summaryrefslogtreecommitdiff
path: root/src/where.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/where.c')
-rw-r--r--src/where.c5226
1 files changed, 5226 insertions, 0 deletions
diff --git a/src/where.c b/src/where.c
new file mode 100644
index 0000000..05414da
--- /dev/null
+++ b/src/where.c
@@ -0,0 +1,5226 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements. This module is responsible for
+** generating the code that loops through a table looking for applicable
+** rows. Indices are selected and used to speed the search when doing
+** so is applicable. Because this module is responsible for selecting
+** indices, you might also think of this module as the "query optimizer".
+*/
+#include "sqliteInt.h"
+
+
+/*
+** Trace output macros
+*/
+#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
+int sqlite3WhereTrace = 0;
+#endif
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
+#else
+# define WHERETRACE(X)
+#endif
+
+/* Forward reference
+*/
+typedef struct WhereClause WhereClause;
+typedef struct WhereMaskSet WhereMaskSet;
+typedef struct WhereOrInfo WhereOrInfo;
+typedef struct WhereAndInfo WhereAndInfo;
+typedef struct WhereCost WhereCost;
+
+/*
+** The query generator uses an array of instances of this structure to
+** help it analyze the subexpressions of the WHERE clause. Each WHERE
+** clause subexpression is separated from the others by AND operators,
+** usually, or sometimes subexpressions separated by OR.
+**
+** All WhereTerms are collected into a single WhereClause structure.
+** The following identity holds:
+**
+** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
+**
+** When a term is of the form:
+**
+** X <op> <expr>
+**
+** where X is a column name and <op> is one of certain operators,
+** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
+** cursor number and column number for X. WhereTerm.eOperator records
+** the <op> using a bitmask encoding defined by WO_xxx below. The
+** use of a bitmask encoding for the operator allows us to search
+** quickly for terms that match any of several different operators.
+**
+** A WhereTerm might also be two or more subterms connected by OR:
+**
+** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
+**
+** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
+** and the WhereTerm.u.pOrInfo field points to auxiliary information that
+** is collected about the
+**
+** If a term in the WHERE clause does not match either of the two previous
+** categories, then eOperator==0. The WhereTerm.pExpr field is still set
+** to the original subexpression content and wtFlags is set up appropriately
+** but no other fields in the WhereTerm object are meaningful.
+**
+** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
+** but they do so indirectly. A single WhereMaskSet structure translates
+** cursor number into bits and the translated bit is stored in the prereq
+** fields. The translation is used in order to maximize the number of
+** bits that will fit in a Bitmask. The VDBE cursor numbers might be
+** spread out over the non-negative integers. For example, the cursor
+** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
+** translates these sparse cursor numbers into consecutive integers
+** beginning with 0 in order to make the best possible use of the available
+** bits in the Bitmask. So, in the example above, the cursor numbers
+** would be mapped into integers 0 through 7.
+**
+** The number of terms in a join is limited by the number of bits
+** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
+** is only able to process joins with 64 or fewer tables.
+*/
+typedef struct WhereTerm WhereTerm;
+struct WhereTerm {
+ Expr *pExpr; /* Pointer to the subexpression that is this term */
+ int iParent; /* Disable pWC->a[iParent] when this term disabled */
+ int leftCursor; /* Cursor number of X in "X <op> <expr>" */
+ union {
+ int leftColumn; /* Column number of X in "X <op> <expr>" */
+ WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */
+ WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
+ } u;
+ u16 eOperator; /* A WO_xx value describing <op> */
+ u8 wtFlags; /* TERM_xxx bit flags. See below */
+ u8 nChild; /* Number of children that must disable us */
+ WhereClause *pWC; /* The clause this term is part of */
+ Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
+ Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
+};
+
+/*
+** Allowed values of WhereTerm.wtFlags
+*/
+#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
+#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
+#define TERM_CODED 0x04 /* This term is already coded */
+#define TERM_COPIED 0x08 /* Has a child */
+#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
+#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
+#define TERM_OR_OK 0x40 /* Used during OR-clause processing */
+#ifdef SQLITE_ENABLE_STAT3
+# define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */
+#else
+# define TERM_VNULL 0x00 /* Disabled if not using stat3 */
+#endif
+
+/*
+** An instance of the following structure holds all information about a
+** WHERE clause. Mostly this is a container for one or more WhereTerms.
+**
+** Explanation of pOuter: For a WHERE clause of the form
+**
+** a AND ((b AND c) OR (d AND e)) AND f
+**
+** There are separate WhereClause objects for the whole clause and for
+** the subclauses "(b AND c)" and "(d AND e)". The pOuter field of the
+** subclauses points to the WhereClause object for the whole clause.
+*/
+struct WhereClause {
+ Parse *pParse; /* The parser context */
+ WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */
+ Bitmask vmask; /* Bitmask identifying virtual table cursors */
+ WhereClause *pOuter; /* Outer conjunction */
+ u8 op; /* Split operator. TK_AND or TK_OR */
+ u16 wctrlFlags; /* Might include WHERE_AND_ONLY */
+ int nTerm; /* Number of terms */
+ int nSlot; /* Number of entries in a[] */
+ WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
+#if defined(SQLITE_SMALL_STACK)
+ WhereTerm aStatic[1]; /* Initial static space for a[] */
+#else
+ WhereTerm aStatic[8]; /* Initial static space for a[] */
+#endif
+};
+
+/*
+** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
+** a dynamically allocated instance of the following structure.
+*/
+struct WhereOrInfo {
+ WhereClause wc; /* Decomposition into subterms */
+ Bitmask indexable; /* Bitmask of all indexable tables in the clause */
+};
+
+/*
+** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
+** a dynamically allocated instance of the following structure.
+*/
+struct WhereAndInfo {
+ WhereClause wc; /* The subexpression broken out */
+};
+
+/*
+** An instance of the following structure keeps track of a mapping
+** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
+**
+** The VDBE cursor numbers are small integers contained in
+** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
+** clause, the cursor numbers might not begin with 0 and they might
+** contain gaps in the numbering sequence. But we want to make maximum
+** use of the bits in our bitmasks. This structure provides a mapping
+** from the sparse cursor numbers into consecutive integers beginning
+** with 0.
+**
+** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
+** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
+**
+** For example, if the WHERE clause expression used these VDBE
+** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
+** would map those cursor numbers into bits 0 through 5.
+**
+** Note that the mapping is not necessarily ordered. In the example
+** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
+** 57->5, 73->4. Or one of 719 other combinations might be used. It
+** does not really matter. What is important is that sparse cursor
+** numbers all get mapped into bit numbers that begin with 0 and contain
+** no gaps.
+*/
+struct WhereMaskSet {
+ int n; /* Number of assigned cursor values */
+ int ix[BMS]; /* Cursor assigned to each bit */
+};
+
+/*
+** A WhereCost object records a lookup strategy and the estimated
+** cost of pursuing that strategy.
+*/
+struct WhereCost {
+ WherePlan plan; /* The lookup strategy */
+ double rCost; /* Overall cost of pursuing this search strategy */
+ Bitmask used; /* Bitmask of cursors used by this plan */
+};
+
+/*
+** Bitmasks for the operators that indices are able to exploit. An
+** OR-ed combination of these values can be used when searching for
+** terms in the where clause.
+*/
+#define WO_IN 0x001
+#define WO_EQ 0x002
+#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
+#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
+#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
+#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
+#define WO_MATCH 0x040
+#define WO_ISNULL 0x080
+#define WO_OR 0x100 /* Two or more OR-connected terms */
+#define WO_AND 0x200 /* Two or more AND-connected terms */
+#define WO_NOOP 0x800 /* This term does not restrict search space */
+
+#define WO_ALL 0xfff /* Mask of all possible WO_* values */
+#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
+
+/*
+** Value for wsFlags returned by bestIndex() and stored in
+** WhereLevel.wsFlags. These flags determine which search
+** strategies are appropriate.
+**
+** The least significant 12 bits is reserved as a mask for WO_ values above.
+** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
+** But if the table is the right table of a left join, WhereLevel.wsFlags
+** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
+** the "op" parameter to findTerm when we are resolving equality constraints.
+** ISNULL constraints will then not be used on the right table of a left
+** join. Tickets #2177 and #2189.
+*/
+#define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
+#define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
+#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
+#define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
+#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
+#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
+#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
+#define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */
+#define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
+#define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
+#define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
+#define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */
+#define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
+#define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
+#define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
+#define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
+#define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
+#define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
+#define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */
+#define WHERE_DISTINCT 0x40000000 /* Correct order for DISTINCT */
+
+/*
+** Initialize a preallocated WhereClause structure.
+*/
+static void whereClauseInit(
+ WhereClause *pWC, /* The WhereClause to be initialized */
+ Parse *pParse, /* The parsing context */
+ WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmasks */
+ u16 wctrlFlags /* Might include WHERE_AND_ONLY */
+){
+ pWC->pParse = pParse;
+ pWC->pMaskSet = pMaskSet;
+ pWC->pOuter = 0;
+ pWC->nTerm = 0;
+ pWC->nSlot = ArraySize(pWC->aStatic);
+ pWC->a = pWC->aStatic;
+ pWC->vmask = 0;
+ pWC->wctrlFlags = wctrlFlags;
+}
+
+/* Forward reference */
+static void whereClauseClear(WhereClause*);
+
+/*
+** Deallocate all memory associated with a WhereOrInfo object.
+*/
+static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
+ whereClauseClear(&p->wc);
+ sqlite3DbFree(db, p);
+}
+
+/*
+** Deallocate all memory associated with a WhereAndInfo object.
+*/
+static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
+ whereClauseClear(&p->wc);
+ sqlite3DbFree(db, p);
+}
+
+/*
+** Deallocate a WhereClause structure. The WhereClause structure
+** itself is not freed. This routine is the inverse of whereClauseInit().
+*/
+static void whereClauseClear(WhereClause *pWC){
+ int i;
+ WhereTerm *a;
+ sqlite3 *db = pWC->pParse->db;
+ for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
+ if( a->wtFlags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(db, a->pExpr);
+ }
+ if( a->wtFlags & TERM_ORINFO ){
+ whereOrInfoDelete(db, a->u.pOrInfo);
+ }else if( a->wtFlags & TERM_ANDINFO ){
+ whereAndInfoDelete(db, a->u.pAndInfo);
+ }
+ }
+ if( pWC->a!=pWC->aStatic ){
+ sqlite3DbFree(db, pWC->a);
+ }
+}
+
+/*
+** Add a single new WhereTerm entry to the WhereClause object pWC.
+** The new WhereTerm object is constructed from Expr p and with wtFlags.
+** The index in pWC->a[] of the new WhereTerm is returned on success.
+** 0 is returned if the new WhereTerm could not be added due to a memory
+** allocation error. The memory allocation failure will be recorded in
+** the db->mallocFailed flag so that higher-level functions can detect it.
+**
+** This routine will increase the size of the pWC->a[] array as necessary.
+**
+** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
+** for freeing the expression p is assumed by the WhereClause object pWC.
+** This is true even if this routine fails to allocate a new WhereTerm.
+**
+** WARNING: This routine might reallocate the space used to store
+** WhereTerms. All pointers to WhereTerms should be invalidated after
+** calling this routine. Such pointers may be reinitialized by referencing
+** the pWC->a[] array.
+*/
+static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
+ WhereTerm *pTerm;
+ int idx;
+ testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */
+ if( pWC->nTerm>=pWC->nSlot ){
+ WhereTerm *pOld = pWC->a;
+ sqlite3 *db = pWC->pParse->db;
+ pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
+ if( pWC->a==0 ){
+ if( wtFlags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(db, p);
+ }
+ pWC->a = pOld;
+ return 0;
+ }
+ memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
+ if( pOld!=pWC->aStatic ){
+ sqlite3DbFree(db, pOld);
+ }
+ pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
+ }
+ pTerm = &pWC->a[idx = pWC->nTerm++];
+ pTerm->pExpr = p;
+ pTerm->wtFlags = wtFlags;
+ pTerm->pWC = pWC;
+ pTerm->iParent = -1;
+ return idx;
+}
+
+/*
+** This routine identifies subexpressions in the WHERE clause where
+** each subexpression is separated by the AND operator or some other
+** operator specified in the op parameter. The WhereClause structure
+** is filled with pointers to subexpressions. For example:
+**
+** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
+** \________/ \_______________/ \________________/
+** slot[0] slot[1] slot[2]
+**
+** The original WHERE clause in pExpr is unaltered. All this routine
+** does is make slot[] entries point to substructure within pExpr.
+**
+** In the previous sentence and in the diagram, "slot[]" refers to
+** the WhereClause.a[] array. The slot[] array grows as needed to contain
+** all terms of the WHERE clause.
+*/
+static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
+ pWC->op = (u8)op;
+ if( pExpr==0 ) return;
+ if( pExpr->op!=op ){
+ whereClauseInsert(pWC, pExpr, 0);
+ }else{
+ whereSplit(pWC, pExpr->pLeft, op);
+ whereSplit(pWC, pExpr->pRight, op);
+ }
+}
+
+/*
+** Initialize an expression mask set (a WhereMaskSet object)
+*/
+#define initMaskSet(P) memset(P, 0, sizeof(*P))
+
+/*
+** Return the bitmask for the given cursor number. Return 0 if
+** iCursor is not in the set.
+*/
+static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
+ int i;
+ assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
+ for(i=0; i<pMaskSet->n; i++){
+ if( pMaskSet->ix[i]==iCursor ){
+ return ((Bitmask)1)<<i;
+ }
+ }
+ return 0;
+}
+
+/*
+** Create a new mask for cursor iCursor.
+**
+** There is one cursor per table in the FROM clause. The number of
+** tables in the FROM clause is limited by a test early in the
+** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
+** array will never overflow.
+*/
+static void createMask(WhereMaskSet *pMaskSet, int iCursor){
+ assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
+ pMaskSet->ix[pMaskSet->n++] = iCursor;
+}
+
+/*
+** This routine walks (recursively) an expression tree and generates
+** a bitmask indicating which tables are used in that expression
+** tree.
+**
+** In order for this routine to work, the calling function must have
+** previously invoked sqlite3ResolveExprNames() on the expression. See
+** the header comment on that routine for additional information.
+** The sqlite3ResolveExprNames() routines looks for column names and
+** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
+** the VDBE cursor number of the table. This routine just has to
+** translate the cursor numbers into bitmask values and OR all
+** the bitmasks together.
+*/
+static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
+static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
+static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
+ Bitmask mask = 0;
+ if( p==0 ) return 0;
+ if( p->op==TK_COLUMN ){
+ mask = getMask(pMaskSet, p->iTable);
+ return mask;
+ }
+ mask = exprTableUsage(pMaskSet, p->pRight);
+ mask |= exprTableUsage(pMaskSet, p->pLeft);
+ if( ExprHasProperty(p, EP_xIsSelect) ){
+ mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
+ }else{
+ mask |= exprListTableUsage(pMaskSet, p->x.pList);
+ }
+ return mask;
+}
+static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
+ int i;
+ Bitmask mask = 0;
+ if( pList ){
+ for(i=0; i<pList->nExpr; i++){
+ mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
+ }
+ }
+ return mask;
+}
+static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
+ Bitmask mask = 0;
+ while( pS ){
+ SrcList *pSrc = pS->pSrc;
+ mask |= exprListTableUsage(pMaskSet, pS->pEList);
+ mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
+ mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
+ mask |= exprTableUsage(pMaskSet, pS->pWhere);
+ mask |= exprTableUsage(pMaskSet, pS->pHaving);
+ if( ALWAYS(pSrc!=0) ){
+ int i;
+ for(i=0; i<pSrc->nSrc; i++){
+ mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect);
+ mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn);
+ }
+ }
+ pS = pS->pPrior;
+ }
+ return mask;
+}
+
+/*
+** Return TRUE if the given operator is one of the operators that is
+** allowed for an indexable WHERE clause term. The allowed operators are
+** "=", "<", ">", "<=", ">=", and "IN".
+**
+** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
+** of one of the following forms: column = expression column > expression
+** column >= expression column < expression column <= expression
+** expression = column expression > column expression >= column
+** expression < column expression <= column column IN
+** (expression-list) column IN (subquery) column IS NULL
+*/
+static int allowedOp(int op){
+ assert( TK_GT>TK_EQ && TK_GT<TK_GE );
+ assert( TK_LT>TK_EQ && TK_LT<TK_GE );
+ assert( TK_LE>TK_EQ && TK_LE<TK_GE );
+ assert( TK_GE==TK_EQ+4 );
+ return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
+}
+
+/*
+** Swap two objects of type TYPE.
+*/
+#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
+
+/*
+** Commute a comparison operator. Expressions of the form "X op Y"
+** are converted into "Y op X".
+**
+** If a collation sequence is associated with either the left or right
+** side of the comparison, it remains associated with the same side after
+** the commutation. So "Y collate NOCASE op X" becomes
+** "X collate NOCASE op Y". This is because any collation sequence on
+** the left hand side of a comparison overrides any collation sequence
+** attached to the right. For the same reason the EP_ExpCollate flag
+** is not commuted.
+*/
+static void exprCommute(Parse *pParse, Expr *pExpr){
+ u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
+ u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
+ assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
+ pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
+ pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
+ SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
+ pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
+ pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
+ SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
+ if( pExpr->op>=TK_GT ){
+ assert( TK_LT==TK_GT+2 );
+ assert( TK_GE==TK_LE+2 );
+ assert( TK_GT>TK_EQ );
+ assert( TK_GT<TK_LE );
+ assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
+ pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
+ }
+}
+
+/*
+** Translate from TK_xx operator to WO_xx bitmask.
+*/
+static u16 operatorMask(int op){
+ u16 c;
+ assert( allowedOp(op) );
+ if( op==TK_IN ){
+ c = WO_IN;
+ }else if( op==TK_ISNULL ){
+ c = WO_ISNULL;
+ }else{
+ assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
+ c = (u16)(WO_EQ<<(op-TK_EQ));
+ }
+ assert( op!=TK_ISNULL || c==WO_ISNULL );
+ assert( op!=TK_IN || c==WO_IN );
+ assert( op!=TK_EQ || c==WO_EQ );
+ assert( op!=TK_LT || c==WO_LT );
+ assert( op!=TK_LE || c==WO_LE );
+ assert( op!=TK_GT || c==WO_GT );
+ assert( op!=TK_GE || c==WO_GE );
+ return c;
+}
+
+/*
+** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
+** where X is a reference to the iColumn of table iCur and <op> is one of
+** the WO_xx operator codes specified by the op parameter.
+** Return a pointer to the term. Return 0 if not found.
+*/
+static WhereTerm *findTerm(
+ WhereClause *pWC, /* The WHERE clause to be searched */
+ int iCur, /* Cursor number of LHS */
+ int iColumn, /* Column number of LHS */
+ Bitmask notReady, /* RHS must not overlap with this mask */
+ u32 op, /* Mask of WO_xx values describing operator */
+ Index *pIdx /* Must be compatible with this index, if not NULL */
+){
+ WhereTerm *pTerm;
+ int k;
+ assert( iCur>=0 );
+ op &= WO_ALL;
+ for(; pWC; pWC=pWC->pOuter){
+ for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
+ if( pTerm->leftCursor==iCur
+ && (pTerm->prereqRight & notReady)==0
+ && pTerm->u.leftColumn==iColumn
+ && (pTerm->eOperator & op)!=0
+ ){
+ if( pIdx && pTerm->eOperator!=WO_ISNULL ){
+ Expr *pX = pTerm->pExpr;
+ CollSeq *pColl;
+ char idxaff;
+ int j;
+ Parse *pParse = pWC->pParse;
+
+ idxaff = pIdx->pTable->aCol[iColumn].affinity;
+ if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
+
+ /* Figure out the collation sequence required from an index for
+ ** it to be useful for optimising expression pX. Store this
+ ** value in variable pColl.
+ */
+ assert(pX->pLeft);
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
+ assert(pColl || pParse->nErr);
+
+ for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
+ if( NEVER(j>=pIdx->nColumn) ) return 0;
+ }
+ if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
+ }
+ return pTerm;
+ }
+ }
+ }
+ return 0;
+}
+
+/* Forward reference */
+static void exprAnalyze(SrcList*, WhereClause*, int);
+
+/*
+** Call exprAnalyze on all terms in a WHERE clause.
+**
+**
+*/
+static void exprAnalyzeAll(
+ SrcList *pTabList, /* the FROM clause */
+ WhereClause *pWC /* the WHERE clause to be analyzed */
+){
+ int i;
+ for(i=pWC->nTerm-1; i>=0; i--){
+ exprAnalyze(pTabList, pWC, i);
+ }
+}
+
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
+/*
+** Check to see if the given expression is a LIKE or GLOB operator that
+** can be optimized using inequality constraints. Return TRUE if it is
+** so and false if not.
+**
+** In order for the operator to be optimizible, the RHS must be a string
+** literal that does not begin with a wildcard.
