); + sqlite3VdbeResolveLabel(v, iBreak); + sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); + } + break; + } + default: assert( p->op==TK_INTERSECT ); { + int tab1, tab2; + int iCont, iBreak, iStart; + Expr *pLimit, *pOffset; + int addr; + SelectDest intersectdest; + int r1; + + /* INTERSECT is different from the others since it requires + ** two temporary tables. Hence it has its own case. Begin + ** by allocating the tables we will need. + */ + tab1 = pParse->nTab++; + tab2 = pParse->nTab++; + assert( p->pOrderBy==0 ); + + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); + assert( p->addrOpenEphm[0] == -1 ); + p->addrOpenEphm[0] = addr; + p->pRightmost->selFlags |= SF_UsesEphemeral; + assert( p->pEList ); + + /* Code the SELECTs to our left into temporary table "tab1". + */ + sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); + explainSetInteger(iSub1, pParse->iNextSelectId); + rc = sqlite3Select(pParse, pPrior, &intersectdest); + if( rc ){ + goto multi_select_end; + } + + /* Code the current SELECT into temporary table "tab2" + */ + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); + assert( p->addrOpenEphm[1] == -1 ); + p->addrOpenEphm[1] = addr; + p->pPrior = 0; + pLimit = p->pLimit; + p->pLimit = 0; + pOffset = p->pOffset; + p->pOffset = 0; + intersectdest.iParm = tab2; + explainSetInteger(iSub2, pParse->iNextSelectId); + rc = sqlite3Select(pParse, p, &intersectdest); + testcase( rc!=SQLITE_OK ); + pDelete = p->pPrior; + p->pPrior = pPrior; + if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; + sqlite3ExprDelete(db, p->pLimit); + p->pLimit = pLimit; + p->pOffset = pOffset; + + /* Generate code to take the intersection of the two temporary + ** tables. + */ + assert( p->pEList ); + if( dest.eDest==SRT_Output ){ + Select *pFirst = p; + while( pFirst->pPrior ) pFirst = pFirst->pPrior; + generateColumnNames(pParse, 0, pFirst->pEList); + } + iBreak = sqlite3VdbeMakeLabel(v); + iCont = sqlite3VdbeMakeLabel(v); + computeLimitRegisters(pParse, p, iBreak); + sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); + r1 = sqlite3GetTempReg(pParse); + iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); + sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); + sqlite3ReleaseTempReg(pParse, r1); + selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, + 0, -1, &dest, iCont, iBreak); + sqlite3VdbeResolveLabel(v, iCont); + sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); + sqlite3VdbeResolveLabel(v, iBreak); + sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); + sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); + break; + } + } + + explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); + + /* Compute collating sequences used by + ** temporary tables needed to implement the compound select. + ** Attach the KeyInfo structure to all temporary tables. + ** + ** This section is run by the right-most SELECT statement only. + ** SELECT statements to the left always skip this part. The right-most + ** SELECT might also skip this part if it has no ORDER BY clause and + ** no temp tables are required. + */ + if( p->selFlags & SF_UsesEphemeral ){ + int i; /* Loop counter */ + KeyInfo *pKeyInfo; /* Collating sequence for the result set */ + Select *pLoop; /* For looping through SELECT statements */ + CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ + int nCol; /* Number of columns in result set */ + + assert( p->pRightmost==p ); + nCol = p->pEList->nExpr; + pKeyInfo = sqlite3DbMallocZero(db, + sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); + if( !pKeyInfo ){ + rc = SQLITE_NOMEM; + goto multi_select_end; + } + + pKeyInfo->enc = ENC(db); + pKeyInfo->nField = (u16)nCol; + + for(i=0, apColl=pKeyInfo->aColl; ipDfltColl; + } + } + + for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ + for(i=0; i<2; i++){ + int addr = pLoop->addrOpenEphm[i]; + if( addr<0 ){ + /* If [0] is unused then [1] is also unused. So we can + ** always safely abort as soon as the first unused slot is found */ + assert( pLoop->addrOpenEphm[1]<0 ); + break; + } + sqlite3VdbeChangeP2(v, addr, nCol); + sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); + pLoop->addrOpenEphm[i] = -1; + } + } + sqlite3DbFree(db, pKeyInfo); + } + +multi_select_end: + pDest->iMem = dest.iMem; + pDest->nMem = dest.nMem; + sqlite3SelectDelete(db, pDelete); + return rc; +} +#endif /* SQLITE_OMIT_COMPOUND_SELECT */ + +/* +** Code an output subroutine for a coroutine implementation of a +** SELECT statment. +** +** The data to be output is contained in pIn->iMem. There are +** pIn->nMem columns to be output. pDest is where the output should +** be sent. +** +** regReturn is the number of the register holding the subroutine +** return address. +** +** If regPrev>0 then it is the first register in a vector that +** records the previous output. mem[regPrev] is a flag that is false +** if there has been no previous output. If regPrev>0 then code is +** generated to suppress duplicates. pKeyInfo is used for comparing +** keys. +** +** If the LIMIT found in p->iLimit is reached, jump immediately to +** iBreak. +*/ +static int generateOutputSubroutine( + Parse *pParse, /* Parsing context */ + Select *p, /* The SELECT statement */ + SelectDest *pIn, /* Coroutine supplying data */ + SelectDest *pDest, /* Where to send the data */ + int regReturn, /* The return address register */ + int regPrev, /* Previous result register. No uniqueness if 0 */ + KeyInfo *pKeyInfo, /* For comparing with previous entry */ + int p4type, /* The p4 type for pKeyInfo */ + int iBreak /* Jump here if we hit the LIMIT */ +){ + Vdbe *v = pParse->pVdbe; + int iContinue; + int addr; + + addr = sqlite3VdbeCurrentAddr(v); + iContinue = sqlite3VdbeMakeLabel(v); + + /* Suppress duplicates for UNION, EXCEPT, and INTERSECT + */ + if( regPrev ){ + int j1, j2; + j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); + j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, + (char*)pKeyInfo, p4type); + sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); + sqlite3VdbeJumpHere(v, j1); + sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); + sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); + } + if( pParse->db->mallocFailed ) return 0; + + /* Suppress the the first OFFSET entries if there is an OFFSET clause + */ + codeOffset(v, p, iContinue); + + switch( pDest->eDest ){ + /* Store the result as data using a unique key. + */ + case SRT_Table: + case SRT_EphemTab: { + int r1 = sqlite3GetTempReg(pParse); + int r2 = sqlite3GetTempReg(pParse); + testcase( pDest->eDest==SRT_Table ); + testcase( pDest->eDest==SRT_EphemTab ); + sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); + sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); + sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + sqlite3ReleaseTempReg(pParse, r2); + sqlite3ReleaseTempReg(pParse, r1); + break; + } + +#ifndef SQLITE_OMIT_SUBQUERY + /* If we are creating a set for an "expr IN (SELECT ...)" construct, + ** then there should be a single item on the stack. Write this + ** item into the set table with bogus data. + */ + case SRT_Set: { + int r1; + assert( pIn->nMem==1 ); + p->affinity = + sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); + r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); + sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); + sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); + sqlite3ReleaseTempReg(pParse, r1); + break; + } + +#if 0 /* Never occurs on an ORDER BY query */ + /* If any row exist in the result set, record that fact and abort. + */ + case SRT_Exists: { + sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); + /* The LIMIT clause will terminate the loop for us */ + break; + } +#endif + + /* If this is a scalar select that is part of an expression, then + ** store the results in the appropriate memory cell and break out + ** of the scan loop. + */ + case SRT_Mem: { + assert( pIn->nMem==1 ); + sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); + /* The LIMIT clause will jump out of the loop for us */ + break; + } +#endif /* #ifndef SQLITE_OMIT_SUBQUERY */ + + /* The results are stored in a sequence of registers + ** starting at pDest->iMem. Then the co-routine yields. + */ + case SRT_Coroutine: { + if( pDest->iMem==0 ){ + pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); + pDest->nMem = pIn->nMem; + } + sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); + sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); + break; + } + + /* If none of the above, then the result destination must be + ** SRT_Output. This routine is never called with any other + ** destination other than the ones handled above or SRT_Output. + ** + ** For SRT_Output, results are stored in a sequence of registers. + ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to + ** return the next row of result. + */ + default: { + assert( pDest->eDest==SRT_Output ); + sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); + sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); + break; + } + } + + /* Jump to the end of the loop if the LIMIT is reached. + */ + if( p->iLimit ){ + sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); + } + + /* Generate the subroutine return + */ + sqlite3VdbeResolveLabel(v, iContinue); + sqlite3VdbeAddOp1(v, OP_Return, regReturn); + + return addr; +} + +/* +** Alternative compound select code generator for cases when there +** is an ORDER BY clause. +** +** We assume a query of the following form: +** +** ORDER BY +** +** is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea +** is to code both and with the ORDER BY clause as +** co-routines. Then run the co-routines in parallel and merge the results +** into the output. In addition to the two coroutines (called selectA and +** selectB) there are 7 subroutines: +** +** outA: Move the output of the selectA coroutine into the output +** of the compound query. +** +** outB: Move the output of the selectB coroutine into the output +** of the compound query. (Only generated for UNION and +** UNION ALL. EXCEPT and INSERTSECT never output a row that +** appears only in B.) +** +** AltB: Called when there is data from both coroutines and AB. +** +** EofA: Called when data is exhausted from selectA. +** +** EofB: Called when data is exhausted from selectB. +** +** The implementation of the latter five subroutines depend on which +** is used: +** +** +** UNION ALL UNION EXCEPT INTERSECT +** ------------- ----------------- -------------- ----------------- +** AltB: outA, nextA outA, nextA outA, nextA nextA +** +** AeqB: outA, nextA nextA nextA outA, nextA +** +** AgtB: outB, nextB outB, nextB nextB nextB +** +** EofA: outB, nextB outB, nextB halt halt +** +** EofB: outA, nextA outA, nextA outA, nextA halt +** +** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA +** causes an immediate jump to EofA and an EOF on B following nextB causes +** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or +** following nextX causes a jump to the end of the select processing. +** +** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled +** within the output subroutine. The regPrev register set holds the previously +** output value. A comparison is made against this value and the output +** is skipped if the next results would be the same as the previous. +** +** The implementation plan is to implement the two coroutines and seven +** subroutines first, then put the control logic at the bottom. Like this: +** +** goto Init +** coA: coroutine for left query (A) +** coB: coroutine for right query (B) +** outA: output one row of A +** outB: output one row of B (UNION and UNION ALL only) +** EofA: ... +** EofB: ... +** AltB: ... +** AeqB: ... +** AgtB: ... +** Init: initialize coroutine registers +** yield coA +** if eof(A) goto EofA +** yield coB +** if eof(B) goto EofB +** Cmpr: Compare A, B +** Jump AltB, AeqB, AgtB +** End: ... +** +** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not +** actually called using Gosub and they do not Return. EofA and EofB loop +** until all data is exhausted then jump to the "end" labe. AltB, AeqB, +** and AgtB jump to either L2 or to one of EofA or EofB. +*/ +#ifndef SQLITE_OMIT_COMPOUND_SELECT +static int multiSelectOrderBy( + Parse *pParse, /* Parsing context */ + Select *p, /* The right-most of SELECTs to be coded */ + SelectDest *pDest /* What to do with query results */ +){ + int i, j; /* Loop counters */ + Select *pPrior; /* Another SELECT immediately to our left */ + Vdbe *v; /* Generate code to this VDBE */ + SelectDest destA; /* Destination for coroutine A */ + SelectDest destB; /* Destination for coroutine B */ + int regAddrA; /* Address register for select-A coroutine */ + int regEofA; /* Flag to indicate when select-A is complete */ + int regAddrB; /* Address register for select-B coroutine */ + int regEofB; /* Flag to indicate when select-B is complete */ + int addrSelectA; /* Address of the select-A coroutine */ + int addrSelectB; /* Address of the select-B coroutine */ + int regOutA; /* Address register for the output-A subroutine */ + int regOutB; /* Address register for the output-B subroutine */ + int addrOutA; /* Address of the output-A subroutine */ + int addrOutB = 0; /* Address of the output-B subroutine */ + int addrEofA; /* Address of the select-A-exhausted subroutine */ + int addrEofB; /* Address of the select-B-exhausted subroutine */ + int addrAltB; /* Address of the AB subroutine */ + int regLimitA; /* Limit register for select-A */ + int regLimitB; /* Limit register for select-A */ + int regPrev; /* A range of registers to hold previous output */ + int savedLimit; /* Saved value of p->iLimit */ + int savedOffset; /* Saved value of p->iOffset */ + int labelCmpr; /* Label for the start of the merge algorithm */ + int labelEnd; /* Label for the end of the overall SELECT stmt */ + int j1; /* Jump instructions that get retargetted */ + int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ + KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ + KeyInfo *pKeyMerge; /* Comparison information for merging rows */ + sqlite3 *db; /* Database connection */ + ExprList *pOrderBy; /* The ORDER BY clause */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + int *aPermute; /* Mapping from ORDER BY terms to result set columns */ +#ifndef SQLITE_OMIT_EXPLAIN + int iSub1; /* EQP id of left-hand query */ + int iSub2; /* EQP id of right-hand query */ +#endif + + assert( p->pOrderBy!=0 ); + assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ + db = pParse->db; + v = pParse->pVdbe; + assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ + labelEnd = sqlite3VdbeMakeLabel(v); + labelCmpr = sqlite3VdbeMakeLabel(v); + + + /* Patch up the ORDER BY clause + */ + op = p->op; + pPrior = p->pPrior; + assert( pPrior->pOrderBy==0 ); + pOrderBy = p->pOrderBy; + assert( pOrderBy ); + nOrderBy = pOrderBy->nExpr; + + /* For operators other than UNION ALL we have to make sure that + ** the ORDER BY clause covers every term of the result set. Add + ** terms to the ORDER BY clause as necessary. + */ + if( op!=TK_ALL ){ + for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ + struct ExprList_item *pItem; + for(j=0, pItem=pOrderBy->a; jiCol>0 ); + if( pItem->iCol==i ) break; + } + if( j==nOrderBy ){ + Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); + if( pNew==0 ) return SQLITE_NOMEM; + pNew->flags |= EP_IntValue; + pNew->u.iValue = i; + pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); + pOrderBy->a[nOrderBy++].iCol = (u16)i; + } + } + } + + /* Compute the comparison permutation and keyinfo that is used with + ** the permutation used to determine if the next + ** row of results comes from selectA or selectB. Also add explicit + ** collations to the ORDER BY clause terms so that when the subqueries + ** to the right and the left are evaluated, they use the correct + ** collation. + */ + aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); + if( aPermute ){ + struct ExprList_item *pItem; + for(i=0, pItem=pOrderBy->a; iiCol>0 && pItem->iCol<=p->pEList->nExpr ); + aPermute[i] = pItem->iCol - 1; + } + pKeyMerge = + sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); + if( pKeyMerge ){ + pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; + pKeyMerge->nField = (u16)nOrderBy; + pKeyMerge->enc = ENC(db); + for(i=0; ia[i].pExpr; + if( pTerm->flags & EP_ExpCollate ){ + pColl = pTerm->pColl; + }else{ + pColl = multiSelectCollSeq(pParse, p, aPermute[i]); + pTerm->flags |= EP_ExpCollate; + pTerm->pColl = pColl; + } + pKeyMerge->aColl[i] = pColl; + pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; + } + } + }else{ + pKeyMerge = 0; + } + + /* Reattach the ORDER BY clause to the query. + */ + p->pOrderBy = pOrderBy; + pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); + + /* Allocate a range of temporary registers and the KeyInfo needed + ** for the logic that removes duplicate result rows when the + ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). + */ + if( op==TK_ALL ){ + regPrev = 0; + }else{ + int nExpr = p->pEList->nExpr; + assert( nOrderBy>=nExpr || db->mallocFailed ); + regPrev = sqlite3GetTempRange(pParse, nExpr+1); + sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); + pKeyDup = sqlite3DbMallocZero(db, + sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); + if( pKeyDup ){ + pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; + pKeyDup->nField = (u16)nExpr; + pKeyDup->enc = ENC(db); + for(i=0; iaColl[i] = multiSelectCollSeq(pParse, p, i); + pKeyDup->aSortOrder[i] = 0; + } + } + } + + /* Separate the left and the right query from one another + */ + p->pPrior = 0; + sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); + if( pPrior->pPrior==0 ){ + sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); + } + + /* Compute the limit registers */ + computeLimitRegisters(pParse, p, labelEnd); + if( p->iLimit && op==TK_ALL ){ + regLimitA = ++pParse->nMem; + regLimitB = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, + regLimitA); + sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); + }else{ + regLimitA = regLimitB = 0; + } + sqlite3ExprDelete(db, p->pLimit); + p->pLimit = 0; + sqlite3ExprDelete(db, p->pOffset); + p->pOffset = 0; + + regAddrA = ++pParse->nMem; + regEofA = ++pParse->nMem; + regAddrB = ++pParse->nMem; + regEofB = ++pParse->nMem; + regOutA = ++pParse->nMem; + regOutB = ++pParse->nMem; + sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); + sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); + + /* Jump past the various subroutines and coroutines to the main + ** merge loop + */ + j1 = sqlite3VdbeAddOp0(v, OP_Goto); + addrSelectA = sqlite3VdbeCurrentAddr(v); + + + /* Generate a coroutine to evaluate the SELECT statement to the + ** left of the compound operator - the "A" select. + */ + VdbeNoopComment((v, "Begin coroutine for left SELECT")); + pPrior->iLimit = regLimitA; + explainSetInteger(iSub1, pParse->iNextSelectId); + sqlite3Select(pParse, pPrior, &destA); + sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); + sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); + VdbeNoopComment((v, "End coroutine for left SELECT")); + + /* Generate a coroutine to evaluate the SELECT statement on + ** the right - the "B" select + */ + addrSelectB = sqlite3VdbeCurrentAddr(v); + VdbeNoopComment((v, "Begin coroutine for right SELECT")); + savedLimit = p->iLimit; + savedOffset = p->iOffset; + p->iLimit = regLimitB; + p->iOffset = 0; + explainSetInteger(iSub2, pParse->iNextSelectId); + sqlite3Select(pParse, p, &destB); + p->iLimit = savedLimit; + p->iOffset = savedOffset; + sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); + sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); + VdbeNoopComment((v, "End coroutine for right SELECT")); + + /* Generate a subroutine that outputs the current row of the A + ** select as the next output row of the compound select. + */ + VdbeNoopComment((v, "Output routine for A")); + addrOutA = generateOutputSubroutine(pParse, + p, &destA, pDest, regOutA, + regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); + + /* Generate a subroutine that outputs the current row of the B + ** select as the next output row of the compound select. + */ + if( op==TK_ALL || op==TK_UNION ){ + VdbeNoopComment((v, "Output routine for B")); + addrOutB = generateOutputSubroutine(pParse, + p, &destB, pDest, regOutB, + regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); + } + + /* Generate a subroutine to run when the results from select A + ** are exhausted and only data in select B remains. + */ + VdbeNoopComment((v, "eof-A subroutine")); + if( op==TK_EXCEPT || op==TK_INTERSECT ){ + addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); + }else{ + addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); + sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); + sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); + p->nSelectRow += pPrior->nSelectRow; + } + + /* Generate a subroutine to run when the results from select B + ** are exhausted and only data in select A remains. + */ + if( op==TK_INTERSECT ){ + addrEofB = addrEofA; + if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; + }else{ + VdbeNoopComment((v, "eof-B subroutine")); + addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); + sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); + sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); + } + + /* Generate code to handle the case of AB + */ + VdbeNoopComment((v, "A-gt-B subroutine")); + addrAgtB = sqlite3VdbeCurrentAddr(v); + if( op==TK_ALL || op==TK_UNION ){ + sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); + } + sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); + sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); + sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); + + /* This code runs once to initialize everything. + */ + sqlite3VdbeJumpHere(v, j1); + sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); + sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); + sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); + sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); + sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); + sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); + + /* Implement the main merge loop + */ + sqlite3VdbeResolveLabel(v, labelCmpr); + sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); + sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, + (char*)pKeyMerge, P4_KEYINFO_HANDOFF); + sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); + + /* Release temporary registers + */ + if( regPrev ){ + sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); + } + + /* Jump to the this point in order to terminate the query. + */ + sqlite3VdbeResolveLabel(v, labelEnd); + + /* Set the number of output columns + */ + if( pDest->eDest==SRT_Output ){ + Select *pFirst = pPrior; + while( pFirst->pPrior ) pFirst = pFirst->pPrior; + generateColumnNames(pParse, 0, pFirst->pEList); + } + + /* Reassembly the compound query so that it will be freed correctly + ** by the calling function */ + if( p->pPrior ){ + sqlite3SelectDelete(db, p->pPrior); + } + p->pPrior = pPrior; + + /*** TBD: Insert subroutine calls to close cursors on incomplete + **** subqueries ****/ + explainComposite(pParse, p->op, iSub1, iSub2, 0); + return SQLITE_OK; +} +#endif + +#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) +/* Forward Declarations */ +static void substExprList(sqlite3*, ExprList*, int, ExprList*); +static void substSelect(sqlite3*, Select *, int, ExprList *); + +/* +** Scan through the expression pExpr. Replace every reference to +** a column in table number iTable with a copy of the iColumn-th +** entry in pEList. (But leave references to the ROWID column +** unchanged.) +** +** This routine is part of the flattening procedure. A subquery +** whose result set is defined by pEList appears as entry in the +** FROM clause of a SELECT such that the VDBE cursor assigned to that +** FORM clause entry is iTable. This routine make the necessary +** changes to pExpr so that it refers directly to the source table +** of the subquery rather the result set of the subquery. +*/ +static Expr *substExpr( + sqlite3 *db, /* Report malloc errors to this connection */ + Expr *pExpr, /* Expr in which substitution occurs */ + int iTable, /* Table to be substituted */ + ExprList *pEList /* Substitute expressions */ +){ + if( pExpr==0 ) return 0; + if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ + if( pExpr->iColumn<0 ){ + pExpr->op = TK_NULL; + }else{ + Expr *pNew; + assert( pEList!=0 && pExpr->iColumnnExpr ); + assert( pExpr->pLeft==0 && pExpr->pRight==0 ); + pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); + if( pNew && pExpr->pColl ){ + pNew->pColl = pExpr->pColl; + } + sqlite3ExprDelete(db, pExpr); + pExpr = pNew; + } + }else{ + pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); + pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); + if( ExprHasProperty(pExpr, EP_xIsSelect) ){ + substSelect(db, pExpr->x.pSelect, iTable, pEList); + }else{ + substExprList(db, pExpr->x.pList, iTable, pEList); + } + } + return pExpr; +} +static void substExprList( + sqlite3 *db, /* Report malloc errors here */ + ExprList *pList, /* List to scan and in which to make substitutes */ + int iTable, /* Table to be substituted */ + ExprList *pEList /* Substitute values */ +){ + int i; + if( pList==0 ) return; + for(i=0; inExpr; i++){ + pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); + } +} +static void substSelect( + sqlite3 *db, /* Report malloc errors here */ + Select *p, /* SELECT statement in which to make substitutions */ + int iTable, /* Table to be replaced */ + ExprList *pEList /* Substitute values */ +){ + SrcList *pSrc; + struct SrcList_item *pItem; + int i; + if( !p ) return; + substExprList(db, p->pEList, iTable, pEList); + substExprList(db, p->pGroupBy, iTable, pEList); + substExprList(db, p->pOrderBy, iTable, pEList); + p->pHaving = substExpr(db, p->pHaving, iTable, pEList); + p->pWhere = substExpr(db, p->pWhere, iTable, pEList); + substSelect(db, p->pPrior, iTable, pEList); + pSrc = p->pSrc; + assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ + if( ALWAYS(pSrc) ){ + for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ + substSelect(db, pItem->pSelect, iTable, pEList); + } + } +} +#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ + +#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) +/* +** This routine attempts to flatten subqueries in order to speed +** execution. It returns 1 if it makes changes and 0 if no flattening +** occurs. +** +** To understand the concept of flattening, consider the following +** query: +** +** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 +** +** The default way of implementing this query is to execute the +** subquery first and store the results in a temporary table, then +** run the outer query on that temporary table. This requires two +** passes over the data. Furthermore, because the temporary table +** has no indices, the WHERE clause on the outer query cannot be +** optimized. +** +** This routine attempts to rewrite queries such as the above into +** a single flat select, like this: +** +** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 +** +** The code generated for this simpification gives the same result +** but only has to scan the data once. And because indices might +** exist on the table t1, a complete scan of the data might be +** avoided. +** +** Flattening is only attempted if all of the following are true: +** +** (1) The subquery and the outer query do not both use aggregates. +** +** (2) The subquery is not an aggregate or the outer query is not a join. +** +** (3) The subquery is not the right operand of a left outer join +** (Originally ticket #306. Strengthened by ticket #3300) +** +** (4) The subquery is not DISTINCT. +** +** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT +** sub-queries that were excluded from this optimization. Restriction +** (4) has since been expanded to exclude all DISTINCT subqueries. +** +** (6) The subquery does not use aggregates or the outer query is not +** DISTINCT. +** +** (7) The subquery has a FROM clause. +** +** (8) The subquery does not use LIMIT or the outer query is not a join. +** +** (9) The subquery does not use LIMIT or the outer query does not use +** aggregates. +** +** (10) The subquery does not use aggregates or the outer query does not +** use LIMIT. +** +** (11) The subquery and the outer query do not both have ORDER BY clauses. +** +** (**) Not implemented. Subsumed into restriction (3). Was previously +** a separate restriction deriving from ticket #350. +** +** (13) The subquery and outer query do not both use LIMIT. +** +** (14) The subquery does not use OFFSET. +** +** (15) The outer query is not part of a compound select or the +** subquery does not have a LIMIT clause. +** (See ticket #2339 and ticket [02a8e81d44]). +** +** (16) The outer query is not an aggregate or the subquery does +** not contain ORDER BY. (Ticket #2942) This used to not matter +** until we introduced the group_concat() function. +** +** (17) The sub-query is not a compound select, or it is a UNION ALL +** compound clause made up entirely of non-aggregate queries, and +** the parent query: +** +** * is not itself part of a compound select, +** * is not an aggregate or DISTINCT query, and +** * has no other tables or sub-selects in the FROM clause. +** +** The parent and sub-query may contain WHERE clauses. Subject to +** rules (11), (13) and (14), they may also contain ORDER BY, +** LIMIT and OFFSET clauses. +** +** (18) If the sub-query is a compound select, then all terms of the +** ORDER by clause of the parent must be simple references to +** columns of the sub-query. +** +** (19) The subquery does not use LIMIT or the outer query does not +** have a WHERE clause. +** +** (20) If the sub-query is a compound select, then it must not use +** an ORDER BY clause. Ticket #3773. We could relax this constraint +** somewhat by saying that the terms of the ORDER BY clause must +** appear as unmodified result columns in the outer query. But +** have other optimizations in mind to deal with that case. +** +** (21) The subquery does not use LIMIT or the outer query is not +** DISTINCT. (See ticket [752e1646fc]). +** +** In this routine, the "p" parameter is a pointer to the outer query. +** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query +** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. +** +** If flattening is not attempted, this routine is a no-op and returns 0. +** If flattening is attempted this routine returns 1. +** +** All of the expression analysis must occur on both the outer query and +** the subquery before this routine runs. +*/ +static int flattenSubquery( + Parse *pParse, /* Parsing context */ + Select *p, /* The parent or outer SELECT statement */ + int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ + int isAgg, /* True if outer SELECT uses aggregate functions */ + int subqueryIsAgg /* True if the subquery uses aggregate functions */ +){ + const char *zSavedAuthContext = pParse->zAuthContext; + Select *pParent; + Select *pSub; /* The inner query or "subquery" */ + Select *pSub1; /* Pointer to the rightmost select in sub-query */ + SrcList *pSrc; /* The FROM clause of the outer query */ + SrcList *pSubSrc; /* The FROM clause of the subquery */ + ExprList *pList; /* The result set of the outer query */ + int iParent; /* VDBE cursor number of the pSub result set temp table */ + int i; /* Loop counter */ + Expr *pWhere; /* The WHERE clause */ + struct SrcList_item *pSubitem; /* The subquery */ + sqlite3 *db = pParse->db; + + /* Check to see if flattening is permitted. Return 0 if not. + */ + assert( p!=0 ); + assert( p->pPrior==0 ); /* Unable to flatten compound queries */ + if( db->flags & SQLITE_QueryFlattener ) return 0; + pSrc = p->pSrc; + assert( pSrc && iFrom>=0 && iFromnSrc ); + pSubitem = &pSrc->a[iFrom]; + iParent = pSubitem->iCursor; + pSub = pSubitem->pSelect; + assert( pSub!=0 ); + if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ + if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ + pSubSrc = pSub->pSrc; + assert( pSubSrc ); + /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, + ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET + ** because they could be computed at compile-time. But when LIMIT and OFFSET + ** became arbitrary expressions, we were forced to add restrictions (13) + ** and (14). */ + if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ + if( pSub->pOffset ) return 0; /* Restriction (14) */ + if( p->pRightmost && pSub->pLimit ){ + return 0; /* Restriction (15) */ + } + if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ + if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ + if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ + return 0; /* Restrictions (8)(9) */ + } + if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ + return 0; /* Restriction (6) */ + } + if( p->pOrderBy && pSub->pOrderBy ){ + return 0; /* Restriction (11) */ + } + if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ + if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ + if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ + return 0; /* Restriction (21) */ + } + + /* OBSOLETE COMMENT 1: + ** Restriction 3: If the subquery is a join, make sure the subquery is + ** not used as the right operand of an outer join. Examples of why this + ** is not allowed: + ** + ** t1 LEFT OUTER JOIN (t2 JOIN t3) + ** + ** If we flatten the above, we would get + ** + ** (t1 LEFT OUTER JOIN t2) JOIN t3 + ** + ** which is not at all the same thing. + ** + ** OBSOLETE COMMENT 2: + ** Restriction 12: If the subquery is the right operand of a left outer + ** join, make sure the subquery has no WHERE clause. + ** An examples of why this is not allowed: + ** + ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) + ** + ** If we flatten the above, we would get + ** + ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 + ** + ** But the t2.x>0 test will always fail on a NULL row of t2, which + ** effectively converts the OUTER JOIN into an INNER JOIN. + ** + ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: + ** Ticket #3300 shows that flattening the right term of a LEFT JOIN + ** is fraught with danger. Best to avoid the whole thing. If the + ** subquery is the right term of a LEFT JOIN, then do not flatten. + */ + if( (pSubitem->jointype & JT_OUTER)!=0 ){ + return 0; + } + + /* Restriction 17: If the sub-query is a compound SELECT, then it must + ** use only the UNION ALL operator. And none of the simple select queries + ** that make up the compound SELECT are allowed to be aggregate or distinct + ** queries. + */ + if( pSub->pPrior ){ + if( pSub->pOrderBy ){ + return 0; /* Restriction 20 */ + } + if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ + return 0; + } + for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ + testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); + testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); + if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 + || (pSub1->pPrior && pSub1->op!=TK_ALL) + || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 + ){ + return 0; + } + } + + /* Restriction 18. */ + if( p->pOrderBy ){ + int ii; + for(ii=0; iipOrderBy->nExpr; ii++){ + if( p->pOrderBy->a[ii].iCol==0 ) return 0; + } + } + } + + /***** If we reach this point, flattening is permitted. *****/ + + /* Authorize the subquery */ + pParse->zAuthContext = pSubitem->zName; + sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); + pParse->zAuthContext = zSavedAuthContext; + + /* If the sub-query is a compound SELECT statement, then (by restrictions + ** 17 and 18 above) it must be a UNION ALL and the parent query must + ** be of the form: + ** + ** SELECT FROM () + ** + ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block + ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or + ** OFFSET clauses and joins them to the left-hand-side of the original + ** using UNION ALL operators. In this case N is the number of simple + ** select statements in the compound sub-query. + ** + ** Example: + ** + ** SELECT a+1 FROM ( + ** SELECT x FROM tab + ** UNION ALL + ** SELECT y FROM tab + ** UNION ALL + ** SELECT abs(z*2) FROM tab2 + ** ) WHERE a!=5 ORDER BY 1 + ** + ** Transformed into: + ** + ** SELECT x+1 FROM tab WHERE x+1!=5 + ** UNION ALL + ** SELECT y+1 FROM tab WHERE y+1!=5 + ** UNION ALL + ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 + ** ORDER BY 1 + ** + ** We call this the "compound-subquery flattening". + */ + for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ + Select *pNew; + ExprList *pOrderBy = p->pOrderBy; + Expr *pLimit = p->pLimit; + Select *pPrior = p->pPrior; + p->pOrderBy = 0; + p->pSrc = 0; + p->pPrior = 0; + p->pLimit = 0; + pNew = sqlite3SelectDup(db, p, 0); + p->pLimit = pLimit; + p->pOrderBy = pOrderBy; + p->pSrc = pSrc; + p->op = TK_ALL; + p->pRightmost = 0; + if( pNew==0 ){ + pNew = pPrior; + }else{ + pNew->pPrior = pPrior; + pNew->pRightmost = 0; + } + p->pPrior = pNew; + if( db->mallocFailed ) return 1; + } + + /* Begin flattening the iFrom-th entry of the FROM clause + ** in the outer query. + */ + pSub = pSub1 = pSubitem->pSelect; + + /* Delete the transient table structure associated with the + ** subquery + */ + sqlite3DbFree(db, pSubitem->zDatabase); + sqlite3DbFree(db, pSubitem->zName); + sqlite3DbFree(db, pSubitem->zAlias); + pSubitem->zDatabase = 0; + pSubitem->zName = 0; + pSubitem->zAlias = 0; + pSubitem->pSelect = 0; + + /* Defer deleting the Table object associated with the + ** subquery until code generation is + ** complete, since there may still exist Expr.pTab entries that + ** refer to the subquery even after flattening. Ticket #3346. + ** + ** pSubitem->pTab is always non-NULL by test restrictions and tests above. + */ + if( ALWAYS(pSubitem->pTab!=0) ){ + Table *pTabToDel = pSubitem->pTab; + if( pTabToDel->nRef==1 ){ + Parse *pToplevel = sqlite3ParseToplevel(pParse); + pTabToDel->pNextZombie = pToplevel->pZombieTab; + pToplevel->pZombieTab = pTabToDel; + }else{ + pTabToDel->nRef--; + } + pSubitem->pTab = 0; + } + + /* The following loop runs once for each term in a compound-subquery + ** flattening (as described above). If we are doing a different kind + ** of flattening - a flattening other than a compound-subquery flattening - + ** then this loop only runs once. + ** + ** This loop moves all of the FROM elements of the subquery into the + ** the FROM clause of the outer query. Before doing this, remember + ** the cursor number for the original outer query FROM element in + ** iParent. The iParent cursor will never be used. Subsequent code + ** will scan expressions looking for iParent references and replace + ** those references with expressions that resolve to the subquery FROM + ** elements we are now copying in. + */ + for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ + int nSubSrc; + u8 jointype = 0; + pSubSrc = pSub->pSrc; /* FROM clause of subquery */ + nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ + pSrc = pParent->pSrc; /* FROM clause of the outer query */ + + if( pSrc ){ + assert( pParent==p ); /* First time through the loop */ + jointype = pSubitem->jointype; + }else{ + assert( pParent!=p ); /* 2nd and subsequent times through the loop */ + pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); + if( pSrc==0 ){ + assert( db->mallocFailed ); + break; + } + } + + /* The subquery uses a single slot of the FROM clause of the outer + ** query. If the subquery has more than one element in its FROM clause, + ** then expand the outer query to make space for it to hold all elements + ** of the subquery. + ** + ** Example: + ** + ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; + ** + ** The outer query has 3 slots in its FROM clause. One slot of the + ** outer query (the middle slot) is used by the subquery. The next + ** block of code will expand the out query to 4 slots. The middle + ** slot is expanded to two slots in order to make space for the + ** two elements in the FROM clause of the subquery. + */ + if( nSubSrc>1 ){ + pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); + if( db->mallocFailed ){ + break; + } + } + + /* Transfer the FROM clause terms from the subquery into the + ** outer query. + */ + for(i=0; ia[i+iFrom].pUsing); + pSrc->a[i+iFrom] = pSubSrc->a[i]; + memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); + } + pSrc->a[iFrom].jointype = jointype; + + /* Now begin substituting subquery result set expressions for + ** references to the iParent in the outer query. + ** + ** Example: + ** + ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; + ** \ \_____________ subquery __________/ / + ** \_____________________ outer query ______________________________/ + ** + ** We look at every expression in the outer query and every place we see + ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". + */ + pList = pParent->pEList; + for(i=0; inExpr; i++){ + if( pList->a[i].zName==0 ){ + const char *zSpan = pList->a[i].zSpan; + if( ALWAYS(zSpan) ){ + pList->a[i].zName = sqlite3DbStrDup(db, zSpan); + } + } + } + substExprList(db, pParent->pEList, iParent, pSub->pEList); + if( isAgg ){ + substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); + pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); + } + if( pSub->pOrderBy ){ + assert( pParent->pOrderBy==0 ); + pParent->pOrderBy = pSub->pOrderBy; + pSub->pOrderBy = 0; + }else if( pParent->pOrderBy ){ + substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); + } + if( pSub->pWhere ){ + pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); + }else{ + pWhere = 0; + } + if( subqueryIsAgg ){ + assert( pParent->pHaving==0 ); + pParent->pHaving = pParent->pWhere; + pParent->pWhere = pWhere; + pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); + pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, + sqlite3ExprDup(db, pSub->pHaving, 0)); + assert( pParent->pGroupBy==0 ); + pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); + }else{ + pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); + pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); + } + + /* The flattened query is distinct if either the inner or the + ** outer query is distinct. + */ + pParent->selFlags |= pSub->selFlags & SF_Distinct; + + /* + ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; + ** + ** One is tempted to try to add a and b to combine the limits. But this + ** does not work if either limit is negative. + */ + if( pSub->pLimit ){ + pParent->pLimit = pSub->pLimit; + pSub->pLimit = 0; + } + } + + /* Finially, delete what is left of the subquery and return + ** success. + */ + sqlite3SelectDelete(db, pSub1); + + return 1; +} +#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ + +/* +** Analyze the SELECT statement passed as an argument to see if it +** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if +** it is, or 0 otherwise. At present, a query is considered to be +** a min()/max() query if: +** +** 1. There is a single object in the FROM clause. +** +** 2. There is a single expression in the result set, and it is +** either min(x) or max(x), where x is a column reference. +*/ +static u8 minMaxQuery(Select *p){ + Expr *pExpr; + ExprList *pEList = p->pEList; + + if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; + pExpr = pEList->a[0].pExpr; + if( pExpr->op!=TK_AGG_FUNCTION ) return 0; + if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; + pEList = pExpr->x.pList; + if( pEList==0 || pEList->nExpr!=1 ) return 0; + if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ + return WHERE_ORDERBY_MIN; + }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ + return WHERE_ORDERBY_MAX; + } + return WHERE_ORDERBY_NORMAL; +} + +/* +** The select statement passed as the first argument is an aggregate query. +** The second argment is the associated aggregate-info object. This +** function tests if the SELECT is of the form: +** +** SELECT count(*) FROM +** +** where table is a database table, not a sub-select or view. If the query +** does match this pattern, then a pointer to the Table object representing +** is returned. Otherwise, 0 is returned. +*/ +static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ + Table *pTab; + Expr *pExpr; + + assert( !p->pGroupBy ); + + if( p->pWhere || p->pEList->nExpr!=1 + || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect + ){ + return 0; + } + pTab = p->pSrc->a[0].pTab; + pExpr = p->pEList->a[0].pExpr; + assert( pTab && !pTab->pSelect && pExpr ); + + if( IsVirtual(pTab) ) return 0; + if( pExpr->op!=TK_AGG_FUNCTION ) return 0; + if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; + if( pExpr->flags&EP_Distinct ) return 0; + + return pTab; +} + +/* +** If the source-list item passed as an argument was augmented with an +** INDEXED BY clause, then try to locate the specified index. If there +** was such a clause and the named index cannot be found, return +** SQLITE_ERROR and leave an error in pParse. Otherwise, populate +** pFrom->pIndex and return SQLITE_OK. +*/ +int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ + if( pFrom->pTab && pFrom->zIndex ){ + Table *pTab = pFrom->pTab; + char *zIndex = pFrom->zIndex; + Index *pIdx; + for(pIdx=pTab->pIndex; + pIdx && sqlite3StrICmp(pIdx->zName, zIndex); + pIdx=pIdx->pNext + ); + if( !pIdx ){ + sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); + pParse->checkSchema = 1; + return SQLITE_ERROR; + } + pFrom->pIndex = pIdx; + } + return SQLITE_OK; +} + +/* +** This routine is a Walker callback for "expanding" a SELECT statement. +** "Expanding" means to do the following: +** +** (1) Make sure VDBE cursor numbers have been assigned to every +** element of the FROM clause. +** +** (2) Fill in the pTabList->a[].pTab fields in the SrcList that +** defines FROM clause. When views appear in the FROM clause, +** fill pTabList->a[].pSelect with a copy of the SELECT statement +** that implements the view. A copy is made of the view's SELECT +** statement so that we can freely modify or delete that statement +** without worrying about messing up the presistent representation +** of the view. +** +** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword +** on joins and the ON and USING clause of joins. +** +** (4) Scan the list of columns in the result set (pEList) looking +** for instances of the "*" operator or the TABLE.* operator. +** If found, expand each "*" to be every column in every table +** and TABLE.* to be every column in TABLE. +** +*/ +static int selectExpander(Walker *pWalker, Select *p){ + Parse *pParse = pWalker->pParse; + int i, j, k; + SrcList *pTabList; + ExprList *pEList; + struct SrcList_item *pFrom; + sqlite3 *db = pParse->db; + + if( db->mallocFailed ){ + return WRC_Abort; + } + if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ + return WRC_Prune; + } + p->selFlags |= SF_Expanded; + pTabList = p->pSrc; + pEList = p->pEList; + + /* Make sure cursor numbers have been assigned to all entries in + ** the FROM clause of the SELECT statement. + */ + sqlite3SrcListAssignCursors(pParse, pTabList); + + /* Look up every table named in the FROM clause of the select. If + ** an entry of the FROM clause is a subquery instead of a table or view, + ** then create a transient table structure to describe the subquery. + */ + for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ + Table *pTab; + if( pFrom->pTab!=0 ){ + /* This statement has already been prepared. There is no need + ** to go further. */ + assert( i==0 ); + return WRC_Prune; + } + if( pFrom->zName==0 ){ +#ifndef SQLITE_OMIT_SUBQUERY + Select *pSel = pFrom->pSelect; + /* A sub-query in the FROM clause of a SELECT */ + assert( pSel!=0 ); + assert( pFrom->pTab==0 ); + sqlite3WalkSelect(pWalker, pSel); + pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); + if( pTab==0 ) return WRC_Abort; + pTab->nRef = 1; + pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); + while( pSel->pPrior ){ pSel = pSel->pPrior; } + selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); + pTab->iPKey = -1; + pTab->nRowEst = 1000000; + pTab->tabFlags |= TF_Ephemeral; +#endif + }else{ + /* An ordinary table or view name in the FROM clause */ + assert( pFrom->pTab==0 ); + pFrom->pTab = pTab = + sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); + if( pTab==0 ) return WRC_Abort; + pTab->nRef++; +#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) + if( pTab->pSelect || IsVirtual(pTab) ){ + /* We reach here if the named table is a really a view */ + if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; + assert( pFrom->pSelect==0 ); + pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); + sqlite3WalkSelect(pWalker, pFrom->pSelect); + } +#endif + } + + /* Locate the index named by the INDEXED BY clause, if any. */ + if( sqlite3IndexedByLookup(pParse, pFrom) ){ + return WRC_Abort; + } + } + + /* Process NATURAL keywords, and ON and USING clauses of joins. + */ + if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ + return WRC_Abort; + } + + /* For every "*" that occurs in the column list, insert the names of + ** all columns in all tables. And for every TABLE.* insert the names + ** of all columns in TABLE. The parser inserted a special expression + ** with the TK_ALL operator for each "*" that it found in the column list. + ** The following code just has to locate the TK_ALL expressions and expand + ** each one to the list of all columns in all tables. + ** + ** The first loop just checks to see if there are any "*" operators + ** that need expanding. + */ + for(k=0; knExpr; k++){ + Expr *pE = pEList->a[k].pExpr; + if( pE->op==TK_ALL ) break; + assert( pE->op!=TK_DOT || pE->pRight!=0 ); + assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); + if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; + } + if( knExpr ){ + /* + ** If we get here it means the result set contains one or more "*" + ** operators that need to be expanded. Loop through each expression + ** in the result set and expand them one by one. + */ + struct ExprList_item *a = pEList->a; + ExprList *pNew = 0; + int flags = pParse->db->flags; + int longNames = (flags & SQLITE_FullColNames)!=0 + && (flags & SQLITE_ShortColNames)==0; + + for(k=0; knExpr; k++){ + Expr *pE = a[k].pExpr; + assert( pE->op!=TK_DOT || pE->pRight!=0 ); + if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ + /* This particular expression does not need to be expanded. + */ + pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); + if( pNew ){ + pNew->a[pNew->nExpr-1].zName = a[k].zName; + pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; + a[k].zName = 0; + a[k].zSpan = 0; + } + a[k].pExpr = 0; + }else{ + /* This expression is a "*" or a "TABLE.*" and needs to be + ** expanded. */ + int tableSeen = 0; /* Set to 1 when TABLE matches */ + char *zTName; /* text of name of TABLE */ + if( pE->op==TK_DOT ){ + assert( pE->pLeft!=0 ); + assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); + zTName = pE->pLeft->u.zToken; + }else{ + zTName = 0; + } + for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ + Table *pTab = pFrom->pTab; + char *zTabName = pFrom->zAlias; + if( zTabName==0 ){ + zTabName = pTab->zName; + } + if( db->mallocFailed ) break; + if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ + continue; + } + tableSeen = 1; + for(j=0; jnCol; j++){ + Expr *pExpr, *pRight; + char *zName = pTab->aCol[j].zName; + char *zColname; /* The computed column name */ + char *zToFree; /* Malloced string that needs to be freed */ + Token sColname; /* Computed column name as a token */ + + /* If a column is marked as 'hidden' (currently only possible + ** for virtual tables), do not include it in the expanded + ** result-set list. + */ + if( IsHiddenColumn(&pTab->aCol[j]) ){ + assert(IsVirtual(pTab)); + continue; + } + + if( i>0 && zTName==0 ){ + if( (pFrom->jointype & JT_NATURAL)!=0 + && tableAndColumnIndex(pTabList, i, zName, 0, 0) + ){ + /* In a NATURAL join, omit the join columns from the + ** table to the right of the join */ + continue; + } + if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ + /* In a join with a USING clause, omit columns in the + ** using clause from the table on the right. */ + continue; + } + } + pRight = sqlite3Expr(db, TK_ID, zName); + zColname = zName; + zToFree = 0; + if( longNames || pTabList->nSrc>1 ){ + Expr *pLeft; + pLeft = sqlite3Expr(db, TK_ID, zTabName); + pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); + if( longNames ){ + zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); + zToFree = zColname; + } + }else{ + pExpr = pRight; + } + pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); + sColname.z = zColname; + sColname.n = sqlite3Strlen30(zColname); + sqlite3ExprListSetName(pParse, pNew, &sColname, 0); + sqlite3DbFree(db, zToFree); + } + } + if( !tableSeen ){ + if( zTName ){ + sqlite3ErrorMsg(pParse, "no such table: %s", zTName); + }else{ + sqlite3ErrorMsg(pParse, "no tables specified"); + } + } + } + } + sqlite3ExprListDelete(db, pEList); + p->pEList = pNew; + } +#if SQLITE_MAX_COLUMN + if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ + sqlite3ErrorMsg(pParse, "too many columns in result set"); + } +#endif + return WRC_Continue; +} + +/* +** No-op routine for the parse-tree walker. +** +** When this routine is the Walker.xExprCallback then expression trees +** are walked without any actions being taken at each node. Presumably, +** when this routine is used for Walker.xExprCallback then +** Walker.xSelectCallback is set to do something useful for every +** subquery in the parser tree. +*/ +static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ + UNUSED_PARAMETER2(NotUsed, NotUsed2); + return WRC_Continue; +} + +/* +** This routine "expands" a SELECT statement and all of its subqueries. +** For additional information on what it means to "expand" a SELECT +** statement, see the comment on the selectExpand worker callback above. +** +** Expanding a SELECT statement is the first step in processing a +** SELECT statement. The SELECT statement must be expanded before +** name resolution is performed. +** +** If anything goes wrong, an error message is written into pParse. +** The calling function can detect the problem by looking at pParse->nErr +** and/or pParse->db->mallocFailed. +*/ +static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ + Walker w; + w.xSelectCallback = selectExpander; + w.xExprCallback = exprWalkNoop; + w.pParse = pParse; + sqlite3WalkSelect(&w, pSelect); +} + + +#ifndef SQLITE_OMIT_SUBQUERY +/* +** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() +** interface. +** +** For each FROM-clause subquery, add Column.zType and Column.zColl +** information to the Table structure that represents the result set +** of that subquery. +** +** The Table structure that represents the result set was constructed +** by selectExpander() but the type and collation information was omitted +** at that point because identifiers had not yet been resolved. This +** routine is called after identifier resolution. +*/ +static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ + Parse *pParse; + int i; + SrcList *pTabList; + struct SrcList_item *pFrom; + + assert( p->selFlags & SF_Resolved ); + if( (p->selFlags & SF_HasTypeInfo)==0 ){ + p->selFlags |= SF_HasTypeInfo; + pParse = pWalker->pParse; + pTabList = p->pSrc; + for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ + Table *pTab = pFrom->pTab; + if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ + /* A sub-query in the FROM clause of a SELECT */ + Select *pSel = pFrom->pSelect; + assert( pSel ); + while( pSel->pPrior ) pSel = pSel->pPrior; + selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); + } + } + } + return WRC_Continue; +} +#endif + + +/* +** This routine adds datatype and collating sequence information to +** the Table structures of all FROM-clause subqueries in a +** SELECT statement. +** +** Use this routine after name resolution. +*/ +static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ +#ifndef SQLITE_OMIT_SUBQUERY + Walker w; + w.xSelectCallback = selectAddSubqueryTypeInfo; + w.xExprCallback = exprWalkNoop; + w.pParse = pParse; + sqlite3WalkSelect(&w, pSelect); +#endif +} + + +/* +** This routine sets of a SELECT statement for processing. The +** following is accomplished: +** +** * VDBE Cursor numbers are assigned to all FROM-clause terms. +** * Ephemeral Table objects are created for all FROM-clause subqueries. +** * ON and USING clauses are shifted into WHERE statements +** * Wildcards "*" and "TABLE.