summaryrefslogtreecommitdiff
path: root/scripts/backends_cpu_usage/movingaverage.py
diff options
context:
space:
mode:
authordrebs <drebs@leap.se>2014-04-07 12:40:45 -0300
committerdrebs <drebs@leap.se>2014-04-09 14:44:09 -0300
commit573909b10d77ef3d889d33cfaeb3fdadd0135daf (patch)
tree33c4835a3384be1d9b8b01a6d306168ace536b87 /scripts/backends_cpu_usage/movingaverage.py
parent8b8d9befbe3e60753e73bc7aaf1b8842a1846046 (diff)
Reorganize scripts directory.
Diffstat (limited to 'scripts/backends_cpu_usage/movingaverage.py')
-rw-r--r--scripts/backends_cpu_usage/movingaverage.py209
1 files changed, 0 insertions, 209 deletions
diff --git a/scripts/backends_cpu_usage/movingaverage.py b/scripts/backends_cpu_usage/movingaverage.py
deleted file mode 100644
index bac1b3e1..00000000
--- a/scripts/backends_cpu_usage/movingaverage.py
+++ /dev/null
@@ -1,209 +0,0 @@
-#!/usr/bin/env python
-#
-# Sean Reifschneider, tummy.com, ltd. <jafo@tummy.com>
-# Released into the Public Domain, 2011-02-06
-
-import itertools
-from itertools import islice
-from collections import deque
-
-
-#########################################################
-def movingaverage(data, subset_size, data_is_list = None,
- avoid_fp_drift = True):
- '''Return the moving averages of the data, with a window size of
- `subset_size`. `subset_size` must be an integer greater than 0 and
- less than the length of the input data, or a ValueError will be raised.
-
- `data_is_list` can be used to tune the algorithm for list or iteratable
- as an input. The default value, `None` will auto-detect this.
- The algorithm used if `data` is a list is almost twice as fast as if
- it is an iteratable.
-
- `avoid_fp_drift`, if True (the default) sums every sub-set rather than
- keeping a "rolling sum" (which may be subject to floating-point drift).
- While more correct, it is also dramatically slower for subset sizes
- much larger than 20.
-
- NOTE: You really should consider setting `avoid_fp_drift = False` unless
- you are dealing with very small numbers (say, far smaller than 0.00001)
- or require extreme accuracy at the cost of execution time. For
- `subset_size` < 20, the performance difference is very small.
- '''
- if subset_size < 1:
- raise ValueError('subset_size must be 1 or larger')
-
- if data_is_list is None:
- data_is_list = hasattr(data, '__getslice__')
-
- divisor = float(subset_size)
- if data_is_list:
- # This only works if we can re-access old elements, but is much faster.
- # In other words, it can't be just an iterable, it needs to be a list.
-
- if subset_size > len(data):
- raise ValueError('subset_size must be smaller than data set size')
-
- if avoid_fp_drift:
- for x in range(subset_size, len(data) + 1):
- yield sum(data[x - subset_size:x]) / divisor
- else:
- cur = sum(data[0:subset_size])
- yield cur / divisor
- for x in range(subset_size, len(data)):
- cur += data[x] - data[x - subset_size]
- yield cur / divisor
- else:
- # Based on the recipe at:
- # http://docs.python.org/library/collections.html#deque-recipes
- it = iter(data)
- d = deque(islice(it, subset_size))
-
- if subset_size > len(d):
- raise ValueError('subset_size must be smaller than data set size')
-
- if avoid_fp_drift:
- yield sum(d) / divisor
- for elem in it:
- d.popleft()
- d.append(elem)
- yield sum(d) / divisor
- else:
- s = sum(d)
- yield s / divisor
- for elem in it:
- s += elem - d.popleft()
- d.append(elem)
- yield s / divisor
-
-
-##########################
-if __name__ == '__main__':
- import unittest
-
- class TestMovingAverage(unittest.TestCase):
- ####################
- def test_List(self):
- try:
- list(movingaverage([1,2,3], 0))
- self.fail('Did not raise ValueError on subset_size=0')
- except ValueError:
- pass
-
- try:
- list(movingaverage([1,2,3,4,5,6], 7))
- self.fail('Did not raise ValueError on subset_size > len(data)')
- except ValueError:
- pass
-
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 1)), [1,2,3,4,5,6])
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 2)),
- [1.5,2.5,3.5,4.5,5.5])
