# -*- coding: utf-8 -*- # openpgp.py # Copyright (C) 2013 LEAP # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . """ Infrastructure for using OpenPGP keys in Key Manager. """ import re import tempfile import shutil from leap.common.check import leap_assert, leap_assert_type from leap.common.keymanager.errors import ( KeyNotFound, KeyAlreadyExists, KeyAttributesDiffer ) from leap.common.keymanager.keys import ( EncryptionKey, EncryptionScheme, is_address, keymanager_doc_id, build_key_from_dict, ) from leap.common.keymanager.gpg import GPGWrapper # # API functions # def encrypt_sym(data, passphrase): """ Encrypt C{data} with C{passphrase}. @param data: The data to be encrypted. @type data: str @param passphrase: The passphrase used to encrypt C{data}. @type passphrase: str @return: The encrypted data. @rtype: str """ def _encrypt_cb(gpg): return gpg.encrypt( data, None, passphrase=passphrase, symmetric=True).data return _safe_call(_encrypt_cb) def decrypt_sym(data, passphrase): """ Decrypt C{data} with C{passphrase}. @param data: The data to be decrypted. @type data: str @param passphrase: The passphrase used to decrypt C{data}. @type passphrase: str @return: The decrypted data. @rtype: str """ def _decrypt_cb(gpg): return gpg.decrypt(data, passphrase=passphrase).data return _safe_call(_decrypt_cb) def encrypt_asym(data, key): """ Encrypt C{data} using public @{key}. @param data: The data to be encrypted. @type data: str @param key: The key used to encrypt. @type key: OpenPGPKey @return: The encrypted data. @rtype: str """ leap_assert(key.private is False, 'Key is not public.') def _encrypt_cb(gpg): return gpg.encrypt( data, key.fingerprint, symmetric=False).data return _safe_call(_encrypt_cb, key.key_data) def decrypt_asym(data, key): """ Decrypt C{data} using private @{key}. @param data: The data to be decrypted. @type data: str @param key: The key used to decrypt. @type key: OpenPGPKey @return: The decrypted data. @rtype: str """ leap_assert(key.private is True, 'Key is not private.') def _decrypt_cb(gpg): return gpg.decrypt(data).data return _safe_call(_decrypt_cb, key.key_data) def is_encrypted(data): """ Return whether C{data} was encrypted using OpenPGP. @param data: The data we want to know about. @type data: str @return: Whether C{data} was encrypted using this wrapper. @rtype: bool """ def _is_encrypted_cb(gpg): return gpg.is_encrypted(data) return _safe_call(_is_encrypted_cb) def is_encrypted_sym(data): """ Return whether C{data} was encrypted using a public OpenPGP key. @param data: The data we want to know about. @type data: str @return: Whether C{data} was encrypted using this wrapper. @rtype: bool """ def _is_encrypted_cb(gpg): return gpg.is_encrypted_sym(data) return _safe_call(_is_encrypted_cb) def is_encrypted_asym(data): """ Return whether C{data} was asymmetrically encrypted using OpenPGP. @param data: The data we want to know about. @type data: str @return: Whether C{data} was encrypted using this wrapper. @rtype: bool """ def _is_encrypted_cb(gpg): return gpg.is_encrypted_asym(data) return _safe_call(_is_encrypted_cb) def sign(data, key): """ Sign C{data} with C{key}. @param data: The data to be signed. @type data: str @param key: The key to be used to sign. @type key: OpenPGPKey @return: The ascii-armored signed data. @rtype: str """ leap_assert_type(key, OpenPGPKey) leap_assert(key.private == True) def _sign_cb(gpg): return gpg.sign(data, keyid=key.key_id).data return _safe_call(_sign_cb, key.key_data) def verify(data, key): """ Verify signed C{data} with C{key}. @param data: The data to be verified. @type data: str @param key: The key to be used on verification. @type key: OpenPGPKey @return: The ascii-armored signed data. @rtype: str """ leap_assert_type(key, OpenPGPKey) leap_assert(key.private == False) def _verify_cb(gpg): return