*" in result sets are expanded. +** * Identifiers in expression are matched to tables. +** +** This routine acts recursively on all subqueries within the SELECT. +*/ +void sqlite3SelectPrep( + Parse *pParse, /* The parser context */ + Select *p, /* The SELECT statement being coded. */ + NameContext *pOuterNC /* Name context for container */ +){ + sqlite3 *db; + if( NEVER(p==0) ) return; + db = pParse->db; + if( p->selFlags & SF_HasTypeInfo ) return; + sqlite3SelectExpand(pParse, p); + if( pParse->nErr || db->mallocFailed ) return; + sqlite3ResolveSelectNames(pParse, p, pOuterNC); + if( pParse->nErr || db->mallocFailed ) return; + sqlite3SelectAddTypeInfo(pParse, p); +} + +/* +** Reset the aggregate accumulator. +** +** The aggregate accumulator is a set of memory cells that hold +** intermediate results while calculating an aggregate. This +** routine simply stores NULLs in all of those memory cells. +*/ +static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ + Vdbe *v = pParse->pVdbe; + int i; + struct AggInfo_func *pFunc; + if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ + return; + } + for(i=0; inColumn; i++){ + sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); + } + for(pFunc=pAggInfo->aFunc, i=0; inFunc; i++, pFunc++){ + sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); + if( pFunc->iDistinct>=0 ){ + Expr *pE = pFunc->pExpr; + assert( !ExprHasProperty(pE, EP_xIsSelect) ); + if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ + sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " + "argument"); + pFunc->iDistinct = -1; + }else{ + KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); + sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, + (char*)pKeyInfo, P4_KEYINFO_HANDOFF); + } + } + } +} + +/* +** Invoke the OP_AggFinalize opcode for every aggregate function +** in the AggInfo structure. +*/ +static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ + Vdbe *v = pParse->pVdbe; + int i; + struct AggInfo_func *pF; + for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ + ExprList *pList = pF->pExpr->x.pList; + assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); + sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, + (void*)pF->pFunc, P4_FUNCDEF); + } +} + +/* +** Update the accumulator memory cells for an aggregate based on +** the current cursor position. +*/ +static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ + Vdbe *v = pParse->pVdbe; + int i; + struct AggInfo_func *pF; + struct AggInfo_col *pC; + + pAggInfo->directMode = 1; + sqlite3ExprCacheClear(pParse); + for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ + int nArg; + int addrNext = 0; + int regAgg; + ExprList *pList = pF->pExpr->x.pList; + assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); + if( pList ){ + nArg = pList->nExpr; + regAgg = sqlite3GetTempRange(pParse, nArg); + sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); + }else{ + nArg = 0; + regAgg = 0; + } + if( pF->iDistinct>=0 ){ + addrNext = sqlite3VdbeMakeLabel(v); + assert( nArg==1 ); + codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); + } + if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ + CollSeq *pColl = 0; + struct ExprList_item *pItem; + int j; + assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ + for(j=0, pItem=pList->a; !pColl && jpExpr); + } + if( !pColl ){ + pColl = pParse->db->pDfltColl; + } + sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); + } + sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, + (void*)pF->pFunc, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, (u8)nArg); + sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); + sqlite3ReleaseTempRange(pParse, regAgg, nArg); + if( addrNext ){ + sqlite3VdbeResolveLabel(v, addrNext); + sqlite3ExprCacheClear(pParse); + } + } + + /* Before populating the accumulator registers, clear the column cache. + ** Otherwise, if any of the required column values are already present + ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value + ** to pC->iMem. But by the time the value is used, the original register + ** may have been used, invalidating the underlying buffer holding the + ** text or blob value. See ticket [883034dcb5]. + ** + ** Another solution would be to change the OP_SCopy used to copy cached + ** values to an OP_Copy. + */ + sqlite3ExprCacheClear(pParse); + for(i=0, pC=pAggInfo->aCol; inAccumulator; i++, pC++){ + sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); + } + pAggInfo->directMode = 0; + sqlite3ExprCacheClear(pParse); +} + +/* +** Add a single OP_Explain instruction to the VDBE to explain a simple +** count(*) query ("SELECT count(*) FROM pTab"). +*/ +#ifndef SQLITE_OMIT_EXPLAIN +static void explainSimpleCount( + Parse *pParse, /* Parse context */ + Table *pTab, /* Table being queried */ + Index *pIdx /* Index used to optimize scan, or NULL */ +){ + if( pParse->explain==2 ){ + char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", + pTab->zName, + pIdx ? "USING COVERING INDEX " : "", + pIdx ? pIdx->zName : "", + pTab->nRowEst + ); + sqlite3VdbeAddOp4( + pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC + ); + } +} +#else +# define explainSimpleCount(a,b,c) +#endif + +/* +** Generate code for the SELECT statement given in the p argument. +** +** The results are distributed in various ways depending on the +** contents of the SelectDest structure pointed to by argument pDest +** as follows: +** +** pDest->eDest Result +** ------------ ------------------------------------------- +** SRT_Output Generate a row of output (using the OP_ResultRow +** opcode) for each row in the result set. +** +** SRT_Mem Only valid if the result is a single column. +** Store the first column of the first result row +** in register pDest->iParm then abandon the rest +** of the query. This destination implies "LIMIT 1". +** +** SRT_Set The result must be a single column. Store each +** row of result as the key in table pDest->iParm. +** Apply the affinity pDest->affinity before storing +** results. Used to implement "IN (SELECT ...)". +** +** SRT_Union Store results as a key in a temporary table pDest->iParm. +** +** SRT_Except Remove results from the temporary table pDest->iParm. +** +** SRT_Table Store results in temporary table pDest->iParm. +** This is like SRT_EphemTab except that the table +** is assumed to already be open. +** +** SRT_EphemTab Create an temporary table pDest->iParm and store +** the result there. The cursor is left open after +** returning. This is like SRT_Table except that +** this destination uses OP_OpenEphemeral to create +** the table first. +** +** SRT_Coroutine Generate a co-routine that returns a new row of +** results each time it is invoked. The entry point +** of the co-routine is stored in register pDest->iParm. +** +** SRT_Exists Store a 1 in memory cell pDest->iParm if the result +** set is not empty. +** +** SRT_Discard Throw the results away. This is used by SELECT +** statements within triggers whose only purpose is +** the side-effects of functions. +** +** This routine returns the number of errors. If any errors are +** encountered, then an appropriate error message is left in +** pParse->zErrMsg. +** +** This routine does NOT free the Select structure passed in. The +** calling function needs to do that. +*/ +int sqlite3Select( + Parse *pParse, /* The parser context */ + Select *p, /* The SELECT statement being coded. */ + SelectDest *pDest /* What to do with the query results */ +){ + int i, j; /* Loop counters */ + WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ + Vdbe *v; /* The virtual machine under construction */ + int isAgg; /* True for select lists like "count(*)" */ + ExprList *pEList; /* List of columns to extract. */ + SrcList *pTabList; /* List of tables to select from */ + Expr *pWhere; /* The WHERE clause. May be NULL */ + ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ + ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ + Expr *pHaving; /* The HAVING clause. May be NULL */ + int isDistinct; /* True if the DISTINCT keyword is present */ + int distinct; /* Table to use for the distinct set */ + int rc = 1; /* Value to return from this function */ + int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ + int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */ + AggInfo sAggInfo; /* Information used by aggregate queries */ + int iEnd; /* Address of the end of the query */ + sqlite3 *db; /* The database connection */ + +#ifndef SQLITE_OMIT_EXPLAIN + int iRestoreSelectId = pParse->iSelectId; + pParse->iSelectId = pParse->iNextSelectId++; +#endif + + db = pParse->db; + if( p==0 || db->mallocFailed || pParse->nErr ){ + return 1; + } + if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; + memset(&sAggInfo, 0, sizeof(sAggInfo)); + + if( IgnorableOrderby(pDest) ){ + assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || + pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); + /* If ORDER BY makes no difference in the output then neither does + ** DISTINCT so it can be removed too. */ + sqlite3ExprListDelete(db, p->pOrderBy); + p->pOrderBy = 0; + p->selFlags &= ~SF_Distinct; + } + sqlite3SelectPrep(pParse, p, 0); + pOrderBy = p->pOrderBy; + pTabList = p->pSrc; + pEList = p->pEList; + if( pParse->nErr || db->mallocFailed ){ + goto select_end; + } + isAgg = (p->selFlags & SF_Aggregate)!=0; + assert( pEList!=0 ); + + /* Begin generating code. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto select_end; + + /* If writing to memory or generating a set + ** only a single column may be output. + */ +#ifndef SQLITE_OMIT_SUBQUERY + if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ + goto select_end; + } +#endif + + /* Generate code for all sub-queries in the FROM clause + */ +#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) + for(i=0; !p->pPrior && inSrc; i++){ + struct SrcList_item *pItem = &pTabList->a[i]; + SelectDest dest; + Select *pSub = pItem->pSelect; + int isAggSub; + + if( pSub==0 ) continue; + if( pItem->addrFillSub ){ + sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); + continue; + } + + /* Increment Parse.nHeight by the height of the largest expression + ** tree refered to by this, the parent select. The child select + ** may contain expression trees of at most + ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit + ** more conservative than necessary, but much easier than enforcing + ** an exact limit. + */ + pParse->nHeight += sqlite3SelectExprHeight(p); + + isAggSub = (pSub->selFlags & SF_Aggregate)!=0; + if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ + /* This subquery can be absorbed into its parent. */ + if( isAggSub ){ + isAgg = 1; + p->selFlags |= SF_Aggregate; + } + i = -1; + }else{ + /* Generate a subroutine that will fill an ephemeral table with + ** the content of this subquery. pItem->addrFillSub will point + ** to the address of the generated subroutine. pItem->regReturn + ** is a register allocated to hold the subroutine return address + */ + int topAddr; + int onceAddr = 0; + int retAddr; + assert( pItem->addrFillSub==0 ); + pItem->regReturn = ++pParse->nMem; + topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); + pItem->addrFillSub = topAddr+1; + VdbeNoopComment((v, "materialize %s", pItem->pTab->zName)); + if( pItem->isCorrelated==0 && pParse->pTriggerTab==0 ){ + /* If the subquery is no correlated and if we are not inside of + ** a trigger, then we only need to compute the value of the subquery + ** once. */ + int regOnce = ++pParse->nMem; + onceAddr = sqlite3VdbeAddOp1(v, OP_Once, regOnce); + } + sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); + explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); + sqlite3Select(pParse, pSub, &dest); + pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; + if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); + retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); + VdbeComment((v, "end %s", pItem->pTab->zName)); + sqlite3VdbeChangeP1(v, topAddr, retAddr); + + } + if( /*pParse->nErr ||*/ db->mallocFailed ){ + goto select_end; + } + pParse->nHeight -= sqlite3SelectExprHeight(p); + pTabList = p->pSrc; + if( !IgnorableOrderby(pDest) ){ + pOrderBy = p->pOrderBy; + } + } + pEList = p->pEList; +#endif + pWhere = p->pWhere; + pGroupBy = p->pGroupBy; + pHaving = p->pHaving; + isDistinct = (p->selFlags & SF_Distinct)!=0; + +#ifndef SQLITE_OMIT_COMPOUND_SELECT + /* If there is are a sequence of queries, do the earlier ones first. + */ + if( p->pPrior ){ + if( p->pRightmost==0 ){ + Select *pLoop, *pRight = 0; + int cnt = 0; + int mxSelect; + for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ + pLoop->pRightmost = p; + pLoop->pNext = pRight; + pRight = pLoop; + } + mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; + if( mxSelect && cnt>mxSelect ){ + sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); + goto select_end; + } + } + rc = multiSelect(pParse, p, pDest); + explainSetInteger(pParse->iSelectId, iRestoreSelectId); + return rc; + } +#endif + + /* If there is both a GROUP BY and an ORDER BY clause and they are + ** identical, then disable the ORDER BY clause since the GROUP BY + ** will cause elements to come out in the correct order. This is + ** an optimization - the correct answer should result regardless. + ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER + ** to disable this optimization for testing purposes. + */ + if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 + && (db->flags & SQLITE_GroupByOrder)==0 ){ + pOrderBy = 0; + } + + /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and + ** if the select-list is the same as the ORDER BY list, then this query + ** can be rewritten as a GROUP BY. In other words, this: + ** + ** SELECT DISTINCT xyz FROM ... ORDER BY xyz + ** + ** is transformed to: + ** + ** SELECT xyz FROM ... GROUP BY xyz + ** + ** The second form is preferred as a single index (or temp-table) may be + ** used for both the ORDER BY and DISTINCT processing. As originally + ** written the query must use a temp-table for at least one of the ORDER + ** BY and DISTINCT, and an index or separate temp-table for the other. + */ + if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct + && sqlite3ExprListCompare(pOrderBy, p->pEList)==0 + ){ + p->selFlags &= ~SF_Distinct; + p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); + pGroupBy = p->pGroupBy; + pOrderBy = 0; + } + + /* If there is an ORDER BY clause, then this sorting + ** index might end up being unused if the data can be + ** extracted in pre-sorted order. If that is the case, then the + ** OP_OpenEphemeral instruction will be changed to an OP_Noop once + ** we figure out that the sorting index is not needed. The addrSortIndex + ** variable is used to facilitate that change. + */ + if( pOrderBy ){ + KeyInfo *pKeyInfo; + pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); + pOrderBy->iECursor = pParse->nTab++; + p->addrOpenEphm[2] = addrSortIndex = + sqlite3VdbeAddOp4(v, OP_OpenEphemeral, + pOrderBy->iECursor, pOrderBy->nExpr+2, 0, + (char*)pKeyInfo, P4_KEYINFO_HANDOFF); + }else{ + addrSortIndex = -1; + } + + /* If the output is destined for a temporary table, open that table. + */ + if( pDest->eDest==SRT_EphemTab ){ + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); + } + + /* Set the limiter. + */ + iEnd = sqlite3VdbeMakeLabel(v); + p->nSelectRow = (double)LARGEST_INT64; + computeLimitRegisters(pParse, p, iEnd); + if( p->iLimit==0 && addrSortIndex>=0 ){ + sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen; + p->selFlags |= SF_UseSorter; + } + + /* Open a virtual index to use for the distinct set. + */ + if( p->selFlags & SF_Distinct ){ + KeyInfo *pKeyInfo; + distinct = pParse->nTab++; + pKeyInfo = keyInfoFromExprList(pParse, p->pEList); + addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, + (char*)pKeyInfo, P4_KEYINFO_HANDOFF); + sqlite3VdbeChangeP5(v, BTREE_UNORDERED); + }else{ + distinct = addrDistinctIndex = -1; + } + + /* Aggregate and non-aggregate queries are handled differently */ + if( !isAgg && pGroupBy==0 ){ + ExprList *pDist = (isDistinct ? p->pEList : 0); + + /* Begin the database scan. */ + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0); + if( pWInfo==0 ) goto select_end; + if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; + + /* If sorting index that was created by a prior OP_OpenEphemeral + ** instruction ended up not being needed, then change the OP_OpenEphemeral + ** into an OP_Noop. + */ + if( addrSortIndex>=0 && pOrderBy==0 ){ + sqlite3VdbeChangeToNoop(v, addrSortIndex); + p->addrOpenEphm[2] = -1; + } + + if( pWInfo->eDistinct ){ + VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ + + assert( addrDistinctIndex>=0 ); + pOp = sqlite3VdbeGetOp(v, addrDistinctIndex); + + assert( isDistinct ); + assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED + || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE + ); + distinct = -1; + if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){ + int iJump; + int iExpr; + int iFlag = ++pParse->nMem; + int iBase = pParse->nMem+1; + int iBase2 = iBase + pEList->nExpr; + pParse->nMem += (pEList->nExpr*2); + + /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The + ** OP_Integer initializes the "first row" flag. */ + pOp->opcode = OP_Integer; + pOp->p1 = 1; + pOp->p2 = iFlag; + + sqlite3ExprCodeExprList(pParse, pEList, iBase, 1); + iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1; + sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1); + for(iExpr=0; iExprnExpr; iExpr++){ + CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr); + sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr); + sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); + sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); + } + sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue); + + sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag); + assert( sqlite3VdbeCurrentAddr(v)==iJump ); + sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr); + }else{ + pOp->opcode = OP_Noop; + } + } + + /* Use the standard inner loop. */ + selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest, + pWInfo->iContinue, pWInfo->iBreak); + + /* End the database scan loop. + */ + sqlite3WhereEnd(pWInfo); + }else{ + /* This is the processing for aggregate queries */ + NameContext sNC; /* Name context for processing aggregate information */ + int iAMem; /* First Mem address for storing current GROUP BY */ + int iBMem; /* First Mem address for previous GROUP BY */ + int iUseFlag; /* Mem address holding flag indicating that at least + ** one row of the input to the aggregator has been + ** processed */ + int iAbortFlag; /* Mem address which causes query abort if positive */ + int groupBySort; /* Rows come from source in GROUP BY order */ + int addrEnd; /* End of processing for this SELECT */ + int sortPTab = 0; /* Pseudotable used to decode sorting results */ + int sortOut = 0; /* Output register from the sorter */ + + /* Remove any and all aliases between the result set and the + ** GROUP BY clause. + */ + if( pGroupBy ){ + int k; /* Loop counter */ + struct ExprList_item *pItem; /* For looping over expression in a list */ + + for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ + pItem->iAlias = 0; + } + for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ + pItem->iAlias = 0; + } + if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; + }else{ + p->nSelectRow = (double)1; + } + + + /* Create a label to jump to when we want to abort the query */ + addrEnd = sqlite3VdbeMakeLabel(v); + + /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in + ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the + ** SELECT statement. + */ + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + sNC.pSrcList = pTabList; + sNC.pAggInfo = &sAggInfo; + sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; + sAggInfo.pGroupBy = pGroupBy; + sqlite3ExprAnalyzeAggList(&sNC, pEList); + sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); + if( pHaving ){ + sqlite3ExprAnalyzeAggregates(&sNC, pHaving); + } + sAggInfo.nAccumulator = sAggInfo.nColumn; + for(i=0; ix.pList); + } + if( db->mallocFailed ) goto select_end; + + /* Processing for aggregates with GROUP BY is very different and + ** much more complex than aggregates without a GROUP BY. + */ + if( pGroupBy ){ + KeyInfo *pKeyInfo; /* Keying information for the group by clause */ + int j1; /* A-vs-B comparision jump */ + int addrOutputRow; /* Start of subroutine that outputs a result row */ + int regOutputRow; /* Return address register for output subroutine */ + int addrSetAbort; /* Set the abort flag and return */ + int addrTopOfLoop; /* Top of the input loop */ + int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ + int addrReset; /* Subroutine for resetting the accumulator */ + int regReset; /* Return address register for reset subroutine */ + + /* If there is a GROUP BY clause we might need a sorting index to + ** implement it. Allocate that sorting index now. If it turns out + ** that we do not need it after all, the OP_SorterOpen instruction + ** will be converted into a Noop. + */ + sAggInfo.sortingIdx = pParse->nTab++; + pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); + addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, + sAggInfo.sortingIdx, sAggInfo.nSortingColumn, + 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); + + /* Initialize memory locations used by GROUP BY aggregate processing + */ + iUseFlag = ++pParse->nMem; + iAbortFlag = ++pParse->nMem; + regOutputRow = ++pParse->nMem; + addrOutputRow = sqlite3VdbeMakeLabel(v); + regReset = ++pParse->nMem; + addrReset = sqlite3VdbeMakeLabel(v); + iAMem = pParse->nMem + 1; + pParse->nMem += pGroupBy->nExpr; + iBMem = pParse->nMem + 1; + pParse->nMem += pGroupBy->nExpr; + sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); + VdbeComment((v, "clear abort flag")); + sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); + VdbeComment((v, "indicate accumulator empty")); + + /* Begin a loop that will extract all source rows in GROUP BY order. + ** This might involve two separate loops with an OP_Sort in between, or + ** it might be a single loop that uses an index to extract information + ** in the right order to begin with. + */ + sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0); + if( pWInfo==0 ) goto select_end; + if( pGroupBy==0 ){ + /* The optimizer is able to deliver rows in group by order so + ** we do not have to sort. The OP_OpenEphemeral table will be + ** cancelled later because we still need to use the pKeyInfo + */ + pGroupBy = p->pGroupBy; + groupBySort = 0; + }else{ + /* Rows are coming out in undetermined order. We have to push + ** each row into a sorting index, terminate the first loop, + ** then loop over the sorting index in order to get the output + ** in sorted order + */ + int regBase; + int regRecord; + int nCol; + int nGroupBy; + + explainTempTable(pParse, + isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY"); + + groupBySort = 1; + nGroupBy = pGroupBy->nExpr; + nCol = nGroupBy + 1; + j = nGroupBy+1; + for(i=0; i=j ){ + nCol++; + j++; + } + } + regBase = sqlite3GetTempRange(pParse, nCol); + sqlite3ExprCacheClear(pParse); + sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); + sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); + j = nGroupBy+1; + for(i=0; iiSorterColumn>=j ){ + int r1 = j + regBase; + int r2; + + r2 = sqlite3ExprCodeGetColumn(pParse, + pCol->pTab, pCol->iColumn, pCol->iTable, r1); + if( r1!=r2 ){ + sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); + } + j++; + } + } + regRecord = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); + sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); + sqlite3ReleaseTempReg(pParse, regRecord); + sqlite3ReleaseTempRange(pParse, regBase, nCol); + sqlite3WhereEnd(pWInfo); + sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; + sortOut = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); + sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); + VdbeComment((v, "GROUP BY sort")); + sAggInfo.useSortingIdx = 1; + sqlite3ExprCacheClear(pParse); + } + + /* Evaluate the current GROUP BY terms and store in b0, b1, b2... + ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) + ** Then compare the current GROUP BY terms against the GROUP BY terms + ** from the previous row currently stored in a0, a1, a2... + */ + addrTopOfLoop = sqlite3VdbeCurrentAddr(v); + sqlite3ExprCacheClear(pParse); + if( groupBySort ){ + sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); + } + for(j=0; jnExpr; j++){ + if( groupBySort ){ + sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); + if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); + }else{ + sAggInfo.directMode = 1; + sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); + } + } + sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, + (char*)pKeyInfo, P4_KEYINFO); + j1 = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); + + /* Generate code that runs whenever the GROUP BY changes. + ** Changes in the GROUP BY are detected by the previous code + ** block. If there were no changes, this block is skipped. + ** + ** This code copies current group by terms in b0,b1,b2,... + ** over to a0,a1,a2. It then calls the output subroutine + ** and resets the aggregate accumulator registers in preparation + ** for the next GROUP BY batch. + */ + sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); + sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); + VdbeComment((v, "output one row")); + sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); + VdbeComment((v, "check abort flag")); + sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); + VdbeComment((v, "reset accumulator")); + + /* Update the aggregate accumulators based on the content of + ** the current row + */ + sqlite3VdbeJumpHere(v, j1); + updateAccumulator(pParse, &sAggInfo); + sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); + VdbeComment((v, "indicate data in accumulator")); + + /* End of the loop + */ + if( groupBySort ){ + sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); + }else{ + sqlite3WhereEnd(pWInfo); + sqlite3VdbeChangeToNoop(v, addrSortingIdx); + } + + /* Output the final row of result + */ + sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); + VdbeComment((v, "output final row")); + + /* Jump over the subroutines + */ + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); + + /* Generate a subroutine that outputs a single row of the result + ** set. This subroutine first looks at the iUseFlag. If iUseFlag + ** is less than or equal to zero, the subroutine is a no-op. If + ** the processing calls for the query to abort, this subroutine + ** increments the iAbortFlag memory location before returning in + ** order to signal the caller to abort. + */ + addrSetAbort = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); + VdbeComment((v, "set abort flag")); + sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); + sqlite3VdbeResolveLabel(v, addrOutputRow); + addrOutputRow = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); + VdbeComment((v, "Groupby result generator entry point")); + sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); + finalizeAggFunctions(pParse, &sAggInfo); + sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); + selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, + distinct, pDest, + addrOutputRow+1, addrSetAbort); + sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); + VdbeComment((v, "end groupby result generator")); + + /* Generate a subroutine that will reset the group-by accumulator + */ + sqlite3VdbeResolveLabel(v, addrReset); + resetAccumulator(pParse, &sAggInfo); + sqlite3VdbeAddOp1(v, OP_Return, regReset); + + } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ + else { + ExprList *pDel = 0; +#ifndef SQLITE_OMIT_BTREECOUNT + Table *pTab; + if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ + /* If isSimpleCount() returns a pointer to a Table structure, then + ** the SQL statement is of the form: + ** + ** SELECT count(*) FROM + ** + ** where the Table structure returned represents table . + ** + ** This statement is so common that it is optimized specially. The + ** OP_Count instruction is executed either on the intkey table that + ** contains the data for table or on one of its indexes. It + ** is better to execute the op on an index, as indexes are almost + ** always spread across less pages than their corresponding tables. + */ + const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ + Index *pIdx; /* Iterator variable */ + KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ + Index *pBest = 0; /* Best index found so far */ + int iRoot = pTab->tnum; /* Root page of scanned b-tree */ + + sqlite3CodeVerifySchema(pParse, iDb); + sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); + + /* Search for the index that has the least amount of columns. If + ** there is such an index, and it has less columns than the table + ** does, then we can assume that it consumes less space on disk and + ** will therefore be cheaper to scan to determine the query result. + ** In this case set iRoot to the root page number of the index b-tree + ** and pKeyInfo to the KeyInfo structure required to navigate the + ** index. + ** + ** (2011-04-15) Do not do a full scan of an unordered index. + ** + ** In practice the KeyInfo structure will not be used. It is only + ** passed to keep OP_OpenRead happy. + */ + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumnnColumn) ){ + pBest = pIdx; + } + } + if( pBest && pBest->nColumnnCol ){ + iRoot = pBest->tnum; + pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); + } + + /* Open a read-only cursor, execute the OP_Count, close the cursor. */ + sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); + if( pKeyInfo ){ + sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); + } + sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); + sqlite3VdbeAddOp1(v, OP_Close, iCsr); + explainSimpleCount(pParse, pTab, pBest); + }else +#endif /* SQLITE_OMIT_BTREECOUNT */ + { + /* Check if the query is of one of the following forms: + ** + ** SELECT min(x) FROM ... + ** SELECT max(x) FROM ... + ** + ** If it is, then ask the code in where.c to attempt to sort results + ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. + ** If where.c is able to produce results sorted in this order, then + ** add vdbe code to break out of the processing loop after the + ** first iteration (since the first iteration of the loop is + ** guaranteed to operate on the row with the minimum or maximum + ** value of x, the only row required). + ** + ** A special flag must be passed to sqlite3WhereBegin() to slightly + ** modify behaviour as follows: + ** + ** + If the query is a "SELECT min(x)", then the loop coded by + ** where.c should not iterate over any values with a NULL value + ** for x. + ** + ** + The optimizer code in where.c (the thing that decides which + ** index or indices to use) should place a different priority on + ** satisfying the 'ORDER BY' clause than it does in other cases. + ** Refer to code and comments in where.c for details. + */ + ExprList *pMinMax = 0; + u8 flag = minMaxQuery(p); + if( flag ){ + assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); + pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); + pDel = pMinMax; + if( pMinMax && !db->mallocFailed ){ + pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; + pMinMax->a[0].pExpr->op = TK_COLUMN; + } + } + + /* This case runs if the aggregate has no GROUP BY clause. The + ** processing is much simpler since there is only a single row + ** of output. + */ + resetAccumulator(pParse, &sAggInfo); + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag); + if( pWInfo==0 ){ + sqlite3ExprListDelete(db, pDel); + goto select_end; + } + updateAccumulator(pParse, &sAggInfo); + if( !pMinMax && flag ){ + sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); + VdbeComment((v, "%s() by index", + (flag==WHERE_ORDERBY_MIN?"min":"max"))); + } + sqlite3WhereEnd(pWInfo); + finalizeAggFunctions(pParse, &sAggInfo); + } + + pOrderBy = 0; + sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); + selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, + pDest, addrEnd, addrEnd); + sqlite3ExprListDelete(db, pDel); + } + sqlite3VdbeResolveLabel(v, addrEnd); + + } /* endif aggregate query */ + + if( distinct>=0 ){ + explainTempTable(pParse, "DISTINCT"); + } + + /* If there is an ORDER BY clause, then we need to sort the results + ** and send them to the callback one by one. + */ + if( pOrderBy ){ + explainTempTable(pParse, "ORDER BY"); + generateSortTail(pParse, p, v, pEList->nExpr, pDest); + } + + /* Jump here to skip this query + */ + sqlite3VdbeResolveLabel(v, iEnd); + + /* The SELECT was successfully coded. Set the return code to 0 + ** to indicate no errors. + */ + rc = 0; + + /* Control jumps to here if an error is encountered above, or upon + ** successful coding of the SELECT. + */ +select_end: + explainSetInteger(pParse->iSelectId, iRestoreSelectId); + + /* Identify column names if results of the SELECT are to be output. + */ + if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ + generateColumnNames(pParse, pTabList, pEList); + } + + sqlite3DbFree(db, sAggInfo.aCol); + sqlite3DbFree(db, sAggInfo.aFunc); + return rc; +} + +#if defined(SQLITE_DEBUG) +/* +******************************************************************************* +** The following code is used for testing and debugging only. The code +** that follows does not appear in normal builds. +** +** These routines are used to print out the content of all or part of a +** parse structures such as Select or Expr. Such printouts are useful +** for helping to understand what is happening inside the code generator +** during the execution of complex SELECT statements. +** +** These routine are not called anywhere from within the normal +** code base. Then are intended to be called from within the debugger +** or from temporary "printf" statements inserted for debugging. +*/ +void sqlite3PrintExpr(Expr *p){ + if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ + sqlite3DebugPrintf("(%s", p->u.zToken); + }else{ + sqlite3DebugPrintf("(%d", p->op); + } + if( p->pLeft ){ + sqlite3DebugPrintf(" "); + sqlite3PrintExpr(p->pLeft); + } + if( p->pRight ){ + sqlite3DebugPrintf(" "); + sqlite3PrintExpr(p->pRight); + } + sqlite3DebugPrintf(")"); +} +void sqlite3PrintExprList(ExprList *pList){ + int i; + for(i=0; inExpr; i++){ + sqlite3PrintExpr(pList->a[i].pExpr); + if( inExpr-1 ){ + sqlite3DebugPrintf(", "); + } + } +} +void sqlite3PrintSelect(Select *p, int indent){ + sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); + sqlite3PrintExprList(p->pEList); + sqlite3DebugPrintf("\n"); + if( p->pSrc ){ + char *zPrefix; + int i; + zPrefix = "FROM"; + for(i=0; ipSrc->nSrc; i++){ + struct SrcList_item *pItem = &p->pSrc->a[i]; + sqlite3DebugPrintf("%*s ", indent+6, zPrefix); + zPrefix = ""; + if( pItem->pSelect ){ + sqlite3DebugPrintf("(\n"); + sqlite3PrintSelect(pItem->pSelect, indent+10); + sqlite3DebugPrintf("%*s)", indent+8, ""); + }else if( pItem->zName ){ + sqlite3DebugPrintf("%s", pItem->zName); + } + if( pItem->pTab ){ + sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); + } + if( pItem->zAlias ){ + sqlite3DebugPrintf(" AS %s", pItem->zAlias); + } + if( ipSrc->nSrc-1 ){ + sqlite3DebugPrintf(","); + } + sqlite3DebugPrintf("\n"); + } + } + if( p->pWhere ){ + sqlite3DebugPrintf("%*s WHERE ", indent, ""); + sqlite3PrintExpr(p->pWhere); + sqlite3DebugPrintf("\n"); + } + if( p->pGroupBy ){ + sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); + sqlite3PrintExprList(p->pGroupBy); + sqlite3DebugPrintf("\n"); + } + if( p->pHaving ){ + sqlite3DebugPrintf("%*s HAVING ", indent, ""); + sqlite3PrintExpr(p->pHaving); + sqlite3DebugPrintf("\n"); + } + if( p->pOrderBy ){ + sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); + sqlite3PrintExprList(p->pOrderBy); + sqlite3DebugPrintf("\n"); + } +} +/* End of the structure debug printing code +*****************************************************************************/ +#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ diff --git a/src/shell.c b/src/shell.c new file mode 100644 index 0000000..07623e5 --- /dev/null +++ b/src/shell.c @@ -0,0 +1,2967 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code to implement the "sqlite" command line +** utility for accessing SQLite databases. +*/ +#if (defined(_WIN32) || defined(WIN32)) && !defined(_CRT_SECURE_NO_WARNINGS) +/* This needs to come before any includes for MSVC compiler */ +#define _CRT_SECURE_NO_WARNINGS +#endif + +/* +** Enable large-file support for fopen() and friends on unix. +*/ +#ifndef SQLITE_DISABLE_LFS +# define _LARGE_FILE 1 +# ifndef _FILE_OFFSET_BITS +# define _FILE_OFFSET_BITS 64 +# endif +# define _LARGEFILE_SOURCE 1 +#endif + +#include +#include +#include +#include +#include "sqlite3.h" +#include +#include + +#if !defined(_WIN32) && !defined(WIN32) && !defined(__OS2__) +# include +# if !defined(__RTP__) && !defined(_WRS_KERNEL) +# include +# endif +# include +# include +#endif + +#ifdef __OS2__ +# include +#endif + +#ifdef HAVE_EDITLINE +# include +#endif +#if defined(HAVE_READLINE) && HAVE_READLINE==1 +# include +# include +#endif +#if !defined(HAVE_EDITLINE) && (!defined(HAVE_READLINE) || HAVE_READLINE!=1) +# define readline(p) local_getline(p,stdin) +# define add_history(X) +# define read_history(X) +# define write_history(X) +# define stifle_history(X) +#endif + +#if defined(_WIN32) || defined(WIN32) +# include +#define isatty(h) _isatty(h) +#define access(f,m) _access((f),(m)) +#else +/* Make sure isatty() has a prototype. +*/ +extern int isatty(int); +#endif + +#if defined(_WIN32_WCE) +/* Windows CE (arm-wince-mingw32ce-gcc) does not provide isatty() + * thus we always assume that we have a console. That can be + * overridden with the -batch command line option. + */ +#define isatty(x) 1 +#endif + +/* True if the timer is enabled */ +static int enableTimer = 0; + +/* ctype macros that work with signed characters */ +#define IsSpace(X) isspace((unsigned char)X) +#define IsDigit(X) isdigit((unsigned char)X) +#define ToLower(X) (char)tolower((unsigned char)X) + +#if !defined(_WIN32) && !defined(WIN32) && !defined(__OS2__) && !defined(__RTP__) && !defined(_WRS_KERNEL) +#include +#include + +/* Saved resource information for the beginning of an operation */ +static struct rusage sBegin; + +/* +** Begin timing an operation +*/ +static void beginTimer(void){ + if( enableTimer ){ + getrusage(RUSAGE_SELF, &sBegin); + } +} + +/* Return the difference of two time_structs in seconds */ +static double timeDiff(struct timeval *pStart, struct timeval *pEnd){ + return (pEnd->tv_usec - pStart->tv_usec)*0.000001 + + (double)(pEnd->tv_sec - pStart->tv_sec); +} + +/* +** Print the timing results. +*/ +static void endTimer(void){ + if( enableTimer ){ + struct rusage sEnd; + getrusage(RUSAGE_SELF, &sEnd); + printf("CPU Time: user %f sys %f\n", + timeDiff(&sBegin.ru_utime, &sEnd.ru_utime), + timeDiff(&sBegin.ru_stime, &sEnd.ru_stime)); + } +} + +#define BEGIN_TIMER beginTimer() +#define END_TIMER endTimer() +#define HAS_TIMER 1 + +#elif (defined(_WIN32) || defined(WIN32)) + +#include + +/* Saved resource information for the beginning of an operation */ +static HANDLE hProcess; +static FILETIME ftKernelBegin; +static FILETIME ftUserBegin; +typedef BOOL (WINAPI *GETPROCTIMES)(HANDLE, LPFILETIME, LPFILETIME, LPFILETIME, LPFILETIME); +static GETPROCTIMES getProcessTimesAddr = NULL; + +/* +** Check to see if we have timer support. Return 1 if necessary +** support found (or found previously). +*/ +static int hasTimer(void){ + if( getProcessTimesAddr ){ + return 1; + } else { + /* GetProcessTimes() isn't supported in WIN95 and some other Windows versions. + ** See if the version we are running on has it, and if it does, save off + ** a pointer to it and the current process handle. + */ + hProcess = GetCurrentProcess(); + if( hProcess ){ + HINSTANCE hinstLib = LoadLibrary(TEXT("Kernel32.dll")); + if( NULL != hinstLib ){ + getProcessTimesAddr = (GETPROCTIMES) GetProcAddress(hinstLib, "GetProcessTimes"); + if( NULL != getProcessTimesAddr ){ + return 1; + } + FreeLibrary(hinstLib); + } + } + } + return 0; +} + +/* +** Begin timing an operation +*/ +static void beginTimer(void){ + if( enableTimer && getProcessTimesAddr ){ + FILETIME ftCreation, ftExit; + getProcessTimesAddr(hProcess, &ftCreation, &ftExit, &ftKernelBegin, &ftUserBegin); + } +} + +/* Return the difference of two FILETIME structs in seconds */ +static double timeDiff(FILETIME *pStart, FILETIME *pEnd){ + sqlite_int64 i64Start = *((sqlite_int64 *) pStart); + sqlite_int64 i64End = *((sqlite_int64 *) pEnd); + return (double) ((i64End - i64Start) / 10000000.0); +} + +/* +** Print the timing results. +*/ +static void endTimer(void){ + if( enableTimer && getProcessTimesAddr){ + FILETIME ftCreation, ftExit, ftKernelEnd, ftUserEnd; + getProcessTimesAddr(hProcess, &ftCreation, &ftExit, &ftKernelEnd, &ftUserEnd); + printf("CPU Time: user %f sys %f\n", + timeDiff(&ftUserBegin, &ftUserEnd), + timeDiff(&ftKernelBegin, &ftKernelEnd)); + } +} + +#define BEGIN_TIMER beginTimer() +#define END_TIMER endTimer() +#define HAS_TIMER hasTimer() + +#else +#define BEGIN_TIMER +#define END_TIMER +#define HAS_TIMER 0 +#endif + +/* +** Used to prevent warnings about unused parameters +*/ +#define UNUSED_PARAMETER(x) (void)(x) + +/* +** If the following flag is set, then command execution stops +** at an error if we are not interactive. +*/ +static int bail_on_error = 0; + +/* +** Threat stdin as an interactive input if the following variable +** is true. Otherwise, assume stdin is connected to a file or pipe. +*/ +static int stdin_is_interactive = 1; + +/* +** The following is the open SQLite database. We make a pointer +** to this database a static variable so that it can be accessed +** by the SIGINT handler to interrupt database processing. +*/ +static sqlite3 *db = 0; + +/* +** True if an interrupt (Control-C) has been received. +*/ +static volatile int seenInterrupt = 0; + +/* +** This is the name of our program. It is set in main(), used +** in a number of other places, mostly for error messages. +*/ +static char *Argv0; + +/* +** Prompt strings. Initialized in main. Settable with +** .prompt main continue +*/ +static char mainPrompt[20]; /* First line prompt. default: "sqlite> "*/ +static char continuePrompt[20]; /* Continuation prompt. default: " ...> " */ + +/* +** Write I/O traces to the following stream. +*/ +#ifdef SQLITE_ENABLE_IOTRACE +static FILE *iotrace = 0; +#endif + +/* +** This routine works like printf in that its first argument is a +** format string and subsequent arguments are values to be substituted +** in place of % fields. The result of formatting this string +** is written to iotrace. +*/ +#ifdef SQLITE_ENABLE_IOTRACE +static void iotracePrintf(const char *zFormat, ...){ + va_list ap; + char *z; + if( iotrace==0 ) return; + va_start(ap, zFormat); + z = sqlite3_vmprintf(zFormat, ap); + va_end(ap); + fprintf(iotrace, "%s", z); + sqlite3_free(z); +} +#endif + + +/* +** Determines if a string is a number of not. +*/ +static int isNumber(const char *z, int *realnum){ + if( *z=='-' || *z=='+' ) z++; + if( !IsDigit(*z) ){ + return 0; + } + z++; + if( realnum ) *realnum = 0; + while( IsDigit(*z) ){ z++; } + if( *z=='.' ){ + z++; + if( !IsDigit(*z) ) return 0; + while( IsDigit(*z) ){ z++; } + if( realnum ) *realnum = 1; + } + if( *z=='e' || *z=='E' ){ + z++; + if( *z=='+' || *z=='-' ) z++; + if( !IsDigit(*z) ) return 0; + while( IsDigit(*z) ){ z++; } + if( realnum ) *realnum = 1; + } + return *z==0; +} + +/* +** A global char* and an SQL function to access its current value +** from within an SQL statement. This program used to use the +** sqlite_exec_printf() API to substitue a string into an SQL statement. +** The correct way to do this with sqlite3 is to use the bind API, but +** since the shell is built around the callback paradigm it would be a lot +** of work. Instead just use this hack, which is quite harmless. +*/ +static const char *zShellStatic = 0; +static void shellstaticFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + assert( 0==argc ); + assert( zShellStatic ); + UNUSED_PARAMETER(argc); + UNUSED_PARAMETER(argv); + sqlite3_result_text(context, zShellStatic, -1, SQLITE_STATIC); +} + + +/* +** This routine reads a line of text from FILE in, stores +** the text in memory obtained from malloc() and returns a pointer +** to the text. NULL is returned at end of file, or if malloc() +** fails. +** +** The interface is like "readline" but no command-line editing +** is done. +*/ +static char *local_getline(char *zPrompt, FILE *in){ + char *zLine; + int nLine; + int n; + + if( zPrompt && *zPrompt ){ + printf("%s",zPrompt); + fflush(stdout); + } + nLine = 100; + zLine = malloc( nLine ); + if( zLine==0 ) return 0; + n = 0; + while( 1 ){ + if( n+100>nLine ){ + nLine = nLine*2 + 100; + zLine = realloc(zLine, nLine); + if( zLine==0 ) return 0; + } + if( fgets(&zLine[n], nLine - n, in)==0 ){ + if( n==0 ){ + free(zLine); + return 0; + } + zLine[n] = 0; + break; + } + while( zLine[n] ){ n++; } + if( n>0 && zLine[n-1]=='\n' ){ + n--; + if( n>0 && zLine[n-1]=='\r' ) n--; + zLine[n] = 0; + break; + } + } + zLine = realloc( zLine, n+1 ); + return zLine; +} + +/* +** Retrieve a single line of input text. +** +** zPrior is a string of prior text retrieved. If not the empty +** string, then issue a continuation prompt. +*/ +static char *one_input_line(const char *zPrior, FILE *in){ + char *zPrompt; + char *zResult; + if( in!=0 ){ + return local_getline(0, in); + } + if( zPrior && zPrior[0] ){ + zPrompt = continuePrompt; + }else{ + zPrompt = mainPrompt; + } + zResult = readline(zPrompt); +#if defined(HAVE_READLINE) && HAVE_READLINE==1 + if( zResult && *zResult ) add_history(zResult); +#endif + return zResult; +} + +struct previous_mode_data { + int valid; /* Is there legit data in here? */ + int mode; + int showHeader; + int colWidth[100]; +}; + +/* +** An pointer to an instance of this structure is passed from +** the main program to the callback. This is used to communicate +** state and mode information. +*/ +struct callback_data { + sqlite3 *db; /* The database */ + int echoOn; /* True to echo input commands */ + int statsOn; /* True to display memory stats before each finalize */ + int cnt; /* Number of records displayed so far */ + FILE *out; /* Write results here */ + int nErr; /* Number of errors seen */ + int mode; /* An output mode setting */ + int writableSchema; /* True if PRAGMA writable_schema=ON */ + int showHeader; /* True to show column names in List or Column mode */ + char *zDestTable; /* Name of destination table when MODE_Insert */ + char separator[20]; /* Separator character for MODE_List */ + int colWidth[100]; /* Requested width of each column when in column mode*/ + int actualWidth[100]; /* Actual width of each column */ + char nullvalue[20]; /* The text to print when a NULL comes back from + ** the database */ + struct previous_mode_data explainPrev; + /* Holds the mode information just before + ** .explain ON */ + char outfile[FILENAME_MAX]; /* Filename for *out */ + const char *zDbFilename; /* name of the database file */ + const char *zVfs; /* Name of VFS to use */ + sqlite3_stmt *pStmt; /* Current statement if any. */ + FILE *pLog; /* Write log output here */ +}; + +/* +** These are the allowed modes. +*/ +#define MODE_Line 0 /* One column per line. Blank line between records */ +#define MODE_Column 1 /* One record per line in neat columns */ +#define MODE_List 2 /* One record per line with a separator */ +#define MODE_Semi 3 /* Same as MODE_List but append ";" to each line */ +#define MODE_Html 4 /* Generate an XHTML table */ +#define MODE_Insert 5 /* Generate SQL "insert" statements */ +#define MODE_Tcl 6 /* Generate ANSI-C or TCL quoted elements */ +#define MODE_Csv 7 /* Quote strings, numbers are plain */ +#define MODE_Explain 8 /* Like MODE_Column, but do not truncate data */ + +static const char *modeDescr[] = { + "line", + "column", + "list", + "semi", + "html", + "insert", + "tcl", + "csv", + "explain", +}; + +/* +** Number of elements in an array +*/ +#define ArraySize(X) (int)(sizeof(X)/sizeof(X[0])) + +/* +** Compute a string length that is limited to what can be stored in +** lower 30 bits of a 32-bit signed integer. +*/ +static int strlen30(const char *z){ + const char *z2 = z; + while( *z2 ){ z2++; } + return 0x3fffffff & (int)(z2 - z); +} + +/* +** A callback for the sqlite3_log() interface. +*/ +static void shellLog(void *pArg, int iErrCode, const char *zMsg){ + struct callback_data *p = (struct callback_data*)pArg; + if( p->pLog==0 ) return; + fprintf(p->pLog, "(%d) %s\n", iErrCode, zMsg); + fflush(p->pLog); +} + +/* +** Output the given string as a hex-encoded blob (eg. X'1234' ) +*/ +static void output_hex_blob(FILE *out, const void *pBlob, int nBlob){ + int i; + char *zBlob = (char *)pBlob; + fprintf(out,"X'"); + for(i=0; i0 ){ + fprintf(out,"%.*s",i,z); + } + if( z[i]=='<' ){ + fprintf(out,"<"); + }else if( z[i]=='&' ){ + fprintf(out,"&"); + }else if( z[i]=='>' ){ + fprintf(out,">"); + }else if( z[i]=='\"' ){ + fprintf(out,"""); + }else if( z[i]=='\'' ){ + fprintf(out,"'"); + }else{ + break; + } + z += i + 1; + } +} + +/* +** If a field contains any character identified by a 1 in the following +** array, then the string must be quoted for CSV. +*/ +static const char needCsvQuote[] = { + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, +}; + +/* +** Output a single term of CSV. Actually, p->separator is used for +** the separator, which may or may not be a comma. p->nullvalue is +** the null value. Strings are quoted using ANSI-C rules. Numbers +** appear outside of quotes. +*/ +static void output_csv(struct callback_data *p, const char *z, int bSep){ + FILE *out = p->out; + if( z==0 ){ + fprintf(out,"%s",p->nullvalue); + }else{ + int i; + int nSep = strlen30(p->separator); + for(i=0; z[i]; i++){ + if( needCsvQuote[((unsigned char*)z)[i]] + || (z[i]==p->separator[0] && + (nSep==1 || memcmp(z, p->separator, nSep)==0)) ){ + i = 0; + break; + } + } + if( i==0 ){ + putc('"', out); + for(i=0; z[i]; i++){ + if( z[i]=='"' ) putc('"', out); + putc(z[i], out); + } + putc('"', out); + }else{ + fprintf(out, "%s", z); + } + } + if( bSep ){ + fprintf(p->out, "%s", p->separator); + } +} + +#ifdef SIGINT +/* +** This routine runs when the user presses Ctrl-C +*/ +static void interrupt_handler(int NotUsed){ + UNUSED_PARAMETER(NotUsed); + seenInterrupt = 1; + if( db ) sqlite3_interrupt(db); +} +#endif + +/* +** This is the callback routine that the shell +** invokes for each row of a query result. +*/ +static int shell_callback(void *pArg, int nArg, char **azArg, char **azCol, int *aiType){ + int i; + struct callback_data *p = (struct callback_data*)pArg; + + switch( p->mode ){ + case MODE_Line: { + int w = 5; + if( azArg==0 ) break; + for(i=0; iw ) w = len; + } + if( p->cnt++>0 ) fprintf(p->out,"\n"); + for(i=0; iout,"%*s = %s\n", w, azCol[i], + azArg[i] ? azArg[i] : p->nullvalue); + } + break; + } + case MODE_Explain: + case MODE_Column: { + if( p->cnt++==0 ){ + for(i=0; icolWidth) ){ + w = p->colWidth[i]; + }else{ + w = 0; + } + if( w<=0 ){ + w = strlen30(azCol[i] ? azCol[i] : ""); + if( w<10 ) w = 10; + n = strlen30(azArg && azArg[i] ? azArg[i] : p->nullvalue); + if( wactualWidth) ){ + p->actualWidth[i] = w; + } + if( p->showHeader ){ + fprintf(p->out,"%-*.*s%s",w,w,azCol[i], i==nArg-1 ? "\n": " "); + } + } + if( p->showHeader ){ + for(i=0; iactualWidth) ){ + w = p->actualWidth[i]; + }else{ + w = 10; + } + fprintf(p->out,"%-*.*s%s",w,w,"-----------------------------------" + "----------------------------------------------------------", + i==nArg-1 ? "\n": " "); + } + } + } + if( azArg==0 ) break; + for(i=0; iactualWidth) ){ + w = p->actualWidth[i]; + }else{ + w = 10; + } + if( p->mode==MODE_Explain && azArg[i] && + strlen30(azArg[i])>w ){ + w = strlen30(azArg[i]); + } + fprintf(p->out,"%-*.*s%s",w,w, + azArg[i] ? azArg[i] : p->nullvalue, i==nArg-1 ? "\n": " "); + } + break; + } + case MODE_Semi: + case MODE_List: { + if( p->cnt++==0 && p->showHeader ){ + for(i=0; iout,"%s%s",azCol[i], i==nArg-1 ? "\n" : p->separator); + } + } + if( azArg==0 ) break; + for(i=0; inullvalue; + fprintf(p->out, "%s", z); + if( iout, "%s", p->separator); + }else if( p->mode==MODE_Semi ){ + fprintf(p->out, ";\n"); + }else{ + fprintf(p->out, "\n"); + } + } + break; + } + case MODE_Html: { + if( p->cnt++==0 && p->showHeader ){ + fprintf(p->out,""); + for(i=0; iout,"\n"); + } + fprintf(p->out,"\n"); + } + if( azArg==0 ) break; + fprintf(p->out,""); + for(i=0; iout,"\n"); + } + fprintf(p->out,"\n"); + break; + } + case MODE_Tcl: { + if( p->cnt++==0 && p->showHeader ){ + for(i=0; iout,azCol[i] ? azCol[i] : ""); + fprintf(p->out, "%s", p->separator); + } + fprintf(p->out,"\n"); + } + if( azArg==0 ) break; + for(i=0; iout, azArg[i] ? azArg[i] : p->nullvalue); + fprintf(p->out, "%s", p->separator); + } + fprintf(p->out,"\n"); + break; + } + case MODE_Csv: { + if( p->cnt++==0 && p->showHeader ){ + for(i=0; iout,"\n"); + } + if( azArg==0 ) break; + for(i=0; iout,"\n"); + break; + } + case MODE_Insert: { + p->cnt++; + if( azArg==0 ) break; + fprintf(p->out,"INSERT INTO %s VALUES(",p->zDestTable); + for(i=0; i0 ? ",": ""; + if( (azArg[i]==0) || (aiType && aiType[i]==SQLITE_NULL) ){ + fprintf(p->out,"%sNULL",zSep); + }else if( aiType && aiType[i]==SQLITE_TEXT ){ + if( zSep[0] ) fprintf(p->out,"%s",zSep); + output_quoted_string(p->out, azArg[i]); + }else if( aiType && (aiType[i]==SQLITE_INTEGER || aiType[i]==SQLITE_FLOAT) ){ + fprintf(p->out,"%s%s",zSep, azArg[i]); + }else if( aiType && aiType[i]==SQLITE_BLOB && p->pStmt ){ + const void *pBlob = sqlite3_column_blob(p->pStmt, i); + int nBlob = sqlite3_column_bytes(p->pStmt, i); + if( zSep[0] ) fprintf(p->out,"%s",zSep); + output_hex_blob(p->out, pBlob, nBlob); + }else if( isNumber(azArg[i], 0) ){ + fprintf(p->out,"%s%s",zSep, azArg[i]); + }else{ + if( zSep[0] ) fprintf(p->out,"%s",zSep); + output_quoted_string(p->out, azArg[i]); + } + } + fprintf(p->out,");\n"); + break; + } + } + return 0; +} + +/* +** This is the callback routine that the SQLite library +** invokes for each row of a query result. +*/ +static int callback(void *pArg, int nArg, char **azArg, char **azCol){ + /* since we don't have type info, call the shell_callback with a NULL value */ + return shell_callback(pArg, nArg, azArg, azCol, NULL); +} + +/* +** Set the destination table field of the callback_data structure to +** the name of the table given. Escape any quote characters in the +** table name. +*/ +static void set_table_name(struct callback_data *p, const char *zName){ + int i, n; + int needQuote; + char *z; + + if( p->zDestTable ){ + free(p->zDestTable); + p->zDestTable = 0; + } + if( zName==0 ) return; + needQuote = !isalpha((unsigned char)*zName) && *zName!