summaryrefslogtreecommitdiff
path: root/src/select.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/select.c')
-rw-r--r--src/select.c4591
1 files changed, 4591 insertions, 0 deletions
diff --git a/src/select.c b/src/select.c
new file mode 100644
index 0000000..571a778
--- /dev/null
+++ b/src/select.c
@@ -0,0 +1,4591 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle SELECT statements in SQLite.
+*/
+#include "sqliteInt.h"
+
+
+/*
+** Delete all the content of a Select structure but do not deallocate
+** the select structure itself.
+*/
+static void clearSelect(sqlite3 *db, Select *p){
+ sqlite3ExprListDelete(db, p->pEList);
+ sqlite3SrcListDelete(db, p->pSrc);
+ sqlite3ExprDelete(db, p->pWhere);
+ sqlite3ExprListDelete(db, p->pGroupBy);
+ sqlite3ExprDelete(db, p->pHaving);
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ sqlite3SelectDelete(db, p->pPrior);
+ sqlite3ExprDelete(db, p->pLimit);
+ sqlite3ExprDelete(db, p->pOffset);
+}
+
+/*
+** Initialize a SelectDest structure.
+*/
+void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
+ pDest->eDest = (u8)eDest;
+ pDest->iParm = iParm;
+ pDest->affinity = 0;
+ pDest->iMem = 0;
+ pDest->nMem = 0;
+}
+
+
+/*
+** Allocate a new Select structure and return a pointer to that
+** structure.
+*/
+Select *sqlite3SelectNew(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* which columns to include in the result */
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
+ Expr *pWhere, /* the WHERE clause */
+ ExprList *pGroupBy, /* the GROUP BY clause */
+ Expr *pHaving, /* the HAVING clause */
+ ExprList *pOrderBy, /* the ORDER BY clause */
+ int isDistinct, /* true if the DISTINCT keyword is present */
+ Expr *pLimit, /* LIMIT value. NULL means not used */
+ Expr *pOffset /* OFFSET value. NULL means no offset */
+){
+ Select *pNew;
+ Select standin;
+ sqlite3 *db = pParse->db;
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
+ assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
+ if( pNew==0 ){
+ assert( db->mallocFailed );
+ pNew = &standin;
+ memset(pNew, 0, sizeof(*pNew));
+ }
+ if( pEList==0 ){
+ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
+ }
+ pNew->pEList = pEList;
+ pNew->pSrc = pSrc;
+ pNew->pWhere = pWhere;
+ pNew->pGroupBy = pGroupBy;
+ pNew->pHaving = pHaving;
+ pNew->pOrderBy = pOrderBy;
+ pNew->selFlags = isDistinct ? SF_Distinct : 0;
+ pNew->op = TK_SELECT;
+ pNew->pLimit = pLimit;
+ pNew->pOffset = pOffset;
+ assert( pOffset==0 || pLimit!=0 );
+ pNew->addrOpenEphm[0] = -1;
+ pNew->addrOpenEphm[1] = -1;
+ pNew->addrOpenEphm[2] = -1;
+ if( db->mallocFailed ) {
+ clearSelect(db, pNew);
+ if( pNew!=&standin ) sqlite3DbFree(db, pNew);
+ pNew = 0;
+ }else{
+ assert( pNew->pSrc!=0 || pParse->nErr>0 );
+ }
+ assert( pNew!=&standin );
+ return pNew;
+}
+
+/*
+** Delete the given Select structure and all of its substructures.
+*/
+void sqlite3SelectDelete(sqlite3 *db, Select *p){
+ if( p ){
+ clearSelect(db, p);
+ sqlite3DbFree(db, p);
+ }
+}
+
+/*
+** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
+** type of join. Return an integer constant that expresses that type
+** in terms of the following bit values:
+**
+** JT_INNER
+** JT_CROSS
+** JT_OUTER
+** JT_NATURAL
+** JT_LEFT
+** JT_RIGHT
+**
+** A full outer join is the combination of JT_LEFT and JT_RIGHT.
+**
+** If an illegal or unsupported join type is seen, then still return
+** a join type, but put an error in the pParse structure.
+*/
+int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
+ int jointype = 0;
+ Token *apAll[3];
+ Token *p;
+ /* 0123456789 123456789 123456789 123 */
+ static const char zKeyText[] = "naturaleftouterightfullinnercross";
+ static const struct {
+ u8 i; /* Beginning of keyword text in zKeyText[] */
+ u8 nChar; /* Length of the keyword in characters */
+ u8 code; /* Join type mask */
+ } aKeyword[] = {
+ /* natural */ { 0, 7, JT_NATURAL },
+ /* left */ { 6, 4, JT_LEFT|JT_OUTER },
+ /* outer */ { 10, 5, JT_OUTER },
+ /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
+ /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
+ /* inner */ { 23, 5, JT_INNER },
+ /* cross */ { 28, 5, JT_INNER|JT_CROSS },
+ };
+ int i, j;
+ apAll[0] = pA;
+ apAll[1] = pB;
+ apAll[2] = pC;
+ for(i=0; i<3 && apAll[i]; i++){
+ p = apAll[i];
+ for(j=0; j<ArraySize(aKeyword); j++){
+ if( p->n==aKeyword[j].nChar
+ && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
+ jointype |= aKeyword[j].code;
+ break;
+ }
+ }
+ testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
+ if( j>=ArraySize(aKeyword) ){
+ jointype |= JT_ERROR;
+ break;
+ }
+ }
+ if(
+ (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
+ (jointype & JT_ERROR)!=0
+ ){
+ const char *zSp = " ";
+ assert( pB!=0 );
+ if( pC==0 ){ zSp++; }
+ sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
+ "%T %T%s%T", pA, pB, zSp, pC);
+ jointype = JT_INNER;
+ }else if( (jointype & JT_OUTER)!=0
+ && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
+ sqlite3ErrorMsg(pParse,
+ "RIGHT and FULL OUTER JOINs are not currently supported");
+ jointype = JT_INNER;
+ }
+ return jointype;
+}
+
+/*
+** Return the index of a column in a table. Return -1 if the column
+** is not contained in the table.
+*/
+static int columnIndex(Table *pTab, const char *zCol){
+ int i;
+ for(i=0; i<pTab->nCol; i++){
+ if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Search the first N tables in pSrc, from left to right, looking for a
+** table that has a column named zCol.
+**
+** When found, set *piTab and *piCol to the table index and column index
+** of the matching column and return TRUE.
+**
+** If not found, return FALSE.
+*/
+static int tableAndColumnIndex(
+ SrcList *pSrc, /* Array of tables to search */
+ int N, /* Number of tables in pSrc->a[] to search */
+ const char *zCol, /* Name of the column we are looking for */
+ int *piTab, /* Write index of pSrc->a[] here */
+ int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
+){
+ int i; /* For looping over tables in pSrc */
+ int iCol; /* Index of column matching zCol */
+
+ assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
+ for(i=0; i<N; i++){
+ iCol = columnIndex(pSrc->a[i].pTab, zCol);
+ if( iCol>=0 ){
+ if( piTab ){
+ *piTab = i;
+ *piCol = iCol;
+ }
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** This function is used to add terms implied by JOIN syntax to the
+** WHERE clause expression of a SELECT statement. The new term, which
+** is ANDed with the existing WHERE clause, is of the form:
+**
+** (tab1.col1 = tab2.col2)
+**
+** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
+** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
+** column iColRight of tab2.
+*/
+static void addWhereTerm(
+ Parse *pParse, /* Parsing context */
+ SrcList *pSrc, /* List of tables in FROM clause */
+ int iLeft, /* Index of first table to join in pSrc */
+ int iColLeft, /* Index of column in first table */
+ int iRight, /* Index of second table in pSrc */
+ int iColRight, /* Index of column in second table */
+ int isOuterJoin, /* True if this is an OUTER join */
+ Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
+){
+ sqlite3 *db = pParse->db;
+ Expr *pE1;
+ Expr *pE2;
+ Expr *pEq;
+
+ assert( iLeft<iRight );
+ assert( pSrc->nSrc>iRight );
+ assert( pSrc->a[iLeft].pTab );
+ assert( pSrc->a[iRight].pTab );
+
+ pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
+ pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
+
+ pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
+ if( pEq && isOuterJoin ){
+ ExprSetProperty(pEq, EP_FromJoin);
+ assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
+ ExprSetIrreducible(pEq);
+ pEq->iRightJoinTable = (i16)pE2->iTable;
+ }
+ *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
+}
+
+/*
+** Set the EP_FromJoin property on all terms of the given expression.
+** And set the Expr.iRightJoinTable to iTable for every term in the
+** expression.
+**
+** The EP_FromJoin property is used on terms of an expression to tell
+** the LEFT OUTER JOIN processing logic that this term is part of the
+** join restriction specified in the ON or USING clause and not a part
+** of the more general WHERE clause. These terms are moved over to the
+** WHERE clause during join processing but we need to remember that they
+** originated in the ON or USING clause.
+**
+** The Expr.iRightJoinTable tells the WHERE clause processing that the
+** expression depends on table iRightJoinTable even if that table is not
+** explicitly mentioned in the expression. That information is needed
+** for cases like this:
+**
+** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
+**
+** The where clause needs to defer the handling of the t1.x=5
+** term until after the t2 loop of the join. In that way, a
+** NULL t2 row will be inserted whenever t1.x!=5. If we do not
+** defer the handling of t1.x=5, it will be processed immediately
+** after the t1 loop and rows with t1.x!=5 will never appear in
+** the output, which is incorrect.
+*/
+static void setJoinExpr(Expr *p, int iTable){
+ while( p ){
+ ExprSetProperty(p, EP_FromJoin);
+ assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
+ ExprSetIrreducible(p);
+ p->iRightJoinTable = (i16)iTable;
+ setJoinExpr(p->pLeft, iTable);
+ p = p->pRight;
+ }
+}
+
+/*
+** This routine processes the join information for a SELECT statement.
+** ON and USING clauses are converted into extra terms of the WHERE clause.
+** NATURAL joins also create extra WHERE clause terms.
+**
+** The terms of a FROM clause are contained in the Select.pSrc structure.
+** The left most table is the first entry in Select.pSrc. The right-most
+** table is the last entry. The join operator is held in the entry to
+** the left. Thus entry 0 contains the join operator for the join between
+** entries 0 and 1. Any ON or USING clauses associated with the join are
+** also attached to the left entry.
+**
+** This routine returns the number of errors encountered.
+*/
+static int sqliteProcessJoin(Parse *pParse, Select *p){
+ SrcList *pSrc; /* All tables in the FROM clause */
+ int i, j; /* Loop counters */
+ struct SrcList_item *pLeft; /* Left table being joined */
+ struct SrcList_item *pRight; /* Right table being joined */
+
+ pSrc = p->pSrc;
+ pLeft = &pSrc->a[0];
+ pRight = &pLeft[1];
+ for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
+ Table *pLeftTab = pLeft->pTab;
+ Table *pRightTab = pRight->pTab;
+ int isOuter;
+
+ if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
+ isOuter = (pRight->jointype & JT_OUTER)!=0;
+
+ /* When the NATURAL keyword is present, add WHERE clause terms for
+ ** every column that the two tables have in common.
+ */
+ if( pRight->jointype & JT_NATURAL ){
+ if( pRight->pOn || pRight->pUsing ){
+ sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
+ "an ON or USING clause", 0);
+ return 1;
+ }
+ for(j=0; j<pRightTab->nCol; j++){
+ char *zName; /* Name of column in the right table */
+ int iLeft; /* Matching left table */
+ int iLeftCol; /* Matching column in the left table */
+
+ zName = pRightTab->aCol[j].zName;
+ if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
+ addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
+ isOuter, &p->pWhere);
+ }
+ }
+ }
+
+ /* Disallow both ON and USING clauses in the same join
+ */
+ if( pRight->pOn && pRight->pUsing ){
+ sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
+ "clauses in the same join");
+ return 1;
+ }
+
+ /* Add the ON clause to the end of the WHERE clause, connected by
+ ** an AND operator.
+ */
+ if( pRight->pOn ){
+ if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
+ p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
+ pRight->pOn = 0;
+ }
+
+ /* Create extra terms on the WHERE clause for each column named
+ ** in the USING clause. Example: If the two tables to be joined are
+ ** A and B and the USING clause names X, Y, and Z, then add this
+ ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
+ ** Report an error if any column mentioned in the USING clause is
+ ** not contained in both tables to be joined.
+ */
+ if( pRight->pUsing ){
+ IdList *pList = pRight->pUsing;
+ for(j=0; j<pList->nId; j++){
+ char *zName; /* Name of the term in the USING clause */
+ int iLeft; /* Table on the left with matching column name */
+ int iLeftCol; /* Column number of matching column on the left */
+ int iRightCol; /* Column number of matching column on the right */
+
+ zName = pList->a[j].zName;
+ iRightCol = columnIndex(pRightTab, zName);
+ if( iRightCol<0
+ || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
+ ){
+ sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
+ "not present in both tables", zName);
+ return 1;
+ }
+ addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
+ isOuter, &p->pWhere);
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Insert code into "v" that will push the record on the top of the
+** stack into the sorter.
+*/
+static void pushOntoSorter(
+ Parse *pParse, /* Parser context */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ Select *pSelect, /* The whole SELECT statement */
+ int regData /* Register holding data to be sorted */
+){
+ Vdbe *v = pParse->pVdbe;
+ int nExpr = pOrderBy->nExpr;
+ int regBase = sqlite3GetTempRange(pParse, nExpr+2);
+ int regRecord = sqlite3GetTempReg(pParse);
+ int op;
+ sqlite3ExprCacheClear(pParse);
+ sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
+ sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
+ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
+ if( pSelect->selFlags & SF_UseSorter ){
+ op = OP_SorterInsert;
+ }else{
+ op = OP_IdxInsert;
+ }
+ sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
+ if( pSelect->iLimit ){
+ int addr1, addr2;
+ int iLimit;
+ if( pSelect->iOffset ){
+ iLimit = pSelect->iOffset+1;
+ }else{
+ iLimit = pSelect->iLimit;
+ }
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
+ sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
+ addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
+ sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
+ sqlite3VdbeJumpHere(v, addr2);
+ }
+}
+
+/*
+** Add code to implement the OFFSET
+*/
+static void codeOffset(
+ Vdbe *v, /* Generate code into this VM */
+ Select *p, /* The SELECT statement being coded */
+ int iContinue /* Jump here to skip the current record */
+){
+ if( p->iOffset && iContinue!=0 ){
+ int addr;
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
+ addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
+ VdbeComment((v, "skip OFFSET records"));
+ sqlite3VdbeJumpHere(v, addr);
+ }
+}
+
+/*
+** Add code that will check to make sure the N registers starting at iMem
+** form a distinct entry. iTab is a sorting index that holds previously
+** seen combinations of the N values. A new entry is made in iTab
+** if the current N values are new.
+**
+** A jump to addrRepeat is made and the N+1 values are popped from the
+** stack if the top N elements are not distinct.
+*/
+static void codeDistinct(
+ Parse *pParse, /* Parsing and code generating context */
+ int iTab, /* A sorting index used to test for distinctness */
+ int addrRepeat, /* Jump to here if not distinct */
+ int N, /* Number of elements */
+ int iMem /* First element */
+){
+ Vdbe *v;
+ int r1;
+
+ v = pParse->pVdbe;
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+}
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Generate an error message when a SELECT is used within a subexpression
+** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
+** column. We do this in a subroutine because the error used to occur
+** in multiple places. (The error only occurs in one place now, but we
+** retain the subroutine to minimize code disruption.)
+*/
+static int checkForMultiColumnSelectError(
+ Parse *pParse, /* Parse context. */
+ SelectDest *pDest, /* Destination of SELECT results */
+ int nExpr /* Number of result columns returned by SELECT */
+){
+ int eDest = pDest->eDest;
+ if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
+ sqlite3ErrorMsg(pParse, "only a single result allowed for "
+ "a SELECT that is part of an expression");
+ return 1;
+ }else{
+ return 0;
+ }
+}
+#endif
+
+/*
+** This routine generates the code for the inside of the inner loop
+** of a SELECT.
+**
+** If srcTab and nColumn are both zero, then the pEList expressions
+** are evaluated in order to get the data for this row. If nColumn>0
+** then data is pulled from srcTab and pEList is used only to get the
+** datatypes for each column.
+*/
+static void selectInnerLoop(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The complete select statement being coded */
+ ExprList *pEList, /* List of values being extracted */
+ int srcTab, /* Pull data from this table */
+ int nColumn, /* Number of columns in the source table */
+ ExprList *pOrderBy, /* If not NULL, sort results using this key */
+ int distinct, /* If >=0, make sure results are distinct */
+ SelectDest *pDest, /* How to dispose of the results */
+ int iContinue, /* Jump here to continue with next row */
+ int iBreak /* Jump here to break out of the inner loop */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ int hasDistinct; /* True if the DISTINCT keyword is present */
+ int regResult; /* Start of memory holding result set */
+ int eDest = pDest->eDest; /* How to dispose of results */
+ int iParm = pDest->iParm; /* First argument to disposal method */
+ int nResultCol; /* Number of result columns */
+
+ assert( v );
+ if( NEVER(v==0) ) return;
+ assert( pEList!=0 );
+ hasDistinct = distinct>=0;
+ if( pOrderBy==0 && !hasDistinct ){
+ codeOffset(v, p, iContinue);
+ }
+
+ /* Pull the requested columns.
