diff options
Diffstat (limited to 'pycryptopp/test')
-rw-r--r-- | pycryptopp/test/__init__.py | 0 | ||||
-rw-r--r-- | pycryptopp/test/test_aes.py | 107 | ||||
-rw-r--r-- | pycryptopp/test/test_ecdsa.py | 263 | ||||
-rw-r--r-- | pycryptopp/test/test_from_Nikratio.py | 32 | ||||
-rw-r--r-- | pycryptopp/test/test_rsa.py | 122 | ||||
-rw-r--r-- | pycryptopp/test/test_sha256.py | 181 | ||||
-rw-r--r-- | pycryptopp/test/test_startup.py | 5 |
7 files changed, 0 insertions, 710 deletions
diff --git a/pycryptopp/test/__init__.py b/pycryptopp/test/__init__.py deleted file mode 100644 index e69de29..0000000 --- a/pycryptopp/test/__init__.py +++ /dev/null diff --git a/pycryptopp/test/test_aes.py b/pycryptopp/test/test_aes.py deleted file mode 100644 index d4e2c44..0000000 --- a/pycryptopp/test/test_aes.py +++ /dev/null @@ -1,107 +0,0 @@ -#!/usr/bin/env python - -import random, re - -import unittest - -from binascii import a2b_hex, b2a_hex - -global VERBOSE -VERBOSE=False - -from pycryptopp.cipher import aes - -from pkg_resources import resource_string, resource_listdir - -from base64 import b32encode -def ab(x): # debuggery - if len(x) >= 3: - return "%s:%s" % (len(x), b32encode(x[-3:]),) - elif len(x) == 2: - return "%s:%s" % (len(x), b32encode(x[-2:]),) - elif len(x) == 1: - return "%s:%s" % (len(x), b32encode(x[-1:]),) - elif len(x) == 0: - return "%s:%s" % (len(x), "--empty--",) - -def randstr(n): - return ''.join(map(chr, map(random.randrange, [0]*n, [256]*n))) - -class AES256(unittest.TestCase): - enc0 = "dc95c078a2408989ad48a21492842087530f8afbc74536b9a963b4f1c4cb738b" - - def test_encrypt_zeroes(self): - cryptor = aes.AES(key="\x00"*32) - ct = cryptor.process("\x00"*32) - self.failUnlessEqual(self.enc0, b2a_hex(ct)) - - def test_init_type_check(self): - self.failUnlessRaises(TypeError, aes.AES, None) - self.failUnlessRaises(aes.Error, aes.AES, "a"*1) # too short - self.failUnlessRaises(aes.Error, aes.AES, "a"*17) # not one of the valid key sizes for AES (16, 24, 32) - - def test_encrypt_zeroes_in_two_parts(self): - cryptor = aes.AES(key="\x00"*32) - ct1 = cryptor.process("\x00"*15) - ct2 = cryptor.process("\x00"*17) - self.failUnlessEqual(self.enc0, b2a_hex(ct1+ct2)) - -class AES128(unittest.TestCase): - enc0 = "66e94bd4ef8a2c3b884cfa59ca342b2e" - - def test_encrypt_zeroes(self): - cryptor = aes.AES(key="\x00"*16) - ct = cryptor.process("\x00"*16) - self.failUnlessEqual(self.enc0, b2a_hex(ct)) - - def test_init_type_check(self): - self.failUnlessRaises(TypeError, aes.AES, None) - self.failUnlessRaises(aes.Error, aes.AES, "a") # too short - - def test_encrypt_zeroes_in_two_parts(self): - cryptor = aes.AES(key="\x00"*16) - ct1 = cryptor.process("\x00"*8) - ct2 = cryptor.process("\x00"*8) - self.failUnlessEqual(self.enc0, b2a_hex(ct1+ct2)) - -def fake_ecb_using_ctr(k, p): - return aes.AES(key=k, iv=p).process('\x00'*16) - -NIST_KAT_VECTS_RE=re.compile("\nCOUNT = ([0-9]+)\nKEY = ([0-9a-f]+)\nPLAINTEXT = ([0-9a-f]+)\nCIPHERTEXT = ([0-9a-f]+)") - -class AES_from_NIST_KAT(unittest.TestCase): - def test_NIST_KAT(self): - for vectname in resource_listdir('pycryptopp', 'testvectors/KAT_AES'): - self._test_KAT_file(resource_string('pycryptopp', '/'.join(['testvectors/KAT_AES', vectname]))) - - def _test_KAT_file(self, vects_str): - for mo in NIST_KAT_VECTS_RE.finditer(vects_str): - key = a2b_hex(mo.group(2)) - plaintext = a2b_hex(mo.group(3)) - ciphertext = a2b_hex(mo.group(4)) - - computedciphertext = fake_ecb_using_ctr(key, plaintext) - self.failUnlessEqual(computedciphertext, ciphertext, "computedciphertext: %s, ciphertext: %s, key: %s, plaintext: %s" % (b2a_hex(computedciphertext), b2a_hex(ciphertext), b2a_hex(key), b2a_hex(plaintext))) - -class AES_from_Niels_Ferguson(unittest.TestCase): - # http://blogs.msdn.com/si_team/archive/2006/05/19/aes-test-vectors.aspx - def _test_from_Niels_AES(self, keysize, result): - E = fake_ecb_using_ctr - b = 16 - k = keysize - S = '\x00' * (k+b) - for i in range(1000): - K = S[-k:] - P = S[-k-b:-k] - S += E(K, E(K, P)) - - self.failUnlessEqual(S[-b:], a2b_hex(result)) - - def test_from_Niels_AES128(self): - return self._test_from_Niels_AES(16, 'bd883f01035e58f42f9d812f2dacbcd8') - - def test_from_Niels_AES256(self): - return self._test_from_Niels_AES(32, 'c84b0f3a2c76dd9871900b07f09bdd3e') - -if __name__ == "__main__": - unittest.main() diff --git a/pycryptopp/test/test_ecdsa.py b/pycryptopp/test/test_ecdsa.py deleted file mode 100644 index d70a000..0000000 --- a/pycryptopp/test/test_ecdsa.py +++ /dev/null @@ -1,263 +0,0 @@ -#!/usr/bin/env python - -import random -import base64 - -import os -SEED = os.environ.get('REPEATABLE_RANDOMNESS_SEED', None) - -if SEED is None: - # Generate a seed which is fairly short (to ease cut-and-paste, writing it - # down, etc.). Note that Python's random module's seed() function is going - # to take the hash() of this seed, which is a 32-bit value (currently) so - # there is no point in making this seed larger than 32 bits. Make it 30 - # bits, which conveniently fits into six base-32 chars. Include a separator - # because chunking facilitates memory (including working and short-term - # memory) in humans. - chars = "ybndrfg8ejkmcpqxot1uwisza345h769" # Zooko's choice, rationale in "DESIGN" doc in z-base-32 project - SEED = ''.join([random.choice(chars) for x in range(3)] + ['-'] + [random.choice(chars) for x in range(3)]) - -import logging -logging.info("REPEATABLE_RANDOMNESS_SEED: %s\n" % SEED) -logging.info("In order to reproduce this run of the code, set the environment variable \"REPEATABLE_RANDOMNESS_SEED\" to %s before executing.\n" % SEED) -random.seed(SEED) - -def seed_which_refuses(a): - logging.warn("I refuse to reseed to %s -- I already seeded with %s.\n" % (a, SEED,)) - return -random.seed = seed_which_refuses - -from random import randrange - -import unittest - -from pycryptopp.publickey import ecdsa - -def randstr(n, rr=randrange): - return ''.join([chr(rr(0, 256)) for x in xrange(n)]) - -from base64 import b32encode -def ab(x): # debuggery - if len(x) >= 3: - return "%s:%s" % (len(x), b32encode(x[-3:]),) - elif len(x) == 2: - return "%s:%s" % (len(x), b32encode(x[-2:]),) - elif len(x) == 1: - return "%s:%s" % (len(x), b32encode(x[-1:]),) - elif len(x) == 0: - return "%s:%s" % (len(x), "--empty--",) - -def div_ceil(n, d): - """ - The smallest integer k such that k*d >= n. - """ - return (n/d) + (n%d != 0) - -KEYBITS=192 - -# The number of bytes required for a seed to have the same security level as a -# key in this elliptic curve: 2 bits of public key per bit of security. -SEEDBITS=div_ceil(192, 2) -SEEDBYTES=div_ceil(SEEDBITS, 8) - -# The number of bytes required to encode a public key in this elliptic curve. -PUBKEYBYTES=div_ceil(KEYBITS, 8)+1 # 1 byte for the sign of the y component - -# The number of bytes requires to encode a signature in this elliptic curve. -SIGBITS=KEYBITS*2 -SIGBYTES=div_ceil(SIGBITS, 8) - -class Signer(unittest.TestCase): - def test_construct(self): - seed = randstr(SEEDBYTES) - ecdsa.SigningKey(seed) - - def test_sign(self): - seed = randstr(SEEDBYTES) - signer = ecdsa.SigningKey(seed) - sig = signer.sign("message") - self.failUnlessEqual(len(sig), SIGBYTES) - - def test_sign_and_verify(self): - seed = randstr(SEEDBYTES) - signer = ecdsa.SigningKey(seed) - sig = signer.sign("message") - v = signer.get_verifying_key() - self.failUnless(v.verify("message", sig)) - - def test_sign_and_verify_emptymsg(self): - seed = randstr(SEEDBYTES) - signer = ecdsa.SigningKey(seed) - sig = signer.sign("") - v = signer.get_verifying_key() - self.failUnless(v.verify("", sig)) - - def test_construct_from_same_seed_is_reproducible(self): - seed = randstr(SEEDBYTES) - signer1 = ecdsa.SigningKey(seed) - signer2 = ecdsa.SigningKey(seed) - self.failUnlessEqual(signer1.get_verifying_key().serialize(), signer2.get_verifying_key().serialize()) - - # ... and using different seeds constructs a different private key. - seed3 = randstr(SEEDBYTES) - assert seed3 != seed, "Internal error in Python random module's PRNG (or in pycryptopp's hacks to it to facilitate testing) -- got two identical strings from randstr(%s)" % SEEDBYTES - signer3 = ecdsa.SigningKey(seed3) - self.failIfEqual(signer1.get_verifying_key().serialize(), signer3.get_verifying_key().serialize()) - - # Also try the all-zeroes string just because bugs sometimes are - # data-dependent on zero or cause bogus zeroes. - seed4 = '\x00'*SEEDBYTES - assert seed4 != seed, "Internal error in Python random module's PRNG (or in pycryptopp's hacks to it to facilitate testing) -- got the all-zeroes string from randstr(%s)" % SEEDBYTES - signer4 = ecdsa.SigningKey(seed4) - self.failIfEqual(signer4.get_verifying_key().serialize(), signer1.get_verifying_key().serialize()) - - signer5 = ecdsa.SigningKey(seed4) - self.failUnlessEqual(signer5.get_verifying_key().serialize(), signer4.get_verifying_key().serialize()) - - def test_construct_short_seed(self): - try: - ecdsa.SigningKey("\x00\x00\x00") - except ecdsa.Error, le: - self.failUnless("seed is required to be of length " in str(le), le) - else: - self.fail("Should have raised error from seed being too short.") - - def test_construct_bad_arg_type(self): - try: - ecdsa.SigningKey(1) - except TypeError, le: - self.failUnless("must be string" in str(le), le) - else: - self.fail("Should have raised error from seed being of the wrong type.") - -class Verifier(unittest.TestCase): - def test_from_signer_and_serialize_and_deserialize(self): - seed = randstr(SEEDBYTES) - signer = ecdsa.SigningKey(seed) - - verifier = signer.get_verifying_key() - s1 = verifier.serialize() - self.failUnlessEqual(len(s1), PUBKEYBYTES) - ecdsa.VerifyingKey(s1) - s2 = verifier.serialize() - self.failUnlessEqual(s1, s2) - -def flip_one_bit(s): - assert s - i = randrange(0, len(s)) - result = s[:i] + chr(ord(s[i])^(0x01<<randrange(0, 8))) + s[i+1:] - assert result != s, "Internal error -- flip_one_bit() produced the same string as its input: %s == %s" % (result, s) - return result - -def randmsg(): - # Choose a random message size from a range probably large enough to - # exercise any different code paths which depend on the message length. - randmsglen = randrange(1, SIGBYTES*2+2) - return randstr(randmsglen) - -class SignAndVerify(unittest.TestCase): - def _help_test_sign_and_check_good_keys(self, signer, verifier): - msg = randmsg() - - sig = signer.sign(msg) - self.failUnlessEqual(len(sig), SIGBYTES) - self.failUnless(verifier.verify(msg, sig)) - - # Now flip one bit of the signature and make sure that the signature doesn't check. - badsig = flip_one_bit(sig) - self.failIf(verifier.verify(msg, badsig)) - - # Now generate a random signature and make sure that the signature doesn't check. - badsig = randstr(len(sig)) - assert badsig != sig, "Internal error -- randstr() produced the same string twice: %s == %s" % (badsig, sig) - self.failIf(verifier.verify(msg, badsig)) - - # Now flip one bit of the message and make sure that the original signature doesn't check. - badmsg = flip_one_bit(msg) - self.failIf(verifier.verify(badmsg, sig)) - - # Now generate a random message and make sure that the original signature doesn't check. - badmsg = randstr(len(msg)) - assert badmsg != msg, "Internal error -- randstr() produced the same string twice: %s == %s" % (badmsg, msg) - self.failIf(verifier.verify(badmsg, sig)) - - def _help_test_sign_and_check_bad_keys(self, signer, verifier): - """ - Make sure that this signer/verifier pair cannot produce and verify signatures. - """ - msg = randmsg() - - sig = signer.sign(msg) - self.failUnlessEqual(len(sig), SIGBYTES) - self.failIf(verifier.verify(msg, sig)) - - def test(self): - seed = randstr(SEEDBYTES) - signer = ecdsa.SigningKey(seed) - verifier = signer.get_verifying_key() - self._help_test_sign_and_check_good_keys(signer, verifier) - - vstr = verifier.serialize() - self.failUnlessEqual(len(vstr), PUBKEYBYTES) - verifier2 = ecdsa.VerifyingKey(vstr) - self._help_test_sign_and_check_good_keys(signer, verifier2) - - signer2 = ecdsa.SigningKey(seed) - self._help_test_sign_and_check_good_keys(signer2, verifier2) - - verifier3 = signer2.get_verifying_key() - self._help_test_sign_and_check_good_keys(signer, verifier3) - - # Now test various ways that the keys could be corrupted or ill-matched. - - # Flip one bit of the public key. - badvstr = flip_one_bit(vstr) - try: - badverifier = ecdsa.VerifyingKey(badvstr) - except ecdsa.Error: - # Ok, fine, the verifying key was corrupted and Crypto++ detected this fact. - pass - else: - self._help_test_sign_and_check_bad_keys(signer, badverifier) - - # Randomize all bits of the public key. - badvstr = randstr(len(vstr)) - assert badvstr != vstr, "Internal error -- randstr() produced the same string twice: %s == %s" % (badvstr, vstr) - try: - badverifier = ecdsa.VerifyingKey(badvstr) - except ecdsa.Error: - # Ok, fine, the key was corrupted and Crypto++ detected this fact. - pass - else: - self._help_test_sign_and_check_bad_keys(signer, badverifier) - - # Flip one bit of the private key. - badseed = flip_one_bit(seed) - badsigner = ecdsa.SigningKey(badseed) - self._help_test_sign_and_check_bad_keys(badsigner, verifier) - - # Randomize all bits of the private key. - badseed = randstr(len(seed)) - assert badseed != seed, "Internal error -- randstr() produced the same string twice: %s == %s" % (badseed, seed) - badsigner = ecdsa.SigningKey(badseed) - self._help_test_sign_and_check_bad_keys(badsigner, verifier) - -class Compatibility(unittest.TestCase): - def test_compatibility(self): - # Confirm that the KDF used by the SigningKey constructor doesn't - # change without suitable backwards-compability - seed = base64.b32decode('XS27TJRP3JBZKDEFBDKQ====') - signer = ecdsa.SigningKey(seed) - v1 = signer.get_verifying_key() - vs = v1.serialize() - vs32 = base64.b32encode(vs) - self.failUnlessEqual(vs32, "ANPNDWJWHQXYSQMD4L36D7WQEGXA42MS5JRUFIWA") - v2 = ecdsa.VerifyingKey(vs) - #print base64.b32encode(signer.sign("message")) - sig32 = "EA3Y7A4T62J3K6MUPJQN3WJ5S4SS53EGZXOSTQW7EQ7OXEMS6QJLYL63BLHMHZD7KFT37KEPJBAKI===" - sig = base64.b32decode(sig32) - self.failUnless(v1.verify("message", sig)) - self.failUnless(v2.verify("message", sig)) - -if __name__ == "__main__": - unittest.main() diff --git a/pycryptopp/test/test_from_Nikratio.py b/pycryptopp/test/test_from_Nikratio.py deleted file mode 100644 index a991415..0000000 --- a/pycryptopp/test/test_from_Nikratio.py +++ /dev/null @@ -1,32 +0,0 @@ -import unittest - -# This was reported as