='_'; + for(i=n=0; zName[i]; i++, n++){ + if( !isalnum((unsigned char)zName[i]) && zName[i]!='_' ){ + needQuote = 1; + if( zName[i]=='\'' ) n++; + } + } + if( needQuote ) n += 2; + z = p->zDestTable = malloc( n+1 ); + if( z==0 ){ + fprintf(stderr,"Error: out of memory\n"); + exit(1); + } + n = 0; + if( needQuote ) z[n++] = '\''; + for(i=0; zName[i]; i++){ + z[n++] = zName[i]; + if( zName[i]=='\'' ) z[n++] = '\''; + } + if( needQuote ) z[n++] = '\''; + z[n] = 0; +} + +/* zIn is either a pointer to a NULL-terminated string in memory obtained +** from malloc(), or a NULL pointer. The string pointed to by zAppend is +** added to zIn, and the result returned in memory obtained from malloc(). +** zIn, if it was not NULL, is freed. +** +** If the third argument, quote, is not '\0', then it is used as a +** quote character for zAppend. +*/ +static char *appendText(char *zIn, char const *zAppend, char quote){ + int len; + int i; + int nAppend = strlen30(zAppend); + int nIn = (zIn?strlen30(zIn):0); + + len = nAppend+nIn+1; + if( quote ){ + len += 2; + for(i=0; idb, zSelect, -1, &pSelect, 0); + if( rc!=SQLITE_OK || !pSelect ){ + fprintf(p->out, "/**** ERROR: (%d) %s *****/\n", rc, sqlite3_errmsg(p->db)); + p->nErr++; + return rc; + } + rc = sqlite3_step(pSelect); + while( rc==SQLITE_ROW ){ + if( zFirstRow ){ + fprintf(p->out, "%s", zFirstRow); + zFirstRow = 0; + } + fprintf(p->out, "%s;\n", sqlite3_column_text(pSelect, 0)); + rc = sqlite3_step(pSelect); + } + rc = sqlite3_finalize(pSelect); + if( rc!=SQLITE_OK ){ + fprintf(p->out, "/**** ERROR: (%d) %s *****/\n", rc, sqlite3_errmsg(p->db)); + p->nErr++; + } + return rc; +} + +/* +** Allocate space and save off current error string. +*/ +static char *save_err_msg( + sqlite3 *db /* Database to query */ +){ + int nErrMsg = 1+strlen30(sqlite3_errmsg(db)); + char *zErrMsg = sqlite3_malloc(nErrMsg); + if( zErrMsg ){ + memcpy(zErrMsg, sqlite3_errmsg(db), nErrMsg); + } + return zErrMsg; +} + +/* +** Display memory stats. +*/ +static int display_stats( + sqlite3 *db, /* Database to query */ + struct callback_data *pArg, /* Pointer to struct callback_data */ + int bReset /* True to reset the stats */ +){ + int iCur; + int iHiwtr; + + if( pArg && pArg->out ){ + + iHiwtr = iCur = -1; + sqlite3_status(SQLITE_STATUS_MEMORY_USED, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Memory Used: %d (max %d) bytes\n", iCur, iHiwtr); + iHiwtr = iCur = -1; + sqlite3_status(SQLITE_STATUS_MALLOC_COUNT, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Number of Outstanding Allocations: %d (max %d)\n", iCur, iHiwtr); +/* +** Not currently used by the CLI. +** iHiwtr = iCur = -1; +** sqlite3_status(SQLITE_STATUS_PAGECACHE_USED, &iCur, &iHiwtr, bReset); +** fprintf(pArg->out, "Number of Pcache Pages Used: %d (max %d) pages\n", iCur, iHiwtr); +*/ + iHiwtr = iCur = -1; + sqlite3_status(SQLITE_STATUS_PAGECACHE_OVERFLOW, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Number of Pcache Overflow Bytes: %d (max %d) bytes\n", iCur, iHiwtr); +/* +** Not currently used by the CLI. +** iHiwtr = iCur = -1; +** sqlite3_status(SQLITE_STATUS_SCRATCH_USED, &iCur, &iHiwtr, bReset); +** fprintf(pArg->out, "Number of Scratch Allocations Used: %d (max %d)\n", iCur, iHiwtr); +*/ + iHiwtr = iCur = -1; + sqlite3_status(SQLITE_STATUS_SCRATCH_OVERFLOW, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Number of Scratch Overflow Bytes: %d (max %d) bytes\n", iCur, iHiwtr); + iHiwtr = iCur = -1; + sqlite3_status(SQLITE_STATUS_MALLOC_SIZE, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Largest Allocation: %d bytes\n", iHiwtr); + iHiwtr = iCur = -1; + sqlite3_status(SQLITE_STATUS_PAGECACHE_SIZE, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Largest Pcache Allocation: %d bytes\n", iHiwtr); + iHiwtr = iCur = -1; + sqlite3_status(SQLITE_STATUS_SCRATCH_SIZE, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Largest Scratch Allocation: %d bytes\n", iHiwtr); +#ifdef YYTRACKMAXSTACKDEPTH + iHiwtr = iCur = -1; + sqlite3_status(SQLITE_STATUS_PARSER_STACK, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Deepest Parser Stack: %d (max %d)\n", iCur, iHiwtr); +#endif + } + + if( pArg && pArg->out && db ){ + iHiwtr = iCur = -1; + sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_USED, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Lookaside Slots Used: %d (max %d)\n", iCur, iHiwtr); + sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_HIT, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Successful lookaside attempts: %d\n", iHiwtr); + sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Lookaside failures due to size: %d\n", iHiwtr); + sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Lookaside failures due to OOM: %d\n", iHiwtr); + iHiwtr = iCur = -1; + sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_USED, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Pager Heap Usage: %d bytes\n", iCur); iHiwtr = iCur = -1; + sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_HIT, &iCur, &iHiwtr, 1); + fprintf(pArg->out, "Page cache hits: %d\n", iCur); + iHiwtr = iCur = -1; + sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_MISS, &iCur, &iHiwtr, 1); + fprintf(pArg->out, "Page cache misses: %d\n", iCur); + iHiwtr = iCur = -1; + sqlite3_db_status(db, SQLITE_DBSTATUS_SCHEMA_USED, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Schema Heap Usage: %d bytes\n", iCur); + iHiwtr = iCur = -1; + sqlite3_db_status(db, SQLITE_DBSTATUS_STMT_USED, &iCur, &iHiwtr, bReset); + fprintf(pArg->out, "Statement Heap/Lookaside Usage: %d bytes\n", iCur); + } + + if( pArg && pArg->out && db && pArg->pStmt ){ + iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FULLSCAN_STEP, bReset); + fprintf(pArg->out, "Fullscan Steps: %d\n", iCur); + iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_SORT, bReset); + fprintf(pArg->out, "Sort Operations: %d\n", iCur); + iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_AUTOINDEX, bReset); + fprintf(pArg->out, "Autoindex Inserts: %d\n", iCur); + } + + return 0; +} + +/* +** Execute a statement or set of statements. Print +** any result rows/columns depending on the current mode +** set via the supplied callback. +** +** This is very similar to SQLite's built-in sqlite3_exec() +** function except it takes a slightly different callback +** and callback data argument. +*/ +static int shell_exec( + sqlite3 *db, /* An open database */ + const char *zSql, /* SQL to be evaluated */ + int (*xCallback)(void*,int,char**,char**,int*), /* Callback function */ + /* (not the same as sqlite3_exec) */ + struct callback_data *pArg, /* Pointer to struct callback_data */ + char **pzErrMsg /* Error msg written here */ +){ + sqlite3_stmt *pStmt = NULL; /* Statement to execute. */ + int rc = SQLITE_OK; /* Return Code */ + int rc2; + const char *zLeftover; /* Tail of unprocessed SQL */ + + if( pzErrMsg ){ + *pzErrMsg = NULL; + } + + while( zSql[0] && (SQLITE_OK == rc) ){ + rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover); + if( SQLITE_OK != rc ){ + if( pzErrMsg ){ + *pzErrMsg = save_err_msg(db); + } + }else{ + if( !pStmt ){ + /* this happens for a comment or white-space */ + zSql = zLeftover; + while( IsSpace(zSql[0]) ) zSql++; + continue; + } + + /* save off the prepared statment handle and reset row count */ + if( pArg ){ + pArg->pStmt = pStmt; + pArg->cnt = 0; + } + + /* echo the sql statement if echo on */ + if( pArg && pArg->echoOn ){ + const char *zStmtSql = sqlite3_sql(pStmt); + fprintf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql); + } + + /* perform the first step. this will tell us if we + ** have a result set or not and how wide it is. + */ + rc = sqlite3_step(pStmt); + /* if we have a result set... */ + if( SQLITE_ROW == rc ){ + /* if we have a callback... */ + if( xCallback ){ + /* allocate space for col name ptr, value ptr, and type */ + int nCol = sqlite3_column_count(pStmt); + void *pData = sqlite3_malloc(3*nCol*sizeof(const char*) + 1); + if( !pData ){ + rc = SQLITE_NOMEM; + }else{ + char **azCols = (char **)pData; /* Names of result columns */ + char **azVals = &azCols[nCol]; /* Results */ + int *aiTypes = (int *)&azVals[nCol]; /* Result types */ + int i; + assert(sizeof(int) <= sizeof(char *)); + /* save off ptrs to column names */ + for(i=0; istatsOn ){ + display_stats(db, pArg, 0); + } + + /* Finalize the statement just executed. If this fails, save a + ** copy of the error message. Otherwise, set zSql to point to the + ** next statement to execute. */ + rc2 = sqlite3_finalize(pStmt); + if( rc!=SQLITE_NOMEM ) rc = rc2; + if( rc==SQLITE_OK ){ + zSql = zLeftover; + while( IsSpace(zSql[0]) ) zSql++; + }else if( pzErrMsg ){ + *pzErrMsg = save_err_msg(db); + } + + /* clear saved stmt handle */ + if( pArg ){ + pArg->pStmt = NULL; + } + } + } /* end while */ + + return rc; +} + + +/* +** This is a different callback routine used for dumping the database. +** Each row received by this callback consists of a table name, +** the table type ("index" or "table") and SQL to create the table. +** This routine should print text sufficient to recreate the table. +*/ +static int dump_callback(void *pArg, int nArg, char **azArg, char **azCol){ + int rc; + const char *zTable; + const char *zType; + const char *zSql; + const char *zPrepStmt = 0; + struct callback_data *p = (struct callback_data *)pArg; + + UNUSED_PARAMETER(azCol); + if( nArg!=3 ) return 1; + zTable = azArg[0]; + zType = azArg[1]; + zSql = azArg[2]; + + if( strcmp(zTable, "sqlite_sequence")==0 ){ + zPrepStmt = "DELETE FROM sqlite_sequence;\n"; + }else if( strcmp(zTable, "sqlite_stat1")==0 ){ + fprintf(p->out, "ANALYZE sqlite_master;\n"); + }else if( strncmp(zTable, "sqlite_", 7)==0 ){ + return 0; + }else if( strncmp(zSql, "CREATE VIRTUAL TABLE", 20)==0 ){ + char *zIns; + if( !p->writableSchema ){ + fprintf(p->out, "PRAGMA writable_schema=ON;\n"); + p->writableSchema = 1; + } + zIns = sqlite3_mprintf( + "INSERT INTO sqlite_master(type,name,tbl_name,rootpage,sql)" + "VALUES('table','%q','%q',0,'%q');", + zTable, zTable, zSql); + fprintf(p->out, "%s\n", zIns); + sqlite3_free(zIns); + return 0; + }else{ + fprintf(p->out, "%s;\n", zSql); + } + + if( strcmp(zType, "table")==0 ){ + sqlite3_stmt *pTableInfo = 0; + char *zSelect = 0; + char *zTableInfo = 0; + char *zTmp = 0; + int nRow = 0; + + zTableInfo = appendText(zTableInfo, "PRAGMA table_info(", 0); + zTableInfo = appendText(zTableInfo, zTable, '"'); + zTableInfo = appendText(zTableInfo, ");", 0); + + rc = sqlite3_prepare(p->db, zTableInfo, -1, &pTableInfo, 0); + free(zTableInfo); + if( rc!=SQLITE_OK || !pTableInfo ){ + return 1; + } + + zSelect = appendText(zSelect, "SELECT 'INSERT INTO ' || ", 0); + zTmp = appendText(zTmp, zTable, '"'); + if( zTmp ){ + zSelect = appendText(zSelect, zTmp, '\''); + } + zSelect = appendText(zSelect, " || ' VALUES(' || ", 0); + rc = sqlite3_step(pTableInfo); + while( rc==SQLITE_ROW ){ + const char *zText = (const char *)sqlite3_column_text(pTableInfo, 1); + zSelect = appendText(zSelect, "quote(", 0); + zSelect = appendText(zSelect, zText, '"'); + rc = sqlite3_step(pTableInfo); + if( rc==SQLITE_ROW ){ + zSelect = appendText(zSelect, ") || ',' || ", 0); + }else{ + zSelect = appendText(zSelect, ") ", 0); + } + nRow++; + } + rc = sqlite3_finalize(pTableInfo); + if( rc!=SQLITE_OK || nRow==0 ){ + free(zSelect); + return 1; + } + zSelect = appendText(zSelect, "|| ')' FROM ", 0); + zSelect = appendText(zSelect, zTable, '"'); + + rc = run_table_dump_query(p, zSelect, zPrepStmt); + if( rc==SQLITE_CORRUPT ){ + zSelect = appendText(zSelect, " ORDER BY rowid DESC", 0); + run_table_dump_query(p, zSelect, 0); + } + if( zSelect ) free(zSelect); + } + return 0; +} + +/* +** Run zQuery. Use dump_callback() as the callback routine so that +** the contents of the query are output as SQL statements. +** +** If we get a SQLITE_CORRUPT error, rerun the query after appending +** "ORDER BY rowid DESC" to the end. +*/ +static int run_schema_dump_query( + struct callback_data *p, + const char *zQuery +){ + int rc; + char *zErr = 0; + rc = sqlite3_exec(p->db, zQuery, dump_callback, p, &zErr); + if( rc==SQLITE_CORRUPT ){ + char *zQ2; + int len = strlen30(zQuery); + fprintf(p->out, "/****** CORRUPTION ERROR *******/\n"); + if( zErr ){ + fprintf(p->out, "/****** %s ******/\n", zErr); + sqlite3_free(zErr); + zErr = 0; + } + zQ2 = malloc( len+100 ); + if( zQ2==0 ) return rc; + sqlite3_snprintf(sizeof(zQ2), zQ2, "%s ORDER BY rowid DESC", zQuery); + rc = sqlite3_exec(p->db, zQ2, dump_callback, p, &zErr); + if( rc ){ + fprintf(p->out, "/****** ERROR: %s ******/\n", zErr); + }else{ + rc = SQLITE_CORRUPT; + } + sqlite3_free(zErr); + free(zQ2); + } + return rc; +} + +/* +** Text of a help message +*/ +static char zHelp[] = + ".backup ?DB? FILE Backup DB (default \"main\") to FILE\n" + ".bail ON|OFF Stop after hitting an error. Default OFF\n" + ".databases List names and files of attached databases\n" + ".dump ?TABLE? ... Dump the database in an SQL text format\n" + " If TABLE specified, only dump tables matching\n" + " LIKE pattern TABLE.\n" + ".echo ON|OFF Turn command echo on or off\n" + ".exit Exit this program\n" + ".explain ?ON|OFF? Turn output mode suitable for EXPLAIN on or off.\n" + " With no args, it turns EXPLAIN on.\n" + ".header(s) ON|OFF Turn display of headers on or off\n" + ".help Show this message\n" + ".import FILE TABLE Import data from FILE into TABLE\n" + ".indices ?TABLE? Show names of all indices\n" + " If TABLE specified, only show indices for tables\n" + " matching LIKE pattern TABLE.\n" +#ifdef SQLITE_ENABLE_IOTRACE + ".iotrace FILE Enable I/O diagnostic logging to FILE\n" +#endif +#ifndef SQLITE_OMIT_LOAD_EXTENSION + ".load FILE ?ENTRY? Load an extension library\n" +#endif + ".log FILE|off Turn logging on or off. FILE can be stderr/stdout\n" + ".mode MODE ?TABLE? Set output mode where MODE is one of:\n" + " csv Comma-separated values\n" + " column Left-aligned columns. (See .width)\n" + " html HTML
    "); + output_html_string(p->out, azCol[i]); + fprintf(p->out,"
    "); + output_html_string(p->out, azArg[i] ? azArg[i] : p->nullvalue); + fprintf(p->out,"
    code\n" + " insert SQL insert statements for TABLE\n" + " line One value per line\n" + " list Values delimited by .separator string\n" + " tabs Tab-separated values\n" + " tcl TCL list elements\n" + ".nullvalue STRING Print STRING in place of NULL values\n" + ".output FILENAME Send output to FILENAME\n" + ".output stdout Send output to the screen\n" + ".prompt MAIN CONTINUE Replace the standard prompts\n" + ".quit Exit this program\n" + ".read FILENAME Execute SQL in FILENAME\n" + ".restore ?DB? FILE Restore content of DB (default \"main\") from FILE\n" + ".schema ?TABLE? Show the CREATE statements\n" + " If TABLE specified, only show tables matching\n" + " LIKE pattern TABLE.\n" + ".separator STRING Change separator used by output mode and .import\n" + ".show Show the current values for various settings\n" + ".stats ON|OFF Turn stats on or off\n" + ".tables ?TABLE? List names of tables\n" + " If TABLE specified, only list tables matching\n" + " LIKE pattern TABLE.\n" + ".timeout MS Try opening locked tables for MS milliseconds\n" + ".width NUM1 NUM2 ... Set column widths for \"column\" mode\n" +; + +static char zTimerHelp[] = + ".timer ON|OFF Turn the CPU timer measurement on or off\n" +; + +/* Forward reference */ +static int process_input(struct callback_data *p, FILE *in); + +/* +** Make sure the database is open. If it is not, then open it. If +** the database fails to open, print an error message and exit. +*/ +static void open_db(struct callback_data *p){ + if( p->db==0 ){ + sqlite3_open(p->zDbFilename, &p->db); + db = p->db; + if( db && sqlite3_errcode(db)==SQLITE_OK ){ + sqlite3_create_function(db, "shellstatic", 0, SQLITE_UTF8, 0, + shellstaticFunc, 0, 0); + } + if( db==0 || SQLITE_OK!=sqlite3_errcode(db) ){ + fprintf(stderr,"Error: unable to open database \"%s\": %s\n", + p->zDbFilename, sqlite3_errmsg(db)); + exit(1); + } +#ifndef SQLITE_OMIT_LOAD_EXTENSION + sqlite3_enable_load_extension(p->db, 1); +#endif + } +} + +/* +** Do C-language style dequoting. +** +** \t -> tab +** \n -> newline +** \r -> carriage return +** \NNN -> ascii character NNN in octal +** \\ -> backslash +*/ +static void resolve_backslashes(char *z){ + int i, j; + char c; + for(i=j=0; (c = z[i])!=0; i++, j++){ + if( c=='\\' ){ + c = z[++i]; + if( c=='n' ){ + c = '\n'; + }else if( c=='t' ){ + c = '\t'; + }else if( c=='r' ){ + c = '\r'; + }else if( c>='0' && c<='7' ){ + c -= '0'; + if( z[i+1]>='0' && z[i+1]<='7' ){ + i++; + c = (c<<3) + z[i] - '0'; + if( z[i+1]>='0' && z[i+1]<='7' ){ + i++; + c = (c<<3) + z[i] - '0'; + } + } + } + } + z[j] = c; + } + z[j] = 0; +} + +/* +** Interpret zArg as a boolean value. Return either 0 or 1. +*/ +static int booleanValue(char *zArg){ + int val = atoi(zArg); + int j; + for(j=0; zArg[j]; j++){ + zArg[j] = ToLower(zArg[j]); + } + if( strcmp(zArg,"on")==0 ){ + val = 1; + }else if( strcmp(zArg,"yes")==0 ){ + val = 1; + } + return val; +} + +/* +** If an input line begins with "." then invoke this routine to +** process that line. +** +** Return 1 on error, 2 to exit, and 0 otherwise. +*/ +static int do_meta_command(char *zLine, struct callback_data *p){ + int i = 1; + int nArg = 0; + int n, c; + int rc = 0; + char *azArg[50]; + + /* Parse the input line into tokens. + */ + while( zLine[i] && nArg=3 && strncmp(azArg[0], "backup", n)==0 && nArg>1 && nArg<4){ + const char *zDestFile; + const char *zDb; + sqlite3 *pDest; + sqlite3_backup *pBackup; + if( nArg==2 ){ + zDestFile = azArg[1]; + zDb = "main"; + }else{ + zDestFile = azArg[2]; + zDb = azArg[1]; + } + rc = sqlite3_open(zDestFile, &pDest); + if( rc!=SQLITE_OK ){ + fprintf(stderr, "Error: cannot open \"%s\"\n", zDestFile); + sqlite3_close(pDest); + return 1; + } + open_db(p); + pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb); + if( pBackup==0 ){ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(pDest)); + sqlite3_close(pDest); + return 1; + } + while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK ){} + sqlite3_backup_finish(pBackup); + if( rc==SQLITE_DONE ){ + rc = 0; + }else{ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(pDest)); + rc = 1; + } + sqlite3_close(pDest); + }else + + if( c=='b' && n>=3 && strncmp(azArg[0], "bail", n)==0 && nArg>1 && nArg<3 ){ + bail_on_error = booleanValue(azArg[1]); + }else + + if( c=='d' && n>1 && strncmp(azArg[0], "databases", n)==0 && nArg==1 ){ + struct callback_data data; + char *zErrMsg = 0; + open_db(p); + memcpy(&data, p, sizeof(data)); + data.showHeader = 1; + data.mode = MODE_Column; + data.colWidth[0] = 3; + data.colWidth[1] = 15; + data.colWidth[2] = 58; + data.cnt = 0; + sqlite3_exec(p->db, "PRAGMA database_list; ", callback, &data, &zErrMsg); + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + rc = 1; + } + }else + + if( c=='d' && strncmp(azArg[0], "dump", n)==0 && nArg<3 ){ + open_db(p); + /* When playing back a "dump", the content might appear in an order + ** which causes immediate foreign key constraints to be violated. + ** So disable foreign-key constraint enforcement to prevent problems. */ + fprintf(p->out, "PRAGMA foreign_keys=OFF;\n"); + fprintf(p->out, "BEGIN TRANSACTION;\n"); + p->writableSchema = 0; + sqlite3_exec(p->db, "SAVEPOINT dump; PRAGMA writable_schema=ON", 0, 0, 0); + p->nErr = 0; + if( nArg==1 ){ + run_schema_dump_query(p, + "SELECT name, type, sql FROM sqlite_master " + "WHERE sql NOT NULL AND type=='table' AND name!='sqlite_sequence'" + ); + run_schema_dump_query(p, + "SELECT name, type, sql FROM sqlite_master " + "WHERE name=='sqlite_sequence'" + ); + run_table_dump_query(p, + "SELECT sql FROM sqlite_master " + "WHERE sql NOT NULL AND type IN ('index','trigger','view')", 0 + ); + }else{ + int i; + for(i=1; iwritableSchema ){ + fprintf(p->out, "PRAGMA writable_schema=OFF;\n"); + p->writableSchema = 0; + } + sqlite3_exec(p->db, "PRAGMA writable_schema=OFF;", 0, 0, 0); + sqlite3_exec(p->db, "RELEASE dump;", 0, 0, 0); + fprintf(p->out, p->nErr ? "ROLLBACK; -- due to errors\n" : "COMMIT;\n"); + }else + + if( c=='e' && strncmp(azArg[0], "echo", n)==0 && nArg>1 && nArg<3 ){ + p->echoOn = booleanValue(azArg[1]); + }else + + if( c=='e' && strncmp(azArg[0], "exit", n)==0 && nArg==1 ){ + rc = 2; + }else + + if( c=='e' && strncmp(azArg[0], "explain", n)==0 && nArg<3 ){ + int val = nArg>=2 ? booleanValue(azArg[1]) : 1; + if(val == 1) { + if(!p->explainPrev.valid) { + p->explainPrev.valid = 1; + p->explainPrev.mode = p->mode; + p->explainPrev.showHeader = p->showHeader; + memcpy(p->explainPrev.colWidth,p->colWidth,sizeof(p->colWidth)); + } + /* We could put this code under the !p->explainValid + ** condition so that it does not execute if we are already in + ** explain mode. However, always executing it allows us an easy + ** was to reset to explain mode in case the user previously + ** did an .explain followed by a .width, .mode or .header + ** command. + */ + p->mode = MODE_Explain; + p->showHeader = 1; + memset(p->colWidth,0,ArraySize(p->colWidth)); + p->colWidth[0] = 4; /* addr */ + p->colWidth[1] = 13; /* opcode */ + p->colWidth[2] = 4; /* P1 */ + p->colWidth[3] = 4; /* P2 */ + p->colWidth[4] = 4; /* P3 */ + p->colWidth[5] = 13; /* P4 */ + p->colWidth[6] = 2; /* P5 */ + p->colWidth[7] = 13; /* Comment */ + }else if (p->explainPrev.valid) { + p->explainPrev.valid = 0; + p->mode = p->explainPrev.mode; + p->showHeader = p->explainPrev.showHeader; + memcpy(p->colWidth,p->explainPrev.colWidth,sizeof(p->colWidth)); + } + }else + + if( c=='h' && (strncmp(azArg[0], "header", n)==0 || + strncmp(azArg[0], "headers", n)==0) && nArg>1 && nArg<3 ){ + p->showHeader = booleanValue(azArg[1]); + }else + + if( c=='h' && strncmp(azArg[0], "help", n)==0 ){ + fprintf(stderr,"%s",zHelp); + if( HAS_TIMER ){ + fprintf(stderr,"%s",zTimerHelp); + } + }else + + if( c=='i' && strncmp(azArg[0], "import", n)==0 && nArg==3 ){ + char *zTable = azArg[2]; /* Insert data into this table */ + char *zFile = azArg[1]; /* The file from which to extract data */ + sqlite3_stmt *pStmt = NULL; /* A statement */ + int nCol; /* Number of columns in the table */ + int nByte; /* Number of bytes in an SQL string */ + int i, j; /* Loop counters */ + int nSep; /* Number of bytes in p->separator[] */ + char *zSql; /* An SQL statement */ + char *zLine; /* A single line of input from the file */ + char **azCol; /* zLine[] broken up into columns */ + char *zCommit; /* How to commit changes */ + FILE *in; /* The input file */ + int lineno = 0; /* Line number of input file */ + + open_db(p); + nSep = strlen30(p->separator); + if( nSep==0 ){ + fprintf(stderr, "Error: non-null separator required for import\n"); + return 1; + } + zSql = sqlite3_mprintf("SELECT * FROM %s", zTable); + if( zSql==0 ){ + fprintf(stderr, "Error: out of memory\n"); + return 1; + } + nByte = strlen30(zSql); + rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0); + sqlite3_free(zSql); + if( rc ){ + if (pStmt) sqlite3_finalize(pStmt); + fprintf(stderr,"Error: %s\n", sqlite3_errmsg(db)); + return 1; + } + nCol = sqlite3_column_count(pStmt); + sqlite3_finalize(pStmt); + pStmt = 0; + if( nCol==0 ) return 0; /* no columns, no error */ + zSql = malloc( nByte + 20 + nCol*2 ); + if( zSql==0 ){ + fprintf(stderr, "Error: out of memory\n"); + return 1; + } + sqlite3_snprintf(nByte+20, zSql, "INSERT INTO %s VALUES(?", zTable); + j = strlen30(zSql); + for(i=1; idb, zSql, -1, &pStmt, 0); + free(zSql); + if( rc ){ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(db)); + if (pStmt) sqlite3_finalize(pStmt); + return 1; + } + in = fopen(zFile, "rb"); + if( in==0 ){ + fprintf(stderr, "Error: cannot open \"%s\"\n", zFile); + sqlite3_finalize(pStmt); + return 1; + } + azCol = malloc( sizeof(azCol[0])*(nCol+1) ); + if( azCol==0 ){ + fprintf(stderr, "Error: out of memory\n"); + fclose(in); + sqlite3_finalize(pStmt); + return 1; + } + sqlite3_exec(p->db, "BEGIN", 0, 0, 0); + zCommit = "COMMIT"; + while( (zLine = local_getline(0, in))!=0 ){ + char *z; + lineno++; + azCol[0] = zLine; + for(i=0, z=zLine; *z && *z!='\n' && *z!='\r'; z++){ + if( *z==p->separator[0] && strncmp(z, p->separator, nSep)==0 ){ + *z = 0; + i++; + if( idb, zCommit, 0, 0, 0); + }else + + if( c=='i' && strncmp(azArg[0], "indices", n)==0 && nArg<3 ){ + struct callback_data data; + char *zErrMsg = 0; + open_db(p); + memcpy(&data, p, sizeof(data)); + data.showHeader = 0; + data.mode = MODE_List; + if( nArg==1 ){ + rc = sqlite3_exec(p->db, + "SELECT name FROM sqlite_master " + "WHERE type='index' AND name NOT LIKE 'sqlite_%' " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type='index' " + "ORDER BY 1", + callback, &data, &zErrMsg + ); + }else{ + zShellStatic = azArg[1]; + rc = sqlite3_exec(p->db, + "SELECT name FROM sqlite_master " + "WHERE type='index' AND tbl_name LIKE shellstatic() " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type='index' AND tbl_name LIKE shellstatic() " + "ORDER BY 1", + callback, &data, &zErrMsg + ); + zShellStatic = 0; + } + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + rc = 1; + }else if( rc != SQLITE_OK ){ + fprintf(stderr,"Error: querying sqlite_master and sqlite_temp_master\n"); + rc = 1; + } + }else + +#ifdef SQLITE_ENABLE_IOTRACE + if( c=='i' && strncmp(azArg[0], "iotrace", n)==0 ){ + extern void (*sqlite3IoTrace)(const char*, ...); + if( iotrace && iotrace!=stdout ) fclose(iotrace); + iotrace = 0; + if( nArg<2 ){ + sqlite3IoTrace = 0; + }else if( strcmp(azArg[1], "-")==0 ){ + sqlite3IoTrace = iotracePrintf; + iotrace = stdout; + }else{ + iotrace = fopen(azArg[1], "w"); + if( iotrace==0 ){ + fprintf(stderr, "Error: cannot open \"%s\"\n", azArg[1]); + sqlite3IoTrace = 0; + rc = 1; + }else{ + sqlite3IoTrace = iotracePrintf; + } + } + }else +#endif + +#ifndef SQLITE_OMIT_LOAD_EXTENSION + if( c=='l' && strncmp(azArg[0], "load", n)==0 && nArg>=2 ){ + const char *zFile, *zProc; + char *zErrMsg = 0; + zFile = azArg[1]; + zProc = nArg>=3 ? azArg[2] : 0; + open_db(p); + rc = sqlite3_load_extension(p->db, zFile, zProc, &zErrMsg); + if( rc!=SQLITE_OK ){ + fprintf(stderr, "Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + rc = 1; + } + }else +#endif + + if( c=='l' && strncmp(azArg[0], "log", n)==0 && nArg>=2 ){ + const char *zFile = azArg[1]; + if( p->pLog && p->pLog!=stdout && p->pLog!=stderr ){ + fclose(p->pLog); + p->pLog = 0; + } + if( strcmp(zFile,"stdout")==0 ){ + p->pLog = stdout; + }else if( strcmp(zFile, "stderr")==0 ){ + p->pLog = stderr; + }else if( strcmp(zFile, "off")==0 ){ + p->pLog = 0; + }else{ + p->pLog = fopen(zFile, "w"); + if( p->pLog==0 ){ + fprintf(stderr, "Error: cannot open \"%s\"\n", zFile); + } + } + }else + + if( c=='m' && strncmp(azArg[0], "mode", n)==0 && nArg==2 ){ + int n2 = strlen30(azArg[1]); + if( (n2==4 && strncmp(azArg[1],"line",n2)==0) + || + (n2==5 && strncmp(azArg[1],"lines",n2)==0) ){ + p->mode = MODE_Line; + }else if( (n2==6 && strncmp(azArg[1],"column",n2)==0) + || + (n2==7 && strncmp(azArg[1],"columns",n2)==0) ){ + p->mode = MODE_Column; + }else if( n2==4 && strncmp(azArg[1],"list",n2)==0 ){ + p->mode = MODE_List; + }else if( n2==4 && strncmp(azArg[1],"html",n2)==0 ){ + p->mode = MODE_Html; + }else if( n2==3 && strncmp(azArg[1],"tcl",n2)==0 ){ + p->mode = MODE_Tcl; + }else if( n2==3 && strncmp(azArg[1],"csv",n2)==0 ){ + p->mode = MODE_Csv; + sqlite3_snprintf(sizeof(p->separator), p->separator, ","); + }else if( n2==4 && strncmp(azArg[1],"tabs",n2)==0 ){ + p->mode = MODE_List; + sqlite3_snprintf(sizeof(p->separator), p->separator, "\t"); + }else if( n2==6 && strncmp(azArg[1],"insert",n2)==0 ){ + p->mode = MODE_Insert; + set_table_name(p, "table"); + }else { + fprintf(stderr,"Error: mode should be one of: " + "column csv html insert line list tabs tcl\n"); + rc = 1; + } + }else + + if( c=='m' && strncmp(azArg[0], "mode", n)==0 && nArg==3 ){ + int n2 = strlen30(azArg[1]); + if( n2==6 && strncmp(azArg[1],"insert",n2)==0 ){ + p->mode = MODE_Insert; + set_table_name(p, azArg[2]); + }else { + fprintf(stderr, "Error: invalid arguments: " + " \"%s\". Enter \".help\" for help\n", azArg[2]); + rc = 1; + } + }else + + if( c=='n' && strncmp(azArg[0], "nullvalue", n)==0 && nArg==2 ) { + sqlite3_snprintf(sizeof(p->nullvalue), p->nullvalue, + "%.*s", (int)ArraySize(p->nullvalue)-1, azArg[1]); + }else + + if( c=='o' && strncmp(azArg[0], "output", n)==0 && nArg==2 ){ + if( p->out!=stdout ){ + fclose(p->out); + } + if( strcmp(azArg[1],"stdout")==0 ){ + p->out = stdout; + sqlite3_snprintf(sizeof(p->outfile), p->outfile, "stdout"); + }else{ + p->out = fopen(azArg[1], "wb"); + if( p->out==0 ){ + fprintf(stderr,"Error: cannot write to \"%s\"\n", azArg[1]); + p->out = stdout; + rc = 1; + } else { + sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", azArg[1]); + } + } + }else + + if( c=='p' && strncmp(azArg[0], "prompt", n)==0 && (nArg==2 || nArg==3)){ + if( nArg >= 2) { + strncpy(mainPrompt,azArg[1],(int)ArraySize(mainPrompt)-1); + } + if( nArg >= 3) { + strncpy(continuePrompt,azArg[2],(int)ArraySize(continuePrompt)-1); + } + }else + + if( c=='q' && strncmp(azArg[0], "quit", n)==0 && nArg==1 ){ + rc = 2; + }else + + if( c=='r' && n>=3 && strncmp(azArg[0], "read", n)==0 && nArg==2 ){ + FILE *alt = fopen(azArg[1], "rb"); + if( alt==0 ){ + fprintf(stderr,"Error: cannot open \"%s\"\n", azArg[1]); + rc = 1; + }else{ + rc = process_input(p, alt); + fclose(alt); + } + }else + + if( c=='r' && n>=3 && strncmp(azArg[0], "restore", n)==0 && nArg>1 && nArg<4){ + const char *zSrcFile; + const char *zDb; + sqlite3 *pSrc; + sqlite3_backup *pBackup; + int nTimeout = 0; + + if( nArg==2 ){ + zSrcFile = azArg[1]; + zDb = "main"; + }else{ + zSrcFile = azArg[2]; + zDb = azArg[1]; + } + rc = sqlite3_open(zSrcFile, &pSrc); + if( rc!=SQLITE_OK ){ + fprintf(stderr, "Error: cannot open \"%s\"\n", zSrcFile); + sqlite3_close(pSrc); + return 1; + } + open_db(p); + pBackup = sqlite3_backup_init(p->db, zDb, pSrc, "main"); + if( pBackup==0 ){ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(p->db)); + sqlite3_close(pSrc); + return 1; + } + while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK + || rc==SQLITE_BUSY ){ + if( rc==SQLITE_BUSY ){ + if( nTimeout++ >= 3 ) break; + sqlite3_sleep(100); + } + } + sqlite3_backup_finish(pBackup); + if( rc==SQLITE_DONE ){ + rc = 0; + }else if( rc==SQLITE_BUSY || rc==SQLITE_LOCKED ){ + fprintf(stderr, "Error: source database is busy\n"); + rc = 1; + }else{ + fprintf(stderr, "Error: %s\n", sqlite3_errmsg(p->db)); + rc = 1; + } + sqlite3_close(pSrc); + }else + + if( c=='s' && strncmp(azArg[0], "schema", n)==0 && nArg<3 ){ + struct callback_data data; + char *zErrMsg = 0; + open_db(p); + memcpy(&data, p, sizeof(data)); + data.showHeader = 0; + data.mode = MODE_Semi; + if( nArg>1 ){ + int i; + for(i=0; azArg[1][i]; i++) azArg[1][i] = ToLower(azArg[1][i]); + if( strcmp(azArg[1],"sqlite_master")==0 ){ + char *new_argv[2], *new_colv[2]; + new_argv[0] = "CREATE TABLE sqlite_master (\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")"; + new_argv[1] = 0; + new_colv[0] = "sql"; + new_colv[1] = 0; + callback(&data, 1, new_argv, new_colv); + rc = SQLITE_OK; + }else if( strcmp(azArg[1],"sqlite_temp_master")==0 ){ + char *new_argv[2], *new_colv[2]; + new_argv[0] = "CREATE TEMP TABLE sqlite_temp_master (\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")"; + new_argv[1] = 0; + new_colv[0] = "sql"; + new_colv[1] = 0; + callback(&data, 1, new_argv, new_colv); + rc = SQLITE_OK; + }else{ + zShellStatic = azArg[1]; + rc = sqlite3_exec(p->db, + "SELECT sql FROM " + " (SELECT sql sql, type type, tbl_name tbl_name, name name" + " FROM sqlite_master UNION ALL" + " SELECT sql, type, tbl_name, name FROM sqlite_temp_master) " + "WHERE tbl_name LIKE shellstatic() AND type!='meta' AND sql NOTNULL " + "ORDER BY substr(type,2,1), name", + callback, &data, &zErrMsg); + zShellStatic = 0; + } + }else{ + rc = sqlite3_exec(p->db, + "SELECT sql FROM " + " (SELECT sql sql, type type, tbl_name tbl_name, name name" + " FROM sqlite_master UNION ALL" + " SELECT sql, type, tbl_name, name FROM sqlite_temp_master) " + "WHERE type!='meta' AND sql NOTNULL AND name NOT LIKE 'sqlite_%'" + "ORDER BY substr(type,2,1), name", + callback, &data, &zErrMsg + ); + } + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + rc = 1; + }else if( rc != SQLITE_OK ){ + fprintf(stderr,"Error: querying schema information\n"); + rc = 1; + }else{ + rc = 0; + } + }else + + if( c=='s' && strncmp(azArg[0], "separator", n)==0 && nArg==2 ){ + sqlite3_snprintf(sizeof(p->separator), p->separator, + "%.*s", (int)sizeof(p->separator)-1, azArg[1]); + }else + + if( c=='s' && strncmp(azArg[0], "show", n)==0 && nArg==1 ){ + int i; + fprintf(p->out,"%9.9s: %s\n","echo", p->echoOn ? "on" : "off"); + fprintf(p->out,"%9.9s: %s\n","explain", p->explainPrev.valid ? "on" :"off"); + fprintf(p->out,"%9.9s: %s\n","headers", p->showHeader ? "on" : "off"); + fprintf(p->out,"%9.9s: %s\n","mode", modeDescr[p->mode]); + fprintf(p->out,"%9.9s: ", "nullvalue"); + output_c_string(p->out, p->nullvalue); + fprintf(p->out, "\n"); + fprintf(p->out,"%9.9s: %s\n","output", + strlen30(p->outfile) ? p->outfile : "stdout"); + fprintf(p->out,"%9.9s: ", "separator"); + output_c_string(p->out, p->separator); + fprintf(p->out, "\n"); + fprintf(p->out,"%9.9s: %s\n","stats", p->statsOn ? "on" : "off"); + fprintf(p->out,"%9.9s: ","width"); + for (i=0;i<(int)ArraySize(p->colWidth) && p->colWidth[i] != 0;i++) { + fprintf(p->out,"%d ",p->colWidth[i]); + } + fprintf(p->out,"\n"); + }else + + if( c=='s' && strncmp(azArg[0], "stats", n)==0 && nArg>1 && nArg<3 ){ + p->statsOn = booleanValue(azArg[1]); + }else + + if( c=='t' && n>1 && strncmp(azArg[0], "tables", n)==0 && nArg<3 ){ + char **azResult; + int nRow; + char *zErrMsg; + open_db(p); + if( nArg==1 ){ + rc = sqlite3_get_table(p->db, + "SELECT name FROM sqlite_master " + "WHERE type IN ('table','view') AND name NOT LIKE 'sqlite_%' " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type IN ('table','view') " + "ORDER BY 1", + &azResult, &nRow, 0, &zErrMsg + ); + }else{ + zShellStatic = azArg[1]; + rc = sqlite3_get_table(p->db, + "SELECT name FROM sqlite_master " + "WHERE type IN ('table','view') AND name LIKE shellstatic() " + "UNION ALL " + "SELECT name FROM sqlite_temp_master " + "WHERE type IN ('table','view') AND name LIKE shellstatic() " + "ORDER BY 1", + &azResult, &nRow, 0, &zErrMsg + ); + zShellStatic = 0; + } + if( zErrMsg ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + sqlite3_free(zErrMsg); + rc = 1; + }else if( rc != SQLITE_OK ){ + fprintf(stderr,"Error: querying sqlite_master and sqlite_temp_master\n"); + rc = 1; + }else{ + int len, maxlen = 0; + int i, j; + int nPrintCol, nPrintRow; + for(i=1; i<=nRow; i++){ + if( azResult[i]==0 ) continue; + len = strlen30(azResult[i]); + if( len>maxlen ) maxlen = len; + } + nPrintCol = 80/(maxlen+2); + if( nPrintCol<1 ) nPrintCol = 1; + nPrintRow = (nRow + nPrintCol - 1)/nPrintCol; + for(i=0; i=8 && strncmp(azArg[0], "testctrl", n)==0 && nArg>=2 ){ + static const struct { + const char *zCtrlName; /* Name of a test-control option */ + int ctrlCode; /* Integer code for that option */ + } aCtrl[] = { + { "prng_save", SQLITE_TESTCTRL_PRNG_SAVE }, + { "prng_restore", SQLITE_TESTCTRL_PRNG_RESTORE }, + { "prng_reset", SQLITE_TESTCTRL_PRNG_RESET }, + { "bitvec_test", SQLITE_TESTCTRL_BITVEC_TEST }, + { "fault_install", SQLITE_TESTCTRL_FAULT_INSTALL }, + { "benign_malloc_hooks", SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS }, + { "pending_byte", SQLITE_TESTCTRL_PENDING_BYTE }, + { "assert", SQLITE_TESTCTRL_ASSERT }, + { "always", SQLITE_TESTCTRL_ALWAYS }, + { "reserve", SQLITE_TESTCTRL_RESERVE }, + { "optimizations", SQLITE_TESTCTRL_OPTIMIZATIONS }, + { "iskeyword", SQLITE_TESTCTRL_ISKEYWORD }, + { "pghdrsz", SQLITE_TESTCTRL_PGHDRSZ }, + { "scratchmalloc", SQLITE_TESTCTRL_SCRATCHMALLOC }, + }; + int testctrl = -1; + int rc = 0; + int i, n; + open_db(p); + + /* convert testctrl text option to value. allow any unique prefix + ** of the option name, or a numerical value. */ + n = strlen30(azArg[1]); + for(i=0; i<(int)(sizeof(aCtrl)/sizeof(aCtrl[0])); i++){ + if( strncmp(azArg[1], aCtrl[i].zCtrlName, n)==0 ){ + if( testctrl<0 ){ + testctrl = aCtrl[i].ctrlCode; + }else{ + fprintf(stderr, "ambiguous option name: \"%s\"\n", azArg[1]); + testctrl = -1; + break; + } + } + } + if( testctrl<0 ) testctrl = atoi(azArg[1]); + if( (testctrlSQLITE_TESTCTRL_LAST) ){ + fprintf(stderr,"Error: invalid testctrl option: %s\n", azArg[1]); + }else{ + switch(testctrl){ + + /* sqlite3_test_control(int, db, int) */ + case SQLITE_TESTCTRL_OPTIMIZATIONS: + case SQLITE_TESTCTRL_RESERVE: + if( nArg==3 ){ + int opt = (int)strtol(azArg[2], 0, 0); + rc = sqlite3_test_control(testctrl, p->db, opt); + printf("%d (0x%08x)\n", rc, rc); + } else { + fprintf(stderr,"Error: testctrl %s takes a single int option\n", + azArg[1]); + } + break; + + /* sqlite3_test_control(int) */ + case SQLITE_TESTCTRL_PRNG_SAVE: + case SQLITE_TESTCTRL_PRNG_RESTORE: + case SQLITE_TESTCTRL_PRNG_RESET: + case SQLITE_TESTCTRL_PGHDRSZ: + if( nArg==2 ){ + rc = sqlite3_test_control(testctrl); + printf("%d (0x%08x)\n", rc, rc); + } else { + fprintf(stderr,"Error: testctrl %s takes no options\n", azArg[1]); + } + break; + + /* sqlite3_test_control(int, uint) */ + case SQLITE_TESTCTRL_PENDING_BYTE: + if( nArg==3 ){ + unsigned int opt = (unsigned int)atoi(azArg[2]); + rc = sqlite3_test_control(testctrl, opt); + printf("%d (0x%08x)\n", rc, rc); + } else { + fprintf(stderr,"Error: testctrl %s takes a single unsigned" + " int option\n", azArg[1]); + } + break; + + /* sqlite3_test_control(int, int) */ + case SQLITE_TESTCTRL_ASSERT: + case SQLITE_TESTCTRL_ALWAYS: + if( nArg==3 ){ + int opt = atoi(azArg[2]); + rc = sqlite3_test_control(testctrl, opt); + printf("%d (0x%08x)\n", rc, rc); + } else { + fprintf(stderr,"Error: testctrl %s takes a single int option\n", + azArg[1]); + } + break; + + /* sqlite3_test_control(int, char *) */ +#ifdef SQLITE_N_KEYWORD + case SQLITE_TESTCTRL_ISKEYWORD: + if( nArg==3 ){ + const char *opt = azArg[2]; + rc = sqlite3_test_control(testctrl, opt); + printf("%d (0x%08x)\n", rc, rc); + } else { + fprintf(stderr,"Error: testctrl %s takes a single char * option\n", + azArg[1]); + } + break; +#endif + + case SQLITE_TESTCTRL_BITVEC_TEST: + case SQLITE_TESTCTRL_FAULT_INSTALL: + case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: + case SQLITE_TESTCTRL_SCRATCHMALLOC: + default: + fprintf(stderr,"Error: CLI support for testctrl %s not implemented\n", + azArg[1]); + break; + } + } + }else + + if( c=='t' && n>4 && strncmp(azArg[0], "timeout", n)==0 && nArg==2 ){ + open_db(p); + sqlite3_busy_timeout(p->db, atoi(azArg[1])); + }else + + if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0 + && nArg==2 + ){ + enableTimer = booleanValue(azArg[1]); + }else + + if( c=='v' && strncmp(azArg[0], "version", n)==0 ){ + printf("SQLite %s %s\n", + sqlite3_libversion(), sqlite3_sourceid()); + }else + + if( c=='w' && strncmp(azArg[0], "width", n)==0 && nArg>1 ){ + int j; + assert( nArg<=ArraySize(azArg) ); + for(j=1; jcolWidth); j++){ + p->colWidth[j-1] = atoi(azArg[j]); + } + }else + + { + fprintf(stderr, "Error: unknown command or invalid arguments: " + " \"%s\". Enter \".help\" for help\n", azArg[0]); + rc = 1; + } + + return rc; +} + +/* +** Return TRUE if a semicolon occurs anywhere in the first N characters +** of string z[]. +*/ +static int _contains_semicolon(const char *z, int N){ + int i; + for(i=0; iout); + free(zLine); + zLine = one_input_line(zSql, in); + if( zLine==0 ){ + break; /* We have reached EOF */ + } + if( seenInterrupt ){ + if( in!=0 ) break; + seenInterrupt = 0; + } + lineno++; + if( (zSql==0 || zSql[0]==0) && _all_whitespace(zLine) ) continue; + if( zLine && zLine[0]=='.' && nSql==0 ){ + if( p->echoOn ) printf("%s\n", zLine); + rc = do_meta_command(zLine, p); + if( rc==2 ){ /* exit requested */ + break; + }else if( rc ){ + errCnt++; + } + continue; + } + if( _is_command_terminator(zLine) && _is_complete(zSql, nSql) ){ + memcpy(zLine,";",2); + } + nSqlPrior = nSql; + if( zSql==0 ){ + int i; + for(i=0; zLine[i] && IsSpace(zLine[i]); i++){} + if( zLine[i]!=0 ){ + nSql = strlen30(zLine); + zSql = malloc( nSql+3 ); + if( zSql==0 ){ + fprintf(stderr, "Error: out of memory\n"); + exit(1); + } + memcpy(zSql, zLine, nSql+1); + startline = lineno; + } + }else{ + int len = strlen30(zLine); + zSql = realloc( zSql, nSql + len + 4 ); + if( zSql==0 ){ + fprintf(stderr,"Error: out of memory\n"); + exit(1); + } + zSql[nSql++] = '\n'; + memcpy(&zSql[nSql], zLine, len+1); + nSql += len; + } + if( zSql && _contains_semicolon(&zSql[nSqlPrior], nSql-nSqlPrior) + && sqlite3_complete(zSql) ){ + p->cnt = 0; + open_db(p); + BEGIN_TIMER; + rc = shell_exec(p->db, zSql, shell_callback, p, &zErrMsg); + END_TIMER; + if( rc || zErrMsg ){ + char zPrefix[100]; + if( in!=0 || !stdin_is_interactive ){ + sqlite3_snprintf(sizeof(zPrefix), zPrefix, + "Error: near line %d:", startline); + }else{ + sqlite3_snprintf(sizeof(zPrefix), zPrefix, "Error:"); + } + if( zErrMsg!=0 ){ + fprintf(stderr, "%s %s\n", zPrefix, zErrMsg); + sqlite3_free(zErrMsg); + zErrMsg = 0; + }else{ + fprintf(stderr, "%s %s\n", zPrefix, sqlite3_errmsg(p->db)); + } + errCnt++; + } + free(zSql); + zSql = 0; + nSql = 0; + } + } + if( zSql ){ + if( !_all_whitespace(zSql) ){ + fprintf(stderr, "Error: incomplete SQL: %s\n", zSql); + } + free(zSql); + } + free(zLine); + return errCnt; +} + +/* +** Return a pathname which is the user's home directory. A +** 0 return indicates an error of some kind. Space to hold the +** resulting string is obtained from malloc(). The calling +** function should free the result. +*/ +static char *find_home_dir(void){ + char *home_dir = NULL; + +#if !defined(_WIN32) && !defined(WIN32) && !defined(__OS2__) && !defined(_WIN32_WCE) && !defined(__RTP__) && !defined(_WRS_KERNEL) + struct passwd *pwent; + uid_t uid = getuid(); + if( (pwent=getpwuid(uid)) != NULL) { + home_dir = pwent->pw_dir; + } +#endif + +#if defined(_WIN32_WCE) + /* Windows CE (arm-wince-mingw32ce-gcc) does not provide getenv() + */ + home_dir = strdup("/"); +#else + +#if defined(_WIN32) || defined(WIN32) || defined(__OS2__) + if (!home_dir) { + home_dir = getenv("USERPROFILE"); + } +#endif + + if (!home_dir) { + home_dir = getenv("HOME"); + } + +#if defined(_WIN32) || defined(WIN32) || defined(__OS2__) + if (!home_dir) { + char *zDrive, *zPath; + int n; + zDrive = getenv("HOMEDRIVE"); + zPath = getenv("HOMEPATH"); + if( zDrive && zPath ){ + n = strlen30(zDrive) + strlen30(zPath) + 1; + home_dir = malloc( n ); + if( home_dir==0 ) return 0; + sqlite3_snprintf(n, home_dir, "%s%s", zDrive, zPath); + return home_dir; + } + home_dir = "c:\\"; + } +#endif + +#endif /* !_WIN32_WCE */ + + if( home_dir ){ + int n = strlen30(home_dir) + 1; + char *z = malloc( n ); + if( z ) memcpy(z, home_dir, n); + home_dir = z; + } + + return home_dir; +} + +/* +** Read input from the file given by sqliterc_override. Or if that +** parameter is NULL, take input from ~/.sqliterc +** +** Returns the number of errors. +*/ +static int process_sqliterc( + struct callback_data *p, /* Configuration data */ + const char *sqliterc_override /* Name of config file. NULL to use default */ +){ + char *home_dir = NULL; + const char *sqliterc = sqliterc_override; + char *zBuf = 0; + FILE *in = NULL; + int nBuf; + int rc = 0; + + if (sqliterc == NULL) { + home_dir = find_home_dir(); + if( home_dir==0 ){ +#if !defined(__RTP__) && !defined(_WRS_KERNEL) + fprintf(stderr,"%s: Error: cannot locate your home directory\n", Argv0); +#endif + return 1; + } + nBuf = strlen30(home_dir) + 16; + zBuf = malloc( nBuf ); + if( zBuf==0 ){ + fprintf(stderr,"%s: Error: out of memory\n",Argv0); + return 1; + } + sqlite3_snprintf(nBuf, zBuf,"%s/.sqliterc",home_dir); + free(home_dir); + sqliterc = (const char*)zBuf; + } + in = fopen(sqliterc,"rb"); + if( in ){ + if( stdin_is_interactive ){ + fprintf(stderr,"-- Loading resources from %s\n",sqliterc); + } + rc = process_input(p,in); + fclose(in); + } + free(zBuf); + return rc; +} + +/* +** Show available command line options +*/ +static const char zOptions[] = + " -help show this message\n" + " -init filename read/process named file\n" + " -echo print commands before execution\n" + " -[no]header turn headers on or off\n" + " -bail stop after hitting an error\n" + " -interactive force interactive I/O\n" + " -batch force batch I/O\n" + " -column set output mode to 'column'\n" + " -csv set output mode to 'csv'\n" + " -html set output mode to HTML\n" + " -line set output mode to 'line'\n" + " -list set output mode to 'list'\n" + " -separator 'x' set output field separator (|)\n" + " -stats print memory stats before each finalize\n" + " -nullvalue 'text' set text string for NULL values\n" + " -version show SQLite version\n" + " -vfs NAME use NAME as the default VFS\n" +#ifdef SQLITE_ENABLE_VFSTRACE + " -vfstrace enable tracing of all VFS calls\n" +#endif +#ifdef SQLITE_ENABLE_MULTIPLEX + " -multiplex enable the multiplexor VFS\n" +#endif +; +static void usage(int showDetail){ + fprintf(stderr, + "Usage: %s [OPTIONS] FILENAME [SQL]\n" + "FILENAME is the name of an SQLite database. A new database is created\n" + "if the file does not previously exist.\n", Argv0); + if( showDetail ){ + fprintf(stderr, "OPTIONS include:\n%s", zOptions); + }else{ + fprintf(stderr, "Use the -help option for additional information\n"); + } + exit(1); +} + +/* +** Initialize the state information in data +*/ +static void main_init(struct callback_data *data) { + memset(data, 0, sizeof(*data)); + data->mode = MODE_List; + memcpy(data->separator,"|", 2); + data->showHeader = 0; + sqlite3_config(SQLITE_CONFIG_URI, 1); + sqlite3_config(SQLITE_CONFIG_LOG, shellLog, data); + sqlite3_snprintf(sizeof(mainPrompt), mainPrompt,"sqlite> "); + sqlite3_snprintf(sizeof(continuePrompt), continuePrompt," ...> "); + sqlite3_config(SQLITE_CONFIG_SINGLETHREAD); +} + +int main(int argc, char **argv){ + char *zErrMsg = 0; + struct callback_data data; + const char *zInitFile = 0; + char *zFirstCmd = 0; + int i; + int rc = 0; + + if( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)!=0 ){ + fprintf(stderr, "SQLite header and source version mismatch\n%s\n%s\n", + sqlite3_sourceid(), SQLITE_SOURCE_ID); + exit(1); + } + Argv0 = argv[0]; + main_init(&data); + stdin_is_interactive = isatty(0); + + /* Make sure we have a valid signal handler early, before anything + ** else is done. + */ +#ifdef SIGINT + signal(SIGINT, interrupt_handler); +#endif + + /* Do an initial pass through the command-line argument to locate + ** the name of the database file, the name of the initialization file, + ** the size of the alternative malloc heap, + ** and the first command to execute. + */ + for(i=1; i0x7fff0000 ) szHeap = 0x7fff0000; + sqlite3_config(SQLITE_CONFIG_HEAP, malloc((int)szHeap), (int)szHeap, 64); +#endif +#ifdef SQLITE_ENABLE_VFSTRACE + }else if( strcmp(argv[i],"-vfstrace")==0 ){ + extern int vfstrace_register( + const char *zTraceName, + const char *zOldVfsName, + int (*xOut)(const char*,void*), + void *pOutArg, + int makeDefault + ); + vfstrace_register("trace",0,(int(*)(const char*,void*))fputs,stderr,1); +#endif +#ifdef SQLITE_ENABLE_MULTIPLEX + }else if( strcmp(argv[i],"-multiplex")==0 ){ + extern int sqlite3_multiple_initialize(const char*,int); + sqlite3_multiplex_initialize(0, 1); +#endif + }else if( strcmp(argv[i],"-vfs")==0 ){ + sqlite3_vfs *pVfs = sqlite3_vfs_find(argv[++i]); + if( pVfs ){ + sqlite3_vfs_register(pVfs, 1); + }else{ + fprintf(stderr, "no such VFS: \"%s\"\n", argv[i]); + exit(1); + } + } + } + if( i0 ){ + return rc; + } + + /* Make a second pass through the command-line argument and set + ** options. This second pass is delayed until after the initialization + ** file is processed so that the command-line arguments will override + ** settings in the initialization file. + */ + for(i=1; i=argc){ + fprintf(stderr,"%s: Error: missing argument for option: %s\n", Argv0, z); + fprintf(stderr,"Use -help for a list of options.\n"); + return 1; + } + sqlite3_snprintf(sizeof(data.separator), data.separator, + "%.*s",(int)sizeof(data.separator)-1,argv[i]); + }else if( strcmp(z,"-nullvalue")==0 ){ + i++; + if(i>=argc){ + fprintf(stderr,"%s: Error: missing argument for option: %s\n", Argv0, z); + fprintf(stderr,"Use -help for a list of options.\n"); + return 1; + } + sqlite3_snprintf(sizeof(data.nullvalue), data.nullvalue, + "%.*s",(int)sizeof(data.nullvalue)-1,argv[i]); + }else if( strcmp(z,"-header")==0 ){ + data.showHeader = 1; + }else if( strcmp(z,"-noheader")==0 ){ + data.showHeader = 0; + }else if( strcmp(z,"-echo")==0 ){ + data.echoOn = 1; + }else if( strcmp(z,"-stats")==0 ){ + data.statsOn = 1; + }else if( strcmp(z,"-bail")==0 ){ + bail_on_error = 1; + }else if( strcmp(z,"-version")==0 ){ + printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid()); + return 0; + }else if( strcmp(z,"-interactive")==0 ){ + stdin_is_interactive = 1; + }else if( strcmp(z,"-batch")==0 ){ + stdin_is_interactive = 0; + }else if( strcmp(z,"-heap")==0 ){ + i++; + }else if( strcmp(z,"-vfs")==0 ){ + i++; +#ifdef SQLITE_ENABLE_VFSTRACE + }else if( strcmp(z,"-vfstrace")==0 ){ + i++; +#endif +#ifdef SQLITE_ENABLE_MULTIPLEX + }else if( strcmp(z,"-multiplex")==0 ){ + i++; +#endif + }else if( strcmp(z,"-help")==0 || strcmp(z, "--help")==0 ){ + usage(1); + }else{ + fprintf(stderr,"%s: Error: unknown option: %s\n", Argv0, z); + fprintf(stderr,"Use -help for a list of options.\n"); + return 1; + } + } + + if( zFirstCmd ){ + /* Run just the command that follows the database name + */ + if( zFirstCmd[0]=='.' ){ + rc = do_meta_command(zFirstCmd, &data); + }else{ + open_db(&data); + rc = shell_exec(data.db, zFirstCmd, shell_callback, &data, &zErrMsg); + if( zErrMsg!=0 ){ + fprintf(stderr,"Error: %s\n", zErrMsg); + return rc!=0 ? rc : 1; + }else if( rc!=0 ){ + fprintf(stderr,"Error: unable to process SQL \"%s\"\n", zFirstCmd); + return rc; + } + } + }else{ + /* Run commands received from standard input + */ + if( stdin_is_interactive ){ + char *zHome; + char *zHistory = 0; + int nHistory; + printf( + "SQLite version %s %.19s\n" + "Enter \".help\" for instructions\n" + "Enter SQL statements terminated with a \";\"\n", + sqlite3_libversion(), sqlite3_sourceid() + ); + zHome = find_home_dir(); + if( zHome ){ + nHistory = strlen30(zHome) + 20; + if( (zHistory = malloc(nHistory))!=0 ){ + sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome); + } + } +#if defined(HAVE_READLINE) && HAVE_READLINE==1 + if( zHistory ) read_history(zHistory); +#endif + rc = process_input(&data, 0); + if( zHistory ){ + stifle_history(100); + write_history(zHistory); + free(zHistory); + } + free(zHome); + }else{ + rc = process_input(&data, stdin); + } + } + set_table_name(&data, 0); + if( data.db ){ + sqlite3_close(data.db); + } + return rc; +} diff --git a/src/sqlite.h.in b/src/sqlite.h.in new file mode 100644 index 0000000..ed18330 --- /dev/null +++ b/src/sqlite.h.in @@ -0,0 +1,6732 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve the right to make minor changes +** if experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ +#include /* Needed for the definition of va_list */ + +/* +** Make sure we can call this stuff from C++. +*/ +#ifdef __cplusplus +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +/* +** These no-op macros are used in front of interfaces to mark those +** interfaces as either deprecated or experimental. New applications +** should not use deprecated interfaces - they are support for backwards +** compatibility only. Application writers should be aware that +** experimental interfaces are subject to change in point releases. +** +** These macros used to resolve to various kinds of compiler magic that +** would generate warning messages when they were used. But that +** compiler magic ended up generating such a flurry of bug reports +** that we have taken it all out and gone back to using simple +** noop macros. +*/ +#define SQLITE_DEPRECATED +#define SQLITE_EXPERIMENTAL + +/* +** Ensure these symbols were not defined by some previous header file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers +** +** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header +** evaluates to a string literal that is the SQLite version in the +** format "X.Y.Z" where X is the major version number (always 3 for +** SQLite3) and Y is the minor version number and Z is the release number.)^ +** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same +** numbers used in [SQLITE_VERSION].)^ +** The SQLITE_VERSION_NUMBER for any given release of SQLite will also +** be larger than the release from which it is derived. Either Y will +** be held constant and Z will be incremented or else Y will be incremented +** and Z will be reset to zero. +** +** Since version 3.6.18, SQLite source code has been stored in the +** Fossil configuration management +** system. ^The SQLITE_SOURCE_ID macro evaluates to +** a string which identifies a particular check-in of SQLite +** within its configuration management system. ^The SQLITE_SOURCE_ID +** string contains the date and time of the check-in (UTC) and an SHA1 +** hash of the entire source tree. +** +** See also: [sqlite3_libversion()], +** [sqlite3_libversion_number()], [sqlite3_sourceid()], +** [sqlite_version()] and [sqlite_source_id()]. +*/ +#define SQLITE_VERSION "--VERS--" +#define SQLITE_VERSION_NUMBER --VERSION-NUMBER-- +#define SQLITE_SOURCE_ID "--SOURCE-ID--" + +/* +** CAPI3REF: Run-Time Library Version Numbers +** KEYWORDS: sqlite3_version, sqlite3_sourceid +** +** These interfaces provide the same information as the [SQLITE_VERSION], +** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros +** but are associated with the library instead of the header file. ^(Cautious +** programmers might include assert() statements in their application to +** verify that values returned by these interfaces match the macros in +** the header, and thus insure that the application is +** compiled with matching library and header files. +** +**
    +** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
    +** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
    +** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
    +** 