+*/
+static int isLikeOrGlob(
+ Parse *pParse, /* Parsing and code generating context */
+ Expr *pExpr, /* Test this expression */
+ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
+ int *pisComplete, /* True if the only wildcard is % in the last character */
+ int *pnoCase /* True if uppercase is equivalent to lowercase */
+){
+ const char *z = 0; /* String on RHS of LIKE operator */
+ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
+ ExprList *pList; /* List of operands to the LIKE operator */
+ int c; /* One character in z[] */
+ int cnt; /* Number of non-wildcard prefix characters */
+ char wc[3]; /* Wildcard characters */
+ sqlite3 *db = pParse->db; /* Database connection */
+ sqlite3_value *pVal = 0;
+ int op; /* Opcode of pRight */
+
+ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
+ return 0;
+ }
+#ifdef SQLITE_EBCDIC
+ if( *pnoCase ) return 0;
+#endif
+ pList = pExpr->x.pList;
+ pLeft = pList->a[1].pExpr;
+ if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
+ /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
+ ** be the name of an indexed column with TEXT affinity. */
+ return 0;
+ }
+ assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
+
+ pRight = pList->a[0].pExpr;
+ op = pRight->op;
+ if( op==TK_REGISTER ){
+ op = pRight->op2;
+ }
+ if( op==TK_VARIABLE ){
+ Vdbe *pReprepare = pParse->pReprepare;
+ int iCol = pRight->iColumn;
+ pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE);
+ if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
+ z = (char *)sqlite3_value_text(pVal);
+ }
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
+ assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
+ }else if( op==TK_STRING ){
+ z = pRight->u.zToken;
+ }
+ if( z ){
+ cnt = 0;
+ while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
+ cnt++;
+ }
+ if( cnt!=0 && 255!=(u8)z[cnt-1] ){
+ Expr *pPrefix;
+ *pisComplete = c==wc[0] && z[cnt+1]==0;
+ pPrefix = sqlite3Expr(db, TK_STRING, z);
+ if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
+ *ppPrefix = pPrefix;
+ if( op==TK_VARIABLE ){
+ Vdbe *v = pParse->pVdbe;
+ sqlite3VdbeSetVarmask(v, pRight->iColumn);
+ if( *pisComplete && pRight->u.zToken[1] ){
+ /* If the rhs of the LIKE expression is a variable, and the current
+ ** value of the variable means there is no need to invoke the LIKE
+ ** function, then no OP_Variable will be added to the program.
+ ** This causes problems for the sqlite3_bind_parameter_name()
+ ** API. To workaround them, add a dummy OP_Variable here.
+ */
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3ExprCodeTarget(pParse, pRight, r1);
+ sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }
+ }
+ }else{
+ z = 0;
+ }
+ }
+
+ sqlite3ValueFree(pVal);
+ return (z!=0);
+}
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Check to see if the given expression is of the form
+**
+** column MATCH expr
+**
+** If it is then return TRUE. If not, return FALSE.
+*/
+static int isMatchOfColumn(
+ Expr *pExpr /* Test this expression */
+){
+ ExprList *pList;
+
+ if( pExpr->op!=TK_FUNCTION ){
+ return 0;
+ }
+ if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
+ return 0;
+ }
+ pList = pExpr->x.pList;
+ if( pList->nExpr!=2 ){
+ return 0;
+ }
+ if( pList->a[1].pExpr->op != TK_COLUMN ){
+ return 0;
+ }
+ return 1;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** If the pBase expression originated in the ON or USING clause of
+** a join, then transfer the appropriate markings over to derived.
+*/
+static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
+ pDerived->flags |= pBase->flags & EP_FromJoin;
+ pDerived->iRightJoinTable = pBase->iRightJoinTable;
+}
+
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
+/*
+** Analyze a term that consists of two or more OR-connected
+** subterms. So in:
+**
+** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
+** ^^^^^^^^^^^^^^^^^^^^
+**
+** This routine analyzes terms such as the middle term in the above example.
+** A WhereOrTerm object is computed and attached to the term under
+** analysis, regardless of the outcome of the analysis. Hence:
+**
+** WhereTerm.wtFlags |= TERM_ORINFO
+** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
+**
+** The term being analyzed must have two or more of OR-connected subterms.
+** A single subterm might be a set of AND-connected sub-subterms.
+** Examples of terms under analysis:
+**
+** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
+** (B) x=expr1 OR expr2=x OR x=expr3
+** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
+** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
+** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
+**
+** CASE 1:
+**
+** If all subterms are of the form T.C=expr for some single column of C
+** a single table T (as shown in example B above) then create a new virtual
+** term that is an equivalent IN expression. In other words, if the term
+** being analyzed is:
+**
+** x = expr1 OR expr2 = x OR x = expr3
+**
+** then create a new virtual term like this:
+**
+** x IN (expr1,expr2,expr3)
+**
+** CASE 2:
+**
+** If all subterms are indexable by a single table T, then set
+**
+** WhereTerm.eOperator = WO_OR
+** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
+**
+** A subterm is "indexable" if it is of the form
+** "T.C <op> <expr>" where C is any column of table T and
+** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
+** A subterm is also indexable if it is an AND of two or more
+** subsubterms at least one of which is indexable. Indexable AND
+** subterms have their eOperator set to WO_AND and they have
+** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
+**
+** From another point of view, "indexable" means that the subterm could
+** potentially be used with an index if an appropriate index exists.
+** This analysis does not consider whether or not the index exists; that
+** is something the bestIndex() routine will determine. This analysis
+** only looks at whether subterms appropriate for indexing exist.
+**
+** All examples A through E above all satisfy case 2. But if a term
+** also statisfies case 1 (such as B) we know that the optimizer will
+** always prefer case 1, so in that case we pretend that case 2 is not
+** satisfied.
+**
+** It might be the case that multiple tables are indexable. For example,
+** (E) above is indexable on tables P, Q, and R.
+**
+** Terms that satisfy case 2 are candidates for lookup by using
+** separate indices to find rowids for each subterm and composing
+** the union of all rowids using a RowSet object. This is similar
+** to "bitmap indices" in other database engines.
+**
+** OTHERWISE:
+**
+** If neither case 1 nor case 2 apply, then leave the eOperator set to
+** zero. This term is not useful for search.
+*/
+static void exprAnalyzeOrTerm(
+ SrcList *pSrc, /* the FROM clause */
+ WhereClause *pWC, /* the complete WHERE clause */
+ int idxTerm /* Index of the OR-term to be analyzed */
+){
+ Parse *pParse = pWC->pParse; /* Parser context */
+ sqlite3 *db = pParse->db; /* Database connection */
+ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
+ Expr *pExpr = pTerm->pExpr; /* The expression of the term */
+ WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
+ int i; /* Loop counters */
+ WhereClause *pOrWc; /* Breakup of pTerm into subterms */
+ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
+ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
+ Bitmask chngToIN; /* Tables that might satisfy case 1 */
+ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
+
+ /*
+ ** Break the OR clause into its separate subterms. The subterms are
+ ** stored in a WhereClause structure containing within the WhereOrInfo
+ ** object that is attached to the original OR clause term.
+ */
+ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
+ assert( pExpr->op==TK_OR );
+ pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
+ if( pOrInfo==0 ) return;
+ pTerm->wtFlags |= TERM_ORINFO;
+ pOrWc = &pOrInfo->wc;
+ whereClauseInit(pOrWc, pWC->pParse, pMaskSet, pWC->wctrlFlags);
+ whereSplit(pOrWc, pExpr, TK_OR);
+ exprAnalyzeAll(pSrc, pOrWc);
+ if( db->mallocFailed ) return;
+ assert( pOrWc->nTerm>=2 );
+
+ /*
+ ** Compute the set of tables that might satisfy cases 1 or 2.
+ */
+ indexable = ~(Bitmask)0;
+ chngToIN = ~(pWC->vmask);
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
+ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
+ WhereAndInfo *pAndInfo;
+ assert( pOrTerm->eOperator==0 );
+ assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
+ chngToIN = 0;
+ pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
+ if( pAndInfo ){
+ WhereClause *pAndWC;
+ WhereTerm *pAndTerm;
+ int j;
+ Bitmask b = 0;
+ pOrTerm->u.pAndInfo = pAndInfo;
+ pOrTerm->wtFlags |= TERM_ANDINFO;
+ pOrTerm->eOperator = WO_AND;
+ pAndWC = &pAndInfo->wc;
+ whereClauseInit(pAndWC, pWC->pParse, pMaskSet, pWC->wctrlFlags);
+ whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
+ exprAnalyzeAll(pSrc, pAndWC);
+ pAndWC->pOuter = pWC;
+ testcase( db->mallocFailed );
+ if( !db->mallocFailed ){
+ for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
+ assert( pAndTerm->pExpr );
+ if( allowedOp(pAndTerm->pExpr->op) ){
+ b |= getMask(pMaskSet, pAndTerm->leftCursor);
+ }
+ }
+ }
+ indexable &= b;
+ }
+ }else if( pOrTerm->wtFlags & TERM_COPIED ){
+ /* Skip this term for now. We revisit it when we process the
+ ** corresponding TERM_VIRTUAL term */
+ }else{
+ Bitmask b;
+ b = getMask(pMaskSet, pOrTerm->leftCursor);
+ if( pOrTerm->wtFlags & TERM_VIRTUAL ){
+ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
+ b |= getMask(pMaskSet, pOther->leftCursor);
+ }
+ indexable &= b;
+ if( pOrTerm->eOperator!=WO_EQ ){
+ chngToIN = 0;
+ }else{
+ chngToIN &= b;
+ }
+ }
+ }
+
+ /*
+ ** Record the set of tables that satisfy case 2. The set might be
+ ** empty.
+ */
+ pOrInfo->indexable = indexable;
+ pTerm->eOperator = indexable==0 ? 0 : WO_OR;
+
+ /*
+ ** chngToIN holds a set of tables that *might* satisfy case 1. But
+ ** we have to do some additional checking to see if case 1 really
+ ** is satisfied.
+ **
+ ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
+ ** that there is no possibility of transforming the OR clause into an
+ ** IN operator because one or more terms in the OR clause contain
+ ** something other than == on a column in the single table. The 1-bit
+ ** case means that every term of the OR clause is of the form
+ ** "table.column=expr" for some single table. The one bit that is set
+ ** will correspond to the common table. We still need to check to make
+ ** sure the same column is used on all terms. The 2-bit case is when
+ ** the all terms are of the form "table1.column=table2.column". It
+ ** might be possible to form an IN operator with either table1.column
+ ** or table2.column as the LHS if either is common to every term of
+ ** the OR clause.
+ **
+ ** Note that terms of the form "table.column1=table.column2" (the
+ ** same table on both sizes of the ==) cannot be optimized.
+ */
+ if( chngToIN ){
+ int okToChngToIN = 0; /* True if the conversion to IN is valid */
+ int iColumn = -1; /* Column index on lhs of IN operator */
+ int iCursor = -1; /* Table cursor common to all terms */
+ int j = 0; /* Loop counter */
+
+ /* Search for a table and column that appears on one side or the
+ ** other of the == operator in every subterm. That table and column
+ ** will be recorded in iCursor and iColumn. There might not be any
+ ** such table and column. Set okToChngToIN if an appropriate table
+ ** and column is found but leave okToChngToIN false if not found.
+ */
+ for(j=0; j<2 && !okToChngToIN; j++){
+ pOrTerm = pOrWc->a;
+ for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
+ assert( pOrTerm->eOperator==WO_EQ );
+ pOrTerm->wtFlags &= ~TERM_OR_OK;
+ if( pOrTerm->leftCursor==iCursor ){
+ /* This is the 2-bit case and we are on the second iteration and
+ ** current term is from the first iteration. So skip this term. */
+ assert( j==1 );
+ continue;
+ }
+ if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
+ /* This term must be of the form t1.a==t2.b where t2 is in the
+ ** chngToIN set but t1 is not. This term will be either preceeded
+ ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
+ ** and use its inversion. */
+ testcase( pOrTerm->wtFlags & TERM_COPIED );
+ testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
+ assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
+ continue;
+ }
+ iColumn = pOrTerm->u.leftColumn;
+ iCursor = pOrTerm->leftCursor;
+ break;
+ }
+ if( i<0 ){
+ /* No candidate table+column was found. This can only occur
+ ** on the second iteration */
+ assert( j==1 );
+ assert( (chngToIN&(chngToIN-1))==0 );
+ assert( chngToIN==getMask(pMaskSet, iCursor) );
+ break;
+ }
+ testcase( j==1 );
+
+ /* We have found a candidate table and column. Check to see if that
+ ** table and column is common to every term in the OR clause */
+ okToChngToIN = 1;
+ for(; i>=0 && okToChngToIN; i--, pOrTerm++){
+ assert( pOrTerm->eOperator==WO_EQ );
+ if( pOrTerm->leftCursor!=iCursor ){
+ pOrTerm->wtFlags &= ~TERM_OR_OK;
+ }else if( pOrTerm->u.leftColumn!=iColumn ){
+ okToChngToIN = 0;
+ }else{
+ int affLeft, affRight;
+ /* If the right-hand side is also a column, then the affinities
+ ** of both right and left sides must be such that no type
+ ** conversions are required on the right. (Ticket #2249)
+ */
+ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
+ affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
+ if( affRight!=0 && affRight!=affLeft ){
+ okToChngToIN = 0;
+ }else{
+ pOrTerm->wtFlags |= TERM_OR_OK;
+ }
+ }
+ }
+ }
+
+ /* At this point, okToChngToIN is true if original pTerm satisfies
+ ** case 1. In that case, construct a new virtual term that is
+ ** pTerm converted into an IN operator.
+ **
+ ** EV: R-00211-15100
+ */
+ if( okToChngToIN ){
+ Expr *pDup; /* A transient duplicate expression */
+ ExprList *pList = 0; /* The RHS of the IN operator */
+ Expr *pLeft = 0; /* The LHS of the IN operator */
+ Expr *pNew; /* The complete IN operator */
+
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
+ if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
+ assert( pOrTerm->eOperator==WO_EQ );
+ assert( pOrTerm->leftCursor==iCursor );
+ assert( pOrTerm->u.leftColumn==iColumn );
+ pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
+ pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
+ pLeft = pOrTerm->pExpr->pLeft;
+ }
+ assert( pLeft!=0 );
+ pDup = sqlite3ExprDup(db, pLeft, 0);
+ pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
+ if( pNew ){
+ int idxNew;
+ transferJoinMarkings(pNew, pExpr);
+ assert( !ExprHasProperty(pNew, EP_xIsSelect) );
+ pNew->x.pList = pList;
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
+ exprAnalyze(pSrc, pWC, idxNew);
+ pTerm = &pWC->a[idxTerm];
+ pWC->a[idxNew].iParent = idxTerm;
+ pTerm->nChild = 1;
+ }else{
+ sqlite3ExprListDelete(db, pList);
+ }
+ pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */
+ }
+ }
+}
+#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
+
+
+/*
+** The input to this routine is an WhereTerm structure with only the
+** "pExpr" field filled in. The job of this routine is to analyze the
+** subexpression and populate all the other fields of the WhereTerm
+** structure.
+**
+** If the expression is of the form "<expr> <op> X" it gets commuted
+** to the standard form of "X <op> <expr>".
+**
+** If the expression is of the form "X <op> Y" where both X and Y are
+** columns, then the original expression is unchanged and a new virtual
+** term of the form "Y <op> X" is added to the WHERE clause and
+** analyzed separately. The original term is marked with TERM_COPIED
+** and the new term is marked with TERM_DYNAMIC (because it's pExpr
+** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
+** is a commuted copy of a prior term.) The original term has nChild=1
+** and the copy has idxParent set to the index of the original term.
+*/
+static void exprAnalyze(
+ SrcList *pSrc, /* the FROM clause */
+ WhereClause *pWC, /* the WHERE clause */
+ int idxTerm /* Index of the term to be analyzed */
+){
+ WhereTerm *pTerm; /* The term to be analyzed */
+ WhereMaskSet *pMaskSet; /* Set of table index masks */
+ Expr *pExpr; /* The expression to be analyzed */
+ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
+ Bitmask prereqAll; /* Prerequesites of pExpr */
+ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
+ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
+ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
+ int noCase = 0; /* LIKE/GLOB distinguishes case */
+ int op; /* Top-level operator. pExpr->op */
+ Parse *pParse = pWC->pParse; /* Parsing context */
+ sqlite3 *db = pParse->db; /* Database connection */
+
+ if( db->mallocFailed ){
+ return;
+ }
+ pTerm = &pWC->a[idxTerm];
+ pMaskSet = pWC->pMaskSet;
+ pExpr = pTerm->pExpr;
+ prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
+ op = pExpr->op;
+ if( op==TK_IN ){
+ assert( pExpr->pRight==0 );
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){
+ pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
+ }else{
+ pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
+ }
+ }else if( op==TK_ISNULL ){
+ pTerm->prereqRight = 0;
+ }else{
+ pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
+ }
+ prereqAll = exprTableUsage(pMaskSet, pExpr);
+ if( ExprHasProperty(pExpr, EP_FromJoin) ){
+ Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
+ prereqAll |= x;
+ extraRight = x-1; /* ON clause terms may not be used with an index
+ ** on left table of a LEFT JOIN. Ticket #3015 */
+ }
+ pTerm->prereqAll = prereqAll;
+ pTerm->leftCursor = -1;
+ pTerm->iParent = -1;
+ pTerm->eOperator = 0;
+ if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
+ Expr *pLeft = pExpr->pLeft;
+ Expr *pRight = pExpr->pRight;
+ if( pLeft->op==TK_COLUMN ){
+ pTerm->leftCursor = pLeft->iTable;
+ pTerm->u.leftColumn = pLeft->iColumn;
+ pTerm->eOperator = operatorMask(op);
+ }
+ if( pRight && pRight->op==TK_COLUMN ){
+ WhereTerm *pNew;
+ Expr *pDup;
+ if( pTerm->leftCursor>=0 ){
+ int idxNew;
+ pDup = sqlite3ExprDup(db, pExpr, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDup);
+ return;
+ }
+ idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
+ if( idxNew==0 ) return;
+ pNew = &pWC->a[idxNew];
+ pNew->iParent = idxTerm;
+ pTerm = &pWC->a[idxTerm];
+ pTerm->nChild = 1;
+ pTerm->wtFlags |= TERM_COPIED;
+ }else{
+ pDup = pExpr;
+ pNew = pTerm;
+ }
+ exprCommute(pParse, pDup);
+ pLeft = pDup->pLeft;
+ pNew->leftCursor = pLeft->iTable;
+ pNew->u.leftColumn = pLeft->iColumn;
+ testcase( (prereqLeft | extraRight) != prereqLeft );
+ pNew->prereqRight = prereqLeft | extraRight;
+ pNew->prereqAll = prereqAll;
+ pNew->eOperator = operatorMask(pDup->op);
+ }
+ }
+
+#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
+ /* If a term is the BETWEEN operator, create two new virtual terms
+ ** that define the range that the BETWEEN implements. For example:
+ **
+ ** a BETWEEN b AND c
+ **
+ ** is converted into:
+ **
+ ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
+ **
+ ** The two new terms are added onto the end of the WhereClause object.
+ ** The new terms are "dynamic" and are children of the original BETWEEN
+ ** term. That means that if the BETWEEN term is coded, the children are
+ ** skipped. Or, if the children are satisfied by an index, the original
+ ** BETWEEN term is skipped.
+ */
+ else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
+ ExprList *pList = pExpr->x.pList;
+ int i;
+ static const u8 ops[] = {TK_GE, TK_LE};
+ assert( pList!=0 );
+ assert( pList->nExpr==2 );
+ for(i=0; i<2; i++){
+ Expr *pNewExpr;
+ int idxNew;
+ pNewExpr = sqlite3PExpr(pParse, ops[i],
+ sqlite3ExprDup(db, pExpr->pLeft, 0),
+ sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
+ exprAnalyze(pSrc, pWC, idxNew);
+ pTerm = &pWC->a[idxTerm];
+ pWC->a[idxNew].iParent = idxTerm;
+ }
+ pTerm->nChild = 2;
+ }
+#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
+
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
+ /* Analyze a term that is composed of two or more subterms connected by
+ ** an OR operator.
+ */
+ else if( pExpr->op==TK_OR ){
+ assert( pWC->op==TK_AND );
+ exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
+ pTerm = &pWC->a[idxTerm];
+ }
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
+ /* Add constraints to reduce the search space on a LIKE or GLOB
+ ** operator.
+ **
+ ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
+ **
+ ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
+ **
+ ** The last character of the prefix "abc" is incremented to form the
+ ** termination condition "abd".
+ */
+ if( pWC->op==TK_AND
+ && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
+ ){
+ Expr *pLeft; /* LHS of LIKE/GLOB operator */
+ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
+ Expr *pNewExpr1;
+ Expr *pNewExpr2;
+ int idxNew1;
+ int idxNew2;
+ CollSeq *pColl; /* Collating sequence to use */
+
+ pLeft = pExpr->x.pList->a[1].pExpr;
+ pStr2 = sqlite3ExprDup(db, pStr1, 0);
+ if( !db->mallocFailed ){
+ u8 c, *pC; /* Last character before the first wildcard */
+ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
+ c = *pC;
+ if( noCase ){
+ /* The point is to increment the last character before the first
+ ** wildcard. But if we increment '@', that will push it into the
+ ** alphabetic range where case conversions will mess up the
+ ** inequality. To avoid this, make sure to also run the full
+ ** LIKE on all candidate expressions by clearing the isComplete flag
+ */
+ if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */
+
+
+ c = sqlite3UpperToLower[c];
+ }
+ *pC = c + 1;
+ }
+ pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0);
+ pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
+ sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
+ pStr1, 0);
+ idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew1==0 );
+ exprAnalyze(pSrc, pWC, idxNew1);
+ pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
+ sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
+ pStr2, 0);
+ idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew2==0 );
+ exprAnalyze(pSrc, pWC, idxNew2);
+ pTerm = &pWC->a[idxTerm];
+ if( isComplete ){
+ pWC->a[idxNew1].iParent = idxTerm;
+ pWC->a[idxNew2].iParent = idxTerm;
+ pTerm->nChild = 2;
+ }
+ }
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* Add a WO_MATCH auxiliary term to the constraint set if the
+ ** current expression is of the form: column MATCH expr.