+ */
+ if( nColumn>0 ){
+ nResultCol = nColumn;
+ }else{
+ nResultCol = pEList->nExpr;
+ }
+ if( pDest->iMem==0 ){
+ pDest->iMem = pParse->nMem+1;
+ pDest->nMem = nResultCol;
+ pParse->nMem += nResultCol;
+ }else{
+ assert( pDest->nMem==nResultCol );
+ }
+ regResult = pDest->iMem;
+ if( nColumn>0 ){
+ for(i=0; i<nColumn; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
+ }
+ }else if( eDest!=SRT_Exists ){
+ /* If the destination is an EXISTS(...) expression, the actual
+ ** values returned by the SELECT are not required.
+ */
+ sqlite3ExprCacheClear(pParse);
+ sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
+ }
+ nColumn = nResultCol;
+
+ /* If the DISTINCT keyword was present on the SELECT statement
+ ** and this row has been seen before, then do not make this row
+ ** part of the result.
+ */
+ if( hasDistinct ){
+ assert( pEList!=0 );
+ assert( pEList->nExpr==nColumn );
+ codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
+ if( pOrderBy==0 ){
+ codeOffset(v, p, iContinue);
+ }
+ }
+
+ switch( eDest ){
+ /* In this mode, write each query result to the key of the temporary
+ ** table iParm.
+ */
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ case SRT_Union: {
+ int r1;
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+ /* Construct a record from the query result, but instead of
+ ** saving that record, use it as a key to delete elements from
+ ** the temporary table iParm.
+ */
+ case SRT_Except: {
+ sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
+ break;
+ }
+#endif
+
+ /* Store the result as data using a unique key.
+ */
+ case SRT_Table:
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempReg(pParse);
+ testcase( eDest==SRT_Table );
+ testcase( eDest==SRT_EphemTab );
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+ if( pOrderBy ){
+ pushOntoSorter(pParse, pOrderBy, p, r1);
+ }else{
+ int r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+ ** then there should be a single item on the stack. Write this
+ ** item into the set table with bogus data.
+ */
+ case SRT_Set: {
+ assert( nColumn==1 );
+ p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
+ if( pOrderBy ){
+ /* At first glance you would think we could optimize out the
+ ** ORDER BY in this case since the order of entries in the set
+ ** does not matter. But there might be a LIMIT clause, in which
+ ** case the order does matter */
+ pushOntoSorter(pParse, pOrderBy, p, regResult);
+ }else{
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }
+ break;
+ }
+
+ /* If any row exist in the result set, record that fact and abort.
+ */
+ case SRT_Exists: {
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell and break out
+ ** of the scan loop.
+ */
+ case SRT_Mem: {
+ assert( nColumn==1 );
+ if( pOrderBy ){
+ pushOntoSorter(pParse, pOrderBy, p, regResult);
+ }else{
+ sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
+ /* The LIMIT clause will jump out of the loop for us */
+ }
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ /* Send the data to the callback function or to a subroutine. In the
+ ** case of a subroutine, the subroutine itself is responsible for
+ ** popping the data from the stack.
+ */
+ case SRT_Coroutine:
+ case SRT_Output: {
+ testcase( eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ if( pOrderBy ){
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+ pushOntoSorter(pParse, pOrderBy, p, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }else if( eDest==SRT_Coroutine ){
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
+ sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
+ }
+ break;
+ }
+
+#if !defined(SQLITE_OMIT_TRIGGER)
+ /* Discard the results. This is used for SELECT statements inside
+ ** the body of a TRIGGER. The purpose of such selects is to call
+ ** user-defined functions that have side effects. We do not care
+ ** about the actual results of the select.
+ */
+ default: {
+ assert( eDest==SRT_Discard );
+ break;
+ }
+#endif
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached. Except, if
+ ** there is a sorter, in which case the sorter has already limited
+ ** the output for us.
+ */
+ if( pOrderBy==0 && p->iLimit ){
+ sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
+ }
+}
+
+/*
+** Given an expression list, generate a KeyInfo structure that records
+** the collating sequence for each expression in that expression list.
+**
+** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
+** KeyInfo structure is appropriate for initializing a virtual index to
+** implement that clause. If the ExprList is the result set of a SELECT
+** then the KeyInfo structure is appropriate for initializing a virtual
+** index to implement a DISTINCT test.
+**
+** Space to hold the KeyInfo structure is obtain from malloc. The calling
+** function is responsible for seeing that this structure is eventually
+** freed. Add the KeyInfo structure to the P4 field of an opcode using
+** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
+*/
+static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
+ sqlite3 *db = pParse->db;
+ int nExpr;
+ KeyInfo *pInfo;
+ struct ExprList_item *pItem;
+ int i;
+
+ nExpr = pList->nExpr;
+ pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
+ if( pInfo ){
+ pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
+ pInfo->nField = (u16)nExpr;
+ pInfo->enc = ENC(db);
+ pInfo->db = db;
+ for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
+ CollSeq *pColl;
+ pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+ if( !pColl ){
+ pColl = db->pDfltColl;
+ }
+ pInfo->aColl[i] = pColl;
+ pInfo->aSortOrder[i] = pItem->sortOrder;
+ }
+ }
+ return pInfo;
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Name of the connection operator, used for error messages.
+*/
+static const char *selectOpName(int id){
+ char *z;
+ switch( id ){
+ case TK_ALL: z = "UNION ALL"; break;
+ case TK_INTERSECT: z = "INTERSECT"; break;
+ case TK_EXCEPT: z = "EXCEPT"; break;
+ default: z = "UNION"; break;
+ }
+ return z;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
+** is a no-op. Otherwise, it adds a single row of output to the EQP result,
+** where the caption is of the form:
+**
+** "USE TEMP B-TREE FOR xxx"
+**
+** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
+** is determined by the zUsage argument.
+*/
+static void explainTempTable(Parse *pParse, const char *zUsage){
+ if( pParse->explain==2 ){
+ Vdbe *v = pParse->pVdbe;
+ char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
+ sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
+ }
+}
+
+/*
+** Assign expression b to lvalue a. A second, no-op, version of this macro
+** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
+** in sqlite3Select() to assign values to structure member variables that
+** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
+** code with #ifndef directives.
+*/
+# define explainSetInteger(a, b) a = b
+
+#else
+/* No-op versions of the explainXXX() functions and macros. */
+# define explainTempTable(y,z)
+# define explainSetInteger(y,z)
+#endif
+
+#if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
+/*
+** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
+** is a no-op. Otherwise, it adds a single row of output to the EQP result,
+** where the caption is of one of the two forms:
+**
+** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
+** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
+**
+** where iSub1 and iSub2 are the integers passed as the corresponding
+** function parameters, and op is the text representation of the parameter
+** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
+** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
+** false, or the second form if it is true.
+*/
+static void explainComposite(
+ Parse *pParse, /* Parse context */
+ int op, /* One of TK_UNION, TK_EXCEPT etc. */
+ int iSub1, /* Subquery id 1 */
+ int iSub2, /* Subquery id 2 */
+ int bUseTmp /* True if a temp table was used */
+){
+ assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
+ if( pParse->explain==2 ){
+ Vdbe *v = pParse->pVdbe;
+ char *zMsg = sqlite3MPrintf(
+ pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
+ bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
+ );
+ sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
+ }
+}
+#else
+/* No-op versions of the explainXXX() functions and macros. */
+# define explainComposite(v,w,x,y,z)
+#endif
+
+/*
+** If the inner loop was generated using a non-null pOrderBy argument,
+** then the results were placed in a sorter. After the loop is terminated
+** we need to run the sorter and output the results. The following
+** routine generates the code needed to do that.
+*/
+static void generateSortTail(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ Vdbe *v, /* Generate code into this VDBE */
+ int nColumn, /* Number of columns of data */
+ SelectDest *pDest /* Write the sorted results here */
+){
+ int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */
+ int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
+ int addr;
+ int iTab;
+ int pseudoTab = 0;
+ ExprList *pOrderBy = p->pOrderBy;
+
+ int eDest = pDest->eDest;
+ int iParm = pDest->iParm;
+
+ int regRow;
+ int regRowid;
+
+ iTab = pOrderBy->iECursor;
+ regRow = sqlite3GetTempReg(pParse);
+ if( eDest==SRT_Output || eDest==SRT_Coroutine ){
+ pseudoTab = pParse->nTab++;
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
+ regRowid = 0;
+ }else{
+ regRowid = sqlite3GetTempReg(pParse);
+ }
+ if( p->selFlags & SF_UseSorter ){
+ int regSortOut = ++pParse->nMem;
+ int ptab2 = pParse->nTab++;
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
+ codeOffset(v, p, addrContinue);
+ sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
+ sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
+ sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
+ }else{
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
+ codeOffset(v, p, addrContinue);
+ sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
+ }
+ switch( eDest ){
+ case SRT_Table:
+ case SRT_EphemTab: {
+ testcase( eDest==SRT_Table );
+ testcase( eDest==SRT_EphemTab );
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case SRT_Set: {
+ assert( nColumn==1 );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
+ break;
+ }
+ case SRT_Mem: {
+ assert( nColumn==1 );
+ sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+#endif
+ default: {
+ int i;
+ assert( eDest==SRT_Output || eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ testcase( eDest==SRT_Coroutine );
+ for(i=0; i<nColumn; i++){
+ assert( regRow!=pDest->iMem+i );
+ sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
+ if( i==0 ){
+ sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
+ }
+ }
+ if( eDest==SRT_Output ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
+ sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
+ }else{
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
+ }
+ break;
+ }
+ }
+ sqlite3ReleaseTempReg(pParse, regRow);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+
+ /* The bottom of the loop
+ */
+ sqlite3VdbeResolveLabel(v, addrContinue);
+ if( p->selFlags & SF_UseSorter ){
+ sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
+ }
+ sqlite3VdbeResolveLabel(v, addrBreak);
+ if( eDest==SRT_Output || eDest==SRT_Coroutine ){
+ sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
+ }
+}
+
+/*
+** Return a pointer to a string containing the 'declaration type' of the
+** expression pExpr. The string may be treated as static by the caller.
+**
+** The declaration type is the exact datatype definition extracted from the
+** original CREATE TABLE statement if the expression is a column. The
+** declaration type for a ROWID field is INTEGER. Exactly when an expression
+** is considered a column can be complex in the presence of subqueries. The
+** result-set expression in all of the following SELECT statements is
+** considered a column by this function.
+**
+** SELECT col FROM tbl;
+** SELECT (SELECT col FROM tbl;
+** SELECT (SELECT col FROM tbl);
+** SELECT abc FROM (SELECT col AS abc FROM tbl);
+**
+** The declaration type for any expression other than a column is NULL.
+*/
+static const char *columnType(
+ NameContext *pNC,
+ Expr *pExpr,
+ const char **pzOriginDb,
+ const char **pzOriginTab,
+ const char **pzOriginCol
+){
+ char const *zType = 0;
+ char const *zOriginDb = 0;
+ char const *zOriginTab = 0;
+ char const *zOriginCol = 0;
+ int j;
+ if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
+
+ switch( pExpr->op ){
+ case TK_AGG_COLUMN:
+ case TK_COLUMN: {
+ /* The expression is a column. Locate the table the column is being
+ ** extracted from in NameContext.pSrcList. This table may be real
+ ** database table or a subquery.
+ */
+ Table *pTab = 0; /* Table structure column is extracted from */
+ Select *pS = 0; /* Select the column is extracted from */
+ int iCol = pExpr->iColumn; /* Index of column in pTab */
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ testcase( pExpr->op==TK_COLUMN );
+ while( pNC && !pTab ){
+ SrcList *pTabList = pNC->pSrcList;
+ for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
+ if( j<pTabList->nSrc ){
+ pTab = pTabList->a[j].pTab;
+ pS = pTabList->a[j].pSelect;
+ }else{
+ pNC = pNC->pNext;
+ }
+ }
+
+ if( pTab==0 ){
+ /* At one time, code such as "SELECT new.x" within a trigger would
+ ** cause this condition to run. Since then, we have restructured how
+ ** trigger code is generated and so this condition is no longer
+ ** possible. However, it can still be true for statements like
+ ** the following:
+ **
+ ** CREATE TABLE t1(col INTEGER);
+ ** SELECT (SELECT t1.col) FROM FROM t1;
+ **
+ ** when columnType() is called on the expression "t1.col" in the
+ ** sub-select. In this case, set the column type to NULL, even
+ ** though it should really be "INTEGER".
+ **
+ ** This is not a problem, as the column type of "t1.col" is never
+ ** used. When columnType() is called on the expression
+ ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
+ ** branch below. */
+ break;
+ }
+
+ assert( pTab && pExpr->pTab==pTab );
+ if( pS ){
+ /* The "table" is actually a sub-select or a view in the FROM clause
+ ** of the SELECT statement. Return the declaration type and origin
+ ** data for the result-set column of the sub-select.
+ */
+ if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
+ /* If iCol is less than zero, then the expression requests the
+ ** rowid of the sub-select or view. This expression is legal (see
+ ** test case misc2.2.2) - it always evaluates to NULL.
+ */
+ NameContext sNC;
+ Expr *p = pS->pEList->a[iCol].pExpr;
+ sNC.pSrcList = pS->pSrc;
+ sNC.pNext = pNC;
+ sNC.pParse = pNC->pParse;
+ zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
+ }
+ }else if( ALWAYS(pTab->pSchema) ){
+ /* A real table */
+ assert( !pS );
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zType = "INTEGER";
+ zOriginCol = "rowid";
+ }else{
+ zType = pTab->aCol[iCol].zType;
+ zOriginCol = pTab->aCol[iCol].zName;
+ }
+ zOriginTab = pTab->zName;
+ if( pNC->pParse ){
+ int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
+ zOriginDb = pNC->pParse->db->aDb[iDb].zName;
+ }
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_SELECT: {
+ /* The expression is a sub-select. Return the declaration type and
+ ** origin info for the single column in the result set of the SELECT
+ ** statement.
+ */
+ NameContext sNC;
+ Select *pS = pExpr->x.pSelect;
+ Expr *p = pS->pEList->a[0].pExpr;
+ assert( ExprHasProperty(pExpr, EP_xIsSelect) );
+ sNC.pSrcList = pS->pSrc;
+ sNC.pNext = pNC;
+ sNC.pParse = pNC->pParse;
+ zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
+ break;
+ }
+#endif
+ }
+
+ if( pzOriginDb ){
+ assert( pzOriginTab && pzOriginCol );
+ *pzOriginDb = zOriginDb;
+ *pzOriginTab = zOriginTab;
+ *pzOriginCol = zOriginCol;
+ }
+ return zType;
+}
+
+/*
+** Generate code that will tell the VDBE the declaration types of columns
+** in the result set.
+*/
+static void generateColumnTypes(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+#ifndef SQLITE_OMIT_DECLTYPE
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ NameContext sNC;
+ sNC.pSrcList = pTabList;
+ sNC.pParse = pParse;
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p = pEList->a[i].pExpr;
+ const char *zType;
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ const char *zOrigDb = 0;
+ const char *zOrigTab = 0;
+ const char *zOrigCol = 0;
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+
+ /* The vdbe must make its own copy of the column-type and other
+ ** column specific strings, in case the schema is reset before this
+ ** virtual machine is deleted.
+ */
+ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
+#else
+ zType = columnType(&sNC, p, 0, 0, 0);
+#endif
+ sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
+ }
+#endif /* SQLITE_OMIT_DECLTYPE */
+}
+
+/*
+** Generate code that will tell the VDBE the names of columns
+** in the result set. This information is used to provide the
+** azCol[] values in the callback.
+*/
+static void generateColumnNames(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i, j;
+ sqlite3 *db = pParse->db;
+ int fullNames, shortNames;
+
+#ifndef SQLITE_OMIT_EXPLAIN
+ /* If this is an EXPLAIN, skip this step */
+ if( pParse->explain ){
+ return;
+ }
+#endif
+
+ if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
+ pParse->colNamesSet = 1;
+ fullNames = (db->flags & SQLITE_FullColNames)!=0;
+ shortNames = (db->flags & SQLITE_ShortColNames)!=0;
+ sqlite3VdbeSetNumCols(v, pEList->nExpr);
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p;
+ p = pEList->a[i].pExpr;
+ if( NEVER(p==0) ) continue;
+ if( pEList->a[i].zName ){
+ char *zName = pEList->a[i].zName;
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
+ }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
+ Table *pTab;
+ char *zCol;
+ int iCol = p->iColumn;
+ for(j=0; ALWAYS(j<pTabList->nSrc); j++){
+ if( pTabList->a[j].iCursor==p->iTable ) break;
+ }
+ assert( j<pTabList->nSrc );
+ pTab = pTabList->a[j].pTab;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zCol = "rowid";
+ }else{
+ zCol = pTab->aCol[iCol].zName;
+ }
+ if( !shortNames && !fullNames ){
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME,
+ sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
+ }else if( fullNames ){
+ char *zName = 0;
+ zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
+ }else{
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
+ }
+ }else{
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME,
+ sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
+ }
+ }
+ generateColumnTypes(pParse, pTabList, pEList);
+}
+
+/*
+** Given a an expression list (which is really the list of expressions
+** that form the result set of a SELECT statement) compute appropriate
+** column names for a table that would hold the expression list.