    )^ +** +** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION] +** macro. ^The sqlite3_libversion() function returns a pointer to the +** to the sqlite3_version[] string constant. The sqlite3_libversion() +** function is provided for use in DLLs since DLL users usually do not have +** direct access to string constants within the DLL. ^The +** sqlite3_libversion_number() function returns an integer equal to +** [SQLITE_VERSION_NUMBER]. ^The sqlite3_sourceid() function returns +** a pointer to a string constant whose value is the same as the +** [SQLITE_SOURCE_ID] C preprocessor macro. +** +** See also: [sqlite_version()] and [sqlite_source_id()]. +*/ +SQLITE_EXTERN const char sqlite3_version[]; +const char *sqlite3_libversion(void); +const char *sqlite3_sourceid(void); +int sqlite3_libversion_number(void); + +/* +** CAPI3REF: Run-Time Library Compilation Options Diagnostics +** +** ^The sqlite3_compileoption_used() function returns 0 or 1 +** indicating whether the specified option was defined at +** compile time. ^The SQLITE_ prefix may be omitted from the +** option name passed to sqlite3_compileoption_used(). +** +** ^The sqlite3_compileoption_get() function allows iterating +** over the list of options that were defined at compile time by +** returning the N-th compile time option string. ^If N is out of range, +** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_ +** prefix is omitted from any strings returned by +** sqlite3_compileoption_get(). +** +** ^Support for the diagnostic functions sqlite3_compileoption_used() +** and sqlite3_compileoption_get() may be omitted by specifying the +** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time. +** +** See also: SQL functions [sqlite_compileoption_used()] and +** [sqlite_compileoption_get()] and the [compile_options pragma]. +*/ +#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS +int sqlite3_compileoption_used(const char *zOptName); +const char *sqlite3_compileoption_get(int N); +#endif + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe +** +** ^The sqlite3_threadsafe() function returns zero if and only if +** SQLite was compiled mutexing code omitted due to the +** [SQLITE_THREADSAFE] compile-time option being set to 0. +** +** SQLite can be compiled with or without mutexes. When +** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes +** are enabled and SQLite is threadsafe. When the +** [SQLITE_THREADSAFE] macro is 0, +** the mutexes are omitted. Without the mutexes, it is not safe +** to use SQLite concurrently from more than one thread. +** +** Enabling mutexes incurs a measurable performance penalty. +** So if speed is of utmost importance, it makes sense to disable +** the mutexes. But for maximum safety, mutexes should be enabled. +** ^The default behavior is for mutexes to be enabled. +** +** This interface can be used by an application to make sure that the +** version of SQLite that it is linking against was compiled with +** the desired setting of the [SQLITE_THREADSAFE] macro. +** +** This interface only reports on the compile-time mutex setting +** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with +** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but +** can be fully or partially disabled using a call to [sqlite3_config()] +** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD], +** or [SQLITE_CONFIG_MUTEX]. ^(The return value of the +** sqlite3_threadsafe() function shows only the compile-time setting of +** thread safety, not any run-time changes to that setting made by +** sqlite3_config(). In other words, the return value from sqlite3_threadsafe() +** is unchanged by calls to sqlite3_config().)^ +** +** See the [threading mode] documentation for additional information. +*/ +int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle +** KEYWORDS: {database connection} {database connections} +** +** Each open SQLite database is represented by a pointer to an instance of +** the opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()] +** is its destructor. There are many other interfaces (such as +** [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on an +** sqlite3 object. +*/ +typedef struct sqlite3 sqlite3; + +/* +** CAPI3REF: 64-Bit Integer Types +** KEYWORDS: sqlite_int64 sqlite_uint64 +** +** Because there is no cross-platform way to specify 64-bit integer types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions. +** The sqlite_int64 and sqlite_uint64 types are supported for backwards +** compatibility only. +** +** ^The sqlite3_int64 and sqlite_int64 types can store integer values +** between -9223372036854775808 and +9223372036854775807 inclusive. ^The +** sqlite3_uint64 and sqlite_uint64 types can store integer values +** between 0 and +18446744073709551615 inclusive. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) || defined(__BORLANDC__) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection +** +** ^The sqlite3_close() routine is the destructor for the [sqlite3] object. +** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is +** successfully destroyed and all associated resources are deallocated. +** +** Applications must [sqlite3_finalize | finalize] all [prepared statements] +** and [sqlite3_blob_close | close] all [BLOB handles] associated with +** the [sqlite3] object prior to attempting to close the object. ^If +** sqlite3_close() is called on a [database connection] that still has +** outstanding [prepared statements] or [BLOB handles], then it returns +** SQLITE_BUSY. +** +** ^If [sqlite3_close()] is invoked while a transaction is open, +** the transaction is automatically rolled back. +** +** The C parameter to [sqlite3_close(C)] must be either a NULL +** pointer or an [sqlite3] object pointer obtained +** from [sqlite3_open()], [sqlite3_open16()], or +** [sqlite3_open_v2()], and not previously closed. +** ^Calling sqlite3_close() with a NULL pointer argument is a +** harmless no-op. +*/ +int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface +** +** The sqlite3_exec() interface is a convenience wrapper around +** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()], +** that allows an application to run multiple statements of SQL +** without having to use a lot of C code. +** +** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded, +** semicolon-separate SQL statements passed into its 2nd argument, +** in the context of the [database connection] passed in as its 1st +** argument. ^If the callback function of the 3rd argument to +** sqlite3_exec() is not NULL, then it is invoked for each result row +** coming out of the evaluated SQL statements. ^The 4th argument to +** sqlite3_exec() is relayed through to the 1st argument of each +** callback invocation. ^If the callback pointer to sqlite3_exec() +** is NULL, then no callback is ever invoked and result rows are +** ignored. +** +** ^If an error occurs while evaluating the SQL statements passed into +** sqlite3_exec(), then execution of the current statement stops and +** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec() +** is not NULL then any error message is written into memory obtained +** from [sqlite3_malloc()] and passed back through the 5th parameter. +** To avoid memory leaks, the application should invoke [sqlite3_free()] +** on error message strings returned through the 5th parameter of +** of sqlite3_exec() after the error message string is no longer needed. +** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors +** occur, then sqlite3_exec() sets the pointer in its 5th parameter to +** NULL before returning. +** +** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec() +** routine returns SQLITE_ABORT without invoking the callback again and +** without running any subsequent SQL statements. +** +** ^The 2nd argument to the sqlite3_exec() callback function is the +** number of columns in the result. ^The 3rd argument to the sqlite3_exec() +** callback is an array of pointers to strings obtained as if from +** [sqlite3_column_text()], one for each column. ^If an element of a +** result row is NULL then the corresponding string pointer for the +** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the +** sqlite3_exec() callback is an array of pointers to strings where each +** entry represents the name of corresponding result column as obtained +** from [sqlite3_column_name()]. +** +** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer +** to an empty string, or a pointer that contains only whitespace and/or +** SQL comments, then no SQL statements are evaluated and the database +** is not changed. +** +** Restrictions: +** +**
      +**
    • The application must insure that the 1st parameter to sqlite3_exec() +** is a valid and open [database connection]. +**
    • The application must not close [database connection] specified by +** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running. +**
    • The application must not modify the SQL statement text passed into +** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running. +**
    +*/ +int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluated */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes +** KEYWORDS: SQLITE_OK {error code} {error codes} +** KEYWORDS: {result code} {result codes} +** +** Many SQLite functions return an integer result code from the set shown +** here in order to indicates success or failure. +** +** New error codes may be added in future versions of SQLite. +** +** See also: [SQLITE_IOERR_READ | extended result codes], +** [sqlite3_vtab_on_conflict()] [SQLITE_ROLLBACK | result codes]. +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes +** KEYWORDS: {extended error code} {extended error codes} +** KEYWORDS: {extended result code} {extended result codes} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that many of +** these result codes are too coarse-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. The extended result codes are enabled or disabled +** on a per database connection basis using the +** [sqlite3_extended_result_codes()] API. +** +** Some of the available extended result codes are listed here. +** One may expect the number of extended result codes will be expand +** over time. Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) +#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8)) +#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8)) +#define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8)) +#define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8)) +#define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8)) +#define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) +#define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) +#define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) +#define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) +#define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) +#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) +#define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) +#define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) +#define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) +#define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) +#define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) + +/* +** CAPI3REF: Flags For File Open Operations +** +** These bit values are intended for use in the +** 3rd parameter to the [sqlite3_open_v2()] interface and +** in the 4th parameter to the [sqlite3_vfs.xOpen] method. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */ +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */ +#define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */ +#define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */ +#define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */ +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */ +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */ +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */ +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ +#define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ +#define SQLITE_OPEN_WAL 0x00080000 /* VFS only */ + +/* Reserved: 0x00F00000 */ + +/* +** CAPI3REF: Device Characteristics +** +** The xDeviceCharacteristics method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. +** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 +#define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800 + +/* +** CAPI3REF: File Locking Levels +** +** SQLite uses one of these integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags +** +** When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of +** these integer values as the second argument. +** +** When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. If the lower four bits of the flag +** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics. +** If the lower four bits equal SQLITE_SYNC_FULL, that means +** to use Mac OS X style fullsync instead of fsync(). +** +** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags +** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL +** settings. The [synchronous pragma] determines when calls to the +** xSync VFS method occur and applies uniformly across all platforms. +** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how +** energetic or rigorous or forceful the sync operations are and +** only make a difference on Mac OSX for the default SQLite code. +** (Third-party VFS implementations might also make the distinction +** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the +** operating systems natively supported by SQLite, only Mac OSX +** cares about the difference.) +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + +/* +** CAPI3REF: OS Interface Open File Handle +** +** An [sqlite3_file] object represents an open file in the +** [sqlite3_vfs | OS interface layer]. Individual OS interface +** implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object +** +** Every file opened by the [sqlite3_vfs.xOpen] method populates an +** [sqlite3_file] object (or, more commonly, a subclass of the +** [sqlite3_file] object) with a pointer to an instance of this object. +** This object defines the methods used to perform various operations +** against the open file represented by the [sqlite3_file] object. +** +** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element +** to a non-NULL pointer, then the sqlite3_io_methods.xClose method +** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The +** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen] +** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element +** to NULL. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY] +** flag may be ORed in to indicate that only the data of the file +** and not its inode needs to be synced. +** +** The integer values to xLock() and xUnlock() are one of +**
      +**
    • [SQLITE_LOCK_NONE], +**
    • [SQLITE_LOCK_SHARED], +**
    • [SQLITE_LOCK_RESERVED], +**
    • [SQLITE_LOCK_PENDING], or +**
    • [SQLITE_LOCK_EXCLUSIVE]. +**
    +** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method checks whether any database connection, +** either in this process or in some other process, is holding a RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false otherwise. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument is an +** integer opcode. The third argument is a generic pointer intended to +** point to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves all opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. VFS implementations should +** return [SQLITE_NOTFOUND] for file control opcodes that they do not +** recognize. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +**
      +**
    • [SQLITE_IOCAP_ATOMIC] +**
    • [SQLITE_IOCAP_ATOMIC512] +**
    • [SQLITE_IOCAP_ATOMIC1K] +**
    • [SQLITE_IOCAP_ATOMIC2K] +**
    • [SQLITE_IOCAP_ATOMIC4K] +**
    • [SQLITE_IOCAP_ATOMIC8K] +**
    • [SQLITE_IOCAP_ATOMIC16K] +**
    • [SQLITE_IOCAP_ATOMIC32K] +**
    • [SQLITE_IOCAP_ATOMIC64K] +**
    • [SQLITE_IOCAP_SAFE_APPEND] +**
    • [SQLITE_IOCAP_SEQUENTIAL] +**
    +** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +** +** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill +** in the unread portions of the buffer with zeros. A VFS that +** fails to zero-fill short reads might seem to work. However, +** failure to zero-fill short reads will eventually lead to +** database corruption. +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*, int *pResOut); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Methods above are valid for version 1 */ + int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**); + int (*xShmLock)(sqlite3_file*, int offset, int n, int flags); + void (*xShmBarrier)(sqlite3_file*); + int (*xShmUnmap)(sqlite3_file*, int deleteFlag); + /* Methods above are valid for version 2 */ + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()] +** interface. +** +** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode causes the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +** +** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS +** layer a hint of how large the database file will grow to be during the +** current transaction. This hint is not guaranteed to be accurate but it +** is often close. The underlying VFS might choose to preallocate database +** file space based on this hint in order to help writes to the database +** file run faster. +** +** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS +** extends and truncates the database file in chunks of a size specified +** by the user. The fourth argument to [sqlite3_file_control()] should +** point to an integer (type int) containing the new chunk-size to use +** for the nominated database. Allocating database file space in large +** chunks (say 1MB at a time), may reduce file-system fragmentation and +** improve performance on some systems. +** +** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer +** to the [sqlite3_file] object associated with a particular database +** connection. See the [sqlite3_file_control()] documentation for +** additional information. +** +** ^(The [SQLITE_FCNTL_SYNC_OMITTED] opcode is generated internally by +** SQLite and sent to all VFSes in place of a call to the xSync method +** when the database connection has [PRAGMA synchronous] set to OFF.)^ +** Some specialized VFSes need this signal in order to operate correctly +** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most +** VFSes do not need this signal and should silently ignore this opcode. +** Applications should not call [sqlite3_file_control()] with this +** opcode as doing so may disrupt the operation of the specialized VFSes +** that do require it. +** +** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic +** retry counts and intervals for certain disk I/O operations for the +** windows [VFS] in order to work to provide robustness against +** anti-virus programs. By default, the windows VFS will retry file read, +** file write, and file delete operations up to 10 times, with a delay +** of 25 milliseconds before the first retry and with the delay increasing +** by an additional 25 milliseconds with each subsequent retry. This +** opcode allows those to values (10 retries and 25 milliseconds of delay) +** to be adjusted. The values are changed for all database connections +** within the same process. The argument is a pointer to an array of two +** integers where the first integer i the new retry count and the second +** integer is the delay. If either integer is negative, then the setting +** is not changed but instead the prior value of that setting is written +** into the array entry, allowing the current retry settings to be +** interrogated. The zDbName parameter is ignored. +** +** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the +** persistent [WAL | Write AHead Log] setting. By default, the auxiliary +** write ahead log and shared memory files used for transaction control +** are automatically deleted when the latest connection to the database +** closes. Setting persistent WAL mode causes those files to persist after +** close. Persisting the files is useful when other processes that do not +** have write permission on the directory containing the database file want +** to read the database file, as the WAL and shared memory files must exist +** in order for the database to be readable. The fourth parameter to +** [sqlite3_file_control()] for this opcode should be a pointer to an integer. +** That integer is 0 to disable persistent WAL mode or 1 to enable persistent +** WAL mode. If the integer is -1, then it is overwritten with the current +** WAL persistence setting. +** +** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening +** a write transaction to indicate that, unless it is rolled back for some +** reason, the entire database file will be overwritten by the current +** transaction. This is used by VACUUM operations. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 +#define SQLITE_GET_LOCKPROXYFILE 2 +#define SQLITE_SET_LOCKPROXYFILE 3 +#define SQLITE_LAST_ERRNO 4 +#define SQLITE_FCNTL_SIZE_HINT 5 +#define SQLITE_FCNTL_CHUNK_SIZE 6 +#define SQLITE_FCNTL_FILE_POINTER 7 +#define SQLITE_FCNTL_SYNC_OMITTED 8 +#define SQLITE_FCNTL_WIN32_AV_RETRY 9 +#define SQLITE_FCNTL_PERSIST_WAL 10 +#define SQLITE_FCNTL_OVERWRITE 11 + +/* +** CAPI3REF: Mutex Handle +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object +** +** An instance of the sqlite3_vfs object defines the interface between +** the SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". See +** the [VFS | VFS documentation] for further information. +** +** The value of the iVersion field is initially 1 but may be larger in +** future versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. Note that the structure +** of the sqlite3_vfs object changes in the transaction between +** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not +** modified. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered sqlite3_vfs objects are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. Neither the application code nor the VFS +** implementation should use the pNext pointer. +** +** The pNext field is the only field in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** [[sqlite3_vfs.xOpen]] +** ^SQLite guarantees that the zFilename parameter to xOpen +** is either a NULL pointer or string obtained +** from xFullPathname() with an optional suffix added. +** ^If a suffix is added to the zFilename parameter, it will +** consist of a single "-" character followed by no more than +** 10 alphanumeric and/or "-" characters. +** ^SQLite further guarantees that +** the string will be valid and unchanged until xClose() is +** called. Because of the previous sentence, +** the [sqlite3_file] can safely store a pointer to the +** filename if it needs to remember the filename for some reason. +** If the zFilename parameter to xOpen is a NULL pointer then xOpen +** must invent its own temporary name for the file. ^Whenever the +** xFilename parameter is NULL it will also be the case that the +** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE]. +** +** The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set. +** +** ^(SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +**
      +**
    • [SQLITE_OPEN_MAIN_DB] +**
    • [SQLITE_OPEN_MAIN_JOURNAL] +**
    • [SQLITE_OPEN_TEMP_DB] +**
    • [SQLITE_OPEN_TEMP_JOURNAL] +**
    • [SQLITE_OPEN_TRANSIENT_DB] +**
    • [SQLITE_OPEN_SUBJOURNAL] +**
    • [SQLITE_OPEN_MASTER_JOURNAL] +**
    • [SQLITE_OPEN_WAL] +**
    )^ +** +** The file I/O implementation can use the object type flags to +** change the way it deals with files. For example, an application +** that does not care about crash recovery or rollback might make +** the open of a journal file a no-op. Writes to this journal would +** also be no-ops, and any attempt to read the journal would return +** SQLITE_IOERR. Or the implementation might recognize that a database +** file will be doing page-aligned sector reads and writes in a random +** order and set up its I/O subsystem accordingly. +** +** SQLite might also add one of the following flags to the xOpen method: +** +**
      +**
    • [SQLITE_OPEN_DELETEONCLOSE] +**
    • [SQLITE_OPEN_EXCLUSIVE] +**
    +** +** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases and their journals, transient +** databases, and subjournals. +** +** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction +** with the [SQLITE_OPEN_CREATE] flag, which are both directly +** analogous to the O_EXCL and O_CREAT flags of the POSIX open() +** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the +** SQLITE_OPEN_CREATE, is used to indicate that file should always +** be created, and that it is an error if it already exists. +** It is not used to indicate the file should be opened +** for exclusive access. +** +** ^At least szOsFile bytes of memory are allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. The xOpen method does not have to +** allocate the structure; it should just fill it in. Note that +** the xOpen method must set the sqlite3_file.pMethods to either +** a valid [sqlite3_io_methods] object or to NULL. xOpen must do +** this even if the open fails. SQLite expects that the sqlite3_file.pMethods +** element will be valid after xOpen returns regardless of the success +** or failure of the xOpen call. +** +** [[sqlite3_vfs.xAccess]] +** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to +** test whether a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test whether a file is at least readable. The file can be a +** directory. +** +** ^SQLite will always allocate at least mxPathname+1 bytes for the +** output buffer xFullPathname. The exact size of the output buffer +** is also passed as a parameter to both methods. If the output buffer +** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is +** handled as a fatal error by SQLite, vfs implementations should endeavor +** to prevent this by setting mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64() +** interfaces are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. +** The xSleep() method causes the calling thread to sleep for at +** least the number of microseconds given. ^The xCurrentTime() +** method returns a Julian Day Number for the current date and time as +** a floating point value. +** ^The xCurrentTimeInt64() method returns, as an integer, the Julian +** Day Number multiplied by 86400000 (the number of milliseconds in +** a 24-hour day). +** ^SQLite will use the xCurrentTimeInt64() method to get the current +** date and time if that method is available (if iVersion is 2 or +** greater and the function pointer is not NULL) and will fall back +** to xCurrentTime() if xCurrentTimeInt64() is unavailable. +** +** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces +** are not used by the SQLite core. These optional interfaces are provided +** by some VFSes to facilitate testing of the VFS code. By overriding +** system calls with functions under its control, a test program can +** simulate faults and error conditions that would otherwise be difficult +** or impossible to induce. The set of system calls that can be overridden +** varies from one VFS to another, and from one version of the same VFS to the +** next. Applications that use these interfaces must be prepared for any +** or all of these interfaces to be NULL or for their behavior to change +** from one release to the next. Applications must not attempt to access +** any of these methods if the iVersion of the VFS is less than 3. +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +typedef void (*sqlite3_syscall_ptr)(void); +struct sqlite3_vfs { + int iVersion; /* Structure version number (currently 3) */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + int (*xGetLastError)(sqlite3_vfs*, int, char *); + /* + ** The methods above are in version 1 of the sqlite_vfs object + ** definition. Those that follow are added in version 2 or later + */ + int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*); + /* + ** The methods above are in versions 1 and 2 of the sqlite_vfs object. + ** Those below are for version 3 and greater. + */ + int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr); + sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName); + const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName); + /* + ** The methods above are in versions 1 through 3 of the sqlite_vfs object. + ** New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. + */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method +** +** These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. They determine +** what kind of permissions the xAccess method is looking for. +** With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks whether the file exists. +** With SQLITE_ACCESS_READWRITE, the xAccess method +** checks whether the named directory is both readable and writable +** (in other words, if files can be added, removed, and renamed within +** the directory). +** The SQLITE_ACCESS_READWRITE constant is currently used only by the +** [temp_store_directory pragma], though this could change in a future +** release of SQLite. +** With SQLITE_ACCESS_READ, the xAccess method +** checks whether the file is readable. The SQLITE_ACCESS_READ constant is +** currently unused, though it might be used in a future release of +** SQLite. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */ +#define SQLITE_ACCESS_READ 2 /* Unused */ + +/* +** CAPI3REF: Flags for the xShmLock VFS method +** +** These integer constants define the various locking operations +** allowed by the xShmLock method of [sqlite3_io_methods]. The +** following are the only legal combinations of flags to the +** xShmLock method: +** +**
      +**
    • SQLITE_SHM_LOCK | SQLITE_SHM_SHARED +**
    • SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE +**
    • SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED +**
    • SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE +**
    +** +** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as +** was given no the corresponding lock. +** +** The xShmLock method can transition between unlocked and SHARED or +** between unlocked and EXCLUSIVE. It cannot transition between SHARED +** and EXCLUSIVE. +*/ +#define SQLITE_SHM_UNLOCK 1 +#define SQLITE_SHM_LOCK 2 +#define SQLITE_SHM_SHARED 4 +#define SQLITE_SHM_EXCLUSIVE 8 + +/* +** CAPI3REF: Maximum xShmLock index +** +** The xShmLock method on [sqlite3_io_methods] may use values +** between 0 and this upper bound as its "offset" argument. +** The SQLite core will never attempt to acquire or release a +** lock outside of this range +*/ +#define SQLITE_SHM_NLOCK 8 + + +/* +** CAPI3REF: Initialize The SQLite Library +** +** ^The sqlite3_initialize() routine initializes the +** SQLite library. ^The sqlite3_shutdown() routine +** deallocates any resources that were allocated by sqlite3_initialize(). +** These routines are designed to aid in process initialization and +** shutdown on embedded systems. Workstation applications using +** SQLite normally do not need to invoke either of these routines. +** +** A call to sqlite3_initialize() is an "effective" call if it is +** the first time sqlite3_initialize() is invoked during the lifetime of +** the process, or if it is the first time sqlite3_initialize() is invoked +** following a call to sqlite3_shutdown(). ^(Only an effective call +** of sqlite3_initialize() does any initialization. All other calls +** are harmless no-ops.)^ +** +** A call to sqlite3_shutdown() is an "effective" call if it is the first +** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only +** an effective call to sqlite3_shutdown() does any deinitialization. +** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^ +** +** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown() +** is not. The sqlite3_shutdown() interface must only be called from a +** single thread. All open [database connections] must be closed and all +** other SQLite resources must be deallocated prior to invoking +** sqlite3_shutdown(). +** +** Among other things, ^sqlite3_initialize() will invoke +** sqlite3_os_init(). Similarly, ^sqlite3_shutdown() +** will invoke sqlite3_os_end(). +** +** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success. +** ^If for some reason, sqlite3_initialize() is unable to initialize +** the library (perhaps it is unable to allocate a needed resource such +** as a mutex) it returns an [error code] other than [SQLITE_OK]. +** +** ^The sqlite3_initialize() routine is called internally by many other +** SQLite interfaces so that an application usually does not need to +** invoke sqlite3_initialize() directly. For example, [sqlite3_open()] +** calls sqlite3_initialize() so the SQLite library will be automatically +** initialized when [sqlite3_open()] is called if it has not be initialized +** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT] +** compile-time option, then the automatic calls to sqlite3_initialize() +** are omitted and the application must call sqlite3_initialize() directly +** prior to using any other SQLite interface. For maximum portability, +** it is recommended that applications always invoke sqlite3_initialize() +** directly prior to using any other SQLite interface. Future releases +** of SQLite may require this. In other words, the behavior exhibited +** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the +** default behavior in some future release of SQLite. +** +** The sqlite3_os_init() routine does operating-system specific +** initialization of the SQLite library. The sqlite3_os_end() +** routine undoes the effect of sqlite3_os_init(). Typical tasks +** performed by these routines include allocation or deallocation +** of static resources, initialization of global variables, +** setting up a default [sqlite3_vfs] module, or setting up +** a default configuration using [sqlite3_config()]. +** +** The application should never invoke either sqlite3_os_init() +** or sqlite3_os_end() directly. The application should only invoke +** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init() +** interface is called automatically by sqlite3_initialize() and +** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate +** implementations for sqlite3_os_init() and sqlite3_os_end() +** are built into SQLite when it is compiled for Unix, Windows, or OS/2. +** When [custom builds | built for other platforms] +** (using the [SQLITE_OS_OTHER=1] compile-time +** option) the application must supply a suitable implementation for +** sqlite3_os_init() and sqlite3_os_end(). An application-supplied +** implementation of sqlite3_os_init() or sqlite3_os_end() +** must return [SQLITE_OK] on success and some other [error code] upon +** failure. +*/ +int sqlite3_initialize(void); +int sqlite3_shutdown(void); +int sqlite3_os_init(void); +int sqlite3_os_end(void); + +/* +** CAPI3REF: Configuring The SQLite Library +** +** The sqlite3_config() interface is used to make global configuration +** changes to SQLite in order to tune SQLite to the specific needs of +** the application. The default configuration is recommended for most +** applications and so this routine is usually not necessary. It is +** provided to support rare applications with unusual needs. +** +** The sqlite3_config() interface is not threadsafe. The application +** must insure that no other SQLite interfaces are invoked by other +** threads while sqlite3_config() is running. Furthermore, sqlite3_config() +** may only be invoked prior to library initialization using +** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()]. +** ^If sqlite3_config() is called after [sqlite3_initialize()] and before +** [sqlite3_shutdown()] then it will return SQLITE_MISUSE. +** Note, however, that ^sqlite3_config() can be called as part of the +** implementation of an application-defined [sqlite3_os_init()]. +** +** The first argument to sqlite3_config() is an integer +** [configuration option] that determines +** what property of SQLite is to be configured. Subsequent arguments +** vary depending on the [configuration option] +** in the first argument. +** +** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK]. +** ^If the option is unknown or SQLite is unable to set the option +** then this routine returns a non-zero [error code]. +*/ +int sqlite3_config(int, ...); + +/* +** CAPI3REF: Configure database connections +** +** The sqlite3_db_config() interface is used to make configuration +** changes to a [database connection]. The interface is similar to +** [sqlite3_config()] except that the changes apply to a single +** [database connection] (specified in the first argument). +** +** The second argument to sqlite3_db_config(D,V,...) is the +** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code +** that indicates what aspect of the [database connection] is being configured. +** Subsequent arguments vary depending on the configuration verb. +** +** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if +** the call is considered successful. +*/ +int sqlite3_db_config(sqlite3*, int op, ...); + +/* +** CAPI3REF: Memory Allocation Routines +** +** An instance of this object defines the interface between SQLite +** and low-level memory allocation routines. +** +** This object is used in only one place in the SQLite interface. +** A pointer to an instance of this object is the argument to +** [sqlite3_config()] when the configuration option is +** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC]. +** By creating an instance of this object +** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC]) +** during configuration, an application can specify an alternative +** memory allocation subsystem for SQLite to use for all of its +** dynamic memory needs. +** +** Note that SQLite comes with several [built-in memory allocators] +** that are perfectly adequate for the overwhelming majority of applications +** and that this object is only useful to a tiny minority of applications +** with specialized memory allocation requirements. This object is +** also used during testing of SQLite in order to specify an alternative +** memory allocator that simulates memory out-of-memory conditions in +** order to verify that SQLite recovers gracefully from such +** conditions. +** +** The xMalloc, xRealloc, and xFree methods must work like the +** malloc(), realloc() and free() functions from the standard C library. +** ^SQLite guarantees that the second argument to +** xRealloc is always a value returned by a prior call to xRoundup. +** +** xSize should return the allocated size of a memory allocation +** previously obtained from xMalloc or xRealloc. The allocated size +** is always at least as big as the requested size but may be larger. +** +** The xRoundup method returns what would be the allocated size of +** a memory allocation given a particular requested size. Most memory +** allocators round up memory allocations at least to the next multiple +** of 8. Some allocators round up to a larger multiple or to a power of 2. +** Every memory allocation request coming in through [sqlite3_malloc()] +** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, +** that causes the corresponding memory allocation to fail. +** +** The xInit method initializes the memory allocator. (For example, +** it might allocate any require mutexes or initialize internal data +** structures. The xShutdown method is invoked (indirectly) by +** [sqlite3_shutdown()] and should deallocate any resources acquired +** by xInit. The pAppData pointer is used as the only parameter to +** xInit and xShutdown. +** +** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes +** the xInit method, so the xInit method need not be threadsafe. The +** xShutdown method is only called from [sqlite3_shutdown()] so it does +** not need to be threadsafe either. For all other methods, SQLite +** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the +** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which +** it is by default) and so the methods are automatically serialized. +** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other +** methods must be threadsafe or else make their own arrangements for +** serialization. +** +** SQLite will never invoke xInit() more than once without an intervening +** call to xShutdown(). +*/ +typedef struct sqlite3_mem_methods sqlite3_mem_methods; +struct sqlite3_mem_methods { + void *(*xMalloc)(int); /* Memory allocation function */ + void (*xFree)(void*); /* Free a prior allocation */ + void *(*xRealloc)(void*,int); /* Resize an allocation */ + int (*xSize)(void*); /* Return the size of an allocation */ + int (*xRoundup)(int); /* Round up request size to allocation size */ + int (*xInit)(void*); /* Initialize the memory allocator */ + void (*xShutdown)(void*); /* Deinitialize the memory allocator */ + void *pAppData; /* Argument to xInit() and xShutdown() */ +}; + +/* +** CAPI3REF: Configuration Options +** KEYWORDS: {configuration option} +** +** These constants are the available integer configuration options that +** can be passed as the first argument to the [sqlite3_config()] interface. +** +** New configuration options may be added in future releases of SQLite. +** Existing configuration options might be discontinued. Applications +** should check the return code from [sqlite3_config()] to make sure that +** the call worked. The [sqlite3_config()] interface will return a +** non-zero [error code] if a discontinued or unsupported configuration option +** is invoked. +** +**
    +** [[SQLITE_CONFIG_SINGLETHREAD]]
    SQLITE_CONFIG_SINGLETHREAD
    +**
    There are no arguments to this option. ^This option sets the +** [threading mode] to Single-thread. In other words, it disables +** all mutexing and puts SQLite into a mode where it can only be used +** by a single thread. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** it is not possible to change the [threading mode] from its default +** value of Single-thread and so [sqlite3_config()] will return +** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD +** configuration option.
    +** +** [[SQLITE_CONFIG_MULTITHREAD]]
    SQLITE_CONFIG_MULTITHREAD
    +**
    There are no arguments to this option. ^This option sets the +** [threading mode] to Multi-thread. In other words, it disables +** mutexing on [database connection] and [prepared statement] objects. +** The application is responsible for serializing access to +** [database connections] and [prepared statements]. But other mutexes +** are enabled so that SQLite will be safe to use in a multi-threaded +** environment as long as no two threads attempt to use the same +** [database connection] at the same time. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** it is not possible to set the Multi-thread [threading mode] and +** [sqlite3_config()] will return [SQLITE_ERROR] if called with the +** SQLITE_CONFIG_MULTITHREAD configuration option.
    +** +** [[SQLITE_CONFIG_SERIALIZED]]
    SQLITE_CONFIG_SERIALIZED
    +**
    There are no arguments to this option. ^This option sets the +** [threading mode] to Serialized. In other words, this option enables +** all mutexes including the recursive +** mutexes on [database connection] and [prepared statement] objects. +** In this mode (which is the default when SQLite is compiled with +** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access +** to [database connections] and [prepared statements] so that the +** application is free to use the same [database connection] or the +** same [prepared statement] in different threads at the same time. +** ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** it is not possible to set the Serialized [threading mode] and +** [sqlite3_config()] will return [SQLITE_ERROR] if called with the +** SQLITE_CONFIG_SERIALIZED configuration option.
    +** +** [[SQLITE_CONFIG_MALLOC]]
    SQLITE_CONFIG_MALLOC
    +**
    ^(This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mem_methods] structure. The argument specifies +** alternative low-level memory allocation routines to be used in place of +** the memory allocation routines built into SQLite.)^ ^SQLite makes +** its own private copy of the content of the [sqlite3_mem_methods] structure +** before the [sqlite3_config()] call returns.
    +** +** [[SQLITE_CONFIG_GETMALLOC]]
    SQLITE_CONFIG_GETMALLOC
    +**
    ^(This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods] +** structure is filled with the currently defined memory allocation routines.)^ +** This option can be used to overload the default memory allocation +** routines with a wrapper that simulations memory allocation failure or +** tracks memory usage, for example.
    +** +** [[SQLITE_CONFIG_MEMSTATUS]]
    SQLITE_CONFIG_MEMSTATUS
    +**
    ^This option takes single argument of type int, interpreted as a +** boolean, which enables or disables the collection of memory allocation +** statistics. ^(When memory allocation statistics are disabled, the +** following SQLite interfaces become non-operational: +**
      +**
    • [sqlite3_memory_used()] +**
    • [sqlite3_memory_highwater()] +**
    • [sqlite3_soft_heap_limit64()] +**
    • [sqlite3_status()] +**
    )^ +** ^Memory allocation statistics are enabled by default unless SQLite is +** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory +** allocation statistics are disabled by default. +**
    +** +** [[SQLITE_CONFIG_SCRATCH]]
    SQLITE_CONFIG_SCRATCH
    +**
    ^This option specifies a static memory buffer that SQLite can use for +** scratch memory. There are three arguments: A pointer an 8-byte +** aligned memory buffer from which the scratch allocations will be +** drawn, the size of each scratch allocation (sz), +** and the maximum number of scratch allocations (N). The sz +** argument must be a multiple of 16. +** The first argument must be a pointer to an 8-byte aligned buffer +** of at least sz*N bytes of memory. +** ^SQLite will use no more than two scratch buffers per thread. So +** N should be set to twice the expected maximum number of threads. +** ^SQLite will never require a scratch buffer that is more than 6 +** times the database page size. ^If SQLite needs needs additional +** scratch memory beyond what is provided by this configuration option, then +** [sqlite3_malloc()] will be used to obtain the memory needed.
    +** +** [[SQLITE_CONFIG_PAGECACHE]]
    SQLITE_CONFIG_PAGECACHE
    +**
    ^This option specifies a static memory buffer that SQLite can use for +** the database page cache with the default page cache implementation. +** This configuration should not be used if an application-define page +** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option. +** There are three arguments to this option: A pointer to 8-byte aligned +** memory, the size of each page buffer (sz), and the number of pages (N). +** The sz argument should be the size of the largest database page +** (a power of two between 512 and 32768) plus a little extra for each +** page header. ^The page header size is 20 to 40 bytes depending on +** the host architecture. ^It is harmless, apart from the wasted memory, +** to make sz a little too large. The first +** argument should point to an allocation of at least sz*N bytes of memory. +** ^SQLite will use the memory provided by the first argument to satisfy its +** memory needs for the first N pages that it adds to cache. ^If additional +** page cache memory is needed beyond what is provided by this option, then +** SQLite goes to [sqlite3_malloc()] for the additional storage space. +** The pointer in the first argument must +** be aligned to an 8-byte boundary or subsequent behavior of SQLite +** will be undefined.
    +** +** [[SQLITE_CONFIG_HEAP]]
    SQLITE_CONFIG_HEAP
    +**
    ^This option specifies a static memory buffer that SQLite will use +** for all of its dynamic memory allocation needs beyond those provided +** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE]. +** There are three arguments: An 8-byte aligned pointer to the memory, +** the number of bytes in the memory buffer, and the minimum allocation size. +** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts +** to using its default memory allocator (the system malloc() implementation), +** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the +** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or +** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory +** allocator is engaged to handle all of SQLites memory allocation needs. +** The first pointer (the memory pointer) must be aligned to an 8-byte +** boundary or subsequent behavior of SQLite will be undefined. +** The minimum allocation size is capped at 2**12. Reasonable values +** for the minimum allocation size are 2**5 through 2**8.
    +** +** [[SQLITE_CONFIG_MUTEX]]
    SQLITE_CONFIG_MUTEX
    +**
    ^(This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mutex_methods] structure. The argument specifies +** alternative low-level mutex routines to be used in place +** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the +** content of the [sqlite3_mutex_methods] structure before the call to +** [sqlite3_config()] returns. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** the entire mutexing subsystem is omitted from the build and hence calls to +** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will +** return [SQLITE_ERROR].
    +** +** [[SQLITE_CONFIG_GETMUTEX]]
    SQLITE_CONFIG_GETMUTEX
    +**
    ^(This option takes a single argument which is a pointer to an +** instance of the [sqlite3_mutex_methods] structure. The +** [sqlite3_mutex_methods] +** structure is filled with the currently defined mutex routines.)^ +** This option can be used to overload the default mutex allocation +** routines with a wrapper used to track mutex usage for performance +** profiling or testing, for example. ^If SQLite is compiled with +** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then +** the entire mutexing subsystem is omitted from the build and hence calls to +** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will +** return [SQLITE_ERROR].
    +** +** [[SQLITE_CONFIG_LOOKASIDE]]
    SQLITE_CONFIG_LOOKASIDE
    +**
    ^(This option takes two arguments that determine the default +** memory allocation for the lookaside memory allocator on each +** [database connection]. The first argument is the +** size of each lookaside buffer slot and the second is the number of +** slots allocated to each database connection.)^ ^(This option sets the +** default lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] +** verb to [sqlite3_db_config()] can be used to change the lookaside +** configuration on individual connections.)^
    +** +** [[SQLITE_CONFIG_PCACHE]]
    SQLITE_CONFIG_PCACHE
    +**
    ^(This option takes a single argument which is a pointer to +** an [sqlite3_pcache_methods] object. This object specifies the interface +** to a custom page cache implementation.)^ ^SQLite makes a copy of the +** object and uses it for page cache memory allocations.
    +** +** [[SQLITE_CONFIG_GETPCACHE]]
    SQLITE_CONFIG_GETPCACHE
    +**
    ^(This option takes a single argument which is a pointer to an +** [sqlite3_pcache_methods] object. SQLite copies of the current +** page cache implementation into that object.)^
    +** +** [[SQLITE_CONFIG_LOG]]
    SQLITE_CONFIG_LOG
    +**
    ^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a +** function with a call signature of void(*)(void*,int,const char*), +** and a pointer to void. ^If the function pointer is not NULL, it is +** invoked by [sqlite3_log()] to process each logging event. ^If the +** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op. +** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is +** passed through as the first parameter to the application-defined logger +** function whenever that function is invoked. ^The second parameter to +** the logger function is a copy of the first parameter to the corresponding +** [sqlite3_log()] call and is intended to be a [result code] or an +** [extended result code]. ^The third parameter passed to the logger is +** log message after formatting via [sqlite3_snprintf()]. +** The SQLite logging interface is not reentrant; the logger function +** supplied by the application must not invoke any SQLite interface. +** In a multi-threaded application, the application-defined logger +** function must be threadsafe.
    +** +** [[SQLITE_CONFIG_URI]]
    SQLITE_CONFIG_URI +**
    This option takes a single argument of type int. If non-zero, then +** URI handling is globally enabled. If the parameter is zero, then URI handling +** is globally disabled. If URI handling is globally enabled, all filenames +** passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or +** specified as part of [ATTACH] commands are interpreted as URIs, regardless +** of whether or not the [SQLITE_OPEN_URI] flag is set when the database +** connection is opened. If it is globally disabled, filenames are +** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the +** database connection is opened. By default, URI handling is globally +** disabled. The default value may be changed by compiling with the +** [SQLITE_USE_URI] symbol defined. +**
    +*/ +#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ +#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ +#define SQLITE_CONFIG_SERIALIZED 3 /* nil */ +#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ +#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ +#define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */ +#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */ +#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */ +#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */ +#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */ +#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */ +/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */ +#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */ +#define SQLITE_CONFIG_PCACHE 14 /* sqlite3_pcache_methods* */ +#define SQLITE_CONFIG_GETPCACHE 15 /* sqlite3_pcache_methods* */ +#define SQLITE_CONFIG_LOG 16 /* xFunc, void* */ +#define SQLITE_CONFIG_URI 17 /* int */ + +/* +** CAPI3REF: Database Connection Configuration Options +** +** These constants are the available integer configuration options that +** can be passed as the second argument to the [sqlite3_db_config()] interface. +** +** New configuration options may be added in future releases of SQLite. +** Existing configuration options might be discontinued. Applications +** should check the return code from [sqlite3_db_config()] to make sure that +** the call worked. ^The [sqlite3_db_config()] interface will return a +** non-zero [error code] if a discontinued or unsupported configuration option +** is invoked. +** +**
    +**
    SQLITE_DBCONFIG_LOOKASIDE
    +**
    ^This option takes three additional arguments that determine the +** [lookaside memory allocator] configuration for the [database connection]. +** ^The first argument (the third parameter to [sqlite3_db_config()] is a +** pointer to a memory buffer to use for lookaside memory. +** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb +** may be NULL in which case SQLite will allocate the +** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the +** size of each lookaside buffer slot. ^The third argument is the number of +** slots. The size of the buffer in the first argument must be greater than +** or equal to the product of the second and third arguments. The buffer +** must be aligned to an 8-byte boundary. ^If the second argument to +** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally +** rounded down to the next smaller multiple of 8. ^(The lookaside memory +** configuration for a database connection can only be changed when that +** connection is not currently using lookaside memory, or in other words +** when the "current value" returned by +** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero. +** Any attempt to change the lookaside memory configuration when lookaside +** memory is in use leaves the configuration unchanged and returns +** [SQLITE_BUSY].)^
    +** +**
    SQLITE_DBCONFIG_ENABLE_FKEY
    +**
    ^This option is used to enable or disable the enforcement of +** [foreign key constraints]. There should be two additional arguments. +** The first argument is an integer which is 0 to disable FK enforcement, +** positive to enable FK enforcement or negative to leave FK enforcement +** unchanged. The second parameter is a pointer to an integer into which +** is written 0 or 1 to indicate whether FK enforcement is off or on +** following this call. The second parameter may be a NULL pointer, in +** which case the FK enforcement setting is not reported back.
    +** +**
    SQLITE_DBCONFIG_ENABLE_TRIGGER
    +**
    ^This option is used to enable or disable [CREATE TRIGGER | triggers]. +** There should be two additional arguments. +** The first argument is an integer which is 0 to disable triggers, +** positive to enable triggers or negative to leave the setting unchanged. +** The second parameter is a pointer to an integer into which +** is written 0 or 1 to indicate whether triggers are disabled or enabled +** following this call. The second parameter may be a NULL pointer, in +** which case the trigger setting is not reported back.
