1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
/*
* Copyright (c) 2015, Yawning Angel <yawning at torproject dot org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
package scramblesuit
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/sha256"
"encoding/base32"
"encoding/binary"
"errors"
"fmt"
"hash"
"io"
"net"
"time"
"git.torproject.org/pluggable-transports/goptlib.git"
"git.torproject.org/pluggable-transports/obfs4.git/common/csrand"
"git.torproject.org/pluggable-transports/obfs4.git/common/drbg"
"git.torproject.org/pluggable-transports/obfs4.git/common/probdist"
"git.torproject.org/pluggable-transports/obfs4.git/common/uniformdh"
)
const (
passwordArg = "password"
maxSegmentLength = 1448
maxPayloadLength = 1427
sharedSecretLength = 160 / 8 // k_B
clientHandshakeTimeout = time.Duration(60) * time.Second
minLenDistLength = 21
maxLenDistLength = maxSegmentLength
keyLength = 32 + 8 + 32
pktPrngSeedLength = 32
pktOverhead = macLength + pktHdrLength
pktHdrLength = 2 + 2 + 1
pktPayload = 1
pktNewTicket = 1 << 1
pktPrngSeed = 1 << 2
)
var (
// ErrNotSupported is the error returned for a unsupported operation.
ErrNotSupported = errors.New("scramblesuit: operation not supported")
// ErrInvalidPacket is the error returned when a invalid packet is received.
ErrInvalidPacket = errors.New("scramblesuit: invalid packet")
zeroPadBytes [maxPayloadLength]byte
)
type ssSharedSecret [sharedSecretLength]byte
type ssClientArgs struct {
kB *ssSharedSecret
sessionKey *uniformdh.PrivateKey
}
func newClientArgs(args *pt.Args) (ca *ssClientArgs, err error) {
ca = &ssClientArgs{}
if ca.kB, err = parsePasswordArg(args); err != nil {
return nil, err
}
// Generate the client keypair before opening a connection since the time
// taken is visible to an adversary. This key might not end up being used
// if a session ticket is present, but this doesn't take that long.
if ca.sessionKey, err = uniformdh.GenerateKey(csrand.Reader); err != nil {
return nil, err
}
return
}
func parsePasswordArg(args *pt.Args) (*ssSharedSecret, error) {
str, ok := args.Get(passwordArg)
if !ok {
return nil, fmt.Errorf("missing argument '%s'", passwordArg)
}
// To match the obfsproxy behavior, 'str' should contain a Base32 encoded
// shared secret (k_B) used for handshaking.
decoded, err := base32.StdEncoding.DecodeString(str)
if err != nil {
return nil, fmt.Errorf("failed to decode password: %s", err)
}
if len(decoded) != sharedSecretLength {
return nil, fmt.Errorf("password length %d is invalid", len(decoded))
}
ss := new(ssSharedSecret)
copy(ss[:], decoded)
return ss, nil
}
type ssCryptoState struct {
s cipher.Stream
mac hash.Hash
}
func newCryptoState(aesKey []byte, ivPrefix []byte, macKey []byte) (*ssCryptoState, error) {
// The ScrambleSuit CTR-AES256 link crypto uses an 8 byte prefix from the
// KDF, and a 64 bit counter initialized to 1 as the IV. The initial value
// of the counter isn't documented in the spec either.
var initialCtr = []byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}
iv := make([]byte, 0, aes.BlockSize)
iv = append(iv, ivPrefix...)
iv = append(iv, initialCtr...)
b, err := aes.NewCipher(aesKey)
if err != nil {
return nil, err
}
s := cipher.NewCTR(b, iv)
mac := hmac.New(sha256.New, macKey)
return &ssCryptoState{s: s, mac: mac}, nil
}
type ssConn struct {
net.Conn
isServer bool
lenDist *probdist.WeightedDist
receiveBuffer *bytes.Buffer
receiveDecodedBuffer *bytes.Buffer
receiveState ssRxState
txCrypto *ssCryptoState
rxCrypto *ssCryptoState
ticketStore *ssTicketStore
}
type ssRxState struct {
mac []byte
hdr []byte
totalLen int
payloadLen int
}
func (conn *ssConn) Read(b []byte) (n int, err error) {
// If the receive payload buffer is empty, consume data off the network.
