1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
# -*- coding: utf-8 -*-
# keys.py
# Copyright (C) 2013 LEAP
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
Abstact key type and encryption scheme representations.
"""
try:
import simplejson as json
except ImportError:
import json # noqa
import re
from abc import ABCMeta, abstractmethod
from leap.common.check import leap_assert
#
# Dictionary keys used for storing cryptographic keys.
#
KEY_ADDRESS_KEY = 'address'
KEY_TYPE_KEY = 'type'
KEY_ID_KEY = 'key_id'
KEY_FINGERPRINT_KEY = 'fingerprint'
KEY_DATA_KEY = 'key_data'
KEY_PRIVATE_KEY = 'private'
KEY_LENGTH_KEY = 'length'
KEY_EXPIRY_DATE_KEY = 'expiry_date'
KEY_FIRST_SEEN_AT_KEY = 'first_seen_at'
KEY_LAST_AUDITED_AT_KEY = 'last_audited_at'
KEY_VALIDATION_KEY = 'validation'
KEY_TAGS_KEY = 'tags'
#
# Key storage constants
#
KEYMANAGER_KEY_TAG = 'keymanager-key'
#
# key indexing constants.
#
TAGS_PRIVATE_INDEX = 'by-tags-private'
TAGS_ADDRESS_PRIVATE_INDEX = 'by-tags-address-private'
INDEXES = {
TAGS_PRIVATE_INDEX: [
KEY_TAGS_KEY,
'bool(%s)' % KEY_PRIVATE_KEY,
],
TAGS_ADDRESS_PRIVATE_INDEX: [
KEY_TAGS_KEY,
KEY_ADDRESS_KEY,
'bool(%s)' % KEY_PRIVATE_KEY,
]
}
#
# Key handling utilities
#
def is_address(address):
"""
Return whether the given C{address} is in the form user@provider.
@param address: The address to be tested.
@type address: str
@return: Whether C{address} is in the form user@provider.
@rtype: bool
"""
return bool(re.match('[\w.-]+@[\w.-]+', address))
def build_key_from_dict(kClass, address, kdict):
"""
Build an C{kClass} key bound to C{address} based on info in C{kdict}.
@param address: The address bound to the key.
@type address: str
@param kdict: Dictionary with key data.
@type kdict: dict
@return: An instance of the key.
@rtype: C{kClass}
"""
leap_assert(
address == kdict[KEY_ADDRESS_KEY],
'Wrong address in key data.')
return kClass(
address,
key_id=kdict[KEY_ID_KEY],
fingerprint=kdict[KEY_FINGERPRINT_KEY],
key_data=kdict[KEY_DATA_KEY],
private=kdict[KEY_PRIVATE_KEY],
length=kdict[KEY_LENGTH_KEY],
expiry_date=kdict[KEY_EXPIRY_DATE_KEY],
first_seen_at=kdict[KEY_FIRST_SEEN_AT_KEY],
last_audited_at=kdict[KEY_LAST_AUDITED_AT_KEY],
validation=kdict[KEY_VALIDATION_KEY], # TODO: verify for validation.
)
#
# Abstraction for encryption keys
#
class EncryptionKey(object):
"""
Abstract class for encryption keys.
A key is "validated" if the nicknym agent has bound the user address to a
public key. Nicknym supports three different levels of key validation:
* Level 3 - path trusted: A path of cryptographic signatures can be traced
from a trusted key to the key under evaluation. By default, only the
provider key from the user's provider is a "trusted key".
* level 2 - provider signed: The key has been signed by a provider key for
the same domain, but the provider key is not validated using a trust
path (i.e. it is only registered)
* level 1 - registered: The key has been encountered and saved, it has no
signatures (that are meaningful to the nicknym agent).
"""
__metaclass__ = ABCMeta
def __init__(self, address, key_id=None, fingerprint=None,
key_data=None, private=None, length=None, expiry_date=None,
validation=None, first_seen_at=None, last_audited_at=None):
self.address = address
self.key_id = key_id
self.fingerprint = fingerprint
self.key_data = key_data
self.private = private
self.length = length
self.expiry_date = expiry_date
self.validation = validation
self.first_seen_at = first_seen_at
self.last_audited_at = last_audited_at
def get_json(self):
"""
Return a JSON string describing this key.
@return: The JSON string describing this key.
@rtype: str
"""
return json.dumps({
KEY_ADDRESS_KEY: self.address,
KEY_TYPE_KEY: str(self.__class__),
KEY_ID_KEY: self.key_id,
KEY_FINGERPRINT_KEY: self.fingerprint,
KEY_DATA_KEY: self.key_data,
KEY_PRIVATE_KEY: self.private,
KEY_LENGTH_KEY: self.length,
KEY_EXPIRY_DATE_KEY: self.expiry_date,
KEY_VALIDATION_KEY: self.validation,
KEY_FIRST_SEEN_AT_KEY: self.first_seen_at,
KEY_LAST_AUDITED_AT_KEY: self.last_audited_at,
KEY_TAGS_KEY: [KEYMANAGER_KEY_TAG],
})
def __repr__(self):
"""
Representation of this class
"""
return u"<%s 0x%s (%s - %s)>" % (
self.__class__.__name__,
self.key_id,
self.address,
"priv" if self.private else "publ")
#
# Encryption schemes
#
class EncryptionScheme(object):
"""
Abstract class for Encryption Schemes.
A wrapper for a certain encryption schemes should know how to get and put
keys in local storage using Soledad, how to generate new keys and how to
find out about possibly encrypted content.
"""
__metaclass__ = ABCMeta
def __init__(self, soledad):
"""
Initialize this Encryption Scheme.
@param soledad: A Soledad instance for local storage of keys.
@type soledad: leap.soledad.Soledad
"""
self._soledad = soledad
self._init_indexes()
def _init_indexes(self):
"""
Initialize the database indexes.
"""
# Ask the database for currently existing indexes.
db_indexes = dict(self._soledad.list_indexes())
# Loop through the indexes we expect to find.
for name, expression in INDEXES.items():
if name not in db_indexes:
# The index does not yet exist.
self._soledad.create_index(name, *expression)
continue
if expression == db_indexes[name]:
# The index exists and is up to date.
continue
# The index exists but the definition is not what expected, so we
# delete it and add the proper index expression.
self._soledad.delete_index(name)
self._soledad.create_index(name, *expression)
@abstractmethod
def get_key(self, address, private=False):
"""
Get key from local storage.
@param address: The address bound to the key.
@type address: str
@param private: Look for a private key instead of a public one?
@type private: bool
@return: The key bound to C{address}.
@rtype: EncryptionKey
@raise KeyNotFound: If the key was not found on local storage.
"""
pass
@abstractmethod
def put_key(self, key):
"""
Put a key in local storage.
@param key: The key to be stored.
@type key: EncryptionKey
"""
pass
@abstractmethod
def gen_key(self, address):
"""
Generate a new key.
@param address: The address bound to the key.
@type address: str
@return: The key bound to C{address}.
@rtype: EncryptionKey
"""
pass
@abstractmethod
def delete_key(self, key):
"""
Remove C{key} from storage.
@param key: The key to be removed.
@type key: EncryptionKey
"""
pass
|