+ ** This information is used by the xBestIndex methods of
+ ** virtual tables. The native query optimizer does not attempt
+ ** to do anything with MATCH functions.
+ */
+ if( isMatchOfColumn(pExpr) ){
+ int idxNew;
+ Expr *pRight, *pLeft;
+ WhereTerm *pNewTerm;
+ Bitmask prereqColumn, prereqExpr;
+
+ pRight = pExpr->x.pList->a[0].pExpr;
+ pLeft = pExpr->x.pList->a[1].pExpr;
+ prereqExpr = exprTableUsage(pMaskSet, pRight);
+ prereqColumn = exprTableUsage(pMaskSet, pLeft);
+ if( (prereqExpr & prereqColumn)==0 ){
+ Expr *pNewExpr;
+ pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
+ 0, sqlite3ExprDup(db, pRight, 0), 0);
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
+ pNewTerm = &pWC->a[idxNew];
+ pNewTerm->prereqRight = prereqExpr;
+ pNewTerm->leftCursor = pLeft->iTable;
+ pNewTerm->u.leftColumn = pLeft->iColumn;
+ pNewTerm->eOperator = WO_MATCH;
+ pNewTerm->iParent = idxTerm;
+ pTerm = &pWC->a[idxTerm];
+ pTerm->nChild = 1;
+ pTerm->wtFlags |= TERM_COPIED;
+ pNewTerm->prereqAll = pTerm->prereqAll;
+ }
+ }
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifdef SQLITE_ENABLE_STAT3
+ /* When sqlite_stat3 histogram data is available an operator of the
+ ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
+ ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
+ ** virtual term of that form.
+ **
+ ** Note that the virtual term must be tagged with TERM_VNULL. This
+ ** TERM_VNULL tag will suppress the not-null check at the beginning
+ ** of the loop. Without the TERM_VNULL flag, the not-null check at
+ ** the start of the loop will prevent any results from being returned.
+ */
+ if( pExpr->op==TK_NOTNULL
+ && pExpr->pLeft->op==TK_COLUMN
+ && pExpr->pLeft->iColumn>=0
+ ){
+ Expr *pNewExpr;
+ Expr *pLeft = pExpr->pLeft;
+ int idxNew;
+ WhereTerm *pNewTerm;
+
+ pNewExpr = sqlite3PExpr(pParse, TK_GT,
+ sqlite3ExprDup(db, pLeft, 0),
+ sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
+
+ idxNew = whereClauseInsert(pWC, pNewExpr,
+ TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
+ if( idxNew ){
+ pNewTerm = &pWC->a[idxNew];
+ pNewTerm->prereqRight = 0;
+ pNewTerm->leftCursor = pLeft->iTable;
+ pNewTerm->u.leftColumn = pLeft->iColumn;
+ pNewTerm->eOperator = WO_GT;
+ pNewTerm->iParent = idxTerm;
+ pTerm = &pWC->a[idxTerm];
+ pTerm->nChild = 1;
+ pTerm->wtFlags |= TERM_COPIED;
+ pNewTerm->prereqAll = pTerm->prereqAll;
+ }
+ }
+#endif /* SQLITE_ENABLE_STAT */
+
+ /* Prevent ON clause terms of a LEFT JOIN from being used to drive
+ ** an index for tables to the left of the join.
+ */
+ pTerm->prereqRight |= extraRight;
+}
+
+/*
+** Return TRUE if any of the expressions in pList->a[iFirst...] contain
+** a reference to any table other than the iBase table.
+*/
+static int referencesOtherTables(
+ ExprList *pList, /* Search expressions in ths list */
+ WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
+ int iFirst, /* Be searching with the iFirst-th expression */
+ int iBase /* Ignore references to this table */
+){
+ Bitmask allowed = ~getMask(pMaskSet, iBase);
+ while( iFirst<pList->nExpr ){
+ if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** This function searches the expression list passed as the second argument
+** for an expression of type TK_COLUMN that refers to the same column and
+** uses the same collation sequence as the iCol'th column of index pIdx.
+** Argument iBase is the cursor number used for the table that pIdx refers
+** to.
+**
+** If such an expression is found, its index in pList->a[] is returned. If
+** no expression is found, -1 is returned.
+*/
+static int findIndexCol(
+ Parse *pParse, /* Parse context */
+ ExprList *pList, /* Expression list to search */
+ int iBase, /* Cursor for table associated with pIdx */
+ Index *pIdx, /* Index to match column of */
+ int iCol /* Column of index to match */
+){
+ int i;
+ const char *zColl = pIdx->azColl[iCol];
+
+ for(i=0; i<pList->nExpr; i++){
+ Expr *p = pList->a[i].pExpr;
+ if( p->op==TK_COLUMN
+ && p->iColumn==pIdx->aiColumn[iCol]
+ && p->iTable==iBase
+ ){
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, p);
+ if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){
+ return i;
+ }
+ }
+ }
+
+ return -1;
+}
+
+/*
+** This routine determines if pIdx can be used to assist in processing a
+** DISTINCT qualifier. In other words, it tests whether or not using this
+** index for the outer loop guarantees that rows with equal values for
+** all expressions in the pDistinct list are delivered grouped together.
+**
+** For example, the query
+**
+** SELECT DISTINCT a, b, c FROM tbl WHERE a = ?
+**
+** can benefit from any index on columns "b" and "c".
+*/
+static int isDistinctIndex(
+ Parse *pParse, /* Parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ Index *pIdx, /* The index being considered */
+ int base, /* Cursor number for the table pIdx is on */
+ ExprList *pDistinct, /* The DISTINCT expressions */
+ int nEqCol /* Number of index columns with == */
+){
+ Bitmask mask = 0; /* Mask of unaccounted for pDistinct exprs */
+ int i; /* Iterator variable */
+
+ if( pIdx->zName==0 || pDistinct==0 || pDistinct->nExpr>=BMS ) return 0;
+ testcase( pDistinct->nExpr==BMS-1 );
+
+ /* Loop through all the expressions in the distinct list. If any of them
+ ** are not simple column references, return early. Otherwise, test if the
+ ** WHERE clause contains a "col=X" clause. If it does, the expression
+ ** can be ignored. If it does not, and the column does not belong to the
+ ** same table as index pIdx, return early. Finally, if there is no
+ ** matching "col=X" expression and the column is on the same table as pIdx,
+ ** set the corresponding bit in variable mask.
+ */
+ for(i=0; i<pDistinct->nExpr; i++){
+ WhereTerm *pTerm;
+ Expr *p = pDistinct->a[i].pExpr;
+ if( p->op!=TK_COLUMN ) return 0;
+ pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0);
+ if( pTerm ){
+ Expr *pX = pTerm->pExpr;
+ CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
+ CollSeq *p2 = sqlite3ExprCollSeq(pParse, p);
+ if( p1==p2 ) continue;
+ }
+ if( p->iTable!=base ) return 0;
+ mask |= (((Bitmask)1) << i);
+ }
+
+ for(i=nEqCol; mask && i<pIdx->nColumn; i++){
+ int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i);
+ if( iExpr<0 ) break;
+ mask &= ~(((Bitmask)1) << iExpr);
+ }
+
+ return (mask==0);
+}
+
+
+/*
+** Return true if the DISTINCT expression-list passed as the third argument
+** is redundant. A DISTINCT list is redundant if the database contains a
+** UNIQUE index that guarantees that the result of the query will be distinct
+** anyway.
+*/
+static int isDistinctRedundant(
+ Parse *pParse,
+ SrcList *pTabList,
+ WhereClause *pWC,
+ ExprList *pDistinct
+){
+ Table *pTab;
+ Index *pIdx;
+ int i;
+ int iBase;
+
+ /* If there is more than one table or sub-select in the FROM clause of
+ ** this query, then it will not be possible to show that the DISTINCT
+ ** clause is redundant. */
+ if( pTabList->nSrc!=1 ) return 0;
+ iBase = pTabList->a[0].iCursor;
+ pTab = pTabList->a[0].pTab;
+
+ /* If any of the expressions is an IPK column on table iBase, then return
+ ** true. Note: The (p->iTable==iBase) part of this test may be false if the
+ ** current SELECT is a correlated sub-query.
+ */
+ for(i=0; i<pDistinct->nExpr; i++){
+ Expr *p = pDistinct->a[i].pExpr;
+ if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
+ }
+
+ /* Loop through all indices on the table, checking each to see if it makes
+ ** the DISTINCT qualifier redundant. It does so if:
+ **
+ ** 1. The index is itself UNIQUE, and
+ **
+ ** 2. All of the columns in the index are either part of the pDistinct
+ ** list, or else the WHERE clause contains a term of the form "col=X",
+ ** where X is a constant value. The collation sequences of the
+ ** comparison and select-list expressions must match those of the index.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->onError==OE_None ) continue;
+ for(i=0; i<pIdx->nColumn; i++){
+ int iCol = pIdx->aiColumn[i];
+ if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx)
+ && 0>findIndexCol(pParse, pDistinct, iBase, pIdx, i)
+ ){
+ break;
+ }
+ }
+ if( i==pIdx->nColumn ){
+ /* This index implies that the DISTINCT qualifier is redundant. */
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+** This routine decides if pIdx can be used to satisfy the ORDER BY
+** clause. If it can, it returns 1. If pIdx cannot satisfy the
+** ORDER BY clause, this routine returns 0.
+**
+** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
+** left-most table in the FROM clause of that same SELECT statement and
+** the table has a cursor number of "base". pIdx is an index on pTab.
+**
+** nEqCol is the number of columns of pIdx that are used as equality
+** constraints. Any of these columns may be missing from the ORDER BY
+** clause and the match can still be a success.
+**
+** All terms of the ORDER BY that match against the index must be either
+** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
+** index do not need to satisfy this constraint.) The *pbRev value is
+** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
+** the ORDER BY clause is all ASC.
+*/
+static int isSortingIndex(
+ Parse *pParse, /* Parsing context */
+ WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
+ Index *pIdx, /* The index we are testing */
+ int base, /* Cursor number for the table to be sorted */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ int nEqCol, /* Number of index columns with == constraints */
+ int wsFlags, /* Index usages flags */
+ int *pbRev /* Set to 1 if ORDER BY is DESC */
+){
+ int i, j; /* Loop counters */
+ int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
+ int nTerm; /* Number of ORDER BY terms */
+ struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
+ sqlite3 *db = pParse->db;
+
+ if( !pOrderBy ) return 0;
+ if( wsFlags & WHERE_COLUMN_IN ) return 0;
+ if( pIdx->bUnordered ) return 0;
+
+ nTerm = pOrderBy->nExpr;
+ assert( nTerm>0 );
+
+ /* Argument pIdx must either point to a 'real' named index structure,
+ ** or an index structure allocated on the stack by bestBtreeIndex() to
+ ** represent the rowid index that is part of every table. */
+ assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
+
+ /* Match terms of the ORDER BY clause against columns of
+ ** the index.
+ **
+ ** Note that indices have pIdx->nColumn regular columns plus
+ ** one additional column containing the rowid. The rowid column
+ ** of the index is also allowed to match against the ORDER BY
+ ** clause.
+ */
+ for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
+ Expr *pExpr; /* The expression of the ORDER BY pTerm */
+ CollSeq *pColl; /* The collating sequence of pExpr */
+ int termSortOrder; /* Sort order for this term */
+ int iColumn; /* The i-th column of the index. -1 for rowid */
+ int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
+ const char *zColl; /* Name of the collating sequence for i-th index term */
+
+ pExpr = pTerm->pExpr;
+ if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
+ /* Can not use an index sort on anything that is not a column in the
+ ** left-most table of the FROM clause */
+ break;
+ }
+ pColl = sqlite3ExprCollSeq(pParse, pExpr);
+ if( !pColl ){
+ pColl = db->pDfltColl;
+ }
+ if( pIdx->zName && i<pIdx->nColumn ){
+ iColumn = pIdx->aiColumn[i];
+ if( iColumn==pIdx->pTable->iPKey ){
+ iColumn = -1;
+ }
+ iSortOrder = pIdx->aSortOrder[i];
+ zColl = pIdx->azColl[i];
+ }else{
+ iColumn = -1;
+ iSortOrder = 0;
+ zColl = pColl->zName;
+ }
+ if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
+ /* Term j of the ORDER BY clause does not match column i of the index */
+ if( i<nEqCol ){
+ /* If an index column that is constrained by == fails to match an
+ ** ORDER BY term, that is OK. Just ignore that column of the index
+ */
+ continue;
+ }else if( i==pIdx->nColumn ){
+ /* Index column i is the rowid. All other terms match. */
+ break;
+ }else{
+ /* If an index column fails to match and is not constrained by ==
+ ** then the index cannot satisfy the ORDER BY constraint.
+ */
+ return 0;
+ }
+ }
+ assert( pIdx->aSortOrder!=0 || iColumn==-1 );
+ assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
+ assert( iSortOrder==0 || iSortOrder==1 );
+ termSortOrder = iSortOrder ^ pTerm->sortOrder;
+ if( i>nEqCol ){
+ if( termSortOrder!=sortOrder ){
+ /* Indices can only be used if all ORDER BY terms past the
+ ** equality constraints are all either DESC or ASC. */
+ return 0;
+ }
+ }else{
+ sortOrder = termSortOrder;
+ }
+ j++;
+ pTerm++;
+ if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
+ /* If the indexed column is the primary key and everything matches
+ ** so far and none of the ORDER BY terms to the right reference other
+ ** tables in the join, then we are assured that the index can be used
+ ** to sort because the primary key is unique and so none of the other
+ ** columns will make any difference
+ */
+ j = nTerm;
+ }
+ }
+
+ *pbRev = sortOrder!=0;
+ if( j>=nTerm ){
+ /* All terms of the ORDER BY clause are covered by this index so
+ ** this index can be used for sorting. */
+ return 1;
+ }
+ if( pIdx->onError!=OE_None && i==pIdx->nColumn
+ && (wsFlags & WHERE_COLUMN_NULL)==0
+ && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
+ /* All terms of this index match some prefix of the ORDER BY clause
+ ** and the index is UNIQUE and no terms on the tail of the ORDER BY
+ ** clause reference other tables in a join. If this is all true then
+ ** the order by clause is superfluous. Not that if the matching
+ ** condition is IS NULL then the result is not necessarily unique
+ ** even on a UNIQUE index, so disallow those cases. */
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Prepare a crude estimate of the logarithm of the input value.
+** The results need not be exact. This is only used for estimating
+** the total cost of performing operations with O(logN) or O(NlogN)
+** complexity. Because N is just a guess, it is no great tragedy if
+** logN is a little off.
+*/
+static double estLog(double N){
+ double logN = 1;
+ double x = 10;
+ while( N>x ){
+ logN += 1;
+ x *= 10;
+ }
+ return logN;
+}
+
+/*
+** Two routines for printing the content of an sqlite3_index_info
+** structure. Used for testing and debugging only. If neither
+** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
+** are no-ops.
+*/
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
+static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
+ int i;
+ if( !sqlite3WhereTrace ) return;
+ for(i=0; i<p->nConstraint; i++){
+ sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
+ i,
+ p->aConstraint[i].iColumn,
+ p->aConstraint[i].iTermOffset,
+ p->aConstraint[i].op,
+ p->aConstraint[i].usable);
+ }
+ for(i=0; i<p->nOrderBy; i++){
+ sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
+ i,
+ p->aOrderBy[i].iColumn,
+ p->aOrderBy[i].desc);
+ }
+}
+static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
+ int i;
+ if( !sqlite3WhereTrace ) return;
+ for(i=0; i<p->nConstraint; i++){
+ sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
+ i,
+ p->aConstraintUsage[i].argvIndex,
+ p->aConstraintUsage[i].omit);
+ }
+ sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
+ sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
+ sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
+ sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
+}
+#else
+#define TRACE_IDX_INPUTS(A)
+#define TRACE_IDX_OUTPUTS(A)
+#endif
+
+/*
+** Required because bestIndex() is called by bestOrClauseIndex()
+*/
+static void bestIndex(
+ Parse*, WhereClause*, struct SrcList_item*,
+ Bitmask, Bitmask, ExprList*, WhereCost*);
+
+/*
+** This routine attempts to find an scanning strategy that can be used
+** to optimize an 'OR' expression that is part of a WHERE clause.
+**
+** The table associated with FROM clause term pSrc may be either a
+** regular B-Tree table or a virtual table.
+*/
+static void bestOrClauseIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors not available for indexing */
+ Bitmask notValid, /* Cursors not available for any purpose */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ WhereCost *pCost /* Lowest cost query plan */
+){
+#ifndef SQLITE_OMIT_OR_OPTIMIZATION
+ const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
+ const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
+ WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+
+ /* The OR-clause optimization is disallowed if the INDEXED BY or
+ ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */
+ if( pSrc->notIndexed || pSrc->pIndex!=0 ){
+ return;
+ }
+ if( pWC->wctrlFlags & WHERE_AND_ONLY ){
+ return;
+ }
+
+ /* Search the WHERE clause terms for a usable WO_OR term. */
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ if( pTerm->eOperator==WO_OR
+ && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
+ && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
+ ){
+ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
+ WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
+ WhereTerm *pOrTerm;
+ int flags = WHERE_MULTI_OR;
+ double rTotal = 0;
+ double nRow = 0;
+ Bitmask used = 0;
+
+ for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
+ WhereCost sTermCost;
+ WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
+ (pOrTerm - pOrWC->a), (pTerm - pWC->a)
+ ));
+ if( pOrTerm->eOperator==WO_AND ){
+ WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
+ bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost);
+ }else if( pOrTerm->leftCursor==iCur ){
+ WhereClause tempWC;
+ tempWC.pParse = pWC->pParse;
+ tempWC.pMaskSet = pWC->pMaskSet;
+ tempWC.pOuter = pWC;
+ tempWC.op = TK_AND;
+ tempWC.a = pOrTerm;
+ tempWC.wctrlFlags = 0;
+ tempWC.nTerm = 1;
+ bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost);
+ }else{
+ continue;
+ }
+ rTotal += sTermCost.rCost;
+ nRow += sTermCost.plan.nRow;
+ used |= sTermCost.used;
+ if( rTotal>=pCost->rCost ) break;
+ }
+
+ /* If there is an ORDER BY clause, increase the scan cost to account
+ ** for the cost of the sort. */
+ if( pOrderBy!=0 ){
+ WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
+ rTotal, rTotal+nRow*estLog(nRow)));
+ rTotal += nRow*estLog(nRow);
+ }
+
+ /* If the cost of scanning using this OR term for optimization is
+ ** less than the current cost stored in pCost, replace the contents
+ ** of pCost. */
+ WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
+ if( rTotal<pCost->rCost ){
+ pCost->rCost = rTotal;
+ pCost->used = used;
+ pCost->plan.nRow = nRow;
+ pCost->plan.wsFlags = flags;
+ pCost->plan.u.pTerm = pTerm;
+ }
+ }
+ }
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+}
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+/*
+** Return TRUE if the WHERE clause term pTerm is of a form where it
+** could be used with an index to access pSrc, assuming an appropriate
+** index existed.
+*/
+static int termCanDriveIndex(
+ WhereTerm *pTerm, /* WHERE clause term to check */
+ struct SrcList_item *pSrc, /* Table we are trying to access */
+ Bitmask notReady /* Tables in outer loops of the join */
+){
+ char aff;
+ if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
+ if( pTerm->eOperator!=WO_EQ ) return 0;
+ if( (pTerm->prereqRight & notReady)!=0 ) return 0;
+ aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
+ if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
+ return 1;
+}
+#endif
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+/*
+** If the query plan for pSrc specified in pCost is a full table scan
+** and indexing is allows (if there is no NOT INDEXED clause) and it
+** possible to construct a transient index that would perform better
+** than a full table scan even when the cost of constructing the index
+** is taken into account, then alter the query plan to use the
+** transient index.
+*/
+static void bestAutomaticIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors that are not available */
+ WhereCost *pCost /* Lowest cost query plan */
+){
+ double nTableRow; /* Rows in the input table */
+ double logN; /* log(nTableRow) */
+ double costTempIdx; /* per-query cost of the transient index */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+ WhereTerm *pWCEnd; /* End of pWC->a[] */
+ Table *pTable; /* Table tht might be indexed */
+
+ if( pParse->nQueryLoop<=(double)1 ){
+ /* There is no point in building an automatic index for a single scan */
+ return;
+ }
+ if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
+ /* Automatic indices are disabled at run-time */
+ return;
+ }
+ if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
+ /* We already have some kind of index in use for this query. */
+ return;
+ }
+ if( pSrc->notIndexed ){
+ /* The NOT INDEXED clause appears in the SQL. */
+ return;
+ }
+ if( pSrc->isCorrelated ){
+ /* The source is a correlated sub-query. No point in indexing it. */
+ return;
+ }
+
+ assert( pParse->nQueryLoop >= (double)1 );
+ pTable = pSrc->pTab;
+ nTableRow = pTable->nRowEst;
+ logN = estLog(nTableRow);
+ costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
+ if( costTempIdx>=pCost->rCost ){
+ /* The cost of creating the transient table would be greater than
+ ** doing the full table scan */
+ return;
+ }
+
+ /* Search for any equality comparison term */
+ pWCEnd = &pWC->a[pWC->nTerm];
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){
+ WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
+ pCost->rCost, costTempIdx));
+ pCost->rCost = costTempIdx;
+ pCost->plan.nRow = logN + 1;
+ pCost->plan.wsFlags = WHERE_TEMP_INDEX;
+ pCost->used = pTerm->prereqRight;
+ break;
+ }
+ }
+}
+#else
+# define bestAutomaticIndex(A,B,C,D,E) /* no-op */
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
+
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+/*
+** Generate code to construct the Index object for an automatic index
+** and to set up the WhereLevel object pLevel so that the code generator
+** makes use of the automatic index.
