diff options
author | Tomás Touceda <chiiph@leap.se> | 2014-06-05 15:47:14 -0300 |
---|---|---|
committer | Tomás Touceda <chiiph@leap.se> | 2014-06-05 15:47:14 -0300 |
commit | ee53e05fbff3509a7cdb9bc510c891922f9a8bca (patch) | |
tree | a6f2abc279391e5202cbb7860380bb8a1575d79f /scripts/profiling/movingaverage.py | |
parent | 16851aa62858fb1eac1b725f5415a334a093fa51 (diff) | |
parent | bff6444cc2a119a49f5c259644ffc2d6862f779e (diff) |
Merge remote-tracking branch 'refs/remotes/drebs/bug/5739_fix-multipart-put-problem-2' into develop
Diffstat (limited to 'scripts/profiling/movingaverage.py')
-rw-r--r-- | scripts/profiling/movingaverage.py | 209 |
1 files changed, 209 insertions, 0 deletions
diff --git a/scripts/profiling/movingaverage.py b/scripts/profiling/movingaverage.py new file mode 100644 index 00000000..bac1b3e1 --- /dev/null +++ b/scripts/profiling/movingaverage.py @@ -0,0 +1,209 @@ +#!/usr/bin/env python +# +# Sean Reifschneider, tummy.com, ltd. <jafo@tummy.com> +# Released into the Public Domain, 2011-02-06 + +import itertools +from itertools import islice +from collections import deque + + +######################################################### +def movingaverage(data, subset_size, data_is_list = None, + avoid_fp_drift = True): + '''Return the moving averages of the data, with a window size of + `subset_size`. `subset_size` must be an integer greater than 0 and + less than the length of the input data, or a ValueError will be raised. + + `data_is_list` can be used to tune the algorithm for list or iteratable + as an input. The default value, `None` will auto-detect this. + The algorithm used if `data` is a list is almost twice as fast as if + it is an iteratable. + + `avoid_fp_drift`, if True (the default) sums every sub-set rather than + keeping a "rolling sum" (which may be subject to floating-point drift). + While more correct, it is also dramatically slower for subset sizes + much larger than 20. + + NOTE: You really should consider setting `avoid_fp_drift = False` unless + you are dealing with very small numbers (say, far smaller than 0.00001) + or require extreme accuracy at the cost of execution time. For + `subset_size` < 20, the performance difference is very small. + ''' + if subset_size < 1: + raise ValueError('subset_size must be 1 or larger') + + if data_is_list is None: + data_is_list = hasattr(data, '__getslice__') + + divisor = float(subset_size) + if data_is_list: + # This only works if we can re-access old elements, but is much faster. + # In other words, it can't be just an iterable, it needs to be a list. + + if subset_size > len(data): + raise ValueError('subset_size must be smaller than data set size') + + if avoid_fp_drift: + for x in range(subset_size, len(data) + 1): + yield sum(data[x - subset_size:x]) / divisor + else: + cur = sum(data[0:subset_size]) + yield cur / divisor + for x in range(subset_size, len(data)): + cur += data[x] - data[x - subset_size] + yield cur / divisor + else: + # Based on the recipe at: + # http://docs.python.org/library/collections.html#deque-recipes + it = iter(data) + d = deque(islice(it, subset_size)) + + if subset_size > len(d): + raise ValueError('subset_size must be smaller than data set size') + + if avoid_fp_drift: + yield sum(d) / divisor + for elem in it: + d.popleft() + d.append(elem) + yield sum(d) / divisor + else: + s = sum(d) + yield s / divisor + for elem in it: + s += elem - d.popleft() + d.append(elem) + yield s / divisor + + +########################## +if __name__ == '__main__': + import unittest + + class TestMovingAverage(unittest.TestCase): + #################### + def test_List(self): + try: + list(movingaverage([1,2,3], 0)) + self.fail('Did not raise ValueError on subset_size=0') + except ValueError: + pass + + try: + list(movingaverage([1,2,3,4,5,6], 7)) + self.fail('Did not raise ValueError on subset_size > len(data)') + except ValueError: + pass + + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 1)), [1,2,3,4,5,6]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 2)), + [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(map(float, [1,2,3,4,5,6]), 2)), + [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 3)), [2,3,4,5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 4)), [2.5,3.5,4.5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 5)), [3,4]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 6)), [3.5]) + + self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], + 3, False)), [40.0,42.0,45.0,43.0]) + self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], + 3, True)), [40.0,42.0,45.0,43.0]) + + + ###################### + def test_XRange(self): + try: + list(movingaverage(xrange(1, 4), 0)) + self.fail('Did not raise ValueError on subset_size=0') + except ValueError: + pass + + try: + list(movingaverage(xrange(1, 7), 7)) + self.fail('Did not raise ValueError on subset_size > len(data)') + except ValueError: + pass + + self.assertEqual(list(movingaverage(xrange(1, 7), 1)), [1,2,3,4,5,6]) + self.assertEqual(list(movingaverage(xrange(1, 7), 2)), + [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(iter(map(float, xrange(1, 7))), + 2)), [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 3)), [2,3,4,5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 4)), [2.5,3.5,4.5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 5)), [3,4]) + self.assertEqual(list(movingaverage(xrange(1, 7), 6)), [3.5]) + + + ########################### + def test_ListRolling(self): + try: + list(movingaverage([1,2,3], 0, avoid_fp_drift = False)) + self.fail('Did not raise ValueError on subset_size=0') + except ValueError: + pass + + try: + list(movingaverage([1,2,3,4,5,6], 7, avoid_fp_drift = False)) + self.fail('Did not raise ValueError on subset_size > len(data)') + except ValueError: + pass + + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 1, + avoid_fp_drift = False)), [1,2,3,4,5,6]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 2, + avoid_fp_drift = False)), + [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(map(float, [1,2,3,4,5,6]), 2, + avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 3, + avoid_fp_drift = False)), [2,3,4,5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 4, + avoid_fp_drift = False)), [2.5,3.5,4.5]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 5, + avoid_fp_drift = False)), [3,4]) + self.assertEqual(list(movingaverage([1,2,3,4,5,6], 6, + avoid_fp_drift = False)), [3.5]) + + self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], + 3, False, avoid_fp_drift = False)), [40.0,42.0,45.0,43.0]) + self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44], + 3, True, avoid_fp_drift = False)), [40.0,42.0,45.0,43.0]) + + + ############################# + def test_XRangeRolling(self): + try: + list(movingaverage(xrange(1, 4), 0, avoid_fp_drift = False)) + self.fail('Did not raise ValueError on subset_size=0') + except ValueError: + pass + + try: + list(movingaverage(xrange(1, 7), 7, avoid_fp_drift = False)) + self.fail('Did not raise ValueError on subset_size > len(data)') + except ValueError: + pass + + self.assertEqual(list(movingaverage(xrange(1, 7), 1, + avoid_fp_drift = False)), [1,2,3,4,5,6]) + self.assertEqual(list(movingaverage(xrange(1, 7), 2, + avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(iter(map(float, xrange(1, 7))), + 2, avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 3, + avoid_fp_drift = False)), [2,3,4,5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 4, + avoid_fp_drift = False)), [2.5,3.5,4.5]) + self.assertEqual(list(movingaverage(xrange(1, 7), 5, + avoid_fp_drift = False)), [3,4]) + self.assertEqual(list(movingaverage(xrange(1, 7), 6, + avoid_fp_drift = False)), [3.5]) + + + ###################################################################### + suite = unittest.TestLoader().loadTestsFromTestCase(TestMovingAverage) + unittest.TextTestRunner(verbosity = 2).run(suite) + |