summaryrefslogtreecommitdiff
path: root/client/src/leap/soledad/client/crypto.py
blob: 6d1fab37d50c327ef0663d492d48903c11d35a14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# -*- coding: utf-8 -*-
# crypto.py
# Copyright (C) 2013, 2014 LEAP
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
Cryptographic utilities for Soledad.
"""
import os
import binascii
import hmac
import hashlib
import json
import logging
import multiprocessing
import threading

from pycryptopp.cipher.aes import AES
from pycryptopp.cipher.xsalsa20 import XSalsa20
from zope.proxy import sameProxiedObjects

from leap.soledad.common import soledad_assert
from leap.soledad.common import soledad_assert_type
from leap.soledad.common.document import SoledadDocument


from leap.soledad.common.crypto import (
    EncryptionSchemes,
    UnknownEncryptionScheme,
    MacMethods,
    UnknownMacMethod,
    WrongMac,
    ENC_JSON_KEY,
    ENC_SCHEME_KEY,
    ENC_METHOD_KEY,
    ENC_IV_KEY,
    MAC_KEY,
    MAC_METHOD_KEY,
)

logger = logging.getLogger(__name__)


MAC_KEY_LENGTH = 64


class EncryptionMethods(object):
    """
    Representation of encryption methods that can be used.
    """

    AES_256_CTR = 'aes-256-ctr'
    XSALSA20 = 'xsalsa20'

#
# Exceptions
#


class DocumentNotEncrypted(Exception):
    """
    Raised for failures in document encryption.
    """
    pass


class UnknownEncryptionMethod(Exception):
    """
    Raised when trying to encrypt/decrypt with unknown method.
    """
    pass


class NoSymmetricSecret(Exception):
    """
    Raised when trying to get a hashed passphrase.
    """


def encrypt_sym(data, key, method):
    """
    Encrypt C{data} using a {password}.

    Currently, the only encryption methods supported are AES-256 in CTR
    mode and XSalsa20.

    :param data: The data to be encrypted.
    :type data: str
    :param key: The key used to encrypt C{data} (must be 256 bits long).
    :type key: str
    :param method: The encryption method to use.
    :type method: str

    :return: A tuple with the initial value and the encrypted data.
    :rtype: (long, str)
    """
    soledad_assert_type(key, str)

    soledad_assert(
        len(key) == 32,  # 32 x 8 = 256 bits.
        'Wrong key size: %s bits (must be 256 bits long).' %
        (len(key) * 8))
    iv = None
    # AES-256 in CTR mode
    if method == EncryptionMethods.AES_256_CTR:
        iv = os.urandom(16)
        ciphertext = AES(key=key, iv=iv).process(data)
    # XSalsa20
    elif method == EncryptionMethods.XSALSA20:
        iv = os.urandom(24)
        ciphertext = XSalsa20(key=key, iv=iv).process(data)
    else:
        # raise if method is unknown
        raise UnknownEncryptionMethod('Unkwnown method: %s' % method)
    return binascii.b2a_base64(iv), ciphertext


def decrypt_sym(data, key, method, **kwargs):
    """
    Decrypt data using symmetric secret.

    Currently, the only encryption method supported is AES-256 CTR mode.

    :param data: The data to be decrypted.
    :type data: str
    :param key: The key used to decrypt C{data} (must be 256 bits long).
    :type key: str
    :param method: The encryption method to use.
    :type method: str
    :param kwargs: Other parameters specific to each encryption method.
    :type kwargs: dict

    :return: The decrypted data.
    :rtype: str
    """
    soledad_assert_type(key, str)
    # assert params
    soledad_assert(
        len(key) == 32,  # 32 x 8 = 256 bits.
        'Wrong key size: %s (must be 256 bits long).' % len(key))
    soledad_assert(
        'iv' in kwargs,
        '%s needs an initial value.' % method)
    # AES-256 in CTR mode
    if method == EncryptionMethods.AES_256_CTR:
        return AES(
            key=key, iv=binascii.a2b_base64(kwargs['iv'])).process(data)
    elif method == EncryptionMethods.XSALSA20:
        return XSalsa20(
            key=key, iv=binascii.a2b_base64(kwargs['iv'])).process(data)

    # raise if method is unknown
    raise UnknownEncryptionMethod('Unkwnown method: %s' % method)


def doc_mac_key(doc_id, secret):
    """
    Generate a key for calculating a MAC for a document whose id is
    C{doc_id}.