+*/
+static void constructAutomaticIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
+ Bitmask notReady, /* Mask of cursors that are not available */
+ WhereLevel *pLevel /* Write new index here */
+){
+ int nColumn; /* Number of columns in the constructed index */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+ WhereTerm *pWCEnd; /* End of pWC->a[] */
+ int nByte; /* Byte of memory needed for pIdx */
+ Index *pIdx; /* Object describing the transient index */
+ Vdbe *v; /* Prepared statement under construction */
+ int regIsInit; /* Register set by initialization */
+ int addrInit; /* Address of the initialization bypass jump */
+ Table *pTable; /* The table being indexed */
+ KeyInfo *pKeyinfo; /* Key information for the index */
+ int addrTop; /* Top of the index fill loop */
+ int regRecord; /* Register holding an index record */
+ int n; /* Column counter */
+ int i; /* Loop counter */
+ int mxBitCol; /* Maximum column in pSrc->colUsed */
+ CollSeq *pColl; /* Collating sequence to on a column */
+ Bitmask idxCols; /* Bitmap of columns used for indexing */
+ Bitmask extraCols; /* Bitmap of additional columns */
+
+ /* Generate code to skip over the creation and initialization of the
+ ** transient index on 2nd and subsequent iterations of the loop. */
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ regIsInit = ++pParse->nMem;
+ addrInit = sqlite3VdbeAddOp1(v, OP_Once, regIsInit);
+
+ /* Count the number of columns that will be added to the index
+ ** and used to match WHERE clause constraints */
+ nColumn = 0;
+ pTable = pSrc->pTab;
+ pWCEnd = &pWC->a[pWC->nTerm];
+ idxCols = 0;
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){
+ int iCol = pTerm->u.leftColumn;
+ Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
+ testcase( iCol==BMS );
+ testcase( iCol==BMS-1 );
+ if( (idxCols & cMask)==0 ){
+ nColumn++;
+ idxCols |= cMask;
+ }
+ }
+ }
+ assert( nColumn>0 );
+ pLevel->plan.nEq = nColumn;
+
+ /* Count the number of additional columns needed to create a
+ ** covering index. A "covering index" is an index that contains all
+ ** columns that are needed by the query. With a covering index, the
+ ** original table never needs to be accessed. Automatic indices must
+ ** be a covering index because the index will not be updated if the
+ ** original table changes and the index and table cannot both be used
+ ** if they go out of sync.
+ */
+ extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
+ mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
+ testcase( pTable->nCol==BMS-1 );
+ testcase( pTable->nCol==BMS-2 );
+ for(i=0; i<mxBitCol; i++){
+ if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
+ }
+ if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
+ nColumn += pTable->nCol - BMS + 1;
+ }
+ pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
+
+ /* Construct the Index object to describe this index */
+ nByte = sizeof(Index);
+ nByte += nColumn*sizeof(int); /* Index.aiColumn */
+ nByte += nColumn*sizeof(char*); /* Index.azColl */
+ nByte += nColumn; /* Index.aSortOrder */
+ pIdx = sqlite3DbMallocZero(pParse->db, nByte);
+ if( pIdx==0 ) return;
+ pLevel->plan.u.pIdx = pIdx;
+ pIdx->azColl = (char**)&pIdx[1];
+ pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
+ pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
+ pIdx->zName = "auto-index";
+ pIdx->nColumn = nColumn;
+ pIdx->pTable = pTable;
+ n = 0;
+ idxCols = 0;
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){
+ int iCol = pTerm->u.leftColumn;
+ Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
+ if( (idxCols & cMask)==0 ){
+ Expr *pX = pTerm->pExpr;
+ idxCols |= cMask;
+ pIdx->aiColumn[n] = pTerm->u.leftColumn;
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
+ pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
+ n++;
+ }
+ }
+ }
+ assert( (u32)n==pLevel->plan.nEq );
+
+ /* Add additional columns needed to make the automatic index into
+ ** a covering index */
+ for(i=0; i<mxBitCol; i++){
+ if( extraCols & (((Bitmask)1)<<i) ){
+ pIdx->aiColumn[n] = i;
+ pIdx->azColl[n] = "BINARY";
+ n++;
+ }
+ }
+ if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
+ for(i=BMS-1; i<pTable->nCol; i++){
+ pIdx->aiColumn[n] = i;
+ pIdx->azColl[n] = "BINARY";
+ n++;
+ }
+ }
+ assert( n==nColumn );
+
+ /* Create the automatic index */
+ pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
+ assert( pLevel->iIdxCur>=0 );
+ sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
+ (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "for %s", pTable->zName));
+
+ /* Fill the automatic index with content */
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
+ regRecord = sqlite3GetTempReg(pParse);
+ sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
+ sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
+ sqlite3VdbeJumpHere(v, addrTop);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+
+ /* Jump here when skipping the initialization */
+ sqlite3VdbeJumpHere(v, addrInit);
+}
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Allocate and populate an sqlite3_index_info structure. It is the
+** responsibility of the caller to eventually release the structure
+** by passing the pointer returned by this function to sqlite3_free().
+*/
+static sqlite3_index_info *allocateIndexInfo(
+ Parse *pParse,
+ WhereClause *pWC,
+ struct SrcList_item *pSrc,
+ ExprList *pOrderBy
+){
+ int i, j;
+ int nTerm;
+ struct sqlite3_index_constraint *pIdxCons;
+ struct sqlite3_index_orderby *pIdxOrderBy;
+ struct sqlite3_index_constraint_usage *pUsage;
+ WhereTerm *pTerm;
+ int nOrderBy;
+ sqlite3_index_info *pIdxInfo;
+
+ WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
+
+ /* Count the number of possible WHERE clause constraints referring
+ ** to this virtual table */
+ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ if( pTerm->leftCursor != pSrc->iCursor ) continue;
+ assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
+ testcase( pTerm->eOperator==WO_IN );
+ testcase( pTerm->eOperator==WO_ISNULL );
+ if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
+ if( pTerm->wtFlags & TERM_VNULL ) continue;
+ nTerm++;
+ }
+
+ /* If the ORDER BY clause contains only columns in the current
+ ** virtual table then allocate space for the aOrderBy part of
+ ** the sqlite3_index_info structure.
+ */
+ nOrderBy = 0;
+ if( pOrderBy ){
+ for(i=0; i<pOrderBy->nExpr; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
+ }
+ if( i==pOrderBy->nExpr ){
+ nOrderBy = pOrderBy->nExpr;
+ }
+ }
+
+ /* Allocate the sqlite3_index_info structure
+ */
+ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
+ + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
+ + sizeof(*pIdxOrderBy)*nOrderBy );
+ if( pIdxInfo==0 ){
+ sqlite3ErrorMsg(pParse, "out of memory");
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ return 0;
+ }
+
+ /* Initialize the structure. The sqlite3_index_info structure contains
+ ** many fields that are declared "const" to prevent xBestIndex from
+ ** changing them. We have to do some funky casting in order to
+ ** initialize those fields.
+ */
+ pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
+ pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
+ pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
+ *(int*)&pIdxInfo->nConstraint = nTerm;
+ *(int*)&pIdxInfo->nOrderBy = nOrderBy;
+ *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
+ *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
+ *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
+ pUsage;
+
+ for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ if( pTerm->leftCursor != pSrc->iCursor ) continue;
+ assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
+ testcase( pTerm->eOperator==WO_IN );
+ testcase( pTerm->eOperator==WO_ISNULL );
+ if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
+ if( pTerm->wtFlags & TERM_VNULL ) continue;
+ pIdxCons[j].iColumn = pTerm->u.leftColumn;
+ pIdxCons[j].iTermOffset = i;
+ pIdxCons[j].op = (u8)pTerm->eOperator;
+ /* The direct assignment in the previous line is possible only because
+ ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
+ ** following asserts verify this fact. */
+ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
+ assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
+ assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
+ assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
+ assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
+ assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
+ j++;
+ }
+ for(i=0; i<nOrderBy; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ pIdxOrderBy[i].iColumn = pExpr->iColumn;
+ pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
+ }
+
+ return pIdxInfo;
+}
+
+/*
+** The table object reference passed as the second argument to this function
+** must represent a virtual table. This function invokes the xBestIndex()
+** method of the virtual table with the sqlite3_index_info pointer passed
+** as the argument.
+**
+** If an error occurs, pParse is populated with an error message and a
+** non-zero value is returned. Otherwise, 0 is returned and the output
+** part of the sqlite3_index_info structure is left populated.
+**
+** Whether or not an error is returned, it is the responsibility of the
+** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
+** that this is required.
+*/
+static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
+ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
+ int i;
+ int rc;
+
+ WHERETRACE(("xBestIndex for %s\n", pTab->zName));
+ TRACE_IDX_INPUTS(p);
+ rc = pVtab->pModule->xBestIndex(pVtab, p);
+ TRACE_IDX_OUTPUTS(p);
+
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ){
+ pParse->db->mallocFailed = 1;
+ }else if( !pVtab->zErrMsg ){
+ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
+ }else{
+ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
+ }
+ }
+ sqlite3_free(pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+
+ for(i=0; i<p->nConstraint; i++){
+ if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
+ sqlite3ErrorMsg(pParse,
+ "table %s: xBestIndex returned an invalid plan", pTab->zName);
+ }
+ }
+
+ return pParse->nErr;
+}
+
+
+/*
+** Compute the best index for a virtual table.
+**
+** The best index is computed by the xBestIndex method of the virtual
+** table module. This routine is really just a wrapper that sets up
+** the sqlite3_index_info structure that is used to communicate with
+** xBestIndex.
+**
+** In a join, this routine might be called multiple times for the
+** same virtual table. The sqlite3_index_info structure is created
+** and initialized on the first invocation and reused on all subsequent
+** invocations. The sqlite3_index_info structure is also used when
+** code is generated to access the virtual table. The whereInfoDelete()
+** routine takes care of freeing the sqlite3_index_info structure after
+** everybody has finished with it.
+*/
+static void bestVirtualIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors not available for index */
+ Bitmask notValid, /* Cursors not valid for any purpose */
+ ExprList *pOrderBy, /* The order by clause */
+ WhereCost *pCost, /* Lowest cost query plan */
+ sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
+){
+ Table *pTab = pSrc->pTab;
+ sqlite3_index_info *pIdxInfo;
+ struct sqlite3_index_constraint *pIdxCons;
+ struct sqlite3_index_constraint_usage *pUsage;
+ WhereTerm *pTerm;
+ int i, j;
+ int nOrderBy;
+ double rCost;
+
+ /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
+ ** malloc in allocateIndexInfo() fails and this function returns leaving
+ ** wsFlags in an uninitialized state, the caller may behave unpredictably.
+ */
+ memset(pCost, 0, sizeof(*pCost));
+ pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
+
+ /* If the sqlite3_index_info structure has not been previously
+ ** allocated and initialized, then allocate and initialize it now.
+ */
+ pIdxInfo = *ppIdxInfo;
+ if( pIdxInfo==0 ){
+ *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
+ }
+ if( pIdxInfo==0 ){
+ return;
+ }
+
+ /* At this point, the sqlite3_index_info structure that pIdxInfo points
+ ** to will have been initialized, either during the current invocation or
+ ** during some prior invocation. Now we just have to customize the
+ ** details of pIdxInfo for the current invocation and pass it to
+ ** xBestIndex.
+ */
+
+ /* The module name must be defined. Also, by this point there must
+ ** be a pointer to an sqlite3_vtab structure. Otherwise
+ ** sqlite3ViewGetColumnNames() would have picked up the error.
+ */
+ assert( pTab->azModuleArg && pTab->azModuleArg[0] );
+ assert( sqlite3GetVTable(pParse->db, pTab) );
+
+ /* Set the aConstraint[].usable fields and initialize all
+ ** output variables to zero.
+ **
+ ** aConstraint[].usable is true for constraints where the right-hand
+ ** side contains only references to tables to the left of the current
+ ** table. In other words, if the constraint is of the form:
+ **
+ ** column = expr
+ **
+ ** and we are evaluating a join, then the constraint on column is
+ ** only valid if all tables referenced in expr occur to the left
+ ** of the table containing column.
+ **
+ ** The aConstraints[] array contains entries for all constraints
+ ** on the current table. That way we only have to compute it once
+ ** even though we might try to pick the best index multiple times.
+ ** For each attempt at picking an index, the order of tables in the
+ ** join might be different so we have to recompute the usable flag
+ ** each time.
+ */
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
+ pUsage = pIdxInfo->aConstraintUsage;
+ for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
+ j = pIdxCons->iTermOffset;
+ pTerm = &pWC->a[j];
+ pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
+ }
+ memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
+ if( pIdxInfo->needToFreeIdxStr ){
+ sqlite3_free(pIdxInfo->idxStr);
+ }
+ pIdxInfo->idxStr = 0;
+ pIdxInfo->idxNum = 0;
+ pIdxInfo->needToFreeIdxStr = 0;
+ pIdxInfo->orderByConsumed = 0;
+ /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
+ pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
+ nOrderBy = pIdxInfo->nOrderBy;
+ if( !pOrderBy ){
+ pIdxInfo->nOrderBy = 0;
+ }
+
+ if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
+ return;
+ }
+
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ if( pUsage[i].argvIndex>0 ){
+ pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
+ }
+ }
+
+ /* If there is an ORDER BY clause, and the selected virtual table index
+ ** does not satisfy it, increase the cost of the scan accordingly. This
+ ** matches the processing for non-virtual tables in bestBtreeIndex().
+ */
+ rCost = pIdxInfo->estimatedCost;
+ if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
+ rCost += estLog(rCost)*rCost;
+ }
+
+ /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
+ ** inital value of lowestCost in this loop. If it is, then the
+ ** (cost<lowestCost) test below will never be true.
+ **
+ ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
+ ** is defined.
+ */
+ if( (SQLITE_BIG_DBL/((double)2))<rCost ){
+ pCost->rCost = (SQLITE_BIG_DBL/((double)2));
+ }else{
+ pCost->rCost = rCost;
+ }
+ pCost->plan.u.pVtabIdx = pIdxInfo;
+ if( pIdxInfo->orderByConsumed ){
+ pCost->plan.wsFlags |= WHERE_ORDERBY;
+ }
+ pCost->plan.nEq = 0;
+ pIdxInfo->nOrderBy = nOrderBy;
+
+ /* Try to find a more efficient access pattern by using multiple indexes
+ ** to optimize an OR expression within the WHERE clause.
+ */
+ bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifdef SQLITE_ENABLE_STAT3
+/*
+** Estimate the location of a particular key among all keys in an
+** index. Store the results in aStat as follows:
+**
+** aStat[0] Est. number of rows less than pVal
+** aStat[1] Est. number of rows equal to pVal
+**
+** Return SQLITE_OK on success.
+*/
+static int whereKeyStats(
+ Parse *pParse, /* Database connection */
+ Index *pIdx, /* Index to consider domain of */
+ sqlite3_value *pVal, /* Value to consider */
+ int roundUp, /* Round up if true. Round down if false */
+ tRowcnt *aStat /* OUT: stats written here */
+){
+ tRowcnt n;
+ IndexSample *aSample;
+ int i, eType;
+ int isEq = 0;
+ i64 v;
+ double r, rS;
+
+ assert( roundUp==0 || roundUp==1 );
+ assert( pIdx->nSample>0 );
+ if( pVal==0 ) return SQLITE_ERROR;
+ n = pIdx->aiRowEst[0];
+ aSample = pIdx->aSample;
+ eType = sqlite3_value_type(pVal);
+
+ if( eType==SQLITE_INTEGER ){
+ v = sqlite3_value_int64(pVal);
+ r = (i64)v;
+ for(i=0; i<pIdx->nSample; i++){
+ if( aSample[i].eType==SQLITE_NULL ) continue;
+ if( aSample[i].eType>=SQLITE_TEXT ) break;
+ if( aSample[i].eType==SQLITE_INTEGER ){
+ if( aSample[i].u.i>=v ){
+ isEq = aSample[i].u.i==v;
+ break;
+ }
+ }else{
+ assert( aSample[i].eType==SQLITE_FLOAT );
+ if( aSample[i].u.r>=r ){
+ isEq = aSample[i].u.r==r;
+ break;
+ }
+ }
+ }
+ }else if( eType==SQLITE_FLOAT ){
+ r = sqlite3_value_double(pVal);
+ for(i=0; i<pIdx->nSample; i++){
+ if( aSample[i].eType==SQLITE_NULL ) continue;
+ if( aSample[i].eType>=SQLITE_TEXT ) break;
+ if( aSample[i].eType==SQLITE_FLOAT ){
+ rS = aSample[i].u.r;
+ }else{
+ rS = aSample[i].u.i;
+ }
+ if( rS>=r ){
+ isEq = rS==r;
+ break;
+ }
+ }
+ }else if( eType==SQLITE_NULL ){
+ i = 0;
+ if( aSample[0].eType==SQLITE_NULL ) isEq = 1;
+ }else{
+ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
+ for(i=0; i<pIdx->nSample; i++){
+ if( aSample[i].eType==SQLITE_TEXT || aSample[i].eType==SQLITE_BLOB ){
+ break;
+ }
+ }
+ if( i<pIdx->nSample ){
+ sqlite3 *db = pParse->db;
+ CollSeq *pColl;
+ const u8 *z;
+ if( eType==SQLITE_BLOB ){
+ z = (const u8 *)sqlite3_value_blob(pVal);
+ pColl = db->pDfltColl;
+ assert( pColl->enc==SQLITE_UTF8 );
+ }else{
+ pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
+ if( pColl==0 ){
+ sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
+ *pIdx->azColl);
+ return SQLITE_ERROR;
+ }
+ z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
+ if( !z ){
+ return SQLITE_NOMEM;
+ }
+ assert( z && pColl && pColl->xCmp );
+ }
+ n = sqlite3ValueBytes(pVal, pColl->enc);
+
+ for(; i<pIdx->nSample; i++){
+ int c;
+ int eSampletype = aSample[i].eType;
+ if( eSampletype<eType ) continue;
+ if( eSampletype!=eType ) break;
+#ifndef SQLITE_OMIT_UTF16
+ if( pColl->enc!=SQLITE_UTF8 ){
+ int nSample;
+ char *zSample = sqlite3Utf8to16(
+ db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
+ );
+ if( !zSample ){
+ assert( db->mallocFailed );
+ return SQLITE_NOMEM;
+ }
+ c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
+ sqlite3DbFree(db, zSample);
+ }else
+#endif
+ {
+ c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
+ }
+ if( c>=0 ){
+ if( c==0 ) isEq = 1;
+ break;
+ }
+ }
+ }
+ }
+
+ /* At this point, aSample[i] is the first sample that is greater than
+ ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less
+ ** than pVal. If aSample[i]==pVal, then isEq==1.
+ */
+ if( isEq ){
+ assert( i<pIdx->nSample );
+ aStat[0] = aSample[i].nLt;
+ aStat[1] = aSample[i].nEq;
+ }else{
+ tRowcnt iLower, iUpper, iGap;
+ if( i==0 ){
+ iLower = 0;
+ iUpper = aSample[0].nLt;
+ }else{
+ iUpper = i>=pIdx->nSample ? n : aSample[i].nLt;
+ iLower = aSample[i-1].nEq + aSample[i-1].nLt;
+ }
+ aStat[1] = pIdx->avgEq;
+ if( iLower>=iUpper ){
+ iGap = 0;
+ }else{
+ iGap = iUpper - iLower;
+ }
+ if( roundUp ){
+ iGap = (iGap*2)/3;
+ }else{
+ iGap = iGap/3;
+ }
+ aStat[0] = iLower + iGap;
+ }
+ return SQLITE_OK;
+}
+#endif /* SQLITE_ENABLE_STAT3 */
+
+/*
+** If expression pExpr represents a literal value, set *pp to point to
+** an sqlite3_value structure containing the same value, with affinity
+** aff applied to it, before returning. It is the responsibility of the
+** caller to eventually release this structure by passing it to
+** sqlite3ValueFree().
+**
+** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
+** is an SQL variable that currently has a non-NULL value bound to it,
+** create an sqlite3_value structure containing this value, again with
+** affinity aff applied to it, instead.
+**
+** If neither of the above apply, set *pp to NULL.
+**
+** If an error occurs, return an error code. Otherwise, SQLITE_OK.