+**
+** All column names will be unique.
+**
+** Only the column names are computed. Column.zType, Column.zColl,
+** and other fields of Column are zeroed.
+**
+** Return SQLITE_OK on success. If a memory allocation error occurs,
+** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
+*/
+static int selectColumnsFromExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* Expr list from which to derive column names */
+ int *pnCol, /* Write the number of columns here */
+ Column **paCol /* Write the new column list here */
+){
+ sqlite3 *db = pParse->db; /* Database connection */
+ int i, j; /* Loop counters */
+ int cnt; /* Index added to make the name unique */
+ Column *aCol, *pCol; /* For looping over result columns */
+ int nCol; /* Number of columns in the result set */
+ Expr *p; /* Expression for a single result column */
+ char *zName; /* Column name */
+ int nName; /* Size of name in zName[] */
+
+ *pnCol = nCol = pEList->nExpr;
+ aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
+ if( aCol==0 ) return SQLITE_NOMEM;
+ for(i=0, pCol=aCol; i<nCol; i++, pCol++){
+ /* Get an appropriate name for the column
+ */
+ p = pEList->a[i].pExpr;
+ assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
+ || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
+ if( (zName = pEList->a[i].zName)!=0 ){
+ /* If the column contains an "AS <name>" phrase, use <name> as the name */
+ zName = sqlite3DbStrDup(db, zName);
+ }else{
+ Expr *pColExpr = p; /* The expression that is the result column name */
+ Table *pTab; /* Table associated with this expression */
+ while( pColExpr->op==TK_DOT ){
+ pColExpr = pColExpr->pRight;
+ assert( pColExpr!=0 );
+ }
+ if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
+ /* For columns use the column name name */
+ int iCol = pColExpr->iColumn;
+ pTab = pColExpr->pTab;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ zName = sqlite3MPrintf(db, "%s",
+ iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
+ }else if( pColExpr->op==TK_ID ){
+ assert( !ExprHasProperty(pColExpr, EP_IntValue) );
+ zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
+ }else{
+ /* Use the original text of the column expression as its name */
+ zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
+ }
+ }
+ if( db->mallocFailed ){
+ sqlite3DbFree(db, zName);
+ break;
+ }
+
+ /* Make sure the column name is unique. If the name is not unique,
+ ** append a integer to the name so that it becomes unique.
+ */
+ nName = sqlite3Strlen30(zName);
+ for(j=cnt=0; j<i; j++){
+ if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
+ char *zNewName;
+ zName[nName] = 0;
+ zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
+ sqlite3DbFree(db, zName);
+ zName = zNewName;
+ j = -1;
+ if( zName==0 ) break;
+ }
+ }
+ pCol->zName = zName;
+ }
+ if( db->mallocFailed ){
+ for(j=0; j<i; j++){
+ sqlite3DbFree(db, aCol[j].zName);
+ }
+ sqlite3DbFree(db, aCol);
+ *paCol = 0;
+ *pnCol = 0;
+ return SQLITE_NOMEM;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Add type and collation information to a column list based on
+** a SELECT statement.
+**
+** The column list presumably came from selectColumnNamesFromExprList().
+** The column list has only names, not types or collations. This
+** routine goes through and adds the types and collations.
+**
+** This routine requires that all identifiers in the SELECT
+** statement be resolved.
+*/
+static void selectAddColumnTypeAndCollation(
+ Parse *pParse, /* Parsing contexts */
+ int nCol, /* Number of columns */
+ Column *aCol, /* List of columns */
+ Select *pSelect /* SELECT used to determine types and collations */
+){
+ sqlite3 *db = pParse->db;
+ NameContext sNC;
+ Column *pCol;
+ CollSeq *pColl;
+ int i;
+ Expr *p;
+ struct ExprList_item *a;
+
+ assert( pSelect!=0 );
+ assert( (pSelect->selFlags & SF_Resolved)!=0 );
+ assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
+ if( db->mallocFailed ) return;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pSrcList = pSelect->pSrc;
+ a = pSelect->pEList->a;
+ for(i=0, pCol=aCol; i<nCol; i++, pCol++){
+ p = a[i].pExpr;
+ pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
+ pCol->affinity = sqlite3ExprAffinity(p);
+ if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
+ pColl = sqlite3ExprCollSeq(pParse, p);
+ if( pColl ){
+ pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
+ }
+ }
+}
+
+/*
+** Given a SELECT statement, generate a Table structure that describes
+** the result set of that SELECT.
+*/
+Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
+ Table *pTab;
+ sqlite3 *db = pParse->db;
+ int savedFlags;
+
+ savedFlags = db->flags;
+ db->flags &= ~SQLITE_FullColNames;
+ db->flags |= SQLITE_ShortColNames;
+ sqlite3SelectPrep(pParse, pSelect, 0);
+ if( pParse->nErr ) return 0;
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ db->flags = savedFlags;
+ pTab = sqlite3DbMallocZero(db, sizeof(Table) );
+ if( pTab==0 ){
+ return 0;
+ }
+ /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
+ ** is disabled */
+ assert( db->lookaside.bEnabled==0 );
+ pTab->nRef = 1;
+ pTab->zName = 0;
+ pTab->nRowEst = 1000000;
+ selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
+ selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
+ pTab->iPKey = -1;
+ if( db->mallocFailed ){
+ sqlite3DeleteTable(db, pTab);
+ return 0;
+ }
+ return pTab;
+}
+
+/*
+** Get a VDBE for the given parser context. Create a new one if necessary.
+** If an error occurs, return NULL and leave a message in pParse.
+*/
+Vdbe *sqlite3GetVdbe(Parse *pParse){
+ Vdbe *v = pParse->pVdbe;
+ if( v==0 ){
+ v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
+#ifndef SQLITE_OMIT_TRACE
+ if( v ){
+ sqlite3VdbeAddOp0(v, OP_Trace);
+ }
+#endif
+ }
+ return v;
+}
+
+
+/*
+** Compute the iLimit and iOffset fields of the SELECT based on the
+** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
+** that appear in the original SQL statement after the LIMIT and OFFSET
+** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
+** are the integer memory register numbers for counters used to compute
+** the limit and offset. If there is no limit and/or offset, then
+** iLimit and iOffset are negative.
+**
+** This routine changes the values of iLimit and iOffset only if
+** a limit or offset is defined by pLimit and pOffset. iLimit and
+** iOffset should have been preset to appropriate default values
+** (usually but not always -1) prior to calling this routine.
+** Only if pLimit!=0 or pOffset!=0 do the limit registers get
+** redefined. The UNION ALL operator uses this property to force
+** the reuse of the same limit and offset registers across multiple
+** SELECT statements.
+*/
+static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
+ Vdbe *v = 0;
+ int iLimit = 0;
+ int iOffset;
+ int addr1, n;
+ if( p->iLimit ) return;
+
+ /*
+ ** "LIMIT -1" always shows all rows. There is some
+ ** contraversy about what the correct behavior should be.
+ ** The current implementation interprets "LIMIT 0" to mean
+ ** no rows.
+ */
+ sqlite3ExprCacheClear(pParse);
+ assert( p->pOffset==0 || p->pLimit!=0 );
+ if( p->pLimit ){
+ p->iLimit = iLimit = ++pParse->nMem;
+ v = sqlite3GetVdbe(pParse);
+ if( NEVER(v==0) ) return; /* VDBE should have already been allocated */
+ if( sqlite3ExprIsInteger(p->pLimit, &n) ){
+ sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
+ VdbeComment((v, "LIMIT counter"));
+ if( n==0 ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
+ }else{
+ if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
+ }
+ }else{
+ sqlite3ExprCode(pParse, p->pLimit, iLimit);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
+ VdbeComment((v, "LIMIT counter"));
+ sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
+ }
+ if( p->pOffset ){
+ p->iOffset = iOffset = ++pParse->nMem;
+ pParse->nMem++; /* Allocate an extra register for limit+offset */
+ sqlite3ExprCode(pParse, p->pOffset, iOffset);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
+ VdbeComment((v, "OFFSET counter"));
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
+ VdbeComment((v, "LIMIT+OFFSET"));
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
+ sqlite3VdbeJumpHere(v, addr1);
+ }
+ }
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Return the appropriate collating sequence for the iCol-th column of
+** the result set for the compound-select statement "p". Return NULL if
+** the column has no default collating sequence.
+**
+** The collating sequence for the compound select is taken from the
+** left-most term of the select that has a collating sequence.
+*/
+static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
+ CollSeq *pRet;
+ if( p->pPrior ){
+ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
+ }else{
+ pRet = 0;
+ }
+ assert( iCol>=0 );
+ if( pRet==0 && iCol<p->pEList->nExpr ){
+ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
+ }
+ return pRet;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/* Forward reference */
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+);
+
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** This routine is called to process a compound query form from
+** two or more separate queries using UNION, UNION ALL, EXCEPT, or
+** INTERSECT
+**
+** "p" points to the right-most of the two queries. the query on the
+** left is p->pPrior. The left query could also be a compound query
+** in which case this routine will be called recursively.
+**
+** The results of the total query are to be written into a destination
+** of type eDest with parameter iParm.
+**
+** Example 1: Consider a three-way compound SQL statement.
+**
+** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
+**
+** This statement is parsed up as follows:
+**
+** SELECT c FROM t3
+** |
+** `-----> SELECT b FROM t2
+** |
+** `------> SELECT a FROM t1
+**
+** The arrows in the diagram above represent the Select.pPrior pointer.
+** So if this routine is called with p equal to the t3 query, then
+** pPrior will be the t2 query. p->op will be TK_UNION in this case.
+**
+** Notice that because of the way SQLite parses compound SELECTs, the
+** individual selects always group from left to right.
+*/
+static int multiSelect(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int rc = SQLITE_OK; /* Success code from a subroutine */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Vdbe *v; /* Generate code to this VDBE */
+ SelectDest dest; /* Alternative data destination */
+ Select *pDelete = 0; /* Chain of simple selects to delete */
+ sqlite3 *db; /* Database connection */
+#ifndef SQLITE_OMIT_EXPLAIN
+ int iSub1; /* EQP id of left-hand query */
+ int iSub2; /* EQP id of right-hand query */
+#endif
+
+ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
+ ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
+ */
+ assert( p && p->pPrior ); /* Calling function guarantees this much */
+ db = pParse->db;
+ pPrior = p->pPrior;
+ assert( pPrior->pRightmost!=pPrior );
+ assert( pPrior->pRightmost==p->pRightmost );
+ dest = *pDest;
+ if( pPrior->pOrderBy ){
+ sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
+ selectOpName(p->op));
+ rc = 1;
+ goto multi_select_end;
+ }
+ if( pPrior->pLimit ){
+ sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
+ selectOpName(p->op));
+ rc = 1;
+ goto multi_select_end;
+ }
+
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 ); /* The VDBE already created by calling function */
+
+ /* Create the destination temporary table if necessary
+ */
+ if( dest.eDest==SRT_EphemTab ){
+ assert( p->pEList );
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
+ sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
+ dest.eDest = SRT_Table;
+ }
+
+ /* Make sure all SELECTs in the statement have the same number of elements
+ ** in their result sets.
+ */
+ assert( p->pEList && pPrior->pEList );
+ if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
+ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
+ " do not have the same number of result columns", selectOpName(p->op));
+ rc = 1;
+ goto multi_select_end;
+ }
+
+ /* Compound SELECTs that have an ORDER BY clause are handled separately.
+ */
+ if( p->pOrderBy ){
+ return multiSelectOrderBy(pParse, p, pDest);
+ }
+
+ /* Generate code for the left and right SELECT statements.
+ */
+ switch( p->op ){
+ case TK_ALL: {
+ int addr = 0;
+ int nLimit;
+ assert( !pPrior->pLimit );
+ pPrior->pLimit = p->pLimit;
+ pPrior->pOffset = p->pOffset;
+ explainSetInteger(iSub1, pParse->iNextSelectId);
+ rc = sqlite3Select(pParse, pPrior, &dest);
+ p->pLimit = 0;
+ p->pOffset = 0;
+ if( rc ){
+ goto multi_select_end;
+ }
+ p->pPrior = 0;
+ p->iLimit = pPrior->iLimit;
+ p->iOffset = pPrior->iOffset;
+ if( p->iLimit ){
+ addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
+ VdbeComment((v, "Jump ahead if LIMIT reached"));
+ }
+ explainSetInteger(iSub2, pParse->iNextSelectId);
+ rc = sqlite3Select(pParse, p, &dest);
+ testcase( rc!=SQLITE_OK );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ p->nSelectRow += pPrior->nSelectRow;
+ if( pPrior->pLimit
+ && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
+ && p->nSelectRow > (double)nLimit
+ ){
+ p->nSelectRow = (double)nLimit;
+ }
+ if( addr ){
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ break;
+ }
+ case TK_EXCEPT:
+ case TK_UNION: {
+ int unionTab; /* Cursor number of the temporary table holding result */
+ u8 op = 0; /* One of the SRT_ operations to apply to self */
+ int priorOp; /* The SRT_ operation to apply to prior selects */
+ Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
+ int addr;
+ SelectDest uniondest;
+
+ testcase( p->op==TK_EXCEPT );
+ testcase( p->op==TK_UNION );
+ priorOp = SRT_Union;
+ if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
+ /* We can reuse a temporary table generated by a SELECT to our
+ ** right.
+ */
+ assert( p->pRightmost!=p ); /* Can only happen for leftward elements
+ ** of a 3-way or more compound */
+ assert( p->pLimit==0 ); /* Not allowed on leftward elements */
+ assert( p->pOffset==0 ); /* Not allowed on leftward elements */
+ unionTab = dest.iParm;
+ }else{
+ /* We will need to create our own temporary table to hold the
+ ** intermediate results.
+ */
+ unionTab = pParse->nTab++;
+ assert( p->pOrderBy==0 );
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ p->pRightmost->selFlags |= SF_UsesEphemeral;
+ assert( p->pEList );
+ }
+
+ /* Code the SELECT statements to our left
+ */
+ assert( !pPrior->pOrderBy );
+ sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
+ explainSetInteger(iSub1, pParse->iNextSelectId);
+ rc = sqlite3Select(pParse, pPrior, &uniondest);
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Code the current SELECT statement
+ */
+ if( p->op==TK_EXCEPT ){
+ op = SRT_Except;
+ }else{
+ assert( p->op==TK_UNION );
+ op = SRT_Union;
+ }
+ p->pPrior = 0;
+ pLimit = p->pLimit;
+ p->pLimit = 0;
+ pOffset = p->pOffset;
+ p->pOffset = 0;
+ uniondest.eDest = op;
+ explainSetInteger(iSub2, pParse->iNextSelectId);
+ rc = sqlite3Select(pParse, p, &uniondest);
+ testcase( rc!=SQLITE_OK );
+ /* Query flattening in sqlite3Select() might refill p->pOrderBy.
+ ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ p->pOrderBy = 0;
+ if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = pLimit;
+ p->pOffset = pOffset;
+ p->iLimit = 0;
+ p->iOffset = 0;
+
+ /* Convert the data in the temporary table into whatever form
+ ** it is that we currently need.
+ */
+ assert( unionTab==dest.iParm || dest.eDest!=priorOp );
+ if( dest.eDest!=priorOp ){
+ int iCont, iBreak, iStart;
+ assert( p->pEList );
+ if( dest.eDest==SRT_Output ){
+ Select *pFirst = p;
+ while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+ generateColumnNames(pParse, 0, pFirst->pEList);
+ }
+ iBreak = sqlite3VdbeMakeLabel(v);
+ iCont = sqlite3VdbeMakeLabel(v);
+ computeLimitRegisters(pParse, p, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
+ iStart = sqlite3VdbeCurrentAddr(v);
+ selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
+ 0, -1, &dest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
+ }
+ break;
+ }
+ default: assert( p->op==TK_INTERSECT ); {
+ int tab1, tab2;
+ int iCont, iBreak, iStart;
+ Expr *pLimit, *pOffset;
+ int addr;
+ SelectDest intersectdest;
+ int r1;
+
+ /* INTERSECT is different from the others since it requires
+ ** two temporary tables. Hence it has its own case. Begin
+ ** by allocating the tables we will need.
+ */
+ tab1 = pParse->nTab++;
+ tab2 = pParse->nTab++;
+ assert( p->pOrderBy==0 );
+
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ p->pRightmost->selFlags |= SF_UsesEphemeral;
+ assert( p->pEList );
+
+ /* Code the SELECTs to our left into temporary table "tab1".
+ */
+ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
+ explainSetInteger(iSub1, pParse->iNextSelectId);
+ rc = sqlite3Select(pParse, pPrior, &intersectdest);
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Code the current SELECT into temporary table "tab2"
+ */
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
+ assert( p->addrOpenEphm[1] == -1 );
+ p->addrOpenEphm[1] = addr;
+ p->pPrior = 0;
+ pLimit = p->pLimit;
+ p->pLimit = 0;
+ pOffset = p->pOffset;
+ p->pOffset = 0;
+ intersectdest.iParm = tab2;
+ explainSetInteger(iSub2, pParse->iNextSelectId);
+ rc = sqlite3Select(pParse, p, &intersectdest);
+ testcase( rc!=SQLITE_OK );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = pLimit;
+ p->pOffset = pOffset;
+
+ /* Generate code to take the intersection of the two temporary
+ ** tables.