triggering a "Use of uninitialised value of -# size 4" under valgrind by Nikratio in pycryptopp-0.5.17 and Crypto++ -# 5.6.0. See http://tahoe-lafs.org/trac/pycryptopp/ticket/67 - -class T(unittest.TestCase): - def test_t(self): - import hmac - import pycryptopp - try: - import hashlib - except ImportError: - # Oh nevermind. - return - import struct - - def encrypt(buf, passphrase, nonce): - - key = hashlib.sha256(passphrase + nonce).digest() - cipher = pycryptopp.cipher.aes.AES(key) - hmac_ = hmac.new(key, digestmod=hashlib.sha256) - - hmac_.update(buf) - buf = cipher.process(buf) - hash_ = cipher.process(hmac_.digest()) - - return ''.join( - (struct.pack('<B', len(nonce)), - nonce, hash_, buf)) - - encrypt('foobar', 'passphrase', 'nonce') diff --git a/pycryptopp/test/test_rsa.py b/pycryptopp/test/test_rsa.py deleted file mode 100644 index e4c5497..0000000 --- a/pycryptopp/test/test_rsa.py +++ /dev/null @@ -1,122 +0,0 @@ -#!/usr/bin/env python - -import random - -import unittest - -global VERBOSE -VERBOSE=False - -from pycryptopp.publickey import rsa - -from base64 import b32encode -def ab(x): # debuggery - if len(x) >= 3: - return "%s:%s" % (len(x), b32encode(x[-3:]),) - elif len(x) == 2: - return "%s:%s" % (len(x), b32encode(x[-2:]),) - elif len(x) == 1: - return "%s:%s" % (len(x), b32encode(x[-1:]),) - elif len(x) == 0: - return "%s:%s" % (len(x), "--empty--",) - -def randstr(n): - return ''.join(map(chr, map(random.randrange, [0]*n, [256]*n))) - -KEYSIZE=522 # 522 bits is far too few for actual security -- it is used only for faster unit tests - -class Signer(unittest.TestCase): - def test_generate_bad_size(self): - try: - rsa.generate(KEYSIZE-1) - except rsa.Error, le: - self.failUnless("size in bits is required to be >=" in str(le), le) - else: - self.fail("Should have raised error from size being too small.") - try: - rsa.generate(sizeinbits=KEYSIZE-1) - except rsa.Error, le: - self.failUnless("size in bits is required to be >=" in str(le), le) - else: - self.fail("Should have raised error from size being too small.") - - def test_generate(self): - rsa.generate(KEYSIZE) - # Hooray! It didn't raise an exception! We win! - rsa.generate(sizeinbits=KEYSIZE) - # Hooray! It didn't raise an exception! We win! - - def test_sign(self): - signer = rsa.generate(KEYSIZE) - result = signer.sign("abc") - self.failUnlessEqual(len(result), ((KEYSIZE+7)/8)) - # TODO: test against RSAInc. test vectors. - -class SignAndVerify(unittest.TestCase): - def _help_test_sign_and_check(self, signer, verifier, msg): - sig = signer.sign(msg) - self.failUnlessEqual(len(sig), ((KEYSIZE+7)/8)) - self.failUnless(verifier.verify(msg, sig)) - - def test_sign_and_check_a(self): - signer = rsa.generate(KEYSIZE) - verifier = signer.get_verifying_key() - return self._help_test_sign_and_check(signer, verifier, "a") - - def _help_test_sign_and_check_random(self, signer, verifier): - for i in range(3): - l = random.randrange(0, 2**10) - msg = randstr(l) - self._help_test_sign_and_check(signer, verifier, msg) - - def test_sign_and_check_random(self): - signer = rsa.generate(KEYSIZE) - verifier = signer.get_verifying_key() - return self._help_test_sign_and_check_random(signer, verifier) - - def _help_test_sign_and_failcheck(self, signer, verifier, msg): - sig = signer.sign("a") - sig = sig[:-1] + chr(ord(sig[-1])^0x01) - self.failUnless(not verifier.verify(msg, sig)) - - def test_sign_and_failcheck_a(self): - signer = rsa.generate(KEYSIZE) - verifier = signer.get_verifying_key() - return self._help_test_sign_and_failcheck(signer, verifier, "a") - - def _help_test_sign_and_failcheck_random(self, signer, verifier): - for