+*/
+#ifdef SQLITE_ENABLE_STAT3
+static int valueFromExpr(
+ Parse *pParse,
+ Expr *pExpr,
+ u8 aff,
+ sqlite3_value **pp
+){
+ if( pExpr->op==TK_VARIABLE
+ || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
+ ){
+ int iVar = pExpr->iColumn;
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
+ *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
+ return SQLITE_OK;
+ }
+ return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
+}
+#endif
+
+/*
+** This function is used to estimate the number of rows that will be visited
+** by scanning an index for a range of values. The range may have an upper
+** bound, a lower bound, or both. The WHERE clause terms that set the upper
+** and lower bounds are represented by pLower and pUpper respectively. For
+** example, assuming that index p is on t1(a):
+**
+** ... FROM t1 WHERE a > ? AND a < ? ...
+** |_____| |_____|
+** | |
+** pLower pUpper
+**
+** If either of the upper or lower bound is not present, then NULL is passed in
+** place of the corresponding WhereTerm.
+**
+** The nEq parameter is passed the index of the index column subject to the
+** range constraint. Or, equivalently, the number of equality constraints
+** optimized by the proposed index scan. For example, assuming index p is
+** on t1(a, b), and the SQL query is:
+**
+** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
+**
+** then nEq should be passed the value 1 (as the range restricted column,
+** b, is the second left-most column of the index). Or, if the query is:
+**
+** ... FROM t1 WHERE a > ? AND a < ? ...
+**
+** then nEq should be passed 0.
+**
+** The returned value is an integer divisor to reduce the estimated
+** search space. A return value of 1 means that range constraints are
+** no help at all. A return value of 2 means range constraints are
+** expected to reduce the search space by half. And so forth...
+**
+** In the absence of sqlite_stat3 ANALYZE data, each range inequality
+** reduces the search space by a factor of 4. Hence a single constraint (x>?)
+** results in a return of 4 and a range constraint (x>? AND x<?) results
+** in a return of 16.
+*/
+static int whereRangeScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ Index *p, /* The index containing the range-compared column; "x" */
+ int nEq, /* index into p->aCol[] of the range-compared column */
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
+ double *pRangeDiv /* OUT: Reduce search space by this divisor */
+){
+ int rc = SQLITE_OK;
+
+#ifdef SQLITE_ENABLE_STAT3
+
+ if( nEq==0 && p->nSample ){
+ sqlite3_value *pRangeVal;
+ tRowcnt iLower = 0;
+ tRowcnt iUpper = p->aiRowEst[0];
+ tRowcnt a[2];
+ u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
+
+ if( pLower ){
+ Expr *pExpr = pLower->pExpr->pRight;
+ rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
+ assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
+ if( rc==SQLITE_OK
+ && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
+ ){
+ iLower = a[0];
+ if( pLower->eOperator==WO_GT ) iLower += a[1];
+ }
+ sqlite3ValueFree(pRangeVal);
+ }
+ if( rc==SQLITE_OK && pUpper ){
+ Expr *pExpr = pUpper->pExpr->pRight;
+ rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
+ assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
+ if( rc==SQLITE_OK
+ && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
+ ){
+ iUpper = a[0];
+ if( pUpper->eOperator==WO_LE ) iUpper += a[1];
+ }
+ sqlite3ValueFree(pRangeVal);
+ }
+ if( rc==SQLITE_OK ){
+ if( iUpper<=iLower ){
+ *pRangeDiv = (double)p->aiRowEst[0];
+ }else{
+ *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower);
+ }
+ WHERETRACE(("range scan regions: %u..%u div=%g\n",
+ (u32)iLower, (u32)iUpper, *pRangeDiv));
+ return SQLITE_OK;
+ }
+ }
+#else
+ UNUSED_PARAMETER(pParse);
+ UNUSED_PARAMETER(p);
+ UNUSED_PARAMETER(nEq);
+#endif
+ assert( pLower || pUpper );
+ *pRangeDiv = (double)1;
+ if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *pRangeDiv *= (double)4;
+ if( pUpper ) *pRangeDiv *= (double)4;
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_STAT3
+/*
+** Estimate the number of rows that will be returned based on
+** an equality constraint x=VALUE and where that VALUE occurs in
+** the histogram data. This only works when x is the left-most
+** column of an index and sqlite_stat3 histogram data is available
+** for that index. When pExpr==NULL that means the constraint is
+** "x IS NULL" instead of "x=VALUE".
+**
+** Write the estimated row count into *pnRow and return SQLITE_OK.
+** If unable to make an estimate, leave *pnRow unchanged and return
+** non-zero.
+**
+** This routine can fail if it is unable to load a collating sequence
+** required for string comparison, or if unable to allocate memory
+** for a UTF conversion required for comparison. The error is stored
+** in the pParse structure.
+*/
+static int whereEqualScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ Index *p, /* The index whose left-most column is pTerm */
+ Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
+ double *pnRow /* Write the revised row estimate here */
+){
+ sqlite3_value *pRhs = 0; /* VALUE on right-hand side of pTerm */
+ u8 aff; /* Column affinity */
+ int rc; /* Subfunction return code */
+ tRowcnt a[2]; /* Statistics */
+
+ assert( p->aSample!=0 );
+ assert( p->nSample>0 );
+ aff = p->pTable->aCol[p->aiColumn[0]].affinity;
+ if( pExpr ){
+ rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
+ if( rc ) goto whereEqualScanEst_cancel;
+ }else{
+ pRhs = sqlite3ValueNew(pParse->db);
+ }
+ if( pRhs==0 ) return SQLITE_NOTFOUND;
+ rc = whereKeyStats(pParse, p, pRhs, 0, a);
+ if( rc==SQLITE_OK ){
+ WHERETRACE(("equality scan regions: %d\n", (int)a[1]));
+ *pnRow = a[1];
+ }
+whereEqualScanEst_cancel:
+ sqlite3ValueFree(pRhs);
+ return rc;
+}
+#endif /* defined(SQLITE_ENABLE_STAT3) */
+
+#ifdef SQLITE_ENABLE_STAT3
+/*
+** Estimate the number of rows that will be returned based on
+** an IN constraint where the right-hand side of the IN operator
+** is a list of values. Example:
+**
+** WHERE x IN (1,2,3,4)
+**
+** Write the estimated row count into *pnRow and return SQLITE_OK.
+** If unable to make an estimate, leave *pnRow unchanged and return
+** non-zero.
+**
+** This routine can fail if it is unable to load a collating sequence
+** required for string comparison, or if unable to allocate memory
+** for a UTF conversion required for comparison. The error is stored
+** in the pParse structure.
+*/
+static int whereInScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ Index *p, /* The index whose left-most column is pTerm */
+ ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
+ double *pnRow /* Write the revised row estimate here */
+){
+ int rc = SQLITE_OK; /* Subfunction return code */
+ double nEst; /* Number of rows for a single term */
+ double nRowEst = (double)0; /* New estimate of the number of rows */
+ int i; /* Loop counter */
+
+ assert( p->aSample!=0 );
+ for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
+ nEst = p->aiRowEst[0];
+ rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst);
+ nRowEst += nEst;
+ }
+ if( rc==SQLITE_OK ){
+ if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
+ *pnRow = nRowEst;
+ WHERETRACE(("IN row estimate: est=%g\n", nRowEst));
+ }
+ return rc;
+}
+#endif /* defined(SQLITE_ENABLE_STAT3) */
+
+
+/*
+** Find the best query plan for accessing a particular table. Write the
+** best query plan and its cost into the WhereCost object supplied as the
+** last parameter.
+**
+** The lowest cost plan wins. The cost is an estimate of the amount of
+** CPU and disk I/O needed to process the requested result.
+** Factors that influence cost include:
+**
+** * The estimated number of rows that will be retrieved. (The
+** fewer the better.)
+**
+** * Whether or not sorting must occur.
+**
+** * Whether or not there must be separate lookups in the
+** index and in the main table.
+**
+** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
+** the SQL statement, then this function only considers plans using the
+** named index. If no such plan is found, then the returned cost is
+** SQLITE_BIG_DBL. If a plan is found that uses the named index,
+** then the cost is calculated in the usual way.
+**
+** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
+** in the SELECT statement, then no indexes are considered. However, the
+** selected plan may still take advantage of the built-in rowid primary key
+** index.
+*/
+static void bestBtreeIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors not available for indexing */
+ Bitmask notValid, /* Cursors not available for any purpose */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ ExprList *pDistinct, /* The select-list if query is DISTINCT */
+ WhereCost *pCost /* Lowest cost query plan */
+){
+ int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
+ Index *pProbe; /* An index we are evaluating */
+ Index *pIdx; /* Copy of pProbe, or zero for IPK index */
+ int eqTermMask; /* Current mask of valid equality operators */
+ int idxEqTermMask; /* Index mask of valid equality operators */
+ Index sPk; /* A fake index object for the primary key */
+ tRowcnt aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
+ int aiColumnPk = -1; /* The aColumn[] value for the sPk index */
+ int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */
+
+ /* Initialize the cost to a worst-case value */
+ memset(pCost, 0, sizeof(*pCost));
+ pCost->rCost = SQLITE_BIG_DBL;
+
+ /* If the pSrc table is the right table of a LEFT JOIN then we may not
+ ** use an index to satisfy IS NULL constraints on that table. This is
+ ** because columns might end up being NULL if the table does not match -
+ ** a circumstance which the index cannot help us discover. Ticket #2177.
+ */
+ if( pSrc->jointype & JT_LEFT ){
+ idxEqTermMask = WO_EQ|WO_IN;
+ }else{
+ idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
+ }
+
+ if( pSrc->pIndex ){
+ /* An INDEXED BY clause specifies a particular index to use */
+ pIdx = pProbe = pSrc->pIndex;
+ wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
+ eqTermMask = idxEqTermMask;
+ }else{
+ /* There is no INDEXED BY clause. Create a fake Index object in local
+ ** variable sPk to represent the rowid primary key index. Make this
+ ** fake index the first in a chain of Index objects with all of the real
+ ** indices to follow */
+ Index *pFirst; /* First of real indices on the table */
+ memset(&sPk, 0, sizeof(Index));
+ sPk.nColumn = 1;
+ sPk.aiColumn = &aiColumnPk;
+ sPk.aiRowEst = aiRowEstPk;
+ sPk.onError = OE_Replace;
+ sPk.pTable = pSrc->pTab;
+ aiRowEstPk[0] = pSrc->pTab->nRowEst;
+ aiRowEstPk[1] = 1;
+ pFirst = pSrc->pTab->pIndex;
+ if( pSrc->notIndexed==0 ){
+ /* The real indices of the table are only considered if the
+ ** NOT INDEXED qualifier is omitted from the FROM clause */
+ sPk.pNext = pFirst;
+ }
+ pProbe = &sPk;
+ wsFlagMask = ~(
+ WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
+ );
+ eqTermMask = WO_EQ|WO_IN;
+ pIdx = 0;
+ }
+
+ /* Loop over all indices looking for the best one to use
+ */
+ for(; pProbe; pIdx=pProbe=pProbe->pNext){
+ const tRowcnt * const aiRowEst = pProbe->aiRowEst;
+ double cost; /* Cost of using pProbe */
+ double nRow; /* Estimated number of rows in result set */
+ double log10N = (double)1; /* base-10 logarithm of nRow (inexact) */
+ int rev; /* True to scan in reverse order */
+ int wsFlags = 0;
+ Bitmask used = 0;
+
+ /* The following variables are populated based on the properties of
+ ** index being evaluated. They are then used to determine the expected
+ ** cost and number of rows returned.
+ **
+ ** nEq:
+ ** Number of equality terms that can be implemented using the index.
+ ** In other words, the number of initial fields in the index that
+ ** are used in == or IN or NOT NULL constraints of the WHERE clause.
+ **
+ ** nInMul:
+ ** The "in-multiplier". This is an estimate of how many seek operations
+ ** SQLite must perform on the index in question. For example, if the
+ ** WHERE clause is:
+ **
+ ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
+ **
+ ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
+ ** set to 9. Given the same schema and either of the following WHERE
+ ** clauses:
+ **
+ ** WHERE a = 1
+ ** WHERE a >= 2
+ **
+ ** nInMul is set to 1.
+ **
+ ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
+ ** the sub-select is assumed to return 25 rows for the purposes of
+ ** determining nInMul.
+ **
+ ** bInEst:
+ ** Set to true if there was at least one "x IN (SELECT ...)" term used
+ ** in determining the value of nInMul. Note that the RHS of the
+ ** IN operator must be a SELECT, not a value list, for this variable
+ ** to be true.
+ **
+ ** rangeDiv:
+ ** An estimate of a divisor by which to reduce the search space due
+ ** to inequality constraints. In the absence of sqlite_stat3 ANALYZE
+ ** data, a single inequality reduces the search space to 1/4rd its
+ ** original size (rangeDiv==4). Two inequalities reduce the search
+ ** space to 1/16th of its original size (rangeDiv==16).
+ **
+ ** bSort:
+ ** Boolean. True if there is an ORDER BY clause that will require an
+ ** external sort (i.e. scanning the index being evaluated will not
+ ** correctly order records).
+ **
+ ** bLookup:
+ ** Boolean. True if a table lookup is required for each index entry
+ ** visited. In other words, true if this is not a covering index.
+ ** This is always false for the rowid primary key index of a table.
+ ** For other indexes, it is true unless all the columns of the table
+ ** used by the SELECT statement are present in the index (such an
+ ** index is sometimes described as a covering index).
+ ** For example, given the index on (a, b), the second of the following
+ ** two queries requires table b-tree lookups in order to find the value
+ ** of column c, but the first does not because columns a and b are
+ ** both available in the index.
+ **
+ ** SELECT a, b FROM tbl WHERE a = 1;
+ ** SELECT a, b, c FROM tbl WHERE a = 1;
+ */
+ int nEq; /* Number of == or IN terms matching index */
+ int bInEst = 0; /* True if "x IN (SELECT...)" seen */
+ int nInMul = 1; /* Number of distinct equalities to lookup */
+ double rangeDiv = (double)1; /* Estimated reduction in search space */
+ int nBound = 0; /* Number of range constraints seen */
+ int bSort = !!pOrderBy; /* True if external sort required */
+ int bDist = !!pDistinct; /* True if index cannot help with DISTINCT */
+ int bLookup = 0; /* True if not a covering index */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+#ifdef SQLITE_ENABLE_STAT3
+ WhereTerm *pFirstTerm = 0; /* First term matching the index */
+#endif
+
+ /* Determine the values of nEq and nInMul */
+ for(nEq=0; nEq<pProbe->nColumn; nEq++){
+ int j = pProbe->aiColumn[nEq];
+ pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
+ if( pTerm==0 ) break;
+ wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
+ testcase( pTerm->pWC!=pWC );
+ if( pTerm->eOperator & WO_IN ){
+ Expr *pExpr = pTerm->pExpr;
+ wsFlags |= WHERE_COLUMN_IN;
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){
+ /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */
+ nInMul *= 25;
+ bInEst = 1;
+ }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
+ /* "x IN (value, value, ...)" */
+ nInMul *= pExpr->x.pList->nExpr;
+ }
+ }else if( pTerm->eOperator & WO_ISNULL ){
+ wsFlags |= WHERE_COLUMN_NULL;
+ }
+#ifdef SQLITE_ENABLE_STAT3
+ if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
+#endif
+ used |= pTerm->prereqRight;
+ }
+
+ /* Determine the value of rangeDiv */
+ if( nEq<pProbe->nColumn && pProbe->bUnordered==0 ){
+ int j = pProbe->aiColumn[nEq];
+ if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
+ WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
+ WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
+ whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &rangeDiv);
+ if( pTop ){
+ nBound = 1;
+ wsFlags |= WHERE_TOP_LIMIT;
+ used |= pTop->prereqRight;
+ testcase( pTop->pWC!=pWC );
+ }
+ if( pBtm ){
+ nBound++;
+ wsFlags |= WHERE_BTM_LIMIT;
+ used |= pBtm->prereqRight;
+ testcase( pBtm->pWC!=pWC );
+ }
+ wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
+ }
+ }else if( pProbe->onError!=OE_None ){
+ testcase( wsFlags & WHERE_COLUMN_IN );
+ testcase( wsFlags & WHERE_COLUMN_NULL );
+ if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
+ wsFlags |= WHERE_UNIQUE;
+ }
+ }
+
+ /* If there is an ORDER BY clause and the index being considered will
+ ** naturally scan rows in the required order, set the appropriate flags
+ ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
+ ** will scan rows in a different order, set the bSort variable. */
+ if( isSortingIndex(
+ pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, nEq, wsFlags, &rev)
+ ){
+ bSort = 0;
+ wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
+ wsFlags |= (rev ? WHERE_REVERSE : 0);
+ }
+
+ /* If there is a DISTINCT qualifier and this index will scan rows in
+ ** order of the DISTINCT expressions, clear bDist and set the appropriate
+ ** flags in wsFlags. */
+ if( isDistinctIndex(pParse, pWC, pProbe, iCur, pDistinct, nEq) ){
+ bDist = 0;
+ wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT;
+ }
+
+ /* If currently calculating the cost of using an index (not the IPK
+ ** index), determine if all required column data may be obtained without
+ ** using the main table (i.e. if the index is a covering
+ ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
+ ** wsFlags. Otherwise, set the bLookup variable to true. */
+ if( pIdx && wsFlags ){
+ Bitmask m = pSrc->colUsed;
+ int j;
+ for(j=0; j<pIdx->nColumn; j++){
+ int x = pIdx->aiColumn[j];
+ if( x<BMS-1 ){
+ m &= ~(((Bitmask)1)<<x);
+ }
+ }
+ if( m==0 ){
+ wsFlags |= WHERE_IDX_ONLY;
+ }else{
+ bLookup = 1;
+ }
+ }
+
+ /*
+ ** Estimate the number of rows of output. For an "x IN (SELECT...)"
+ ** constraint, do not let the estimate exceed half the rows in the table.
+ */
+ nRow = (double)(aiRowEst[nEq] * nInMul);
+ if( bInEst && nRow*2>aiRowEst[0] ){
+ nRow = aiRowEst[0]/2;
+ nInMul = (int)(nRow / aiRowEst[nEq]);
+ }
+
+#ifdef SQLITE_ENABLE_STAT3
+ /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
+ ** and we do not think that values of x are unique and if histogram
+ ** data is available for column x, then it might be possible
+ ** to get a better estimate on the number of rows based on
+ ** VALUE and how common that value is according to the histogram.
+ */
+ if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){
+ assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
+ if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
+ testcase( pFirstTerm->eOperator==WO_EQ );
+ testcase( pFirstTerm->eOperator==WO_ISNULL );
+ whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
+ }else if( bInEst==0 ){
+ assert( pFirstTerm->eOperator==WO_IN );
+ whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
+ }
+ }
+#endif /* SQLITE_ENABLE_STAT3 */
+
+ /* Adjust the number of output rows and downward to reflect rows
+ ** that are excluded by range constraints.
+ */
+ nRow = nRow/rangeDiv;
+ if( nRow<1 ) nRow = 1;
+
+ /* Experiments run on real SQLite databases show that the time needed
+ ** to do a binary search to locate a row in a table or index is roughly
+ ** log10(N) times the time to move from one row to the next row within
+ ** a table or index. The actual times can vary, with the size of
+ ** records being an important factor. Both moves and searches are
+ ** slower with larger records, presumably because fewer records fit
+ ** on one page and hence more pages have to be fetched.
+ **
+ ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do
+ ** not give us data on the relative sizes of table and index records.
+ ** So this computation assumes table records are about twice as big
+ ** as index records
+ */
+ if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){
+ /* The cost of a full table scan is a number of move operations equal
+ ** to the number of rows in the table.
+ **
+ ** We add an additional 4x penalty to full table scans. This causes
+ ** the cost function to err on the side of choosing an index over
+ ** choosing a full scan. This 4x full-scan penalty is an arguable
+ ** decision and one which we expect to revisit in the future. But
+ ** it seems to be working well enough at the moment.
+ */
+ cost = aiRowEst[0]*4;
+ }else{
+ log10N = estLog(aiRowEst[0]);
+ cost = nRow;
+ if( pIdx ){
+ if( bLookup ){
+ /* For an index lookup followed by a table lookup:
+ ** nInMul index searches to find the start of each index range
+ ** + nRow steps through the index
+ ** + nRow table searches to lookup the table entry using the rowid
+ */
+ cost += (nInMul + nRow)*log10N;
+ }else{
+ /* For a covering index:
+ ** nInMul index searches to find the initial entry
+ ** + nRow steps through the index
+ */
+ cost += nInMul*log10N;
+ }
+ }else{
+ /* For a rowid primary key lookup:
+ ** nInMult table searches to find the initial entry for each range
+ ** + nRow steps through the table
+ */
+ cost += nInMul*log10N;
+ }
+ }
+
+ /* Add in the estimated cost of sorting the result. Actual experimental
+ ** measurements of sorting performance in SQLite show that sorting time
+ ** adds C*N*log10(N) to the cost, where N is the number of rows to be
+ ** sorted and C is a factor between 1.95 and 4.3. We will split the
+ ** difference and select C of 3.0.
+ */
+ if( bSort ){
+ cost += nRow*estLog(nRow)*3;
+ }
+ if( bDist ){
+ cost += nRow*estLog(nRow)*3;
+ }
+
+ /**** Cost of using this index has now been computed ****/
+
+ /* If there are additional constraints on this table that cannot
+ ** be used with the current index, but which might lower the number
+ ** of output rows, adjust the nRow value accordingly. This only
+ ** matters if the current index is the least costly, so do not bother
+ ** with this step if we already know this index will not be chosen.
+ ** Also, never reduce the output row count below 2 using this step.