for conn.receiveDecodedBuffer.Len() == 0 {
if err = conn.readPackets(); err != nil {
break
}
}
// Service the read request using buffered payload.
if conn.receiveDecodedBuffer.Len() > 0 {
n, _ = conn.receiveDecodedBuffer.Read(b)
}
return
}
func (conn *ssConn) Write(b []byte) (n int, err error) {
var frameBuf bytes.Buffer
p := b
toSend := len(p)
for toSend > 0 {
// Send as much payload as will fit into each frame as possible.
wrLen := len(p)
if wrLen > maxPayloadLength {
wrLen = maxPayloadLength
}
payload := p[:wrLen]
if err = conn.makePacket(&frameBuf, pktPayload, payload, 0); err != nil {
return 0, err
}
toSend -= wrLen
p = p[wrLen:]
n += wrLen
}
// Pad out the burst as appropriate.
if err = conn.padBurst(&frameBuf, conn.lenDist.Sample()); err != nil {
return 0, err
}
// Write and return.
_, err = conn.Conn.Write(frameBuf.Bytes())
return
}
func (conn *ssConn) SetDeadline(t time.Time) error {
return ErrNotSupported
}
func (conn *ssConn) SetReadDeadline(t time.Time) error {
return ErrNotSupported
}
func (conn *ssConn) SetWriteDeadline(t time.Time) error {
return ErrNotSupported
}
func (conn *ssConn) makePacket(w io.Writer, pktType byte, data []byte, padLen int) error {
payloadLen := len(data)
totalLen := payloadLen + padLen
if totalLen > maxPayloadLength {
panic(fmt.Sprintf("BUG: makePacket() len(data) + padLen > maxPayloadLength: %d + %d > %d", len(data), padLen, maxPayloadLength))
}
// Build the packet header (total length, payload length, flags),
// and append the payload and padding.
pkt := make([]byte, pktHdrLength, pktHdrLength+payloadLen+padLen)
binary.BigEndian.PutUint16(pkt[0:], uint16(totalLen))
binary.BigEndian.PutUint16(pkt[2:], uint16(payloadLen))
pkt[4] = pktType
pkt = append(pkt, data...)
pkt = append(pkt, zeroPadBytes[:padLen]...)
// Encrypt the packet, and calculate the MAC.
conn.txCrypto.s.XORKeyStream(pkt, pkt)
conn.txCrypto.mac.Reset()
conn.txCrypto.mac.Write(pkt)
mac := conn.txCrypto.mac.Sum(nil)[:macLength]
// Write out MAC | Packet. Note that this does not go onto the network
// yet, as w is a byte.Buffer (This is done so each call to conn.Write()
// gets padding added).
if _, err := w.Write(mac); err != nil {
return err
}
_, err := w.Write(pkt)
return err
}
func (conn *ssConn) readPackets() error {
// Consume and buffer up to 1 MSS worth of data.
var buf [maxSegmentLength]byte
rdLen, rdErr := conn.Conn.Read(buf[:])
conn.receiveBuffer.Write(buf[:rdLen])
// Process incoming packets incrementally. conn.receiveState stores
// the results of partial processing.
for conn.receiveBuffer.Len() > 0 {
if conn.receiveState.mac == nil {
// Read and store the packet MAC.
if conn.receiveBuffer.Len() < macLength {
break
}
mac := make([]byte, macLength)
conn.receiveBuffer.Read(mac)
conn.receiveState.mac = mac
}
if conn.receiveState.hdr == nil {
// Read and store the packet header.