+ */
+ assert( p->pEList );
+ if( dest.eDest==SRT_Output ){
+ Select *pFirst = p;
+ while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+ generateColumnNames(pParse, 0, pFirst->pEList);
+ }
+ iBreak = sqlite3VdbeMakeLabel(v);
+ iCont = sqlite3VdbeMakeLabel(v);
+ computeLimitRegisters(pParse, p, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
+ r1 = sqlite3GetTempReg(pParse);
+ iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
+ sqlite3ReleaseTempReg(pParse, r1);
+ selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
+ 0, -1, &dest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
+ break;
+ }
+ }
+
+ explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
+
+ /* Compute collating sequences used by
+ ** temporary tables needed to implement the compound select.
+ ** Attach the KeyInfo structure to all temporary tables.
+ **
+ ** This section is run by the right-most SELECT statement only.
+ ** SELECT statements to the left always skip this part. The right-most
+ ** SELECT might also skip this part if it has no ORDER BY clause and
+ ** no temp tables are required.
+ */
+ if( p->selFlags & SF_UsesEphemeral ){
+ int i; /* Loop counter */
+ KeyInfo *pKeyInfo; /* Collating sequence for the result set */
+ Select *pLoop; /* For looping through SELECT statements */
+ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
+ int nCol; /* Number of columns in result set */
+
+ assert( p->pRightmost==p );
+ nCol = p->pEList->nExpr;
+ pKeyInfo = sqlite3DbMallocZero(db,
+ sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
+ if( !pKeyInfo ){
+ rc = SQLITE_NOMEM;
+ goto multi_select_end;
+ }
+
+ pKeyInfo->enc = ENC(db);
+ pKeyInfo->nField = (u16)nCol;
+
+ for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
+ *apColl = multiSelectCollSeq(pParse, p, i);
+ if( 0==*apColl ){
+ *apColl = db->pDfltColl;
+ }
+ }
+
+ for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
+ for(i=0; i<2; i++){
+ int addr = pLoop->addrOpenEphm[i];
+ if( addr<0 ){
+ /* If [0] is unused then [1] is also unused. So we can
+ ** always safely abort as soon as the first unused slot is found */
+ assert( pLoop->addrOpenEphm[1]<0 );
+ break;
+ }
+ sqlite3VdbeChangeP2(v, addr, nCol);
+ sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
+ pLoop->addrOpenEphm[i] = -1;
+ }
+ }
+ sqlite3DbFree(db, pKeyInfo);
+ }
+
+multi_select_end:
+ pDest->iMem = dest.iMem;
+ pDest->nMem = dest.nMem;
+ sqlite3SelectDelete(db, pDelete);
+ return rc;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/*
+** Code an output subroutine for a coroutine implementation of a
+** SELECT statment.
+**
+** The data to be output is contained in pIn->iMem. There are
+** pIn->nMem columns to be output. pDest is where the output should
+** be sent.
+**
+** regReturn is the number of the register holding the subroutine
+** return address.
+**
+** If regPrev>0 then it is the first register in a vector that
+** records the previous output. mem[regPrev] is a flag that is false
+** if there has been no previous output. If regPrev>0 then code is
+** generated to suppress duplicates. pKeyInfo is used for comparing
+** keys.
+**
+** If the LIMIT found in p->iLimit is reached, jump immediately to
+** iBreak.
+*/
+static int generateOutputSubroutine(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ SelectDest *pIn, /* Coroutine supplying data */
+ SelectDest *pDest, /* Where to send the data */
+ int regReturn, /* The return address register */
+ int regPrev, /* Previous result register. No uniqueness if 0 */
+ KeyInfo *pKeyInfo, /* For comparing with previous entry */
+ int p4type, /* The p4 type for pKeyInfo */
+ int iBreak /* Jump here if we hit the LIMIT */
+){
+ Vdbe *v = pParse->pVdbe;
+ int iContinue;
+ int addr;
+
+ addr = sqlite3VdbeCurrentAddr(v);
+ iContinue = sqlite3VdbeMakeLabel(v);
+
+ /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
+ */
+ if( regPrev ){
+ int j1, j2;
+ j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
+ j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
+ (char*)pKeyInfo, p4type);
+ sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
+ }
+ if( pParse->db->mallocFailed ) return 0;
+
+ /* Suppress the the first OFFSET entries if there is an OFFSET clause
+ */
+ codeOffset(v, p, iContinue);
+
+ switch( pDest->eDest ){
+ /* Store the result as data using a unique key.
+ */
+ case SRT_Table:
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempReg(pParse);
+ int r2 = sqlite3GetTempReg(pParse);
+ testcase( pDest->eDest==SRT_Table );
+ testcase( pDest->eDest==SRT_EphemTab );
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+ ** then there should be a single item on the stack. Write this
+ ** item into the set table with bogus data.
+ */
+ case SRT_Set: {
+ int r1;
+ assert( pIn->nMem==1 );
+ p->affinity =
+ sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#if 0 /* Never occurs on an ORDER BY query */
+ /* If any row exist in the result set, record that fact and abort.
+ */
+ case SRT_Exists: {
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+#endif
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell and break out
+ ** of the scan loop.
+ */
+ case SRT_Mem: {
+ assert( pIn->nMem==1 );
+ sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
+ /* The LIMIT clause will jump out of the loop for us */
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ /* The results are stored in a sequence of registers
+ ** starting at pDest->iMem. Then the co-routine yields.
+ */
+ case SRT_Coroutine: {
+ if( pDest->iMem==0 ){
+ pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
+ pDest->nMem = pIn->nMem;
+ }
+ sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
+ break;
+ }
+
+ /* If none of the above, then the result destination must be
+ ** SRT_Output. This routine is never called with any other
+ ** destination other than the ones handled above or SRT_Output.
+ **
+ ** For SRT_Output, results are stored in a sequence of registers.
+ ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
+ ** return the next row of result.
+ */
+ default: {
+ assert( pDest->eDest==SRT_Output );
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
+ sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
+ break;
+ }
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached.
+ */
+ if( p->iLimit ){
+ sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
+ }
+
+ /* Generate the subroutine return
+ */
+ sqlite3VdbeResolveLabel(v, iContinue);
+ sqlite3VdbeAddOp1(v, OP_Return, regReturn);
+
+ return addr;
+}
+
+/*
+** Alternative compound select code generator for cases when there
+** is an ORDER BY clause.
+**
+** We assume a query of the following form:
+**
+** <selectA> <operator> <selectB> ORDER BY <orderbylist>
+**
+** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
+** is to code both <selectA> and <selectB> with the ORDER BY clause as
+** co-routines. Then run the co-routines in parallel and merge the results
+** into the output. In addition to the two coroutines (called selectA and
+** selectB) there are 7 subroutines:
+**
+** outA: Move the output of the selectA coroutine into the output
+** of the compound query.
+**
+** outB: Move the output of the selectB coroutine into the output
+** of the compound query. (Only generated for UNION and
+** UNION ALL. EXCEPT and INSERTSECT never output a row that
+** appears only in B.)
+**
+** AltB: Called when there is data from both coroutines and A<B.
+**
+** AeqB: Called when there is data from both coroutines and A==B.
+**
+** AgtB: Called when there is data from both coroutines and A>B.
+**
+** EofA: Called when data is exhausted from selectA.
+**
+** EofB: Called when data is exhausted from selectB.
+**
+** The implementation of the latter five subroutines depend on which
+** <operator> is used:
+**
+**
+** UNION ALL UNION EXCEPT INTERSECT
+** ------------- ----------------- -------------- -----------------
+** AltB: outA, nextA outA, nextA outA, nextA nextA
+**
+** AeqB: outA, nextA nextA nextA outA, nextA
+**
+** AgtB: outB, nextB outB, nextB nextB nextB
+**
+** EofA: outB, nextB outB, nextB halt halt
+**
+** EofB: outA, nextA outA, nextA outA, nextA halt
+**
+** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
+** causes an immediate jump to EofA and an EOF on B following nextB causes
+** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
+** following nextX causes a jump to the end of the select processing.
+**
+** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
+** within the output subroutine. The regPrev register set holds the previously
+** output value. A comparison is made against this value and the output
+** is skipped if the next results would be the same as the previous.
+**
+** The implementation plan is to implement the two coroutines and seven
+** subroutines first, then put the control logic at the bottom. Like this:
+**
+** goto Init
+** coA: coroutine for left query (A)
+** coB: coroutine for right query (B)
+** outA: output one row of A
+** outB: output one row of B (UNION and UNION ALL only)
+** EofA: ...
+** EofB: ...
+** AltB: ...
+** AeqB: ...
+** AgtB: ...
+** Init: initialize coroutine registers
+** yield coA
+** if eof(A) goto EofA
+** yield coB
+** if eof(B) goto EofB
+** Cmpr: Compare A, B
+** Jump AltB, AeqB, AgtB
+** End: ...
+**
+** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
+** actually called using Gosub and they do not Return. EofA and EofB loop
+** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
+** and AgtB jump to either L2 or to one of EofA or EofB.
+*/
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int i, j; /* Loop counters */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Vdbe *v; /* Generate code to this VDBE */
+ SelectDest destA; /* Destination for coroutine A */
+ SelectDest destB; /* Destination for coroutine B */
+ int regAddrA; /* Address register for select-A coroutine */
+ int regEofA; /* Flag to indicate when select-A is complete */
+ int regAddrB; /* Address register for select-B coroutine */
+ int regEofB; /* Flag to indicate when select-B is complete */
+ int addrSelectA; /* Address of the select-A coroutine */
+ int addrSelectB; /* Address of the select-B coroutine */
+ int regOutA; /* Address register for the output-A subroutine */
+ int regOutB; /* Address register for the output-B subroutine */
+ int addrOutA; /* Address of the output-A subroutine */
+ int addrOutB = 0; /* Address of the output-B subroutine */
+ int addrEofA; /* Address of the select-A-exhausted subroutine */
+ int addrEofB; /* Address of the select-B-exhausted subroutine */
+ int addrAltB; /* Address of the A<B subroutine */
+ int addrAeqB; /* Address of the A==B subroutine */
+ int addrAgtB; /* Address of the A>B subroutine */
+ int regLimitA; /* Limit register for select-A */
+ int regLimitB; /* Limit register for select-A */
+ int regPrev; /* A range of registers to hold previous output */
+ int savedLimit; /* Saved value of p->iLimit */
+ int savedOffset; /* Saved value of p->iOffset */
+ int labelCmpr; /* Label for the start of the merge algorithm */
+ int labelEnd; /* Label for the end of the overall SELECT stmt */
+ int j1; /* Jump instructions that get retargetted */
+ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
+ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
+ KeyInfo *pKeyMerge; /* Comparison information for merging rows */
+ sqlite3 *db; /* Database connection */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ int *aPermute; /* Mapping from ORDER BY terms to result set columns */
+#ifndef SQLITE_OMIT_EXPLAIN
+ int iSub1; /* EQP id of left-hand query */
+ int iSub2; /* EQP id of right-hand query */
+#endif
+
+ assert( p->pOrderBy!=0 );
+ assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
+ db = pParse->db;
+ v = pParse->pVdbe;
+ assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
+ labelEnd = sqlite3VdbeMakeLabel(v);
+ labelCmpr = sqlite3VdbeMakeLabel(v);
+
+
+ /* Patch up the ORDER BY clause
+ */
+ op = p->op;
+ pPrior = p->pPrior;
+ assert( pPrior->pOrderBy==0 );
+ pOrderBy = p->pOrderBy;
+ assert( pOrderBy );
+ nOrderBy = pOrderBy->nExpr;
+
+ /* For operators other than UNION ALL we have to make sure that
+ ** the ORDER BY clause covers every term of the result set. Add
+ ** terms to the ORDER BY clause as necessary.
+ */
+ if( op!=TK_ALL ){
+ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
+ struct ExprList_item *pItem;
+ for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
+ assert( pItem->iCol>0 );
+ if( pItem->iCol==i ) break;
+ }
+ if( j==nOrderBy ){
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
+ if( pNew==0 ) return SQLITE_NOMEM;
+ pNew->flags |= EP_IntValue;
+ pNew->u.iValue = i;
+ pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
+ pOrderBy->a[nOrderBy++].iCol = (u16)i;
+ }
+ }
+ }
+
+ /* Compute the comparison permutation and keyinfo that is used with
+ ** the permutation used to determine if the next
+ ** row of results comes from selectA or selectB. Also add explicit
+ ** collations to the ORDER BY clause terms so that when the subqueries
+ ** to the right and the left are evaluated, they use the correct
+ ** collation.
+ */
+ aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
+ if( aPermute ){
+ struct ExprList_item *pItem;
+ for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
+ assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr );
+ aPermute[i] = pItem->iCol - 1;
+ }
+ pKeyMerge =
+ sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
+ if( pKeyMerge ){
+ pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
+ pKeyMerge->nField = (u16)nOrderBy;
+ pKeyMerge->enc = ENC(db);
+ for(i=0; i<nOrderBy; i++){
+ CollSeq *pColl;
+ Expr *pTerm = pOrderBy->a[i].pExpr;
+ if( pTerm->flags & EP_ExpCollate ){
+ pColl = pTerm->pColl;
+ }else{
+ pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
+ pTerm->flags |= EP_ExpCollate;
+ pTerm->pColl = pColl;
+ }
+ pKeyMerge->aColl[i] = pColl;
+ pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
+ }
+ }
+ }else{
+ pKeyMerge = 0;
+ }
+
+ /* Reattach the ORDER BY clause to the query.
+ */
+ p->pOrderBy = pOrderBy;
+ pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
+
+ /* Allocate a range of temporary registers and the KeyInfo needed
+ ** for the logic that removes duplicate result rows when the
+ ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
+ */
+ if( op==TK_ALL ){
+ regPrev = 0;
+ }else{
+ int nExpr = p->pEList->nExpr;
+ assert( nOrderBy>=nExpr || db->mallocFailed );
+ regPrev = sqlite3GetTempRange(pParse, nExpr+1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
+ pKeyDup = sqlite3DbMallocZero(db,
+ sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
+ if( pKeyDup ){
+ pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
+ pKeyDup->nField = (u16)nExpr;
+ pKeyDup->enc = ENC(db);
+ for(i=0; i<nExpr; i++){
+ pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
+ pKeyDup->aSortOrder[i] = 0;
+ }
+ }
+ }
+
+ /* Separate the left and the right query from one another
+ */
+ p->pPrior = 0;
+ sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
+ if( pPrior->pPrior==0 ){
+ sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
+ }
+
+ /* Compute the limit registers */
+ computeLimitRegisters(pParse, p, labelEnd);
+ if( p->iLimit && op==TK_ALL ){
+ regLimitA = ++pParse->nMem;
+ regLimitB = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
+ regLimitA);
+ sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
+ }else{
+ regLimitA = regLimitB = 0;
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = 0;
+ sqlite3ExprDelete(db, p->pOffset);
+ p->pOffset = 0;
+
+ regAddrA = ++pParse->nMem;
+ regEofA = ++pParse->nMem;
+ regAddrB = ++pParse->nMem;
+ regEofB = ++pParse->nMem;
+ regOutA = ++pParse->nMem;
+ regOutB = ++pParse->nMem;
+ sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
+ sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
+
+ /* Jump past the various subroutines and coroutines to the main
+ ** merge loop
+ */
+ j1 = sqlite3VdbeAddOp0(v, OP_Goto);
+ addrSelectA = sqlite3VdbeCurrentAddr(v);
+
+
+ /* Generate a coroutine to evaluate the SELECT statement to the
+ ** left of the compound operator - the "A" select.
+ */
+ VdbeNoopComment((v, "Begin coroutine for left SELECT"));
+ pPrior->iLimit = regLimitA;
+ explainSetInteger(iSub1, pParse->iNextSelectId);
+ sqlite3Select(pParse, pPrior, &destA);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ VdbeNoopComment((v, "End coroutine for left SELECT"));
+
+ /* Generate a coroutine to evaluate the SELECT statement on
+ ** the right - the "B" select
+ */
+ addrSelectB = sqlite3VdbeCurrentAddr(v);
+ VdbeNoopComment((v, "Begin coroutine for right SELECT"));
+ savedLimit = p->iLimit;
+ savedOffset = p->iOffset;
+ p->iLimit = regLimitB;
+ p->iOffset = 0;
+ explainSetInteger(iSub2, pParse->iNextSelectId);
+ sqlite3Select(pParse, p, &destB);
+ p->iLimit = savedLimit;
+ p->iOffset = savedOffset;
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+ VdbeNoopComment((v, "End coroutine for right SELECT"));
+
+ /* Generate a subroutine that outputs the current row of the A
+ ** select as the next output row of the compound select.
+ */
+ VdbeNoopComment((v, "Output routine for A"));
+ addrOutA = generateOutputSubroutine(pParse,
+ p, &destA, pDest, regOutA,
+ regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
+
+ /* Generate a subroutine that outputs the current row of the B
+ ** select as the next output row of the compound select.