+ **
+ ** It is critical that the notValid mask be used here instead of
+ ** the notReady mask. When computing an "optimal" index, the notReady
+ ** mask will only have one bit set - the bit for the current table.
+ ** The notValid mask, on the other hand, always has all bits set for
+ ** tables that are not in outer loops. If notReady is used here instead
+ ** of notValid, then a optimal index that depends on inner joins loops
+ ** might be selected even when there exists an optimal index that has
+ ** no such dependency.
+ */
+ if( nRow>2 && cost<=pCost->rCost ){
+ int k; /* Loop counter */
+ int nSkipEq = nEq; /* Number of == constraints to skip */
+ int nSkipRange = nBound; /* Number of < constraints to skip */
+ Bitmask thisTab; /* Bitmap for pSrc */
+
+ thisTab = getMask(pWC->pMaskSet, iCur);
+ for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){
+ if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
+ if( (pTerm->prereqAll & notValid)!=thisTab ) continue;
+ if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
+ if( nSkipEq ){
+ /* Ignore the first nEq equality matches since the index
+ ** has already accounted for these */
+ nSkipEq--;
+ }else{
+ /* Assume each additional equality match reduces the result
+ ** set size by a factor of 10 */
+ nRow /= 10;
+ }
+ }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
+ if( nSkipRange ){
+ /* Ignore the first nSkipRange range constraints since the index
+ ** has already accounted for these */
+ nSkipRange--;
+ }else{
+ /* Assume each additional range constraint reduces the result
+ ** set size by a factor of 3. Indexed range constraints reduce
+ ** the search space by a larger factor: 4. We make indexed range
+ ** more selective intentionally because of the subjective
+ ** observation that indexed range constraints really are more
+ ** selective in practice, on average. */
+ nRow /= 3;
+ }
+ }else if( pTerm->eOperator!=WO_NOOP ){
+ /* Any other expression lowers the output row count by half */
+ nRow /= 2;
+ }
+ }
+ if( nRow<2 ) nRow = 2;
+ }
+
+
+ WHERETRACE((
+ "%s(%s): nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
+ " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
+ pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
+ nEq, nInMul, (int)rangeDiv, bSort, bLookup, wsFlags,
+ notReady, log10N, nRow, cost, used
+ ));
+
+ /* If this index is the best we have seen so far, then record this
+ ** index and its cost in the pCost structure.
+ */
+ if( (!pIdx || wsFlags)
+ && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow))
+ ){
+ pCost->rCost = cost;
+ pCost->used = used;
+ pCost->plan.nRow = nRow;
+ pCost->plan.wsFlags = (wsFlags&wsFlagMask);
+ pCost->plan.nEq = nEq;
+ pCost->plan.u.pIdx = pIdx;
+ }
+
+ /* If there was an INDEXED BY clause, then only that one index is
+ ** considered. */
+ if( pSrc->pIndex ) break;
+
+ /* Reset masks for the next index in the loop */
+ wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
+ eqTermMask = idxEqTermMask;
+ }
+
+ /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
+ ** is set, then reverse the order that the index will be scanned
+ ** in. This is used for application testing, to help find cases
+ ** where application behaviour depends on the (undefined) order that
+ ** SQLite outputs rows in in the absence of an ORDER BY clause. */
+ if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
+ pCost->plan.wsFlags |= WHERE_REVERSE;
+ }
+
+ assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
+ assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
+ assert( pSrc->pIndex==0
+ || pCost->plan.u.pIdx==0
+ || pCost->plan.u.pIdx==pSrc->pIndex
+ );
+
+ WHERETRACE(("best index is: %s\n",
+ ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" :
+ pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
+ ));
+
+ bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
+ bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
+ pCost->plan.wsFlags |= eqTermMask;
+}
+
+/*
+** Find the query plan for accessing table pSrc->pTab. Write the
+** best query plan and its cost into the WhereCost object supplied
+** as the last parameter. This function may calculate the cost of
+** both real and virtual table scans.
+*/
+static void bestIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors not available for indexing */
+ Bitmask notValid, /* Cursors not available for any purpose */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ WhereCost *pCost /* Lowest cost query plan */
+){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pSrc->pTab) ){
+ sqlite3_index_info *p = 0;
+ bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p);
+ if( p->needToFreeIdxStr ){
+ sqlite3_free(p->idxStr);
+ }
+ sqlite3DbFree(pParse->db, p);
+ }else
+#endif
+ {
+ bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, 0, pCost);
+ }
+}
+
+/*
+** Disable a term in the WHERE clause. Except, do not disable the term
+** if it controls a LEFT OUTER JOIN and it did not originate in the ON
+** or USING clause of that join.
+**
+** Consider the term t2.z='ok' in the following queries:
+**
+** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
+** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
+** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
+**
+** The t2.z='ok' is disabled in the in (2) because it originates
+** in the ON clause. The term is disabled in (3) because it is not part
+** of a LEFT OUTER JOIN. In (1), the term is not disabled.
+**
+** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
+** completely satisfied by indices.
+**
+** Disabling a term causes that term to not be tested in the inner loop
+** of the join. Disabling is an optimization. When terms are satisfied
+** by indices, we disable them to prevent redundant tests in the inner
+** loop. We would get the correct results if nothing were ever disabled,
+** but joins might run a little slower. The trick is to disable as much
+** as we can without disabling too much. If we disabled in (1), we'd get
+** the wrong answer. See ticket #813.
+*/
+static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
+ if( pTerm
+ && (pTerm->wtFlags & TERM_CODED)==0
+ && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
+ ){
+ pTerm->wtFlags |= TERM_CODED;
+ if( pTerm->iParent>=0 ){
+ WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
+ if( (--pOther->nChild)==0 ){
+ disableTerm(pLevel, pOther);
+ }
+ }
+ }
+}
+
+/*
+** Code an OP_Affinity opcode to apply the column affinity string zAff
+** to the n registers starting at base.
+**
+** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
+** beginning and end of zAff are ignored. If all entries in zAff are
+** SQLITE_AFF_NONE, then no code gets generated.
+**
+** This routine makes its own copy of zAff so that the caller is free
+** to modify zAff after this routine returns.
+*/
+static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
+ Vdbe *v = pParse->pVdbe;
+ if( zAff==0 ){
+ assert( pParse->db->mallocFailed );
+ return;
+ }
+ assert( v!=0 );
+
+ /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
+ ** and end of the affinity string.
+ */
+ while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
+ n--;
+ base++;
+ zAff++;
+ }
+ while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
+ n--;
+ }
+
+ /* Code the OP_Affinity opcode if there is anything left to do. */
+ if( n>0 ){
+ sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
+ sqlite3VdbeChangeP4(v, -1, zAff, n);
+ sqlite3ExprCacheAffinityChange(pParse, base, n);
+ }
+}
+
+
+/*
+** Generate code for a single equality term of the WHERE clause. An equality
+** term can be either X=expr or X IN (...). pTerm is the term to be
+** coded.
+**
+** The current value for the constraint is left in register iReg.
+**
+** For a constraint of the form X=expr, the expression is evaluated and its
+** result is left on the stack. For constraints of the form X IN (...)
+** this routine sets up a loop that will iterate over all values of X.
+*/
+static int codeEqualityTerm(
+ Parse *pParse, /* The parsing context */
+ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
+ WhereLevel *pLevel, /* When level of the FROM clause we are working on */
+ int iTarget /* Attempt to leave results in this register */
+){
+ Expr *pX = pTerm->pExpr;
+ Vdbe *v = pParse->pVdbe;
+ int iReg; /* Register holding results */
+
+ assert( iTarget>0 );
+ if( pX->op==TK_EQ ){
+ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
+ }else if( pX->op==TK_ISNULL ){
+ iReg = iTarget;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
+#ifndef SQLITE_OMIT_SUBQUERY
+ }else{
+ int eType;
+ int iTab;
+ struct InLoop *pIn;
+
+ assert( pX->op==TK_IN );
+ iReg = iTarget;
+ eType = sqlite3FindInIndex(pParse, pX, 0);
+ iTab = pX->iTable;
+ sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
+ assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
+ if( pLevel->u.in.nIn==0 ){
+ pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
+ }
+ pLevel->u.in.nIn++;
+ pLevel->u.in.aInLoop =
+ sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
+ sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
+ pIn = pLevel->u.in.aInLoop;
+ if( pIn ){
+ pIn += pLevel->u.in.nIn - 1;
+ pIn->iCur = iTab;
+ if( eType==IN_INDEX_ROWID ){
+ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
+ }else{
+ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
+ }
+ sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
+ }else{
+ pLevel->u.in.nIn = 0;
+ }
+#endif
+ }
+ disableTerm(pLevel, pTerm);
+ return iReg;
+}
+
+/*
+** Generate code that will evaluate all == and IN constraints for an
+** index.
+**
+** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
+** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
+** The index has as many as three equality constraints, but in this
+** example, the third "c" value is an inequality. So only two
+** constraints are coded. This routine will generate code to evaluate
+** a==5 and b IN (1,2,3). The current values for a and b will be stored
+** in consecutive registers and the index of the first register is returned.
+**
+** In the example above nEq==2. But this subroutine works for any value
+** of nEq including 0. If nEq==0, this routine is nearly a no-op.
+** The only thing it does is allocate the pLevel->iMem memory cell and
+** compute the affinity string.
+**
+** This routine always allocates at least one memory cell and returns
+** the index of that memory cell. The code that
+** calls this routine will use that memory cell to store the termination
+** key value of the loop. If one or more IN operators appear, then
+** this routine allocates an additional nEq memory cells for internal
+** use.
+**
+** Before returning, *pzAff is set to point to a buffer containing a
+** copy of the column affinity string of the index allocated using
+** sqlite3DbMalloc(). Except, entries in the copy of the string associated
+** with equality constraints that use NONE affinity are set to
+** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
+**
+** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
+** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
+**
+** In the example above, the index on t1(a) has TEXT affinity. But since
+** the right hand side of the equality constraint (t2.b) has NONE affinity,
+** no conversion should be attempted before using a t2.b value as part of
+** a key to search the index. Hence the first byte in the returned affinity
+** string in this example would be set to SQLITE_AFF_NONE.
+*/
+static int codeAllEqualityTerms(
+ Parse *pParse, /* Parsing context */
+ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
+ WhereClause *pWC, /* The WHERE clause */
+ Bitmask notReady, /* Which parts of FROM have not yet been coded */
+ int nExtraReg, /* Number of extra registers to allocate */
+ char **pzAff /* OUT: Set to point to affinity string */
+){
+ int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
+ Vdbe *v = pParse->pVdbe; /* The vm under construction */
+ Index *pIdx; /* The index being used for this loop */
+ int iCur = pLevel->iTabCur; /* The cursor of the table */
+ WhereTerm *pTerm; /* A single constraint term */
+ int j; /* Loop counter */
+ int regBase; /* Base register */
+ int nReg; /* Number of registers to allocate */
+ char *zAff; /* Affinity string to return */
+
+ /* This module is only called on query plans that use an index. */
+ assert( pLevel->plan.wsFlags & WHERE_INDEXED );
+ pIdx = pLevel->plan.u.pIdx;
+
+ /* Figure out how many memory cells we will need then allocate them.
+ */
+ regBase = pParse->nMem + 1;
+ nReg = pLevel->plan.nEq + nExtraReg;
+ pParse->nMem += nReg;
+
+ zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
+ if( !zAff ){
+ pParse->db->mallocFailed = 1;
+ }
+
+ /* Evaluate the equality constraints
+ */
+ assert( pIdx->nColumn>=nEq );
+ for(j=0; j<nEq; j++){
+ int r1;
+ int k = pIdx->aiColumn[j];
+ pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
+ if( NEVER(pTerm==0) ) break;
+ /* The following true for indices with redundant columns.
+ ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
+ testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
+ r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
+ if( r1!=regBase+j ){
+ if( nReg==1 ){
+ sqlite3ReleaseTempReg(pParse, regBase);
+ regBase = r1;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
+ }
+ }
+ testcase( pTerm->eOperator & WO_ISNULL );
+ testcase( pTerm->eOperator & WO_IN );
+ if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
+ Expr *pRight = pTerm->pExpr->pRight;
+ sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
+ if( zAff ){
+ if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
+ zAff[j] = SQLITE_AFF_NONE;
+ }
+ if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
+ zAff[j] = SQLITE_AFF_NONE;
+ }
+ }
+ }
+ }
+ *pzAff = zAff;
+ return regBase;
+}
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** This routine is a helper for explainIndexRange() below
+**
+** pStr holds the text of an expression that we are building up one term
+** at a time. This routine adds a new term to the end of the expression.
+** Terms are separated by AND so add the "AND" text for second and subsequent
+** terms only.
+*/
+static void explainAppendTerm(
+ StrAccum *pStr, /* The text expression being built */
+ int iTerm, /* Index of this term. First is zero */
+ const char *zColumn, /* Name of the column */
+ const char *zOp /* Name of the operator */
+){
+ if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
+ sqlite3StrAccumAppend(pStr, zColumn, -1);
+ sqlite3StrAccumAppend(pStr, zOp, 1);
+ sqlite3StrAccumAppend(pStr, "?", 1);
+}
+
+/*
+** Argument pLevel describes a strategy for scanning table pTab. This
+** function returns a pointer to a string buffer containing a description
+** of the subset of table rows scanned by the strategy in the form of an
+** SQL expression. Or, if all rows are scanned, NULL is returned.
+**
+** For example, if the query:
+**
+** SELECT * FROM t1 WHERE a=1 AND b>2;
+**
+** is run and there is an index on (a, b), then this function returns a
+** string similar to:
+**
+** "a=? AND b>?"
+**
+** The returned pointer points to memory obtained from sqlite3DbMalloc().
+** It is the responsibility of the caller to free the buffer when it is
+** no longer required.
+*/
+static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){
+ WherePlan *pPlan = &pLevel->plan;
+ Index *pIndex = pPlan->u.pIdx;
+ int nEq = pPlan->nEq;
+ int i, j;
+ Column *aCol = pTab->aCol;
+ int *aiColumn = pIndex->aiColumn;
+ StrAccum txt;
+
+ if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
+ return 0;
+ }
+ sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
+ txt.db = db;
+ sqlite3StrAccumAppend(&txt, " (", 2);
+ for(i=0; i<nEq; i++){
+ explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
+ }
+
+ j = i;
+ if( pPlan->wsFlags&WHERE_BTM_LIMIT ){
+ explainAppendTerm(&txt, i++, aCol[aiColumn[j]].zName, ">");
+ }
+ if( pPlan->wsFlags&WHERE_TOP_LIMIT ){
+ explainAppendTerm(&txt, i, aCol[aiColumn[j]].zName, "<");
+ }
+ sqlite3StrAccumAppend(&txt, ")", 1);
+ return sqlite3StrAccumFinish(&txt);
+}
+
+/*
+** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
+** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
+** record is added to the output to describe the table scan strategy in
+** pLevel.
+*/
+static void explainOneScan(
+ Parse *pParse, /* Parse context */
+ SrcList *pTabList, /* Table list this loop refers to */
+ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
+ int iLevel, /* Value for "level" column of output */
+ int iFrom, /* Value for "from" column of output */
+ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
+){
+ if( pParse->explain==2 ){
+ u32 flags = pLevel->plan.wsFlags;
+ struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
+ Vdbe *v = pParse->pVdbe; /* VM being constructed */
+ sqlite3 *db = pParse->db; /* Database handle */
+ char *zMsg; /* Text to add to EQP output */
+ sqlite3_int64 nRow; /* Expected number of rows visited by scan */
+ int iId = pParse->iSelectId; /* Select id (left-most output column) */
+ int isSearch; /* True for a SEARCH. False for SCAN. */
+
+ if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;
+
+ isSearch = (pLevel->plan.nEq>0)
+ || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
+ || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
+
+ zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
+ if( pItem->pSelect ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
+ }else{
+ zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
+ }
+
+ if( pItem->zAlias ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
+ }
+ if( (flags & WHERE_INDEXED)!=0 ){
+ char *zWhere = explainIndexRange(db, pLevel, pItem->pTab);
+ zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg,
+ ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""),
+ ((flags & WHERE_IDX_ONLY)?"COVERING ":""),
+ ((flags & WHERE_TEMP_INDEX)?"":" "),
+ ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName),
+ zWhere
+ );
+ sqlite3DbFree(db, zWhere);
+ }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);
+
+ if( flags&WHERE_ROWID_EQ ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
+ }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
+ }else if( flags&WHERE_BTM_LIMIT ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
+ }else if( flags&WHERE_TOP_LIMIT ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
+ }
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
+ sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
+ zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
+ pVtabIdx->idxNum, pVtabIdx->idxStr);
+ }
+#endif
+ if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){
+ testcase( wctrlFlags & WHERE_ORDERBY_MIN );
+ nRow = 1;
+ }else{
+ nRow = (sqlite3_int64)pLevel->plan.nRow;
+ }
+ zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow);
+ sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
+ }
+}
+#else
+# define explainOneScan(u,v,w,x,y,z)
+#endif /* SQLITE_OMIT_EXPLAIN */
+
+
+/*
+** Generate code for the start of the iLevel-th loop in the WHERE clause
+** implementation described by pWInfo.
+*/
+static Bitmask codeOneLoopStart(
+ WhereInfo *pWInfo, /* Complete information about the WHERE clause */
+ int iLevel, /* Which level of pWInfo->a[] should be coded */
+ u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
+ Bitmask notReady, /* Which tables are currently available */
+ Expr *pWhere /* Complete WHERE clause */
+){
+ int j, k; /* Loop counters */
+ int iCur; /* The VDBE cursor for the table */
+ int addrNxt; /* Where to jump to continue with the next IN case */
+ int omitTable; /* True if we use the index only */
+ int bRev; /* True if we need to scan in reverse order */
+ WhereLevel *pLevel; /* The where level to be coded */
+ WhereClause *pWC; /* Decomposition of the entire WHERE clause */
+ WhereTerm *pTerm; /* A WHERE clause term */
+ Parse *pParse; /* Parsing context */
+ Vdbe *v; /* The prepared stmt under constructions */
+ struct SrcList_item *pTabItem; /* FROM clause term being coded */
+ int addrBrk; /* Jump here to break out of the loop */
+ int addrCont; /* Jump here to continue with next cycle */
+ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
+ int iReleaseReg = 0; /* Temp register to free before returning */
+
+ pParse = pWInfo->pParse;
+ v = pParse->pVdbe;
+ pWC = pWInfo->pWC;
+ pLevel = &pWInfo->a[iLevel];
+ pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ iCur = pTabItem->iCursor;
+ bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
+ omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
+ && (wctrlFlags & WHERE_FORCE_TABLE)==0;
+
+ /* Create labels for the "break" and "continue" instructions
+ ** for the current loop. Jump to addrBrk to break out of a loop.
+ ** Jump to cont to go immediately to the next iteration of the
+ ** loop.
+ **
+ ** When there is an IN operator, we also have a "addrNxt" label that
+ ** means to continue with the next IN value combination. When
+ ** there are no IN operators in the constraints, the "addrNxt" label
+ ** is the same as "addrBrk".
+ */
+ addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
+ addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
+
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and
+ ** initialize a memory cell that records if this table matches any
+ ** row of the left table of the join.
+ */
+ if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
+ pLevel->iLeftJoin = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
+ VdbeComment((v, "init LEFT JOIN no-match flag"));
+ }
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ /* Case 0: The table is a virtual-table. Use the VFilter and VNext
+ ** to access the data.
+ */
+ int iReg; /* P3 Value for OP_VFilter */
+ sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
+ int nConstraint = pVtabIdx->nConstraint;
+ struct sqlite3_index_constraint_usage *aUsage =
+ pVtabIdx->aConstraintUsage;
+ const struct sqlite3_index_constraint *aConstraint =
+ pVtabIdx->aConstraint;
+
+ sqlite3ExprCachePush(pParse);
+ iReg = sqlite3GetTempRange(pParse, nConstraint+2);
+ for(j=1; j<=nConstraint; j++){
+ for(k=0; k<nConstraint; k++){
+ if( aUsage[k].argvIndex==j ){
+ int iTerm = aConstraint[k].iTermOffset;
+ sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
+ break;
+ }
+ }
+ if( k==nConstraint ) break;
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
+ sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
+ sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
+ pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
+ pVtabIdx->needToFreeIdxStr = 0;
+ for(j=0; j<nConstraint; j++){
+ if( aUsage[j].omit ){
+ int iTerm = aConstraint[j].iTermOffset;
+ disableTerm(pLevel, &pWC->a[iTerm]);
+ }
+ }
+ pLevel->op = OP_VNext;
+ pLevel->p1 = iCur;
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+ sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
+ sqlite3ExprCachePop(pParse, 1);
+ }else
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
+ /* Case 1: We can directly reference a single row using an
+ ** equality comparison against the ROWID field. Or
+ ** we reference multiple rows using a "rowid IN (...)"
+ ** construct.
+ */
+ iReleaseReg = sqlite3GetTempReg(pParse);
+ pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
+ assert( pTerm!=0 );
+ assert( pTerm->pExpr!=0 );
+ assert( pTerm->leftCursor==iCur );
+ assert( omitTable==0 );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
+ iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
+ addrNxt = pLevel->addrNxt;
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
+ VdbeComment((v, "pk"));
+ pLevel->op = OP_Noop;
+ }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
+ /* Case 2: We have an inequality comparison against the ROWID field.