if conn.receiveBuffer.Len() < pktHdrLength {
break
}
hdr := make([]byte, pktHdrLength)
conn.receiveBuffer.Read(hdr)
// Add the encrypted packet header to the HMAC instance, and then
// decrypt it so that the length of the packet can be determined.
conn.rxCrypto.mac.Reset()
conn.rxCrypto.mac.Write(hdr)
conn.rxCrypto.s.XORKeyStream(hdr, hdr)
// Store the plaintext packet header, and host byte order length
// values.
totalLen := int(binary.BigEndian.Uint16(hdr[0:]))
payloadLen := int(binary.BigEndian.Uint16(hdr[2:]))
if payloadLen > totalLen || totalLen > maxPayloadLength {
return ErrInvalidPacket
}
conn.receiveState.hdr = hdr
conn.receiveState.totalLen = totalLen
conn.receiveState.payloadLen = payloadLen
}
var data []byte
if conn.receiveState.totalLen > 0 {
// If the packet actually has payload (including padding), read,
// digest and decrypt it.
if conn.receiveBuffer.Len() < conn.receiveState.totalLen {
break
}
data = make([]byte, conn.receiveState.totalLen)
conn.receiveBuffer.Read(data)
conn.rxCrypto.mac.Write(data)
conn.rxCrypto.s.XORKeyStream(data, data)
}
// Authenticate the packet, by comparing the received MAC with the one
// calculated over the ciphertext consumed off the network.
cmpMAC := conn.rxCrypto.mac.Sum(nil)[:macLength]
if !hmac.Equal(cmpMAC, conn.receiveState.mac[:]) {
return ErrInvalidPacket
}
// Based on the packet flags, do something useful with the payload.
data = data[:conn.receiveState.payloadLen]
switch conn.receiveState.hdr[4] {
case pktPayload:
// User data, write it into the decoded payload buffer so that Read
// calls can be serviced.
conn.receiveDecodedBuffer.Write(data)
case pktNewTicket:
// New Session Ticket to be used for future handshakes, store it in
// the Session Ticket store.
if conn.isServer || len(data) != ticketKeyLength+ticketLength {
return ErrInvalidPacket
}
conn.ticketStore.storeTicket(conn.RemoteAddr(), data)
case pktPrngSeed:
// New PRNG_SEED for the protocol polymorphism. Regenerate the
// length obfuscation probability distribution.
if conn.isServer || len(data) != pktPrngSeedLength {
return ErrInvalidPacket
}
seed, err := drbg.SeedFromBytes(data)
if err != nil {
return ErrInvalidPacket
}
conn.lenDist.Reset(seed)
default:
return ErrInvalidPacket
}
// Done processing a packet, clear the partial state.
conn.receiveState.mac = nil
conn.receiveState.hdr = nil
conn.receiveState.totalLen = 0
conn.receiveState.payloadLen = 0
}
return rdErr
}
func (conn *ssConn) clientHandshake(kB *ssSharedSecret, sessionKey *uniformdh.PrivateKey) error {
if conn.isServer {
return fmt.Errorf("clientHandshake called on server connection")
}
// Query the Session Ticket store to see if there is a stored session
// ticket.
ticket, err := conn.ticketStore.getTicket(conn.RemoteAddr())
if err != nil {
return err
} else if ticket != nil {
// Ok, there is an existing ticket, so attempt to do a Session Ticket
// handshake. Until we write to the network, failures are non-fatal as
// we can transition gracefully into doing a UniformDH handshake.
// Derive the keys from the prestored master key received with the
// ticket. This is done before the actual handshake since the
// handshake uses the outgoing HMAC-SHA256-128 key for authentication.
if err = conn.initCrypto(ticket.key[:]); err != nil {
goto handshakeUDH
}
// Generate and send the ticket handshake. There is no response, since
// both sides have the keying material.
hs := newTicketClientHandshake(conn.txCrypto.mac, ticket)
blob, err := hs.generateHandshake()
if err != nil {
goto handshakeUDH
}
if _, err = conn.Conn.Write(blob); err != nil {
return err
}
return nil
}
handshakeUDH:
// No session ticket, so take the slow path and do a UniformDH based
// handshake.