gpg.verify(data).valid return _safe_call(_verify_cb, key.key_data) # # Helper functions # def _build_key_from_gpg(address, key, key_data): """ Build an OpenPGPKey for C{address} based on C{key} from local gpg storage. ASCII armored GPG key data has to be queried independently in this wrapper, so we receive it in C{key_data}. @param address: The address bound to the key. @type address: str @param key: Key obtained from GPG storage. @type key: dict @param key_data: Key data obtained from GPG storage. @type key_data: str @return: An instance of the key. @rtype: OpenPGPKey """ return OpenPGPKey( address, key_id=key['keyid'], fingerprint=key['fingerprint'], key_data=key_data, private=True if key['type'] == 'sec' else False, length=key['length'], expiry_date=key['expires'], validation=None, # TODO: verify for validation. ) def _build_unitary_gpgwrapper(key_data=None): """ Return a temporary GPG wrapper keyring containing exactly zero or one keys. Temporary unitary keyrings allow the to use GPG's facilities for exactly one key. This function creates an empty temporary keyring and imports C{key_data} if it is not None. @param key_data: ASCII armored key data. @type key_data: str @return: A GPG wrapper with a unitary keyring. @rtype: gnupg.GPG """ tmpdir = tempfile.mkdtemp() gpg = GPGWrapper(gnupghome=tmpdir) leap_assert(len(gpg.list_keys()) is 0, 'Keyring not empty.') if key_data: gpg.import_keys(key_data) leap_assert( len(gpg.list_keys()) is 1, 'Unitary keyring has wrong number of keys: %d.' % len(gpg.list_keys())) return gpg def _destroy_unitary_gpgwrapper(gpg): """ Securely erase a unitary keyring. @param gpg: A GPG wrapper instance. @type gpg: gnupg.GPG """ for secret in [True, False]: for key in gpg.list_keys(secret=secret): gpg.delete_keys( key['fingerprint'], secret=secret) leap_assert(len(gpg.list_keys()) is 0, 'Keyring not empty!') # TODO: implement some kind of wiping of data or a more secure way that # does not write to disk. shutil.rmtree(gpg.gnupghome) def _safe_call(callback, key_data=None, **kwargs): """ Run C{callback} in an unitary keyring containing C{key_data}. @param callback: Function whose first argument is the gpg keyring. @type callback: function(gnupg.GPG) @param key_data: ASCII armored key data. @type key_data: str @param **kwargs: Other eventual parameters for the callback. @type **kwargs: **dict @return: The results of the callback. @rtype: str or bool """ gpg = _build_unitary_gpgwrapper(key_data) val = callback(gpg, **kwargs) _destroy_unitary_gpgwrapper(gpg) return val # # The OpenPGP wrapper # class OpenPGPKey(EncryptionKey): """ Base class for OpenPGP keys. """ class OpenPGPScheme(EncryptionScheme): """ A wrapper for OpenPGP keys. """ def __init__(self, soledad): """ Initialize the OpenPGP wrapper. @param soledad: A Soledad instance for key storage. @type soledad: leap.soledad.Soledad """ EncryptionScheme.__init__(self, soledad) def gen_key(self, address): """ Generate an OpenPGP keypair bound to C{address}. @param address: The address bound to the key. @type address: str @return: The key bound to C{address}. @rtype: OpenPGPKey @raise KeyAlreadyExists: If key already exists in local database. """ # make sure the key does not already exist leap_assert(is_address(address), 'Not an user address: %s' % address) try: self.get_key(address) raise KeyAlreadyExists(address) except KeyNotFound: pass def _gen_key_cb(gpg): params = gpg.gen_key_input( key_type='RSA', key_length=4096, name_real=address, name_email=address, name_comment='Generated by LEAP Key Manager.') gpg.gen_key(params) pubkeys = gpg.list_keys() # assert for new key characteristics leap_assert( len(pubkeys) is 1, # a unitary keyring! 'Keyring has wrong number of keys: %d.' % len(pubkeys)) key = gpg.list_keys(secret=True).pop() leap_assert( len(key['uids']) is 1, # with just one uid! 