+ */
+ int testOp = OP_Noop;
+ int start;
+ int memEndValue = 0;
+ WhereTerm *pStart, *pEnd;
+
+ assert( omitTable==0 );
+ pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
+ pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
+ if( bRev ){
+ pTerm = pStart;
+ pStart = pEnd;
+ pEnd = pTerm;
+ }
+ if( pStart ){
+ Expr *pX; /* The expression that defines the start bound */
+ int r1, rTemp; /* Registers for holding the start boundary */
+
+ /* The following constant maps TK_xx codes into corresponding
+ ** seek opcodes. It depends on a particular ordering of TK_xx
+ */
+ const u8 aMoveOp[] = {
+ /* TK_GT */ OP_SeekGt,
+ /* TK_LE */ OP_SeekLe,
+ /* TK_LT */ OP_SeekLt,
+ /* TK_GE */ OP_SeekGe
+ };
+ assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
+ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
+ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
+
+ testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
+ pX = pStart->pExpr;
+ assert( pX!=0 );
+ assert( pStart->leftCursor==iCur );
+ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
+ sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
+ VdbeComment((v, "pk"));
+ sqlite3ExprCacheAffinityChange(pParse, r1, 1);
+ sqlite3ReleaseTempReg(pParse, rTemp);
+ disableTerm(pLevel, pStart);
+ }else{
+ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
+ }
+ if( pEnd ){
+ Expr *pX;
+ pX = pEnd->pExpr;
+ assert( pX!=0 );
+ assert( pEnd->leftCursor==iCur );
+ testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
+ memEndValue = ++pParse->nMem;
+ sqlite3ExprCode(pParse, pX->pRight, memEndValue);
+ if( pX->op==TK_LT || pX->op==TK_GT ){
+ testOp = bRev ? OP_Le : OP_Ge;
+ }else{
+ testOp = bRev ? OP_Lt : OP_Gt;
+ }
+ disableTerm(pLevel, pEnd);
+ }
+ start = sqlite3VdbeCurrentAddr(v);
+ pLevel->op = bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = iCur;
+ pLevel->p2 = start;
+ if( pStart==0 && pEnd==0 ){
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
+ }else{
+ assert( pLevel->p5==0 );
+ }
+ if( testOp!=OP_Noop ){
+ iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
+ sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
+ }
+ }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
+ /* Case 3: A scan using an index.
+ **
+ ** The WHERE clause may contain zero or more equality
+ ** terms ("==" or "IN" operators) that refer to the N
+ ** left-most columns of the index. It may also contain
+ ** inequality constraints (>, <, >= or <=) on the indexed
+ ** column that immediately follows the N equalities. Only
+ ** the right-most column can be an inequality - the rest must
+ ** use the "==" and "IN" operators. For example, if the
+ ** index is on (x,y,z), then the following clauses are all
+ ** optimized:
+ **
+ ** x=5
+ ** x=5 AND y=10
+ ** x=5 AND y<10
+ ** x=5 AND y>5 AND y<10
+ ** x=5 AND y=5 AND z<=10
+ **
+ ** The z<10 term of the following cannot be used, only
+ ** the x=5 term:
+ **
+ ** x=5 AND z<10
+ **
+ ** N may be zero if there are inequality constraints.
+ ** If there are no inequality constraints, then N is at
+ ** least one.
+ **
+ ** This case is also used when there are no WHERE clause
+ ** constraints but an index is selected anyway, in order
+ ** to force the output order to conform to an ORDER BY.
+ */
+ static const u8 aStartOp[] = {
+ 0,
+ 0,
+ OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
+ OP_Last, /* 3: (!start_constraints && startEq && bRev) */
+ OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
+ OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
+ OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
+ OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
+ };
+ static const u8 aEndOp[] = {
+ OP_Noop, /* 0: (!end_constraints) */
+ OP_IdxGE, /* 1: (end_constraints && !bRev) */
+ OP_IdxLT /* 2: (end_constraints && bRev) */
+ };
+ int nEq = pLevel->plan.nEq; /* Number of == or IN terms */
+ int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
+ int regBase; /* Base register holding constraint values */
+ int r1; /* Temp register */
+ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
+ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
+ int startEq; /* True if range start uses ==, >= or <= */
+ int endEq; /* True if range end uses ==, >= or <= */
+ int start_constraints; /* Start of range is constrained */
+ int nConstraint; /* Number of constraint terms */
+ Index *pIdx; /* The index we will be using */
+ int iIdxCur; /* The VDBE cursor for the index */
+ int nExtraReg = 0; /* Number of extra registers needed */
+ int op; /* Instruction opcode */
+ char *zStartAff; /* Affinity for start of range constraint */
+ char *zEndAff; /* Affinity for end of range constraint */
+
+ pIdx = pLevel->plan.u.pIdx;
+ iIdxCur = pLevel->iIdxCur;
+ k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
+
+ /* If this loop satisfies a sort order (pOrderBy) request that
+ ** was passed to this function to implement a "SELECT min(x) ..."
+ ** query, then the caller will only allow the loop to run for
+ ** a single iteration. This means that the first row returned
+ ** should not have a NULL value stored in 'x'. If column 'x' is
+ ** the first one after the nEq equality constraints in the index,
+ ** this requires some special handling.
+ */
+ if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
+ && (pLevel->plan.wsFlags&WHERE_ORDERBY)
+ && (pIdx->nColumn>nEq)
+ ){
+ /* assert( pOrderBy->nExpr==1 ); */
+ /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
+ isMinQuery = 1;
+ nExtraReg = 1;
+ }
+
+ /* Find any inequality constraint terms for the start and end
+ ** of the range.
+ */
+ if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
+ pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
+ nExtraReg = 1;
+ }
+ if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
+ pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
+ nExtraReg = 1;
+ }
+
+ /* Generate code to evaluate all constraint terms using == or IN
+ ** and store the values of those terms in an array of registers
+ ** starting at regBase.
+ */
+ regBase = codeAllEqualityTerms(
+ pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
+ );
+ zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
+ addrNxt = pLevel->addrNxt;
+
+ /* If we are doing a reverse order scan on an ascending index, or
+ ** a forward order scan on a descending index, interchange the
+ ** start and end terms (pRangeStart and pRangeEnd).
+ */
+ if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
+ SWAP(WhereTerm *, pRangeEnd, pRangeStart);
+ }
+
+ testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
+ testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
+ testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
+ testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
+ startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
+ endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
+ start_constraints = pRangeStart || nEq>0;
+
+ /* Seek the index cursor to the start of the range. */
+ nConstraint = nEq;
+ if( pRangeStart ){
+ Expr *pRight = pRangeStart->pExpr->pRight;
+ sqlite3ExprCode(pParse, pRight, regBase+nEq);
+ if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){
+ sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
+ }
+ if( zStartAff ){
+ if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
+ /* Since the comparison is to be performed with no conversions
+ ** applied to the operands, set the affinity to apply to pRight to
+ ** SQLITE_AFF_NONE. */
+ zStartAff[nEq] = SQLITE_AFF_NONE;
+ }
+ if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
+ zStartAff[nEq] = SQLITE_AFF_NONE;
+ }
+ }
+ nConstraint++;
+ testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
+ }else if( isMinQuery ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
+ nConstraint++;
+ startEq = 0;
+ start_constraints = 1;
+ }
+ codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
+ op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
+ assert( op!=0 );
+ testcase( op==OP_Rewind );
+ testcase( op==OP_Last );
+ testcase( op==OP_SeekGt );
+ testcase( op==OP_SeekGe );
+ testcase( op==OP_SeekLe );
+ testcase( op==OP_SeekLt );
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
+
+ /* Load the value for the inequality constraint at the end of the
+ ** range (if any).
+ */
+ nConstraint = nEq;
+ if( pRangeEnd ){
+ Expr *pRight = pRangeEnd->pExpr->pRight;
+ sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
+ sqlite3ExprCode(pParse, pRight, regBase+nEq);
+ if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){
+ sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
+ }
+ if( zEndAff ){
+ if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){
+ /* Since the comparison is to be performed with no conversions
+ ** applied to the operands, set the affinity to apply to pRight to
+ ** SQLITE_AFF_NONE. */
+ zEndAff[nEq] = SQLITE_AFF_NONE;
+ }
+ if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
+ zEndAff[nEq] = SQLITE_AFF_NONE;
+ }
+ }
+ codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
+ nConstraint++;
+ testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
+ }
+ sqlite3DbFree(pParse->db, zStartAff);
+ sqlite3DbFree(pParse->db, zEndAff);
+
+ /* Top of the loop body */
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+
+ /* Check if the index cursor is past the end of the range. */
+ op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
+ testcase( op==OP_Noop );
+ testcase( op==OP_IdxGE );
+ testcase( op==OP_IdxLT );
+ if( op!=OP_Noop ){
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
+ sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
+ }
+
+ /* If there are inequality constraints, check that the value
+ ** of the table column that the inequality contrains is not NULL.
+ ** If it is, jump to the next iteration of the loop.
+ */
+ r1 = sqlite3GetTempReg(pParse);
+ testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
+ testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
+ if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
+ sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
+ }
+ sqlite3ReleaseTempReg(pParse, r1);
+
+ /* Seek the table cursor, if required */
+ disableTerm(pLevel, pRangeStart);
+ disableTerm(pLevel, pRangeEnd);
+ if( !omitTable ){
+ iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
+ sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
+ }
+
+ /* Record the instruction used to terminate the loop. Disable
+ ** WHERE clause terms made redundant by the index range scan.
+ */
+ if( pLevel->plan.wsFlags & WHERE_UNIQUE ){
+ pLevel->op = OP_Noop;
+ }else if( bRev ){
+ pLevel->op = OP_Prev;
+ }else{
+ pLevel->op = OP_Next;
+ }
+ pLevel->p1 = iIdxCur;
+ }else
+
+#ifndef SQLITE_OMIT_OR_OPTIMIZATION
+ if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
+ /* Case 4: Two or more separately indexed terms connected by OR
+ **
+ ** Example:
+ **
+ ** CREATE TABLE t1(a,b,c,d);
+ ** CREATE INDEX i1 ON t1(a);
+ ** CREATE INDEX i2 ON t1(b);
+ ** CREATE INDEX i3 ON t1(c);
+ **
+ ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
+ **
+ ** In the example, there are three indexed terms connected by OR.
+ ** The top of the loop looks like this:
+ **
+ ** Null 1 # Zero the rowset in reg 1
+ **
+ ** Then, for each indexed term, the following. The arguments to
+ ** RowSetTest are such that the rowid of the current row is inserted
+ ** into the RowSet. If it is already present, control skips the
+ ** Gosub opcode and jumps straight to the code generated by WhereEnd().
+ **
+ ** sqlite3WhereBegin(<term>)
+ ** RowSetTest # Insert rowid into rowset
+ ** Gosub 2 A
+ ** sqlite3WhereEnd()
+ **
+ ** Following the above, code to terminate the loop. Label A, the target
+ ** of the Gosub above, jumps to the instruction right after the Goto.
+ **
+ ** Null 1 # Zero the rowset in reg 1
+ ** Goto B # The loop is finished.
+ **
+ ** A: <loop body> # Return data, whatever.
+ **
+ ** Return 2 # Jump back to the Gosub
+ **
+ ** B: <after the loop>
+ **
+ */
+ WhereClause *pOrWc; /* The OR-clause broken out into subterms */
+ SrcList *pOrTab; /* Shortened table list or OR-clause generation */
+
+ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
+ int regRowset = 0; /* Register for RowSet object */
+ int regRowid = 0; /* Register holding rowid */
+ int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
+ int iRetInit; /* Address of regReturn init */
+ int untestedTerms = 0; /* Some terms not completely tested */
+ int ii; /* Loop counter */
+ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
+
+ pTerm = pLevel->plan.u.pTerm;
+ assert( pTerm!=0 );
+ assert( pTerm->eOperator==WO_OR );
+ assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
+ pOrWc = &pTerm->u.pOrInfo->wc;
+ pLevel->op = OP_Return;
+ pLevel->p1 = regReturn;
+
+ /* Set up a new SrcList ni pOrTab containing the table being scanned
+ ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
+ ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
+ */
+ if( pWInfo->nLevel>1 ){
+ int nNotReady; /* The number of notReady tables */
+ struct SrcList_item *origSrc; /* Original list of tables */
+ nNotReady = pWInfo->nLevel - iLevel - 1;
+ pOrTab = sqlite3StackAllocRaw(pParse->db,
+ sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
+ if( pOrTab==0 ) return notReady;
+ pOrTab->nAlloc = (i16)(nNotReady + 1);
+ pOrTab->nSrc = pOrTab->nAlloc;
+ memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
+ origSrc = pWInfo->pTabList->a;
+ for(k=1; k<=nNotReady; k++){
+ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
+ }
+ }else{
+ pOrTab = pWInfo->pTabList;
+ }
+
+ /* Initialize the rowset register to contain NULL. An SQL NULL is
+ ** equivalent to an empty rowset.
+ **
+ ** Also initialize regReturn to contain the address of the instruction
+ ** immediately following the OP_Return at the bottom of the loop. This
+ ** is required in a few obscure LEFT JOIN cases where control jumps
+ ** over the top of the loop into the body of it. In this case the
+ ** correct response for the end-of-loop code (the OP_Return) is to
+ ** fall through to the next instruction, just as an OP_Next does if
+ ** called on an uninitialized cursor.
+ */
+ if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
+ regRowset = ++pParse->nMem;
+ regRowid = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
+ }
+ iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
+
+ /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
+ ** Then for every term xN, evaluate as the subexpression: xN AND z
+ ** That way, terms in y that are factored into the disjunction will
+ ** be picked up by the recursive calls to sqlite3WhereBegin() below.
+ */
+ if( pWC->nTerm>1 ){
+ pAndExpr = sqlite3ExprAlloc(pParse->db, TK_AND, 0, 0);
+ pAndExpr->pRight = pWhere;
+ }
+
+ for(ii=0; ii<pOrWc->nTerm; ii++){
+ WhereTerm *pOrTerm = &pOrWc->a[ii];
+ if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
+ WhereInfo *pSubWInfo; /* Info for single OR-term scan */
+ Expr *pOrExpr = pOrTerm->pExpr;
+ if( pAndExpr ){
+ pAndExpr->pLeft = pOrExpr;
+ pOrExpr = pAndExpr;
+ }
+ /* Loop through table entries that match term pOrTerm. */
+ pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
+ WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
+ WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
+ if( pSubWInfo ){
+ explainOneScan(
+ pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
+ );
+ if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
+ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
+ int r;
+ r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
+ regRowid);
+ sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
+ sqlite3VdbeCurrentAddr(v)+2, r, iSet);
+ }
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
+
+ /* The pSubWInfo->untestedTerms flag means that this OR term
+ ** contained one or more AND term from a notReady table. The
+ ** terms from the notReady table could not be tested and will
+ ** need to be tested later.
+ */
+ if( pSubWInfo->untestedTerms ) untestedTerms = 1;
+
+ /* Finish the loop through table entries that match term pOrTerm. */
+ sqlite3WhereEnd(pSubWInfo);
+ }
+ }
+ }
+ sqlite3DbFree(pParse->db, pAndExpr);
+ sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
+ sqlite3VdbeResolveLabel(v, iLoopBody);
+
+ if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
+ if( !untestedTerms ) disableTerm(pLevel, pTerm);
+ }else
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+
+ {
+ /* Case 5: There is no usable index. We must do a complete
+ ** scan of the entire table.
+ */
+ static const u8 aStep[] = { OP_Next, OP_Prev };
+ static const u8 aStart[] = { OP_Rewind, OP_Last };
+ assert( bRev==0 || bRev==1 );
+ assert( omitTable==0 );
+ pLevel->op = aStep[bRev];
+ pLevel->p1 = iCur;
+ pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
+ }
+ notReady &= ~getMask(pWC->pMaskSet, iCur);
+
+ /* Insert code to test every subexpression that can be completely
+ ** computed using the current set of tables.
+ **
+ ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
+ ** the use of indices become tests that are evaluated against each row of
+ ** the relevant input tables.
+ */
+ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
+ Expr *pE;
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
+ testcase( pTerm->wtFlags & TERM_CODED );
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & notReady)!=0 ){
+ testcase( pWInfo->untestedTerms==0
+ && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
+ pWInfo->untestedTerms = 1;
+ continue;
+ }
+ pE = pTerm->pExpr;
+ assert( pE!=0 );
+ if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
+ continue;
+ }
+ sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
+ pTerm->wtFlags |= TERM_CODED;
+ }
+
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that
+ ** at least one row of the right table has matched the left table.
+ */
+ if( pLevel->iLeftJoin ){
+ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
+ VdbeComment((v, "record LEFT JOIN hit"));
+ sqlite3ExprCacheClear(pParse);
+ for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
+ testcase( pTerm->wtFlags & TERM_CODED );
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & notReady)!=0 ){
+ assert( pWInfo->untestedTerms );
+ continue;
+ }
+ assert( pTerm->pExpr );
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
+ pTerm->wtFlags |= TERM_CODED;
+ }
+ }
+ sqlite3ReleaseTempReg(pParse, iReleaseReg);
+
+ return notReady;
+}
+
+#if defined(SQLITE_TEST)
+/*
+** The following variable holds a text description of query plan generated
+** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
+** overwrites the previous. This information is used for testing and
+** analysis only.
+*/
+char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
+static int nQPlan = 0; /* Next free slow in _query_plan[] */
+
+#endif /* SQLITE_TEST */
+
+
+/*
+** Free a WhereInfo structure
+*/
+static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
+ if( ALWAYS(pWInfo) ){
+ int i;
+ for(i=0; i<pWInfo->nLevel; i++){
+ sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
+ if( pInfo ){
+ /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
+ if( pInfo->needToFreeIdxStr ){
+ sqlite3_free(pInfo->idxStr);
+ }
+ sqlite3DbFree(db, pInfo);
+ }
+ if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
+ Index *pIdx = pWInfo->a[i].plan.u.pIdx;
+ if( pIdx ){
+ sqlite3DbFree(db, pIdx->zColAff);
+ sqlite3DbFree(db, pIdx);
+ }
+ }
+ }
+ whereClauseClear(pWInfo->pWC);
+ sqlite3DbFree(db, pWInfo);
+ }
+}
+
+
+/*
+** Generate the beginning of the loop used for WHERE clause processing.
+** The return value is a pointer to an opaque structure that contains
+** information needed to terminate the loop. Later, the calling routine
+** should invoke sqlite3WhereEnd() with the return value of this function
+** in order to complete the WHERE clause processing.
+**
+** If an error occurs, this routine returns NULL.
+**
+** The basic idea is to do a nested loop, one loop for each table in
+** the FROM clause of a select. (INSERT and UPDATE statements are the
+** same as a SELECT with only a single table in the FROM clause.) For
+** example, if the SQL is this:
+**
+** SELECT * FROM t1, t2, t3 WHERE ...;
+**
+** Then the code generated is conceptually like the following:
+**
+** foreach row1 in t1 do \ Code generated
+** foreach row2 in t2 do |-- by sqlite3WhereBegin()
+** foreach row3 in t3 do /
+** ...
+** end \ Code generated
+** end |-- by sqlite3WhereEnd()
+** end /
+**
+** Note that the loops might not be nested in the order in which they
+** appear in the FROM clause if a different order is better able to make
+** use of indices. Note also that when the IN operator appears in
+** the WHERE clause, it might result in additional nested loops for
+** scanning through all values on the right-hand side of the IN.
+**
+** There are Btree cursors associated with each table. t1 uses cursor
+** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
+** And so forth. This routine generates code to open those VDBE cursors
+** and sqlite3WhereEnd() generates the code to close them.
+**
+** The code that sqlite3WhereBegin() generates leaves the cursors named
+** in pTabList pointing at their appropriate entries. The [...] code
+** can use OP_Column and OP_Rowid opcodes on these cursors to extract
+** data from the various tables of the loop.
+**
+** If the WHERE clause is empty, the foreach loops must each scan their
+** entire tables. Thus a three-way join is an O(N^3) operation. But if
+** the tables have indices and there are terms in the WHERE clause that
+** refer to those indices, a complete table scan can be avoided and the
+** code will run much faster. Most of the work of this routine is checking
+** to see if there are indices that can be used to speed up the loop.
+**
+** Terms of the WHERE clause are also used to limit which rows actually
+** make it to the "..." in the middle of the loop. After each "foreach",
+** terms of the WHERE clause that use only terms in that loop and outer
+** loops are evaluated and if false a jump is made around all subsequent
+** inner loops (or around the "..." if the test occurs within the inner-
+** most loop)
+**
+** OUTER JOINS
+**
+** An outer join of tables t1 and t2 is conceptally coded as follows:
+**
+** foreach row1 in t1 do
+** flag = 0
+** foreach row2 in t2 do
+** start:
+** ...
+** flag = 1
+** end
+** if flag==0 then
+** move the row2 cursor to a null row
+** goto start
+** fi
+** end
+**
+** ORDER BY CLAUSE PROCESSING
+**
+** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
+** if there is one. If there is no ORDER BY clause or if this routine
+** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
+**
+** If an index can be used so that the natural output order of the table
+** scan is correct for the ORDER BY clause, then that index is used and
+** *ppOrderBy is set to NULL. This is an optimization that prevents an
+** unnecessary sort of the result set if an index appropriate for the
+** ORDER BY clause already exists.
+**
+** If the where clause loops cannot be arranged to provide the correct
+** output order, then the *ppOrderBy is unchanged.