    +** +**
    +*/ +#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ +#define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ +#define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ + + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes +** +** ^The sqlite3_extended_result_codes() routine enables or disables the +** [extended result codes] feature of SQLite. ^The extended result +** codes are disabled by default for historical compatibility. +*/ +int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid +** +** ^Each entry in an SQLite table has a unique 64-bit signed +** integer key called the [ROWID | "rowid"]. ^The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. ^If +** the table has a column of type [INTEGER PRIMARY KEY] then that column +** is another alias for the rowid. +** +** ^This routine returns the [rowid] of the most recent +** successful [INSERT] into the database from the [database connection] +** in the first argument. ^As of SQLite version 3.7.7, this routines +** records the last insert rowid of both ordinary tables and [virtual tables]. +** ^If no successful [INSERT]s +** have ever occurred on that database connection, zero is returned. +** +** ^(If an [INSERT] occurs within a trigger or within a [virtual table] +** method, then this routine will return the [rowid] of the inserted +** row as long as the trigger or virtual table method is running. +** But once the trigger or virtual table method ends, the value returned +** by this routine reverts to what it was before the trigger or virtual +** table method began.)^ +** +** ^An [INSERT] that fails due to a constraint violation is not a +** successful [INSERT] and does not change the value returned by this +** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. ^(When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface.)^ +** +** ^For the purposes of this routine, an [INSERT] is considered to +** be successful even if it is subsequently rolled back. +** +** This function is accessible to SQL statements via the +** [last_insert_rowid() SQL function]. +** +** If a separate thread performs a new [INSERT] on the same +** database connection while the [sqlite3_last_insert_rowid()] +** function is running and thus changes the last insert [rowid], +** then the value returned by [sqlite3_last_insert_rowid()] is +** unpredictable and might not equal either the old or the new +** last insert [rowid]. +*/ +sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified +** +** ^This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the [database connection] specified by the first parameter. +** ^(Only changes that are directly specified by the [INSERT], [UPDATE], +** or [DELETE] statement are counted. Auxiliary changes caused by +** triggers or [foreign key actions] are not counted.)^ Use the +** [sqlite3_total_changes()] function to find the total number of changes +** including changes caused by triggers and foreign key actions. +** +** ^Changes to a view that are simulated by an [INSTEAD OF trigger] +** are not counted. Only real table changes are counted. +** +** ^(A "row change" is a change to a single row of a single table +** caused by an INSERT, DELETE, or UPDATE statement. Rows that +** are changed as side effects of [REPLACE] constraint resolution, +** rollback, ABORT processing, [DROP TABLE], or by any other +** mechanisms do not count as direct row changes.)^ +** +** A "trigger context" is a scope of execution that begins and +** ends with the script of a [CREATE TRIGGER | trigger]. +** Most SQL statements are +** evaluated outside of any trigger. This is the "top level" +** trigger context. If a trigger fires from the top level, a +** new trigger context is entered for the duration of that one +** trigger. Subtriggers create subcontexts for their duration. +** +** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does +** not create a new trigger context. +** +** ^This function returns the number of direct row changes in the +** most recent INSERT, UPDATE, or DELETE statement within the same +** trigger context. +** +** ^Thus, when called from the top level, this function returns the +** number of changes in the most recent INSERT, UPDATE, or DELETE +** that also occurred at the top level. ^(Within the body of a trigger, +** the sqlite3_changes() interface can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** However, the number returned does not include changes +** caused by subtriggers since those have their own context.)^ +** +** See also the [sqlite3_total_changes()] interface, the +** [count_changes pragma], and the [changes() SQL function]. +** +** If a separate thread makes changes on the same database connection +** while [sqlite3_changes()] is running then the value returned +** is unpredictable and not meaningful. +*/ +int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified +** +** ^This function returns the number of row changes caused by [INSERT], +** [UPDATE] or [DELETE] statements since the [database connection] was opened. +** ^(The count returned by sqlite3_total_changes() includes all changes +** from all [CREATE TRIGGER | trigger] contexts and changes made by +** [foreign key actions]. However, +** the count does not include changes used to implement [REPLACE] constraints, +** do rollbacks or ABORT processing, or [DROP TABLE] processing. The +** count does not include rows of views that fire an [INSTEAD OF trigger], +** though if the INSTEAD OF trigger makes changes of its own, those changes +** are counted.)^ +** ^The sqlite3_total_changes() function counts the changes as soon as +** the statement that makes them is completed (when the statement handle +** is passed to [sqlite3_reset()] or [sqlite3_finalize()]). +** +** See also the [sqlite3_changes()] interface, the +** [count_changes pragma], and the [total_changes() SQL function]. +** +** If a separate thread makes changes on the same database connection +** while [sqlite3_total_changes()] is running then the value +** returned is unpredictable and not meaningful. +*/ +int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query +** +** ^This function causes any pending database operation to abort and +** return at its earliest opportunity. This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** ^It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. But it +** is not safe to call this routine with a [database connection] that +** is closed or might close before sqlite3_interrupt() returns. +** +** ^If an SQL operation is very nearly finished at the time when +** sqlite3_interrupt() is called, then it might not have an opportunity +** to be interrupted and might continue to completion. +** +** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT]. +** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE +** that is inside an explicit transaction, then the entire transaction +** will be rolled back automatically. +** +** ^The sqlite3_interrupt(D) call is in effect until all currently running +** SQL statements on [database connection] D complete. ^Any new SQL statements +** that are started after the sqlite3_interrupt() call and before the +** running statements reaches zero are interrupted as if they had been +** running prior to the sqlite3_interrupt() call. ^New SQL statements +** that are started after the running statement count reaches zero are +** not effected by the sqlite3_interrupt(). +** ^A call to sqlite3_interrupt(D) that occurs when there are no running +** SQL statements is a no-op and has no effect on SQL statements +** that are started after the sqlite3_interrupt() call returns. +** +** If the database connection closes while [sqlite3_interrupt()] +** is running then bad things will likely happen. +*/ +void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete +** +** These routines are useful during command-line input to determine if the +** currently entered text seems to form a complete SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. ^These routines return 1 if the input string +** appears to be a complete SQL statement. ^A statement is judged to be +** complete if it ends with a semicolon token and is not a prefix of a +** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within +** string literals or quoted identifier names or comments are not +** independent tokens (they are part of the token in which they are +** embedded) and thus do not count as a statement terminator. ^Whitespace +** and comments that follow the final semicolon are ignored. +** +** ^These routines return 0 if the statement is incomplete. ^If a +** memory allocation fails, then SQLITE_NOMEM is returned. +** +** ^These routines do not parse the SQL statements thus +** will not detect syntactically incorrect SQL. +** +** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior +** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked +** automatically by sqlite3_complete16(). If that initialization fails, +** then the return value from sqlite3_complete16() will be non-zero +** regardless of whether or not the input SQL is complete.)^ +** +** The input to [sqlite3_complete()] must be a zero-terminated +** UTF-8 string. +** +** The input to [sqlite3_complete16()] must be a zero-terminated +** UTF-16 string in native byte order. +*/ +int sqlite3_complete(const char *sql); +int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors +** +** ^This routine sets a callback function that might be invoked whenever +** an attempt is made to open a database table that another thread +** or process has locked. +** +** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. ^If the busy callback +** is not NULL, then the callback might be invoked with two arguments. +** +** ^The first argument to the busy handler is a copy of the void* pointer which +** is the third argument to sqlite3_busy_handler(). ^The second argument to +** the busy handler callback is the number of times that the busy handler has +** been invoked for this locking event. ^If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** ^If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that it will be invoked +** when there is lock contention. ^If SQLite determines that invoking the busy +** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler. +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** ^The default busy callback is NULL. +** +** ^The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. ^If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. ^This error code promotion +** forces an automatic rollback of the changes. See the +** +** CorruptionFollowingBusyError wiki page for a discussion of why +** this is important. +** +** ^(There can only be a single busy handler defined for each +** [database connection]. Setting a new busy handler clears any +** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()] +** will also set or clear the busy handler. +** +** The busy callback should not take any actions which modify the +** database connection that invoked the busy handler. Any such actions +** result in undefined behavior. +** +** A busy handler must not close the database connection +** or [prepared statement] that invoked the busy handler. +*/ +int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout +** +** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps +** for a specified amount of time when a table is locked. ^The handler +** will sleep multiple times until at least "ms" milliseconds of sleeping +** have accumulated. ^After at least "ms" milliseconds of sleeping, +** the handler returns 0 which causes [sqlite3_step()] to return +** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** ^Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** ^(There can only be a single busy handler for a particular +** [database connection] any any given moment. If another busy handler +** was defined (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared.)^ +*/ +int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries +** +** This is a legacy interface that is preserved for backwards compatibility. +** Use of this interface is not recommended. +** +** Definition: A result table is memory data structure created by the +** [sqlite3_get_table()] interface. A result table records the +** complete query results from one or more queries. +** +** The table conceptually has a number of rows and columns. But +** these numbers are not part of the result table itself. These +** numbers are obtained separately. Let N be the number of rows +** and M be the number of columns. +** +** A result table is an array of pointers to zero-terminated UTF-8 strings. +** There are (N+1)*M elements in the array. The first M pointers point +** to zero-terminated strings that contain the names of the columns. +** The remaining entries all point to query results. NULL values result +** in NULL pointers. All other values are in their UTF-8 zero-terminated +** string representation as returned by [sqlite3_column_text()]. +** +** A result table might consist of one or more memory allocations. +** It is not safe to pass a result table directly to [sqlite3_free()]. +** A result table should be deallocated using [sqlite3_free_table()]. +** +** ^(As an example of the result table format, suppose a query result +** is as follows: +** +**
    +**        Name        | Age
    +**        -----------------------
    +**        Alice       | 43
    +**        Bob         | 28
    +**        Cindy       | 21
    +** 
    +** +** There are two column (M==2) and three rows (N==3). Thus the +** result table has 8 entries. Suppose the result table is stored +** in an array names azResult. Then azResult holds this content: +** +**
    +**        azResult[0] = "Name";
    +**        azResult[1] = "Age";
    +**        azResult[2] = "Alice";
    +**        azResult[3] = "43";
    +**        azResult[4] = "Bob";
    +**        azResult[5] = "28";
    +**        azResult[6] = "Cindy";
    +**        azResult[7] = "21";
    +** 
    )^ +** +** ^The sqlite3_get_table() function evaluates one or more +** semicolon-separated SQL statements in the zero-terminated UTF-8 +** string of its 2nd parameter and returns a result table to the +** pointer given in its 3rd parameter. +** +** After the application has finished with the result from sqlite3_get_table(), +** it must pass the result table pointer to sqlite3_free_table() in order to +** release the memory that was malloced. Because of the way the +** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling +** function must not try to call [sqlite3_free()] directly. Only +** [sqlite3_free_table()] is able to release the memory properly and safely. +** +** The sqlite3_get_table() interface is implemented as a wrapper around +** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access +** to any internal data structures of SQLite. It uses only the public +** interface defined here. As a consequence, errors that occur in the +** wrapper layer outside of the internal [sqlite3_exec()] call are not +** reflected in subsequent calls to [sqlite3_errcode()] or +** [sqlite3_errmsg()]. +*/ +int sqlite3_get_table( + sqlite3 *db, /* An open database */ + const char *zSql, /* SQL to be evaluated */ + char ***pazResult, /* Results of the query */ + int *pnRow, /* Number of result rows written here */ + int *pnColumn, /* Number of result columns written here */ + char **pzErrmsg /* Error msg written here */ +); +void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions +** +** These routines are work-alikes of the "printf()" family of functions +** from the standard C library. +** +** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** The strings returned by these two routines should be +** released by [sqlite3_free()]. ^Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. Note that the order of the +** first two parameters is reversed from snprintf().)^ This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. ^(Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer.)^ We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** ^As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. ^The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. So the longest string that can be completely +** written will be n-1 characters. +** +** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf(). +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf() formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** ^(The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal.)^ By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, assume the string variable zText contains text as follows: +** +**
    +**  char *zText = "It's a happy day!";
    +** 
    +** +** One can use this text in an SQL statement as follows: +** +**
    +**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
    +**  sqlite3_exec(db, zSQL, 0, 0, 0);
    +**  sqlite3_free(zSQL);
    +** 
    +** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +**
    +**  INSERT INTO table1 VALUES('It''s a happy day!')
    +** 
    +** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +**
    +**  INSERT INTO table1 VALUES('It's a happy day!');
    +** 
    +** +** This second example is an SQL syntax error. As a general rule you should +** always use %q instead of %s when inserting text into a string literal. +** +** ^(The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Additionally, if the parameter in the +** argument list is a NULL pointer, %Q substitutes the text "NULL" (without +** single quotes).)^ So, for example, one could say: +** +**
    +**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
    +**  sqlite3_exec(db, zSQL, 0, 0, 0);
    +**  sqlite3_free(zSQL);
    +** 
    +** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** ^(The "%z" formatting option works like "%s" but with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string.)^ +*/ +char *sqlite3_mprintf(const char*,...); +char *sqlite3_vmprintf(const char*, va_list); +char *sqlite3_snprintf(int,char*,const char*, ...); +char *sqlite3_vsnprintf(int,char*,const char*, va_list); + +/* +** CAPI3REF: Memory Allocation Subsystem +** +** The SQLite core uses these three routines for all of its own +** internal memory allocation needs. "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** Windows VFS uses native malloc() and free() for some operations. +** +** ^The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** ^If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. ^If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** ^Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. ^The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_realloc(). +** +** ^(The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter.)^ ^ If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** ^If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** ^sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** ^If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** ^If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** ^The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary, or to a +** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time +** option is used. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be used. +** +** The Windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular Windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +** +** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()] +** must be either NULL or else pointers obtained from a prior +** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have +** not yet been released. +** +** The application must not read or write any part of +** a block of memory after it has been released using +** [sqlite3_free()] or [sqlite3_realloc()]. +*/ +void *sqlite3_malloc(int); +void *sqlite3_realloc(void*, int); +void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics +** +** SQLite provides these two interfaces for reporting on the status +** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()] +** routines, which form the built-in memory allocation subsystem. +** +** ^The [sqlite3_memory_used()] routine returns the number of bytes +** of memory currently outstanding (malloced but not freed). +** ^The [sqlite3_memory_highwater()] routine returns the maximum +** value of [sqlite3_memory_used()] since the high-water mark +** was last reset. ^The values returned by [sqlite3_memory_used()] and +** [sqlite3_memory_highwater()] include any overhead +** added by SQLite in its implementation of [sqlite3_malloc()], +** but not overhead added by the any underlying system library +** routines that [sqlite3_malloc()] may call. +** +** ^The memory high-water mark is reset to the current value of +** [sqlite3_memory_used()] if and only if the parameter to +** [sqlite3_memory_highwater()] is true. ^The value returned +** by [sqlite3_memory_highwater(1)] is the high-water mark +** prior to the reset. +*/ +sqlite3_int64 sqlite3_memory_used(void); +sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Pseudo-Random Number Generator +** +** SQLite contains a high-quality pseudo-random number generator (PRNG) used to +** select random [ROWID | ROWIDs] when inserting new records into a table that +** already uses the largest possible [ROWID]. The PRNG is also used for +** the build-in random() and randomblob() SQL functions. This interface allows +** applications to access the same PRNG for other purposes. +** +** ^A call to this routine stores N bytes of randomness into buffer P. +** +** ^The first time this routine is invoked (either internally or by +** the application) the PRNG is seeded using randomness obtained +** from the xRandomness method of the default [sqlite3_vfs] object. +** ^On all subsequent invocations, the pseudo-randomness is generated +** internally and without recourse to the [sqlite3_vfs] xRandomness +** method. +*/ +void sqlite3_randomness(int N, void *P); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks +** +** ^This routine registers an authorizer callback with a particular +** [database connection], supplied in the first argument. +** ^The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. ^At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. ^The authorizer callback should +** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. ^If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then the [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer will fail with an error message. +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. ^When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer will fail with an error message explaining that +** access is denied. +** +** ^The first parameter to the authorizer callback is a copy of the third +** parameter to the sqlite3_set_authorizer() interface. ^The second parameter +** to the callback is an integer [SQLITE_COPY | action code] that specifies +** the particular action to be authorized. ^The third through sixth parameters +** to the callback are zero-terminated strings that contain additional +** details about the action to be authorized. +** +** ^If the action code is [SQLITE_READ] +** and the callback returns [SQLITE_IGNORE] then the +** [prepared statement] statement is constructed to substitute +** a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE] +** return can be used to deny an untrusted user access to individual +** columns of a table. +** ^If the action code is [SQLITE_DELETE] and the callback returns +** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the +** [truncate optimization] is disabled and all rows are deleted individually. +** +** An authorizer is used when [sqlite3_prepare | preparing] +** SQL statements from an untrusted source, to ensure that the SQL statements +** do not try to access data they are not allowed to see, or that they do not +** try to execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being [sqlite3_prepare | prepared] that +** disallows everything except [SELECT] statements. +** +** Applications that need to process SQL from untrusted sources +** might also consider lowering resource limits using [sqlite3_limit()] +** and limiting database size using the [max_page_count] [PRAGMA] +** in addition to using an authorizer. +** +** ^(Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call.)^ ^Disable the authorizer by installing a NULL callback. +** The authorizer is disabled by default. +** +** The authorizer callback must not do anything that will modify +** the database connection that invoked the authorizer callback. +** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their +** database connections for the meaning of "modify" in this paragraph. +** +** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the +** statement might be re-prepared during [sqlite3_step()] due to a +** schema change. Hence, the application should ensure that the +** correct authorizer callback remains in place during the [sqlite3_step()]. +** +** ^Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. Authorization is not +** performed during statement evaluation in [sqlite3_step()], unless +** as stated in the previous paragraph, sqlite3_step() invokes +** sqlite3_prepare_v2() to reprepare a statement after a schema change. +*/ +int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +** +** Note that SQLITE_IGNORE is also used as a [SQLITE_ROLLBACK | return code] +** from the [sqlite3_vtab_on_conflict()] interface. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorize certain SQL statement actions. The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. +** +** These action code values signify what kind of operation is to be +** authorized. The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. ^(The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* Operation NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* NULL Function Name */ +#define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** ^The callback function registered by sqlite3_trace() is invoked at +** various times when an SQL statement is being run by [sqlite3_step()]. +** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the +** SQL statement text as the statement first begins executing. +** ^(Additional sqlite3_trace() callbacks might occur +** as each triggered subprogram is entered. The callbacks for triggers +** contain a UTF-8 SQL comment that identifies the trigger.)^ +** +** ^The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. ^The profile callback contains +** the original statement text and an estimate of wall-clock time +** of how long that statement took to run. ^The profile callback +** time is in units of nanoseconds, however the current implementation +** is only capable of millisecond resolution so the six least significant +** digits in the time are meaningless. Future versions of SQLite +** might provide greater resolution on the profiler callback. The +** sqlite3_profile() function is considered experimental and is +** subject to change in future versions of SQLite. +*/ +void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks +** +** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback +** function X to be invoked periodically during long running calls to +** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for +** database connection D. An example use for this +** interface is to keep a GUI updated during a large query. +** +** ^The parameter P is passed through as the only parameter to the +** callback function X. ^The parameter N is the number of +** [virtual machine instructions] that are evaluated between successive +** invocations of the callback X. +** +** ^Only a single progress handler may be defined at one time per +** [database connection]; setting a new progress handler cancels the +** old one. ^Setting parameter X to NULL disables the progress handler. +** ^The progress handler is also disabled by setting N to a value less +** than 1. +** +** ^If the progress callback returns non-zero, the operation is +** interrupted. This feature can be used to implement a +** "Cancel" button on a GUI progress dialog box. +** +** The progress handler callback must not do anything that will modify +** the database connection that invoked the progress handler. +** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their +** database connections for the meaning of "modify" in this paragraph. +** +*/ +void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection +** +** ^These routines open an SQLite database file as specified by the +** filename argument. ^The filename argument is interpreted as UTF-8 for +** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte +** order for sqlite3_open16(). ^(A [database connection] handle is usually +** returned in *ppDb, even if an error occurs. The only exception is that +** if SQLite is unable to allocate memory to hold the [sqlite3] object, +** a NULL will be written into *ppDb instead of a pointer to the [sqlite3] +** object.)^ ^(If the database is opened (and/or created) successfully, then +** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error following a failure of any +** of the sqlite3_open() routines. +** +** ^The default encoding for the database will be UTF-8 if +** sqlite3_open() or sqlite3_open_v2() is called and +** UTF-16 in the native byte order if sqlite3_open16() is used. +** +** Whether or not an error occurs when it is opened, resources +** associated with the [database connection] handle should be released by +** passing it to [sqlite3_close()] when it is no longer required. +** +** The sqlite3_open_v2() interface works like sqlite3_open() +** except that it accepts two additional parameters for additional control +** over the new database connection. ^(The flags parameter to +** sqlite3_open_v2() can take one of +** the following three values, optionally combined with the +** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE], +** [SQLITE_OPEN_PRIVATECACHE], and/or [SQLITE_OPEN_URI] flags:)^ +** +**
    +** ^(
    [SQLITE_OPEN_READONLY]
    +**
    The database is opened in read-only mode. If the database does not +** already exist, an error is returned.
    )^ +** +** ^(
    [SQLITE_OPEN_READWRITE]
    +**
    The database is opened for reading and writing if possible, or reading +** only if the file is write protected by the operating system. In either +** case the database must already exist, otherwise an error is returned.
    )^ +** +** ^(
    [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
    +**
    The database is opened for reading and writing, and is created if +** it does not already exist. This is the behavior that is always used for +** sqlite3_open() and sqlite3_open16().
    )^ +**
    +** +** If the 3rd parameter to sqlite3_open_v2() is not one of the +** combinations shown above optionally combined with other +** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits] +** then the behavior is undefined. +** +** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection +** opens in the multi-thread [threading mode] as long as the single-thread +** mode has not been set at compile-time or start-time. ^If the +** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens +** in the serialized [threading mode] unless single-thread was +** previously selected at compile-time or start-time. +** ^The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be +** eligible to use [shared cache mode], regardless of whether or not shared +** cache is enabled using [sqlite3_enable_shared_cache()]. ^The +** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not +** participate in [shared cache mode] even if it is enabled. +** +** ^The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system interface that +** the new database connection should use. ^If the fourth parameter is +** a NULL pointer then the default [sqlite3_vfs] object is used. +** +** ^If the filename is ":memory:", then a private, temporary in-memory database +** is created for the connection. ^This in-memory database will vanish when +** the database connection is closed. Future versions of SQLite might +** make use of additional special filenames that begin with the ":" character. +** It is recommended that when a database filename actually does begin with +** a ":" character you should prefix the filename with a pathname such as +** "./" to avoid ambiguity. +** +** ^If the filename is an empty string, then a private, temporary +** on-disk database will be created. ^This private database will be +** automatically deleted as soon as the database connection is closed. +** +** [[URI filenames in sqlite3_open()]]

    URI Filenames

    +** +** ^If [URI filename] interpretation is enabled, and the filename argument +** begins with "file:", then the filename is interpreted as a URI. ^URI +** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is +** set in the fourth argument to sqlite3_open_v2(), or if it has +** been enabled globally using the [SQLITE_CONFIG_URI] option with the +** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option. +** As of SQLite version 3.7.7, URI filename interpretation is turned off +** by default, but future releases of SQLite might enable URI filename +** interpretation by default. See "[URI filenames]" for additional +** information. +** +** URI filenames are parsed according to RFC 3986. ^If the URI contains an +** authority, then it must be either an empty string or the string +** "localhost". ^If the authority is not an empty string or "localhost", an +** error is returned to the caller. ^The fragment component of a URI, if +** present, is ignored. +** +** ^SQLite uses the path component of the URI as the name of the disk file +** which contains the database. ^If the path begins with a '/' character, +** then it is interpreted as an absolute path. ^If the path does not begin +** with a '/' (meaning that the authority section is omitted from the URI) +** then the path is interpreted as a relative path. +** ^On windows, the first component of an absolute path +** is a drive specification (e.g. "C:"). +** +** [[core URI query parameters]] +** The query component of a URI may contain parameters that are interpreted +** either by SQLite itself, or by a [VFS | custom VFS implementation]. +** SQLite interprets the following three query parameters: +** +**
      +**
    • vfs: ^The "vfs" parameter may be used to specify the name of +** a VFS object that provides the operating system interface that should +** be used to access the database file on disk. ^If this option is set to +** an empty string the default VFS object is used. ^Specifying an unknown +** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is +** present, then the VFS specified by the option takes precedence over +** the value passed as the fourth parameter to sqlite3_open_v2(). +** +**
    • mode: ^(The mode parameter may be set to either "ro", "rw" or +** "rwc". Attempting to set it to any other value is an error)^. +** ^If "ro" is specified, then the database is opened for read-only +** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the +** third argument to sqlite3_prepare_v2(). ^If the mode option is set to +** "rw", then the database is opened for read-write (but not create) +** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had +** been set. ^Value "rwc" is equivalent to setting both +** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If sqlite3_open_v2() is +** used, it is an error to specify a value for the mode parameter that is +** less restrictive than that specified by the flags passed as the third +** parameter. +** +**
    • cache: ^The cache parameter may be set to either "shared" or +** "private". ^Setting it to "shared" is equivalent to setting the +** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to +** sqlite3_open_v2(). ^Setting the cache parameter to "private" is +** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit. +** ^If sqlite3_open_v2() is used and the "cache" parameter is present in +** a URI filename, its value overrides any behaviour requested by setting +** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag. +**
    +** +** ^Specifying an unknown parameter in the query component of a URI is not an +** error. Future versions of SQLite might understand additional query +** parameters. See "[query parameters with special meaning to SQLite]" for +** additional information. +** +** [[URI filename examples]]

    URI filename examples

    +** +**
    +**
    URI filenames Results +**
    file:data.db +** Open the file "data.db" in the current directory. +**
    file:/home/fred/data.db
    +** file:///home/fred/data.db
    +** file://localhost/home/fred/data.db
    +** Open the database file "/home/fred/data.db". +**
    file://darkstar/home/fred/data.db +** An error. "darkstar" is not a recognized authority. +**
    +** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db +** Windows only: Open the file "data.db" on fred's desktop on drive +** C:. Note that the %20 escaping in this example is not strictly +** necessary - space characters can be used literally +** in URI filenames. +**
    file:data.db?mode=ro&cache=private +** Open file "data.db" in the current directory for read-only access. +** Regardless of whether or not shared-cache mode is enabled by +** default, use a private cache. +**
    file:/home/fred/data.db?vfs=unix-nolock +** Open file "/home/fred/data.db". Use the special VFS "unix-nolock". +**
    file:data.db?mode=readonly +** An error. "readonly" is not a valid option for the "mode" parameter. +**
    +** +** ^URI hexadecimal escape sequences (%HH) are supported within the path and +** query components of a URI. A hexadecimal escape sequence consists of a +** percent sign - "%" - followed by exactly two hexadecimal digits +** specifying an octet value. ^Before the path or query components of a +** URI filename are interpreted, they are encoded using UTF-8 and all +** hexadecimal escape sequences replaced by a single byte containing the +** corresponding octet. If this process generates an invalid UTF-8 encoding, +** the results are undefined. +** +** Note to Windows users: The encoding used for the filename argument +** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** sqlite3_open() or sqlite3_open_v2(). +*/ +int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Obtain Values For URI Parameters +** +** This is a utility routine, useful to VFS implementations, that checks +** to see if a database file was a URI that contained a specific query +** parameter, and if so obtains the value of the query parameter. +** +** The zFilename argument is the filename pointer passed into the xOpen() +** method of a VFS implementation. The zParam argument is the name of the +** query parameter we seek. This routine returns the value of the zParam +** parameter if it exists. If the parameter does not exist, this routine +** returns a NULL pointer. +** +** If the zFilename argument to this function is not a pointer that SQLite +** passed into the xOpen VFS method, then the behavior of this routine +** is undefined and probably undesirable. +*/ +const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam); + + +/* +** CAPI3REF: Error Codes And Messages +** +** ^The sqlite3_errcode() interface returns the numeric [result code] or +** [extended result code] for the most recent failed sqlite3_* API call +** associated with a [database connection]. If a prior API call failed +** but the most recent API call succeeded, the return value from +** sqlite3_errcode() is undefined. ^The sqlite3_extended_errcode() +** interface is the same except that it always returns the +** [extended result code] even when extended result codes are +** disabled. +** +** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF-8 or UTF-16 respectively. +** ^(Memory to hold the error message string is managed internally. +** The application does not need to worry about freeing the result. +** However, the error string might be overwritten or deallocated by +** subsequent calls to other SQLite interface functions.)^ +** +** When the serialized [threading mode] is in use, it might be the +** case that a second error occurs on a separate thread in between +** the time of the first error and the call to these interfaces. +** When that happens, the second error will be reported since these +** interfaces always report the most recent result. To avoid +** this, each thread can obtain exclusive use of the [database connection] D +** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning +** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after +** all calls to the interfaces listed here are completed. +** +** If an interface fails with SQLITE_MISUSE, that means the interface +** was invoked incorrectly by the application. In that case, the +** error code and message may or may not be set. +*/ +int sqlite3_errcode(sqlite3 *db); +int sqlite3_extended_errcode(sqlite3 *db); +const char *sqlite3_errmsg(sqlite3*); +const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object +** KEYWORDS: {prepared statement} {prepared statements} +** +** An instance of this object represents a single SQL statement. +** This object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +**
      +**
    1. Create the object using [sqlite3_prepare_v2()] or a related +** function. +**
    2. Bind values to [host parameters] using the sqlite3_bind_*() +** interfaces. +**
    3. Run the SQL by calling [sqlite3_step()] one or more times. +**
    4. Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +**
    5. Destroy the object using [sqlite3_finalize()]. +**
    +** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Run-time Limits +** +** ^(This interface allows the size of various constructs to be limited +** on a connection by connection basis. The first parameter is the +** [database connection] whose limit is to be set or queried. The +** second parameter is one of the [limit categories] that define a +** class of constructs to be size limited. The third parameter is the +** new limit for that construct.)^ +** +** ^If the new limit is a negative number, the limit is unchanged. +** ^(For each limit category SQLITE_LIMIT_NAME there is a +** [limits | hard upper bound] +** set at compile-time by a C preprocessor macro called +** [limits | SQLITE_MAX_NAME]. +** (The "_LIMIT_" in the name is changed to "_MAX_".))^ +** ^Attempts to increase a limit above its hard upper bound are +** silently truncated to the hard upper bound. +** +** ^Regardless of whether or not the limit was changed, the +** [sqlite3_limit()] interface returns the prior value of the limit. +** ^Hence, to find the current value of a limit without changing it, +** simply invoke this interface with the third parameter set to -1. +** +** Run-time limits are intended for use in applications that manage +** both their own internal database and also databases that are controlled +** by untrusted external sources. An example application might be a +** web browser that has its own databases for storing history and +** separate databases controlled by JavaScript applications downloaded +** off the Internet. The internal databases can be given the +** large, default limits. Databases managed by external sources can +** be given much smaller limits designed to prevent a denial of service +** attack. Developers might also want to use the [sqlite3_set_authorizer()] +** interface to further control untrusted SQL. The size of the database +** created by an untrusted script can be contained using the +** [max_page_count] [PRAGMA]. +** +** New run-time limit categories may be added in future releases. +*/ +int sqlite3_limit(sqlite3*, int id, int newVal); + +/* +** CAPI3REF: Run-Time Limit Categories +** KEYWORDS: {limit category} {*limit categories} +** +** These constants define various performance limits +** that can be lowered at run-time using [sqlite3_limit()]. +** The synopsis of the meanings of the various limits is shown below. +** Additional information is available at [limits | Limits in SQLite]. +** +**
    +** [[SQLITE_LIMIT_LENGTH]] ^(
    SQLITE_LIMIT_LENGTH
    +**
    The maximum size of any string or BLOB or table row, in bytes.
    )^ +** +** [[SQLITE_LIMIT_SQL_LENGTH]] ^(
    SQLITE_LIMIT_SQL_LENGTH
    +**
    The maximum length of an SQL statement, in bytes.
    )^ +** +** [[SQLITE_LIMIT_COLUMN]] ^(
    SQLITE_LIMIT_COLUMN
    +**
    The maximum number of columns in a table definition or in the +** result set of a [SELECT] or the maximum number of columns in an index +** or in an ORDER BY or GROUP BY clause.
    )^ +** +** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(
    SQLITE_LIMIT_EXPR_DEPTH
    +**
    The maximum depth of the parse tree on any expression.
    )^ +** +** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(
    SQLITE_LIMIT_COMPOUND_SELECT
    +**
    The maximum number of terms in a compound SELECT statement.
    )^ +** +** [[SQLITE_LIMIT_VDBE_OP]] ^(
    SQLITE_LIMIT_VDBE_OP
    +**
    The maximum number of instructions in a virtual machine program +** used to implement an SQL statement. This limit is not currently +** enforced, though that might be added in some future release of +** SQLite.
    )^ +** +** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(
    SQLITE_LIMIT_FUNCTION_ARG
    +**
    The maximum number of arguments on a function.
    )^ +** +** [[SQLITE_LIMIT_ATTACHED]] ^(
    SQLITE_LIMIT_ATTACHED
    +**
    The maximum number of [ATTACH | attached databases].)^
    +** +** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]] +** ^(
    SQLITE_LIMIT_LIKE_PATTERN_LENGTH
    +**
    The maximum length of the pattern argument to the [LIKE] or +** [GLOB] operators.
    )^ +** +** [[SQLITE_LIMIT_VARIABLE_NUMBER]] +** ^(
    SQLITE_LIMIT_VARIABLE_NUMBER
    +**
    The maximum index number of any [parameter] in an SQL statement.)^ +** +** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(
    SQLITE_LIMIT_TRIGGER_DEPTH
    +**
    The maximum depth of recursion for triggers.
    )^ +**
    +*/ +#define SQLITE_LIMIT_LENGTH 0 +#define SQLITE_LIMIT_SQL_LENGTH 1 +#define SQLITE_LIMIT_COLUMN 2 +#define SQLITE_LIMIT_EXPR_DEPTH 3 +#define SQLITE_LIMIT_COMPOUND_SELECT 4 +#define SQLITE_LIMIT_VDBE_OP 5 +#define SQLITE_LIMIT_FUNCTION_ARG 6 +#define SQLITE_LIMIT_ATTACHED 7 +#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 +#define SQLITE_LIMIT_VARIABLE_NUMBER 9 +#define SQLITE_LIMIT_TRIGGER_DEPTH 10 + +/* +** CAPI3REF: Compiling An SQL Statement +** KEYWORDS: {SQL statement compiler} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** The first argument, "db", is a [database connection] obtained from a +** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or +** [sqlite3_open16()]. The database connection must not have been closed. +** +** The second argument, "zSql", is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. +** +** ^If the nByte argument is less than zero, then zSql is read up to the +** first zero terminator. ^If nByte is non-negative, then it is the maximum +** number of bytes read from zSql. ^When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** the nByte-th byte, whichever comes first. If the caller knows +** that the supplied string is nul-terminated, then there is a small +** performance advantage to be gained by passing an nByte parameter that +** is equal to the number of bytes in the input string including +** the nul-terminator bytes as this saves SQLite from having to +** make a copy of the input string. +** +** ^If pzTail is not NULL then *pzTail is made to point to the first byte +** past the end of the first SQL statement in zSql. These routines only +** compile the first statement in zSql, so *pzTail is left pointing to +** what remains uncompiled. +** +** ^*ppStmt is left pointing to a compiled [prepared statement] that can be +** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set +** to NULL. ^If the input text contains no SQL (if the input is an empty +** string or a comment) then *ppStmt is set to NULL. +** The calling procedure is responsible for deleting the compiled +** SQL statement using [sqlite3_finalize()] after it has finished with it. +** ppStmt may not be NULL. +** +** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK]; +** otherwise an [error code] is returned. +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** ^In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. This causes the [sqlite3_step()] interface to +** behave differently in three ways: +** +**
      +**
    1. +** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. +**
    2. +** +**
    3. +** ^When an error occurs, [sqlite3_step()] will return one of the detailed +** [error codes] or [extended error codes]. ^The legacy behavior was that +** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code +** and the application would have to make a second call to [sqlite3_reset()] +** in order to find the underlying cause of the problem. With the "v2" prepare +** interfaces, the underlying reason for the error is returned immediately. +**
    4. +** +**
    5. +** ^If the specific value bound to [parameter | host parameter] in the +** WHERE clause might influence the choice of query plan for a statement, +** then the statement will be automatically recompiled, as if there had been +** a schema change, on the first [sqlite3_step()] call following any change +** to the [sqlite3_bind_text | bindings] of that [parameter]. +** ^The specific value of WHERE-clause [parameter] might influence the +** choice of query plan if the parameter is the left-hand side of a [LIKE] +** or [GLOB] operator or if the parameter is compared to an indexed column +** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled. +** the +**
    6. +**
    +*/ +int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPI3REF: Retrieving Statement SQL +** +** ^This interface can be used to retrieve a saved copy of the original +** SQL text used to create a [prepared statement] if that statement was +** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. +*/ +const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Determine If An SQL Statement Writes The Database +** +** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if +** and only if the [prepared statement] X makes no direct changes to +** the content of the database file. +** +** Note that [application-defined SQL functions] or +** [virtual tables] might change the database indirectly as a side effect. +** ^(For example, if an application defines a function "eval()" that +** calls [sqlite3_exec()], then the following SQL statement would +** change the database file through side-effects: +** +**
    +**    SELECT eval('DELETE FROM t1') FROM t2;
    +** 
    +** +** But because the [SELECT] statement does not change the database file +** directly, sqlite3_stmt_readonly() would still return true.)^ +** +** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK], +** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true, +** since the statements themselves do not actually modify the database but +** rather they control the timing of when other statements modify the +** database. ^The [ATTACH] and [DETACH] statements also cause +** sqlite3_stmt_readonly() to return true since, while those statements +** change the configuration of a database connection, they do not make +** changes to the content of the database files on disk. +*/ +int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object +** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value} +** +** SQLite uses the sqlite3_value object to represent all values +** that can be stored in a database table. SQLite uses dynamic typing +** for the values it stores. ^Values stored in sqlite3_value objects +** can be integers, floating point values, strings, BLOBs, or NULL. +** +** An sqlite3_value object may be either "protected" or "unprotected". +** Some interfaces require a protected sqlite3_value. Other interfaces +** will accept either a protected or an unprotected sqlite3_value. +** Every interface that accepts sqlite3_value arguments specifies +** whether or not it requires a protected sqlite3_value. +** +** The terms "protected" and "unprotected" refer to whether or not +** a mutex is held. An internal mutex is held for a protected +** sqlite3_value object but no mutex is held for an unprotected +** sqlite3_value object. If SQLite is compiled to be single-threaded +** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0) +** or if SQLite is run in one of reduced mutex modes +** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD] +** then there is no distinction between protected and unprotected +** sqlite3_value objects and they can be used interchangeably. However, +** for maximum code portability it is recommended that applications +** still make the distinction between protected and unprotected +** sqlite3_value objects even when not strictly required. +** +** ^The sqlite3_value objects that are passed as parameters into the +** implementation of [application-defined SQL functions] are protected. +** ^The sqlite3_value object returned by +** [sqlite3_column_value()] is unprotected. +** Unprotected sqlite3_value objects may only be used with +** [sqlite3_result_value()] and [sqlite3_bind_value()]. +** The [sqlite3_value_blob | sqlite3_value_type()] family of +** interfaces require protected sqlite3_value objects. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. ^A pointer to an sqlite3_context object +** is always first parameter to [application-defined SQL functions]. +** The application-defined SQL function implementation will pass this +** pointer through into calls to [sqlite3_result_int | sqlite3_result()], +** [sqlite3_aggregate_context()], [sqlite3_user_data()], +** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()], +** and/or [sqlite3_set_auxdata()]. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements +** KEYWORDS: {host parameter} {host parameters} {host parameter name} +** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} +** +** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants, +** literals may be replaced by a [parameter] that matches one of following +** templates: +** +**
      +**
    • ? +**
    • ?NNN +**
    • :VVV +**
    • @VVV +**
    • $VVV +**
    +** +** In the templates above, NNN represents an integer literal, +** and VVV represents an alphanumeric identifier.)^ ^The values of these +** parameters (also called "host parameter names" or "SQL parameters") +** can be set using the sqlite3_bind_*() routines defined here. +** +** ^The first argument to the sqlite3_bind_*() routines is always +** a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. +** +** ^The second argument is the index of the SQL parameter to be set. +** ^The leftmost SQL parameter has an index of 1. ^When the same named +** SQL parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** ^The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_index()] API if desired. ^The index +** for "?NNN" parameters is the value of NNN. +** ^The NNN value must be between 1 and the [sqlite3_limit()] +** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999). +** +** ^The third argument is the value to bind to the parameter. +** +** ^(In those routines that have a fourth argument, its value is the +** number of bytes in the parameter. To be clear: the value is the +** number of bytes in the value, not the number of characters.)^ +** ^If the fourth parameter is negative, the length of the string is +** the number of bytes up to the first zero terminator. +** If a non-negative fourth parameter is provided to sqlite3_bind_text() +** or sqlite3_bind_text16() then that parameter must be the byte offset +** where the NUL terminator would occur assuming the string were NUL +** terminated. If any NUL characters occur at byte offsets less than +** the value of the fourth parameter then the resulting string value will +** contain embedded NULs. The result of expressions involving strings +** with embedded NULs is undefined. +** +** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** string after SQLite has finished with it. ^The destructor is called +** to dispose of the BLOB or string even if the call to sqlite3_bind_blob(), +** sqlite3_bind_text(), or sqlite3_bind_text16() fails. +** ^If the fifth argument is +** the special value [SQLITE_STATIC], then SQLite assumes that the +** information is in static, unmanaged space and does not need to be freed. +** ^If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. +** +** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeroes. ^A zeroblob uses a fixed amount of memory +** (just an integer to hold its size) while it is being processed. +** Zeroblobs are intended to serve as placeholders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | incremental BLOB I/O] routines. +** ^A negative value for the zeroblob results in a zero-length BLOB. +** +** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer +** for the [prepared statement] or with a prepared statement for which +** [sqlite3_step()] has been called more recently than [sqlite3_reset()], +** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_() +** routine is passed a [prepared statement] that has been finalized, the +** result is undefined and probably harmful. +** +** ^Bindings are not cleared by the [sqlite3_reset()] routine. +** ^Unbound parameters are interpreted as NULL. +** +** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an +** [error code] if anything goes wrong. +** ^[SQLITE_RANGE] is returned if the parameter +** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails. +** +** See also: [sqlite3_bind_parameter_count()], +** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. +*/ +int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +int sqlite3_bind_double(sqlite3_stmt*, int, double); +int sqlite3_bind_int(sqlite3_stmt*, int, int); +int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +int sqlite3_bind_null(sqlite3_stmt*, int); +int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of SQL Parameters +** +** ^This routine can be used to find the number of [SQL parameters] +** in a [prepared statement]. SQL parameters are tokens of the +** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as +** placeholders for values that are [sqlite3_bind_blob | bound] +** to the parameters at a later time. +** +** ^(This routine actually returns the index of the largest (rightmost) +** parameter. For all forms except ?NNN, this will correspond to the +** number of unique parameters. If parameters of the ?NNN form are used, +** there may be gaps in the list.)^ +** +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_name()], and +** [sqlite3_bind_parameter_index()]. +*/ +int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter +** +** ^The sqlite3_bind_parameter_name(P,N) interface returns +** the name of the N-th [SQL parameter] in the [prepared statement] P. +** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" +** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA" +** respectively. +** In other words, the initial ":" or "$" or "@" or "?" +** is included as part of the name.)^ +** ^Parameters of the form "?" without a following integer have no name +** and are referred to as "nameless" or "anonymous parameters". +** +** ^The first host parameter has an index of 1, not 0. +** +** ^If the value N is out of range or if the N-th parameter is +** nameless, then NULL is returned. ^The returned string is +** always in UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +** +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_count()], and +** [sqlite3_bind_parameter_index()]. +*/ +const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name +** +** ^Return the index of an SQL parameter given its name. ^The +** index value returned is suitable for use as the second +** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero +** is returned if no matching parameter is found. ^The parameter +** name must be given in UTF-8 even if the original statement +** was prepared from UTF-16 text using [sqlite3_prepare16_v2()]. +** +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_count()], and +** [sqlite3_bind_parameter_index()]. +*/ +int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement +** +** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset +** the [sqlite3_bind_blob | bindings] on a [prepared statement]. +** ^Use this routine to reset all host parameters to NULL. +*/ +int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set +** +** ^Return the number of columns in the result set returned by the +** [prepared statement]. ^This routine returns 0 if pStmt is an SQL +** statement that does not return data (for example an [UPDATE]). +** +** See also: [sqlite3_data_count()] +*/ +int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set +** +** ^These routines return the name assigned to a particular column +** in the result set of a [SELECT] statement. ^The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF-8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF-16 string. ^The first parameter is the [prepared statement] +** that implements the [SELECT] statement. ^The second parameter is the +** column number. ^The leftmost column is number 0. +** +** ^The returned string pointer is valid until either the [prepared statement] +** is destroyed by [sqlite3_finalize()] or until the statement is automatically +** reprepared by the first call to [sqlite3_step()] for a particular run +** or until the next call to +** sqlite3_column_name() or sqlite3_column_name16() on the same column. +** +** ^If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +** +** ^The name of a result column is the value of the "AS" clause for +** that column, if there is an AS clause. If there is no AS clause +** then the name of the column is unspecified and may change from +** one release of SQLite to the next. +*/ +const char *sqlite3_column_name(sqlite3_stmt*, int N); +const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result +** +** ^These routines provide a means to determine the database, table, and +** table column that is the origin of a particular result column in +** [SELECT] statement. +** ^The name of the database or table or column can be returned as +** either a UTF-8 or UTF-16 string. ^The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. +** ^The returned string is valid until the [prepared statement] is destroyed +** using [sqlite3_finalize()] or until the statement is automatically +** reprepared by the first call to [sqlite3_step()] for a particular run +** or until the same information is requested +** again in a different encoding. +** +** ^The names returned are the original un-aliased names of the +** database, table, and column. +** +** ^The first argument to these interfaces is a [prepared statement]. +** ^These functions return information about the Nth result column returned by +** the statement, where N is the second function argument. +** ^The left-most column is column 0 for these routines. +** +** ^If the Nth column returned by the statement is an expression or +** subquery and is not a column value, then all of these functions return +** NULL. ^These routine might also return NULL if a memory allocation error +** occurs. ^Otherwise, they return the name of the attached database, table, +** or column that query result column was extracted from. +** +** ^As with all other SQLite APIs, those whose names end with "16" return +** UTF-16 encoded strings and the other functions return UTF-8. +** +** ^These APIs are only available if the library was compiled with the +** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol. +** +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +** +** If two or more threads call one or more +** [sqlite3_column_database_name | column metadata interfaces] +** for the same [prepared statement] and result column +** at the same time then the results are undefined. +*/ +const char *sqlite3_column_database_name(sqlite3_stmt*,int); +const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +const char *sqlite3_column_table_name(sqlite3_stmt*,int); +const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result +** +** ^(The first parameter is a [prepared statement]. +** If this statement is a [SELECT] statement and the Nth column of the +** returned result set of that [SELECT] is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned.)^ ^If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** ^The returned string is always UTF-8 encoded. +** +** ^(For example, given the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** and the following statement to be compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** this routine would return the string "VARIANT" for the second result +** column (i==1), and a NULL pointer for the first result column (i==0).)^ +** +** ^SQLite uses dynamic run-time typing. ^So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. ^Type +** is associated with individual values, not with the containers +** used to hold those values. +*/ +const char *sqlite3_column_decltype(sqlite3_stmt*,int); +const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement +** +** After a [prepared statement] has been prepared using either +** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy +** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function +** must be called one or more times to evaluate the statement. +** +** The details of the behavior of the sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** ^In the legacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** ^With the "v2" interface, any of the other [result codes] or +** [extended result codes] might be returned as well. +** +** ^[SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. ^If the statement is a [COMMIT] +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a [COMMIT] and occurs within an +** explicit transaction then you should rollback the transaction before +** continuing. +** +** ^[SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** ^If the SQL statement being executed returns any data, then [SQLITE_ROW] +** is returned each time a new row of data is ready for processing by the +** caller. The values may be accessed using the [column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** ^[SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** ^With the legacy interface, a more specific error code (for example, +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [prepared statement]. ^In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** For all versions of SQLite up to and including 3.6.23.1, a call to +** [sqlite3_reset()] was required after sqlite3_step() returned anything +** other than [SQLITE_ROW] before any subsequent invocation of +** sqlite3_step(). Failure to reset the prepared statement using +** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from +** sqlite3_step(). But after version 3.6.23.1, sqlite3_step() began +** calling [sqlite3_reset()] automatically in this circumstance rather +** than returning [SQLITE_MISUSE]. This is not considered a compatibility +** break because any application that ever receives an SQLITE_MISUSE error +** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option +** can be used to restore the legacy behavior. +** +** Goofy Interface Alert: In the legacy interface, the sqlite3_step() +** API always returns a generic error code, [SQLITE_ERROR], following any +** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call +** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the +** specific [error codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces, +** then the more specific [error codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +*/ +int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set +** +** ^The sqlite3_data_count(P) interface returns the number of columns in the +** current row of the result set of [prepared statement] P. +** ^If prepared statement P does not have results ready to return +** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of +** interfaces) then sqlite3_data_count(P) returns 0. +** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer. +** ^The sqlite3_data_count(P) routine returns 0 if the previous call to +** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P) +** will return non-zero if previous call to [sqlite3_step](P) returned +** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum] +** where it always returns zero since each step of that multi-step +** pragma returns 0 columns of data. +** +** See also: [sqlite3_column_count()] +*/ +int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes +** KEYWORDS: SQLITE_TEXT +** +** ^(Every value in SQLite has one of five fundamental datatypes: +** +**
      +**
    • 64-bit signed integer +**
    • 64-bit IEEE floating point number +**
    • string +**
    • BLOB +**
    • NULL +**
    )^ +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Result Values From A Query +** KEYWORDS: {column access functions} +** +** These routines form the "result set" interface. +** +** ^These routines return information about a single column of the current +** result row of a query. ^In every case the first argument is a pointer +** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] +** that was returned from [sqlite3_prepare_v2()] or one of its variants) +** and the second argument is the index of the column for which information +** should be returned. ^The leftmost column of the result set has the index 0. +** ^The number of columns in the result can be determined using +** [sqlite3_column_count()]. +** +** If the SQL statement does not currently point to a valid row, or if the +** column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** ^The sqlite3_column_type() routine returns the +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. ^The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** ^If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** ^If the result is NULL, then sqlite3_column_bytes() returns zero. +** +** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16() +** routine returns the number of bytes in that BLOB or string. +** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts +** the string to UTF-16 and then returns the number of bytes. +** ^If the result is a numeric value then sqlite3_column_bytes16() uses +** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns +** the number of bytes in that string. +** ^If the result is NULL, then sqlite3_column_bytes16() returns zero. +** +** ^The values returned by [sqlite3_column_bytes()] and +** [sqlite3_column_bytes16()] do not include the zero terminators at the end +** of the string. ^For clarity: the values returned by +** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of +** bytes in the string, not the number of characters. +** +** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even empty strings, are always zero terminated. ^The return +** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer. +** +** ^The object returned by [sqlite3_column_value()] is an +** [unprotected sqlite3_value] object. An unprotected sqlite3_value object +** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()]. +** If the [unprotected sqlite3_value] object returned by +** [sqlite3_column_value()] is used in any other way, including calls +** to routines like [sqlite3_value_int()], [sqlite3_value_text()], +** or [sqlite3_value_bytes()], then the behavior is undefined. +** +** These routines attempt to convert the value where appropriate. ^For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to perform the +** conversion automatically. ^(The following table details the conversions +** that are applied: +** +**
    +** +**
    Internal
    Type
    Requested
    Type
    Conversion +** +**
    NULL INTEGER Result is 0 +**
    NULL FLOAT Result is 0.0 +**
    NULL TEXT Result is NULL pointer +**
    NULL BLOB Result is NULL pointer +**
    INTEGER FLOAT Convert from integer to float +**
    INTEGER TEXT ASCII rendering of the integer +**
    INTEGER BLOB Same as INTEGER->TEXT +**
    FLOAT INTEGER Convert from float to integer +**
    FLOAT TEXT ASCII rendering of the float +**
    FLOAT BLOB Same as FLOAT->TEXT +**
    TEXT INTEGER Use atoi() +**
    TEXT FLOAT Use atof() +**
    TEXT BLOB No change +**
    BLOB INTEGER Convert to TEXT then use atoi() +**
    BLOB FLOAT Convert to TEXT then use atof() +**
    BLOB TEXT Add a zero terminator if needed +**
    +**
    )^ +** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** own equivalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** Type conversions and pointer invalidations might occur +** in the following cases: +** +**
      +**
    • The initial content is a BLOB and sqlite3_column_text() or +** sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.
    • +**
    • The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.
    • +**
    • The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.