'Wrong number of uids for key: %d.' % len(key['uids'])) leap_assert( re.match('.*<%s>$' % address, key['uids'][0]) is not None, 'Key not correctly bound to address.') # insert both public and private keys in storage for secret in [True, False]: key = gpg.list_keys(secret=secret).pop() openpgp_key = _build_key_from_gpg( address, key, gpg.export_keys(key['fingerprint'], secret=secret)) self.put_key(openpgp_key) _safe_call(_gen_key_cb) return self.get_key(address, private=True) def get_key(self, address, private=False): """ Get key bound to C{address} from local storage. @param address: The address bound to the key. @type address: str @param private: Look for a private key instead of a public one? @type private: bool @return: The key bound to C{address}. @rtype: OpenPGPKey @raise KeyNotFound: If the key was not found on local storage. """ leap_assert(is_address(address), 'Not an user address: %s' % address) doc = self._get_key_doc(address, private) if doc is None: raise KeyNotFound(address) return build_key_from_dict(OpenPGPKey, address, doc.content) def put_key_raw(self, data): """ Put key contained in raw C{data} in local storage. @param data: The key data to be stored. @type data: str """ # TODO: add more checks for correct key data. leap_assert(data is not None, 'Data does not represent a key.') def _put_key_raw_cb(gpg): privkey = None pubkey = None try: privkey = gpg.list_keys(secret=True).pop() except IndexError: pass pubkey = gpg.list_keys(secret=False).pop() # unitary keyring # extract adress from first uid on key match = re.match('.*<([\w.-]+@[\w.-]+)>.*', pubkey['uids'].pop()) leap_assert(match is not None, 'No user address in key data.') address = match.group(1) if privkey is not None: match = re.match( '.*<([\w.-]+@[\w.-]+)>.*', privkey['uids'].pop()) leap_assert(match is not None, 'No user address in key data.') privaddress = match.group(1) leap_assert( address == privaddress, 'Addresses in pub and priv key differ.') leap_assert( pubkey['fingerprint'] == privkey['fingerprint'], 'Fingerprints for pub and priv key differ.') # insert private key in storage openpgp_privkey = _build_key_from_gpg( address, privkey, gpg.export_keys(privkey['fingerprint'], secret=True)) self.put_key(openpgp_privkey) # insert public key in storage openpgp_pubkey = _build_key_from_gpg( address, pubkey, gpg.export_keys(pubkey['fingerprint'], secret=False)) self.put_key(openpgp_pubkey) _safe_call(_put_key_raw_cb, data) def put_key(self, key): """ Put C{key} in local storage. @param key: The key to be stored. @type key: OpenPGPKey """ doc = self._get_key_doc(key.address, private=key.private) if doc is None: self._soledad.create_doc_from_json( key.get_json(), doc_id=keymanager_doc_id( OpenPGPKey, key.address, key.private)) else: doc.set_json(key.get_json()) self._soledad.put_doc(doc) def _get_key_doc(self, address, private=False): """ Get the document with a key (public, by default) bound to C{address}. If C{private} is True, looks for a private key instead of a public. @param address: The address bound to the key. @type address: str @param private: Whether to look for a private key. @type private: bool @return: The document with the key or None if it does not exist. @rtype: leap.soledad.backends.leap_backend.LeapDocument """ return self._soledad.get_doc( keymanager_doc_id(OpenPGPKey, address, private)) def delete_key(self, key): """ Remove C{key} from storage. @param key: The key to be removed. @type key: EncryptionKey """ leap_assert(key.__class__ is OpenPGPKey, 'Wrong key type.') stored_key = self.get_key(key.address, private=key.private) if stored_key is None: raise KeyNotFound(key) if stored_key.__dict__ != key.__dict__: raise KeyAttributesDiffer(key) doc = self._soledad.get_doc( keymanager_doc_id(OpenPGPKey, key.address, key.private)) self._soledad.delete_doc(doc)