+ */
+ if( op==TK_ALL || op==TK_UNION ){
+ VdbeNoopComment((v, "Output routine for B"));
+ addrOutB = generateOutputSubroutine(pParse,
+ p, &destB, pDest, regOutB,
+ regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
+ }
+
+ /* Generate a subroutine to run when the results from select A
+ ** are exhausted and only data in select B remains.
+ */
+ VdbeNoopComment((v, "eof-A subroutine"));
+ if( op==TK_EXCEPT || op==TK_INTERSECT ){
+ addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
+ }else{
+ addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
+ p->nSelectRow += pPrior->nSelectRow;
+ }
+
+ /* Generate a subroutine to run when the results from select B
+ ** are exhausted and only data in select A remains.
+ */
+ if( op==TK_INTERSECT ){
+ addrEofB = addrEofA;
+ if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
+ }else{
+ VdbeNoopComment((v, "eof-B subroutine"));
+ addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
+ }
+
+ /* Generate code to handle the case of A<B
+ */
+ VdbeNoopComment((v, "A-lt-B subroutine"));
+ addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+
+ /* Generate code to handle the case of A==B
+ */
+ if( op==TK_ALL ){
+ addrAeqB = addrAltB;
+ }else if( op==TK_INTERSECT ){
+ addrAeqB = addrAltB;
+ addrAltB++;
+ }else{
+ VdbeNoopComment((v, "A-eq-B subroutine"));
+ addrAeqB =
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+ }
+
+ /* Generate code to handle the case of A>B
+ */
+ VdbeNoopComment((v, "A-gt-B subroutine"));
+ addrAgtB = sqlite3VdbeCurrentAddr(v);
+ if( op==TK_ALL || op==TK_UNION ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ }
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+ sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+
+ /* This code runs once to initialize everything.
+ */
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
+ sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+ sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
+
+ /* Implement the main merge loop
+ */
+ sqlite3VdbeResolveLabel(v, labelCmpr);
+ sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
+ sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
+ (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
+ sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
+
+ /* Release temporary registers
+ */
+ if( regPrev ){
+ sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
+ }
+
+ /* Jump to the this point in order to terminate the query.
+ */
+ sqlite3VdbeResolveLabel(v, labelEnd);
+
+ /* Set the number of output columns
+ */
+ if( pDest->eDest==SRT_Output ){
+ Select *pFirst = pPrior;
+ while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+ generateColumnNames(pParse, 0, pFirst->pEList);
+ }
+
+ /* Reassembly the compound query so that it will be freed correctly
+ ** by the calling function */
+ if( p->pPrior ){
+ sqlite3SelectDelete(db, p->pPrior);
+ }
+ p->pPrior = pPrior;
+
+ /*** TBD: Insert subroutine calls to close cursors on incomplete
+ **** subqueries ****/
+ explainComposite(pParse, p->op, iSub1, iSub2, 0);
+ return SQLITE_OK;
+}
+#endif
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/* Forward Declarations */
+static void substExprList(sqlite3*, ExprList*, int, ExprList*);
+static void substSelect(sqlite3*, Select *, int, ExprList *);
+
+/*
+** Scan through the expression pExpr. Replace every reference to
+** a column in table number iTable with a copy of the iColumn-th
+** entry in pEList. (But leave references to the ROWID column
+** unchanged.)
+**
+** This routine is part of the flattening procedure. A subquery
+** whose result set is defined by pEList appears as entry in the
+** FROM clause of a SELECT such that the VDBE cursor assigned to that
+** FORM clause entry is iTable. This routine make the necessary
+** changes to pExpr so that it refers directly to the source table
+** of the subquery rather the result set of the subquery.
+*/
+static Expr *substExpr(
+ sqlite3 *db, /* Report malloc errors to this connection */
+ Expr *pExpr, /* Expr in which substitution occurs */
+ int iTable, /* Table to be substituted */
+ ExprList *pEList /* Substitute expressions */
+){
+ if( pExpr==0 ) return 0;
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
+ if( pExpr->iColumn<0 ){
+ pExpr->op = TK_NULL;
+ }else{
+ Expr *pNew;
+ assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 );
+ pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
+ if( pNew && pExpr->pColl ){
+ pNew->pColl = pExpr->pColl;
+ }
+ sqlite3ExprDelete(db, pExpr);
+ pExpr = pNew;
+ }
+ }else{
+ pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
+ pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){
+ substSelect(db, pExpr->x.pSelect, iTable, pEList);
+ }else{
+ substExprList(db, pExpr->x.pList, iTable, pEList);
+ }
+ }
+ return pExpr;
+}
+static void substExprList(
+ sqlite3 *db, /* Report malloc errors here */
+ ExprList *pList, /* List to scan and in which to make substitutes */
+ int iTable, /* Table to be substituted */
+ ExprList *pEList /* Substitute values */
+){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nExpr; i++){
+ pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
+ }
+}
+static void substSelect(
+ sqlite3 *db, /* Report malloc errors here */
+ Select *p, /* SELECT statement in which to make substitutions */
+ int iTable, /* Table to be replaced */
+ ExprList *pEList /* Substitute values */
+){
+ SrcList *pSrc;
+ struct SrcList_item *pItem;
+ int i;
+ if( !p ) return;
+ substExprList(db, p->pEList, iTable, pEList);
+ substExprList(db, p->pGroupBy, iTable, pEList);
+ substExprList(db, p->pOrderBy, iTable, pEList);
+ p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
+ p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
+ substSelect(db, p->pPrior, iTable, pEList);
+ pSrc = p->pSrc;
+ assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
+ if( ALWAYS(pSrc) ){
+ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
+ substSelect(db, pItem->pSelect, iTable, pEList);
+ }
+ }
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** This routine attempts to flatten subqueries in order to speed
+** execution. It returns 1 if it makes changes and 0 if no flattening
+** occurs.
+**
+** To understand the concept of flattening, consider the following
+** query:
+**
+** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
+**
+** The default way of implementing this query is to execute the
+** subquery first and store the results in a temporary table, then
+** run the outer query on that temporary table. This requires two
+** passes over the data. Furthermore, because the temporary table
+** has no indices, the WHERE clause on the outer query cannot be
+** optimized.
+**
+** This routine attempts to rewrite queries such as the above into
+** a single flat select, like this:
+**
+** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
+**
+** The code generated for this simpification gives the same result
+** but only has to scan the data once. And because indices might
+** exist on the table t1, a complete scan of the data might be
+** avoided.
+**
+** Flattening is only attempted if all of the following are true:
+**
+** (1) The subquery and the outer query do not both use aggregates.
+**
+** (2) The subquery is not an aggregate or the outer query is not a join.
+**
+** (3) The subquery is not the right operand of a left outer join
+** (Originally ticket #306. Strengthened by ticket #3300)
+**
+** (4) The subquery is not DISTINCT.
+**
+** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
+** sub-queries that were excluded from this optimization. Restriction
+** (4) has since been expanded to exclude all DISTINCT subqueries.
+**
+** (6) The subquery does not use aggregates or the outer query is not
+** DISTINCT.
+**
+** (7) The subquery has a FROM clause.
+**
+** (8) The subquery does not use LIMIT or the outer query is not a join.
+**
+** (9) The subquery does not use LIMIT or the outer query does not use
+** aggregates.
+**
+** (10) The subquery does not use aggregates or the outer query does not
+** use LIMIT.
+**
+** (11) The subquery and the outer query do not both have ORDER BY clauses.
+**
+** (**) Not implemented. Subsumed into restriction (3). Was previously
+** a separate restriction deriving from ticket #350.
+**
+** (13) The subquery and outer query do not both use LIMIT.
+**
+** (14) The subquery does not use OFFSET.
+**
+** (15) The outer query is not part of a compound select or the
+** subquery does not have a LIMIT clause.
+** (See ticket #2339 and ticket [02a8e81d44]).
+**
+** (16) The outer query is not an aggregate or the subquery does
+** not contain ORDER BY. (Ticket #2942) This used to not matter
+** until we introduced the group_concat() function.
+**
+** (17) The sub-query is not a compound select, or it is a UNION ALL
+** compound clause made up entirely of non-aggregate queries, and
+** the parent query:
+**
+** * is not itself part of a compound select,
+** * is not an aggregate or DISTINCT query, and
+** * has no other tables or sub-selects in the FROM clause.
+**
+** The parent and sub-query may contain WHERE clauses. Subject to
+** rules (11), (13) and (14), they may also contain ORDER BY,
+** LIMIT and OFFSET clauses.
+**
+** (18) If the sub-query is a compound select, then all terms of the
+** ORDER by clause of the parent must be simple references to
+** columns of the sub-query.
+**
+** (19) The subquery does not use LIMIT or the outer query does not
+** have a WHERE clause.
+**
+** (20) If the sub-query is a compound select, then it must not use
+** an ORDER BY clause. Ticket #3773. We could relax this constraint
+** somewhat by saying that the terms of the ORDER BY clause must
+** appear as unmodified result columns in the outer query. But
+** have other optimizations in mind to deal with that case.
+**
+** (21) The subquery does not use LIMIT or the outer query is not
+** DISTINCT. (See ticket [752e1646fc]).
+**
+** In this routine, the "p" parameter is a pointer to the outer query.
+** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
+** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
+**
+** If flattening is not attempted, this routine is a no-op and returns 0.
+** If flattening is attempted this routine returns 1.
+**
+** All of the expression analysis must occur on both the outer query and
+** the subquery before this routine runs.
+*/
+static int flattenSubquery(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The parent or outer SELECT statement */
+ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
+ int isAgg, /* True if outer SELECT uses aggregate functions */
+ int subqueryIsAgg /* True if the subquery uses aggregate functions */
+){
+ const char *zSavedAuthContext = pParse->zAuthContext;
+ Select *pParent;
+ Select *pSub; /* The inner query or "subquery" */
+ Select *pSub1; /* Pointer to the rightmost select in sub-query */
+ SrcList *pSrc; /* The FROM clause of the outer query */
+ SrcList *pSubSrc; /* The FROM clause of the subquery */
+ ExprList *pList; /* The result set of the outer query */
+ int iParent; /* VDBE cursor number of the pSub result set temp table */
+ int i; /* Loop counter */
+ Expr *pWhere; /* The WHERE clause */
+ struct SrcList_item *pSubitem; /* The subquery */
+ sqlite3 *db = pParse->db;
+
+ /* Check to see if flattening is permitted. Return 0 if not.
+ */
+ assert( p!=0 );
+ assert( p->pPrior==0 ); /* Unable to flatten compound queries */
+ if( db->flags & SQLITE_QueryFlattener ) return 0;
+ pSrc = p->pSrc;
+ assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
+ pSubitem = &pSrc->a[iFrom];
+ iParent = pSubitem->iCursor;
+ pSub = pSubitem->pSelect;
+ assert( pSub!=0 );
+ if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
+ if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
+ pSubSrc = pSub->pSrc;
+ assert( pSubSrc );
+ /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
+ ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
+ ** because they could be computed at compile-time. But when LIMIT and OFFSET
+ ** became arbitrary expressions, we were forced to add restrictions (13)
+ ** and (14). */
+ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
+ if( pSub->pOffset ) return 0; /* Restriction (14) */
+ if( p->pRightmost && pSub->pLimit ){
+ return 0; /* Restriction (15) */
+ }
+ if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
+ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
+ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
+ return 0; /* Restrictions (8)(9) */
+ }
+ if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
+ return 0; /* Restriction (6) */
+ }
+ if( p->pOrderBy && pSub->pOrderBy ){
+ return 0; /* Restriction (11) */
+ }
+ if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
+ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
+ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
+ return 0; /* Restriction (21) */
+ }
+
+ /* OBSOLETE COMMENT 1:
+ ** Restriction 3: If the subquery is a join, make sure the subquery is
+ ** not used as the right operand of an outer join. Examples of why this
+ ** is not allowed:
+ **
+ ** t1 LEFT OUTER JOIN (t2 JOIN t3)
+ **
+ ** If we flatten the above, we would get
+ **
+ ** (t1 LEFT OUTER JOIN t2) JOIN t3
+ **
+ ** which is not at all the same thing.
+ **
+ ** OBSOLETE COMMENT 2:
+ ** Restriction 12: If the subquery is the right operand of a left outer
+ ** join, make sure the subquery has no WHERE clause.
+ ** An examples of why this is not allowed:
+ **
+ ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
+ **
+ ** If we flatten the above, we would get
+ **
+ ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
+ **
+ ** But the t2.x>0 test will always fail on a NULL row of t2, which
+ ** effectively converts the OUTER JOIN into an INNER JOIN.
+ **
+ ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
+ ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
+ ** is fraught with danger. Best to avoid the whole thing. If the
+ ** subquery is the right term of a LEFT JOIN, then do not flatten.
+ */
+ if( (pSubitem->jointype & JT_OUTER)!=0 ){
+ return 0;
+ }
+
+ /* Restriction 17: If the sub-query is a compound SELECT, then it must
+ ** use only the UNION ALL operator. And none of the simple select queries
+ ** that make up the compound SELECT are allowed to be aggregate or distinct
+ ** queries.
+ */
+ if( pSub->pPrior ){
+ if( pSub->pOrderBy ){
+ return 0; /* Restriction 20 */
+ }
+ if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
+ return 0;
+ }
+ for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
+ if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
+ || (pSub1->pPrior && pSub1->op!=TK_ALL)
+ || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
+ ){
+ return 0;
+ }
+ }
+
+ /* Restriction 18. */
+ if( p->pOrderBy ){
+ int ii;
+ for(ii=0; ii<p->pOrderBy->nExpr; ii++){
+ if( p->pOrderBy->a[ii].iCol==0 ) return 0;
+ }
+ }
+ }
+
+ /***** If we reach this point, flattening is permitted. *****/
+
+ /* Authorize the subquery */
+ pParse->zAuthContext = pSubitem->zName;
+ sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
+ pParse->zAuthContext = zSavedAuthContext;
+
+ /* If the sub-query is a compound SELECT statement, then (by restrictions
+ ** 17 and 18 above) it must be a UNION ALL and the parent query must
+ ** be of the form:
+ **
+ ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
+ **
+ ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
+ ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
+ ** OFFSET clauses and joins them to the left-hand-side of the original
+ ** using UNION ALL operators. In this case N is the number of simple
+ ** select statements in the compound sub-query.
+ **
+ ** Example:
+ **
+ ** SELECT a+1 FROM (
+ ** SELECT x FROM tab
+ ** UNION ALL
+ ** SELECT y FROM tab
+ ** UNION ALL
+ ** SELECT abs(z*2) FROM tab2
+ ** ) WHERE a!=5 ORDER BY 1
+ **
+ ** Transformed into:
+ **
+ ** SELECT x+1 FROM tab WHERE x+1!=5
+ ** UNION ALL
+ ** SELECT y+1 FROM tab WHERE y+1!=5
+ ** UNION ALL
+ ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
+ ** ORDER BY 1
+ **
+ ** We call this the "compound-subquery flattening".
+ */
+ for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
+ Select *pNew;
+ ExprList *pOrderBy = p->pOrderBy;
+ Expr *pLimit = p->pLimit;
+ Select *pPrior = p->pPrior;
+ p->pOrderBy = 0;
+ p->pSrc = 0;
+ p->pPrior = 0;
+ p->pLimit = 0;
+ pNew = sqlite3SelectDup(db, p, 0);
+ p->pLimit = pLimit;
+ p->pOrderBy = pOrderBy;
+ p->pSrc = pSrc;
+ p->op = TK_ALL;
+ p->pRightmost = 0;
+ if( pNew==0 ){
+ pNew = pPrior;
+ }else{
+ pNew->pPrior = pPrior;
+ pNew->pRightmost = 0;
+ }
+ p->pPrior = pNew;
+ if( db->mallocFailed ) return 1;
+ }
+
+ /* Begin flattening the iFrom-th entry of the FROM clause
+ ** in the outer query.
+ */
+ pSub = pSub1 = pSubitem->pSelect;
+
+ /* Delete the transient table structure associated with the
+ ** subquery
+ */
+ sqlite3DbFree(db, pSubitem->zDatabase);
+ sqlite3DbFree(db, pSubitem->zName);
+ sqlite3DbFree(db, pSubitem->zAlias);
+ pSubitem->zDatabase = 0;
+ pSubitem->zName = 0;
+ pSubitem->zAlias = 0;
+ pSubitem->pSelect = 0;
+
+ /* Defer deleting the Table object associated with the
+ ** subquery until code generation is
+ ** complete, since there may still exist Expr.pTab entries that
+ ** refer to the subquery even after flattening. Ticket #3346.
+ **
+ ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
+ */
+ if( ALWAYS(pSubitem->pTab!=0) ){
+ Table *pTabToDel = pSubitem->pTab;
+ if( pTabToDel->nRef==1 ){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ pTabToDel->pNextZombie = pToplevel->pZombieTab;
+ pToplevel->pZombieTab = pTabToDel;
+ }else{
+ pTabToDel->nRef--;
+ }
+ pSubitem->pTab = 0;
+ }
+
+ /* The following loop runs once for each term in a compound-subquery
+ ** flattening (as described above). If we are doing a different kind
+ ** of flattening - a flattening other than a compound-subquery flattening -
+ ** then this loop only runs once.