    • +**
    +** +** ^Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer references will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometimes they +** are not possible and in those cases prior pointers are invalidated. +** +** The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +**
      +**
    • sqlite3_column_text() followed by sqlite3_column_bytes()
    • +**
    • sqlite3_column_blob() followed by sqlite3_column_bytes()
    • +**
    • sqlite3_column_text16() followed by sqlite3_column_bytes16()
    • +**
    +** +** In other words, you should call sqlite3_column_text(), +** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result +** into the desired format, then invoke sqlite3_column_bytes() or +** sqlite3_column_bytes16() to find the size of the result. Do not mix calls +** to sqlite3_column_text() or sqlite3_column_blob() with calls to +** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16() +** with calls to sqlite3_column_bytes(). +** +** ^The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. ^The memory space used to hold strings +** and BLOBs is freed automatically. Do not pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** ^(If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM].)^ +*/ +const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +double sqlite3_column_double(sqlite3_stmt*, int iCol); +int sqlite3_column_int(sqlite3_stmt*, int iCol); +sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +int sqlite3_column_type(sqlite3_stmt*, int iCol); +sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object +** +** ^The sqlite3_finalize() function is called to delete a [prepared statement]. +** ^If the most recent evaluation of the statement encountered no errors +** or if the statement is never been evaluated, then sqlite3_finalize() returns +** SQLITE_OK. ^If the most recent evaluation of statement S failed, then +** sqlite3_finalize(S) returns the appropriate [error code] or +** [extended error code]. +** +** ^The sqlite3_finalize(S) routine can be called at any point during +** the life cycle of [prepared statement] S: +** before statement S is ever evaluated, after +** one or more calls to [sqlite3_reset()], or after any call +** to [sqlite3_step()] regardless of whether or not the statement has +** completed execution. +** +** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op. +** +** The application must finalize every [prepared statement] in order to avoid +** resource leaks. It is a grievous error for the application to try to use +** a prepared statement after it has been finalized. Any use of a prepared +** statement after it has been finalized can result in undefined and +** undesirable behavior such as segfaults and heap corruption. +*/ +int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object +** +** The sqlite3_reset() function is called to reset a [prepared statement] +** object back to its initial state, ready to be re-executed. +** ^Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +** +** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S +** back to the beginning of its program. +** +** ^If the most recent call to [sqlite3_step(S)] for the +** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE], +** or if [sqlite3_step(S)] has never before been called on S, +** then [sqlite3_reset(S)] returns [SQLITE_OK]. +** +** ^If the most recent call to [sqlite3_step(S)] for the +** [prepared statement] S indicated an error, then +** [sqlite3_reset(S)] returns an appropriate [error code]. +** +** ^The [sqlite3_reset(S)] interface does not change the values +** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S. +*/ +int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions +** KEYWORDS: {function creation routines} +** KEYWORDS: {application-defined SQL function} +** KEYWORDS: {application-defined SQL functions} +** +** ^These functions (collectively known as "function creation routines") +** are used to add SQL functions or aggregates or to redefine the behavior +** of existing SQL functions or aggregates. The only differences between +** these routines are the text encoding expected for +** the second parameter (the name of the function being created) +** and the presence or absence of a destructor callback for +** the application data pointer. +** +** ^The first parameter is the [database connection] to which the SQL +** function is to be added. ^If an application uses more than one database +** connection then application-defined SQL functions must be added +** to each database connection separately. +** +** ^The second parameter is the name of the SQL function to be created or +** redefined. ^The length of the name is limited to 255 bytes in a UTF-8 +** representation, exclusive of the zero-terminator. ^Note that the name +** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes. +** ^Any attempt to create a function with a longer name +** will result in [SQLITE_MISUSE] being returned. +** +** ^The third parameter (nArg) +** is the number of arguments that the SQL function or +** aggregate takes. ^If this parameter is -1, then the SQL function or +** aggregate may take any number of arguments between 0 and the limit +** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third +** parameter is less than -1 or greater than 127 then the behavior is +** undefined. +** +** ^The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Every SQL function implementation must be able to work +** with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. ^An application may +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** ^When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what text +** encoding is used, then the fourth argument should be [SQLITE_ANY]. +** +** ^(The fifth parameter is an arbitrary pointer. The implementation of the +** function can gain access to this pointer using [sqlite3_user_data()].)^ +** +** ^The sixth, seventh and eighth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL function or +** aggregate. ^A scalar SQL function requires an implementation of the xFunc +** callback only; NULL pointers must be passed as the xStep and xFinal +** parameters. ^An aggregate SQL function requires an implementation of xStep +** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing +** SQL function or aggregate, pass NULL pointers for all three function +** callbacks. +** +** ^(If the ninth parameter to sqlite3_create_function_v2() is not NULL, +** then it is destructor for the application data pointer. +** The destructor is invoked when the function is deleted, either by being +** overloaded or when the database connection closes.)^ +** ^The destructor is also invoked if the call to +** sqlite3_create_function_v2() fails. +** ^When the destructor callback of the tenth parameter is invoked, it +** is passed a single argument which is a copy of the application data +** pointer which was the fifth parameter to sqlite3_create_function_v2(). +** +** ^It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing preferred text encodings. ^SQLite will use +** the implementation that most closely matches the way in which the +** SQL function is used. ^A function implementation with a non-negative +** nArg parameter is a better match than a function implementation with +** a negative nArg. ^A function where the preferred text encoding +** matches the database encoding is a better +** match than a function where the encoding is different. +** ^A function where the encoding difference is between UTF16le and UTF16be +** is a closer match than a function where the encoding difference is +** between UTF8 and UTF16. +** +** ^Built-in functions may be overloaded by new application-defined functions. +** +** ^An application-defined function is permitted to call other +** SQLite interfaces. However, such calls must not +** close the database connection nor finalize or reset the prepared +** statement in which the function is running. +*/ +int sqlite3_create_function( + sqlite3 *db, + const char *zFunctionName, + int nArg, + int eTextRep, + void *pApp, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function16( + sqlite3 *db, + const void *zFunctionName, + int nArg, + int eTextRep, + void *pApp, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +int sqlite3_create_function_v2( + sqlite3 *db, + const char *zFunctionName, + int nArg, + int eTextRep, + void *pApp, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*), + void(*xDestroy)(void*) +); + +/* +** CAPI3REF: Text Encodings +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Deprecated Functions +** DEPRECATED +** +** These functions are [deprecated]. In order to maintain +** backwards compatibility with older code, these functions continue +** to be supported. However, new applications should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you what they do. +*/ +#ifndef SQLITE_OMIT_DEPRECATED +SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*); +SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*); +SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +SQLITE_DEPRECATED int sqlite3_global_recover(void); +SQLITE_DEPRECATED void sqlite3_thread_cleanup(void); +SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); +#endif + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 3rd parameter to these callbacks is an array of pointers to +** [protected sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work only with [protected sqlite3_value] objects. +** Any attempt to use these routines on an [unprotected sqlite3_value] +** object results in undefined behavior. +** +** ^These routines work just like the corresponding [column access functions] +** except that these routines take a single [protected sqlite3_value] object +** pointer instead of a [sqlite3_stmt*] pointer and an integer column number. +** +** ^The sqlite3_value_text16() interface extracts a UTF-16 string +** in the native byte-order of the host machine. ^The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF-16 strings as big-endian and little-endian respectively. +** +** ^(The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words, if the value is a string that looks like a number) +** then the conversion is performed. Otherwise no conversion occurs. +** The [SQLITE_INTEGER | datatype] after conversion is returned.)^ +** +** Please pay particular attention to the fact that the pointer returned +** from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the [sqlite3_value*] parameters. +*/ +const void *sqlite3_value_blob(sqlite3_value*); +int sqlite3_value_bytes(sqlite3_value*); +int sqlite3_value_bytes16(sqlite3_value*); +double sqlite3_value_double(sqlite3_value*); +int sqlite3_value_int(sqlite3_value*); +sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +const unsigned char *sqlite3_value_text(sqlite3_value*); +const void *sqlite3_value_text16(sqlite3_value*); +const void *sqlite3_value_text16le(sqlite3_value*); +const void *sqlite3_value_text16be(sqlite3_value*); +int sqlite3_value_type(sqlite3_value*); +int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context +** +** Implementations of aggregate SQL functions use this +** routine to allocate memory for storing their state. +** +** ^The first time the sqlite3_aggregate_context(C,N) routine is called +** for a particular aggregate function, SQLite +** allocates N of memory, zeroes out that memory, and returns a pointer +** to the new memory. ^On second and subsequent calls to +** sqlite3_aggregate_context() for the same aggregate function instance, +** the same buffer is returned. Sqlite3_aggregate_context() is normally +** called once for each invocation of the xStep callback and then one +** last time when the xFinal callback is invoked. ^(When no rows match +** an aggregate query, the xStep() callback of the aggregate function +** implementation is never called and xFinal() is called exactly once. +** In those cases, sqlite3_aggregate_context() might be called for the +** first time from within xFinal().)^ +** +** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer if N is +** less than or equal to zero or if a memory allocate error occurs. +** +** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is +** determined by the N parameter on first successful call. Changing the +** value of N in subsequent call to sqlite3_aggregate_context() within +** the same aggregate function instance will not resize the memory +** allocation.)^ +** +** ^SQLite automatically frees the memory allocated by +** sqlite3_aggregate_context() when the aggregate query concludes. +** +** The first parameter must be a copy of the +** [sqlite3_context | SQL function context] that is the first parameter +** to the xStep or xFinal callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +*/ +void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions +** +** ^The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. +** +** This routine must be called from the same thread in which +** the application-defined function is running. +*/ +void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Database Connection For Functions +** +** ^The sqlite3_context_db_handle() interface returns a copy of +** the pointer to the [database connection] (the 1st parameter) +** of the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. +*/ +sqlite3 *sqlite3_context_db_handle(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data +** +** The following two functions may be used by scalar SQL functions to +** associate metadata with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated metadata may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** metadata associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. ^If no metadata has been ever +** been set for the Nth argument of the function, or if the corresponding +** function parameter has changed since the meta-data was set, +** then sqlite3_get_auxdata() returns a NULL pointer. +** +** ^The sqlite3_set_auxdata() interface saves the metadata +** pointed to by its 3rd parameter as the metadata for the N-th +** argument of the application-defined function. Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** ^If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the metadata when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. +** +** SQLite is free to call the destructor and drop metadata on any +** parameter of any function at any time. ^The only guarantee is that +** the destructor will be called before the metadata is dropped. +** +** ^(In practice, metadata is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and [parameters].)^ +** +** These routines must be called from the same thread in which +** the SQL function is running. +*/ +void *sqlite3_get_auxdata(sqlite3_context*, int N); +void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior +** +** These are special values for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. ^If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. ^The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the [parameter binding] family of +** functions used to bind values to host parameters in prepared statements. +** Refer to the [SQL parameter] documentation for additional information. +** +** ^The sqlite3_result_blob() interface sets the result from +** an application-defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** +** ^The sqlite3_result_zeroblob() interfaces set the result of +** the application-defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** ^The sqlite3_result_double() interface sets the result from +** an application-defined function to be a floating point value specified +** by its 2nd argument. +** +** ^The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** ^SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. ^SQLite interprets the error +** message string from sqlite3_result_error() as UTF-8. ^SQLite +** interprets the string from sqlite3_result_error16() as UTF-16 in native +** byte order. ^If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** ^If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** ^The sqlite3_result_error() and sqlite3_result_error16() +** routines make a private copy of the error message text before +** they return. Hence, the calling function can deallocate or +** modify the text after they return without harm. +** ^The sqlite3_result_error_code() function changes the error code +** returned by SQLite as a result of an error in a function. ^By default, +** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error() +** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. +** +** ^The sqlite3_result_toobig() interface causes SQLite to throw an error +** indicating that a string or BLOB is too long to represent. +** +** ^The sqlite3_result_nomem() interface causes SQLite to throw an error +** indicating that a memory allocation failed. +** +** ^The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** ^The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** ^The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** ^The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** ^SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** ^If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** ^If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. If the 3rd parameter is non-negative, then it +** must be the byte offset into the string where the NUL terminator would +** appear if the string where NUL terminated. If any NUL characters occur +** in the string at a byte offset that is less than the value of the 3rd +** parameter, then the resulting string will contain embedded NULs and the +** result of expressions operating on strings with embedded NULs is undefined. +** ^If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or BLOB result when it has +** finished using that result. +** ^If the 4th parameter to the sqlite3_result_text* interfaces or to +** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite +** assumes that the text or BLOB result is in constant space and does not +** copy the content of the parameter nor call a destructor on the content +** when it has finished using that result. +** ^If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** ^The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the +** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that the [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** ^A [protected sqlite3_value] object may always be used where an +** [unprotected sqlite3_value] object is required, so either +** kind of [sqlite3_value] object can be used with this interface. +** +** If these routines are called from within the different thread +** than the one containing the application-defined function that received +** the [sqlite3_context] pointer, the results are undefined. +*/ +void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_double(sqlite3_context*, double); +void sqlite3_result_error(sqlite3_context*, const char*, int); +void sqlite3_result_error16(sqlite3_context*, const void*, int); +void sqlite3_result_error_toobig(sqlite3_context*); +void sqlite3_result_error_nomem(sqlite3_context*); +void sqlite3_result_error_code(sqlite3_context*, int); +void sqlite3_result_int(sqlite3_context*, int); +void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +void sqlite3_result_null(sqlite3_context*); +void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences +** +** ^These functions add, remove, or modify a [collation] associated +** with the [database connection] specified as the first argument. +** +** ^The name of the collation is a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string in native byte order for sqlite3_create_collation16(). +** ^Collation names that compare equal according to [sqlite3_strnicmp()] are +** considered to be the same name. +** +** ^(The third argument (eTextRep) must be one of the constants: +**
      +**
    • [SQLITE_UTF8], +**
    • [SQLITE_UTF16LE], +**
    • [SQLITE_UTF16BE], +**
    • [SQLITE_UTF16], or +**
    • [SQLITE_UTF16_ALIGNED]. +**
    )^ +** ^The eTextRep argument determines the encoding of strings passed +** to the collating function callback, xCallback. +** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep +** force strings to be UTF16 with native byte order. +** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin +** on an even byte address. +** +** ^The fourth argument, pArg, is an application data pointer that is passed +** through as the first argument to the collating function callback. +** +** ^The fifth argument, xCallback, is a pointer to the collating function. +** ^Multiple collating functions can be registered using the same name but +** with different eTextRep parameters and SQLite will use whichever +** function requires the least amount of data transformation. +** ^If the xCallback argument is NULL then the collating function is +** deleted. ^When all collating functions having the same name are deleted, +** that collation is no longer usable. +** +** ^The collating function callback is invoked with a copy of the pArg +** application data pointer and with two strings in the encoding specified +** by the eTextRep argument. The collating function must return an +** integer that is negative, zero, or positive +** if the first string is less than, equal to, or greater than the second, +** respectively. A collating function must always return the same answer +** given the same inputs. If two or more collating functions are registered +** to the same collation name (using different eTextRep values) then all +** must give an equivalent answer when invoked with equivalent strings. +** The collating function must obey the following properties for all +** strings A, B, and C: +** +**
      +**
    1. If A==B then B==A. +**
    2. If A==B and B==C then A==C. +**
    3. If A<B THEN B>A. +**
    4. If A<B and B<C then A<C. +**
    +** +** If a collating function fails any of the above constraints and that +** collating function is registered and used, then the behavior of SQLite +** is undefined. +** +** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** with the addition that the xDestroy callback is invoked on pArg when +** the collating function is deleted. +** ^Collating functions are deleted when they are overridden by later +** calls to the collation creation functions or when the +** [database connection] is closed using [sqlite3_close()]. +** +** ^The xDestroy callback is not called if the +** sqlite3_create_collation_v2() function fails. Applications that invoke +** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should +** check the return code and dispose of the application data pointer +** themselves rather than expecting SQLite to deal with it for them. +** This is different from every other SQLite interface. The inconsistency +** is unfortunate but cannot be changed without breaking backwards +** compatibility. +** +** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()]. +*/ +int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void *pArg, + int(*xCompare)(void*,int,const void*,int,const void*) +); +int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void *pArg, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +int sqlite3_create_collation16( + sqlite3*, + const void *zName, + int eTextRep, + void *pArg, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks +** +** ^To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** [database connection] to be invoked whenever an undefined collation +** sequence is required. +** +** ^If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. ^If sqlite3_collation_needed16() is used, +** the names are passed as UTF-16 in machine native byte order. +** ^A call to either function replaces the existing collation-needed callback. +** +** ^(When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). The second argument is the database +** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE], +** or [SQLITE_UTF16LE], indicating the most desirable form of the collation +** sequence function required. The fourth parameter is the name of the +** required collation sequence.)^ +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +*/ +int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +#ifdef SQLITE_HAS_CODEC +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** Specify the activation key for a SEE database. Unless +** activated, none of the SEE routines will work. +*/ +void sqlite3_activate_see( + const char *zPassPhrase /* Activation phrase */ +); +#endif + +#ifdef SQLITE_ENABLE_CEROD +/* +** Specify the activation key for a CEROD database. Unless +** activated, none of the CEROD routines will work. +*/ +void sqlite3_activate_cerod( + const char *zPassPhrase /* Activation phrase */ +); +#endif + +/* +** CAPI3REF: Suspend Execution For A Short Time +** +** The sqlite3_sleep() function causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** ^SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. If the xSleep() method +** of the default VFS is not implemented correctly, or not implemented at +** all, then the behavior of sqlite3_sleep() may deviate from the description +** in the previous paragraphs. +*/ +int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files +** +** ^(If this global variable is made to point to a string which is +** the name of a folder (a.k.a. directory), then all temporary files +** created by SQLite when using a built-in [sqlite3_vfs | VFS] +** will be placed in that directory.)^ ^If this variable +** is a NULL pointer, then SQLite performs a search for an appropriate +** temporary file directory. +** +** It is not safe to read or modify this variable in more than one +** thread at a time. It is not safe to read or modify this variable +** if a [database connection] is being used at the same time in a separate +** thread. +** It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been called and that this variable remain unchanged +** thereafter. +** +** ^The [temp_store_directory pragma] may modify this variable and cause +** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore, +** the [temp_store_directory pragma] always assumes that any string +** that this variable points to is held in memory obtained from +** [sqlite3_malloc] and the pragma may attempt to free that memory +** using [sqlite3_free]. +** Hence, if this variable is modified directly, either it should be +** made NULL or made to point to memory obtained from [sqlite3_malloc] +** or else the use of the [temp_store_directory pragma] should be avoided. +*/ +SQLITE_EXTERN char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test For Auto-Commit Mode +** KEYWORDS: {autocommit mode} +** +** ^The sqlite3_get_autocommit() interface returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. ^Autocommit mode is on by default. +** ^Autocommit mode is disabled by a [BEGIN] statement. +** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK]. +** +** If certain kinds of errors occur on a statement within a multi-statement +** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. The only way to +** find out whether SQLite automatically rolled back the transaction after +** an error is to use this function. +** +** If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. +*/ +int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement +** +** ^The sqlite3_db_handle interface returns the [database connection] handle +** to which a [prepared statement] belongs. ^The [database connection] +** returned by sqlite3_db_handle is the same [database connection] +** that was the first argument +** to the [sqlite3_prepare_v2()] call (or its variants) that was used to +** create the statement in the first place. +*/ +sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + +/* +** CAPI3REF: Find the next prepared statement +** +** ^This interface returns a pointer to the next [prepared statement] after +** pStmt associated with the [database connection] pDb. ^If pStmt is NULL +** then this interface returns a pointer to the first prepared statement +** associated with the database connection pDb. ^If no prepared statement +** satisfies the conditions of this routine, it returns NULL. +** +** The [database connection] pointer D in a call to +** [sqlite3_next_stmt(D,S)] must refer to an open database +** connection and in particular must not be a NULL pointer. +*/ +sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks +** +** ^The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is [COMMIT | committed]. +** ^Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** ^The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is [ROLLBACK | rolled back]. +** ^Any callback set by a previous call to sqlite3_rollback_hook() +** for the same database connection is overridden. +** ^The pArg argument is passed through to the callback. +** ^If the callback on a commit hook function returns non-zero, +** then the commit is converted into a rollback. +** +** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions +** return the P argument from the previous call of the same function +** on the same [database connection] D, or NULL for +** the first call for each function on D. +** +** The callback implementation must not do anything that will modify +** the database connection that invoked the callback. Any actions +** to modify the database connection must be deferred until after the +** completion of the [sqlite3_step()] call that triggered the commit +** or rollback hook in the first place. +** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their +** database connections for the meaning of "modify" in this paragraph. +** +** ^Registering a NULL function disables the callback. +** +** ^When the commit hook callback routine returns zero, the [COMMIT] +** operation is allowed to continue normally. ^If the commit hook +** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK]. +** ^The rollback hook is invoked on a rollback that results from a commit +** hook returning non-zero, just as it would be with any other rollback. +** +** ^For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** ^The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** +** See also the [sqlite3_update_hook()] interface. +*/ +void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks +** +** ^The sqlite3_update_hook() interface registers a callback function +** with the [database connection] identified by the first argument +** to be invoked whenever a row is updated, inserted or deleted. +** ^Any callback set by a previous call to this function +** for the same database connection is overridden. +** +** ^The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** ^The first argument to the callback is a copy of the third argument +** to sqlite3_update_hook(). +** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE], +** or [SQLITE_UPDATE], depending on the operation that caused the callback +** to be invoked. +** ^The third and fourth arguments to the callback contain pointers to the +** database and table name containing the affected row. +** ^The final callback parameter is the [rowid] of the row. +** ^In the case of an update, this is the [rowid] after the update takes place. +** +** ^(The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence).)^ +** +** ^In the current implementation, the update hook +** is not invoked when duplication rows are deleted because of an +** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook +** invoked when rows are deleted using the [truncate optimization]. +** The exceptions defined in this paragraph might change in a future +** release of SQLite. +** +** The update hook implementation must not do anything that will modify +** the database connection that invoked the update hook. Any actions +** to modify the database connection must be deferred until after the +** completion of the [sqlite3_step()] call that triggered the update hook. +** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their +** database connections for the meaning of "modify" in this paragraph. +** +** ^The sqlite3_update_hook(D,C,P) function +** returns the P argument from the previous call +** on the same [database connection] D, or NULL for +** the first call on D. +** +** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()] +** interfaces. +*/ +void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache +** KEYWORDS: {shared cache} +** +** ^(This routine enables or disables the sharing of the database cache +** and schema data structures between [database connection | connections] +** to the same database. Sharing is enabled if the argument is true +** and disabled if the argument is false.)^ +** +** ^Cache sharing is enabled and disabled for an entire process. +** This is a change as of SQLite version 3.5.0. In prior versions of SQLite, +** sharing was enabled or disabled for each thread separately. +** +** ^(The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** Existing database connections continue use the sharing mode +** that was in effect at the time they were opened.)^ +** +** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled +** successfully. An [error code] is returned otherwise.)^ +** +** ^Shared cache is disabled by default. But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +** +** See Also: [SQLite Shared-Cache Mode] +*/ +int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory +** +** ^The sqlite3_release_memory() interface attempts to free N bytes +** of heap memory by deallocating non-essential memory allocations +** held by the database library. Memory used to cache database +** pages to improve performance is an example of non-essential memory. +** ^sqlite3_release_memory() returns the number of bytes actually freed, +** which might be more or less than the amount requested. +** ^The sqlite3_release_memory() routine is a no-op returning zero +** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT]. +*/ +int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size +** +** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the +** soft limit on the amount of heap memory that may be allocated by SQLite. +** ^SQLite strives to keep heap memory utilization below the soft heap +** limit by reducing the number of pages held in the page cache +** as heap memory usages approaches the limit. +** ^The soft heap limit is "soft" because even though SQLite strives to stay +** below the limit, it will exceed the limit rather than generate +** an [SQLITE_NOMEM] error. In other words, the soft heap limit +** is advisory only. +** +** ^The return value from sqlite3_soft_heap_limit64() is the size of +** the soft heap limit prior to the call. ^If the argument N is negative +** then no change is made to the soft heap limit. Hence, the current +** size of the soft heap limit can be determined by invoking +** sqlite3_soft_heap_limit64() with a negative argument. +** +** ^If the argument N is zero then the soft heap limit is disabled. +** +** ^(The soft heap limit is not enforced in the current implementation +** if one or more of following conditions are true: +** +**
      +**
    • The soft heap limit is set to zero. +**
    • Memory accounting is disabled using a combination of the +** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and +** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option. +**
    • An alternative page cache implementation is specified using +** [sqlite3_config]([SQLITE_CONFIG_PCACHE],...). +**
    • The page cache allocates from its own memory pool supplied +** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than +** from the heap. +**
    )^ +** +** Beginning with SQLite version 3.7.3, the soft heap limit is enforced +** regardless of whether or not the [SQLITE_ENABLE_MEMORY_MANAGEMENT] +** compile-time option is invoked. With [SQLITE_ENABLE_MEMORY_MANAGEMENT], +** the soft heap limit is enforced on every memory allocation. Without +** [SQLITE_ENABLE_MEMORY_MANAGEMENT], the soft heap limit is only enforced +** when memory is allocated by the page cache. Testing suggests that because +** the page cache is the predominate memory user in SQLite, most +** applications will achieve adequate soft heap limit enforcement without +** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT]. +** +** The circumstances under which SQLite will enforce the soft heap limit may +** changes in future releases of SQLite. +*/ +sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N); + +/* +** CAPI3REF: Deprecated Soft Heap Limit Interface +** DEPRECATED +** +** This is a deprecated version of the [sqlite3_soft_heap_limit64()] +** interface. This routine is provided for historical compatibility +** only. All new applications should use the +** [sqlite3_soft_heap_limit64()] interface rather than this one. +*/ +SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N); + + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table +** +** ^This routine returns metadata about a specific column of a specific +** database table accessible using the [database connection] handle +** passed as the first function argument. +** +** ^The column is identified by the second, third and fourth parameters to +** this function. ^The second parameter is either the name of the database +** (i.e. "main", "temp", or an attached database) containing the specified +** table or NULL. ^If it is NULL, then all attached databases are searched +** for the table using the same algorithm used by the database engine to +** resolve unqualified table references. +** +** ^The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** ^Metadata is returned by writing to the memory locations passed as the 5th +** and subsequent parameters to this function. ^Any of these arguments may be +** NULL, in which case the corresponding element of metadata is omitted. +** +** ^(
    +** +**
    Parameter Output
    Type
    Description +** +**
    5th const char* Data type +**
    6th const char* Name of default collation sequence +**
    7th int True if column has a NOT NULL constraint +**
    8th int True if column is part of the PRIMARY KEY +**
    9th int True if column is [AUTOINCREMENT] +**
    +**
    )^ +** +** ^The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any SQLite API function. +** +** ^If the specified table is actually a view, an [error code] is returned. +** +** ^If the specified column is "rowid", "oid" or "_rowid_" and an +** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. ^(If there is no +** explicitly declared [INTEGER PRIMARY KEY] column, then the output +** parameters are set as follows: +** +**
    +**     data type: "INTEGER"
    +**     collation sequence: "BINARY"
    +**     not null: 0
    +**     primary key: 1
    +**     auto increment: 0
    +** 
    )^ +** +** ^(This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an [error code] is returned and an error message left +** in the [database connection] (to be retrieved using sqlite3_errmsg()).)^ +** +** ^This API is only available if the library was compiled with the +** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined. +*/ +int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension +** +** ^This interface loads an SQLite extension library from the named file. +** +** ^The sqlite3_load_extension() interface attempts to load an +** SQLite extension library contained in the file zFile. +** +** ^The entry point is zProc. +** ^zProc may be 0, in which case the name of the entry point +** defaults to "sqlite3_extension_init". +** ^The sqlite3_load_extension() interface returns +** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** ^If an error occurs and pzErrMsg is not 0, then the +** [sqlite3_load_extension()] interface shall attempt to +** fill *pzErrMsg with error message text stored in memory +** obtained from [sqlite3_malloc()]. The calling function +** should free this memory by calling [sqlite3_free()]. +** +** ^Extension loading must be enabled using +** [sqlite3_enable_load_extension()] prior to calling this API, +** otherwise an error will be returned. +** +** See also the [load_extension() SQL function]. +*/ +int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading +** +** ^So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following API +** is provided to turn the [sqlite3_load_extension()] mechanism on and off. +** +** ^Extension loading is off by default. See ticket #1863. +** ^Call the sqlite3_enable_load_extension() routine with onoff==1 +** to turn extension loading on and call it with onoff==0 to turn +** it back off again. +*/ +int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Automatically Load Statically Linked Extensions +** +** ^This interface causes the xEntryPoint() function to be invoked for +** each new [database connection] that is created. The idea here is that +** xEntryPoint() is the entry point for a statically linked SQLite extension +** that is to be automatically loaded into all new database connections. +** +** ^(Even though the function prototype shows that xEntryPoint() takes +** no arguments and returns void, SQLite invokes xEntryPoint() with three +** arguments and expects and integer result as if the signature of the +** entry point where as follows: +** +**
    +**    int xEntryPoint(
    +**      sqlite3 *db,
    +**      const char **pzErrMsg,
    +**      const struct sqlite3_api_routines *pThunk
    +**    );
    +** 
    )^ +** +** If the xEntryPoint routine encounters an error, it should make *pzErrMsg +** point to an appropriate error message (obtained from [sqlite3_mprintf()]) +** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg +** is NULL before calling the xEntryPoint(). ^SQLite will invoke +** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any +** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()], +** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail. +** +** ^Calling sqlite3_auto_extension(X) with an entry point X that is already +** on the list of automatic extensions is a harmless no-op. ^No entry point +** will be called more than once for each database connection that is opened. +** +** See also: [sqlite3_reset_auto_extension()]. +*/ +int sqlite3_auto_extension(void (*xEntryPoint)(void)); + +/* +** CAPI3REF: Reset Automatic Extension Loading +** +** ^This interface disables all automatic extensions previously +** registered using [sqlite3_auto_extension()]. +*/ +void sqlite3_reset_auto_extension(void); + +/* +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** CAPI3REF: Virtual Table Object +** KEYWORDS: sqlite3_module {virtual table module} +** +** This structure, sometimes called a "virtual table module", +** defines the implementation of a [virtual tables]. +** This structure consists mostly of methods for the module. +** +** ^A virtual table module is created by filling in a persistent +** instance of this structure and passing a pointer to that instance +** to [sqlite3_create_module()] or [sqlite3_create_module_v2()]. +** ^The registration remains valid until it is replaced by a different +** module or until the [database connection] closes. The content +** of this structure must not change while it is registered with +** any database connection. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); + /* The methods above are in version 1 of the sqlite_module object. Those + ** below are for version 2 and greater. */ + int (*xSavepoint)(sqlite3_vtab *pVTab, int); + int (*xRelease)(sqlite3_vtab *pVTab, int); + int (*xRollbackTo)(sqlite3_vtab *pVTab, int); +}; + +/* +** CAPI3REF: Virtual Table Indexing Information +** KEYWORDS: sqlite3_index_info +** +** The sqlite3_index_info structure and its substructures is used as part +** of the [virtual table] interface to +** pass information into and receive the reply from the [xBestIndex] +** method of a [virtual table module]. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** ^(The aConstraint[] array records WHERE clause constraints of the form: +** +**
    column OP expr
    +** +** where OP is =, <, <=, >, or >=.)^ ^(The particular operator is +** stored in aConstraint[].op using one of the +** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^ +** ^(The index of the column is stored in +** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot.)^ +** +** ^The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** ^The aConstraint[] array only reports WHERE clause terms that are +** relevant to the particular virtual table being queried. +** +** ^Information about the ORDER BY clause is stored in aOrderBy[]. +** ^Each term of aOrderBy records a column of the ORDER BY clause. +** +** The [xBestIndex] method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. ^If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite.)^ +** +** ^The idxNum and idxPtr values are recorded and passed into the +** [xFilter] method. +** ^[sqlite3_free()] is used to free idxPtr if and only if +** needToFreeIdxPtr is true. +** +** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** ^The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; + +/* +** CAPI3REF: Virtual Table Constraint Operator Codes +** +** These macros defined the allowed values for the +** [sqlite3_index_info].aConstraint[].op field. Each value represents +** an operator that is part of a constraint term in the wHERE clause of +** a query that uses a [virtual table]. +*/ +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** CAPI3REF: Register A Virtual Table Implementation +** +** ^These routines are used to register a new [virtual table module] name. +** ^Module names must be registered before +** creating a new [virtual table] using the module and before using a +** preexisting [virtual table] for the module. +** +** ^The module name is registered on the [database connection] specified +** by the first parameter. ^The name of the module is given by the +** second parameter. ^The third parameter is a pointer to +** the implementation of the [virtual table module]. ^The fourth +** parameter is an arbitrary client data pointer that is passed through +** into the [xCreate] and [xConnect] methods of the virtual table module +** when a new virtual table is be being created or reinitialized. +** +** ^The sqlite3_create_module_v2() interface has a fifth parameter which +** is a pointer to a destructor for the pClientData. ^SQLite will +** invoke the destructor function (if it is not NULL) when SQLite +** no longer needs the pClientData pointer. ^The destructor will also +** be invoked if the call to sqlite3_create_module_v2() fails. +** ^The sqlite3_create_module() +** interface is equivalent to sqlite3_create_module_v2() with a NULL +** destructor. +*/ +int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *p, /* Methods for the module */ + void *pClientData /* Client data for xCreate/xConnect */ +); +int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *p, /* Methods for the module */ + void *pClientData, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** CAPI3REF: Virtual Table Instance Object +** KEYWORDS: sqlite3_vtab +** +** Every [virtual table module] implementation uses a subclass +** of this object to describe a particular instance +** of the [virtual table]. Each subclass will +** be tailored to the specific needs of the module implementation. +** The purpose of this superclass is to define certain fields that are +** common to all module implementations. +** +** ^Virtual tables methods can set an error message by assigning a +** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should +** take care that any prior string is freed by a call to [sqlite3_free()] +** prior to assigning a new string to zErrMsg. ^After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* NO LONGER USED */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** CAPI3REF: Virtual Table Cursor Object +** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor} +** +** Every [virtual table module] implementation uses a subclass of the +** following structure to describe cursors that point into the +** [virtual table] and are used +** to loop through the virtual table. Cursors are created using the +** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed +** by the [sqlite3_module.xClose | xClose] method. Cursors are used +** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods +** of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** CAPI3REF: Declare The Schema Of A Virtual Table +** +** ^The [xCreate] and [xConnect] methods of a +** [virtual table module] call this interface +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +int sqlite3_declare_vtab(sqlite3*, const char *zSQL); + +/* +** CAPI3REF: Overload A Function For A Virtual Table +** +** ^(Virtual tables can provide alternative implementations of functions +** using the [xFindFunction] method of the [virtual table module]. +** But global versions of those functions +** must exist in order to be overloaded.)^ +** +** ^(This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created.)^ ^The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a placeholder function that can be overloaded +** by a [virtual table]. +*/ +int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB +** KEYWORDS: {BLOB handle} {BLOB handles} +** +** An instance of this object represents an open BLOB on which +** [sqlite3_blob_open | incremental BLOB I/O] can be performed. +** ^Objects of this type are created by [sqlite3_blob_open()] +** and destroyed by [sqlite3_blob_close()]. +** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the BLOB. +** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O +** +** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located +** in row iRow, column zColumn, table zTable in database zDb; +** in other words, the same BLOB that would be selected by: +** +**
    +**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
    +** 
    )^ +** +** ^If the flags parameter is non-zero, then the BLOB is opened for read +** and write access. ^If it is zero, the BLOB is opened for read access. +** ^It is not possible to open a column that is part of an index or primary +** key for writing. ^If [foreign key constraints] are enabled, it is +** not possible to open a column that is part of a [child key] for writing. +** +** ^Note that the database name is not the filename that contains +** the database but rather the symbolic name of the database that +** appears after the AS keyword when the database is connected using [ATTACH]. +** ^For the main database file, the database name is "main". +** ^For TEMP tables, the database name is "temp". +** +** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written +** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set +** to be a null pointer.)^ +** ^This function sets the [database connection] error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related +** functions. ^Note that the *ppBlob variable is always initialized in a +** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob +** regardless of the success or failure of this routine. +** +** ^(If the row that a BLOB handle points to is modified by an +** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects +** then the BLOB handle is marked as "expired". +** This is true if any column of the row is changed, even a column +** other than the one the BLOB handle is open on.)^ +** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for +** an expired BLOB handle fail with a return code of [SQLITE_ABORT]. +** ^(Changes written into a BLOB prior to the BLOB expiring are not +** rolled back by the expiration of the BLOB. Such changes will eventually +** commit if the transaction continues to completion.)^ +** +** ^Use the [sqlite3_blob_bytes()] interface to determine the size of +** the opened blob. ^The size of a blob may not be changed by this +** interface. Use the [UPDATE] SQL command to change the size of a +** blob. +** +** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces +** and the built-in [zeroblob] SQL function can be used, if desired, +** to create an empty, zero-filled blob in which to read or write using +** this interface. +** +** To avoid a resource leak, every open [BLOB handle] should eventually +** be released by a call to [sqlite3_blob_close()]. +*/ +int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Move a BLOB Handle to a New Row +** +** ^This function is used to move an existing blob handle so that it points +** to a different row of the same database table. ^The new row is identified +** by the rowid value passed as the second argument. Only the row can be +** changed. ^The database, table and column on which the blob handle is open +** remain the same. Moving an existing blob handle to a new row can be +** faster than closing the existing handle and opening a new one. +** +** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] - +** it must exist and there must be either a blob or text value stored in +** the nominated column.)^ ^If the new row is not present in the table, or if +** it does not contain a blob or text value, or if another error occurs, an +** SQLite error code is returned and the blob handle is considered aborted. +** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or +** [sqlite3_blob_reopen()] on an aborted blob handle immediately return +** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle +** always returns zero. +** +** ^This function sets the database handle error code and message. +*/ +SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); + +/* +** CAPI3REF: Close A BLOB Handle +** +** ^Closes an open [BLOB handle]. +** +** ^Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in [autocommit mode]. +** ^If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. +** +** ^(Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. Any errors that occur during +** closing are reported as a non-zero return value.)^ +** +** ^(The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed.)^ +** +** ^Calling this routine with a null pointer (such as would be returned +** by a failed call to [sqlite3_blob_open()]) is a harmless no-op. +*/ +int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB +** +** ^Returns the size in bytes of the BLOB accessible via the +** successfully opened [BLOB handle] in its only argument. ^The +** incremental blob I/O routines can only read or overwriting existing +** blob content; they cannot change the size of a blob. +** +** This routine only works on a [BLOB handle] which has been created +** by a prior successful call to [sqlite3_blob_open()] and which has not +** been closed by [sqlite3_blob_close()]. Passing any other pointer in +** to this routine results in undefined and probably undesirable behavior. +*/ +int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally +** +** ^(This function is used to read data from an open [BLOB handle] into a +** caller-supplied buffer. N bytes of data are copied into buffer Z +** from the open BLOB, starting at offset iOffset.)^ +** +** ^If offset iOffset is less than N bytes from the end of the BLOB, +** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is +** less than zero, [SQLITE_ERROR] is returned and no data is read. +** ^The size of the blob (and hence the maximum value of N+iOffset) +** can be determined using the [sqlite3_blob_bytes()] interface. +** +** ^An attempt to read from an expired [BLOB handle] fails with an +** error code of [SQLITE_ABORT]. +** +** ^(On success, sqlite3_blob_read() returns SQLITE_OK. +** Otherwise, an [error code] or an [extended error code] is returned.)^ +** +** This routine only works on a [BLOB handle] which has been created +** by a prior successful call to [sqlite3_blob_open()] and which has not +** been closed by [sqlite3_blob_close()]. Passing any other pointer in +** to this routine results in undefined and probably undesirable behavior. +** +** See also: [sqlite3_blob_write()]. +*/ +int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally +** +** ^This function is used to write data into an open [BLOB handle] from a +** caller-supplied buffer. ^N bytes of data are copied from the buffer Z +** into the open BLOB, starting at offset iOffset. +** +** ^If the [BLOB handle] passed as the first argument was not opened for +** writing (the flags parameter to [sqlite3_blob_open()] was zero), +** this function returns [SQLITE_READONLY]. +** +** ^This function may only modify the contents of the BLOB; it is +** not possible to increase the size of a BLOB using this API. +** ^If offset iOffset is less than N bytes from the end of the BLOB, +** [SQLITE_ERROR] is returned and no data is written. ^If N is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** The size of the BLOB (and hence the maximum value of N+iOffset) +** can be determined using the [sqlite3_blob_bytes()] interface. +** +** ^An attempt to write to an expired [BLOB handle] fails with an +** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred +** before the [BLOB handle] expired are not rolled back by the +** expiration of the handle, though of course those changes might +** have been overwritten by the statement that expired the BLOB handle +** or by other independent statements. +** +** ^(On success, sqlite3_blob_write() returns SQLITE_OK. +** Otherwise, an [error code] or an [extended error code] is returned.)^ +** +** This routine only works on a [BLOB handle] which has been created +** by a prior successful call to [sqlite3_blob_open()] and which has not +** been closed by [sqlite3_blob_close()]. Passing any other pointer in +** to this routine results in undefined and probably undesirable behavior. +** +** See also: [sqlite3_blob_read()]. +*/ +int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most SQLite builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name. +** ^Names are case sensitive. +** ^Names are zero-terminated UTF-8 strings. +** ^If there is no match, a NULL pointer is returned. +** ^If zVfsName is NULL then the default VFS is returned. +** +** ^New VFSes are registered with sqlite3_vfs_register(). +** ^Each new VFS becomes the default VFS if the makeDflt flag is set. +** ^The same VFS can be registered multiple times without injury. +** ^To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. If two different VFSes with the +** same name are registered, the behavior is undefined. If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** ^Unregister a VFS with the sqlite3_vfs_unregister() interface. +** ^(If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary.)^ +*/ +sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. ^(The following +** implementations are available in the SQLite core: +** +**
      +**
    • SQLITE_MUTEX_OS2 +**
    • SQLITE_MUTEX_PTHREAD +**
    • SQLITE_MUTEX_W32 +**
    • SQLITE_MUTEX_NOOP +**
    )^ +** +** ^The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. ^The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on OS/2, Unix, and Windows. +** +** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. In this case the +** application must supply a custom mutex implementation using the +** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function +** before calling sqlite3_initialize() or any other public sqlite3_ +** function that calls sqlite3_initialize().)^ +** +** ^The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. ^If it returns NULL +** that means that a mutex could not be allocated. ^SQLite +** will unwind its stack and return an error. ^(The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +**
      +**
    • SQLITE_MUTEX_FAST +**
    • SQLITE_MUTEX_RECURSIVE +**
    • SQLITE_MUTEX_STATIC_MASTER +**
    • SQLITE_MUTEX_STATIC_MEM +**
    • SQLITE_MUTEX_STATIC_MEM2 +**
    • SQLITE_MUTEX_STATIC_PRNG +**
    • SQLITE_MUTEX_STATIC_LRU +**
    • SQLITE_MUTEX_STATIC_LRU2 +**
    )^ +** +** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) +** cause sqlite3_mutex_alloc() to create +** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. ^SQLite will only request a recursive mutex in +** cases where it really needs one. ^If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other +** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return +** a pointer to a static preexisting mutex. ^Six static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. ^But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. +** +** ^The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. ^SQLite is careful to deallocate every +** dynamic mutex that it allocates. The dynamic mutexes must not be in +** use when they are deallocated. Attempting to deallocate a static +** mutex results in undefined behavior. ^SQLite never deallocates +** a static mutex. +** +** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. ^If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK] +** upon successful entry. ^(Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter.)^ ^(If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** SQLite will never exhibit +** such behavior in its own use of mutexes.)^ +** +** ^(Some systems (for example, Windows 95) do not support the operation +** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() +** will always return SQLITE_BUSY. The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^ +** +** ^The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. ^(The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. SQLite will +** never do either.)^ +** +** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or +** sqlite3_mutex_leave() is a NULL pointer, then all three routines +** behave as no-ops. +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int); +void sqlite3_mutex_free(sqlite3_mutex*); +void sqlite3_mutex_enter(sqlite3_mutex*); +int sqlite3_mutex_try(sqlite3_mutex*); +void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Methods Object +** +** An instance of this structure defines the low-level routines +** used to allocate and use mutexes. +** +** Usually, the default mutex implementations provided by SQLite are +** sufficient, however the user has the option of substituting a custom +** implementation for specialized deployments or systems for which SQLite +** does not provide a suitable implementation. In this case, the user +** creates and populates an instance of this structure to pass +** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option. +** Additionally, an instance of this structure can be used as an +** output variable when querying the system for the current mutex +** implementation, using the [SQLITE_CONFIG_GETMUTEX] option. +** +** ^The xMutexInit method defined by this structure is invoked as +** part of system initialization by the sqlite3_initialize() function. +** ^The xMutexInit routine is called by SQLite exactly once for each +** effective call to [sqlite3_initialize()]. +** +** ^The xMutexEnd method defined by this structure is invoked as +** part of system shutdown by the sqlite3_shutdown() function. The +** implementation of this method is expected to release all outstanding +** resources obtained by the mutex methods implementation, especially +** those obtained by the xMutexInit method. ^The xMutexEnd() +** interface is invoked exactly once for each call to [sqlite3_shutdown()]. +** +** ^(The remaining seven methods defined by this structure (xMutexAlloc, +** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and +** xMutexNotheld) implement the following interfaces (respectively): +** +**
      +**
    • [sqlite3_mutex_alloc()]
    • +**
    • [sqlite3_mutex_free()]
    • +**
    • [sqlite3_mutex_enter()]
    • +**
    • [sqlite3_mutex_try()]
    • +**
    • [sqlite3_mutex_leave()]
    • +**
    • [sqlite3_mutex_held()]
    • +**
    • [sqlite3_mutex_notheld()]
    • +**
    )^ +** +** The only difference is that the public sqlite3_XXX functions enumerated +** above silently ignore any invocations that pass a NULL pointer instead +** of a valid mutex handle. The implementations of the methods defined +** by this structure are not required to handle this case, the results +** of passing a NULL pointer instead of a valid mutex handle are undefined +** (i.e. it is acceptable to provide an implementation that segfaults if +** it is passed a NULL pointer). +** +** The xMutexInit() method must be threadsafe. ^It must be harmless to +** invoke xMutexInit() multiple times within the same process and without +** intervening calls to xMutexEnd(). Second and subsequent calls to +** xMutexInit() must be no-ops. +** +** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] +** and its associates). ^Similarly, xMutexAlloc() must not use SQLite memory +** allocation for a static mutex. ^However xMutexAlloc() may use SQLite +** memory allocation for a fast or recursive mutex. +** +** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is +** called, but only if the prior call to xMutexInit returned SQLITE_OK. +** If xMutexInit fails in any way, it is expected to clean up after itself +** prior to returning. +*/ +typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; +struct sqlite3_mutex_methods { + int (*xMutexInit)(void); + int (*xMutexEnd)(void); + sqlite3_mutex *(*xMutexAlloc)(int); + void (*xMutexFree)(sqlite3_mutex *); + void (*xMutexEnter)(sqlite3_mutex *); + int (*xMutexTry)(sqlite3_mutex *); + void (*xMutexLeave)(sqlite3_mutex *); + int (*xMutexHeld)(sqlite3_mutex *); + int (*xMutexNotheld)(sqlite3_mutex *); +}; + +/* +** CAPI3REF: Mutex Verification Routines +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. ^The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. ^The SQLite core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. ^External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** ^These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. +** +** ^The implementation is not required to provided versions of these +** routines that actually work. If the implementation does not provide working +** versions of these routines, it should at least provide stubs that always +** return true so that one does not get spurious assertion failures. +** +** ^If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. ^The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +#ifndef NDEBUG +int sqlite3_mutex_held(sqlite3_mutex*); +int sqlite3_mutex_notheld(sqlite3_mutex*); +#endif + +/* +** CAPI3REF: Mutex Types +** +** The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. +** +** The set of static mutexes may change from one SQLite release to the +** next. Applications that override the built-in mutex logic must be +** prepared to accommodate additional static mutexes. +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */ +#define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ +#define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */ +#define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ + +/* +** CAPI3REF: Retrieve the mutex for a database connection +** +** ^This interface returns a pointer the [sqlite3_mutex] object that +** serializes access to the [database connection] given in the argument +** when the [threading mode] is Serialized. +** ^If the [threading mode] is Single-thread or Multi-thread then this +** routine returns a NULL pointer. +*/ +sqlite3_mutex *sqlite3_db_mutex(sqlite3*); + +/* +** CAPI3REF: Low-Level Control Of Database Files +** +** ^The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. ^The +** name of the database is "main" for the main database or "temp" for the +** TEMP database, or the name that appears after the AS keyword for +** databases that are added using the [ATTACH] SQL command. +** ^A NULL pointer can be used in place of "main" to refer to the +** main database file. +** ^The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. ^The return value of the xFileControl +** method becomes the return value of this routine. +** +** ^The SQLITE_FCNTL_FILE_POINTER value for the op parameter causes +** a pointer to the underlying [sqlite3_file] object to be written into +** the space pointed to by the 4th parameter. ^The SQLITE_FCNTL_FILE_POINTER +** case is a short-circuit path which does not actually invoke the +** underlying sqlite3_io_methods.xFileControl method. +** +** ^If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. ^This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. The underlying xFileControl method might +** also return SQLITE_ERROR. There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** CAPI3REF: Testing Interface +** +** ^The sqlite3_test_control() interface is used to read out internal +** state of SQLite and to inject faults into SQLite for testing +** purposes. ^The first parameter is an operation code that determines +** the number, meaning, and operation of all subsequent parameters. +** +** This interface is not for use by applications. It exists solely +** for verifying the correct operation of the SQLite library. Depending +** on how the SQLite library is compiled, this interface might not exist. +** +** The details of the operation codes, their meanings, the parameters +** they take, and what they do are all subject to change without notice. +** Unlike most of the SQLite API, this function is not guaranteed to +** operate consistently from one release to the next. +*/ +int sqlite3_test_control(int op, ...); + +/* +** CAPI3REF: Testing Interface Operation Codes +** +** These constants are the valid operation code parameters used +** as the first argument to [sqlite3_test_control()]. +** +** These parameters and their meanings are subject to change +** without notice. These values are for testing purposes only. +** Applications should not use any of these parameters or the +** [sqlite3_test_control()] interface. +*/ +#define SQLITE_TESTCTRL_FIRST 5 +#define SQLITE_TESTCTRL_PRNG_SAVE 5 +#define SQLITE_TESTCTRL_PRNG_RESTORE 6 +#define SQLITE_TESTCTRL_PRNG_RESET 7 +#define SQLITE_TESTCTRL_BITVEC_TEST 8 +#define SQLITE_TESTCTRL_FAULT_INSTALL 9 +#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10 +#define SQLITE_TESTCTRL_PENDING_BYTE 11 +#define SQLITE_TESTCTRL_ASSERT 12 +#define SQLITE_TESTCTRL_ALWAYS 13 +#define SQLITE_TESTCTRL_RESERVE 14 +#define SQLITE_TESTCTRL_OPTIMIZATIONS 15 +#define SQLITE_TESTCTRL_ISKEYWORD 16 +#define SQLITE_TESTCTRL_PGHDRSZ 17 +#define SQLITE_TESTCTRL_SCRATCHMALLOC 18 +#define SQLITE_TESTCTRL_LOCALTIME_FAULT 19 +#define SQLITE_TESTCTRL_LAST 19 + +/* +** CAPI3REF: SQLite Runtime Status +** +** ^This interface is used to retrieve runtime status information +** about the performance of SQLite, and optionally to reset various +** highwater marks. ^The first argument is an integer code for +** the specific parameter to measure. ^(Recognized integer codes +** are of the form [status parameters | SQLITE_STATUS_...].)^ +** ^The current value of the parameter is returned into *pCurrent. +** ^The highest recorded value is returned in *pHighwater. ^If the +** resetFlag is true, then the highest record value is reset after +** *pHighwater is written. ^(Some parameters do not record the highest +** value. For those parameters +** nothing is written into *pHighwater and the resetFlag is ignored.)^ +** ^(Other parameters record only the highwater mark and not the current +** value. For these latter parameters nothing is written into *pCurrent.)^ +** +** ^The sqlite3_status() routine returns SQLITE_OK on success and a +** non-zero [error code] on failure. +** +** This routine is threadsafe but is not atomic. This routine can be +** called while other threads are running the same or different SQLite +** interfaces. However the values returned in *pCurrent and +** *pHighwater reflect the status of SQLite at different points in time +** and it is possible that another thread might change the parameter +** in between the times when *pCurrent and *pHighwater are written. +** +** See also: [sqlite3_db_status()] +*/ +int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag); + + +/* +** CAPI3REF: Status Parameters +** KEYWORDS: {status parameters} +** +** These integer constants designate various run-time status parameters +** that can be returned by [sqlite3_status()]. +** +**
    +** [[SQLITE_STATUS_MEMORY_USED]] ^(
    SQLITE_STATUS_MEMORY_USED
    +**
    This parameter is the current amount of memory checked out +** using [sqlite3_malloc()], either directly or indirectly. The +** figure includes calls made to [sqlite3_malloc()] by the application +** and internal memory usage by the SQLite library. Scratch memory +** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache +** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in +** this parameter. The amount returned is the sum of the allocation +** sizes as reported by the xSize method in [sqlite3_mem_methods].
    )^ +** +** [[SQLITE_STATUS_MALLOC_SIZE]] ^(
    SQLITE_STATUS_MALLOC_SIZE
    +**
    This parameter records the largest memory allocation request +** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their +** internal equivalents). Only the value returned in the +** *pHighwater parameter to [sqlite3_status()] is of interest. +** The value written into the *pCurrent parameter is undefined.
    )^ +** +** [[SQLITE_STATUS_MALLOC_COUNT]] ^(
    SQLITE_STATUS_MALLOC_COUNT
    +**
    This parameter records the number of separate memory allocations +** currently checked out.
    )^ +** +** [[SQLITE_STATUS_PAGECACHE_USED]] ^(
    SQLITE_STATUS_PAGECACHE_USED
    +**
    This parameter returns the number of pages used out of the +** [pagecache memory allocator] that was configured using +** [SQLITE_CONFIG_PAGECACHE]. The +** value returned is in pages, not in bytes.
    )^ +** +** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]] +** ^(
    SQLITE_STATUS_PAGECACHE_OVERFLOW
    +**
    This parameter returns the number of bytes of page cache +** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE] +** buffer and where forced to overflow to [sqlite3_malloc()]. The +** returned value includes allocations that overflowed because they +** where too large (they were larger than the "sz" parameter to +** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because +** no space was left in the page cache.
    )^ +** +** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(
    SQLITE_STATUS_PAGECACHE_SIZE
    +**
    This parameter records the largest memory allocation request +** handed to [pagecache memory allocator]. Only the value returned in the +** *pHighwater parameter to [sqlite3_status()] is of interest. +** The value written into the *pCurrent parameter is undefined.
    )^ +** +** [[SQLITE_STATUS_SCRATCH_USED]] ^(
    SQLITE_STATUS_SCRATCH_USED
    +**
    This parameter returns the number of allocations used out of the +** [scratch memory allocator] configured using +** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not +** in bytes. Since a single thread may only have one scratch allocation +** outstanding at time, this parameter also reports the number of threads +** using scratch memory at the same time.
    )^ +** +** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(
    SQLITE_STATUS_SCRATCH_OVERFLOW
    +**
    This parameter returns the number of bytes of scratch memory +** allocation which could not be satisfied by the [SQLITE_CONFIG_SCRATCH] +** buffer and where forced to overflow to [sqlite3_malloc()]. The values +** returned include overflows because the requested allocation was too +** larger (that is, because the requested allocation was larger than the +** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer +** slots were available. +**
    )^ +** +** [[SQLITE_STATUS_SCRATCH_SIZE]] ^(
    SQLITE_STATUS_SCRATCH_SIZE
    +**
    This parameter records the largest memory allocation request +** handed to [scratch memory allocator]. Only the value returned in the +** *pHighwater parameter to [sqlite3_status()] is of interest. +** The value written into the *pCurrent parameter is undefined.
    )^ +** +** [[SQLITE_STATUS_PARSER_STACK]] ^(
    SQLITE_STATUS_PARSER_STACK
    +**
    This parameter records the deepest parser stack. It is only +** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].
    )^ +**
    +** +** New status parameters may be added from time to time. +*/ +#define SQLITE_STATUS_MEMORY_USED 0 +#define SQLITE_STATUS_PAGECACHE_USED 1 +#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2 +#define SQLITE_STATUS_SCRATCH_USED 3 +#define SQLITE_STATUS_SCRATCH_OVERFLOW 4 +#define SQLITE_STATUS_MALLOC_SIZE 5 +#define SQLITE_STATUS_PARSER_STACK 6 +#define SQLITE_STATUS_PAGECACHE_SIZE 7 +#define SQLITE_STATUS_SCRATCH_SIZE 8 +#define SQLITE_STATUS_MALLOC_COUNT 9 + +/* +** CAPI3REF: Database Connection Status +** +** ^This interface is used to retrieve runtime status information +** about a single [database connection]. ^The first argument is the +** database connection object to be interrogated. ^The second argument +** is an integer constant, taken from the set of +** [SQLITE_DBSTATUS options], that +** determines the parameter to interrogate. The set of +** [SQLITE_DBSTATUS options] is likely +** to grow in future releases of SQLite. +** +** ^The current value of the requested parameter is written into *pCur +** and the highest instantaneous value is written into *pHiwtr. ^If +** the resetFlg is true, then the highest instantaneous value is +** reset back down to the current value. +** +** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a +** non-zero [error code] on failure. +** +** See also: [sqlite3_status()] and [sqlite3_stmt_status()]. +*/ +int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); + +/* +** CAPI3REF: Status Parameters for database connections +** KEYWORDS: {SQLITE_DBSTATUS options} +** +** These constants are the available integer "verbs" that can be passed as +** the second argument to the [sqlite3_db_status()] interface. +** +** New verbs may be added in future releases of SQLite. Existing verbs +** might be discontinued. Applications should check the return code from +** [sqlite3_db_status()] to make sure that the call worked. +** The [sqlite3_db_status()] interface will return a non-zero error code +** if a discontinued or unsupported verb is invoked. +** +**
    +** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(
    SQLITE_DBSTATUS_LOOKASIDE_USED
    +**
    This parameter returns the number of lookaside memory slots currently +** checked out.
