# -*- coding: utf-8 -*- # crypto.py # Copyright (C) 2013, 2014 LEAP # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . """ Cryptographic utilities for Soledad. """ import os import binascii import hmac import hashlib import json import logging import multiprocessing import threading from pycryptopp.cipher.aes import AES from pycryptopp.cipher.xsalsa20 import XSalsa20 from zope.proxy import sameProxiedObjects from leap.soledad.common import soledad_assert from leap.soledad.common import soledad_assert_type from leap.soledad.common.document import SoledadDocument from leap.soledad.common.crypto import ( EncryptionSchemes, UnknownEncryptionScheme, MacMethods, UnknownMacMethod, WrongMac, ENC_JSON_KEY, ENC_SCHEME_KEY, ENC_METHOD_KEY, ENC_IV_KEY, MAC_KEY, MAC_METHOD_KEY, ) logger = logging.getLogger(__name__) MAC_KEY_LENGTH = 64 class EncryptionMethods(object): """ Representation of encryption methods that can be used. """ AES_256_CTR = 'aes-256-ctr' XSALSA20 = 'xsalsa20' # # Exceptions # class DocumentNotEncrypted(Exception): """ Raised for failures in document encryption. """ pass class UnknownEncryptionMethod(Exception): """ Raised when trying to encrypt/decrypt with unknown method. """ pass class NoSymmetricSecret(Exception): """ Raised when trying to get a hashed passphrase. """ def encrypt_sym(data, key, method): """ Encrypt C{data} using a {password}. Currently, the only encryption methods supported are AES-256 in CTR mode and XSalsa20. :param data: The data to be encrypted. :type data: str :param key: The key used to encrypt C{data} (must be 256 bits long). :type key: str :param method: The encryption method to use. :type method: str :return: A tuple with the initial value and the encrypted data. :rtype: (long, str) """ soledad_assert_type(key, str) soledad_assert( len(key) == 32, # 32 x 8 = 256 bits. 'Wrong key size: %s bits (must be 256 bits long).' % (len(key) * 8)) iv = None # AES-256 in CTR mode if method == EncryptionMethods.AES_256_CTR: iv = os.urandom(16) ciphertext = AES(key=key, iv=iv).process(data) # XSalsa20 elif method == EncryptionMethods.XSALSA20: iv = os.urandom(24) ciphertext = XSalsa20(key=key, iv=iv).process(data) else: # raise if method is unknown raise UnknownEncryptionMethod('Unkwnown method: %s' % method) return binascii.b2a_base64(iv), ciphertext def decrypt_sym(data, key, method, **kwargs): """ Decrypt data using symmetric secret. Currently, the only encryption method supported is AES-256 CTR mode. :param data: The data to be decrypted. :type data: str :param key: The key used to decrypt C{data} (must be 256 bits long). :type key: str :param method: The encryption method to use. :type method: str :param kwargs: Other parameters specific to each encryption method. :type kwargs: dict :return: The decrypted data. :rtype: str """ soledad_assert_type(key, str) # assert params soledad_assert( len(key) == 32, # 32 x 8 = 256 bits. 'Wrong key size: %s (must be 256 bits long).' % len(key)) soledad_assert( 'iv' in kwargs, '%s needs an initial value.' % method) # AES-256 in CTR mode if method == EncryptionMethods.AES_256_CTR: return AES( key=key, iv=binascii.a2b_base64(kwargs['iv'])).process(data) elif method == EncryptionMethods.XSALSA20: return XSalsa20( key=key, iv=binascii.a2b_base64(kwargs['iv'])).process(data) # raise if method is unknown raise UnknownEncryptionMethod('Unkwnown method: %s' % method) def doc_mac_key(doc_id, secret): """ Generate a key for calculating a MAC for a document whose id is C{doc_id}. The key is derived using HMAC having sha256 as underlying hash function. The key used for HMAC is the first MAC_KEY_LENGTH characters of Soledad's storage secret. The HMAC message is C{doc_id}. :param doc_id: The id of the document. :type doc_id: str :param secret: soledad secret storage :type secret: Soledad.storage_secret :return: The key. :rtype: str :raise NoSymmetricSecret: if no symmetric secret was supplied. """ if secret is None: raise NoSymmetricSecret() return hmac.new( secret[:MAC_KEY_LENGTH], doc_id, hashlib.sha256).digest() class SoledadCrypto(object): """ General cryptographic functionality encapsulated in a object that can be passed along. """ def __init__(self, soledad): """ Initialize the crypto object. :param soledad: A Soledad instance for key lookup. :type soledad: leap.soledad.Soledad """ self._soledad = soledad def encrypt_sym(self, data, key, method=EncryptionMethods.AES_256_CTR): return encrypt_sym(data, key, method) def decrypt_sym(self, data, key, method=EncryptionMethods.AES_256_CTR, **kwargs): return decrypt_sym(data, key, method, **kwargs) def doc_mac_key(self, doc_id, secret): return doc_mac_key(doc_id, self.secret) def doc_passphrase(self, doc_id): """ Generate a passphrase for symmetric encryption of document's contents. The password is derived using HMAC having sha256 as underlying hash function. The key used for HMAC are the first C{soledad.REMOTE_STORAGE_SECRET_KENGTH} bytes of Soledad's storage secret stripped from the first MAC_KEY_LENGTH characters. The HMAC message is C{doc_id}. :param doc_id: The id of the document that will be encrypted using this passphrase. :type doc_id: str :return: The passphrase. :rtype: str :raise NoSymmetricSecret: if no symmetric secret was supplied. """ if self.secret is None: raise NoSymmetricSecret() return hmac.new( self.secret[ MAC_KEY_LENGTH: self._soledad.REMOTE_STORAGE_SECRET_LENGTH], doc_id, hashlib.sha256).digest() # # secret setters/getters # def _get_secret(self): return self._soledad.storage_secret secret = property( _get_secret, doc='The secret used for symmetric encryption') # # Crypto utilities for a SoledadDocument. # def mac_doc(doc_id, doc_rev, ciphertext, mac_method, secret): """ Calculate a MAC for C{doc} using C{ciphertext}. Current MAC method used is HMAC, with the following parameters: * key: sha256(storage_secret, doc_id) * msg: doc_id + doc_rev + ciphertext * digestmod: sha256 :param doc_id: The id of the document. :type doc_id: str :param doc_rev: The revision of the document. :type doc_rev: str :param ciphertext: The content of the document. :type ciphertext: str :param mac_method: The MAC method to use. :type mac_method: str :param secret: soledad secret :type secret: Soledad.secret_storage :return: The calculated MAC. :rtype: str """ if mac_method == MacMethods.HMAC: return hmac.new( doc_mac_key(doc_id, secret), str(doc_id) + str(doc_rev) + ciphertext, hashlib.sha256).digest() # raise if we do not know how to handle this MAC method raise UnknownMacMethod('Unknown MAC method: %s.' % mac_method) def encrypt_docstr(docstr, doc_id, doc_rev, key, secret): """ Encrypt C{doc}'s content. Encrypt doc's contents using AES-256 CTR mode and return a valid JSON string representing the following: { ENC_JSON_KEY: '', ENC_SCHEME_KEY: 'symkey', ENC_METHOD_KEY: EncryptionMethods.AES_256_CTR, ENC_IV_KEY: '', MAC_KEY: '' MAC_METHOD_KEY: 'hmac' } :param docstr: A representation of the document to be encrypted. :type docstr: str or unicode. :param doc_id: The document id. :type doc_id: str :param doc_rev: The document revision. :type doc_rev: str :param key: The key used to encrypt ``data`` (must be 256 bits long). :type key: str :param secret: :type secret: :return: The JSON serialization of the dict representing the encrypted content. :rtype: str """ # encrypt content using AES-256 CTR mode iv, ciphertext = encrypt_sym( str(docstr), # encryption/decryption routines expect str key, method=EncryptionMethods.AES_256_CTR) # Return a representation for the encrypted content. In the following, we # convert binary data to hexadecimal representation so the JSON # serialization