+ **
+ ** This loop moves all of the FROM elements of the subquery into the
+ ** the FROM clause of the outer query. Before doing this, remember
+ ** the cursor number for the original outer query FROM element in
+ ** iParent. The iParent cursor will never be used. Subsequent code
+ ** will scan expressions looking for iParent references and replace
+ ** those references with expressions that resolve to the subquery FROM
+ ** elements we are now copying in.
+ */
+ for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
+ int nSubSrc;
+ u8 jointype = 0;
+ pSubSrc = pSub->pSrc; /* FROM clause of subquery */
+ nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
+ pSrc = pParent->pSrc; /* FROM clause of the outer query */
+
+ if( pSrc ){
+ assert( pParent==p ); /* First time through the loop */
+ jointype = pSubitem->jointype;
+ }else{
+ assert( pParent!=p ); /* 2nd and subsequent times through the loop */
+ pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
+ if( pSrc==0 ){
+ assert( db->mallocFailed );
+ break;
+ }
+ }
+
+ /* The subquery uses a single slot of the FROM clause of the outer
+ ** query. If the subquery has more than one element in its FROM clause,
+ ** then expand the outer query to make space for it to hold all elements
+ ** of the subquery.
+ **
+ ** Example:
+ **
+ ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
+ **
+ ** The outer query has 3 slots in its FROM clause. One slot of the
+ ** outer query (the middle slot) is used by the subquery. The next
+ ** block of code will expand the out query to 4 slots. The middle
+ ** slot is expanded to two slots in order to make space for the
+ ** two elements in the FROM clause of the subquery.
+ */
+ if( nSubSrc>1 ){
+ pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
+ if( db->mallocFailed ){
+ break;
+ }
+ }
+
+ /* Transfer the FROM clause terms from the subquery into the
+ ** outer query.
+ */
+ for(i=0; i<nSubSrc; i++){
+ sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
+ pSrc->a[i+iFrom] = pSubSrc->a[i];
+ memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
+ }
+ pSrc->a[iFrom].jointype = jointype;
+
+ /* Now begin substituting subquery result set expressions for
+ ** references to the iParent in the outer query.
+ **
+ ** Example:
+ **
+ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
+ ** \ \_____________ subquery __________/ /
+ ** \_____________________ outer query ______________________________/
+ **
+ ** We look at every expression in the outer query and every place we see
+ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
+ */
+ pList = pParent->pEList;
+ for(i=0; i<pList->nExpr; i++){
+ if( pList->a[i].zName==0 ){
+ const char *zSpan = pList->a[i].zSpan;
+ if( ALWAYS(zSpan) ){
+ pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
+ }
+ }
+ }
+ substExprList(db, pParent->pEList, iParent, pSub->pEList);
+ if( isAgg ){
+ substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
+ pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
+ }
+ if( pSub->pOrderBy ){
+ assert( pParent->pOrderBy==0 );
+ pParent->pOrderBy = pSub->pOrderBy;
+ pSub->pOrderBy = 0;
+ }else if( pParent->pOrderBy ){
+ substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
+ }
+ if( pSub->pWhere ){
+ pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
+ }else{
+ pWhere = 0;
+ }
+ if( subqueryIsAgg ){
+ assert( pParent->pHaving==0 );
+ pParent->pHaving = pParent->pWhere;
+ pParent->pWhere = pWhere;
+ pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
+ pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
+ sqlite3ExprDup(db, pSub->pHaving, 0));
+ assert( pParent->pGroupBy==0 );
+ pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
+ }else{
+ pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
+ pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
+ }
+
+ /* The flattened query is distinct if either the inner or the
+ ** outer query is distinct.
+ */
+ pParent->selFlags |= pSub->selFlags & SF_Distinct;
+
+ /*
+ ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
+ **
+ ** One is tempted to try to add a and b to combine the limits. But this
+ ** does not work if either limit is negative.
+ */
+ if( pSub->pLimit ){
+ pParent->pLimit = pSub->pLimit;
+ pSub->pLimit = 0;
+ }
+ }
+
+ /* Finially, delete what is left of the subquery and return
+ ** success.
+ */
+ sqlite3SelectDelete(db, pSub1);
+
+ return 1;
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+/*
+** Analyze the SELECT statement passed as an argument to see if it
+** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
+** it is, or 0 otherwise. At present, a query is considered to be
+** a min()/max() query if:
+**
+** 1. There is a single object in the FROM clause.
+**
+** 2. There is a single expression in the result set, and it is
+** either min(x) or max(x), where x is a column reference.
+*/
+static u8 minMaxQuery(Select *p){
+ Expr *pExpr;
+ ExprList *pEList = p->pEList;
+
+ if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
+ pExpr = pEList->a[0].pExpr;
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
+ if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
+ pEList = pExpr->x.pList;
+ if( pEList==0 || pEList->nExpr!=1 ) return 0;
+ if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
+ return WHERE_ORDERBY_MIN;
+ }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
+ return WHERE_ORDERBY_MAX;
+ }
+ return WHERE_ORDERBY_NORMAL;
+}
+
+/*
+** The select statement passed as the first argument is an aggregate query.
+** The second argment is the associated aggregate-info object. This
+** function tests if the SELECT is of the form:
+**
+** SELECT count(*) FROM <tbl>
+**
+** where table is a database table, not a sub-select or view. If the query
+** does match this pattern, then a pointer to the Table object representing
+** <tbl> is returned. Otherwise, 0 is returned.
+*/
+static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
+ Table *pTab;
+ Expr *pExpr;
+
+ assert( !p->pGroupBy );
+
+ if( p->pWhere || p->pEList->nExpr!=1
+ || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
+ ){
+ return 0;
+ }
+ pTab = p->pSrc->a[0].pTab;
+ pExpr = p->pEList->a[0].pExpr;
+ assert( pTab && !pTab->pSelect && pExpr );
+
+ if( IsVirtual(pTab) ) return 0;
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
+ if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
+ if( pExpr->flags&EP_Distinct ) return 0;
+
+ return pTab;
+}
+
+/*
+** If the source-list item passed as an argument was augmented with an
+** INDEXED BY clause, then try to locate the specified index. If there
+** was such a clause and the named index cannot be found, return
+** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
+** pFrom->pIndex and return SQLITE_OK.
+*/
+int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
+ if( pFrom->pTab && pFrom->zIndex ){
+ Table *pTab = pFrom->pTab;
+ char *zIndex = pFrom->zIndex;
+ Index *pIdx;
+ for(pIdx=pTab->pIndex;
+ pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
+ pIdx=pIdx->pNext
+ );
+ if( !pIdx ){
+ sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
+ pParse->checkSchema = 1;
+ return SQLITE_ERROR;
+ }
+ pFrom->pIndex = pIdx;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This routine is a Walker callback for "expanding" a SELECT statement.
+** "Expanding" means to do the following:
+**
+** (1) Make sure VDBE cursor numbers have been assigned to every
+** element of the FROM clause.
+**
+** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
+** defines FROM clause. When views appear in the FROM clause,
+** fill pTabList->a[].pSelect with a copy of the SELECT statement
+** that implements the view. A copy is made of the view's SELECT
+** statement so that we can freely modify or delete that statement
+** without worrying about messing up the presistent representation
+** of the view.
+**
+** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
+** on joins and the ON and USING clause of joins.
+**
+** (4) Scan the list of columns in the result set (pEList) looking
+** for instances of the "*" operator or the TABLE.* operator.
+** If found, expand each "*" to be every column in every table
+** and TABLE.* to be every column in TABLE.
+**
+*/
+static int selectExpander(Walker *pWalker, Select *p){
+ Parse *pParse = pWalker->pParse;
+ int i, j, k;
+ SrcList *pTabList;
+ ExprList *pEList;
+ struct SrcList_item *pFrom;
+ sqlite3 *db = pParse->db;
+
+ if( db->mallocFailed ){
+ return WRC_Abort;
+ }
+ if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
+ return WRC_Prune;
+ }
+ p->selFlags |= SF_Expanded;
+ pTabList = p->pSrc;
+ pEList = p->pEList;
+
+ /* Make sure cursor numbers have been assigned to all entries in
+ ** the FROM clause of the SELECT statement.
+ */
+ sqlite3SrcListAssignCursors(pParse, pTabList);
+
+ /* Look up every table named in the FROM clause of the select. If
+ ** an entry of the FROM clause is a subquery instead of a table or view,
+ ** then create a transient table structure to describe the subquery.
+ */
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab;
+ if( pFrom->pTab!=0 ){
+ /* This statement has already been prepared. There is no need
+ ** to go further. */
+ assert( i==0 );
+ return WRC_Prune;
+ }
+ if( pFrom->zName==0 ){
+#ifndef SQLITE_OMIT_SUBQUERY
+ Select *pSel = pFrom->pSelect;
+ /* A sub-query in the FROM clause of a SELECT */
+ assert( pSel!=0 );
+ assert( pFrom->pTab==0 );
+ sqlite3WalkSelect(pWalker, pSel);
+ pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTab==0 ) return WRC_Abort;
+ pTab->nRef = 1;
+ pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
+ while( pSel->pPrior ){ pSel = pSel->pPrior; }
+ selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
+ pTab->iPKey = -1;
+ pTab->nRowEst = 1000000;
+ pTab->tabFlags |= TF_Ephemeral;
+#endif
+ }else{
+ /* An ordinary table or view name in the FROM clause */
+ assert( pFrom->pTab==0 );
+ pFrom->pTab = pTab =
+ sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
+ if( pTab==0 ) return WRC_Abort;
+ pTab->nRef++;
+#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
+ if( pTab->pSelect || IsVirtual(pTab) ){
+ /* We reach here if the named table is a really a view */
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
+ assert( pFrom->pSelect==0 );
+ pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
+ sqlite3WalkSelect(pWalker, pFrom->pSelect);
+ }
+#endif
+ }
+
+ /* Locate the index named by the INDEXED BY clause, if any. */
+ if( sqlite3IndexedByLookup(pParse, pFrom) ){
+ return WRC_Abort;
+ }
+ }
+
+ /* Process NATURAL keywords, and ON and USING clauses of joins.
+ */
+ if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
+ return WRC_Abort;
+ }
+
+ /* For every "*" that occurs in the column list, insert the names of
+ ** all columns in all tables. And for every TABLE.* insert the names
+ ** of all columns in TABLE. The parser inserted a special expression
+ ** with the TK_ALL operator for each "*" that it found in the column list.
+ ** The following code just has to locate the TK_ALL expressions and expand
+ ** each one to the list of all columns in all tables.
+ **
+ ** The first loop just checks to see if there are any "*" operators
+ ** that need expanding.
+ */
+ for(k=0; k<pEList->nExpr; k++){
+ Expr *pE = pEList->a[k].pExpr;
+ if( pE->op==TK_ALL ) break;
+ assert( pE->op!=TK_DOT || pE->pRight!=0 );
+ assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
+ if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
+ }
+ if( k<pEList->nExpr ){
+ /*
+ ** If we get here it means the result set contains one or more "*"
+ ** operators that need to be expanded. Loop through each expression
+ ** in the result set and expand them one by one.
+ */
+ struct ExprList_item *a = pEList->a;
+ ExprList *pNew = 0;
+ int flags = pParse->db->flags;
+ int longNames = (flags & SQLITE_FullColNames)!=0
+ && (flags & SQLITE_ShortColNames)==0;
+
+ for(k=0; k<pEList->nExpr; k++){
+ Expr *pE = a[k].pExpr;
+ assert( pE->op!=TK_DOT || pE->pRight!=0 );
+ if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
+ /* This particular expression does not need to be expanded.
+ */
+ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
+ if( pNew ){
+ pNew->a[pNew->nExpr-1].zName = a[k].zName;
+ pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
+ a[k].zName = 0;
+ a[k].zSpan = 0;
+ }
+ a[k].pExpr = 0;
+ }else{
+ /* This expression is a "*" or a "TABLE.*" and needs to be
+ ** expanded. */
+ int tableSeen = 0; /* Set to 1 when TABLE matches */
+ char *zTName; /* text of name of TABLE */
+ if( pE->op==TK_DOT ){
+ assert( pE->pLeft!=0 );
+ assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
+ zTName = pE->pLeft->u.zToken;
+ }else{
+ zTName = 0;
+ }
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab = pFrom->pTab;
+ char *zTabName = pFrom->zAlias;
+ if( zTabName==0 ){
+ zTabName = pTab->zName;
+ }
+ if( db->mallocFailed ) break;
+ if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
+ continue;
+ }
+ tableSeen = 1;
+ for(j=0; j<pTab->nCol; j++){
+ Expr *pExpr, *pRight;
+ char *zName = pTab->aCol[j].zName;
+ char *zColname; /* The computed column name */
+ char *zToFree; /* Malloced string that needs to be freed */
+ Token sColname; /* Computed column name as a token */
+
+ /* If a column is marked as 'hidden' (currently only possible
+ ** for virtual tables), do not include it in the expanded
+ ** result-set list.
+ */
+ if( IsHiddenColumn(&pTab->aCol[j]) ){
+ assert(IsVirtual(pTab));
+ continue;
+ }
+
+ if( i>0 && zTName==0 ){
+ if( (pFrom->jointype & JT_NATURAL)!=0
+ && tableAndColumnIndex(pTabList, i, zName, 0, 0)
+ ){
+ /* In a NATURAL join, omit the join columns from the
+ ** table to the right of the join */
+ continue;
+ }
+ if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
+ /* In a join with a USING clause, omit columns in the
+ ** using clause from the table on the right. */
+ continue;
+ }
+ }
+ pRight = sqlite3Expr(db, TK_ID, zName);
+ zColname = zName;
+ zToFree = 0;
+ if( longNames || pTabList->nSrc>1 ){
+ Expr *pLeft;
+ pLeft = sqlite3Expr(db, TK_ID, zTabName);
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
+ if( longNames ){
+ zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
+ zToFree = zColname;
+ }
+ }else{
+ pExpr = pRight;
+ }
+ pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
+ sColname.z = zColname;
+ sColname.n = sqlite3Strlen30(zColname);
+ sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
+ sqlite3DbFree(db, zToFree);
+ }
+ }
+ if( !tableSeen ){
+ if( zTName ){
+ sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
+ }else{
+ sqlite3ErrorMsg(pParse, "no tables specified");
+ }
+ }
+ }
+ }
+ sqlite3ExprListDelete(db, pEList);
+ p->pEList = pNew;
+ }
+#if SQLITE_MAX_COLUMN
+ if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns in result set");
+ }
+#endif
+ return WRC_Continue;
+}
+
+/*
+** No-op routine for the parse-tree walker.
+**
+** When this routine is the Walker.xExprCallback then expression trees
+** are walked without any actions being taken at each node. Presumably,
+** when this routine is used for Walker.xExprCallback then
+** Walker.xSelectCallback is set to do something useful for every
+** subquery in the parser tree.
+*/
+static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return WRC_Continue;
+}
+
+/*
+** This routine "expands" a SELECT statement and all of its subqueries.
+** For additional information on what it means to "expand" a SELECT
+** statement, see the comment on the selectExpand worker callback above.
+**
+** Expanding a SELECT statement is the first step in processing a
+** SELECT statement. The SELECT statement must be expanded before
+** name resolution is performed.
+**
+** If anything goes wrong, an error message is written into pParse.
+** The calling function can detect the problem by looking at pParse->nErr
+** and/or pParse->db->mallocFailed.
+*/
+static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
+ Walker w;
+ w.xSelectCallback = selectExpander;
+ w.xExprCallback = exprWalkNoop;
+ w.pParse = pParse;
+ sqlite3WalkSelect(&w, pSelect);
+}
+
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
+** interface.
+**
+** For each FROM-clause subquery, add Column.zType and Column.zColl
+** information to the Table structure that represents the result set
+** of that subquery.
+**
+** The Table structure that represents the result set was constructed
+** by selectExpander() but the type and collation information was omitted
+** at that point because identifiers had not yet been resolved. This
+** routine is called after identifier resolution.
+*/
+static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
+ Parse *pParse;
+ int i;
+ SrcList *pTabList;
+ struct SrcList_item *pFrom;
+
+ assert( p->selFlags & SF_Resolved );
+ if( (p->selFlags & SF_HasTypeInfo)==0 ){
+ p->selFlags |= SF_HasTypeInfo;
+ pParse = pWalker->pParse;
+ pTabList = p->pSrc;
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab = pFrom->pTab;
+ if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
+ /* A sub-query in the FROM clause of a SELECT */
+ Select *pSel = pFrom->pSelect;
+ assert( pSel );
+ while( pSel->pPrior ) pSel = pSel->pPrior;
+ selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
+ }
+ }
+ }
+ return WRC_Continue;
+}
+#endif
+
+
+/*
+** This routine adds datatype and collating sequence information to
+** the Table structures of all FROM-clause subqueries in a
+** SELECT statement.
+**
+** Use this routine after name resolution.