    The key is derived using HMAC having sha256 as underlying hash
    function. The key used for HMAC is the first MAC_KEY_LENGTH characters
    of Soledad's storage secret. The HMAC message is C{doc_id}.

    :param doc_id: The id of the document.
    :type doc_id: str

    :param secret: soledad secret storage
    :type secret: Soledad.storage_secret

    :return: The key.
    :rtype: str

    :raise NoSymmetricSecret: if no symmetric secret was supplied.
    """
    if secret is None:
        raise NoSymmetricSecret()

    return hmac.new(
        secret[:MAC_KEY_LENGTH],
        doc_id,
        hashlib.sha256).digest()


class SoledadCrypto(object):
    """
    General cryptographic functionality encapsulated in a
    object that can be passed along.
    """
    def __init__(self, soledad):
        """
        Initialize the crypto object.

        :param soledad: A Soledad instance for key lookup.
        :type soledad: leap.soledad.Soledad
        """
        self._soledad = soledad

    def encrypt_sym(self, data, key,
                    method=EncryptionMethods.AES_256_CTR):
        return encrypt_sym(data, key, method)

    def decrypt_sym(self, data, key,
                    method=EncryptionMethods.AES_256_CTR, **kwargs):
        return decrypt_sym(data, key, method, **kwargs)

    def doc_mac_key(self, doc_id, secret):
        return doc_mac_key(doc_id, self.secret)

    def doc_passphrase(self, doc_id):
        """
        Generate a passphrase for symmetric encryption of document's contents.

        The password is derived using HMAC having sha256 as underlying hash
        function. The key used for HMAC are the first
        C{soledad.REMOTE_STORAGE_SECRET_KENGTH} bytes of Soledad's storage
        secret stripped from the first MAC_KEY_LENGTH characters. The HMAC
        message is C{doc_id}.

        :param doc_id: The id of the document that will be encrypted using
            this passphrase.
        :type doc_id: str

        :return: The passphrase.
        :rtype: str

        :raise NoSymmetricSecret: if no symmetric secret was supplied.
        """
        if self.secret is None:
            raise NoSymmetricSecret()
        return hmac.new(
            self.secret[
                MAC_KEY_LENGTH:
                self._soledad.REMOTE_STORAGE_SECRET_LENGTH],
            doc_id,
            hashlib.sha256).digest()

    #
    # secret setters/getters
    #

    def _get_secret(self):
        return self._soledad.storage_secret

    secret = property(
        _get_secret, doc='The secret used for symmetric encryption')

#
# Crypto utilities for a SoledadDocument.
#


def mac_doc(doc_id, doc_rev, ciphertext, mac_method, secret):
    """
    Calculate a MAC for C{doc} using C{ciphertext}.

    Current MAC method used is HMAC, with the following parameters:

        * key: sha256(storage_secret, doc_id)
        * msg: doc_id + doc_rev + ciphertext
        * digestmod: sha256

    :param doc_id: The id of the document.
    :type doc_id: str
    :param doc_rev: The revision of the document.
    :type doc_rev: str
    :param ciphertext: The content of the document.
    :type ciphertext: str
    :param mac_method: The MAC method to use.
    :type mac_method: str
    :param secret: soledad secret
    :type secret: Soledad.secret_storage

    :return: The calculated MAC.
    :rtype: str
    """
    if mac_method == MacMethods.HMAC:
        return hmac.new(
            doc_mac_key(doc_id, secret),
            str(doc_id) + str(doc_rev) + ciphertext,
            hashlib.sha256).digest()
    # raise if we do not know how to handle this MAC method
    raise UnknownMacMethod('Unknown MAC method: %s.' % mac_method)


def encrypt_docstr(docstr, doc_id, doc_rev, key, secret):
    """
    Encrypt C{doc}'s content.

