diff options
Diffstat (limited to 'scripts/profiling')
-rwxr-xr-x | scripts/profiling/backends_cpu_usage/log_cpu_usage.py | 46 | ||||
-rw-r--r-- | scripts/profiling/backends_cpu_usage/movingaverage.py | 209 | ||||
-rwxr-xr-x | scripts/profiling/backends_cpu_usage/plot.py | 81 | ||||
-rwxr-xr-x | scripts/profiling/backends_cpu_usage/test_u1db_sync.py | 113 | ||||
-rwxr-xr-x | scripts/profiling/doc_put_memory_usage/find_max_upload_size.py | 169 | ||||
-rwxr-xr-x | scripts/profiling/doc_put_memory_usage/get-mem.py | 16 | ||||
-rwxr-xr-x | scripts/profiling/doc_put_memory_usage/plot-mem.py | 73 |
7 files changed, 707 insertions, 0 deletions
diff --git a/scripts/profiling/backends_cpu_usage/log_cpu_usage.py b/scripts/profiling/backends_cpu_usage/log_cpu_usage.py new file mode 100755 index 00000000..2674e1ff --- /dev/null +++ b/scripts/profiling/backends_cpu_usage/log_cpu_usage.py @@ -0,0 +1,46 @@ +#!/usr/bin/python + + +# Get the CPU usage and print to file. + + +import psutil +import time +import argparse +import os +import threading + + +class LogCpuUsage(threading.Thread): + + def __init__(self, fname): + threading.Thread.__init__(self) + self._stopped = True + self._fname = fname + + def run(self): + self._stopped = False + with open(self._fname, 'w') as f: + start = time.time() + while self._stopped is False: + now = time.time() + f.write("%f %f\n" % ((now - start), psutil.cpu_percent())) + time.sleep(0.01) + + def stop(self): + self._stopped = True + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('file', help='where to save output') + args = parser.parse_args() + + if os.path.isfile(args.file): + replace = raw_input('File %s exists, replace it (y/N)? ' % args.file) + if replace.lower() != 'y': + print 'Bailing out.' + exit(1) + + log_cpu = LogCpuUsage(args.file) + log_cpu.run() diff --git a/scripts/profiling/backends_cpu_usage/movingaverage.py b/scripts/profiling/backends_cpu_usage/movingaverage.py new file mode 100644 index 00000000..bac1b3e1 --- /dev/null +++ b/scripts/profiling/backends_cpu_usage/movingaverage.py @@ -0,0 +1,209 @@ +#!/usr/bin/env python +# +# Sean Reifschneider, tummy.com, ltd. <jafo@tummy.com> +# Released into the Public Domain, 2011-02-06 + +import itertools +from itertools import islice +from collections import deque + + +######################################################### +def movingaverage(data, subset_size, data_is_list = None, + avoid_fp_drift = True): + '''Return the moving averages of the data, with a window size of + `subset_size`. `subset_size` must be an integer greater than 0 and + less than the length of the input data, or a ValueError will be raised. + + `data_is_list` can be used to tune the algorithm for list or iteratable + as an input. The default value, `None` will auto-detect this. + The algorithm used if `data` is a list is almost twice as fast as if + it is an iteratable. + + `avoid_fp_drift`, if True (the default) sums every sub-set rather than + keeping a "rolling sum" (which may be subject to floating-point drift). + While more correct, it is also dramatically slower for subset sizes + much larger than 20. + + NOTE: You really should consider setting `avoid_fp_drift = False` unless + you are dealing with very small numbers (say, far smaller than 0.00001) + or require extreme accuracy at the cost of execution time. For + `subset_size` < 20, the performance difference is very small. + ''' + if subset_size < 1: + raise ValueError('subset_size must be 1 or larger') + + if data_is_list is None: + data_is_list = hasattr(data, '__getslice__') + + divisor = float(subset_size) + if data_is_list: + # This only works if we can re-access old elements, but is much faster. + # In other words, it can't be just an iterable, it needs to be a list. + + if subset_size > len(data): + raise ValueError('subset_size must be smaller than data set size') + + if avoid_fp_drift: + for x in range(subset_size, len(data) + 1): + yield sum(data[x - subset_size:x]) / divisor + else: + cur = sum(data[0:subset_size]) + yield cur / divisor + for x in range(subset_size, len(data)): + cur += data[x] - data[x - subset_size] + yield cur / divisor + else: + # Based on the recipe at: + # http://docs.python.org/library/collections.html#deque-recipes + it = iter(data) + d = deque(islice(it, subset_size)) + + if subset_size > len(d): + raise ValueError('subset_size must be smaller than data set size') + + if avoid_fp_drift: + yield sum(d) / divisor + for elem in it: + d.popleft() + d.append(elem) + yield sum(d) / divisor + else: + s = sum(d) + yield s / divisor + for elem in it: + s += elem - d.popleft() + d.append(elem) + yield s / divisor + + +########################## +if __name__ == '__main__': + import unittest + + class TestMovingAverage(unittest.TestCase): + #################### + def test_List(self): + try: + list(movingaverage([1,2,3], 0)) + self.fail('Did not raise ValueError on subset_size=0') + except ValueError: + pass + + try: + list(movingaverage([1,2,3,4,5,6], 7)) + self.fail('Did not raise ValueError on subset_size > len(data)') + except ValueError: + pass + + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 1)), [1,2,3,4,5,6]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 2)), + [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(map(float, [1,2,3,4,5,6]), 2)), + [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 3)), [2,3,4,5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 4)), [2.5,3.5,4.5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 5)), [3,4]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 6)), [3.5]) + + self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], + 3, False)), [40.0,42.0,45.0,43.0]) + self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], + 3, True)), [40.0,42.0,45.0,43.0]) + + + ###################### + def test_XRange(self): + try: + list(movingaverage(xrange(1, 4), 0)) + self.fail('Did not raise ValueError on subset_size=0') + except ValueError: + pass + + try: + list(movingaverage(xrange(1, 7), 7)) + self.fail('Did not raise ValueError on subset_size > len(data)') + except ValueError: + pass + + self.assertEqual(list(movingaverage(xrange(1, 7), 1)), [1,2,3,4,5,6]) + self.assertEqual(list(movingaverage(xrange(1, 7), 2)), + [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(iter(map(float, xrange(1, 7))), + 2)), [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 3)), [2,3,4,5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 4)), [2.5,3.5,4.5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 5)), [3,4]) + self.assertEqual(list(movingaverage(xrange(1, 7), 6)), [3.5]) + + + ########################### + def test_ListRolling(self): + try: + list(movingaverage([1,2,3], 0, avoid_fp_drift = False)) + self.fail('Did not raise ValueError on subset_size=0') + except ValueError: + pass + + try: + list(movingaverage([1,2,3,4,5,6], 7, avoid_fp_drift = False)) + self.fail('Did not raise ValueError on subset_size > len(data)') + except ValueError: + pass + + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 1, + avoid_fp_drift = False)), [1,2,3,4,5,6]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 2, + avoid_fp_drift = False)), + [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(map(float, [1,2,3,4,5,6]), 2, + avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 3, + avoid_fp_drift = False)), [2,3,4,5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 4, + avoid_fp_drift = False)), [2.5,3.5,4.5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 5, + avoid_fp_drift = False)), [3,4]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 6, + avoid_fp_drift = False)), [3.5]) + + self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], + 3, False, avoid_fp_drift = False)), [40.0,42.0,45.0,43.0]) + self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], + 3, True, avoid_fp_drift = False)), [40.0,42.0,45.0,43.0]) + + + ############################# + def test_XRangeRolling(self): + try: + list(movingaverage(xrange(1, 4), 0, avoid_fp_drift = False)) + self.fail('Did not raise ValueError on subset_size=0') + except ValueError: + pass + + try: + list(movingaverage(xrange(1, 7), 7, avoid_fp_drift = False)) + self.fail('Did not raise ValueError on subset_size > len(data)') + except ValueError: + pass + + self.assertEqual(list(movingaverage(xrange(1, 7), 1, + avoid_fp_drift = False)), [1,2,3,4,5,6]) + self.assertEqual(list(movingaverage(xrange(1, 7), 2, + avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(iter(map(float, xrange(1, 7))), + 2, avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 3, + avoid_fp_drift = False)), [2,3,4,5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 4, + avoid_fp_drift = False)), [2.5,3.5,4.5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 5, + avoid_fp_drift = False)), [3,4]) + self.assertEqual(list(movingaverage(xrange(1, 7), 6, + avoid_fp_drift = False)), [3.5]) + + + ###################################################################### + suite = unittest.TestLoader().loadTestsFromTestCase(TestMovingAverage) + unittest.TextTestRunner(verbosity = 2).run(suite) + diff --git a/scripts/profiling/backends_cpu_usage/plot.py b/scripts/profiling/backends_cpu_usage/plot.py new file mode 100755 index 00000000..4e5083ad --- /dev/null +++ b/scripts/profiling/backends_cpu_usage/plot.py @@ -0,0 +1,81 @@ +#!/usr/bin/python + + +from matplotlib import pyplot as plt +from movingaverage import movingaverage + + +def smooth(l): + return movingaverage(l, 10, data_is_list=True, avoid_fp_drift=False) + + +files = [ + ('sqlite', 'b'), + ('sqlcipher', 'r'), + ('u1dblite', 'g'), + ('u1dbcipher', 'm'), +] + + +# config the plot +plt.xlabel('time (s)') +plt.ylabel('cpu usage (%)') +plt.title('u1db backends CPU usage') + + +for fi in files: + + backend = fi[0] + color = fi[1] + filename = '%s.txt' % backend + + x = [] + y = [] + + xmax = None + xmin = None + ymax = None + ymin = None + + # read data from file + with open(filename, 'r') as f: + line = f.readline() + while line is not None: + time, cpu = tuple(line.strip().split(' ')) + cpu = float(cpu) + x.append(float(time)) + y.append(cpu) + if ymax == None or cpu > ymax: + ymax = cpu + xmax = time + if ymin == None or cpu < ymin: + ymin = cpu + xmin = time + line = f.readline() + if line == '': + break + + kwargs = { + 'linewidth': 1.0, + 'linestyle': '-', + # 'marker': '.', + 'color': color, + } + plt.plot( + [n for n in smooth(x)], + [n for n in smooth(y)], + label=backend, **kwargs) + + #plt.axes().get_xaxis().set_ticks(x) + #plt.axes().get_xaxis().set_ticklabels(x) + + # annotate max and min values + #plt.axes().annotate("%.2f GB" % ymax, xy=(xmax, ymax)) + #plt.axes().annotate("%.2f GB" % ymin, xy=(xmin, ymin)) + + +plt.ylim(0, 100) +plt.grid() +plt.legend() +plt.show() + diff --git a/scripts/profiling/backends_cpu_usage/test_u1db_sync.py b/scripts/profiling/backends_cpu_usage/test_u1db_sync.py new file mode 100755 index 00000000..26ef8f9f --- /dev/null +++ b/scripts/profiling/backends_cpu_usage/test_u1db_sync.py @@ -0,0 +1,113 @@ +#!/usr/bin/python + + +import u1db +import tempfile +import logging +import shutil +import os +import argparse +import time +import binascii +import random + + +from leap.soledad.client.sqlcipher import open as sqlcipher_open +from log_cpu_usage import LogCpuUsage +from u1dblite import open as u1dblite_open +from u1dbcipher import open as u1dbcipher_open + + +DOCS_TO_SYNC = 1000 +SMALLEST_DOC_SIZE = 1 * 1024 # 1 KB +BIGGEST_DOC_SIZE = 100 * 1024 # 100 KB + + +def get_data(size): + return binascii.hexlify(os.urandom(size/2)) + + +def run_test(testname, open_fun, tempdir, docs, *args): + logger.info('Starting test \"%s\".' % testname) + + # instantiate dbs + db1 = open_fun(os.path.join(tempdir, testname + '1.db'), *args) + db2 = open_fun(os.path.join(tempdir, testname + '2.db'), *args) + + # get sync target and synchsonizer + target = db2.get_sync_target() + synchronizer = u1db.sync.Synchronizer(db1, target) + + + # generate lots of small documents + logger.info('Creating %d documents in source db...' % DOCS_TO_SYNC) + for content in docs: + db1.create_doc(content) + logger.info('%d documents created in source db.' % DOCS_TO_SYNC) + + # run the test + filename = testname + '.txt' + logger.info('Logging CPU usage to %s.' % filename) + log_cpu = LogCpuUsage(filename) + tstart = time.time() + + # start logging cpu + log_cpu.start() + logger.info('Sleeping for 5 seconds...') + time.sleep(5) + + # sync + logger.info('Starting sync...') + sstart = time.time() + synchronizer.sync() + send = time.time() + logger.info('Sync finished.') + + # stop logging cpu + logger.info('Sleeping for 5 seconds...') + time.sleep(5) + tend = time.time() + log_cpu.stop() + + # report + logger.info('Total sync time: %f seconds' % (send - sstart)) + logger.info('Total test time: %f seconds' % (tend - tstart)) + logger.info('Finished test \"%s\".' % testname) + + # close dbs + db1.close() + db2.close() + + +if __name__ == '__main__': + + # configure logger + logger = logging.getLogger(__name__) + LOG_FORMAT = '%(asctime)s %(message)s' + logging.basicConfig(format=LOG_FORMAT, level=logging.INFO) + + + # get a temporary dir + tempdir = tempfile.mkdtemp() + logger.info('Using temporary directory %s' % tempdir) + + + # create a lot of documents with random sizes + docs = [] + for i in xrange(DOCS_TO_SYNC): + docs.append({ + 'index': i, + #'data': get_data( + # random.randrange( + # SMALLEST_DOC_SIZE, BIGGEST_DOC_SIZE)) + }) + + # run tests + run_test('sqlite', u1db.open, tempdir, docs, True) + run_test('sqlcipher', sqlcipher_open, tempdir, docs, '123456', True) + run_test('u1dblite', u1dblite_open, tempdir, docs) + run_test('u1dbcipher', u1dbcipher_open, tempdir, docs, '123456', True) + + # remove temporary dir + logger.info('Removing temporary directory %s' % tempdir) + shutil.rmtree(tempdir) diff --git a/scripts/profiling/doc_put_memory_usage/find_max_upload_size.py b/scripts/profiling/doc_put_memory_usage/find_max_upload_size.py new file mode 100755 index 00000000..02c68015 --- /dev/null +++ b/scripts/profiling/doc_put_memory_usage/find_max_upload_size.py @@ -0,0 +1,169 @@ +#!/usr/bin/python + +# This script finds the maximum upload size for a document in the current +# server. It pulls couch URL from Soledad config file and attempts multiple +# PUTs until it finds the maximum size supported by the server. +# +# As the Soledad couch user is not an admin, you have to pass a database into +# which the test will be run. The database should already exist and be +# initialized with soledad design documents. +# +# Use it like this: +# +# ./find_max_upload_size.py <dbname> +# ./find_max_upload_size.py -h + +import os +import configparser +import logging +import argparse +import random +import string +import binascii +import json +import time +import uuid + + +from couchdb.client import Database +from socket import error as socket_error +from leap.soledad.common.couch import CouchDatabase + + +SOLEDAD_CONFIG_FILE = '/etc/leap/soledad-server.conf' +PREFIX = '/tmp/soledad_test' +LOG_FORMAT = '%(asctime)s %(levelname)s %(message)s' +RETRIES = 3 # number of times to retry uploading a document of a certain + # size after a failure + + +# configure logger +logger = logging.getLogger(__name__) + + +def config_log(level): + logging.basicConfig(format=LOG_FORMAT, level=level) + + +def log_to_file(filename): + handler = logging.FileHandler(filename, mode='a') + handler.setFormatter(logging.Formatter(fmt=LOG_FORMAT)) + logger.addHandler(handler) + + +# create test dir +if not os.path.exists(PREFIX): + os.mkdir(PREFIX) + + +def get_couch_url(config_file=SOLEDAD_CONFIG_FILE): + config = configparser.ConfigParser() + config.read(config_file) + return config['soledad-server']['couch_url'] + + +# generate or load an uploadable doc with the given size in mb +def get_content(size): + fname = os.path.join(PREFIX, 'content-%d.json' % size) + if os.path.exists(fname): + logger.debug('Loading content with %d MB...' % size) + with open(fname, 'r') as f: + return f.read() + else: + length = int(size * 1024 ** 2) + logger.debug('Generating body with %d MB...' % size) + content = binascii.hexlify(os.urandom(length))[:length] + with open(fname, 'w') as f: + f.write(content) + return content + + +def delete_doc(db): + doc = db.get('largedoc') + db.delete(doc) + + +def upload(db, size, couch_db): + # try many times to be sure that size is infeasible + for i in range(RETRIES): + # wait until server is up to upload + while True: + try: + 'largedoc' in couch_db + break + except socket_error: + logger.debug('Waiting