+*/
+static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
+#ifndef SQLITE_OMIT_SUBQUERY
+ Walker w;
+ w.xSelectCallback = selectAddSubqueryTypeInfo;
+ w.xExprCallback = exprWalkNoop;
+ w.pParse = pParse;
+ sqlite3WalkSelect(&w, pSelect);
+#endif
+}
+
+
+/*
+** This routine sets of a SELECT statement for processing. The
+** following is accomplished:
+**
+** * VDBE Cursor numbers are assigned to all FROM-clause terms.
+** * Ephemeral Table objects are created for all FROM-clause subqueries.
+** * ON and USING clauses are shifted into WHERE statements
+** * Wildcards "*" and "TABLE.*" in result sets are expanded.
+** * Identifiers in expression are matched to tables.
+**
+** This routine acts recursively on all subqueries within the SELECT.
+*/
+void sqlite3SelectPrep(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ NameContext *pOuterNC /* Name context for container */
+){
+ sqlite3 *db;
+ if( NEVER(p==0) ) return;
+ db = pParse->db;
+ if( p->selFlags & SF_HasTypeInfo ) return;
+ sqlite3SelectExpand(pParse, p);
+ if( pParse->nErr || db->mallocFailed ) return;
+ sqlite3ResolveSelectNames(pParse, p, pOuterNC);
+ if( pParse->nErr || db->mallocFailed ) return;
+ sqlite3SelectAddTypeInfo(pParse, p);
+}
+
+/*
+** Reset the aggregate accumulator.
+**
+** The aggregate accumulator is a set of memory cells that hold
+** intermediate results while calculating an aggregate. This
+** routine simply stores NULLs in all of those memory cells.
+*/
+static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pFunc;
+ if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
+ return;
+ }
+ for(i=0; i<pAggInfo->nColumn; i++){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
+ }
+ for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
+ if( pFunc->iDistinct>=0 ){
+ Expr *pE = pFunc->pExpr;
+ assert( !ExprHasProperty(pE, EP_xIsSelect) );
+ if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
+ sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
+ "argument");
+ pFunc->iDistinct = -1;
+ }else{
+ KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
+ (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+ }
+ }
+ }
+}
+
+/*
+** Invoke the OP_AggFinalize opcode for every aggregate function
+** in the AggInfo structure.
+*/
+static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pF;
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+ ExprList *pList = pF->pExpr->x.pList;
+ assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
+ sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
+ (void*)pF->pFunc, P4_FUNCDEF);
+ }
+}
+
+/*
+** Update the accumulator memory cells for an aggregate based on
+** the current cursor position.
+*/
+static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pF;
+ struct AggInfo_col *pC;
+
+ pAggInfo->directMode = 1;
+ sqlite3ExprCacheClear(pParse);
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+ int nArg;
+ int addrNext = 0;
+ int regAgg;
+ ExprList *pList = pF->pExpr->x.pList;
+ assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
+ if( pList ){
+ nArg = pList->nExpr;
+ regAgg = sqlite3GetTempRange(pParse, nArg);
+ sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
+ }else{
+ nArg = 0;
+ regAgg = 0;
+ }
+ if( pF->iDistinct>=0 ){
+ addrNext = sqlite3VdbeMakeLabel(v);
+ assert( nArg==1 );
+ codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
+ }
+ if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
+ CollSeq *pColl = 0;
+ struct ExprList_item *pItem;
+ int j;
+ assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
+ for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
+ pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+ }
+ if( !pColl ){
+ pColl = pParse->db->pDfltColl;
+ }
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
+ }
+ sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
+ (void*)pF->pFunc, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, (u8)nArg);
+ sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
+ sqlite3ReleaseTempRange(pParse, regAgg, nArg);
+ if( addrNext ){
+ sqlite3VdbeResolveLabel(v, addrNext);
+ sqlite3ExprCacheClear(pParse);
+ }
+ }
+
+ /* Before populating the accumulator registers, clear the column cache.
+ ** Otherwise, if any of the required column values are already present
+ ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
+ ** to pC->iMem. But by the time the value is used, the original register
+ ** may have been used, invalidating the underlying buffer holding the
+ ** text or blob value. See ticket [883034dcb5].
+ **
+ ** Another solution would be to change the OP_SCopy used to copy cached
+ ** values to an OP_Copy.
+ */
+ sqlite3ExprCacheClear(pParse);
+ for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
+ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
+ }
+ pAggInfo->directMode = 0;
+ sqlite3ExprCacheClear(pParse);
+}
+
+/*
+** Add a single OP_Explain instruction to the VDBE to explain a simple
+** count(*) query ("SELECT count(*) FROM pTab").
+*/
+#ifndef SQLITE_OMIT_EXPLAIN
+static void explainSimpleCount(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being queried */
+ Index *pIdx /* Index used to optimize scan, or NULL */
+){
+ if( pParse->explain==2 ){
+ char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
+ pTab->zName,
+ pIdx ? "USING COVERING INDEX " : "",
+ pIdx ? pIdx->zName : "",
+ pTab->nRowEst
+ );
+ sqlite3VdbeAddOp4(
+ pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
+ );
+ }
+}
+#else
+# define explainSimpleCount(a,b,c)
+#endif
+
+/*
+** Generate code for the SELECT statement given in the p argument.
+**
+** The results are distributed in various ways depending on the
+** contents of the SelectDest structure pointed to by argument pDest
+** as follows:
+**
+** pDest->eDest Result
+** ------------ -------------------------------------------
+** SRT_Output Generate a row of output (using the OP_ResultRow
+** opcode) for each row in the result set.
+**
+** SRT_Mem Only valid if the result is a single column.
+** Store the first column of the first result row
+** in register pDest->iParm then abandon the rest
+** of the query. This destination implies "LIMIT 1".
+**
+** SRT_Set The result must be a single column. Store each
+** row of result as the key in table pDest->iParm.
+** Apply the affinity pDest->affinity before storing
+** results. Used to implement "IN (SELECT ...)".
+**
+** SRT_Union Store results as a key in a temporary table pDest->iParm.
+**
+** SRT_Except Remove results from the temporary table pDest->iParm.
+**
+** SRT_Table Store results in temporary table pDest->iParm.
+** This is like SRT_EphemTab except that the table
+** is assumed to already be open.
+**
+** SRT_EphemTab Create an temporary table pDest->iParm and store
+** the result there. The cursor is left open after
+** returning. This is like SRT_Table except that
+** this destination uses OP_OpenEphemeral to create
+** the table first.
+**
+** SRT_Coroutine Generate a co-routine that returns a new row of
+** results each time it is invoked. The entry point
+** of the co-routine is stored in register pDest->iParm.
+**
+** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
+** set is not empty.
+**
+** SRT_Discard Throw the results away. This is used by SELECT
+** statements within triggers whose only purpose is
+** the side-effects of functions.
+**
+** This routine returns the number of errors. If any errors are
+** encountered, then an appropriate error message is left in
+** pParse->zErrMsg.
+**
+** This routine does NOT free the Select structure passed in. The
+** calling function needs to do that.
+*/
+int sqlite3Select(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ SelectDest *pDest /* What to do with the query results */
+){
+ int i, j; /* Loop counters */
+ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
+ Vdbe *v; /* The virtual machine under construction */
+ int isAgg; /* True for select lists like "count(*)" */
+ ExprList *pEList; /* List of columns to extract. */
+ SrcList *pTabList; /* List of tables to select from */
+ Expr *pWhere; /* The WHERE clause. May be NULL */
+ ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
+ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
+ Expr *pHaving; /* The HAVING clause. May be NULL */
+ int isDistinct; /* True if the DISTINCT keyword is present */
+ int distinct; /* Table to use for the distinct set */
+ int rc = 1; /* Value to return from this function */
+ int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
+ int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */
+ AggInfo sAggInfo; /* Information used by aggregate queries */
+ int iEnd; /* Address of the end of the query */
+ sqlite3 *db; /* The database connection */
+
+#ifndef SQLITE_OMIT_EXPLAIN
+ int iRestoreSelectId = pParse->iSelectId;
+ pParse->iSelectId = pParse->iNextSelectId++;
+#endif
+
+ db = pParse->db;
+ if( p==0 || db->mallocFailed || pParse->nErr ){
+ return 1;
+ }
+ if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
+ memset(&sAggInfo, 0, sizeof(sAggInfo));
+
+ if( IgnorableOrderby(pDest) ){
+ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
+ pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
+ /* If ORDER BY makes no difference in the output then neither does
+ ** DISTINCT so it can be removed too. */
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ p->pOrderBy = 0;
+ p->selFlags &= ~SF_Distinct;
+ }
+ sqlite3SelectPrep(pParse, p, 0);
+ pOrderBy = p->pOrderBy;
+ pTabList = p->pSrc;
+ pEList = p->pEList;
+ if( pParse->nErr || db->mallocFailed ){
+ goto select_end;
+ }
+ isAgg = (p->selFlags & SF_Aggregate)!=0;
+ assert( pEList!=0 );
+
+ /* Begin generating code.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto select_end;
+
+ /* If writing to memory or generating a set
+ ** only a single column may be output.
+ */
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
+ goto select_end;
+ }
+#endif
+
+ /* Generate code for all sub-queries in the FROM clause
+ */
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
+ struct SrcList_item *pItem = &pTabList->a[i];
+ SelectDest dest;
+ Select *pSub = pItem->pSelect;
+ int isAggSub;
+
+ if( pSub==0 ) continue;
+ if( pItem->addrFillSub ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
+ continue;
+ }
+
+ /* Increment Parse.nHeight by the height of the largest expression
+ ** tree refered to by this, the parent select. The child select
+ ** may contain expression trees of at most
+ ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
+ ** more conservative than necessary, but much easier than enforcing
+ ** an exact limit.
+ */
+ pParse->nHeight += sqlite3SelectExprHeight(p);
+
+ isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
+ if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
+ /* This subquery can be absorbed into its parent. */
+ if( isAggSub ){
+ isAgg = 1;
+ p->selFlags |= SF_Aggregate;
+ }
+ i = -1;
+ }else{
+ /* Generate a subroutine that will fill an ephemeral table with
+ ** the content of this subquery. pItem->addrFillSub will point
+ ** to the address of the generated subroutine. pItem->regReturn
+ ** is a register allocated to hold the subroutine return address
+ */
+ int topAddr;
+ int onceAddr = 0;
+ int retAddr;
+ assert( pItem->addrFillSub==0 );
+ pItem->regReturn = ++pParse->nMem;
+ topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
+ pItem->addrFillSub = topAddr+1;
+ VdbeNoopComment((v, "materialize %s", pItem->pTab->zName));
+ if( pItem->isCorrelated==0 && pParse->pTriggerTab==0 ){
+ /* If the subquery is no correlated and if we are not inside of
+ ** a trigger, then we only need to compute the value of the subquery
+ ** once. */
+ int regOnce = ++pParse->nMem;
+ onceAddr = sqlite3VdbeAddOp1(v, OP_Once, regOnce);
+ }
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
+ explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
+ sqlite3Select(pParse, pSub, &dest);
+ pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
+ if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
+ retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
+ VdbeComment((v, "end %s", pItem->pTab->zName));
+ sqlite3VdbeChangeP1(v, topAddr, retAddr);
+
+ }
+ if( /*pParse->nErr ||*/ db->mallocFailed ){
+ goto select_end;
+ }
+ pParse->nHeight -= sqlite3SelectExprHeight(p);
+ pTabList = p->pSrc;
+ if( !IgnorableOrderby(pDest) ){
+ pOrderBy = p->pOrderBy;
+ }
+ }
+ pEList = p->pEList;
+#endif
+ pWhere = p->pWhere;
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ isDistinct = (p->selFlags & SF_Distinct)!=0;
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ /* If there is are a sequence of queries, do the earlier ones first.
+ */
+ if( p->pPrior ){
+ if( p->pRightmost==0 ){
+ Select *pLoop, *pRight = 0;
+ int cnt = 0;
+ int mxSelect;
+ for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
+ pLoop->pRightmost = p;
+ pLoop->pNext = pRight;
+ pRight = pLoop;
+ }
+ mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
+ if( mxSelect && cnt>mxSelect ){
+ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
+ goto select_end;
+ }
+ }
+ rc = multiSelect(pParse, p, pDest);
+ explainSetInteger(pParse->iSelectId, iRestoreSelectId);
+ return rc;
+ }
+#endif
+
+ /* If there is both a GROUP BY and an ORDER BY clause and they are
+ ** identical, then disable the ORDER BY clause since the GROUP BY
+ ** will cause elements to come out in the correct order. This is
+ ** an optimization - the correct answer should result regardless.
+ ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
+ ** to disable this optimization for testing purposes.
+ */
+ if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
+ && (db->flags & SQLITE_GroupByOrder)==0 ){
+ pOrderBy = 0;
+ }
+
+ /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
+ ** if the select-list is the same as the ORDER BY list, then this query
+ ** can be rewritten as a GROUP BY. In other words, this:
+ **
+ ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
+ **
+ ** is transformed to:
+ **
+ ** SELECT xyz FROM ... GROUP BY xyz
+ **
+ ** The second form is preferred as a single index (or temp-table) may be
+ ** used for both the ORDER BY and DISTINCT processing. As originally
+ ** written the query must use a temp-table for at least one of the ORDER
+ ** BY and DISTINCT, and an index or separate temp-table for the other.
+ */
+ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
+ && sqlite3ExprListCompare(pOrderBy, p->pEList)==0
+ ){
+ p->selFlags &= ~SF_Distinct;
+ p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
+ pGroupBy = p->pGroupBy;
+ pOrderBy = 0;
+ }
+
+ /* If there is an ORDER BY clause, then this sorting
+ ** index might end up being unused if the data can be
+ ** extracted in pre-sorted order. If that is the case, then the
+ ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
+ ** we figure out that the sorting index is not needed. The addrSortIndex
+ ** variable is used to facilitate that change.
+ */
+ if( pOrderBy ){
+ KeyInfo *pKeyInfo;
+ pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
+ pOrderBy->iECursor = pParse->nTab++;
+ p->addrOpenEphm[2] = addrSortIndex =
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
+ (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+ }else{
+ addrSortIndex = -1;
+ }
+
+ /* If the output is destined for a temporary table, open that table.
+ */
+ if( pDest->eDest==SRT_EphemTab ){
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
+ }
+
+ /* Set the limiter.
+ */
+ iEnd = sqlite3VdbeMakeLabel(v);
+ p->nSelectRow = (double)LARGEST_INT64;
+ computeLimitRegisters(pParse, p, iEnd);
+ if( p->iLimit==0 && addrSortIndex>=0 ){
+ sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
+ p->selFlags |= SF_UseSorter;
+ }
+
+ /* Open a virtual index to use for the distinct set.
+ */
+ if( p->selFlags & SF_Distinct ){
+ KeyInfo *pKeyInfo;
+ distinct = pParse->nTab++;
+ pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
+ addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
+ (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+ sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
+ }else{
+ distinct = addrDistinctIndex = -1;
+ }
+
+ /* Aggregate and non-aggregate queries are handled differently */
+ if( !isAgg && pGroupBy==0 ){
+ ExprList *pDist = (isDistinct ? p->pEList : 0);
+
+ /* Begin the database scan. */
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0);
+ if( pWInfo==0 ) goto select_end;
+ if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
+
+ /* If sorting index that was created by a prior OP_OpenEphemeral
+ ** instruction ended up not being needed, then change the OP_OpenEphemeral
+ ** into an OP_Noop.
+ */
+ if( addrSortIndex>=0 && pOrderBy==0 ){
+ sqlite3VdbeChangeToNoop(v, addrSortIndex);
+ p->addrOpenEphm[2] = -1;
+ }
+
+ if( pWInfo->eDistinct ){
+ VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
+
+ assert( addrDistinctIndex>=0 );
+ pOp = sqlite3VdbeGetOp(v, addrDistinctIndex);
+
+ assert( isDistinct );
+ assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
+ || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE
+ );
+ distinct = -1;
+ if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){
+ int iJump;
+ int iExpr;
+ int iFlag = ++pParse->nMem;
+ int iBase = pParse->nMem+1;
+ int iBase2 = iBase + pEList->nExpr;
+ pParse->nMem += (pEList->nExpr*2);
+
+ /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The
+ ** OP_Integer initializes the "first row" flag. */
+ pOp->opcode = OP_Integer;
+ pOp->p1 = 1;
+ pOp->p2 = iFlag;
+
+ sqlite3ExprCodeExprList(pParse, pEList, iBase, 1);
+ iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1;
+ sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1);
+ for(iExpr=0; iExpr<pEList->nExpr; iExpr++){
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr);
+ sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr);
+ sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
+ }
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue);
+
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag);
+ assert( sqlite3VdbeCurrentAddr(v)==iJump );
+ sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr);
+ }else{
+ pOp->opcode = OP_Noop;
+ }
+ }
+
+ /* Use the standard inner loop. */
+ selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest,
+ pWInfo->iContinue, pWInfo->iBreak);
+
+ /* End the database scan loop.