does not complain about what it tries to serialize. hex_ciphertext = binascii.b2a_hex(ciphertext) return json.dumps({ ENC_JSON_KEY: hex_ciphertext, ENC_SCHEME_KEY: EncryptionSchemes.SYMKEY, ENC_METHOD_KEY: EncryptionMethods.AES_256_CTR, ENC_IV_KEY: iv, MAC_KEY: binascii.b2a_hex(mac_doc( # store the mac as hex. doc_id, doc_rev, ciphertext, MacMethods.HMAC, secret)), MAC_METHOD_KEY: MacMethods.HMAC, }) def decrypt_doc_dict(doc_dict, doc_id, doc_rev, key, secret): """ Decrypt C{doc}'s content. Return the JSON string representation of the document's decrypted content. The passed doc_dict argument should have the following structure: { ENC_JSON_KEY: '', ENC_SCHEME_KEY: '', ENC_METHOD_KEY: '', ENC_IV_KEY: '', # (optional) MAC_KEY: '' MAC_METHOD_KEY: 'hmac' } C{enc_blob} is the encryption of the JSON serialization of the document's content. For now Soledad just deals with documents whose C{enc_scheme} is EncryptionSchemes.SYMKEY and C{enc_method} is EncryptionMethods.AES_256_CTR. :param doc_dict: The content of the document to be decrypted. :type doc_dict: dict :param doc_id: The document id. :type doc_id: str :param doc_rev: The document revision. :type doc_rev: str :param key: The key used to encrypt ``data`` (must be 256 bits long). :type key: str :param secret: :type secret: :return: The JSON serialization of the decrypted content. :rtype: str """ # TODO where should we move these assertions, now that we're passed the # string? #soledad_assert(doc.is_tombstone() is False) soledad_assert(ENC_JSON_KEY in doc_dict) soledad_assert(ENC_SCHEME_KEY in doc_dict) soledad_assert(ENC_METHOD_KEY in doc_dict) soledad_assert(MAC_KEY in doc_dict) soledad_assert(MAC_METHOD_KEY in doc_dict) # verify MAC ciphertext = binascii.a2b_hex( # content is stored as hex. doc_dict[ENC_JSON_KEY]) mac = mac_doc( doc_id, doc_rev, ciphertext, doc_dict[MAC_METHOD_KEY], secret) # we compare mac's hashes to avoid possible timing attacks that might # exploit python's builtin comparison operator behaviour, which fails # immediatelly when non-matching bytes are found. doc_mac_hash = hashlib.sha256( binascii.a2b_hex( # the mac is stored as hex doc_dict[MAC_KEY])).digest() calculated_mac_hash = hashlib.sha256(mac).digest() if doc_mac_hash != calculated_mac_hash: raise WrongMac('Could not authenticate document\'s contents.') # decrypt doc's content enc_scheme = doc_dict[ENC_SCHEME_KEY] plainjson = None if enc_scheme == EncryptionSchemes.SYMKEY: enc_method = doc_dict[ENC_METHOD_KEY] if enc_method == EncryptionMethods.AES_256_CTR: soledad_assert(ENC_IV_KEY in doc_dict) plainjson = decrypt_sym( ciphertext, key, method=enc_method, iv=doc_dict[ENC_IV_KEY]) else: raise UnknownEncryptionMethod(enc_method) else: raise UnknownEncryptionScheme(enc_scheme) print "PLAIN: ", plainjson return plainjson def is_symmetrically_encrypted(doc): """ Return True if the document was symmetrically encrypted. :param doc: The document to check. :type doc: SoledadDocument :rtype: bool """ if doc.content and ENC_SCHEME_KEY in doc.content: if doc.content[ENC_SCHEME_KEY] == EncryptionSchemes.SYMKEY: return True return False # # Encrypt/decrypt pools of workers # class SyncEncryptDecryptPool(object): """ Base class for encrypter/decrypter pools """ def __init__(self, crypto, sync_db): """ Initialize the pool of encryption-workers. :param crypto: A SoledadCryto instance to perform the encryption. :type crypto: leap.soledad.crypto.SoledadCrypto :param sync_db: a database connection handle :type sync_db: handle :param insert_doc_cb: Optional callback for inserting doc. :type insert_doc_cb: callable """ self._pool = multiprocessing.Pool(self.WORKERS) self._crypto = crypto self._sync_db = sync_db def encrypt_doc_task(doc_id, doc_rev, content, key, secret): encrypted_content = encrypt_docstr( content, doc_id, doc_rev, key, secret) return