for server to come up...') + time.sleep(1) + # attempt to upload + try: + logger.debug( + 'Trying to upload %d MB document (attempt %d/%d)...' % + (size, (i+1), RETRIES)) + content = get_content(size) + logger.debug('Starting upload of %d bytes.' % len(content)) + doc = db.create_doc({'data': content}, doc_id='largedoc') + delete_doc(couch_db) + logger.debug('Success uploading %d MB doc.' % size) + return True + except Exception as e: + logger.debug('Failed to upload %d MB doc: %s' % (size, str(e))) + return False + + +def find_max_upload_size(db_uri): + db = CouchDatabase.open_database(db_uri, False) + couch_db = Database(db_uri) + logger.debug('Database URI: %s' % db_uri) + # delete eventual leftover from last run + if 'largedoc' in couch_db: + delete_doc(couch_db) + # phase 1: increase upload size exponentially + logger.info('Starting phase 1: increasing size exponentially.') + size = 1 + #import ipdb; ipdb.set_trace() + while True: + if upload(db, size, couch_db): + size *= 2 + else: + break + + # phase 2: binary search for maximum value + unable = size + able = size / 2 + logger.info('Starting phase 2: binary search for maximum value.') + while unable - able > 1: + size = able + ((unable - able) / 2) + if upload(db, size, couch_db): + able = size + else: + unable = size + return able + + +if __name__ == '__main__': + # parse command line + parser = argparse.ArgumentParser() + parser.add_argument( + '-d', action='store_true', dest='debug', + help='print debugging information') + parser.add_argument( + '-l', dest='logfile', + help='log output to file') + parser.add_argument( + 'db_uri', help='the couch database URI to test') + args = parser.parse_args() + + # log to file + if args.logfile is not None: + log_to_file(args.logfile) + + # set loglevel + if args.debug is True: + config_log(logging.DEBUG) + else: + config_log(logging.INFO) + + # run test and report + logger.info('Will test using db at %s.' % args.db_uri) + maxsize = find_max_upload_size(args.db_uri) + logger.info('Max upload size is %d MB.' % maxsize) diff --git a/scripts/profiling/doc_put_memory_usage/get-mem.py b/scripts/profiling/doc_put_memory_usage/get-mem.py new file mode 100755 index 00000000..d64875fc --- /dev/null +++ b/scripts/profiling/doc_put_memory_usage/get-mem.py @@ -0,0 +1,16 @@ +#!/usr/bin/python + + +import psutil +import time + + +delta = 50 * 60 +start = time.time() + +while True: + now = time.time() + print "%s %s" % (now - start, psutil.phymem_usage().used) + time.sleep(0.1) + if now > start + delta: + break diff --git a/scripts/profiling/doc_put_memory_usage/plot-mem.py b/scripts/profiling/doc_put_memory_usage/plot-mem.py new file mode 100755 index 00000000..e24679a2 --- /dev/null +++ b/scripts/profiling/doc_put_memory_usage/plot-mem.py @@ -0,0 +1,73 @@ +#!/usr/bin/python + + +from matplotlib import pyplot as plt + + +files = [ + ('local', 'couchdb-json', 'b'), + ('local', 'bigcouch-json', 'r'), + ('local', 'couchdb-multipart', 'g'), + ('local', 'bigcouch-multipart', 'm'), +] + + +# config the plot +plt.xlabel('time') +plt.ylabel('memory usage') +plt.title('bigcouch versus couch memory usage') + + +for fi in files: + + machine = fi[0] + database = fi[1] + color = fi[2] + filename = '%s-%s.txt' % (machine, database) + + x = [] + y = [] + + xmax = None + xmin = None + ymax = None + ymin = None + + # read data from file + with open(filename, 'r') as f: + line = f.readline() + while line is not None: + time, mem = tuple(line.strip().split(' ')) + mem = float(mem) / (10**9) + x.append(float(time)) + y.append(mem) + if ymax == None or mem > ymax: + ymax = mem + xmax = time + if ymin == None or mem < ymin: + ymin = mem + xmin = time + line = f.readline() + if line == '': + break + + kwargs = { + 'linewidth': 1.0, + 'linestyle': '-', + # 'marker': '.', + 'color': color, + } + plt.plot(x, y, label=database, **kwargs) + + #plt.axes().get_xaxis().set_ticks(x) + #plt.axes().get_xaxis().set_ticklabels(x) + + # annotate max and min values + #plt.axes().annotate("%.2f GB" % ymax, xy=(xmax, ymax)) + #plt.axes().annotate("%.2f GB" % ymin, xy=(xmin, ymin)) + + +plt.grid() +plt.legend() +plt.show() + |