    Encrypt doc's contents using AES-256 CTR mode and return a valid JSON
    string representing the following:

        {
            ENC_JSON_KEY: '<encrypted doc JSON string>',
            ENC_SCHEME_KEY: 'symkey',
            ENC_METHOD_KEY: EncryptionMethods.AES_256_CTR,
            ENC_IV_KEY: '<the initial value used to encrypt>',
            MAC_KEY: '<mac>'
            MAC_METHOD_KEY: 'hmac'
        }

    :param docstr: A representation of the document to be encrypted.
    :type docstr: str or unicode.

    :param doc_id: The document id.
    :type doc_id: str

    :param doc_rev: The document revision.
    :type doc_rev: str

    :param key: The key used to encrypt ``data`` (must be 256 bits long).
    :type key: str

    :param secret:
    :type secret:

    :return: The JSON serialization of the dict representing the encrypted
        content.
    :rtype: str
    """
    # encrypt content using AES-256 CTR mode
    iv, ciphertext = encrypt_sym(
        str(docstr),  # encryption/decryption routines expect str
        key, method=EncryptionMethods.AES_256_CTR)
    # Return a representation for the encrypted content. In the following, we
    # convert binary data to hexadecimal representation so the JSON
    # serialization does not complain about what it tries to serialize.
    hex_ciphertext = binascii.b2a_hex(ciphertext)
    return json.dumps({
        ENC_JSON_KEY: hex_ciphertext,
        ENC_SCHEME_KEY: EncryptionSchemes.SYMKEY,
        ENC_METHOD_KEY: EncryptionMethods.AES_256_CTR,
        ENC_IV_KEY: iv,
        MAC_KEY: binascii.b2a_hex(mac_doc(  # store the mac as hex.
            doc_id, doc_rev, ciphertext,
            MacMethods.HMAC, secret)),
        MAC_METHOD_KEY: MacMethods.HMAC,
    })


def decrypt_doc_dict(doc_dict, doc_id, doc_rev, key, secret):
    """
    Decrypt C{doc}'s content.

    Return the JSON string representation of the document's decrypted content.

    The passed doc_dict argument should have the following structure:

        {
            ENC_JSON_KEY: '<enc_blob>',
            ENC_SCHEME_KEY: '<enc_scheme>',
            ENC_METHOD_KEY: '<enc_method>',
            ENC_IV_KEY: '<initial value used to encrypt>',  # (optional)
            MAC_KEY: '<mac>'
            MAC_METHOD_KEY: 'hmac'
        }

    C{enc_blob} is the encryption of the JSON serialization of the document's
    content. For now Soledad just deals with documents whose C{enc_scheme} is
    EncryptionSchemes.SYMKEY and C{enc_method} is
    EncryptionMethods.AES_256_CTR.

    :param doc_dict: The content of the document to be decrypted.
    :type doc_dict: dict

    :param doc_id: The document id.
    :type doc_id: str

    :param doc_rev: The document revision.
    :type doc_rev: str

    :param key: The key used to encrypt ``data`` (must be 256 bits long).
    :type key: str

    :param secret:
    :type secret:

    :return: The JSON serialization of the decrypted content.
    :rtype: str
    """
    # TODO where should we move these assertions, now that we're passed the
    # string?
    #soledad_assert(doc.is_tombstone() is False)

    soledad_assert(ENC_JSON_KEY in doc_dict)
    soledad_assert(ENC_SCHEME_KEY in doc_dict)
    soledad_assert(ENC_METHOD_KEY in doc_dict)
    soledad_assert(MAC_KEY in doc_dict)
    soledad_assert(MAC_METHOD_KEY in doc_dict)

    # verify MAC
    ciphertext = binascii.a2b_hex(  # content is stored as hex.
        doc_dict[ENC_JSON_KEY])
    mac = mac_doc(
        doc_id, doc_rev,
        ciphertext,
        doc_dict[MAC_METHOD_KEY], secret)
    # we compare mac's hashes to avoid possible timing attacks that might
    # exploit python's builtin comparison operator behaviour, which fails
    # immediatelly when non-matching bytes are found.
    doc_mac_hash = hashlib.sha256(
        binascii.a2b_hex(  # the mac is stored as hex
            doc_dict[MAC_KEY])).digest()
    calculated_mac_hash = hashlib.sha256(mac).digest()
    if doc_mac_hash != calculated_mac_hash:
        raise WrongMac('Could not authenticate document\'s contents.')
    # decrypt doc's content
    enc_scheme = doc_dict[ENC_SCHEME_KEY]
    plainjson = None
    if enc_scheme == EncryptionSchemes.SYMKEY:
        enc_method = doc_dict[ENC_METHOD_KEY]
        if enc_method == EncryptionMethods.AES_256_CTR:
            soledad_assert(ENC_IV_KEY in doc_dict)
            plainjson = decrypt_sym(
                ciphertext, key,
                method=enc_method,
                iv=doc_dict[ENC_IV_KEY])
        else:
            raise UnknownEncryptionMethod(enc_method)
    else:
        raise UnknownEncryptionScheme(enc_scheme)

    print "PLAIN: ", plainjson
    return plainjson


def is_symmetrically_encrypted(doc):
    """
    Return True if the document was symmetrically encrypted.

    :param doc: The document to check.
    :type doc: SoledadDocument

    :rtype: bool
    """
    if doc.content and ENC_SCHEME_KEY in doc.content:
        if doc.content[ENC_SCHEME_KEY] == EncryptionSchemes.SYMKEY:
            return True
    return False


#
# Encrypt/decrypt pools of workers
#

class SyncEncryptDecryptPool(object):
    """
    Base class for encrypter/decrypter pools
    """

    def __init__(self, crypto, sync_db):
        """
        Initialize the pool of encryption-workers.

        :param crypto: A SoledadCryto instance to perform the encryption.
        :type crypto: leap.soledad.crypto.SoledadCrypto

        :param sync_db: a database connection handle
        :type sync_db: handle

        :param insert_doc_cb: Optional callback for inserting doc.
        :type insert_doc_cb: callable
        """
        self._pool = multiprocessing.Pool(self.WORKERS)
        self._crypto = crypto
        self._sync_db = sync_db


def encrypt_doc_task(doc_id, doc_rev, content, key, secret):
    encrypted_content = encrypt_docstr(
        content, doc_id, doc_rev, key, secret)
    return doc_id, doc_rev, encrypted_content


class SyncEncrypterPool(SyncEncryptDecryptPool):
    """
    of documents to be synced.
    """
    # TODO implement throttling to reduce cpu usage??
    WORKERS = 10
    TABLE_NAME = "docs_tosync"
    FIELD_NAMES = "doc_id, rev, content"

    def encrypt_doc(self, doc):
        """
        Symmetrically encrypt a document.

        :param doc: The document with contents to be encrypted.
        :type doc: SoledadDocument
        """
        docstr = doc.get_json()
        key = self._crypto.doc_passphrase(doc.doc_id)
        secret = self._crypto.secret
        args = doc.doc_id, doc.rev, docstr, key, secret

        try:
            self._pool.apply_async(encrypt_doc_task, args,
                                   callback=self.encrypt_doc_cb)
        except Exception as exc:
            logger.exception(exc)

    def encrypt_doc_cb(self, result):
        doc_id, doc_rev, content = result
        self.insert_encrypted_local_doc(doc_id, doc_rev, content)

    def insert_encrypted_local_doc(self, doc_id, doc_rev, content):
        """
        Insert the contents of the encrypted doc into the local sync
        database.

        :param doc: The document with contents to be encrypted.
        :type doc: SoledadDocument
        :param content: The encrypted document.
        :type content: str
        """
        c = self._sync_db.cursor()
        sql_del = "DELETE FROM '%s' WHERE doc_id=?" % (self.TABLE_NAME,)
        c.execute(sql_del, (doc_id, ))
        sql_ins = "INSERT INTO '%s' VALUES (?, ?, ?)" % (self.TABLE_NAME,)
        c.execute(sql_ins, (doc_id, doc_rev, content))
        self._sync_db.commit()


def decrypt_doc_task(doc_id, doc_rev, content, gen, trans_id, key, secret):
    decrypted_content = decrypt_doc_dict(
        content, doc_id, doc_rev, key, secret)
    return doc_id, doc_rev, decrypted_content, gen, trans_id


def get_insertable_docs_by_gen(expected, got):
    """
    Return a list of documents ready to be inserted. This list is computed
    by aligning the expected list with the already gotten docs, and returning
    the maximum number of docs that can be processed in the expected order
    before finding a gap.

    :param expected: A list of generations to be inserted.
    :type expected: list

    :param got: A dictionary whose values are the docs to be inserted.
    :type got: dict
    """
    ordered = [got.get(i) for i in expected]
    if None in ordered:
        return ordered[:ordered.index(None)]
    else:
        return ordered


class SyncDecrypterPool(SyncEncryptDecryptPool):
    """
    Pool of workers that spawn subprocesses to execute the symmetric decryption
    of documents that were received.

    The decryption of the received documents is done in two steps:

        1. All the encrypted docs are collected, together with their generation
           and transaction-id
        2. The docs are enqueued for decryption. When completed, they are
           inserted following the generation order.
    """
    WORKERS = 10
    TABLE_NAME = "docs_received"
    FIELD_NAMES = "doc_id, rev, content, gen, trans_id"

    write_encrypted_lock = threading.Lock()

    def __init__(self, *args, **kwargs):
        """
        Initialize the decrypter pool, and setup a dict for putting the
        results of the decrypted docs until they are picked by the insert
        routine that gets them in order.
        """
        self._insert_doc_cb = kwargs.pop("insert_doc_cb")
        SyncEncryptDecryptPool.__init__(self, *args)
        self.decrypted_docs = {}

    def insert_encrypted_received_doc(self, doc_id, doc_rev, content,
                                      gen, trans_id):
        """
        Insert a received message with encrypted content, to be decrypted later
        on.
        """
        docstr = json.dumps(content)
        c = self._sync_db.cursor()
        sql_ins = "INSERT INTO '%s' VALUES (?, ?, ?, ?, ?)" % (
            self.TABLE_NAME,)
        c.execute(sql_ins, (doc_id, doc_rev, docstr, gen, trans_id))
        self._sync_db.commit()

    def delete_encrypted_received_doc(self, doc_id, doc_rev):
        """
        Delete a encrypted received doc after it was inserted into the local
        db.

        :param doc_id: Document ID.
        :type doc_id: str
        :param doc_rev: Document revision.
        :type doc_rev: str
        """
        c = self._sync_db.cursor()
        sql_del = "DELETE FROM '%s' WHERE doc_id=? AND rev=?" % (
            self.TABLE_NAME,)
        c.execute(sql_del, (doc_id, doc_rev))
        self._sync_db.commit()

    def decrypt_doc(self, doc_id, rev, source_replica_uid):
        """
        Symmetrically decrypt a document.

        :param doc_id: The ID for the document with contents to be encrypted.
        :type doc: str
        :param rev: The revision of the document.
        :type rev: str
        :param source_replica_uid:
        :type source_replica_uid: str
        """
        self.source_replica_uid = source_replica_uid
        if sameProxiedObjects(self._insert_doc_cb.get(source_replica_uid),
                              None):
            print self._insert_doc_cb
            logger.warning("No insert_doc callback, skipping decryption.")
            return

        # XXX move to get_doc function...
        c = self._sync_db.cursor()
        sql = "SELECT * FROM '%s' WHERE doc_id=? AND rev=?" % (
            self.TABLE_NAME,)
        c.execute(sql, (doc_id, rev))
        res = c.fetchone()
        if res is None:
            logger.debug("Doc %s:%s does not exist in sync db" % (doc_id, rev))
            return

        doc_id, rev, docstr, gen, trans_id = res
        content = json.loads(docstr)
        key = self._crypto.doc_passphrase(doc_id)
        secret = self._crypto.secret

        args = doc_id, rev, content, gen, trans_id, key, secret

        try:
            self._pool.apply_async(decrypt_doc_task, args,
                                   callback=self.decrypt_doc_cb)
        except Exception as exc:
            logger.exception(exc)

    def decrypt_doc_cb(self, result):
        """
        Temporarily store the decryption result in a dictionary where it will
        be picked by process_decrypted.

        :param result: the result of the decryption routine.
        :type result: tuple
        """
        doc_id, rev, content, gen, trans_id = result
        self.decrypted_docs[gen] = result

    def get_docs_by_generation(self):
        """
        Get all documents in the received table from the sync db,
        ordered by generation.

        :return: list of doc_id, rev, generation
        """
        c = self._sync_db.cursor()
        sql = "SELECT doc_id, rev, gen FROM %s ORDER BY gen" % (
            self.TABLE_NAME,)
        c.execute(sql)
        return c.fetchall()

    def count_received_encrypted_docs(self):
        """
        Count how many documents we have in the table for received and
        encrypted docs.

        :return: The count of documents.
        :rtype: int
        """
        c = self._sync_db.cursor()
        sql = "SELECT COUNT(*) FROM %s" % (self.TABLE_NAME,)
        c.execute(sql)
        res = c.fetchone()
        print "res"
        if res is not None:
            print ">>>>>>>>>> GOT %s received encrypted docs" % res[0]
            return res[0]
        else:
            return 0

    def decrypt_received_docs(self, source_replica_uid):
        """
        Get all the encrypted documents from the sync database and dispatch a
        decrypt worker to decrypt each one of them.
        """
        docs_by_generation = self.get_docs_by_generation()
        for doc_id, rev, gen in docs_by_generation:
            self.decrypt_doc(doc_id, rev, source_replica_uid)

    def process_decrypted(self):
        """
        Process the already decrypted documents, and insert as many documents
        as can be taken from the expected order without finding a gap.
        """
        # Acquire the lock to avoid processing while we're still
        # getting data from the syncing stream, to avoid InvalidGeneration
        # problems.
        with self.write_encrypted_lock:
            docs = self.get_docs_by_generation()
            expected = [gen for doc_id, rev, gen in docs]
            docs_to_insert = get_insertable_docs_by_gen(
                expected, self.decrypted_docs)
            for doc_fields in docs_to_insert:
                self.insert_decrypted_local_doc(*doc_fields)

    def insert_decrypted_local_doc(self, doc_id, doc_rev, content,
                                   gen, trans_id):
        """
        Insert the decrypted document into the local sqlcipher database.
        Makes use of the passed callback `return_doc_cb` passed to the caller
        by u1db sync.
        """
        print "TRY TO INSERT GEN --->", gen
        # could pass source_replica in params for callback chain
        insert_fun = self._insert_doc_cb[self.source_replica_uid]
        try:
            doc = SoledadDocument(doc_id, doc_rev, content)
            insert_fun(doc, int(gen), trans_id)
        except Exception as exc:
            logger.error("Error while inserting decrypted doc into local db")
            logger.exception(exc)
        else:
            # If no errors found, remove it from the local temporary dict
            # and from the received database.
            self.decrypted_docs.pop(gen)
            self.delete_encrypted_received_doc(doc_id, doc_rev)