    )^ +** +** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(
    SQLITE_DBSTATUS_LOOKASIDE_HIT
    +**
    This parameter returns the number malloc attempts that were +** satisfied using lookaside memory. Only the high-water value is meaningful; +** the current value is always zero.)^ +** +** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]] +** ^(
    SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE
    +**
    This parameter returns the number malloc attempts that might have +** been satisfied using lookaside memory but failed due to the amount of +** memory requested being larger than the lookaside slot size. +** Only the high-water value is meaningful; +** the current value is always zero.)^ +** +** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]] +** ^(
    SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL
    +**
    This parameter returns the number malloc attempts that might have +** been satisfied using lookaside memory but failed due to all lookaside +** memory already being in use. +** Only the high-water value is meaningful; +** the current value is always zero.)^ +** +** [[SQLITE_DBSTATUS_CACHE_USED]] ^(
    SQLITE_DBSTATUS_CACHE_USED
    +**
    This parameter returns the approximate number of of bytes of heap +** memory used by all pager caches associated with the database connection.)^ +** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0. +** +** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(
    SQLITE_DBSTATUS_SCHEMA_USED
    +**
    This parameter returns the approximate number of of bytes of heap +** memory used to store the schema for all databases associated +** with the connection - main, temp, and any [ATTACH]-ed databases.)^ +** ^The full amount of memory used by the schemas is reported, even if the +** schema memory is shared with other database connections due to +** [shared cache mode] being enabled. +** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0. +** +** [[SQLITE_DBSTATUS_STMT_USED]] ^(
    SQLITE_DBSTATUS_STMT_USED
    +**
    This parameter returns the approximate number of of bytes of heap +** and lookaside memory used by all prepared statements associated with +** the database connection.)^ +** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0. +**
    +** +** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(
    SQLITE_DBSTATUS_CACHE_HIT
    +**
    This parameter returns the number of pager cache hits that have +** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT +** is always 0. +**
    +** +** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(
    SQLITE_DBSTATUS_CACHE_MISS
    +**
    This parameter returns the number of pager cache misses that have +** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS +** is always 0. +**
    +**
    +*/ +#define SQLITE_DBSTATUS_LOOKASIDE_USED 0 +#define SQLITE_DBSTATUS_CACHE_USED 1 +#define SQLITE_DBSTATUS_SCHEMA_USED 2 +#define SQLITE_DBSTATUS_STMT_USED 3 +#define SQLITE_DBSTATUS_LOOKASIDE_HIT 4 +#define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5 +#define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6 +#define SQLITE_DBSTATUS_CACHE_HIT 7 +#define SQLITE_DBSTATUS_CACHE_MISS 8 +#define SQLITE_DBSTATUS_MAX 8 /* Largest defined DBSTATUS */ + + +/* +** CAPI3REF: Prepared Statement Status +** +** ^(Each prepared statement maintains various +** [SQLITE_STMTSTATUS counters] that measure the number +** of times it has performed specific operations.)^ These counters can +** be used to monitor the performance characteristics of the prepared +** statements. For example, if the number of table steps greatly exceeds +** the number of table searches or result rows, that would tend to indicate +** that the prepared statement is using a full table scan rather than +** an index. +** +** ^(This interface is used to retrieve and reset counter values from +** a [prepared statement]. The first argument is the prepared statement +** object to be interrogated. The second argument +** is an integer code for a specific [SQLITE_STMTSTATUS counter] +** to be interrogated.)^ +** ^The current value of the requested counter is returned. +** ^If the resetFlg is true, then the counter is reset to zero after this +** interface call returns. +** +** See also: [sqlite3_status()] and [sqlite3_db_status()]. +*/ +int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg); + +/* +** CAPI3REF: Status Parameters for prepared statements +** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters} +** +** These preprocessor macros define integer codes that name counter +** values associated with the [sqlite3_stmt_status()] interface. +** The meanings of the various counters are as follows: +** +**
    +** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]]
    SQLITE_STMTSTATUS_FULLSCAN_STEP
    +**
    ^This is the number of times that SQLite has stepped forward in +** a table as part of a full table scan. Large numbers for this counter +** may indicate opportunities for performance improvement through +** careful use of indices.
    +** +** [[SQLITE_STMTSTATUS_SORT]]
    SQLITE_STMTSTATUS_SORT
    +**
    ^This is the number of sort operations that have occurred. +** A non-zero value in this counter may indicate an opportunity to +** improvement performance through careful use of indices.
    +** +** [[SQLITE_STMTSTATUS_AUTOINDEX]]
    SQLITE_STMTSTATUS_AUTOINDEX
    +**
    ^This is the number of rows inserted into transient indices that +** were created automatically in order to help joins run faster. +** A non-zero value in this counter may indicate an opportunity to +** improvement performance by adding permanent indices that do not +** need to be reinitialized each time the statement is run.
    +**
    +*/ +#define SQLITE_STMTSTATUS_FULLSCAN_STEP 1 +#define SQLITE_STMTSTATUS_SORT 2 +#define SQLITE_STMTSTATUS_AUTOINDEX 3 + +/* +** CAPI3REF: Custom Page Cache Object +** +** The sqlite3_pcache type is opaque. It is implemented by +** the pluggable module. The SQLite core has no knowledge of +** its size or internal structure and never deals with the +** sqlite3_pcache object except by holding and passing pointers +** to the object. +** +** See [sqlite3_pcache_methods] for additional information. +*/ +typedef struct sqlite3_pcache sqlite3_pcache; + +/* +** CAPI3REF: Application Defined Page Cache. +** KEYWORDS: {page cache} +** +** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can +** register an alternative page cache implementation by passing in an +** instance of the sqlite3_pcache_methods structure.)^ +** In many applications, most of the heap memory allocated by +** SQLite is used for the page cache. +** By implementing a +** custom page cache using this API, an application can better control +** the amount of memory consumed by SQLite, the way in which +** that memory is allocated and released, and the policies used to +** determine exactly which parts of a database file are cached and for +** how long. +** +** The alternative page cache mechanism is an +** extreme measure that is only needed by the most demanding applications. +** The built-in page cache is recommended for most uses. +** +** ^(The contents of the sqlite3_pcache_methods structure are copied to an +** internal buffer by SQLite within the call to [sqlite3_config]. Hence +** the application may discard the parameter after the call to +** [sqlite3_config()] returns.)^ +** +** [[the xInit() page cache method]] +** ^(The xInit() method is called once for each effective +** call to [sqlite3_initialize()])^ +** (usually only once during the lifetime of the process). ^(The xInit() +** method is passed a copy of the sqlite3_pcache_methods.pArg value.)^ +** The intent of the xInit() method is to set up global data structures +** required by the custom page cache implementation. +** ^(If the xInit() method is NULL, then the +** built-in default page cache is used instead of the application defined +** page cache.)^ +** +** [[the xShutdown() page cache method]] +** ^The xShutdown() method is called by [sqlite3_shutdown()]. +** It can be used to clean up +** any outstanding resources before process shutdown, if required. +** ^The xShutdown() method may be NULL. +** +** ^SQLite automatically serializes calls to the xInit method, +** so the xInit method need not be threadsafe. ^The +** xShutdown method is only called from [sqlite3_shutdown()] so it does +** not need to be threadsafe either. All other methods must be threadsafe +** in multithreaded applications. +** +** ^SQLite will never invoke xInit() more than once without an intervening +** call to xShutdown(). +** +** [[the xCreate() page cache methods]] +** ^SQLite invokes the xCreate() method to construct a new cache instance. +** SQLite will typically create one cache instance for each open database file, +** though this is not guaranteed. ^The +** first parameter, szPage, is the size in bytes of the pages that must +** be allocated by the cache. ^szPage will not be a power of two. ^szPage +** will the page size of the database file that is to be cached plus an +** increment (here called "R") of less than 250. SQLite will use the +** extra R bytes on each page to store metadata about the underlying +** database page on disk. The value of R depends +** on the SQLite version, the target platform, and how SQLite was compiled. +** ^(R is constant for a particular build of SQLite. Except, there are two +** distinct values of R when SQLite is compiled with the proprietary +** ZIPVFS extension.)^ ^The second argument to +** xCreate(), bPurgeable, is true if the cache being created will +** be used to cache database pages of a file stored on disk, or +** false if it is used for an in-memory database. The cache implementation +** does not have to do anything special based with the value of bPurgeable; +** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will +** never invoke xUnpin() except to deliberately delete a page. +** ^In other words, calls to xUnpin() on a cache with bPurgeable set to +** false will always have the "discard" flag set to true. +** ^Hence, a cache created with bPurgeable false will +** never contain any unpinned pages. +** +** [[the xCachesize() page cache method]] +** ^(The xCachesize() method may be called at any time by SQLite to set the +** suggested maximum cache-size (number of pages stored by) the cache +** instance passed as the first argument. This is the value configured using +** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable +** parameter, the implementation is not required to do anything with this +** value; it is advisory only. +** +** [[the xPagecount() page cache methods]] +** The xPagecount() method must return the number of pages currently +** stored in the cache, both pinned and unpinned. +** +** [[the xFetch() page cache methods]] +** The xFetch() method locates a page in the cache and returns a pointer to +** the page, or a NULL pointer. +** A "page", in this context, means a buffer of szPage bytes aligned at an +** 8-byte boundary. The page to be fetched is determined by the key. ^The +** minimum key value is 1. After it has been retrieved using xFetch, the page +** is considered to be "pinned". +** +** If the requested page is already in the page cache, then the page cache +** implementation must return a pointer to the page buffer with its content +** intact. If the requested page is not already in the cache, then the +** cache implementation should use the value of the createFlag +** parameter to help it determined what action to take: +** +** +**
    createFlag Behaviour when page is not already in cache +**
    0 Do not allocate a new page. Return NULL. +**
    1 Allocate a new page if it easy and convenient to do so. +** Otherwise return NULL. +**
    2 Make every effort to allocate a new page. Only return +** NULL if allocating a new page is effectively impossible. +**
    +** +** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite +** will only use a createFlag of 2 after a prior call with a createFlag of 1 +** failed.)^ In between the to xFetch() calls, SQLite may +** attempt to unpin one or more cache pages by spilling the content of +** pinned pages to disk and synching the operating system disk cache. +** +** [[the xUnpin() page cache method]] +** ^xUnpin() is called by SQLite with a pointer to a currently pinned page +** as its second argument. If the third parameter, discard, is non-zero, +** then the page must be evicted from the cache. +** ^If the discard parameter is +** zero, then the page may be discarded or retained at the discretion of +** page cache implementation. ^The page cache implementation +** may choose to evict unpinned pages at any time. +** +** The cache must not perform any reference counting. A single +** call to xUnpin() unpins the page regardless of the number of prior calls +** to xFetch(). +** +** [[the xRekey() page cache methods]] +** The xRekey() method is used to change the key value associated with the +** page passed as the second argument. If the cache +** previously contains an entry associated with newKey, it must be +** discarded. ^Any prior cache entry associated with newKey is guaranteed not +** to be pinned. +** +** When SQLite calls the xTruncate() method, the cache must discard all +** existing cache entries with page numbers (keys) greater than or equal +** to the value of the iLimit parameter passed to xTruncate(). If any +** of these pages are pinned, they are implicitly unpinned, meaning that +** they can be safely discarded. +** +** [[the xDestroy() page cache method]] +** ^The xDestroy() method is used to delete a cache allocated by xCreate(). +** All resources associated with the specified cache should be freed. ^After +** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*] +** handle invalid, and will not use it with any other sqlite3_pcache_methods +** functions. +*/ +typedef struct sqlite3_pcache_methods sqlite3_pcache_methods; +struct sqlite3_pcache_methods { + void *pArg; + int (*xInit)(void*); + void (*xShutdown)(void*); + sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable); + void (*xCachesize)(sqlite3_pcache*, int nCachesize); + int (*xPagecount)(sqlite3_pcache*); + void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag); + void (*xUnpin)(sqlite3_pcache*, void*, int discard); + void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey); + void (*xTruncate)(sqlite3_pcache*, unsigned iLimit); + void (*xDestroy)(sqlite3_pcache*); +}; + +/* +** CAPI3REF: Online Backup Object +** +** The sqlite3_backup object records state information about an ongoing +** online backup operation. ^The sqlite3_backup object is created by +** a call to [sqlite3_backup_init()] and is destroyed by a call to +** [sqlite3_backup_finish()]. +** +** See Also: [Using the SQLite Online Backup API] +*/ +typedef struct sqlite3_backup sqlite3_backup; + +/* +** CAPI3REF: Online Backup API. +** +** The backup API copies the content of one database into another. +** It is useful either for creating backups of databases or +** for copying in-memory databases to or from persistent files. +** +** See Also: [Using the SQLite Online Backup API] +** +** ^SQLite holds a write transaction open on the destination database file +** for the duration of the backup operation. +** ^The source database is read-locked only while it is being read; +** it is not locked continuously for the entire backup operation. +** ^Thus, the backup may be performed on a live source database without +** preventing other database connections from +** reading or writing to the source database while the backup is underway. +** +** ^(To perform a backup operation: +**
      +**
    1. sqlite3_backup_init() is called once to initialize the +** backup, +**
    2. sqlite3_backup_step() is called one or more times to transfer +** the data between the two databases, and finally +**
    3. sqlite3_backup_finish() is called to release all resources +** associated with the backup operation. +**
    )^ +** There should be exactly one call to sqlite3_backup_finish() for each +** successful call to sqlite3_backup_init(). +** +** [[sqlite3_backup_init()]] sqlite3_backup_init() +** +** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the +** [database connection] associated with the destination database +** and the database name, respectively. +** ^The database name is "main" for the main database, "temp" for the +** temporary database, or the name specified after the AS keyword in +** an [ATTACH] statement for an attached database. +** ^The S and M arguments passed to +** sqlite3_backup_init(D,N,S,M) identify the [database connection] +** and database name of the source database, respectively. +** ^The source and destination [database connections] (parameters S and D) +** must be different or else sqlite3_backup_init(D,N,S,M) will fail with +** an error. +** +** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is +** returned and an error code and error message are stored in the +** destination [database connection] D. +** ^The error code and message for the failed call to sqlite3_backup_init() +** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or +** [sqlite3_errmsg16()] functions. +** ^A successful call to sqlite3_backup_init() returns a pointer to an +** [sqlite3_backup] object. +** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and +** sqlite3_backup_finish() functions to perform the specified backup +** operation. +** +** [[sqlite3_backup_step()]] sqlite3_backup_step() +** +** ^Function sqlite3_backup_step(B,N) will copy up to N pages between +** the source and destination databases specified by [sqlite3_backup] object B. +** ^If N is negative, all remaining source pages are copied. +** ^If sqlite3_backup_step(B,N) successfully copies N pages and there +** are still more pages to be copied, then the function returns [SQLITE_OK]. +** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages +** from source to destination, then it returns [SQLITE_DONE]. +** ^If an error occurs while running sqlite3_backup_step(B,N), +** then an [error code] is returned. ^As well as [SQLITE_OK] and +** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY], +** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an +** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code. +** +** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if +**
      +**
    1. the destination database was opened read-only, or +**
    2. the destination database is using write-ahead-log journaling +** and the destination and source page sizes differ, or +**
    3. the destination database is an in-memory database and the +** destination and source page sizes differ. +**
    )^ +** +** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then +** the [sqlite3_busy_handler | busy-handler function] +** is invoked (if one is specified). ^If the +** busy-handler returns non-zero before the lock is available, then +** [SQLITE_BUSY] is returned to the caller. ^In this case the call to +** sqlite3_backup_step() can be retried later. ^If the source +** [database connection] +** is being used to write to the source database when sqlite3_backup_step() +** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this +** case the call to sqlite3_backup_step() can be retried later on. ^(If +** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or +** [SQLITE_READONLY] is returned, then +** there is no point in retrying the call to sqlite3_backup_step(). These +** errors are considered fatal.)^ The application must accept +** that the backup operation has failed and pass the backup operation handle +** to the sqlite3_backup_finish() to release associated resources. +** +** ^The first call to sqlite3_backup_step() obtains an exclusive lock +** on the destination file. ^The exclusive lock is not released until either +** sqlite3_backup_finish() is called or the backup operation is complete +** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to +** sqlite3_backup_step() obtains a [shared lock] on the source database that +** lasts for the duration of the sqlite3_backup_step() call. +** ^Because the source database is not locked between calls to +** sqlite3_backup_step(), the source database may be modified mid-way +** through the backup process. ^If the source database is modified by an +** external process or via a database connection other than the one being +** used by the backup operation, then the backup will be automatically +** restarted by the next call to sqlite3_backup_step(). ^If the source +** database is modified by the using the same database connection as is used +** by the backup operation, then the backup database is automatically +** updated at the same time. +** +** [[sqlite3_backup_finish()]] sqlite3_backup_finish() +** +** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the +** application wishes to abandon the backup operation, the application +** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish(). +** ^The sqlite3_backup_finish() interfaces releases all +** resources associated with the [sqlite3_backup] object. +** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any +** active write-transaction on the destination database is rolled back. +** The [sqlite3_backup] object is invalid +** and may not be used following a call to sqlite3_backup_finish(). +** +** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no +** sqlite3_backup_step() errors occurred, regardless or whether or not +** sqlite3_backup_step() completed. +** ^If an out-of-memory condition or IO error occurred during any prior +** sqlite3_backup_step() call on the same [sqlite3_backup] object, then +** sqlite3_backup_finish() returns the corresponding [error code]. +** +** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() +** is not a permanent error and does not affect the return value of +** sqlite3_backup_finish(). +** +** [[sqlite3_backup__remaining()]] [[sqlite3_backup_pagecount()]] +** sqlite3_backup_remaining() and sqlite3_backup_pagecount() +** +** ^Each call to sqlite3_backup_step() sets two values inside +** the [sqlite3_backup] object: the number of pages still to be backed +** up and the total number of pages in the source database file. +** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces +** retrieve these two values, respectively. +** +** ^The values returned by these functions are only updated by +** sqlite3_backup_step(). ^If the source database is modified during a backup +** operation, then the values are not updated to account for any extra +** pages that need to be updated or the size of the source database file +** changing. +** +** Concurrent Usage of Database Handles +** +** ^The source [database connection] may be used by the application for other +** purposes while a backup operation is underway or being initialized. +** ^If SQLite is compiled and configured to support threadsafe database +** connections, then the source database connection may be used concurrently +** from within other threads. +** +** However, the application must guarantee that the destination +** [database connection] is not passed to any other API (by any thread) after +** sqlite3_backup_init() is called and before the corresponding call to +** sqlite3_backup_finish(). SQLite does not currently check to see +** if the application incorrectly accesses the destination [database connection] +** and so no error code is reported, but the operations may malfunction +** nevertheless. Use of the destination database connection while a +** backup is in progress might also also cause a mutex deadlock. +** +** If running in [shared cache mode], the application must +** guarantee that the shared cache used by the destination database +** is not accessed while the backup is running. In practice this means +** that the application must guarantee that the disk file being +** backed up to is not accessed by any connection within the process, +** not just the specific connection that was passed to sqlite3_backup_init(). +** +** The [sqlite3_backup] object itself is partially threadsafe. Multiple +** threads may safely make multiple concurrent calls to sqlite3_backup_step(). +** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount() +** APIs are not strictly speaking threadsafe. If they are invoked at the +** same time as another thread is invoking sqlite3_backup_step() it is +** possible that they return invalid values. +*/ +sqlite3_backup *sqlite3_backup_init( + sqlite3 *pDest, /* Destination database handle */ + const char *zDestName, /* Destination database name */ + sqlite3 *pSource, /* Source database handle */ + const char *zSourceName /* Source database name */ +); +int sqlite3_backup_step(sqlite3_backup *p, int nPage); +int sqlite3_backup_finish(sqlite3_backup *p); +int sqlite3_backup_remaining(sqlite3_backup *p); +int sqlite3_backup_pagecount(sqlite3_backup *p); + +/* +** CAPI3REF: Unlock Notification +** +** ^When running in shared-cache mode, a database operation may fail with +** an [SQLITE_LOCKED] error if the required locks on the shared-cache or +** individual tables within the shared-cache cannot be obtained. See +** [SQLite Shared-Cache Mode] for a description of shared-cache locking. +** ^This API may be used to register a callback that SQLite will invoke +** when the connection currently holding the required lock relinquishes it. +** ^This API is only available if the library was compiled with the +** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined. +** +** See Also: [Using the SQLite Unlock Notification Feature]. +** +** ^Shared-cache locks are released when a database connection concludes +** its current transaction, either by committing it or rolling it back. +** +** ^When a connection (known as the blocked connection) fails to obtain a +** shared-cache lock and SQLITE_LOCKED is returned to the caller, the +** identity of the database connection (the blocking connection) that +** has locked the required resource is stored internally. ^After an +** application receives an SQLITE_LOCKED error, it may call the +** sqlite3_unlock_notify() method with the blocked connection handle as +** the first argument to register for a callback that will be invoked +** when the blocking connections current transaction is concluded. ^The +** callback is invoked from within the [sqlite3_step] or [sqlite3_close] +** call that concludes the blocking connections transaction. +** +** ^(If sqlite3_unlock_notify() is called in a multi-threaded application, +** there is a chance that the blocking connection will have already +** concluded its transaction by the time sqlite3_unlock_notify() is invoked. +** If this happens, then the specified callback is invoked immediately, +** from within the call to sqlite3_unlock_notify().)^ +** +** ^If the blocked connection is attempting to obtain a write-lock on a +** shared-cache table, and more than one other connection currently holds +** a read-lock on the same table, then SQLite arbitrarily selects one of +** the other connections to use as the blocking connection. +** +** ^(There may be at most one unlock-notify callback registered by a +** blocked connection. If sqlite3_unlock_notify() is called when the +** blocked connection already has a registered unlock-notify callback, +** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is +** called with a NULL pointer as its second argument, then any existing +** unlock-notify callback is canceled. ^The blocked connections +** unlock-notify callback may also be canceled by closing the blocked +** connection using [sqlite3_close()]. +** +** The unlock-notify callback is not reentrant. If an application invokes +** any sqlite3_xxx API functions from within an unlock-notify callback, a +** crash or deadlock may be the result. +** +** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always +** returns SQLITE_OK. +** +** Callback Invocation Details +** +** When an unlock-notify callback is registered, the application provides a +** single void* pointer that is passed to the callback when it is invoked. +** However, the signature of the callback function allows SQLite to pass +** it an array of void* context pointers. The first argument passed to +** an unlock-notify callback is a pointer to an array of void* pointers, +** and the second is the number of entries in the array. +** +** When a blocking connections transaction is concluded, there may be +** more than one blocked connection that has registered for an unlock-notify +** callback. ^If two or more such blocked connections have specified the +** same callback function, then instead of invoking the callback function +** multiple times, it is invoked once with the set of void* context pointers +** specified by the blocked connections bundled together into an array. +** This gives the application an opportunity to prioritize any actions +** related to the set of unblocked database connections. +** +** Deadlock Detection +** +** Assuming that after registering for an unlock-notify callback a +** database waits for the callback to be issued before taking any further +** action (a reasonable assumption), then using this API may cause the +** application to deadlock. For example, if connection X is waiting for +** connection Y's transaction to be concluded, and similarly connection +** Y is waiting on connection X's transaction, then neither connection +** will proceed and the system may remain deadlocked indefinitely. +** +** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock +** detection. ^If a given call to sqlite3_unlock_notify() would put the +** system in a deadlocked state, then SQLITE_LOCKED is returned and no +** unlock-notify callback is registered. The system is said to be in +** a deadlocked state if connection A has registered for an unlock-notify +** callback on the conclusion of connection B's transaction, and connection +** B has itself registered for an unlock-notify callback when connection +** A's transaction is concluded. ^Indirect deadlock is also detected, so +** the system is also considered to be deadlocked if connection B has +** registered for an unlock-notify callback on the conclusion of connection +** C's transaction, where connection C is waiting on connection A. ^Any +** number of levels of indirection are allowed. +** +** The "DROP TABLE" Exception +** +** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost +** always appropriate to call sqlite3_unlock_notify(). There is however, +** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement, +** SQLite checks if there are any currently executing SELECT statements +** that belong to the same connection. If there are, SQLITE_LOCKED is +** returned. In this case there is no "blocking connection", so invoking +** sqlite3_unlock_notify() results in the unlock-notify callback being +** invoked immediately. If the application then re-attempts the "DROP TABLE" +** or "DROP INDEX" query, an infinite loop might be the result. +** +** One way around this problem is to check the extended error code returned +** by an sqlite3_step() call. ^(If there is a blocking connection, then the +** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in +** the special "DROP TABLE/INDEX" case, the extended error code is just +** SQLITE_LOCKED.)^ +*/ +int sqlite3_unlock_notify( + sqlite3 *pBlocked, /* Waiting connection */ + void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */ + void *pNotifyArg /* Argument to pass to xNotify */ +); + + +/* +** CAPI3REF: String Comparison +** +** ^The [sqlite3_strnicmp()] API allows applications and extensions to +** compare the contents of two buffers containing UTF-8 strings in a +** case-independent fashion, using the same definition of case independence +** that SQLite uses internally when comparing identifiers. +*/ +int sqlite3_strnicmp(const char *, const char *, int); + +/* +** CAPI3REF: Error Logging Interface +** +** ^The [sqlite3_log()] interface writes a message into the error log +** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()]. +** ^If logging is enabled, the zFormat string and subsequent arguments are +** used with [sqlite3_snprintf()] to generate the final output string. +** +** The sqlite3_log() interface is intended for use by extensions such as +** virtual tables, collating functions, and SQL functions. While there is +** nothing to prevent an application from calling sqlite3_log(), doing so +** is considered bad form. +** +** The zFormat string must not be NULL. +** +** To avoid deadlocks and other threading problems, the sqlite3_log() routine +** will not use dynamically allocated memory. The log message is stored in +** a fixed-length buffer on the stack. If the log message is longer than +** a few hundred characters, it will be truncated to the length of the +** buffer. +*/ +void sqlite3_log(int iErrCode, const char *zFormat, ...); + +/* +** CAPI3REF: Write-Ahead Log Commit Hook +** +** ^The [sqlite3_wal_hook()] function is used to register a callback that +** will be invoked each time a database connection commits data to a +** [write-ahead log] (i.e. whenever a transaction is committed in +** [journal_mode | journal_mode=WAL mode]). +** +** ^The callback is invoked by SQLite after the commit has taken place and +** the associated write-lock on the database released, so the implementation +** may read, write or [checkpoint] the database as required. +** +** ^The first parameter passed to the callback function when it is invoked +** is a copy of the third parameter passed to sqlite3_wal_hook() when +** registering the callback. ^The second is a copy of the database handle. +** ^The third parameter is the name of the database that was written to - +** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter +** is the number of pages currently in the write-ahead log file, +** including those that were just committed. +** +** The callback function should normally return [SQLITE_OK]. ^If an error +** code is returned, that error will propagate back up through the +** SQLite code base to cause the statement that provoked the callback +** to report an error, though the commit will have still occurred. If the +** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value +** that does not correspond to any valid SQLite error code, the results +** are undefined. +** +** A single database handle may have at most a single write-ahead log callback +** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any +** previously registered write-ahead log callback. ^Note that the +** [sqlite3_wal_autocheckpoint()] interface and the +** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will +** those overwrite any prior [sqlite3_wal_hook()] settings. +*/ +void *sqlite3_wal_hook( + sqlite3*, + int(*)(void *,sqlite3*,const char*,int), + void* +); + +/* +** CAPI3REF: Configure an auto-checkpoint +** +** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around +** [sqlite3_wal_hook()] that causes any database on [database connection] D +** to automatically [checkpoint] +** after committing a transaction if there are N or +** more frames in the [write-ahead log] file. ^Passing zero or +** a negative value as the nFrame parameter disables automatic +** checkpoints entirely. +** +** ^The callback registered by this function replaces any existing callback +** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback +** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism +** configured by this function. +** +** ^The [wal_autocheckpoint pragma] can be used to invoke this interface +** from SQL. +** +** ^Every new [database connection] defaults to having the auto-checkpoint +** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT] +** pages. The use of this interface +** is only necessary if the default setting is found to be suboptimal +** for a particular application. +*/ +int sqlite3_wal_autocheckpoint(sqlite3 *db, int N); + +/* +** CAPI3REF: Checkpoint a database +** +** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X +** on [database connection] D to be [checkpointed]. ^If X is NULL or an +** empty string, then a checkpoint is run on all databases of +** connection D. ^If the database connection D is not in +** [WAL | write-ahead log mode] then this interface is a harmless no-op. +** +** ^The [wal_checkpoint pragma] can be used to invoke this interface +** from SQL. ^The [sqlite3_wal_autocheckpoint()] interface and the +** [wal_autocheckpoint pragma] can be used to cause this interface to be +** run whenever the WAL reaches a certain size threshold. +** +** See also: [sqlite3_wal_checkpoint_v2()] +*/ +int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); + +/* +** CAPI3REF: Checkpoint a database +** +** Run a checkpoint operation on WAL database zDb attached to database +** handle db. The specific operation is determined by the value of the +** eMode parameter: +** +**
    +**
    SQLITE_CHECKPOINT_PASSIVE
    +** Checkpoint as many frames as possible without waiting for any database +** readers or writers to finish. Sync the db file if all frames in the log +** are checkpointed. This mode is the same as calling +** sqlite3_wal_checkpoint(). The busy-handler callback is never invoked. +** +**
    SQLITE_CHECKPOINT_FULL
    +** This mode blocks (calls the busy-handler callback) until there is no +** database writer and all readers are reading from the most recent database +** snapshot. It then checkpoints all frames in the log file and syncs the +** database file. This call blocks database writers while it is running, +** but not database readers. +** +**
    SQLITE_CHECKPOINT_RESTART
    +** This mode works the same way as SQLITE_CHECKPOINT_FULL, except after +** checkpointing the log file it blocks (calls the busy-handler callback) +** until all readers are reading from the database file only. This ensures +** that the next client to write to the database file restarts the log file +** from the beginning. This call blocks database writers while it is running, +** but not database readers. +**
    +** +** If pnLog is not NULL, then *pnLog is set to the total number of frames in +** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to +** the total number of checkpointed frames (including any that were already +** checkpointed when this function is called). *pnLog and *pnCkpt may be +** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK. +** If no values are available because of an error, they are both set to -1 +** before returning to communicate this to the caller. +** +** All calls obtain an exclusive "checkpoint" lock on the database file. If +** any other process is running a checkpoint operation at the same time, the +** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a +** busy-handler configured, it will not be invoked in this case. +** +** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive +** "writer" lock on the database file. If the writer lock cannot be obtained +** immediately, and a busy-handler is configured, it is invoked and the writer +** lock retried until either the busy-handler returns 0 or the lock is +** successfully obtained. The busy-handler is also invoked while waiting for +** database readers as described above. If the busy-handler returns 0 before +** the writer lock is obtained or while waiting for database readers, the +** checkpoint operation proceeds from that point in the same way as +** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible +** without blocking any further. SQLITE_BUSY is returned in this case. +** +** If parameter zDb is NULL or points to a zero length string, then the +** specified operation is attempted on all WAL databases. In this case the +** values written to output parameters *pnLog and *pnCkpt are undefined. If +** an SQLITE_BUSY error is encountered when processing one or more of the +** attached WAL databases, the operation is still attempted on any remaining +** attached databases and SQLITE_BUSY is returned to the caller. If any other +** error occurs while processing an attached database, processing is abandoned +** and the error code returned to the caller immediately. If no error +** (SQLITE_BUSY or otherwise) is encountered while processing the attached +** databases, SQLITE_OK is returned. +** +** If database zDb is the name of an attached database that is not in WAL +** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If +** zDb is not NULL (or a zero length string) and is not the name of any +** attached database, SQLITE_ERROR is returned to the caller. +*/ +int sqlite3_wal_checkpoint_v2( + sqlite3 *db, /* Database handle */ + const char *zDb, /* Name of attached database (or NULL) */ + int eMode, /* SQLITE_CHECKPOINT_* value */ + int *pnLog, /* OUT: Size of WAL log in frames */ + int *pnCkpt /* OUT: Total number of frames checkpointed */ +); + +/* +** CAPI3REF: Checkpoint operation parameters +** +** These constants can be used as the 3rd parameter to +** [sqlite3_wal_checkpoint_v2()]. See the [sqlite3_wal_checkpoint_v2()] +** documentation for additional information about the meaning and use of +** each of these values. +*/ +#define SQLITE_CHECKPOINT_PASSIVE 0 +#define SQLITE_CHECKPOINT_FULL 1 +#define SQLITE_CHECKPOINT_RESTART 2 + +/* +** CAPI3REF: Virtual Table Interface Configuration +** +** This function may be called by either the [xConnect] or [xCreate] method +** of a [virtual table] implementation to configure +** various facets of the virtual table interface. +** +** If this interface is invoked outside the context of an xConnect or +** xCreate virtual table method then the behavior is undefined. +** +** At present, there is only one option that may be configured using +** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].) Further options +** may be added in the future. +*/ +int sqlite3_vtab_config(sqlite3*, int op, ...); + +/* +** CAPI3REF: Virtual Table Configuration Options +** +** These macros define the various options to the +** [sqlite3_vtab_config()] interface that [virtual table] implementations +** can use to customize and optimize their behavior. +** +**
    +**
    SQLITE_VTAB_CONSTRAINT_SUPPORT +**
    Calls of the form +** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported, +** where X is an integer. If X is zero, then the [virtual table] whose +** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not +** support constraints. In this configuration (which is the default) if +** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire +** statement is rolled back as if [ON CONFLICT | OR ABORT] had been +** specified as part of the users SQL statement, regardless of the actual +** ON CONFLICT mode specified. +** +** If X is non-zero, then the virtual table implementation guarantees +** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before +** any modifications to internal or persistent data structures have been made. +** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite +** is able to roll back a statement or database transaction, and abandon +** or continue processing the current SQL statement as appropriate. +** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns +** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode +** had been ABORT. +** +** Virtual table implementations that are required to handle OR REPLACE +** must do so within the [xUpdate] method. If a call to the +** [sqlite3_vtab_on_conflict()] function indicates that the current ON +** CONFLICT policy is REPLACE, the virtual table implementation should +** silently replace the appropriate rows within the xUpdate callback and +** return SQLITE_OK. Or, if this is not possible, it may return +** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT +** constraint handling. +**
    +*/ +#define SQLITE_VTAB_CONSTRAINT_SUPPORT 1 + +/* +** CAPI3REF: Determine The Virtual Table Conflict Policy +** +** This function may only be called from within a call to the [xUpdate] method +** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The +** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL], +** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode +** of the SQL statement that triggered the call to the [xUpdate] method of the +** [virtual table]. +*/ +int sqlite3_vtab_on_conflict(sqlite3 *); + +/* +** CAPI3REF: Conflict resolution modes +** +** These constants are returned by [sqlite3_vtab_on_conflict()] to +** inform a [virtual table] implementation what the [ON CONFLICT] mode +** is for the SQL statement being evaluated. +** +** Note that the [SQLITE_IGNORE] constant is also used as a potential +** return value from the [sqlite3_set_authorizer()] callback and that +** [SQLITE_ABORT] is also a [result code]. +*/ +#define SQLITE_ROLLBACK 1 +/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */ +#define SQLITE_FAIL 3 +/* #define SQLITE_ABORT 4 // Also an error code */ +#define SQLITE_REPLACE 5 + + + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#ifdef __cplusplus +} /* End of the 'extern "C"' block */ +#endif +#endif diff --git a/src/sqlite3ext.h b/src/sqlite3ext.h new file mode 100644 index 0000000..5abcde2 --- /dev/null +++ b/src/sqlite3ext.h @@ -0,0 +1,447 @@ +/* +** 2006 June 7 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the SQLite interface for use by +** shared libraries that want to be imported as extensions into +** an SQLite instance. Shared libraries that intend to be loaded +** as extensions by SQLite should #include this file instead of +** sqlite3.h. +*/ +#ifndef _SQLITE3EXT_H_ +#define _SQLITE3EXT_H_ +#include "sqlite3.h" + +typedef struct sqlite3_api_routines sqlite3_api_routines; + +/* +** The following structure holds pointers to all of the SQLite API +** routines. +** +** WARNING: In order to maintain backwards compatibility, add new +** interfaces to the end of this structure only. If you insert new +** interfaces in the middle of this structure, then older different +** versions of SQLite will not be able to load each others' shared +** libraries! +*/ +struct sqlite3_api_routines { + void * (*aggregate_context)(sqlite3_context*,int nBytes); + int (*aggregate_count)(sqlite3_context*); + int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*)); + int (*bind_double)(sqlite3_stmt*,int,double); + int (*bind_int)(sqlite3_stmt*,int,int); + int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64); + int (*bind_null)(sqlite3_stmt*,int); + int (*bind_parameter_count)(sqlite3_stmt*); + int (*bind_parameter_index)(sqlite3_stmt*,const char*zName); + const char * (*bind_parameter_name)(sqlite3_stmt*,int); + int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*)); + int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*)); + int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*); + int (*busy_handler)(sqlite3*,int(*)(void*,int),void*); + int (*busy_timeout)(sqlite3*,int ms); + int (*changes)(sqlite3*); + int (*close)(sqlite3*); + int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*, + int eTextRep,const char*)); + int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*, + int eTextRep,const void*)); + const void * (*column_blob)(sqlite3_stmt*,int iCol); + int (*column_bytes)(sqlite3_stmt*,int iCol); + int (*column_bytes16)(sqlite3_stmt*,int iCol); + int (*column_count)(sqlite3_stmt*pStmt); + const char * (*column_database_name)(sqlite3_stmt*,int); + const void * (*column_database_name16)(sqlite3_stmt*,int); + const char * (*column_decltype)(sqlite3_stmt*,int i); + const void * (*column_decltype16)(sqlite3_stmt*,int); + double (*column_double)(sqlite3_stmt*,int iCol); + int (*column_int)(sqlite3_stmt*,int iCol); + sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol); + const char * (*column_name)(sqlite3_stmt*,int); + const void * (*column_name16)(sqlite3_stmt*,int); + const char * (*column_origin_name)(sqlite3_stmt*,int); + const void * (*column_origin_name16)(sqlite3_stmt*,int); + const char * (*column_table_name)(sqlite3_stmt*,int); + const void * (*column_table_name16)(sqlite3_stmt*,int); + const unsigned char * (*column_text)(sqlite3_stmt*,int iCol); + const void * (*column_text16)(sqlite3_stmt*,int iCol); + int (*column_type)(sqlite3_stmt*,int iCol); + sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol); + void * (*commit_hook)(sqlite3*,int(*)(void*),void*); + int (*complete)(const char*sql); + int (*complete16)(const void*sql); + int (*create_collation)(sqlite3*,const char*,int,void*, + int(*)(void*,int,const void*,int,const void*)); + int (*create_collation16)(sqlite3*,const void*,int,void*, + int(*)(void*,int,const void*,int,const void*)); + int (*create_function)(sqlite3*,const char*,int,int,void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*)); + int (*create_function16)(sqlite3*,const void*,int,int,void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*)); + int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*); + int (*data_count)(sqlite3_stmt*pStmt); + sqlite3 * (*db_handle)(sqlite3_stmt*); + int (*declare_vtab)(sqlite3*,const char*); + int (*enable_shared_cache)(int); + int (*errcode)(sqlite3*db); + const char * (*errmsg)(sqlite3*); + const void * (*errmsg16)(sqlite3*); + int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**); + int (*expired)(sqlite3_stmt*); + int (*finalize)(sqlite3_stmt*pStmt); + void (*free)(void*); + void (*free_table)(char**result); + int (*get_autocommit)(sqlite3*); + void * (*get_auxdata)(sqlite3_context*,int); + int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**); + int (*global_recover)(void); + void (*interruptx)(sqlite3*); + sqlite_int64 (*last_insert_rowid)(sqlite3*); + const char * (*libversion)(void); + int (*libversion_number)(void); + void *(*malloc)(int); + char * (*mprintf)(const char*,...); + int (*open)(const char*,sqlite3**); + int (*open16)(const void*,sqlite3**); + int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); + int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); + void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*); + void (*progress_handler)(sqlite3*,int,int(*)(void*),void*); + void *(*realloc)(void*,int); + int (*reset)(sqlite3_stmt*pStmt); + void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_double)(sqlite3_context*,double); + void (*result_error)(sqlite3_context*,const char*,int); + void (*result_error16)(sqlite3_context*,const void*,int); + void (*result_int)(sqlite3_context*,int); + void (*result_int64)(sqlite3_context*,sqlite_int64); + void (*result_null)(sqlite3_context*); + void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*)); + void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_value)(sqlite3_context*,sqlite3_value*); + void * (*rollback_hook)(sqlite3*,void(*)(void*),void*); + int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*, + const char*,const char*),void*); + void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*)); + char * (*snprintf)(int,char*,const char*,...); + int (*step)(sqlite3_stmt*); + int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*, + char const**,char const**,int*,int*,int*); + void (*thread_cleanup)(void); + int (*total_changes)(sqlite3*); + void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*); + int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*); + void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*, + sqlite_int64),void*); + void * (*user_data)(sqlite3_context*); + const void * (*value_blob)(sqlite3_value*); + int (*value_bytes)(sqlite3_value*); + int (*value_bytes16)(sqlite3_value*); + double (*value_double)(sqlite3_value*); + int (*value_int)(sqlite3_value*); + sqlite_int64 (*value_int64)(sqlite3_value*); + int (*value_numeric_type)(sqlite3_value*); + const unsigned char * (*value_text)(sqlite3_value*); + const void * (*value_text16)(sqlite3_value*); + const void * (*value_text16be)(sqlite3_value*); + const void * (*value_text16le)(sqlite3_value*); + int (*value_type)(sqlite3_value*); + char *(*vmprintf)(const char*,va_list); + /* Added ??? */ + int (*overload_function)(sqlite3*, const char *zFuncName, int nArg); + /* Added by 3.3.13 */ + int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); + int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); + int (*clear_bindings)(sqlite3_stmt*); + /* Added by 3.4.1 */ + int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*, + void (*xDestroy)(void *)); + /* Added by 3.5.0 */ + int (*bind_zeroblob)(sqlite3_stmt*,int,int); + int (*blob_bytes)(sqlite3_blob*); + int (*blob_close)(sqlite3_blob*); + int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64, + int,sqlite3_blob**); + int (*blob_read)(sqlite3_blob*,void*,int,int); + int (*blob_write)(sqlite3_blob*,const void*,int,int); + int (*create_collation_v2)(sqlite3*,const char*,int,void*, + int(*)(void*,int,const void*,int,const void*), + void(*)(void*)); + int (*file_control)(sqlite3*,const char*,int,void*); + sqlite3_int64 (*memory_highwater)(int); + sqlite3_int64 (*memory_used)(void); + sqlite3_mutex *(*mutex_alloc)(int); + void (*mutex_enter)(sqlite3_mutex*); + void (*mutex_free)(sqlite3_mutex*); + void (*mutex_leave)(sqlite3_mutex*); + int (*mutex_try)(sqlite3_mutex*); + int (*open_v2)(const char*,sqlite3**,int,const char*); + int (*release_memory)(int); + void (*result_error_nomem)(sqlite3_context*); + void (*result_error_toobig)(sqlite3_context*); + int (*sleep)(int); + void (*soft_heap_limit)(int); + sqlite3_vfs *(*vfs_find)(const char*); + int (*vfs_register)(sqlite3_vfs*,int); + int (*vfs_unregister)(sqlite3_vfs*); + int (*xthreadsafe)(void); + void (*result_zeroblob)(sqlite3_context*,int); + void (*result_error_code)(sqlite3_context*,int); + int (*test_control)(int, ...); + void (*randomness)(int,void*); + sqlite3 *(*context_db_handle)(sqlite3_context*); + int (*extended_result_codes)(sqlite3*,int); + int (*limit)(sqlite3*,int,int); + sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*); + const char *(*sql)(sqlite3_stmt*); + int (*status)(int,int*,int*,int); + int (*backup_finish)(sqlite3_backup*); + sqlite3_backup *(*backup_init)(sqlite3*,const char*,sqlite3*,const char*); + int (*backup_pagecount)(sqlite3_backup*); + int (*backup_remaining)(sqlite3_backup*); + int (*backup_step)(sqlite3_backup*,int); + const char *(*compileoption_get)(int); + int (*compileoption_used)(const char*); + int (*create_function_v2)(sqlite3*,const char*,int,int,void*, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*), + void(*xDestroy)(void*)); + int (*db_config)(sqlite3*,int,...); + sqlite3_mutex *(*db_mutex)(sqlite3*); + int (*db_status)(sqlite3*,int,int*,int*,int); + int (*extended_errcode)(sqlite3*); + void (*log)(int,const char*,...); + sqlite3_int64 (*soft_heap_limit64)(sqlite3_int64); + const char *(*sourceid)(void); + int (*stmt_status)(sqlite3_stmt*,int,int); + int (*strnicmp)(const char*,const char*,int); + int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*); + int (*wal_autocheckpoint)(sqlite3*,int); + int (*wal_checkpoint)(sqlite3*,const char*); + void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*); + int (*blob_reopen)(sqlite3_blob*,sqlite3_int64); + int (*vtab_config)(sqlite3*,int op,...); + int (*vtab_on_conflict)(sqlite3*); +}; + +/* +** The following macros redefine the API routines so that they are +** redirected throught the global sqlite3_api structure. +** +** This header file is also used by the loadext.c source file +** (part of the main SQLite library - not an extension) so that +** it can get access to the sqlite3_api_routines structure +** definition. But the main library does not want to redefine +** the API. So the redefinition macros are only valid if the +** SQLITE_CORE macros is undefined. +*/ +#ifndef SQLITE_CORE +#define sqlite3_aggregate_context sqlite3_api->aggregate_context +#ifndef SQLITE_OMIT_DEPRECATED +#define sqlite3_aggregate_count sqlite3_api->aggregate_count +#endif +#define sqlite3_bind_blob sqlite3_api->bind_blob +#define sqlite3_bind_double sqlite3_api->bind_double +#define sqlite3_bind_int sqlite3_api->bind_int +#define sqlite3_bind_int64 sqlite3_api->bind_int64 +#define sqlite3_bind_null sqlite3_api->bind_null +#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count +#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index +#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name +#define sqlite3_bind_text sqlite3_api->bind_text +#define sqlite3_bind_text16 sqlite3_api->bind_text16 +#define sqlite3_bind_value sqlite3_api->bind_value +#define sqlite3_busy_handler sqlite3_api->busy_handler +#define sqlite3_busy_timeout sqlite3_api->busy_timeout +#define sqlite3_changes sqlite3_api->changes +#define sqlite3_close sqlite3_api->close +#define sqlite3_collation_needed sqlite3_api->collation_needed +#define sqlite3_collation_needed16 sqlite3_api->collation_needed16 +#define sqlite3_column_blob sqlite3_api->column_blob +#define sqlite3_column_bytes sqlite3_api->column_bytes +#define sqlite3_column_bytes16 sqlite3_api->column_bytes16 +#define sqlite3_column_count sqlite3_api->column_count +#define sqlite3_column_database_name sqlite3_api->column_database_name +#define sqlite3_column_database_name16 sqlite3_api->column_database_name16 +#define sqlite3_column_decltype sqlite3_api->column_decltype +#define sqlite3_column_decltype16 sqlite3_api->column_decltype16 +#define sqlite3_column_double sqlite3_api->column_double +#define sqlite3_column_int sqlite3_api->column_int +#define sqlite3_column_int64 sqlite3_api->column_int64 +#define sqlite3_column_name sqlite3_api->column_name +#define sqlite3_column_name16 sqlite3_api->column_name16 +#define sqlite3_column_origin_name sqlite3_api->column_origin_name +#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16 +#define sqlite3_column_table_name sqlite3_api->column_table_name +#define sqlite3_column_table_name16 sqlite3_api->column_table_name16 +#define sqlite3_column_text sqlite3_api->column_text +#define sqlite3_column_text16 sqlite3_api->column_text16 +#define sqlite3_column_type sqlite3_api->column_type +#define sqlite3_column_value sqlite3_api->column_value +#define sqlite3_commit_hook sqlite3_api->commit_hook +#define sqlite3_complete sqlite3_api->complete +#define sqlite3_complete16 sqlite3_api->complete16 +#define sqlite3_create_collation sqlite3_api->create_collation +#define sqlite3_create_collation16 sqlite3_api->create_collation16 +#define sqlite3_create_function sqlite3_api->create_function +#define sqlite3_create_function16 sqlite3_api->create_function16 +#define sqlite3_create_module sqlite3_api->create_module +#define sqlite3_create_module_v2 sqlite3_api->create_module_v2 +#define sqlite3_data_count sqlite3_api->data_count +#define sqlite3_db_handle sqlite3_api->db_handle +#define sqlite3_declare_vtab sqlite3_api->declare_vtab +#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache +#define sqlite3_errcode sqlite3_api->errcode +#define sqlite3_errmsg sqlite3_api->errmsg +#define sqlite3_errmsg16 sqlite3_api->errmsg16 +#define sqlite3_exec sqlite3_api->exec +#ifndef SQLITE_OMIT_DEPRECATED +#define sqlite3_expired sqlite3_api->expired +#endif +#define sqlite3_finalize sqlite3_api->finalize +#define sqlite3_free sqlite3_api->free +#define sqlite3_free_table sqlite3_api->free_table +#define sqlite3_get_autocommit sqlite3_api->get_autocommit +#define sqlite3_get_auxdata sqlite3_api->get_auxdata +#define sqlite3_get_table sqlite3_api->get_table +#ifndef SQLITE_OMIT_DEPRECATED +#define sqlite3_global_recover sqlite3_api->global_recover +#endif +#define sqlite3_interrupt sqlite3_api->interruptx +#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid +#define sqlite3_libversion sqlite3_api->libversion +#define sqlite3_libversion_number sqlite3_api->libversion_number +#define sqlite3_malloc sqlite3_api->malloc +#define sqlite3_mprintf sqlite3_api->mprintf +#define sqlite3_open sqlite3_api->open +#define sqlite3_open16 sqlite3_api->open16 +#define sqlite3_prepare sqlite3_api->prepare +#define sqlite3_prepare16 sqlite3_api->prepare16 +#define sqlite3_prepare_v2 sqlite3_api->prepare_v2 +#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 +#define sqlite3_profile sqlite3_api->profile +#define sqlite3_progress_handler sqlite3_api->progress_handler +#define sqlite3_realloc sqlite3_api->realloc +#define sqlite3_reset sqlite3_api->reset +#define sqlite3_result_blob sqlite3_api->result_blob +#define sqlite3_result_double sqlite3_api->result_double +#define sqlite3_result_error sqlite3_api->result_error +#define sqlite3_result_error16 sqlite3_api->result_error16 +#define sqlite3_result_int sqlite3_api->result_int +#define sqlite3_result_int64 sqlite3_api->result_int64 +#define sqlite3_result_null sqlite3_api->result_null +#define sqlite3_result_text sqlite3_api->result_text +#define sqlite3_result_text16 sqlite3_api->result_text16 +#define sqlite3_result_text16be sqlite3_api->result_text16be +#define sqlite3_result_text16le sqlite3_api->result_text16le +#define sqlite3_result_value sqlite3_api->result_value +#define sqlite3_rollback_hook sqlite3_api->rollback_hook +#define sqlite3_set_authorizer sqlite3_api->set_authorizer +#define sqlite3_set_auxdata sqlite3_api->set_auxdata +#define sqlite3_snprintf sqlite3_api->snprintf +#define sqlite3_step sqlite3_api->step +#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata +#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup +#define sqlite3_total_changes sqlite3_api->total_changes +#define sqlite3_trace sqlite3_api->trace +#ifndef SQLITE_OMIT_DEPRECATED +#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings +#endif +#define sqlite3_update_hook sqlite3_api->update_hook +#define sqlite3_user_data sqlite3_api->user_data +#define sqlite3_value_blob sqlite3_api->value_blob +#define sqlite3_value_bytes sqlite3_api->value_bytes +#define sqlite3_value_bytes16 sqlite3_api->value_bytes16 +#define sqlite3_value_double sqlite3_api->value_double +#define sqlite3_value_int sqlite3_api->value_int +#define sqlite3_value_int64 sqlite3_api->value_int64 +#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type +#define sqlite3_value_text sqlite3_api->value_text +#define sqlite3_value_text16 sqlite3_api->value_text16 +#define sqlite3_value_text16be sqlite3_api->value_text16be +#define sqlite3_value_text16le sqlite3_api->value_text16le +#define sqlite3_value_type sqlite3_api->value_type +#define sqlite3_vmprintf sqlite3_api->vmprintf +#define sqlite3_overload_function sqlite3_api->overload_function +#define sqlite3_prepare_v2 sqlite3_api->prepare_v2 +#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 +#define sqlite3_clear_bindings sqlite3_api->clear_bindings +#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob +#define sqlite3_blob_bytes sqlite3_api->blob_bytes +#define sqlite3_blob_close sqlite3_api->blob_close +#define sqlite3_blob_open sqlite3_api->blob_open +#define sqlite3_blob_read sqlite3_api->blob_read +#define sqlite3_blob_write sqlite3_api->blob_write +#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2 +#define sqlite3_file_control sqlite3_api->file_control +#define sqlite3_memory_highwater sqlite3_api->memory_highwater +#define sqlite3_memory_used sqlite3_api->memory_used +#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc +#define sqlite3_mutex_enter sqlite3_api->mutex_enter +#define sqlite3_mutex_free sqlite3_api->mutex_free +#define sqlite3_mutex_leave sqlite3_api->mutex_leave +#define sqlite3_mutex_try sqlite3_api->mutex_try +#define sqlite3_open_v2 sqlite3_api->open_v2 +#define sqlite3_release_memory sqlite3_api->release_memory +#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem +#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig +#define sqlite3_sleep sqlite3_api->sleep +#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit +#define sqlite3_vfs_find sqlite3_api->vfs_find +#define sqlite3_vfs_register sqlite3_api->vfs_register +#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister +#define sqlite3_threadsafe sqlite3_api->xthreadsafe +#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob +#define sqlite3_result_error_code sqlite3_api->result_error_code +#define sqlite3_test_control sqlite3_api->test_control +#define sqlite3_randomness sqlite3_api->randomness +#define sqlite3_context_db_handle sqlite3_api->context_db_handle +#define sqlite3_extended_result_codes sqlite3_api->extended_result_codes +#define sqlite3_limit sqlite3_api->limit +#define sqlite3_next_stmt sqlite3_api->next_stmt +#define sqlite3_sql sqlite3_api->sql +#define sqlite3_status sqlite3_api->status +#define sqlite3_backup_finish sqlite3_api->backup_finish +#define sqlite3_backup_init sqlite3_api->backup_init +#define sqlite3_backup_pagecount sqlite3_api->backup_pagecount +#define sqlite3_backup_remaining sqlite3_api->backup_remaining +#define sqlite3_backup_step sqlite3_api->backup_step +#define sqlite3_compileoption_get sqlite3_api->compileoption_get +#define sqlite3_compileoption_used sqlite3_api->compileoption_used +#define sqlite3_create_function_v2 sqlite3_api->create_function_v2 +#define sqlite3_db_config sqlite3_api->db_config +#define sqlite3_db_mutex sqlite3_api->db_mutex +#define sqlite3_db_status sqlite3_api->db_status +#define sqlite3_extended_errcode sqlite3_api->extended_errcode +#define sqlite3_log sqlite3_api->log +#define sqlite3_soft_heap_limit64 sqlite3_api->soft_heap_limit64 +#define sqlite3_sourceid sqlite3_api->sourceid +#define sqlite3_stmt_status sqlite3_api->stmt_status +#define sqlite3_strnicmp sqlite3_api->strnicmp +#define sqlite3_unlock_notify sqlite3_api->unlock_notify +#define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint +#define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint +#define sqlite3_wal_hook sqlite3_api->wal_hook +#define sqlite3_blob_reopen sqlite3_api->blob_reopen +#define sqlite3_vtab_config sqlite3_api->vtab_config +#define sqlite3_vtab_on_conflict sqlite3_api->vtab_on_conflict +#endif /* SQLITE_CORE */ + +#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api = 0; +#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v; + +#endif /* _SQLITE3EXT_H_ */ diff --git a/src/sqliteInt.h b/src/sqliteInt.h new file mode 100644 index 0000000..9e27654 --- /dev/null +++ b/src/sqliteInt.h @@ -0,0 +1,3274 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Internal interface definitions for SQLite. +** +*/ +#ifndef _SQLITEINT_H_ +#define _SQLITEINT_H_ + +/* +** These #defines should enable >2GB file support on POSIX if the +** underlying operating system supports it. If the OS lacks +** large file support, or if the OS is windows, these should be no-ops. +** +** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any +** system #includes. Hence, this block of code must be the very first +** code in all source files. +** +** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch +** on the compiler command line. This is necessary if you are compiling +** on a recent machine (ex: Red Hat 7.2) but you want your code to work +** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 +** without this option, LFS is enable. But LFS does not exist in the kernel +** in Red Hat 6.0, so the code won't work. Hence, for maximum binary +** portability you should omit LFS. +** +** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. +*/ +#ifndef SQLITE_DISABLE_LFS +# define _LARGE_FILE 1 +# ifndef _FILE_OFFSET_BITS +# define _FILE_OFFSET_BITS 64 +# endif +# define _LARGEFILE_SOURCE 1 +#endif + +/* +** Include the configuration header output by 'configure' if we're using the +** autoconf-based build +*/ +#ifdef _HAVE_SQLITE_CONFIG_H +#include "config.h" +#endif + +#include "sqliteLimit.h" + +/* Disable nuisance warnings on Borland compilers */ +#if defined(__BORLANDC__) +#pragma warn -rch /* unreachable code */ +#pragma warn -ccc /* Condition is always true or false */ +#pragma warn -aus /* Assigned value is never used */ +#pragma warn -csu /* Comparing signed and unsigned */ +#pragma warn -spa /* Suspicious pointer arithmetic */ +#endif + +/* Needed for various definitions... */ +#ifndef _GNU_SOURCE +# define _GNU_SOURCE +#endif + +/* +** Include standard header files as necessary +*/ +#ifdef HAVE_STDINT_H +#include +#endif +#ifdef HAVE_INTTYPES_H +#include +#endif + +/* +** The following macros are used to cast pointers to integers and +** integers to pointers. The way you do this varies from one compiler +** to the next, so we have developed the following set of #if statements +** to generate appropriate macros for a wide range of compilers. +** +** The correct "ANSI" way to do this is to use the intptr_t type. +** Unfortunately, that typedef is not available on all compilers, or +** if it is available, it requires an #include of specific headers +** that vary from one machine to the next. +** +** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on +** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). +** So we have to define the macros in different ways depending on the +** compiler. +*/ +#if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ +# define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) +# define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) +#elif !defined(__GNUC__) /* Works for compilers other than LLVM */ +# define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) +# define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) +#elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ +# define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) +# define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) +#else /* Generates a warning - but it always works */ +# define SQLITE_INT_TO_PTR(X) ((void*)(X)) +# define SQLITE_PTR_TO_INT(X) ((int)(X)) +#endif + +/* +** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. +** 0 means mutexes are permanently disable and the library is never +** threadsafe. 