i in range(3): - l = random.randrange(0, 2**10) - msg = randstr(l) - self._help_test_sign_and_failcheck(signer, verifier, msg) - - def test_sign_and_failcheck_random(self): - signer = rsa.generate(KEYSIZE) - verifier = signer.get_verifying_key() - return self._help_test_sign_and_failcheck_random(signer, verifier) - - def test_serialize_and_deserialize_verifying_key_and_test(self): - signer = rsa.generate(KEYSIZE) - verifier = signer.get_verifying_key() - serstr = verifier.serialize() - verifier = None - newverifier = rsa.create_verifying_key_from_string(serstr) - self._help_test_sign_and_check(signer, newverifier, "a") - self._help_test_sign_and_check_random(signer, newverifier) - self._help_test_sign_and_failcheck(signer, newverifier, "a") - self._help_test_sign_and_failcheck_random(signer, newverifier) - - def test_serialize_and_deserialize_signing_key_and_test(self): - signer = rsa.generate(KEYSIZE) - verifier = signer.get_verifying_key() - serstr = signer.serialize() - signer = None - newsigner = rsa.create_signing_key_from_string(serstr) - self._help_test_sign_and_check(newsigner, verifier, "a") - self._help_test_sign_and_check_random(newsigner, verifier) - self._help_test_sign_and_failcheck(newsigner, verifier, "a") - self._help_test_sign_and_failcheck_random(newsigner, verifier) - - -if __name__ == "__main__": - unittest.main() diff --git a/pycryptopp/test/test_sha256.py b/pycryptopp/test/test_sha256.py deleted file mode 100644 index 5e982dc..0000000 --- a/pycryptopp/test/test_sha256.py +++ /dev/null @@ -1,181 +0,0 @@ -#!/usr/bin/env python - -import random, re - -import unittest - -from binascii import b2a_hex, a2b_hex - -global VERBOSE -VERBOSE=False - -from pycryptopp.hash import sha256 - -from pkg_resources import resource_string - -def resource_string_lines(pkgname, resname): - return split_on_newlines(resource_string(pkgname, resname)) - -from base64 import b32encode -def ab(x): # debuggery - if len(x) >= 3: - return "%s:%s" % (len(x), b32encode(x[-3:]),) - elif len(x) == 2: - return "%s:%s" % (len(x), b32encode(x[-2:]),) - elif len(x) == 1: - return "%s:%s" % (len(x), b32encode(x[-1:]),) - elif len(x) == 0: - return "%s:%s" % (len(x), "--empty--",) - -def randstr(n): - return ''.join(map(chr, map(random.randrange, [0]*n, [256]*n))) - -h0 = a2b_hex("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855") -h_bd = a2b_hex("68325720aabd7c82f30f554b313d0570c95accbb7dc4b5aae11204c08ffe732b") -h_5fd4 = a2b_hex("7c4fbf484498d21b487b9d61de8914b2eadaf2698712936d47c3ada2558f6788") - -class SHA256(unittest.TestCase): - def test_digest(self): - empty_digest = sha256.SHA256().digest() - self.failUnless(isinstance(empty_digest, str)) - self.failUnlessEqual(len(empty_digest), 32) - self.failUnlessEqual(empty_digest, h0) - - def test_hexdigest(self): - empty_hexdigest = sha256.SHA256().hexdigest() - self.failUnlessEqual(a2b_hex(empty_hexdigest), h0) - test_hexdigest.todo = "Not yet implemented: SHA256.hexdigest()." - - def test_onebyte_1(self): - d = sha256.SHA256("\xbd").digest() - self.failUnlessEqual(d, h_bd) - - def test_onebyte_2(self): - s = sha256.SHA256() - s.update("\xbd") - d = s.digest() - self.failUnlessEqual(d, h_bd) - - def test_update(self): - s = sha256.SHA256("\x5f") - s.update("\xd4") - d = s.digest() - self.failUnlessEqual(d, h_5fd4) - - def test_constructor_type_check(self): - self.failUnlessRaises(TypeError, sha256.SHA256, None) - - def test_update_type_check(self): - h = sha256.SHA256() - self.failUnlessRaises(TypeError, h.update, None) - - def test_digest_twice(self): - h = sha256.SHA256() - d1 = h.digest() - self.failUnless(isinstance(d1, str)) - d2 = h.digest() - self.failUnlessEqual(d1, d2) - - def test_digest_then_update_fail(self): - h = sha256.SHA256() - h.digest() - try: - h.update("oops") - except sha256.Error, le: - self.failUnless("digest() has been called" in str(le), le) - - def test_chunksize(self): - # hashes can be computed on arbitrarily-sized chunks - problems = False - for length in range(2, 140): - s = "a"*length - expected = sha256.SHA256(s).hexdigest() - for a in range(0, length): - h = sha256.SHA256() - h.update(s[:a]) - h.update(s[a:]) - got = h.hexdigest() - if got != expected: - problems = True - print len(s[:a]), len(s[a:]), len(s), got, expected - self.failIf(problems) - - def test_recursive_different_chunksizes(self): - """ - Test that updating a hasher with various sized inputs yields - the expected answer. This is somewhat redundant with - test_chunksize(), but that's okay. This one exercises some - slightly different situations (such as finalizing a hash after - different length inputs.) This one is recursive so that there - is a single fixed result that we expect. - """ - hx = sha256.SHA256() - s = ''.join([ chr(c) for c in range(65) ]) - for i in range(0, 65): - hy = sha256.SHA256(s[:i]).digest() - hx.update(hy) - for i in range(0, 65): - hx.update(chr(0xFE)) - hx.update(s[:64]) - self.failUnlessEqual(hx.hexdigest().lower(), '5191c7841dd4e16aa454d40af924585dffc67157ffdbfd0236acddd07901629d') - - -VECTS_RE=re.compile("\nLen = ([0-9]+)\nMsg = ([0-9a-f]+)\nMD = ([0-9a-f]+)") - -# split_on_newlines() copied from pyutil.strutil -def split_on_newlines(s): - """ - Splits s on all of the three newline sequences: "\r\n", "\r", or "\n". - """ - res = [] - for x in s.split('\r\n'): - for y in x.split('\r'): - res.extend(y.split('\n')) - return res - -class SHSVectors(unittest.TestCase): - """ - All of the SHA-256 test vectors from the NIST SHS, in the files distributed - by NIST. (NIST distributes them in a .zip, but we expect them to be - unpacked and in a subdirectory named 'testvectors'). - """ - def test_short(self): - return self._test_vect(resource_string('pycryptopp', 'testvectors/SHA256ShortMsg.txt')) - - def test_long(self): - return self._test_vect(resource_string('pycryptopp', 'testvectors/SHA256LongMsg.txt')) - - def _test_vect(self, vects_str): - for mo in VECTS_RE.finditer(vects_str): - msglenbits = int(mo.group(1)) - assert msglenbits % 8 == 0 - msglen = msglenbits / 8 - msg = a2b_hex(mo.group(2))[:msglen] # The slice is necessary because NIST seems to think that "00" is a reasonable representation for the zero-length string. - assert len(msg) == msglen, (len(msg), msglen) - md = a2b_hex(mo.group(3)) - - computed_md = sha256.SHA256(msg).digest() - self.failUnlessEqual(computed_md, md) - - def test_monte(self): - inlines = resource_string_lines('pycryptopp', 'testvectors/SHA256Monte.txt') - for line in inlines: - line = line.strip() - if line[:7] == 'Seed = ': - seed = a2b_hex(line[7:]) - break - - j = 0 - for line in inlines: - line = line.strip() - if line[:8] == 'COUNT = ': - assert int(line[8:]) == j - elif line[:5] == 'MD = ': - mds = [] - mds.append(seed);mds.append(seed);mds.append(seed); - for i in range(1000): - m = mds[-3]+mds[-2]+mds[-1] - mds.append(sha256.SHA256(m).digest()) - seed = mds[-1] - self.failUnlessEqual(line[5:], b2a_hex(seed)) - j += 1 diff --git a/pycryptopp/test/test_startup.py b/pycryptopp/test/test_startup.py deleted file mode 100644 index 3160feb..0000000 --- a/pycryptopp/test/test_startup.py +++ /dev/null @@ -1,5 +0,0 @@ -import unittest - -class T(unittest.TestCase): - def test_load_dll_twice(self): - pass |