+ */
+ sqlite3WhereEnd(pWInfo);
+ }else{
+ /* This is the processing for aggregate queries */
+ NameContext sNC; /* Name context for processing aggregate information */
+ int iAMem; /* First Mem address for storing current GROUP BY */
+ int iBMem; /* First Mem address for previous GROUP BY */
+ int iUseFlag; /* Mem address holding flag indicating that at least
+ ** one row of the input to the aggregator has been
+ ** processed */
+ int iAbortFlag; /* Mem address which causes query abort if positive */
+ int groupBySort; /* Rows come from source in GROUP BY order */
+ int addrEnd; /* End of processing for this SELECT */
+ int sortPTab = 0; /* Pseudotable used to decode sorting results */
+ int sortOut = 0; /* Output register from the sorter */
+
+ /* Remove any and all aliases between the result set and the
+ ** GROUP BY clause.
+ */
+ if( pGroupBy ){
+ int k; /* Loop counter */
+ struct ExprList_item *pItem; /* For looping over expression in a list */
+
+ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
+ pItem->iAlias = 0;
+ }
+ for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
+ pItem->iAlias = 0;
+ }
+ if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
+ }else{
+ p->nSelectRow = (double)1;
+ }
+
+
+ /* Create a label to jump to when we want to abort the query */
+ addrEnd = sqlite3VdbeMakeLabel(v);
+
+ /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
+ ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
+ ** SELECT statement.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ sNC.pAggInfo = &sAggInfo;
+ sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
+ sAggInfo.pGroupBy = pGroupBy;
+ sqlite3ExprAnalyzeAggList(&sNC, pEList);
+ sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
+ if( pHaving ){
+ sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
+ }
+ sAggInfo.nAccumulator = sAggInfo.nColumn;
+ for(i=0; i<sAggInfo.nFunc; i++){
+ assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
+ sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
+ }
+ if( db->mallocFailed ) goto select_end;
+
+ /* Processing for aggregates with GROUP BY is very different and
+ ** much more complex than aggregates without a GROUP BY.
+ */
+ if( pGroupBy ){
+ KeyInfo *pKeyInfo; /* Keying information for the group by clause */
+ int j1; /* A-vs-B comparision jump */
+ int addrOutputRow; /* Start of subroutine that outputs a result row */
+ int regOutputRow; /* Return address register for output subroutine */
+ int addrSetAbort; /* Set the abort flag and return */
+ int addrTopOfLoop; /* Top of the input loop */
+ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
+ int addrReset; /* Subroutine for resetting the accumulator */
+ int regReset; /* Return address register for reset subroutine */
+
+ /* If there is a GROUP BY clause we might need a sorting index to
+ ** implement it. Allocate that sorting index now. If it turns out
+ ** that we do not need it after all, the OP_SorterOpen instruction
+ ** will be converted into a Noop.
+ */
+ sAggInfo.sortingIdx = pParse->nTab++;
+ pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
+ addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
+ sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
+ 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+
+ /* Initialize memory locations used by GROUP BY aggregate processing
+ */
+ iUseFlag = ++pParse->nMem;
+ iAbortFlag = ++pParse->nMem;
+ regOutputRow = ++pParse->nMem;
+ addrOutputRow = sqlite3VdbeMakeLabel(v);
+ regReset = ++pParse->nMem;
+ addrReset = sqlite3VdbeMakeLabel(v);
+ iAMem = pParse->nMem + 1;
+ pParse->nMem += pGroupBy->nExpr;
+ iBMem = pParse->nMem + 1;
+ pParse->nMem += pGroupBy->nExpr;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
+ VdbeComment((v, "clear abort flag"));
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
+ VdbeComment((v, "indicate accumulator empty"));
+
+ /* Begin a loop that will extract all source rows in GROUP BY order.
+ ** This might involve two separate loops with an OP_Sort in between, or
+ ** it might be a single loop that uses an index to extract information
+ ** in the right order to begin with.
+ */
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0);
+ if( pWInfo==0 ) goto select_end;
+ if( pGroupBy==0 ){
+ /* The optimizer is able to deliver rows in group by order so
+ ** we do not have to sort. The OP_OpenEphemeral table will be
+ ** cancelled later because we still need to use the pKeyInfo
+ */
+ pGroupBy = p->pGroupBy;
+ groupBySort = 0;
+ }else{
+ /* Rows are coming out in undetermined order. We have to push
+ ** each row into a sorting index, terminate the first loop,
+ ** then loop over the sorting index in order to get the output
+ ** in sorted order
+ */
+ int regBase;
+ int regRecord;
+ int nCol;
+ int nGroupBy;
+
+ explainTempTable(pParse,
+ isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY");
+
+ groupBySort = 1;
+ nGroupBy = pGroupBy->nExpr;
+ nCol = nGroupBy + 1;
+ j = nGroupBy+1;
+ for(i=0; i<sAggInfo.nColumn; i++){
+ if( sAggInfo.aCol[i].iSorterColumn>=j ){
+ nCol++;
+ j++;
+ }
+ }
+ regBase = sqlite3GetTempRange(pParse, nCol);
+ sqlite3ExprCacheClear(pParse);
+ sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
+ sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
+ j = nGroupBy+1;
+ for(i=0; i<sAggInfo.nColumn; i++){
+ struct AggInfo_col *pCol = &sAggInfo.aCol[i];
+ if( pCol->iSorterColumn>=j ){
+ int r1 = j + regBase;
+ int r2;
+
+ r2 = sqlite3ExprCodeGetColumn(pParse,
+ pCol->pTab, pCol->iColumn, pCol->iTable, r1);
+ if( r1!=r2 ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
+ }
+ j++;
+ }
+ }
+ regRecord = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
+ sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3ReleaseTempRange(pParse, regBase, nCol);
+ sqlite3WhereEnd(pWInfo);
+ sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
+ sortOut = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
+ sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
+ VdbeComment((v, "GROUP BY sort"));
+ sAggInfo.useSortingIdx = 1;
+ sqlite3ExprCacheClear(pParse);
+ }
+
+ /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
+ ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
+ ** Then compare the current GROUP BY terms against the GROUP BY terms
+ ** from the previous row currently stored in a0, a1, a2...
+ */
+ addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
+ sqlite3ExprCacheClear(pParse);
+ if( groupBySort ){
+ sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
+ }
+ for(j=0; j<pGroupBy->nExpr; j++){
+ if( groupBySort ){
+ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
+ if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
+ }else{
+ sAggInfo.directMode = 1;
+ sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
+ }
+ }
+ sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
+ (char*)pKeyInfo, P4_KEYINFO);
+ j1 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
+
+ /* Generate code that runs whenever the GROUP BY changes.
+ ** Changes in the GROUP BY are detected by the previous code
+ ** block. If there were no changes, this block is skipped.
+ **
+ ** This code copies current group by terms in b0,b1,b2,...
+ ** over to a0,a1,a2. It then calls the output subroutine
+ ** and resets the aggregate accumulator registers in preparation
+ ** for the next GROUP BY batch.
+ */
+ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+ VdbeComment((v, "output one row"));
+ sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
+ VdbeComment((v, "check abort flag"));
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+ VdbeComment((v, "reset accumulator"));
+
+ /* Update the aggregate accumulators based on the content of
+ ** the current row
+ */
+ sqlite3VdbeJumpHere(v, j1);
+ updateAccumulator(pParse, &sAggInfo);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
+ VdbeComment((v, "indicate data in accumulator"));
+
+ /* End of the loop
+ */
+ if( groupBySort ){
+ sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
+ }else{
+ sqlite3WhereEnd(pWInfo);
+ sqlite3VdbeChangeToNoop(v, addrSortingIdx);
+ }
+
+ /* Output the final row of result
+ */
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+ VdbeComment((v, "output final row"));
+
+ /* Jump over the subroutines
+ */
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
+
+ /* Generate a subroutine that outputs a single row of the result
+ ** set. This subroutine first looks at the iUseFlag. If iUseFlag
+ ** is less than or equal to zero, the subroutine is a no-op. If
+ ** the processing calls for the query to abort, this subroutine
+ ** increments the iAbortFlag memory location before returning in
+ ** order to signal the caller to abort.
+ */
+ addrSetAbort = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
+ VdbeComment((v, "set abort flag"));
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ sqlite3VdbeResolveLabel(v, addrOutputRow);
+ addrOutputRow = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
+ VdbeComment((v, "Groupby result generator entry point"));
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ finalizeAggFunctions(pParse, &sAggInfo);
+ sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
+ selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
+ distinct, pDest,
+ addrOutputRow+1, addrSetAbort);
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ VdbeComment((v, "end groupby result generator"));
+
+ /* Generate a subroutine that will reset the group-by accumulator
+ */
+ sqlite3VdbeResolveLabel(v, addrReset);
+ resetAccumulator(pParse, &sAggInfo);
+ sqlite3VdbeAddOp1(v, OP_Return, regReset);
+
+ } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
+ else {
+ ExprList *pDel = 0;
+#ifndef SQLITE_OMIT_BTREECOUNT
+ Table *pTab;
+ if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
+ /* If isSimpleCount() returns a pointer to a Table structure, then
+ ** the SQL statement is of the form:
+ **
+ ** SELECT count(*) FROM <tbl>
+ **
+ ** where the Table structure returned represents table <tbl>.
+ **
+ ** This statement is so common that it is optimized specially. The
+ ** OP_Count instruction is executed either on the intkey table that
+ ** contains the data for table <tbl> or on one of its indexes. It
+ ** is better to execute the op on an index, as indexes are almost
+ ** always spread across less pages than their corresponding tables.
+ */
+ const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
+ Index *pIdx; /* Iterator variable */
+ KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
+ Index *pBest = 0; /* Best index found so far */
+ int iRoot = pTab->tnum; /* Root page of scanned b-tree */
+
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+
+ /* Search for the index that has the least amount of columns. If
+ ** there is such an index, and it has less columns than the table
+ ** does, then we can assume that it consumes less space on disk and
+ ** will therefore be cheaper to scan to determine the query result.
+ ** In this case set iRoot to the root page number of the index b-tree
+ ** and pKeyInfo to the KeyInfo structure required to navigate the
+ ** index.
+ **
+ ** (2011-04-15) Do not do a full scan of an unordered index.
+ **
+ ** In practice the KeyInfo structure will not be used. It is only
+ ** passed to keep OP_OpenRead happy.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){
+ pBest = pIdx;
+ }
+ }
+ if( pBest && pBest->nColumn<pTab->nCol ){
+ iRoot = pBest->tnum;
+ pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
+ }
+
+ /* Open a read-only cursor, execute the OP_Count, close the cursor. */
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
+ if( pKeyInfo ){
+ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
+ }
+ sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
+ sqlite3VdbeAddOp1(v, OP_Close, iCsr);
+ explainSimpleCount(pParse, pTab, pBest);
+ }else
+#endif /* SQLITE_OMIT_BTREECOUNT */
+ {
+ /* Check if the query is of one of the following forms:
+ **
+ ** SELECT min(x) FROM ...
+ ** SELECT max(x) FROM ...
+ **
+ ** If it is, then ask the code in where.c to attempt to sort results
+ ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
+ ** If where.c is able to produce results sorted in this order, then
+ ** add vdbe code to break out of the processing loop after the
+ ** first iteration (since the first iteration of the loop is
+ ** guaranteed to operate on the row with the minimum or maximum
+ ** value of x, the only row required).
+ **
+ ** A special flag must be passed to sqlite3WhereBegin() to slightly
+ ** modify behaviour as follows:
+ **
+ ** + If the query is a "SELECT min(x)", then the loop coded by
+ ** where.c should not iterate over any values with a NULL value
+ ** for x.
+ **
+ ** + The optimizer code in where.c (the thing that decides which
+ ** index or indices to use) should place a different priority on
+ ** satisfying the 'ORDER BY' clause than it does in other cases.
+ ** Refer to code and comments in where.c for details.
+ */
+ ExprList *pMinMax = 0;
+ u8 flag = minMaxQuery(p);
+ if( flag ){
+ assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
+ pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
+ pDel = pMinMax;
+ if( pMinMax && !db->mallocFailed ){
+ pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
+ pMinMax->a[0].pExpr->op = TK_COLUMN;
+ }
+ }
+
+ /* This case runs if the aggregate has no GROUP BY clause. The
+ ** processing is much simpler since there is only a single row
+ ** of output.
+ */
+ resetAccumulator(pParse, &sAggInfo);
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag);
+ if( pWInfo==0 ){
+ sqlite3ExprListDelete(db, pDel);
+ goto select_end;
+ }
+ updateAccumulator(pParse, &sAggInfo);
+ if( !pMinMax && flag ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
+ VdbeComment((v, "%s() by index",
+ (flag==WHERE_ORDERBY_MIN?"min":"max")));
+ }
+ sqlite3WhereEnd(pWInfo);
+ finalizeAggFunctions(pParse, &sAggInfo);
+ }
+
+ pOrderBy = 0;
+ sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
+ selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
+ pDest, addrEnd, addrEnd);
+ sqlite3ExprListDelete(db, pDel);
+ }
+ sqlite3VdbeResolveLabel(v, addrEnd);
+
+ } /* endif aggregate query */
+
+ if( distinct>=0 ){
+ explainTempTable(pParse, "DISTINCT");
+ }
+
+ /* If there is an ORDER BY clause, then we need to sort the results
+ ** and send them to the callback one by one.
+ */
+ if( pOrderBy ){
+ explainTempTable(pParse, "ORDER BY");
+ generateSortTail(pParse, p, v, pEList->nExpr, pDest);
+ }
+
+ /* Jump here to skip this query
+ */
+ sqlite3VdbeResolveLabel(v, iEnd);
+
+ /* The SELECT was successfully coded. Set the return code to 0
+ ** to indicate no errors.
+ */
+ rc = 0;
+
+ /* Control jumps to here if an error is encountered above, or upon
+ ** successful coding of the SELECT.
+ */
+select_end:
+ explainSetInteger(pParse->iSelectId, iRestoreSelectId);
+
+ /* Identify column names if results of the SELECT are to be output.
+ */
+ if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
+ generateColumnNames(pParse, pTabList, pEList);
+ }
+
+ sqlite3DbFree(db, sAggInfo.aCol);
+ sqlite3DbFree(db, sAggInfo.aFunc);
+ return rc;
+}
+
+#if defined(SQLITE_DEBUG)
+/*
+*******************************************************************************
+** The following code is used for testing and debugging only. The code
+** that follows does not appear in normal builds.
+**
+** These routines are used to print out the content of all or part of a
+** parse structures such as Select or Expr. Such printouts are useful
+** for helping to understand what is happening inside the code generator
+** during the execution of complex SELECT statements.
+**
+** These routine are not called anywhere from within the normal
+** code base. Then are intended to be called from within the debugger
+** or from temporary "printf" statements inserted for debugging.
+*/
+void sqlite3PrintExpr(Expr *p){
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
+ sqlite3DebugPrintf("(%s", p->u.zToken);
+ }else{
+ sqlite3DebugPrintf("(%d", p->op);
+ }
+ if( p->pLeft ){
+ sqlite3DebugPrintf(" ");
+ sqlite3PrintExpr(p->pLeft);
+ }
+ if( p->pRight ){
+ sqlite3DebugPrintf(" ");
+ sqlite3PrintExpr(p->pRight);
+ }
+ sqlite3DebugPrintf(")");
+}
+void sqlite3PrintExprList(ExprList *pList){
+ int i;
+ for(i=0; i<pList->nExpr; i++){
+ sqlite3PrintExpr(pList->a[i].pExpr);
+ if( i<pList->nExpr-1 ){
+ sqlite3DebugPrintf(", ");
+ }
+ }
+}
+void sqlite3PrintSelect(Select *p, int indent){
+ sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
+ sqlite3PrintExprList(p->pEList);
+ sqlite3DebugPrintf("\n");
+ if( p->pSrc ){
+ char *zPrefix;
+ int i;
+ zPrefix = "FROM";
+ for(i=0; i<p->pSrc->nSrc; i++){
+ struct SrcList_item *pItem = &p->pSrc->a[i];
+ sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
+ zPrefix = "";
+ if( pItem->pSelect ){
+ sqlite3DebugPrintf("(\n");
+ sqlite3PrintSelect(pItem->pSelect, indent+10);
+ sqlite3DebugPrintf("%*s)", indent+8, "");
+ }else if( pItem->zName ){
+ sqlite3DebugPrintf("%s", pItem->zName);
+ }
+ if( pItem->pTab ){
+ sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
+ }
+ if( pItem->zAlias ){
+ sqlite3DebugPrintf(" AS %s", pItem->zAlias);
+ }
+ if( i<p->pSrc->nSrc-1 ){
+ sqlite3DebugPrintf(",");
+ }
+ sqlite3DebugPrintf("\n");
+ }
+ }
+ if( p->pWhere ){
+ sqlite3DebugPrintf("%*s WHERE ", indent, "");
+ sqlite3PrintExpr(p->pWhere);
+ sqlite3DebugPrintf("\n");
+ }
+ if( p->pGroupBy ){
+ sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
+ sqlite3PrintExprList(p->pGroupBy);
+ sqlite3DebugPrintf("\n");
+ }
+ if( p->pHaving ){
+ sqlite3DebugPrintf("%*s HAVING ", indent, "");
+ sqlite3PrintExpr(p->pHaving);
+ sqlite3DebugPrintf("\n");
+ }
+ if( p->pOrderBy ){
+ sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
+ sqlite3PrintExprList(p->pOrderBy);
+ sqlite3DebugPrintf("\n");
+ }
+}
+/* End of the structure debug printing code
+*****************************************************************************/
+#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */