#!/usr/bin/env python # # Sean Reifschneider, tummy.com, ltd. <jafo@tummy.com> # Released into the Public Domain, 2011-02-06 import itertools from itertools import islice from collections import deque ######################################################### def movingaverage(data, subset_size, data_is_list = None, avoid_fp_drift = True): '''Return the moving averages of the data, with a window size of `subset_size`. `subset_size` must be an integer greater than 0 and less than the length of the input data, or a ValueError will be raised. `data_is_list` can be used to tune the algorithm for list or iteratable as an input. The default value, `None` will auto-detect this. The algorithm used if `data` is a list is almost twice as fast as if it is an iteratable. `avoid_fp_drift`, if True (the default) sums every sub-set rather than keeping a "rolling sum" (which may be subject to floating-point drift). While more correct, it is also dramatically slower for subset sizes much larger than 20. NOTE: You really should consider setting `avoid_fp_drift = False` unless you are dealing with very small numbers (say, far smaller than 0.00001) or require extreme accuracy at the cost of execution time. For `subset_size` < 20, the performance difference is very small. ''' if subset_size < 1: raise ValueError('subset_size must be 1 or larger') if data_is_list is None: data_is_list = hasattr(data, '__getslice__') divisor = float(subset_size) if data_is_list: # This only works if we can re-access old elements, but is much faster. # In other words, it can't be just an iterable, it needs to be a list. if subset_size > len(data): raise ValueError('subset_size must be smaller than data set size') if avoid_fp_drift: for x in range(subset_size, len(data) + 1): yield sum(data[x - subset_size:x]) / divisor else: cur = sum(data[0:subset_size]) yield cur / divisor for x in range(subset_size, len(data)): cur += data[x] - data[x - subset_size] yield cur / divisor else: # Based on the recipe at: # http://docs.python.org/library/collections.html#deque-recipes it = iter(data) d = deque(islice(it, subset_size)) if subset_size > len(d): raise ValueError('subset_size must be smaller than data set size') if avoid_fp_drift: yield sum(d) / divisor for elem in it: d.popleft() d.append(elem) yield sum(d) / divisor else: s = sum(d) yield s / divisor for elem in it: s += elem - d.popleft() d.append(elem) yield s / divisor ########################## if __name__ == '__main__': import unittest class TestMovingAverage(unittest.TestCase): #################### def test_List(self): try: list(movingaverage([1,2,3], 0)) self.fail('Did not raise ValueError on subset_size=0') except ValueError: pass try: list(movingaverage([1,2,3,4,5,6], 7)) self.fail('Did not raise ValueError on subset_size > len(data)') except ValueError: pass self.assertEqual(list(movingaverage([1,2,3,4,5,6], 1)), [1,2,3,4,5,6]) self.assertEqual(list(movingaverage([1,2,3,4,5,6], 2)), [1.5,2.5,3.5,4.5,5.5]) self.assertEqual(list(movingaverage(map(float, [1,2,3,4,5,6]), 2)), [1.5,2.5,3.5,4.5,5.5]) self.assertEqual(list(movingaverage([1,2,3,4,5,6], 3)), [2,3,4,5]) self.assertEqual(list(movingaverage([1,2,3,4,5,6], 4)), [2.5,3.5,4.5]) self.assertEqual(list(movingaverage([1,2,3,4,5,6], 5)), [3,4]) self.assertEqual(list(movingaverage([1,2,3,4,5,6], 6)), [3.5]) self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], 3, False)), [40.0,42.0,45.0,43.0]) self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], 3, True)), [40.0,42.0,45.0,43.0]) ###################### def test_XRange(self): try: list(movingaverage(xrange(1, 4), 0)) self.fail('Did not raise ValueError on subset_size=0') except ValueError: pass try: list(movingaverage(xrange(1, 7), 7)) self.fail('Did not raise ValueError on subset_size > len(data)') except ValueError: pass self.assertEqual(list(movingaverage(xrange(1, 7), 1)), [1,2,3,4,5,6]) self.assertEqual(list(movingaverage(xrange(1, 7), 2)), [1.5,2.5,3.5,4.5,5.5]) self.assertEqual(list(movingaverage(iter(map(float, xrange(1, 7))), 2)), [1.5,2.5,3.5,4.5,5.5]) self.assertEqual(list(movingaverage(xrange(1, 7), 3)), [2,3,4,5]) self.assertEqual(list(movingaverage(xrange(1, 7), 4)), [2.5,3.5,4.5]) self.assertEqual(list(movingaverage(xrange(1, 7), 5)), [3,4]) self.assertEqual(list(movingaverage(xrange(1, 7), 6)), [3.5]) ########################### def test_ListRolling(self): try: list(movingaverage([1,2,3], 0, avoid_fp_drift = False)) self.fail('Did not raise ValueError on subset_size=0') except ValueError: pass try: list(movingaverage([1,2,3,4,5,6], 7, avoid_fp_drift = False)) self.fail('Did not raise ValueError on subset_size > len(data)') except ValueError: pass self.assertEqual(list(movingaverage([1,2,3,4,5,6], 1, avoid_fp_drift = False)), [1,2,3,4,5,6]) self.assertEqual(list(movingaverage([1,2,3,4,5,6], 2, avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) self.assertEqual(list(movingaverage(map(float, [1,2,3,4,5,6]), 2, avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) self.assertEqual(list(movingaverage([1,2,3,4,5,6], 3, avoid_fp_drift = False)), [2,3,4,5]) self.assertEqual(list(movingaverage([1,2,3,4,5,6], 4, avoid_fp_drift = False)), [2.5,3.5,4.5]) self.assertEqual(list(movingaverage([1,2,3,4,5,6], 5, avoid_fp_drift = False)), [3,4]) self.assertEqual(list(movingaverage([1,2,3,4,5,6], 6, avoid_fp_drift = False)), [3.5]) self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], 3, False, avoid_fp_drift = False)), [40.0,42.0,45.0,43.0]) self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], 3, True, avoid_fp_drift = False)), [40.0,42.0,45.0,43.0]) ############################# def test_XRangeRolling(self): try: list(movingaverage(xrange(1, 4), 0, avoid_fp_drift = False)) self.fail('Did not raise ValueError on subset_size=0') except ValueError: pass try: list(movingaverage(xrange(1, 7), 7, avoid_fp_drift = False)) self.fail('Did not raise ValueError on subset_size > len(data)') except ValueError: pass self.assertEqual(list(movingaverage(xrange(1, 7), 1, avoid_fp_drift = False)), [1,2,3,4,5,6]) self.assertEqual(list(movingaverage(xrange(1, 7), 2, avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) self.assertEqual(list(movingaverage(iter(map(float, xrange(1, 7))), 2, avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) self.assertEqual(list(movingaverage(xrange(1, 7), 3, avoid_fp_drift = False)), [2,3,4,5]) self.assertEqual(list(movingaverage(xrange(1, 7), 4, avoid_fp_drift = False)), [2.5,3.5,4.5]) self.assertEqual(list(movingaverage(xrange(1, 7), 5, avoid_fp_drift = False)), [3,4]) self.assertEqual(list(movingaverage(xrange(1, 7), 6, avoid_fp_drift = False)), [3.5]) ###################################################################### suite = unittest.TestLoader().loadTestsFromTestCase(TestMovingAverage) unittest.TextTestRunner(verbosity = 2).run(suite)