From 573909b10d77ef3d889d33cfaeb3fdadd0135daf Mon Sep 17 00:00:00 2001 From: drebs Date: Mon, 7 Apr 2014 12:40:45 -0300 Subject: Reorganize scripts directory. --- scripts/backends_cpu_usage/log_cpu_usage.py | 46 ------ scripts/backends_cpu_usage/movingaverage.py | 209 --------------------------- scripts/backends_cpu_usage/plot.py | 81 ----------- scripts/backends_cpu_usage/test_u1db_sync.py | 113 --------------- 4 files changed, 449 deletions(-) delete mode 100755 scripts/backends_cpu_usage/log_cpu_usage.py delete mode 100644 scripts/backends_cpu_usage/movingaverage.py delete mode 100755 scripts/backends_cpu_usage/plot.py delete mode 100755 scripts/backends_cpu_usage/test_u1db_sync.py (limited to 'scripts/backends_cpu_usage') diff --git a/scripts/backends_cpu_usage/log_cpu_usage.py b/scripts/backends_cpu_usage/log_cpu_usage.py deleted file mode 100755 index 2674e1ff..00000000 --- a/scripts/backends_cpu_usage/log_cpu_usage.py +++ /dev/null @@ -1,46 +0,0 @@ -#!/usr/bin/python - - -# Get the CPU usage and print to file. - - -import psutil -import time -import argparse -import os -import threading - - -class LogCpuUsage(threading.Thread): - - def __init__(self, fname): - threading.Thread.__init__(self) - self._stopped = True - self._fname = fname - - def run(self): - self._stopped = False - with open(self._fname, 'w') as f: - start = time.time() - while self._stopped is False: - now = time.time() - f.write("%f %f\n" % ((now - start), psutil.cpu_percent())) - time.sleep(0.01) - - def stop(self): - self._stopped = True - - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument('file', help='where to save output') - args = parser.parse_args() - - if os.path.isfile(args.file): - replace = raw_input('File %s exists, replace it (y/N)? ' % args.file) - if replace.lower() != 'y': - print 'Bailing out.' - exit(1) - - log_cpu = LogCpuUsage(args.file) - log_cpu.run() diff --git a/scripts/backends_cpu_usage/movingaverage.py b/scripts/backends_cpu_usage/movingaverage.py deleted file mode 100644 index bac1b3e1..00000000 --- a/scripts/backends_cpu_usage/movingaverage.py +++ /dev/null @@ -1,209 +0,0 @@ -#!/usr/bin/env python -# -# Sean Reifschneider, tummy.com, ltd. -# Released into the Public Domain, 2011-02-06 - -import itertools -from itertools import islice -from collections import deque - - -######################################################### -def movingaverage(data, subset_size, data_is_list = None, - avoid_fp_drift = True): - '''Return the moving averages of the data, with a window size of - `subset_size`. `subset_size` must be an integer greater than 0 and - less than the length of the input data, or a ValueError will be raised. - - `data_is_list` can be used to tune the algorithm for list or iteratable - as an input. The default value, `None` will auto-detect this. - The algorithm used if `data` is a list is almost twice as fast as if - it is an iteratable. - - `avoid_fp_drift`, if True (the default) sums every sub-set rather than - keeping a "rolling sum" (which may be subject to floating-point drift). - While more correct, it is also dramatically slower for subset sizes - much larger than 20. - - NOTE: You really should consider setting `avoid_fp_drift = False` unless - you are dealing with very small numbers (say, far smaller than 0.00001) - or require extreme accuracy at the cost of execution time. For - `subset_size` < 20, the performance difference is very small. - ''' - if subset_size < 1: - raise ValueError('subset_size must be 1 or larger') - - if data_is_list is None: - data_is_list = hasattr(data, '__getslice__') - - divisor = float(subset_size) - if data_is_list: - # This only works if we can re-access old elements, but is much faster. - # In other words, it can't be just an iterable, it needs to be a list. - - if subset_size > len(data): - raise ValueError('subset_size must be smaller than data set size') - - if avoid_fp_drift: - for x in range(subset_size, len(data) + 1): - yield sum(data[x - subset_size:x]) / divisor - else: - cur = sum(data[0:subset_size]) - yield cur / divisor - for x in range(subset_size, len(data)): - cur += data[x] - data[x - subset_size] - yield cur / divisor - else: - # Based on the recipe at: - # http://docs.python.org/library/collections.html#deque-recipes - it = iter(data) - d = deque(islice(it, subset_size)) - - if subset_size > len(d): - raise ValueError('subset_size must be smaller than data set size') - - if avoid_fp_drift: - yield sum(d) / divisor - for elem in it: - d.popleft() - d.append(elem) - yield sum(d) / divisor - else: - s = sum(d) - yield s / divisor - for elem in it: - s += elem - d.popleft() - d.append(elem) - yield s / divisor - - -########################## -if __name__ == '__main__': - import unittest - - class TestMovingAverage(unittest.TestCase): - #################### - def test_List(self): - try: - list(movingaverage([1,2,3], 0)) - self.fail('Did not raise ValueError on subset_size=0') - except ValueError: - pass - - try: - list(movingaverage([1,2,3,4,5,6], 7)) - self.fail('Did not raise ValueError on subset_size > len(data)') - except ValueError: - pass - - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 1)), [1,2,3,4,5,6]) - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 2)), - [1.5,2.5,3.5,4.5,5.5]) - self.assertEqual(list(movingaverage(map(float, [1,2,3,4,5,6]), 2)), - [1.5,2.5,3.5,4.5,5.5]) - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 3)), [2,3,4,5]) - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 4)), [2.5,3.5,4.5]) - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 5)), [3,4]) - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 6)), [3.5]) - - self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], - 3, False)), [40.0,42.0,45.0,43.0]) - self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], - 3, True)), [40.0,42.0,45.0,43.0]) - - - ###################### - def test_XRange(self): - try: - list(movingaverage(xrange(1, 4), 0)) - self.fail('Did not raise ValueError on subset_size=0') - except ValueError: - pass - - try: - list(movingaverage(xrange(1, 7), 7)) - self.fail('Did not raise ValueError on subset_size > len(data)') - except ValueError: - pass - - self.assertEqual(list(movingaverage(xrange(1, 7), 1)), [1,2,3,4,5,6]) - self.assertEqual(list(movingaverage(xrange(1, 7), 2)), - [1.5,2.5,3.5,4.5,5.5]) - self.assertEqual(list(movingaverage(iter(map(float, xrange(1, 7))), - 2)), [1.5,2.5,3.5,4.5,5.5]) - self.assertEqual(list(movingaverage(xrange(1, 7), 3)), [2,3,4,5]) - self.assertEqual(list(movingaverage(xrange(1, 7), 4)), [2.5,3.5,4.5]) - self.assertEqual(list(movingaverage(xrange(1, 7), 5)), [3,4]) - self.assertEqual(list(movingaverage(xrange(1, 7), 6)), [3.5]) - - - ########################### - def test_ListRolling(self): - try: - list(movingaverage([1,2,3], 0, avoid_fp_drift = False)) - self.fail('Did not raise ValueError on subset_size=0') - except ValueError: - pass - - try: - list(movingaverage([1,2,3,4,5,6], 7, avoid_fp_drift = False)) - self.fail('Did not raise ValueError on subset_size > len(data)') - except ValueError: - pass - - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 1, - avoid_fp_drift = False)), [1,2,3,4,5,6]) - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 2, - avoid_fp_drift = False)), - [1.5,2.5,3.5,4.5,5.5]) - self.assertEqual(list(movingaverage(map(float, [1,2,3,4,5,6]), 2, - avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 3, - avoid_fp_drift = False)), [2,3,4,5]) - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 4, - avoid_fp_drift = False)), [2.5,3.5,4.5]) - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 5, - avoid_fp_drift = False)), [3,4]) - self.assertEqual(list(movingaverage([1,2,3,4,5,6], 6, - avoid_fp_drift = False)), [3.5]) - - self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], - 3, False, avoid_fp_drift = False)), [40.0,42.0,45.0,43.0]) - self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], - 3, True, avoid_fp_drift = False)), [40.0,42.0,45.0,43.0]) - - - ############################# - def test_XRangeRolling(self): - try: - list(movingaverage(xrange(1, 4), 0, avoid_fp_drift = False)) - self.fail('Did not raise ValueError on subset_size=0') - except ValueError: - pass - - try: - list(movingaverage(xrange(1, 7), 7, avoid_fp_drift = False)) - self.fail('Did not raise ValueError on subset_size > len(data)') - except ValueError: - pass - - self.assertEqual(list(movingaverage(xrange(1, 7), 1, - avoid_fp_drift = False)), [1,2,3,4,5,6]) - self.assertEqual(list(movingaverage(xrange(1, 7), 2, - avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) - self.assertEqual(list(movingaverage(iter(map(float, xrange(1, 7))), - 2, avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) - self.assertEqual(list(movingaverage(xrange(1, 7), 3, - avoid_fp_drift = False)), [2,3,4,5]) - self.assertEqual(list(movingaverage(xrange(1, 7), 4, - avoid_fp_drift = False)), [2.5,3.5,4.5]) - self.assertEqual(list(movingaverage(xrange(1, 7), 5, - avoid_fp_drift = False)), [3,4]) - self.assertEqual(list(movingaverage(xrange(1, 7), 6, - avoid_fp_drift = False)), [3.5]) - - - ###################################################################### - suite = unittest.TestLoader().loadTestsFromTestCase(TestMovingAverage) - unittest.TextTestRunner(verbosity = 2).run(suite) - diff --git a/scripts/backends_cpu_usage/plot.py b/scripts/backends_cpu_usage/plot.py deleted file mode 100755 index 4e5083ad..00000000 --- a/scripts/backends_cpu_usage/plot.py +++ /dev/null @@ -1,81 +0,0 @@ -#!