doc_id, doc_rev, encrypted_content class SyncEncrypterPool(SyncEncryptDecryptPool): """ of documents to be synced. """ # TODO implement throttling to reduce cpu usage?? WORKERS = 10 TABLE_NAME = "docs_tosync" FIELD_NAMES = "doc_id, rev, content" def encrypt_doc(self, doc): """ Symmetrically encrypt a document. :param doc: The document with contents to be encrypted. :type doc: SoledadDocument """ docstr = doc.get_json() key = self._crypto.doc_passphrase(doc.doc_id) secret = self._crypto.secret args = doc.doc_id, doc.rev, docstr, key, secret try: self._pool.apply_async(encrypt_doc_task, args, callback=self.encrypt_doc_cb) except Exception as exc: logger.exception(exc) def encrypt_doc_cb(self, result): doc_id, doc_rev, content = result self.insert_encrypted_local_doc(doc_id, doc_rev, content) def insert_encrypted_local_doc(self, doc_id, doc_rev, content): """ Insert the contents of the encrypted doc into the local sync database. :param doc: The document with contents to be encrypted. :type doc: SoledadDocument :param content: The encrypted document. :type content: str """ c = self._sync_db.cursor() sql_del = "DELETE FROM '%s' WHERE doc_id=?" % (self.TABLE_NAME,) c.execute(sql_del, (doc_id, )) sql_ins = "INSERT INTO '%s' VALUES (?, ?, ?)" % (self.TABLE_NAME,) c.execute(sql_ins, (doc_id, doc_rev, content)) self._sync_db.commit() def decrypt_doc_task(doc_id, doc_rev, content, gen, trans_id, key, secret): decrypted_content = decrypt_doc_dict( content, doc_id, doc_rev, key, secret) return doc_id, doc_rev, decrypted_content, gen, trans_id def get_insertable_docs_by_gen(expected, got): """ Return a list of documents ready to be inserted. This list is computed by aligning the expected list with the already gotten docs, and returning the maximum number of docs that can be processed in the expected order before finding a gap. :param expected: A list of generations to be inserted. :type expected: list :param got: A dictionary whose values are the docs to be inserted. :type got: dict """ ordered = [got.get(i) for i in expected] if None in ordered: return ordered[:ordered.index(None)] else: return ordered class SyncDecrypterPool(SyncEncryptDecryptPool): """ Pool of workers that spawn subprocesses to execute the symmetric decryption of documents that were received. The decryption of the received documents is done in two steps: 1. All the encrypted docs are collected, together with their generation and transaction-id 2. The docs are enqueued for decryption. When completed, they are inserted following the generation order. """ WORKERS = 10 TABLE_NAME = "docs_received" FIELD_NAMES = "doc_id, rev, content, gen, trans_id" write_encrypted_lock = threading.Lock() def __init__(self, *args, **kwargs): """ Initialize the decrypter pool, and setup a dict for putting the results of the decrypted docs until they are picked by the insert routine that gets them in order. """ self._insert_doc_cb = kwargs.pop("insert_doc_cb") SyncEncryptDecryptPool.__init__(self, *args) self.decrypted_docs = {} def insert_encrypted_received_doc(self, doc_id, doc_rev, content, gen, trans_id): """ Insert a received message with encrypted content, to be decrypted later on. """ docstr = json.dumps(content) c = self._sync_db.cursor() sql_ins = "INSERT INTO '%s' VALUES (?, ?, ?, ?, ?)" % ( self.TABLE_NAME,) c.execute(sql_ins, (doc_id, doc_rev, docstr, gen, trans_id)) self._sync_db.commit() def delete_encrypted_received_doc(self, doc_id, doc_rev): """ Delete a encrypted received doc after it was inserted into the local db. :param doc_id: Document ID. :type doc_id: str :param doc_rev: Document revision. :type doc_rev: str """ c = self._sync_db.cursor() sql_del = "DELETE FROM '%s' WHERE doc_id=? AND rev=?" % ( self.TABLE_NAME,) c.execute(sql_del, (doc_id, doc_rev)) self._sync_db.commit() def