+*/
+WhereInfo *sqlite3WhereBegin(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* A list of all tables to be scanned */
+ Expr *pWhere, /* The WHERE clause */
+ ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
+ ExprList *pDistinct, /* The select-list for DISTINCT queries - or NULL */
+ u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */
+){
+ int i; /* Loop counter */
+ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
+ int nTabList; /* Number of elements in pTabList */
+ WhereInfo *pWInfo; /* Will become the return value of this function */
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */
+ Bitmask notReady; /* Cursors that are not yet positioned */
+ WhereMaskSet *pMaskSet; /* The expression mask set */
+ WhereClause *pWC; /* Decomposition of the WHERE clause */
+ struct SrcList_item *pTabItem; /* A single entry from pTabList */
+ WhereLevel *pLevel; /* A single level in the pWInfo list */
+ int iFrom; /* First unused FROM clause element */
+ int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
+ sqlite3 *db; /* Database connection */
+
+ /* The number of tables in the FROM clause is limited by the number of
+ ** bits in a Bitmask
+ */
+ testcase( pTabList->nSrc==BMS );
+ if( pTabList->nSrc>BMS ){
+ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
+ return 0;
+ }
+
+ /* This function normally generates a nested loop for all tables in
+ ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
+ ** only generate code for the first table in pTabList and assume that
+ ** any cursors associated with subsequent tables are uninitialized.
+ */
+ nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
+
+ /* Allocate and initialize the WhereInfo structure that will become the
+ ** return value. A single allocation is used to store the WhereInfo
+ ** struct, the contents of WhereInfo.a[], the WhereClause structure
+ ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
+ ** field (type Bitmask) it must be aligned on an 8-byte boundary on
+ ** some architectures. Hence the ROUND8() below.
+ */
+ db = pParse->db;
+ nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
+ pWInfo = sqlite3DbMallocZero(db,
+ nByteWInfo +
+ sizeof(WhereClause) +
+ sizeof(WhereMaskSet)
+ );
+ if( db->mallocFailed ){
+ sqlite3DbFree(db, pWInfo);
+ pWInfo = 0;
+ goto whereBeginError;
+ }
+ pWInfo->nLevel = nTabList;
+ pWInfo->pParse = pParse;
+ pWInfo->pTabList = pTabList;
+ pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
+ pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
+ pWInfo->wctrlFlags = wctrlFlags;
+ pWInfo->savedNQueryLoop = pParse->nQueryLoop;
+ pMaskSet = (WhereMaskSet*)&pWC[1];
+
+ /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
+ ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
+ if( db->flags & SQLITE_DistinctOpt ) pDistinct = 0;
+
+ /* Split the WHERE clause into separate subexpressions where each
+ ** subexpression is separated by an AND operator.
+ */
+ initMaskSet(pMaskSet);
+ whereClauseInit(pWC, pParse, pMaskSet, wctrlFlags);
+ sqlite3ExprCodeConstants(pParse, pWhere);
+ whereSplit(pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */
+
+ /* Special case: a WHERE clause that is constant. Evaluate the
+ ** expression and either jump over all of the code or fall thru.
+ */
+ if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
+ sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
+ pWhere = 0;
+ }
+
+ /* Assign a bit from the bitmask to every term in the FROM clause.
+ **
+ ** When assigning bitmask values to FROM clause cursors, it must be
+ ** the case that if X is the bitmask for the N-th FROM clause term then
+ ** the bitmask for all FROM clause terms to the left of the N-th term
+ ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
+ ** its Expr.iRightJoinTable value to find the bitmask of the right table
+ ** of the join. Subtracting one from the right table bitmask gives a
+ ** bitmask for all tables to the left of the join. Knowing the bitmask
+ ** for all tables to the left of a left join is important. Ticket #3015.
+ **
+ ** Configure the WhereClause.vmask variable so that bits that correspond
+ ** to virtual table cursors are set. This is used to selectively disable
+ ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
+ ** with virtual tables.
+ **
+ ** Note that bitmasks are created for all pTabList->nSrc tables in
+ ** pTabList, not just the first nTabList tables. nTabList is normally
+ ** equal to pTabList->nSrc but might be shortened to 1 if the
+ ** WHERE_ONETABLE_ONLY flag is set.
+ */
+ assert( pWC->vmask==0 && pMaskSet->n==0 );
+ for(i=0; i<pTabList->nSrc; i++){
+ createMask(pMaskSet, pTabList->a[i].iCursor);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
+ pWC->vmask |= ((Bitmask)1 << i);
+ }
+#endif
+ }
+#ifndef NDEBUG
+ {
+ Bitmask toTheLeft = 0;
+ for(i=0; i<pTabList->nSrc; i++){
+ Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
+ assert( (m-1)==toTheLeft );
+ toTheLeft |= m;
+ }
+ }
+#endif
+
+ /* Analyze all of the subexpressions. Note that exprAnalyze() might
+ ** add new virtual terms onto the end of the WHERE clause. We do not
+ ** want to analyze these virtual terms, so start analyzing at the end
+ ** and work forward so that the added virtual terms are never processed.
+ */
+ exprAnalyzeAll(pTabList, pWC);
+ if( db->mallocFailed ){
+ goto whereBeginError;
+ }
+
+ /* Check if the DISTINCT qualifier, if there is one, is redundant.
+ ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to
+ ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT.
+ */
+ if( pDistinct && isDistinctRedundant(pParse, pTabList, pWC, pDistinct) ){
+ pDistinct = 0;
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
+ }
+
+ /* Chose the best index to use for each table in the FROM clause.
+ **
+ ** This loop fills in the following fields:
+ **
+ ** pWInfo->a[].pIdx The index to use for this level of the loop.
+ ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
+ ** pWInfo->a[].nEq The number of == and IN constraints
+ ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
+ ** pWInfo->a[].iTabCur The VDBE cursor for the database table
+ ** pWInfo->a[].iIdxCur The VDBE cursor for the index
+ ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
+ **
+ ** This loop also figures out the nesting order of tables in the FROM
+ ** clause.
+ */
+ notReady = ~(Bitmask)0;
+ andFlags = ~0;
+ WHERETRACE(("*** Optimizer Start ***\n"));
+ for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
+ WhereCost bestPlan; /* Most efficient plan seen so far */
+ Index *pIdx; /* Index for FROM table at pTabItem */
+ int j; /* For looping over FROM tables */
+ int bestJ = -1; /* The value of j */
+ Bitmask m; /* Bitmask value for j or bestJ */
+ int isOptimal; /* Iterator for optimal/non-optimal search */
+ int nUnconstrained; /* Number tables without INDEXED BY */
+ Bitmask notIndexed; /* Mask of tables that cannot use an index */
+
+ memset(&bestPlan, 0, sizeof(bestPlan));
+ bestPlan.rCost = SQLITE_BIG_DBL;
+ WHERETRACE(("*** Begin search for loop %d ***\n", i));
+
+ /* Loop through the remaining entries in the FROM clause to find the
+ ** next nested loop. The loop tests all FROM clause entries
+ ** either once or twice.
+ **
+ ** The first test is always performed if there are two or more entries
+ ** remaining and never performed if there is only one FROM clause entry
+ ** to choose from. The first test looks for an "optimal" scan. In
+ ** this context an optimal scan is one that uses the same strategy
+ ** for the given FROM clause entry as would be selected if the entry
+ ** were used as the innermost nested loop. In other words, a table
+ ** is chosen such that the cost of running that table cannot be reduced
+ ** by waiting for other tables to run first. This "optimal" test works
+ ** by first assuming that the FROM clause is on the inner loop and finding
+ ** its query plan, then checking to see if that query plan uses any
+ ** other FROM clause terms that are notReady. If no notReady terms are
+ ** used then the "optimal" query plan works.
+ **
+ ** Note that the WhereCost.nRow parameter for an optimal scan might
+ ** not be as small as it would be if the table really were the innermost
+ ** join. The nRow value can be reduced by WHERE clause constraints
+ ** that do not use indices. But this nRow reduction only happens if the
+ ** table really is the innermost join.
+ **
+ ** The second loop iteration is only performed if no optimal scan
+ ** strategies were found by the first iteration. This second iteration
+ ** is used to search for the lowest cost scan overall.
+ **
+ ** Previous versions of SQLite performed only the second iteration -
+ ** the next outermost loop was always that with the lowest overall
+ ** cost. However, this meant that SQLite could select the wrong plan
+ ** for scripts such as the following:
+ **
+ ** CREATE TABLE t1(a, b);
+ ** CREATE TABLE t2(c, d);
+ ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
+ **
+ ** The best strategy is to iterate through table t1 first. However it
+ ** is not possible to determine this with a simple greedy algorithm.
+ ** Since the cost of a linear scan through table t2 is the same
+ ** as the cost of a linear scan through table t1, a simple greedy
+ ** algorithm may choose to use t2 for the outer loop, which is a much
+ ** costlier approach.
+ */
+ nUnconstrained = 0;
+ notIndexed = 0;
+ for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){
+ Bitmask mask; /* Mask of tables not yet ready */
+ for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
+ int doNotReorder; /* True if this table should not be reordered */
+ WhereCost sCost; /* Cost information from best[Virtual]Index() */
+ ExprList *pOrderBy; /* ORDER BY clause for index to optimize */
+ ExprList *pDist; /* DISTINCT clause for index to optimize */
+
+ doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
+ if( j!=iFrom && doNotReorder ) break;
+ m = getMask(pMaskSet, pTabItem->iCursor);
+ if( (m & notReady)==0 ){
+ if( j==iFrom ) iFrom++;
+ continue;
+ }
+ mask = (isOptimal ? m : notReady);
+ pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
+ pDist = (i==0 ? pDistinct : 0);
+ if( pTabItem->pIndex==0 ) nUnconstrained++;
+
+ WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
+ j, isOptimal));
+ assert( pTabItem->pTab );
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTabItem->pTab) ){
+ sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
+ bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
+ &sCost, pp);
+ }else
+#endif
+ {
+ bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
+ pDist, &sCost);
+ }
+ assert( isOptimal || (sCost.used&notReady)==0 );
+
+ /* If an INDEXED BY clause is present, then the plan must use that
+ ** index if it uses any index at all */
+ assert( pTabItem->pIndex==0
+ || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
+ || sCost.plan.u.pIdx==pTabItem->pIndex );
+
+ if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
+ notIndexed |= m;
+ }
+
+ /* Conditions under which this table becomes the best so far:
+ **
+ ** (1) The table must not depend on other tables that have not
+ ** yet run.
+ **
+ ** (2) A full-table-scan plan cannot supercede indexed plan unless
+ ** the full-table-scan is an "optimal" plan as defined above.
+ **
+ ** (3) All tables have an INDEXED BY clause or this table lacks an
+ ** INDEXED BY clause or this table uses the specific
+ ** index specified by its INDEXED BY clause. This rule ensures
+ ** that a best-so-far is always selected even if an impossible
+ ** combination of INDEXED BY clauses are given. The error
+ ** will be detected and relayed back to the application later.
+ ** The NEVER() comes about because rule (2) above prevents
+ ** An indexable full-table-scan from reaching rule (3).
+ **
+ ** (4) The plan cost must be lower than prior plans or else the
+ ** cost must be the same and the number of rows must be lower.
+ */
+ if( (sCost.used&notReady)==0 /* (1) */
+ && (bestJ<0 || (notIndexed&m)!=0 /* (2) */
+ || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
+ || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)
+ && (nUnconstrained==0 || pTabItem->pIndex==0 /* (3) */
+ || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
+ && (bestJ<0 || sCost.rCost<bestPlan.rCost /* (4) */
+ || (sCost.rCost<=bestPlan.rCost
+ && sCost.plan.nRow<bestPlan.plan.nRow))
+ ){
+ WHERETRACE(("=== table %d is best so far"
+ " with cost=%g and nRow=%g\n",
+ j, sCost.rCost, sCost.plan.nRow));
+ bestPlan = sCost;
+ bestJ = j;
+ }
+ if( doNotReorder ) break;
+ }
+ }
+ assert( bestJ>=0 );
+ assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
+ WHERETRACE(("*** Optimizer selects table %d for loop %d"
+ " with cost=%g and nRow=%g\n",
+ bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow));
+ /* The ALWAYS() that follows was added to hush up clang scan-build */
+ if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 && ALWAYS(ppOrderBy) ){
+ *ppOrderBy = 0;
+ }
+ if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
+ assert( pWInfo->eDistinct==0 );
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ }
+ andFlags &= bestPlan.plan.wsFlags;
+ pLevel->plan = bestPlan.plan;
+ testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
+ testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
+ if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
+ pLevel->iIdxCur = pParse->nTab++;
+ }else{
+ pLevel->iIdxCur = -1;
+ }
+ notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
+ pLevel->iFrom = (u8)bestJ;
+ if( bestPlan.plan.nRow>=(double)1 ){
+ pParse->nQueryLoop *= bestPlan.plan.nRow;
+ }
+
+ /* Check that if the table scanned by this loop iteration had an
+ ** INDEXED BY clause attached to it, that the named index is being
+ ** used for the scan. If not, then query compilation has failed.
+ ** Return an error.
+ */
+ pIdx = pTabList->a[bestJ].pIndex;
+ if( pIdx ){
+ if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
+ sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
+ goto whereBeginError;
+ }else{
+ /* If an INDEXED BY clause is used, the bestIndex() function is
+ ** guaranteed to find the index specified in the INDEXED BY clause
+ ** if it find an index at all. */
+ assert( bestPlan.plan.u.pIdx==pIdx );
+ }
+ }
+ }
+ WHERETRACE(("*** Optimizer Finished ***\n"));
+ if( pParse->nErr || db->mallocFailed ){
+ goto whereBeginError;
+ }
+
+ /* If the total query only selects a single row, then the ORDER BY
+ ** clause is irrelevant.
+ */
+ if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
+ *ppOrderBy = 0;
+ }
+
+ /* If the caller is an UPDATE or DELETE statement that is requesting
+ ** to use a one-pass algorithm, determine if this is appropriate.
+ ** The one-pass algorithm only works if the WHERE clause constraints
+ ** the statement to update a single row.
+ */
+ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
+ if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
+ pWInfo->okOnePass = 1;
+ pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
+ }
+
+ /* Open all tables in the pTabList and any indices selected for
+ ** searching those tables.
+ */
+ sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
+ notReady = ~(Bitmask)0;
+ pWInfo->nRowOut = (double)1;
+ for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
+ Table *pTab; /* Table to open */
+ int iDb; /* Index of database containing table/index */
+
+ pTabItem = &pTabList->a[pLevel->iFrom];
+ pTab = pTabItem->pTab;
+ pLevel->iTabCur = pTabItem->iCursor;
+ pWInfo->nRowOut *= pLevel->plan.nRow;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
+ /* Do nothing */
+ }else
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
+ int iCur = pTabItem->iCursor;
+ sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
+ }else
+#endif
+ if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
+ && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
+ int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
+ sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
+ testcase( pTab->nCol==BMS-1 );
+ testcase( pTab->nCol==BMS );
+ if( !pWInfo->okOnePass && pTab->nCol<BMS ){
+ Bitmask b = pTabItem->colUsed;
+ int n = 0;
+ for(; b; b=b>>1, n++){}
+ sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
+ SQLITE_INT_TO_PTR(n), P4_INT32);
+ assert( n<=pTab->nCol );
+ }
+ }else{
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+ }
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+ if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
+ constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
+ }else
+#endif
+ if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
+ Index *pIx = pLevel->plan.u.pIdx;
+ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
+ int iIdxCur = pLevel->iIdxCur;
+ assert( pIx->pSchema==pTab->pSchema );
+ assert( iIdxCur>=0 );
+ sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pIx->zName));
+ }
+ sqlite3CodeVerifySchema(pParse, iDb);
+ notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
+ }
+ pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
+ if( db->mallocFailed ) goto whereBeginError;
+
+ /* Generate the code to do the search. Each iteration of the for
+ ** loop below generates code for a single nested loop of the VM
+ ** program.
+ */
+ notReady = ~(Bitmask)0;
+ for(i=0; i<nTabList; i++){
+ pLevel = &pWInfo->a[i];
+ explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags);
+ notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady, pWhere);
+ pWInfo->iContinue = pLevel->addrCont;
+ }
+
+#ifdef SQLITE_TEST /* For testing and debugging use only */
+ /* Record in the query plan information about the current table
+ ** and the index used to access it (if any). If the table itself
+ ** is not used, its name is just '{}'. If no index is used
+ ** the index is listed as "{}". If the primary key is used the
+ ** index name is '*'.
+ */
+ for(i=0; i<nTabList; i++){
+ char *z;
+ int n;
+ pLevel = &pWInfo->a[i];
+ pTabItem = &pTabList->a[pLevel->iFrom];
+ z = pTabItem->zAlias;
+ if( z==0 ) z = pTabItem->pTab->zName;
+ n = sqlite3Strlen30(z);
+ if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
+ if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
+ memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
+ nQPlan += 2;
+ }else{
+ memcpy(&sqlite3_query_plan[nQPlan], z, n);
+ nQPlan += n;
+ }
+ sqlite3_query_plan[nQPlan++] = ' ';
+ }
+ testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
+ testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
+ if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
+ memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
+ nQPlan += 2;
+ }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
+ n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
+ if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
+ memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
+ nQPlan += n;
+ sqlite3_query_plan[nQPlan++] = ' ';
+ }
+ }else{
+ memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
+ nQPlan += 3;
+ }
+ }
+ while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
+ sqlite3_query_plan[--nQPlan] = 0;
+ }
+ sqlite3_query_plan[nQPlan] = 0;
+ nQPlan = 0;
+#endif /* SQLITE_TEST // Testing and debugging use only */
+
+ /* Record the continuation address in the WhereInfo structure. Then
+ ** clean up and return.
+ */
+ return pWInfo;
+
+ /* Jump here if malloc fails */
+whereBeginError:
+ if( pWInfo ){
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop;
+ whereInfoFree(db, pWInfo);
+ }
+ return 0;
+}
+
+/*
+** Generate the end of the WHERE loop. See comments on
+** sqlite3WhereBegin() for additional information.
+*/
+void sqlite3WhereEnd(WhereInfo *pWInfo){
+ Parse *pParse = pWInfo->pParse;
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ WhereLevel *pLevel;
+ SrcList *pTabList = pWInfo->pTabList;
+ sqlite3 *db = pParse->db;
+
+ /* Generate loop termination code.
+ */
+ sqlite3ExprCacheClear(pParse);
+ for(i=pWInfo->nLevel-1; i>=0; i--){
+ pLevel = &pWInfo->a[i];
+ sqlite3VdbeResolveLabel(v, pLevel->addrCont);
+ if( pLevel->op!=OP_Noop ){
+ sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
+ sqlite3VdbeChangeP5(v, pLevel->p5);
+ }
+ if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
+ struct InLoop *pIn;
+ int j;
+ sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
+ for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
+ sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
+ sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
+ sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
+ }
+ sqlite3DbFree(db, pLevel->u.in.aInLoop);
+ }
+ sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
+ if( pLevel->iLeftJoin ){
+ int addr;
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
+ assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
+ || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
+ if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
+ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
+ }
+ if( pLevel->iIdxCur>=0 ){
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
+ }
+ if( pLevel->op==OP_Return ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
+ }
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ }
+
+ /* The "break" point is here, just past the end of the outer loop.
+ ** Set it.
+ */
+ sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
+
+ /* Close all of the cursors that were opened by sqlite3WhereBegin.
+ */
+ assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
+ for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
+ struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
+ Table *pTab = pTabItem->pTab;
+ assert( pTab!=0 );
+ if( (pTab->tabFlags & TF_Ephemeral)==0
+ && pTab->pSelect==0
+ && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
+ ){
+ int ws = pLevel->plan.wsFlags;
+ if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
+ sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
+ }
+ if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
+ sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
+ }
+ }
+
+ /* If this scan uses an index, make code substitutions to read data
+ ** from the index in preference to the table. Sometimes, this means
+ ** the table need never be read from. This is a performance boost,
+ ** as the vdbe level waits until the table is read before actually
+ ** seeking the table cursor to the record corresponding to the current
+ ** position in the index.
+ **
+ ** Calls to the code generator in between sqlite3WhereBegin and
+ ** sqlite3WhereEnd will have created code that references the table
+ ** directly. This loop scans all that code looking for opcodes
+ ** that reference the table and converts them into opcodes that
+ ** reference the index.
+ */
+ if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
+ int k, j, last;
+ VdbeOp *pOp;
+ Index *pIdx = pLevel->plan.u.pIdx;
+
+ assert( pIdx!=0 );
+ pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
+ last = sqlite3VdbeCurrentAddr(v);
+ for(k=pWInfo->iTop; k<last; k++, pOp++){
+ if( pOp->p1!=pLevel->iTabCur ) continue;
+ if( pOp->opcode==OP_Column ){
+ for(j=0; j<pIdx->nColumn; j++){
+ if( pOp->p2==pIdx->aiColumn[j] ){
+ pOp->p2 = j;
+ pOp->p1 = pLevel->iIdxCur;
+ break;
+ }
+ }
+ assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
+ || j<pIdx->nColumn );
+ }else if( pOp->opcode==OP_Rowid ){
+ pOp->p1 = pLevel->iIdxCur;
+ pOp->opcode = OP_IdxRowid;
+ }
+ }
+ }
+ }
+
+ /* Final cleanup
+ */
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop;
+ whereInfoFree(db, pWInfo);
+ return;
+}