/usr/bin/python - - -from matplotlib import pyplot as plt -from movingaverage import movingaverage - - -def smooth(l): - return movingaverage(l, 10, data_is_list=True, avoid_fp_drift=False) - - -files = [ - ('sqlite', 'b'), - ('sqlcipher', 'r'), - ('u1dblite', 'g'), - ('u1dbcipher', 'm'), -] - - -# config the plot -plt.xlabel('time (s)') -plt.ylabel('cpu usage (%)') -plt.title('u1db backends CPU usage') - - -for fi in files: - - backend = fi[0] - color = fi[1] - filename = '%s.txt' % backend - - x = [] - y = [] - - xmax = None - xmin = None - ymax = None - ymin = None - - # read data from file - with open(filename, 'r') as f: - line = f.readline() - while line is not None: - time, cpu = tuple(line.strip().split(' ')) - cpu = float(cpu) - x.append(float(time)) - y.append(cpu) - if ymax == None or cpu > ymax: - ymax = cpu - xmax = time - if ymin == None or cpu < ymin: - ymin = cpu - xmin = time - line = f.readline() - if line == '': - break - - kwargs = { - 'linewidth': 1.0, - 'linestyle': '-', - # 'marker': '.', - 'color': color, - } - plt.plot( - [n for n in smooth(x)], - [n for n in smooth(y)], - label=backend, **kwargs) - - #plt.axes().get_xaxis().set_ticks(x) - #plt.axes().get_xaxis().set_ticklabels(x) - - # annotate max and min values - #plt.axes().annotate("%.2f GB" % ymax, xy=(xmax, ymax)) - #plt.axes().annotate("%.2f GB" % ymin, xy=(xmin, ymin)) - - -plt.ylim(0, 100) -plt.grid() -plt.legend() -plt.show() - diff --git a/scripts/backends_cpu_usage/test_u1db_sync.py b/scripts/backends_cpu_usage/test_u1db_sync.py deleted file mode 100755 index 26ef8f9f..00000000 --- a/scripts/backends_cpu_usage/test_u1db_sync.py +++ /dev/null @@ -1,113 +0,0 @@ -#!/usr/bin/python - - -import u1db -import tempfile -import logging -import shutil -import os -import argparse -import time -import binascii -import random - - -from leap.soledad.client.sqlcipher import open as sqlcipher_open -from log_cpu_usage import LogCpuUsage -from u1dblite import open as u1dblite_open -from u1dbcipher import open as u1dbcipher_open - - -DOCS_TO_SYNC = 1000 -SMALLEST_DOC_SIZE = 1 * 1024 # 1 KB -BIGGEST_DOC_SIZE = 100 * 1024 # 100 KB - - -def get_data(size): - return binascii.hexlify(os.urandom(size/2)) - - -def run_test(testname, open_fun, tempdir, docs, *args): - logger.info('Starting test \"%s\".' % testname) - - # instantiate dbs - db1 = open_fun(os.path.join(tempdir, testname + '1.db'), *args) - db2 = open_fun(os.path.join(tempdir, testname + '2.db'), *args) - - # get sync target and synchsonizer - target = db2.get_sync_target() - synchronizer = u1db.sync.Synchronizer(db1, target) - - - # generate lots of small documents - logger.info('Creating %d documents in source db...' % DOCS_TO_SYNC) - for content in docs: - db1.create_doc(content) - logger.info('%d documents created in source db.' % DOCS_TO_SYNC) - - # run the test - filename = testname + '.txt' - logger.info('Logging CPU usage to %s.' % filename) - log_cpu = LogCpuUsage(filename) - tstart = time.time() - - # start logging cpu - log_cpu.start() - logger.info('Sleeping for 5 seconds...') - time.sleep(5) - - # sync - logger.info('Starting sync...') - sstart = time.time() - synchronizer.sync() - send = time.time() - logger.info('Sync finished.') - - # stop logging cpu - logger.info('Sleeping for 5 seconds...') - time.sleep(5) - tend = time.time() - log_cpu.stop() - - # report - logger.info('Total sync time: %f seconds' % (send - sstart)) - logger.info('Total test time: %f seconds' % (tend - tstart)) - logger.info('Finished test \"%s\".' % testname) - - # close dbs - db1.close() - db2.close() - - -if __name__ == '__main__': - - # configure logger - logger = logging.getLogger(__name__) - LOG_FORMAT = '%(asctime)s %(message)s' - logging.basicConfig(format=LOG_FORMAT, level=logging.INFO) - - - # get a temporary dir - tempdir = tempfile.mkdtemp() - logger.info('Using temporary directory %s' % tempdir) - - - # create a lot of documents with random sizes - docs = [] - for i in xrange(DOCS_TO_SYNC): - docs.append({ - 'index': i, - #'data': get_data( - # random.randrange( - # SMALLEST_DOC_SIZE, BIGGEST_DOC_SIZE)) - }) - - # run tests - run_test('sqlite', u1db.open, tempdir, docs, True) - run_test('sqlcipher', sqlcipher_open, tempdir, docs, '123456', True) - run_test('u1dblite', u1dblite_open, tempdir, docs) - run_test('u1dbcipher', u1dbcipher_open, tempdir, docs, '123456', True) - - # remove temporary dir - logger.info('Removing temporary directory %s' % tempdir) - shutil.rmtree(tempdir) -- cgit v1.2.3