- self.assertEqual(list(movingaverage(map(float, [1,2,3,4,5,6]), 2)),
- [1.5,2.5,3.5,4.5,5.5])
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 3)), [2,3,4,5])
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 4)), [2.5,3.5,4.5])
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 5)), [3,4])
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 6)), [3.5])
-
- self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44],
- 3, False)), [40.0,42.0,45.0,43.0])
- self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44],
- 3, True)), [40.0,42.0,45.0,43.0])
-
-
- ######################
- def test_XRange(self):
- try:
- list(movingaverage(xrange(1, 4), 0))
- self.fail('Did not raise ValueError on subset_size=0')
- except ValueError:
- pass
-
- try:
- list(movingaverage(xrange(1, 7), 7))
- self.fail('Did not raise ValueError on subset_size > len(data)')
- except ValueError:
- pass
-
- self.assertEqual(list(movingaverage(xrange(1, 7), 1)), [1,2,3,4,5,6])
- self.assertEqual(list(movingaverage(xrange(1, 7), 2)),
- [1.5,2.5,3.5,4.5,5.5])
- self.assertEqual(list(movingaverage(iter(map(float, xrange(1, 7))),
- 2)), [1.5,2.5,3.5,4.5,5.5])
- self.assertEqual(list(movingaverage(xrange(1, 7), 3)), [2,3,4,5])
- self.assertEqual(list(movingaverage(xrange(1, 7), 4)), [2.5,3.5,4.5])
- self.assertEqual(list(movingaverage(xrange(1, 7), 5)), [3,4])
- self.assertEqual(list(movingaverage(xrange(1, 7), 6)), [3.5])
-
-
- ###########################
- def test_ListRolling(self):
- try:
- list(movingaverage([1,2,3], 0, avoid_fp_drift = False))
- self.fail('Did not raise ValueError on subset_size=0')
- except ValueError:
- pass
-
- try:
- list(movingaverage([1,2,3,4,5,6], 7, avoid_fp_drift = False))
- self.fail('Did not raise ValueError on subset_size > len(data)')
- except ValueError:
- pass
-
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 1,
- avoid_fp_drift = False)), [1,2,3,4,5,6])
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 2,
- avoid_fp_drift = False)),
- [1.5,2.5,3.5,4.5,5.5])
- self.assertEqual(list(movingaverage(map(float, [1,2,3,4,5,6]), 2,
- avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5])
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 3,
- avoid_fp_drift = False)), [2,3,4,5])
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 4,
- avoid_fp_drift = False)), [2.5,3.5,4.5])
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 5,
- avoid_fp_drift = False)), [3,4])
- self.assertEqual(list(movingaverage([1,2,3,4,5,6], 6,
- avoid_fp_drift = False)), [3.5])
-
- self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44],
- 3, False, avoid_fp_drift = False)), [40.0,42.0,45.0,43.0])
- self.assertEqual(list(movingaverage([40, 30, 50, 46, 39, 44],
- 3, True, avoid_fp_drift = False)), [40.0,42.0,45.0,43.0])
-
-
- #############################
- def test_XRangeRolling(self):
- try:
- list(movingaverage(xrange(1, 4), 0, avoid_fp_drift = False))
- self.fail('Did not raise ValueError on subset_size=0')
- except ValueError:
- pass
-
- try:
- list(movingaverage(xrange(1, 7), 7, avoid_fp_drift = False))
- self.fail('Did not raise ValueError on subset_size > len(data)')
- except ValueError:
- pass
-
- self.assertEqual(list(movingaverage(xrange(1, 7), 1,
- avoid_fp_drift = False)), [1,2,3,4,5,6])
- self.assertEqual(list(movingaverage(xrange(1, 7), 2,
- avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5])
- self.assertEqual(list(movingaverage(iter(map(float, xrange(1, 7))),
- 2, avoid_fp_drift = False)), [1.5,2.5,3.5,4.5,5.5])
- self.assertEqual(list(movingaverage(xrange(1, 7), 3,
- avoid_fp_drift = False)), [2,3,4,5])
- self.assertEqual(list(movingaverage(xrange(1, 7), 4,
- avoid_fp_drift = False)), [2.5,3.5,4.5])
- self.assertEqual(list(movingaverage(xrange(1, 7), 5,
- avoid_fp_drift = False)), [3,4])
- self.assertEqual(list(movingaverage(xrange(1, 7), 6,
- avoid_fp_drift = False)), [3.5])
-
-
- ######################################################################
- suite = unittest.TestLoader().loadTestsFromTestCase(TestMovingAverage)
- unittest.TextTestRunner(verbosity = 2).run(suite)
-