1 means the library is serialized which is the highest +** level of threadsafety. 2 means the libary is multithreaded - multiple +** threads can use SQLite as long as no two threads try to use the same +** database connection at the same time. +** +** Older versions of SQLite used an optional THREADSAFE macro. +** We support that for legacy. +*/ +#if !defined(SQLITE_THREADSAFE) +#if defined(THREADSAFE) +# define SQLITE_THREADSAFE THREADSAFE +#else +# define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ +#endif +#endif + +/* +** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. +** It determines whether or not the features related to +** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can +** be overridden at runtime using the sqlite3_config() API. +*/ +#if !defined(SQLITE_DEFAULT_MEMSTATUS) +# define SQLITE_DEFAULT_MEMSTATUS 1 +#endif + +/* +** Exactly one of the following macros must be defined in order to +** specify which memory allocation subsystem to use. +** +** SQLITE_SYSTEM_MALLOC // Use normal system malloc() +** SQLITE_WIN32_MALLOC // Use Win32 native heap API +** SQLITE_MEMDEBUG // Debugging version of system malloc() +** +** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the +** assert() macro is enabled, each call into the Win32 native heap subsystem +** will cause HeapValidate to be called. If heap validation should fail, an +** assertion will be triggered. +** +** (Historical note: There used to be several other options, but we've +** pared it down to just these three.) +** +** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as +** the default. +*/ +#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)>1 +# error "At most one of the following compile-time configuration options\ + is allows: SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG" +#endif +#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)==0 +# define SQLITE_SYSTEM_MALLOC 1 +#endif + +/* +** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the +** sizes of memory allocations below this value where possible. +*/ +#if !defined(SQLITE_MALLOC_SOFT_LIMIT) +# define SQLITE_MALLOC_SOFT_LIMIT 1024 +#endif + +/* +** We need to define _XOPEN_SOURCE as follows in order to enable +** recursive mutexes on most Unix systems. But Mac OS X is different. +** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, +** so it is omitted there. See ticket #2673. +** +** Later we learn that _XOPEN_SOURCE is poorly or incorrectly +** implemented on some systems. So we avoid defining it at all +** if it is already defined or if it is unneeded because we are +** not doing a threadsafe build. Ticket #2681. +** +** See also ticket #2741. +*/ +#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE +# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ +#endif + +/* +** The TCL headers are only needed when compiling the TCL bindings. +*/ +#if defined(SQLITE_TCL) || defined(TCLSH) +# include +#endif + +/* +** Many people are failing to set -DNDEBUG=1 when compiling SQLite. +** Setting NDEBUG makes the code smaller and run faster. So the following +** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 +** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out +** feature. +*/ +#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) +# define NDEBUG 1 +#endif + +/* +** The testcase() macro is used to aid in coverage testing. When +** doing coverage testing, the condition inside the argument to +** testcase() must be evaluated both true and false in order to +** get full branch coverage. The testcase() macro is inserted +** to help ensure adequate test coverage in places where simple +** condition/decision coverage is inadequate. For example, testcase() +** can be used to make sure boundary values are tested. For +** bitmask tests, testcase() can be used to make sure each bit +** is significant and used at least once. On switch statements +** where multiple cases go to the same block of code, testcase() +** can insure that all cases are evaluated. +** +*/ +#ifdef SQLITE_COVERAGE_TEST + void sqlite3Coverage(int); +# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } +#else +# define testcase(X) +#endif + +/* +** The TESTONLY macro is used to enclose variable declarations or +** other bits of code that are needed to support the arguments +** within testcase() and assert() macros. +*/ +#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) +# define TESTONLY(X) X +#else +# define TESTONLY(X) +#endif + +/* +** Sometimes we need a small amount of code such as a variable initialization +** to setup for a later assert() statement. We do not want this code to +** appear when assert() is disabled. The following macro is therefore +** used to contain that setup code. The "VVA" acronym stands for +** "Verification, Validation, and Accreditation". In other words, the +** code within VVA_ONLY() will only run during verification processes. +*/ +#ifndef NDEBUG +# define VVA_ONLY(X) X +#else +# define VVA_ONLY(X) +#endif + +/* +** The ALWAYS and NEVER macros surround boolean expressions which +** are intended to always be true or false, respectively. Such +** expressions could be omitted from the code completely. But they +** are included in a few cases in order to enhance the resilience +** of SQLite to unexpected behavior - to make the code "self-healing" +** or "ductile" rather than being "brittle" and crashing at the first +** hint of unplanned behavior. +** +** In other words, ALWAYS and NEVER are added for defensive code. +** +** When doing coverage testing ALWAYS and NEVER are hard-coded to +** be true and false so that the unreachable code then specify will +** not be counted as untested code. +*/ +#if defined(SQLITE_COVERAGE_TEST) +# define ALWAYS(X) (1) +# define NEVER(X) (0) +#elif !defined(NDEBUG) +# define ALWAYS(X) ((X)?1:(assert(0),0)) +# define NEVER(X) ((X)?(assert(0),1):0) +#else +# define ALWAYS(X) (X) +# define NEVER(X) (X) +#endif + +/* +** Return true (non-zero) if the input is a integer that is too large +** to fit in 32-bits. This macro is used inside of various testcase() +** macros to verify that we have tested SQLite for large-file support. +*/ +#define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) + +/* +** The macro unlikely() is a hint that surrounds a boolean +** expression that is usually false. Macro likely() surrounds +** a boolean expression that is usually true. GCC is able to +** use these hints to generate better code, sometimes. +*/ +#if defined(__GNUC__) && 0 +# define likely(X) __builtin_expect((X),1) +# define unlikely(X) __builtin_expect((X),0) +#else +# define likely(X) !!(X) +# define unlikely(X) !!(X) +#endif + +#include "sqlite3.h" +#include "hash.h" +#include "parse.h" +#include +#include +#include +#include +#include + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite_int64 +# define float sqlite_int64 +# define LONGDOUBLE_TYPE sqlite_int64 +# ifndef SQLITE_BIG_DBL +# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) +# endif +# define SQLITE_OMIT_DATETIME_FUNCS 1 +# define SQLITE_OMIT_TRACE 1 +# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT +# undef SQLITE_HAVE_ISNAN +#endif +#ifndef SQLITE_BIG_DBL +# define SQLITE_BIG_DBL (1e99) +#endif + +/* +** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 +** afterward. Having this macro allows us to cause the C compiler +** to omit code used by TEMP tables without messy #ifndef statements. +*/ +#ifdef SQLITE_OMIT_TEMPDB +#define OMIT_TEMPDB 1 +#else +#define OMIT_TEMPDB 0 +#endif + +/* +** The "file format" number is an integer that is incremented whenever +** the VDBE-level file format changes. The following macros define the +** the default file format for new databases and the maximum file format +** that the library can read. +*/ +#define SQLITE_MAX_FILE_FORMAT 4 +#ifndef SQLITE_DEFAULT_FILE_FORMAT +# define SQLITE_DEFAULT_FILE_FORMAT 1 +#endif + +/* +** Determine whether triggers are recursive by default. This can be +** changed at run-time using a pragma. +*/ +#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS +# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 +#endif + +/* +** Provide a default value for SQLITE_TEMP_STORE in case it is not specified +** on the command-line +*/ +#ifndef SQLITE_TEMP_STORE +# define SQLITE_TEMP_STORE 1 +#endif + +/* +** GCC does not define the offsetof() macro so we'll have to do it +** ourselves. +*/ +#ifndef offsetof +#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) +#endif + +/* +** Check to see if this machine uses EBCDIC. (Yes, believe it or +** not, there are still machines out there that use EBCDIC.) +*/ +#if 'A' == '\301' +# define SQLITE_EBCDIC 1 +#else +# define SQLITE_ASCII 1 +#endif + +/* +** Integers of known sizes. These typedefs might change for architectures +** where the sizes very. Preprocessor macros are available so that the +** types can be conveniently redefined at compile-type. Like this: +** +** cc '-DUINTPTR_TYPE=long long int' ... +*/ +#ifndef UINT32_TYPE +# ifdef HAVE_UINT32_T +# define UINT32_TYPE uint32_t +# else +# define UINT32_TYPE unsigned int +# endif +#endif +#ifndef UINT16_TYPE +# ifdef HAVE_UINT16_T +# define UINT16_TYPE uint16_t +# else +# define UINT16_TYPE unsigned short int +# endif +#endif +#ifndef INT16_TYPE +# ifdef HAVE_INT16_T +# define INT16_TYPE int16_t +# else +# define INT16_TYPE short int +# endif +#endif +#ifndef UINT8_TYPE +# ifdef HAVE_UINT8_T +# define UINT8_TYPE uint8_t +# else +# define UINT8_TYPE unsigned char +# endif +#endif +#ifndef INT8_TYPE +# ifdef HAVE_INT8_T +# define INT8_TYPE int8_t +# else +# define INT8_TYPE signed char +# endif +#endif +#ifndef LONGDOUBLE_TYPE +# define LONGDOUBLE_TYPE long double +#endif +typedef sqlite_int64 i64; /* 8-byte signed integer */ +typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ +typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ +typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ +typedef INT16_TYPE i16; /* 2-byte signed integer */ +typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ +typedef INT8_TYPE i8; /* 1-byte signed integer */ + +/* +** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value +** that can be stored in a u32 without loss of data. The value +** is 0x00000000ffffffff. But because of quirks of some compilers, we +** have to specify the value in the less intuitive manner shown: +*/ +#define SQLITE_MAX_U32 ((((u64)1)<<32)-1) + +/* +** The datatype used to store estimates of the number of rows in a +** table or index. This is an unsigned integer type. For 99.9% of +** the world, a 32-bit integer is sufficient. But a 64-bit integer +** can be used at compile-time if desired. +*/ +#ifdef SQLITE_64BIT_STATS + typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ +#else + typedef u32 tRowcnt; /* 32-bit is the default */ +#endif + +/* +** Macros to determine whether the machine is big or little endian, +** evaluated at runtime. +*/ +#ifdef SQLITE_AMALGAMATION +const int sqlite3one = 1; +#else +extern const int sqlite3one; +#endif +#if defined(i386) || defined(__i386__) || defined(_M_IX86)\ + || defined(__x86_64) || defined(__x86_64__) +# define SQLITE_BIGENDIAN 0 +# define SQLITE_LITTLEENDIAN 1 +# define SQLITE_UTF16NATIVE SQLITE_UTF16LE +#else +# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) +# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) +# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) +#endif + +/* +** Constants for the largest and smallest possible 64-bit signed integers. +** These macros are designed to work correctly on both 32-bit and 64-bit +** compilers. +*/ +#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) +#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) + +/* +** Round up a number to the next larger multiple of 8. This is used +** to force 8-byte alignment on 64-bit architectures. +*/ +#define ROUND8(x) (((x)+7)&~7) + +/* +** Round down to the nearest multiple of 8 +*/ +#define ROUNDDOWN8(x) ((x)&~7) + +/* +** Assert that the pointer X is aligned to an 8-byte boundary. This +** macro is used only within assert() to verify that the code gets +** all alignment restrictions correct. +** +** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the +** underlying malloc() implemention might return us 4-byte aligned +** pointers. In that case, only verify 4-byte alignment. +*/ +#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC +# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) +#else +# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) +#endif + + +/* +** An instance of the following structure is used to store the busy-handler +** callback for a given sqlite handle. +** +** The sqlite.busyHandler member of the sqlite struct contains the busy +** callback for the database handle. Each pager opened via the sqlite +** handle is passed a pointer to sqlite.busyHandler. The busy-handler +** callback is currently invoked only from within pager.c. +*/ +typedef struct BusyHandler BusyHandler; +struct BusyHandler { + int (*xFunc)(void *,int); /* The busy callback */ + void *pArg; /* First arg to busy callback */ + int nBusy; /* Incremented with each busy call */ +}; + +/* +** Name of the master database table. The master database table +** is a special table that holds the names and attributes of all +** user tables and indices. +*/ +#define MASTER_NAME "sqlite_master" +#define TEMP_MASTER_NAME "sqlite_temp_master" + +/* +** The root-page of the master database table. +*/ +#define MASTER_ROOT 1 + +/* +** The name of the schema table. +*/ +#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) + +/* +** A convenience macro that returns the number of elements in +** an array. +*/ +#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) + +/* +** The following value as a destructor means to use sqlite3DbFree(). +** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. +*/ +#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) + +/* +** When SQLITE_OMIT_WSD is defined, it means that the target platform does +** not support Writable Static Data (WSD) such as global and static variables. +** All variables must either be on the stack or dynamically allocated from +** the heap. When WSD is unsupported, the variable declarations scattered +** throughout the SQLite code must become constants instead. The SQLITE_WSD +** macro is used for this purpose. And instead of referencing the variable +** directly, we use its constant as a key to lookup the run-time allocated +** buffer that holds real variable. The constant is also the initializer +** for the run-time allocated buffer. +** +** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL +** macros become no-ops and have zero performance impact. +*/ +#ifdef SQLITE_OMIT_WSD + #define SQLITE_WSD const + #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) + #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) + int sqlite3_wsd_init(int N, int J); + void *sqlite3_wsd_find(void *K, int L); +#else + #define SQLITE_WSD + #define GLOBAL(t,v) v + #define sqlite3GlobalConfig sqlite3Config +#endif + +/* +** The following macros are used to suppress compiler warnings and to +** make it clear to human readers when a function parameter is deliberately +** left unused within the body of a function. This usually happens when +** a function is called via a function pointer. For example the +** implementation of an SQL aggregate step callback may not use the +** parameter indicating the number of arguments passed to the aggregate, +** if it knows that this is enforced elsewhere. +** +** When a function parameter is not used at all within the body of a function, +** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. +** However, these macros may also be used to suppress warnings related to +** parameters that may or may not be used depending on compilation options. +** For example those parameters only used in assert() statements. In these +** cases the parameters are named as per the usual conventions. +*/ +#define UNUSED_PARAMETER(x) (void)(x) +#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) + +/* +** Forward references to structures +*/ +typedef struct AggInfo AggInfo; +typedef struct AuthContext AuthContext; +typedef struct AutoincInfo AutoincInfo; +typedef struct Bitvec Bitvec; +typedef struct CollSeq CollSeq; +typedef struct Column Column; +typedef struct Db Db; +typedef struct Schema Schema; +typedef struct Expr Expr; +typedef struct ExprList ExprList; +typedef struct ExprSpan ExprSpan; +typedef struct FKey FKey; +typedef struct FuncDestructor FuncDestructor; +typedef struct FuncDef FuncDef; +typedef struct FuncDefHash FuncDefHash; +typedef struct IdList IdList; +typedef struct Index Index; +typedef struct IndexSample IndexSample; +typedef struct KeyClass KeyClass; +typedef struct KeyInfo KeyInfo; +typedef struct Lookaside Lookaside; +typedef struct LookasideSlot LookasideSlot; +typedef struct Module Module; +typedef struct NameContext NameContext; +typedef struct Parse Parse; +typedef struct RowSet RowSet; +typedef struct Savepoint Savepoint; +typedef struct Select Select; +typedef struct SrcList SrcList; +typedef struct StrAccum StrAccum; +typedef struct Table Table; +typedef struct TableLock TableLock; +typedef struct Token Token; +typedef struct Trigger Trigger; +typedef struct TriggerPrg TriggerPrg; +typedef struct TriggerStep TriggerStep; +typedef struct UnpackedRecord UnpackedRecord; +typedef struct VTable VTable; +typedef struct VtabCtx VtabCtx; +typedef struct Walker Walker; +typedef struct WherePlan WherePlan; +typedef struct WhereInfo WhereInfo; +typedef struct WhereLevel WhereLevel; + +/* +** Defer sourcing vdbe.h and btree.h until after the "u8" and +** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque +** pointer types (i.e. FuncDef) defined above. +*/ +#include "btree.h" +#include "vdbe.h" +#include "pager.h" +#include "pcache.h" + +#include "os.h" +#include "mutex.h" + + +/* +** Each database file to be accessed by the system is an instance +** of the following structure. There are normally two of these structures +** in the sqlite.aDb[] array. aDb[0] is the main database file and +** aDb[1] is the database file used to hold temporary tables. Additional +** databases may be attached. +*/ +struct Db { + char *zName; /* Name of this database */ + Btree *pBt; /* The B*Tree structure for this database file */ + u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ + u8 safety_level; /* How aggressive at syncing data to disk */ + Schema *pSchema; /* Pointer to database schema (possibly shared) */ +}; + +/* +** An instance of the following structure stores a database schema. +** +** Most Schema objects are associated with a Btree. The exception is +** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. +** In shared cache mode, a single Schema object can be shared by multiple +** Btrees that refer to the same underlying BtShared object. +** +** Schema objects are automatically deallocated when the last Btree that +** references them is destroyed. The TEMP Schema is manually freed by +** sqlite3_close(). +* +** A thread must be holding a mutex on the corresponding Btree in order +** to access Schema content. This implies that the thread must also be +** holding a mutex on the sqlite3 connection pointer that owns the Btree. +** For a TEMP Schema, only the connection mutex is required. +*/ +struct Schema { + int schema_cookie; /* Database schema version number for this file */ + int iGeneration; /* Generation counter. Incremented with each change */ + Hash tblHash; /* All tables indexed by name */ + Hash idxHash; /* All (named) indices indexed by name */ + Hash trigHash; /* All triggers indexed by name */ + Hash fkeyHash; /* All foreign keys by referenced table name */ + Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ + u8 file_format; /* Schema format version for this file */ + u8 enc; /* Text encoding used by this database */ + u16 flags; /* Flags associated with this schema */ + int cache_size; /* Number of pages to use in the cache */ +}; + +/* +** These macros can be used to test, set, or clear bits in the +** Db.pSchema->flags field. +*/ +#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) +#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) +#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) +#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) + +/* +** Allowed values for the DB.pSchema->flags field. +** +** The DB_SchemaLoaded flag is set after the database schema has been +** read into internal hash tables. +** +** DB_UnresetViews means that one or more views have column names that +** have been filled out. If the schema changes, these column names might +** changes and so the view will need to be reset. +*/ +#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ +#define DB_UnresetViews 0x0002 /* Some views have defined column names */ +#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ + +/* +** The number of different kinds of things that can be limited +** using the sqlite3_limit() interface. +*/ +#define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) + +/* +** Lookaside malloc is a set of fixed-size buffers that can be used +** to satisfy small transient memory allocation requests for objects +** associated with a particular database connection. The use of +** lookaside malloc provides a significant performance enhancement +** (approx 10%) by avoiding numerous malloc/free requests while parsing +** SQL statements. +** +** The Lookaside structure holds configuration information about the +** lookaside malloc subsystem. Each available memory allocation in +** the lookaside subsystem is stored on a linked list of LookasideSlot +** objects. +** +** Lookaside allocations are only allowed for objects that are associated +** with a particular database connection. Hence, schema information cannot +** be stored in lookaside because in shared cache mode the schema information +** is shared by multiple database connections. Therefore, while parsing +** schema information, the Lookaside.bEnabled flag is cleared so that +** lookaside allocations are not used to construct the schema objects. +*/ +struct Lookaside { + u16 sz; /* Size of each buffer in bytes */ + u8 bEnabled; /* False to disable new lookaside allocations */ + u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ + int nOut; /* Number of buffers currently checked out */ + int mxOut; /* Highwater mark for nOut */ + int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ + LookasideSlot *pFree; /* List of available buffers */ + void *pStart; /* First byte of available memory space */ + void *pEnd; /* First byte past end of available space */ +}; +struct LookasideSlot { + LookasideSlot *pNext; /* Next buffer in the list of free buffers */ +}; + +/* +** A hash table for function definitions. +** +** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. +** Collisions are on the FuncDef.pHash chain. +*/ +struct FuncDefHash { + FuncDef *a[23]; /* Hash table for functions */ +}; + +/* +** Each database connection is an instance of the following structure. +** +** The sqlite.lastRowid records the last insert rowid generated by an +** insert statement. Inserts on views do not affect its value. Each +** trigger has its own context, so that lastRowid can be updated inside +** triggers as usual. The previous value will be restored once the trigger +** exits. Upon entering a before or instead of trigger, lastRowid is no +** longer (since after version 2.8.12) reset to -1. +** +** The sqlite.nChange does not count changes within triggers and keeps no +** context. It is reset at start of sqlite3_exec. +** The sqlite.lsChange represents the number of changes made by the last +** insert, update, or delete statement. It remains constant throughout the +** length of a statement and is then updated by OP_SetCounts. It keeps a +** context stack just like lastRowid so that the count of changes +** within a trigger is not seen outside the trigger. Changes to views do not +** affect the value of lsChange. +** The sqlite.csChange keeps track of the number of current changes (since +** the last statement) and is used to update sqlite_lsChange. +** +** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 +** store the most recent error code and, if applicable, string. The +** internal function sqlite3Error() is used to set these variables +** consistently. +*/ +struct sqlite3 { + sqlite3_vfs *pVfs; /* OS Interface */ + int nDb; /* Number of backends currently in use */ + Db *aDb; /* All backends */ + int flags; /* Miscellaneous flags. See below */ + unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ + int errCode; /* Most recent error code (SQLITE_*) */ + int errMask; /* & result codes with this before returning */ + u8 autoCommit; /* The auto-commit flag. */ + u8 temp_store; /* 1: file 2: memory 0: default */ + u8 mallocFailed; /* True if we have seen a malloc failure */ + u8 dfltLockMode; /* Default locking-mode for attached dbs */ + signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ + u8 suppressErr; /* Do not issue error messages if true */ + u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ + int nextPagesize; /* Pagesize after VACUUM if >0 */ + int nTable; /* Number of tables in the database */ + CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ + i64 lastRowid; /* ROWID of most recent insert (see above) */ + u32 magic; /* Magic number for detect library misuse */ + int nChange; /* Value returned by sqlite3_changes() */ + int nTotalChange; /* Value returned by sqlite3_total_changes() */ + sqlite3_mutex *mutex; /* Connection mutex */ + int aLimit[SQLITE_N_LIMIT]; /* Limits */ + struct sqlite3InitInfo { /* Information used during initialization */ + int iDb; /* When back is being initialized */ + int newTnum; /* Rootpage of table being initialized */ + u8 busy; /* TRUE if currently initializing */ + u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ + } init; + int nExtension; /* Number of loaded extensions */ + void **aExtension; /* Array of shared library handles */ + struct Vdbe *pVdbe; /* List of active virtual machines */ + int activeVdbeCnt; /* Number of VDBEs currently executing */ + int writeVdbeCnt; /* Number of active VDBEs that are writing */ + int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ + void (*xTrace)(void*,const char*); /* Trace function */ + void *pTraceArg; /* Argument to the trace function */ + void (*xProfile)(void*,const char*,u64); /* Profiling function */ + void *pProfileArg; /* Argument to profile function */ + void *pCommitArg; /* Argument to xCommitCallback() */ + int (*xCommitCallback)(void*); /* Invoked at every commit. */ + void *pRollbackArg; /* Argument to xRollbackCallback() */ + void (*xRollbackCallback)(void*); /* Invoked at every commit. */ + void *pUpdateArg; + void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); +#ifndef SQLITE_OMIT_WAL + int (*xWalCallback)(void *, sqlite3 *, const char *, int); + void *pWalArg; +#endif + void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); + void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); + void *pCollNeededArg; + sqlite3_value *pErr; /* Most recent error message */ + char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ + char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ + union { + volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ + double notUsed1; /* Spacer */ + } u1; + Lookaside lookaside; /* Lookaside malloc configuration */ +#ifndef SQLITE_OMIT_AUTHORIZATION + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); + /* Access authorization function */ + void *pAuthArg; /* 1st argument to the access auth function */ +#endif +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + int (*xProgress)(void *); /* The progress callback */ + void *pProgressArg; /* Argument to the progress callback */ + int nProgressOps; /* Number of opcodes for progress callback */ +#endif +#ifndef SQLITE_OMIT_VIRTUALTABLE + Hash aModule; /* populated by sqlite3_create_module() */ + VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ + VTable **aVTrans; /* Virtual tables with open transactions */ + int nVTrans; /* Allocated size of aVTrans */ + VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ +#endif + FuncDefHash aFunc; /* Hash table of connection functions */ + Hash aCollSeq; /* All collating sequences */ + BusyHandler busyHandler; /* Busy callback */ + int busyTimeout; /* Busy handler timeout, in msec */ + Db aDbStatic[2]; /* Static space for the 2 default backends */ + Savepoint *pSavepoint; /* List of active savepoints */ + int nSavepoint; /* Number of non-transaction savepoints */ + int nStatement; /* Number of nested statement-transactions */ + u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ + i64 nDeferredCons; /* Net deferred constraints this transaction. */ + int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ + +#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY + /* The following variables are all protected by the STATIC_MASTER + ** mutex, not by sqlite3.mutex. They are used by code in notify.c. + ** + ** When X.pUnlockConnection==Y, that means that X is waiting for Y to + ** unlock so that it can proceed. + ** + ** When X.pBlockingConnection==Y, that means that something that X tried + ** tried to do recently failed with an SQLITE_LOCKED error due to locks + ** held by Y. + */ + sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ + sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ + void *pUnlockArg; /* Argument to xUnlockNotify */ + void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ + sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ +#endif +}; + +/* +** A macro to discover the encoding of a database. +*/ +#define ENC(db) ((db)->aDb[0].pSchema->enc) + +/* +** Possible values for the sqlite3.flags. +*/ +#define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ +#define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ +#define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ +#define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ +#define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ + /* DELETE, or UPDATE and return */ + /* the count using a callback. */ +#define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ + /* result set is empty */ +#define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ +#define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ +#define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ +#define SQLITE_NoReadlock 0x00020000 /* Readlocks are omitted when + ** accessing read-only databases */ +#define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ +#define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ +#define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ +#define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ +#define SQLITE_CkptFullFSync 0x00400000 /* Use full fsync for checkpoint */ +#define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ +#define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ +#define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ +#define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ +#define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ +#define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ +#define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */ +#define SQLITE_EnableTrigger 0x40000000 /* True to enable triggers */ + +/* +** Bits of the sqlite3.flags field that are used by the +** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. +** These must be the low-order bits of the flags field. +*/ +#define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ +#define SQLITE_ColumnCache 0x02 /* Disable the column cache */ +#define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ +#define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ +#define SQLITE_IndexCover 0x10 /* Disable index covering table */ +#define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ +#define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */ +#define SQLITE_IdxRealAsInt 0x80 /* Store REAL as INT in indices */ +#define SQLITE_DistinctOpt 0x80 /* DISTINCT using indexes */ +#define SQLITE_OptMask 0xff /* Mask of all disablable opts */ + +/* +** Possible values for the sqlite.magic field. +** The numbers are obtained at random and have no special meaning, other +** than being distinct from one another. +*/ +#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ +#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ +#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ +#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ +#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ + +/* +** Each SQL function is defined by an instance of the following +** structure. A pointer to this structure is stored in the sqlite.aFunc +** hash table. When multiple functions have the same name, the hash table +** points to a linked list of these structures. +*/ +struct FuncDef { + i16 nArg; /* Number of arguments. -1 means unlimited */ + u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ + u8 flags; /* Some combination of SQLITE_FUNC_* */ + void *pUserData; /* User data parameter */ + FuncDef *pNext; /* Next function with same name */ + void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ + void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ + void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ + char *zName; /* SQL name of the function. */ + FuncDef *pHash; /* Next with a different name but the same hash */ + FuncDestructor *pDestructor; /* Reference counted destructor function */ +}; + +/* +** This structure encapsulates a user-function destructor callback (as +** configured using create_function_v2()) and a reference counter. When +** create_function_v2() is called to create a function with a destructor, +** a single object of this type is allocated. FuncDestructor.nRef is set to +** the number of FuncDef objects created (either 1 or 3, depending on whether +** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor +** member of each of the new FuncDef objects is set to point to the allocated +** FuncDestructor. +** +** Thereafter, when one of the FuncDef objects is deleted, the reference +** count on this object is decremented. When it reaches 0, the destructor +** is invoked and the FuncDestructor structure freed. +*/ +struct FuncDestructor { + int nRef; + void (*xDestroy)(void *); + void *pUserData; +}; + +/* +** Possible values for FuncDef.flags +*/ +#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ +#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ +#define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ +#define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ +#define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */ +#define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ +#define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */ + +/* +** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are +** used to create the initializers for the FuncDef structures. +** +** FUNCTION(zName, nArg, iArg, bNC, xFunc) +** Used to create a scalar function definition of a function zName +** implemented by C function xFunc that accepts nArg arguments. The +** value passed as iArg is cast to a (void*) and made available +** as the user-data (sqlite3_user_data()) for the function. If +** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. +** +** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) +** Used to create an aggregate function definition implemented by +** the C functions xStep and xFinal. The first four parameters +** are interpreted in the same way as the first 4 parameters to +** FUNCTION(). +** +** LIKEFUNC(zName, nArg, pArg, flags) +** Used to create a scalar function definition of a function zName +** that accepts nArg arguments and is implemented by a call to C +** function likeFunc. Argument pArg is cast to a (void *) and made +** available as the function user-data (sqlite3_user_data()). The +** FuncDef.flags variable is set to the value passed as the flags +** parameter. +*/ +#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ + {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ + SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} +#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ + {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ + pArg, 0, xFunc, 0, 0, #zName, 0, 0} +#define LIKEFUNC(zName, nArg, arg, flags) \ + {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} +#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ + {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ + SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} + +/* +** All current savepoints are stored in a linked list starting at +** sqlite3.pSavepoint. The first element in the list is the most recently +** opened savepoint. Savepoints are added to the list by the vdbe +** OP_Savepoint instruction. +*/ +struct Savepoint { + char *zName; /* Savepoint name (nul-terminated) */ + i64 nDeferredCons; /* Number of deferred fk violations */ + Savepoint *pNext; /* Parent savepoint (if any) */ +}; + +/* +** The following are used as the second parameter to sqlite3Savepoint(), +** and as the P1 argument to the OP_Savepoint instruction. +*/ +#define SAVEPOINT_BEGIN 0 +#define SAVEPOINT_RELEASE 1 +#define SAVEPOINT_ROLLBACK 2 + + +/* +** Each SQLite module (virtual table definition) is defined by an +** instance of the following structure, stored in the sqlite3.aModule +** hash table. +*/ +struct Module { + const sqlite3_module *pModule; /* Callback pointers */ + const char *zName; /* Name passed to create_module() */ + void *pAux; /* pAux passed to create_module() */ + void (*xDestroy)(void *); /* Module destructor function */ +}; + +/* +** information about each column of an SQL table is held in an instance +** of this structure. +*/ +struct Column { + char *zName; /* Name of this column */ + Expr *pDflt; /* Default value of this column */ + char *zDflt; /* Original text of the default value */ + char *zType; /* Data type for this column */ + char *zColl; /* Collating sequence. If NULL, use the default */ + u8 notNull; /* True if there is a NOT NULL constraint */ + u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ + char affinity; /* One of the SQLITE_AFF_... values */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + u8 isHidden; /* True if this column is 'hidden' */ +#endif +}; + +/* +** A "Collating Sequence" is defined by an instance of the following +** structure. Conceptually, a collating sequence consists of a name and +** a comparison routine that defines the order of that sequence. +** +** There may two separate implementations of the collation function, one +** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that +** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine +** native byte order. When a collation sequence is invoked, SQLite selects +** the version that will require the least expensive encoding +** translations, if any. +** +** The CollSeq.pUser member variable is an extra parameter that passed in +** as the first argument to the UTF-8 comparison function, xCmp. +** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, +** xCmp16. +** +** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the +** collating sequence is undefined. Indices built on an undefined +** collating sequence may not be read or written. +*/ +struct CollSeq { + char *zName; /* Name of the collating sequence, UTF-8 encoded */ + u8 enc; /* Text encoding handled by xCmp() */ + u8 type; /* One of the SQLITE_COLL_... values below */ + void *pUser; /* First argument to xCmp() */ + int (*xCmp)(void*,int, const void*, int, const void*); + void (*xDel)(void*); /* Destructor for pUser */ +}; + +/* +** Allowed values of CollSeq.type: +*/ +#define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ +#define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ +#define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ +#define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ + +/* +** A sort order can be either ASC or DESC. +*/ +#define SQLITE_SO_ASC 0 /* Sort in ascending order */ +#define SQLITE_SO_DESC 1 /* Sort in ascending order */ + +/* +** Column affinity types. +** +** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and +** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve +** the speed a little by numbering the values consecutively. +** +** But rather than start with 0 or 1, we begin with 'a'. That way, +** when multiple affinity types are concatenated into a string and +** used as the P4 operand, they will be more readable. +** +** Note also that the numeric types are grouped together so that testing +** for a numeric type is a single comparison. +*/ +#define SQLITE_AFF_TEXT 'a' +#define SQLITE_AFF_NONE 'b' +#define SQLITE_AFF_NUMERIC 'c' +#define SQLITE_AFF_INTEGER 'd' +#define SQLITE_AFF_REAL 'e' + +#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) + +/* +** The SQLITE_AFF_MASK values masks off the significant bits of an +** affinity value. +*/ +#define SQLITE_AFF_MASK 0x67 + +/* +** Additional bit values that can be ORed with an affinity without +** changing the affinity. +*/ +#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ +#define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ +#define SQLITE_NULLEQ 0x80 /* NULL=NULL */ + +/* +** An object of this type is created for each virtual table present in +** the database schema. +** +** If the database schema is shared, then there is one instance of this +** structure for each database connection (sqlite3*) that uses the shared +** schema. This is because each database connection requires its own unique +** instance of the sqlite3_vtab* handle used to access the virtual table +** implementation. sqlite3_vtab* handles can not be shared between +** database connections, even when the rest of the in-memory database +** schema is shared, as the implementation often stores the database +** connection handle passed to it via the xConnect() or xCreate() method +** during initialization internally. This database connection handle may +** then be used by the virtual table implementation to access real tables +** within the database. So that they appear as part of the callers +** transaction, these accesses need to be made via the same database +** connection as that used to execute SQL operations on the virtual table. +** +** All VTable objects that correspond to a single table in a shared +** database schema are initially stored in a linked-list pointed to by +** the Table.pVTable member variable of the corresponding Table object. +** When an sqlite3_prepare() operation is required to access the virtual +** table, it searches the list for the VTable that corresponds to the +** database connection doing the preparing so as to use the correct +** sqlite3_vtab* handle in the compiled query. +** +** When an in-memory Table object is deleted (for example when the +** schema is being reloaded for some reason), the VTable objects are not +** deleted and the sqlite3_vtab* handles are not xDisconnect()ed +** immediately. Instead, they are moved from the Table.pVTable list to +** another linked list headed by the sqlite3.pDisconnect member of the +** corresponding sqlite3 structure. They are then deleted/xDisconnected +** next time a statement is prepared using said sqlite3*. This is done +** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. +** Refer to comments above function sqlite3VtabUnlockList() for an +** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect +** list without holding the corresponding sqlite3.mutex mutex. +** +** The memory for objects of this type is always allocated by +** sqlite3DbMalloc(), using the connection handle stored in VTable.db as +** the first argument. +*/ +struct VTable { + sqlite3 *db; /* Database connection associated with this table */ + Module *pMod; /* Pointer to module implementation */ + sqlite3_vtab *pVtab; /* Pointer to vtab instance */ + int nRef; /* Number of pointers to this structure */ + u8 bConstraint; /* True if constraints are supported */ + int iSavepoint; /* Depth of the SAVEPOINT stack */ + VTable *pNext; /* Next in linked list (see above) */ +}; + +/* +** Each SQL table is represented in memory by an instance of the +** following structure. +** +** Table.zName is the name of the table. The case of the original +** CREATE TABLE statement is stored, but case is not significant for +** comparisons. +** +** Table.nCol is the number of columns in this table. Table.aCol is a +** pointer to an array of Column structures, one for each column. +** +** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of +** the column that is that key. Otherwise Table.iPKey is negative. Note +** that the datatype of the PRIMARY KEY must be INTEGER for this field to +** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of +** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid +** is generated for each row of the table. TF_HasPrimaryKey is set if +** the table has any PRIMARY KEY, INTEGER or otherwise. +** +** Table.tnum is the page number for the root BTree page of the table in the +** database file. If Table.iDb is the index of the database table backend +** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that +** holds temporary tables and indices. If TF_Ephemeral is set +** then the table is stored in a file that is automatically deleted +** when the VDBE cursor to the table is closed. In this case Table.tnum +** refers VDBE cursor number that holds the table open, not to the root +** page number. Transient tables are used to hold the results of a +** sub-query that appears instead of a real table name in the FROM clause +** of a SELECT statement. +*/ +struct Table { + char *zName; /* Name of the table or view */ + int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ + int nCol; /* Number of columns in this table */ + Column *aCol; /* Information about each column */ + Index *pIndex; /* List of SQL indexes on this table. */ + int tnum; /* Root BTree node for this table (see note above) */ + tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ + Select *pSelect; /* NULL for tables. Points to definition if a view. */ + u16 nRef; /* Number of pointers to this Table */ + u8 tabFlags; /* Mask of TF_* values */ + u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ + FKey *pFKey; /* Linked list of all foreign keys in this table */ + char *zColAff; /* String defining the affinity of each column */ +#ifndef SQLITE_OMIT_CHECK + Expr *pCheck; /* The AND of all CHECK constraints */ +#endif +#ifndef SQLITE_OMIT_ALTERTABLE + int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ +#endif +#ifndef SQLITE_OMIT_VIRTUALTABLE + VTable *pVTable; /* List of VTable objects. */ + int nModuleArg; /* Number of arguments to the module */ + char **azModuleArg; /* Text of all module args. [0] is module name */ +#endif + Trigger *pTrigger; /* List of triggers stored in pSchema */ + Schema *pSchema; /* Schema that contains this table */ + Table *pNextZombie; /* Next on the Parse.pZombieTab list */ +}; + +/* +** Allowed values for Tabe.tabFlags. +*/ +#define TF_Readonly 0x01 /* Read-only system table */ +#define TF_Ephemeral 0x02 /* An ephemeral table */ +#define TF_HasPrimaryKey 0x04 /* Table has a primary key */ +#define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ +#define TF_Virtual 0x10 /* Is a virtual table */ +#define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ + + + +/* +** Test to see whether or not a table is a virtual table. This is +** done as a macro so that it will be optimized out when virtual +** table support is omitted from the build. +*/ +#ifndef SQLITE_OMIT_VIRTUALTABLE +# define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) +# define IsHiddenColumn(X) ((X)->isHidden) +#else +# define IsVirtual(X) 0 +# define IsHiddenColumn(X) 0 +#endif + +/* +** Each foreign key constraint is an instance of the following structure. +** +** A foreign key is associated with two tables. The "from" table is +** the table that contains the REFERENCES clause that creates the foreign +** key. The "to" table is the table that is named in the REFERENCES clause. +** Consider this example: +** +** CREATE TABLE ex1( +** a INTEGER PRIMARY KEY, +** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) +** ); +** +** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". +** +** Each REFERENCES clause generates an instance of the following structure +** which is attached to the from-table. The to-table need not exist when +** the from-table is created. The existence of the to-table is not checked. +*/ +struct FKey { + Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ + FKey *pNextFrom; /* Next foreign key in pFrom */ + char *zTo; /* Name of table that the key points to (aka: Parent) */ + FKey *pNextTo; /* Next foreign key on table named zTo */ + FKey *pPrevTo; /* Previous foreign key on table named zTo */ + int nCol; /* Number of columns in this key */ + /* EV: R-30323-21917 */ + u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ + u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ + Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ + struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ + int iFrom; /* Index of column in pFrom */ + char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ + } aCol[1]; /* One entry for each of nCol column s */ +}; + +/* +** SQLite supports many different ways to resolve a constraint +** error. ROLLBACK processing means that a constraint violation +** causes the operation in process to fail and for the current transaction +** to be rolled back. ABORT processing means the operation in process +** fails and any prior changes from that one operation are backed out, +** but the transaction is not rolled back. FAIL processing means that +** the operation in progress stops and returns an error code. But prior +** changes due to the same operation are not backed out and no rollback +** occurs. IGNORE means that the particular row that caused the constraint +** error is not inserted or updated. Processing continues and no error +** is returned. REPLACE means that preexisting database rows that caused +** a UNIQUE constraint violation are removed so that the new insert or +** update can proceed. Processing continues and no error is reported. +** +** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. +** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the +** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign +** key is set to NULL. CASCADE means that a DELETE or UPDATE of the +** referenced table row is propagated into the row that holds the +** foreign key. +** +** The following symbolic values are used to record which type +** of action to take. +*/ +#define OE_None 0 /* There is no constraint to check */ +#define OE_Rollback 1 /* Fail the operation and rollback the transaction */ +#define OE_Abort 2 /* Back out changes but do no rollback transaction */ +#define OE_Fail 3 /* Stop the operation but leave all prior changes */ +#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ +#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ + +#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ +#define OE_SetNull 7 /* Set the foreign key value to NULL */ +#define OE_SetDflt 8 /* Set the foreign key value to its default */ +#define OE_Cascade 9 /* Cascade the changes */ + +#define OE_Default 99 /* Do whatever the default action is */ + + +/* +** An instance of the following structure is passed as the first +** argument to sqlite3VdbeKeyCompare and is used to control the +** comparison of the two index keys. +*/ +struct KeyInfo { + sqlite3 *db; /* The database connection */ + u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ + u16 nField; /* Number of entries in aColl[] */ + u8 *aSortOrder; /* Sort order for each column. May be NULL */ + CollSeq *aColl[1]; /* Collating sequence for each term of the key */ +}; + +/* +** An instance of the following structure holds information about a +** single index record that has already been parsed out into individual +** values. +** +** A record is an object that contains one or more fields of data. +** Records are used to store the content of a table row and to store +** the key of an index. A blob encoding of a record is created by +** the OP_MakeRecord opcode of the VDBE and is disassembled by the +** OP_Column opcode. +** +** This structure holds a record that has already been disassembled +** into its constituent fields. +*/ +struct UnpackedRecord { + KeyInfo *pKeyInfo; /* Collation and sort-order information */ + u16 nField; /* Number of entries in apMem[] */ + u16 flags; /* Boolean settings. UNPACKED_... below */ + i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ + Mem *aMem; /* Values */ +}; + +/* +** Allowed values of UnpackedRecord.flags +*/ +#define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ +#define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ +#define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ +#define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ +#define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ +#define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */ + +/* +** Each SQL index is represented in memory by an +** instance of the following structure. +** +** The columns of the table that are to be indexed are described +** by the aiColumn[] field of this structure. For example, suppose +** we have the following table and index: +** +** CREATE TABLE Ex1(c1 int, c2 int, c3 text); +** CREATE INDEX Ex2 ON Ex1(c3,c1); +** +** In the Table structure describing Ex1, nCol==3 because there are +** three columns in the table. In the Index structure describing +** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. +** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the +** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. +** The second column to be indexed (c1) has an index of 0 in +** Ex1.aCol[], hence Ex2.aiColumn[1]==0. +** +** The Index.onError field determines whether or not the indexed columns +** must be unique and what to do if they are not. When Index.onError=OE_None, +** it means this is not a unique index. Otherwise it is a unique index +** and the value of Index.onError indicate the which conflict resolution +** algorithm to employ whenever an attempt is made to insert a non-unique +** element. +*/ +struct Index { + char *zName; /* Name of this index */ + int nColumn; /* Number of columns in the table used by this index */ + int *aiColumn; /* Which columns are used by this index. 1st is 0 */ + tRowcnt *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ + Table *pTable; /* The SQL table being indexed */ + int tnum; /* Page containing root of this index in database file */ + u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ + u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ + u8 bUnordered; /* Use this index for == or IN queries only */ + char *zColAff; /* String defining the affinity of each column */ + Index *pNext; /* The next index associated with the same table */ + Schema *pSchema; /* Schema containing this index */ + u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ + char **azColl; /* Array of collation sequence names for index */ +#ifdef SQLITE_ENABLE_STAT3 + int nSample; /* Number of elements in aSample[] */ + tRowcnt avgEq; /* Average nEq value for key values not in aSample */ + IndexSample *aSample; /* Samples of the left-most key */ +#endif +}; + +/* +** Each sample stored in the sqlite_stat3 table is represented in memory +** using a structure of this type. See documentation at the top of the +** analyze.c source file for additional information. +*/ +struct IndexSample { + union { + char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ + double r; /* Value if eType is SQLITE_FLOAT */ + i64 i; /* Value if eType is SQLITE_INTEGER */ + } u; + u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ + int nByte; /* Size in byte of text or blob. */ + tRowcnt nEq; /* Est. number of rows where the key equals this sample */ + tRowcnt nLt; /* Est. number of rows where key is less than this sample */ + tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ +}; + +/* +** Each token coming out of the lexer is an instance of +** this structure. Tokens are also used as part of an expression. +** +** Note if Token.z==0 then Token.dyn and Token.n are undefined and +** may contain random values. Do not make any assumptions about Token.dyn +** and Token.n when Token.z==0. +*/ +struct Token { + const char *z; /* Text of the token. Not NULL-terminated! */ + unsigned int n; /* Number of characters in this token */ +}; + +/* +** An instance of this structure contains information needed to generate +** code for a SELECT that contains aggregate functions. +** +** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a +** pointer to this structure. The Expr.iColumn field is the index in +** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate +** code for that node. +** +** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the +** original Select structure that describes the SELECT statement. These +** fields do not need to be freed when deallocating the AggInfo structure. +*/ +struct AggInfo { + u8 directMode; /* Direct rendering mode means take data directly + ** from source tables rather than from accumulators */ + u8 useSortingIdx; /* In direct mode, reference the sorting index rather + ** than the source table */ + int sortingIdx; /* Cursor number of the sorting index */ + int sortingIdxPTab; /* Cursor number of pseudo-table */ + ExprList *pGroupBy; /* The group by clause */ + int nSortingColumn; /* Number of columns in the sorting index */ + struct AggInfo_col { /* For each column used in source tables */ + Table *pTab; /* Source table */ + int iTable; /* Cursor number of the source table */ + int iColumn; /* Column number within the source table */ + int iSorterColumn; /* Column number in the sorting index */ + int iMem; /* Memory location that acts as accumulator */ + Expr *pExpr; /* The original expression */ + } *aCol; + int nColumn; /* Number of used entries in aCol[] */ + int nColumnAlloc; /* Number of slots allocated for aCol[] */ + int nAccumulator; /* Number of columns that show through to the output. + ** Additional columns are used only as parameters to + ** aggregate functions */ + struct AggInfo_func { /* For each aggregate function */ + Expr *pExpr; /* Expression encoding the function */ + FuncDef *pFunc; /* The aggregate function implementation */ + int iMem; /* Memory location that acts as accumulator */ + int iDistinct; /* Ephemeral table used to enforce DISTINCT */ + } *aFunc; + int nFunc; /* Number of entries in aFunc[] */ + int nFuncAlloc; /* Number of slots allocated for aFunc[] */ +}; + +/* +** The datatype ynVar is a signed integer, either 16-bit or 32-bit. +** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater +** than 32767 we have to make it 32-bit. 16-bit is preferred because +** it uses less memory in the Expr object, which is a big memory user +** in systems with lots of prepared statements. And few applications +** need more than about 10 or 20 variables. But some extreme users want +** to have prepared statements with over 32767 variables, and for them +** the option is available (at compile-time). +*/ +#if SQLITE_MAX_VARIABLE_NUMBER<=32767 +typedef i16 ynVar; +#else +typedef int ynVar; +#endif + +/* +** Each node of an expression in the parse tree is an instance +** of this structure. +** +** Expr.op is the opcode. The integer parser token codes are reused +** as opcodes here. For example, the parser defines TK_GE to be an integer +** code representing the ">=" operator. This same integer code is reused +** to represent the greater-than-or-equal-to operator in the expression +** tree. +** +** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, +** or TK_STRING), then Expr.token contains the text of the SQL literal. If +** the expression is a variable (TK_VARIABLE), then Expr.token contains the +** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), +** then Expr.token contains the name of the function. +** +** Expr.pRight and Expr.pLeft are the left and right subexpressions of a +** binary operator. Either or both may be NULL. +** +** Expr.x.pList is a list of arguments if the expression is an SQL function, +** a CASE expression or an IN expression of the form " IN (, ...)". +** Expr.x.pSelect is used if the expression is a sub-select or an expression of +** the form " IN (SELECT ...)". If the EP_xIsSelect bit is set in the +** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is +** valid. +** +** An expression of the form ID or ID.ID refers to a column in a table. +** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is +** the integer cursor number of a VDBE cursor pointing to that table and +** Expr.iColumn is the column number for the specific column. If the +** expression is used as a result in an aggregate SELECT, then the +** value is also stored in the Expr.iAgg column in the aggregate so that +** it can be accessed after all aggregates are computed. +** +** If the expression is an unbound variable marker (a question mark +** character '?' in the original SQL) then the Expr.iTable holds the index +** number for that variable. +** +** If the expression is a subquery then Expr.iColumn holds an integer +** register number containing the result of the subquery. If the +** subquery gives a constant result, then iTable is -1. If the subquery +** gives a different answer at different times during statement processing +** then iTable is the address of a subroutine that computes the subquery. +** +** If the Expr is of type OP_Column, and the table it is selecting from +** is a disk table or the "old.*" pseudo-table, then pTab points to the +** corresponding table definition. +** +** ALLOCATION NOTES: +** +** Expr objects can use a lot of memory space in database schema. To +** help reduce memory requirements, sometimes an Expr object will be +** truncated. And to reduce the number of memory allocations, sometimes +** two or more Expr objects will be stored in a single memory allocation, +** together with Expr.zToken strings. +** +** If the EP_Reduced and EP_TokenOnly flags are set when +** an Expr object is truncated. When EP_Reduced is set, then all +** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees +** are contained within the same memory allocation. Note, however, that +** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately +** allocated, regardless of whether or not EP_Reduced is set. +*/ +struct Expr { + u8 op; /* Operation performed by this node */ + char affinity; /* The affinity of the column or 0 if not a column */ + u16 flags; /* Various flags. EP_* See below */ + union { + char *zToken; /* Token value. Zero terminated and dequoted */ + int iValue; /* Non-negative integer value if EP_IntValue */ + } u; + + /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no + ** space is allocated for the fields below this point. An attempt to + ** access them will result in a segfault or malfunction. + *********************************************************************/ + + Expr *pLeft; /* Left subnode */ + Expr *pRight; /* Right subnode */ + union { + ExprList *pList; /* Function arguments or in " IN ( IN (