// Generate and send the client handshake.
hs := newDHClientHandshake(kB, sessionKey)
blob, err := hs.generateHandshake()
if err != nil {
return err
}
if _, err = conn.Conn.Write(blob); err != nil {
return err
}
// Consume the server handshake. Since we don't actually know the length
// of the respose, we need to consume data off the network till we either
// find the tail marker + MAC digest indicating that a handshake response
// has been received, or the maximum handshake size passes without a valid
// response.
var hsBuf [maxHandshakeLength]byte
for {
var n int
if n, err = conn.Conn.Read(hsBuf[:]); err != nil {
return err
}
conn.receiveBuffer.Write(hsBuf[:n])
// Attempt to process all the data seen so far as a response.
var seed []byte
n, seed, err = hs.parseServerHandshake(conn.receiveBuffer.Bytes())
if err == errMarkNotFoundYet {
// No response found yet, keep trying.
continue
} else if err != nil {
return err
}
// Ok, done processing the handshake, discard the response, and do the
// key derivation based off the calculated shared secret.
_ = conn.receiveBuffer.Next(n)
err = conn.initCrypto(seed)
return err
}
}
func (conn *ssConn) initCrypto(seed []byte) error {
// Use HKDF-SHA256 (Expand only, no Extract) to generate session keys from
// initial keying material.
okm := hkdfExpand(sha256.New, seed, nil, kdfSecretLength)
var err error
conn.txCrypto, err = newCryptoState(okm[0:32], okm[32:40], okm[80:112])
if err != nil {
return err
}
conn.rxCrypto, err = newCryptoState(okm[40:72], okm[72:80], okm[112:144])
if err != nil {
return err
}
return nil
}
func (conn *ssConn) padBurst(burst *bytes.Buffer, sampleLen int) error {
// Burst contains the fully encrypted+MACed outgoing payload that will be
// written to the network. Pad it out so that the last segment (based on
// the ScrambleSuit MTU) is sampleLen bytes.
dataLen := burst.Len() % maxSegmentLength
padLen := 0
if sampleLen >= dataLen {
padLen = sampleLen - dataLen
} else {
padLen = (maxSegmentLength - dataLen) + sampleLen
}
if padLen < pktOverhead {
// The padLen is less than the MAC + packet header in length, so
// two packets are required.
padLen += maxSegmentLength
}
if padLen == 0 {
return nil
}
if padLen > maxSegmentLength {
// Note: packetmorpher.py: getPadding is slightly wrong and only
// accounts for one of the two packet headers.
if err := conn.makePacket(burst, pktPayload, nil, 700-pktOverhead); err != nil {
return err
}
return conn.makePacket(burst, pktPayload, nil, padLen-(700+2*pktOverhead))
}
return conn.makePacket(burst, pktPayload, nil, padLen-pktOverhead)
}
func newScrambleSuitClientConn(conn net.Conn, tStore *ssTicketStore, ca *ssClientArgs) (net.Conn, error) {
// At this point we have kB and our session key, so we can directly
// start handshaking and seeing what happens.
// Seed the initial polymorphism distribution.
seed, err := drbg.NewSeed()
if err != nil {
return nil, err
}
dist := probdist.New(seed, minLenDistLength, maxLenDistLength, true)
// Allocate the client structure.
c := &ssConn{conn, false, dist, bytes.NewBuffer(nil), bytes.NewBuffer(nil), ssRxState{}, nil, nil, tStore}
// Start the handshake timeout.
deadline := time.Now().Add(clientHandshakeTimeout)
if err := conn.SetDeadline(deadline); err != nil {
return nil, err
}
// Attempt to handshake.
if err := c.clientHandshake(ca.kB, ca.sessionKey); err != nil {
return nil, err
}
// Stop the handshake timeout.
if err := conn.SetDeadline(time.Time{}); err != nil {
return nil, err
}
return c, nil
}
|