decrypt_doc(self, doc_id, rev, source_replica_uid): """ Symmetrically decrypt a document. :param doc_id: The ID for the document with contents to be encrypted. :type doc: str :param rev: The revision of the document. :type rev: str :param source_replica_uid: :type source_replica_uid: str """ self.source_replica_uid = source_replica_uid if sameProxiedObjects(self._insert_doc_cb.get(source_replica_uid), None): print self._insert_doc_cb logger.warning("No insert_doc callback, skipping decryption.") return # XXX move to get_doc function... c = self._sync_db.cursor() sql = "SELECT * FROM '%s' WHERE doc_id=? AND rev=?" % ( self.TABLE_NAME,) c.execute(sql, (doc_id, rev)) res = c.fetchone() if res is None: logger.debug("Doc %s:%s does not exist in sync db" % (doc_id, rev)) return doc_id, rev, docstr, gen, trans_id = res content = json.loads(docstr) key = self._crypto.doc_passphrase(doc_id) secret = self._crypto.secret args = doc_id, rev, content, gen, trans_id, key, secret try: self._pool.apply_async(decrypt_doc_task, args, callback=self.decrypt_doc_cb) except Exception as exc: logger.exception(exc) def decrypt_doc_cb(self, result): """ Temporarily store the decryption result in a dictionary where it will be picked by process_decrypted. :param result: the result of the decryption routine. :type result: tuple """ doc_id, rev, content, gen, trans_id = result self.decrypted_docs[gen] = result def get_docs_by_generation(self): """ Get all documents in the received table from the sync db, ordered by generation. :return: list of doc_id, rev, generation """ c = self._sync_db.cursor() sql = "SELECT doc_id, rev, gen FROM %s ORDER BY gen" % ( self.TABLE_NAME,) c.execute(sql) return c.fetchall() def count_received_encrypted_docs(self): """ Count how many documents we have in the table for received and encrypted docs. :return: The count of documents. :rtype: int """ c = self._sync_db.cursor() sql = "SELECT COUNT(*) FROM %s" % (self.TABLE_NAME,) c.execute(sql) res = c.fetchone() print "res" if res is not None: print ">>>>>>>>>> GOT %s received encrypted docs" % res[0] return res[0] else: return 0 def decrypt_received_docs(self, source_replica_uid): """ Get all the encrypted documents from the sync database and dispatch a decrypt worker to decrypt each one of them. """ docs_by_generation = self.get_docs_by_generation() for doc_id, rev, gen in docs_by_generation: self.decrypt_doc(doc_id, rev, source_replica_uid) def process_decrypted(self): """ Process the already decrypted documents, and insert as many documents as can be taken from the expected order without finding a gap. """ # Acquire the lock to avoid processing while we're still # getting data from the syncing stream, to avoid InvalidGeneration # problems. with self.write_encrypted_lock: docs = self.get_docs_by_generation() expected = [gen for doc_id, rev, gen in docs] docs_to_insert = get_insertable_docs_by_gen( expected, self.decrypted_docs) for doc_fields in docs_to_insert: self.insert_decrypted_local_doc(*doc_fields) def insert_decrypted_local_doc(self, doc_id, doc_rev, content, gen, trans_id): """ Insert the decrypted document into the local sqlcipher database. Makes use of the passed callback `return_doc_cb` passed to the caller by u1db sync. """ print "TRY TO INSERT GEN --->", gen # could pass source_replica in params for callback chain insert_fun = self._insert_doc_cb[self.source_replica_uid] try: doc = SoledadDocument(doc_id, doc_rev, content) insert_fun(doc, int(gen), trans_id) except Exception as exc: logger.error("Error while inserting decrypted doc into local db") logger.exception(exc) else: # If no errors found, remove it from the local temporary dict # and from the received database. self.decrypted_docs.pop(gen) self.delete_encrypted_received_doc(doc_id, doc_rev)