summaryrefslogtreecommitdiff
path: root/doc/srp.rst
blob: 3ae2022f3ac7c47754f99c71f8e6bd9a8234d0f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
:mod:`srp` --- Secure Remote Password
=====================================

.. module:: srp
    :synopsis: Secure Remote Password
    
.. moduleauthor:: Tom Cocagne <tom.cocagne@gmail.com>

.. sectionauthor:: Tom Cocagne <tom.cocagne@gmail.com>


This module provides an implementation of the Secure Remote Password
Protocol (SRP). SRP is a secure, password-based authentication
and key-exhange protocol. It solves the problem of securely
authenticating clients to servers that store a salted verification
key derived from the user's password. Successful authentication proves
that the client knows user's password and that the server knows the 
verification key.

The SRP protocol has a number of advantageous properties

* It provides strong authentication
* Successful authentication results in a cryptographically strong shared key
  that may be used for subsequent symmetric-key encryption.
* It does not require a trusted third party (unlike Kerberos & SSL)
* It is resists both passive and active network attacks
* Compromised verification keys do not allow the attacker to impersonate the
  client.

See http://srp.stanford.edu/ for a full description of the SRP protocol.

Usage
-----

Use of SRP begins by using the gen_sv() function to create a salted 
verification key from the user's password. The salt and key are stored
on the server and will be used during the authentication process. 

TODO: Lay out the steps of the protocol


The User & Verifier construtors, as well as the gen_sv() function,
take optional hashing algorithm and prime number arguments. Generally
speaking, more bits means more security but comes at the cost of 
increased computation time. The hashing and prime number parameters passed 
to the User and Verifier constructors must match those used to create the 
verification key.



Constants
---------

.. table:: Hashing Algorithm Constants

  ==============  ==============
  Hash Algorithm  Number of Bits
  ==============  ==============
  SHA1            160
  SHA224          224
  SHA256          256
  SHA384          384
  SHA512          512
  ==============  ==============

Larger hashing algorithms will result in larger session keys.

.. table:: Prime Number Constants

  ================= ==============
  Prime Number Size Number of Bits
  ================= ==============
  NG_1024           1024
  NG_2048           2048
  NG_4096           4096
  NG_CUSTOM         User Supplied
  ================= ==============

If NG_CUSTOM is used, the 'n_hex' and 'g_hex' parameters are required.
These parameters must be ASCII text containing hexidecimal notation of the
prime number 'n_hex' and the corresponding generator number 'g_hex'. Appendix
A of RFC 5054 contains several large prime number, generator pairs that may
be used with NG_CUSTOM.

Functions
---------

.. function:: gen_sv ( username, password[, hash_alg=SHA1, ng_type=NG_1024, n_hex=None, g_hex=None] )

    Generates a salt and verifier for the given username and password.
    Returns (salt_bytes, verifier_bytes)
    
    
:class:`Verifier` Objects
-------------------------

A :class:`Verifier` object is used to verify the identity of a remote
user.

.. note::

  The standard SRP 6 protocol allows only one password attempt per 
  connection.

.. class:: Verifier( username, bytes_s, bytes_v, bytes_A[, hash_alg=SHA1, ng_type=NG_1024, n_hex=None, g_hex=None] )

  *username* Name of the remote user being authenticated.
  
  *bytes_s* Salt generated by :func:`gen_sv`.
  
  *bytes_v* Verifier generated by :func:`gen_sv`.
  
  *bytes_A* Challenge from the remote user. Generated by
  :meth:`User.start_authentication`  
  
  .. method:: Verifier.authenticated()
  
    Returns True if the authentication succeeded. False
    otherwise.
    
  .. method:: Verifier.get_username()
  
    Returns the name of the user this :class:`Verifier` object is for.
    
  .. method:: Verifier.get_session_key()
  
    Returns the session key for an authenticated user or None if the
    authentication failed or has not yet completed.
    
  .. method:: Verifier.get_challenge()
  
    Returns (bytes_s, bytes_B) on success or (None, None) if
    authentication has failed.
    
  .. method:: Verifier.verify_session( user_M )
  
    Completes the :class:`Verifier` side of the authentication
    process. If the authentication succeded the return result,
    bytes_H_AMK should be returned to the remote user. On failure,
    this method returns None.
    
    
:class:`User` Objects
-------------------------

A :class:`User` object is used to perform mutual authentication with a
remote :class:`Verifier`. Successful authentication requires not only
that the :class:`User` be provided with a valid username/password but
also that the remote :class:`Verifier` have a salt & verifier for that 
username/password pair.

.. class:: User( username, password[, hash_alg=SHA1, ng_type=NG_1024, n_hex=None, g_hex=None] )

  *username* Name of the user being authenticated.
  
  *password* Password for the user.
    
  .. method:: User.authenticated()
  
    Returns True if authentication succeeded. False
    otherwise.
    
  .. method:: User.get_username()
  
    Returns the username passed to the constructor.
    
  .. method:: User.get_session_key()
  
    Returns the session key if authentication succeeded or None if the
    authentication failed or has not yet completed.
    
  .. method:: User.start_authentication()
  
    Returns (username, bytes_A). These should be passed to the
    constructor of the remote :class:`Verifer`
    
  .. method:: User.process_challenge( bytes_s, bytes_B )
  
    Processes the challenge returned
    by :meth:`Verifier.get_challenge` on success this method
    returns bytes_M that should be sent
    to :meth:`Verifier.verify_session` if authentication failed,
    it returns None.
    
  .. method:: User.verify_session( bytes_H_AMK )
  
    Completes the :class:`User` side of the authentication
    process. If the authentication succeded :meth:`authenticated` will
    return True
    
    
Examples
--------

Simple Usage Example::

    import srp
    
    # The salt and verifier returned from srp.gen_sv() should be
    # stored on the server.
    salt, verifier = srp.gen_sv( 'testuser', 'testpassword' )
    
    # ~~~ Begin Authentication ~~~
    
    usr      = srp.User( 'testuser', 'testpassword' )
    uname, A = usr.start_authentication()
    
    # The authentication process can fail at each step from this
    # point on. To comply with the SRP protocol, the authentication
    # process should be aborted on the first failure.
    
    # Client => Server: username, A
    svr      = srp.Verifier( uname, salt, verifier, A )
    s,B      = svr.get_challenge()
    
    
    # Server => Client: s, B
    M        = usr.process_challenge( s, B )
    
    
    # Client => Server: M
    HAMK     = svr.verify_session( M )
    
    
    # Server => Client: HAMK
    usr.verify_session( HAMK )
    
    # At this point the authentication process is complete.
    
    assert usr.authenticated()
    assert svr.authenticated()



Implementation Notes
--------------------
This implementation of SRP consists of both a pure-python module and
a C-based implementation that is approximately 10x faster. By default, 
the C-implementation will be used if it is available. An additional
benefit of the C implementation is that it can take advantage of
of multiple CPUs. For cases in which the number of connections per
second is an issue, using a small pool of threads to perform the
authentication steps on multi-core systems will yield a substantial
performance increase.