summaryrefslogtreecommitdiff
path: root/main/openssl/crypto/bn/asm/s390x-mont.pl
blob: f61246f5b6ab679b3767a4372481d810dd424312 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env perl

# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# April 2007.
#
# Performance improvement over vanilla C code varies from 85% to 45%
# depending on key length and benchmark. Unfortunately in this context
# these are not very impressive results [for code that utilizes "wide"
# 64x64=128-bit multiplication, which is not commonly available to C
# programmers], at least hand-coded bn_asm.c replacement is known to
# provide 30-40% better results for longest keys. Well, on a second
# thought it's not very surprising, because z-CPUs are single-issue
# and _strictly_ in-order execution, while bn_mul_mont is more or less
# dependent on CPU ability to pipe-line instructions and have several
# of them "in-flight" at the same time. I mean while other methods,
# for example Karatsuba, aim to minimize amount of multiplications at
# the cost of other operations increase, bn_mul_mont aim to neatly
# "overlap" multiplications and the other operations [and on most
# platforms even minimize the amount of the other operations, in
# particular references to memory]. But it's possible to improve this
# module performance by implementing dedicated squaring code-path and
# possibly by unrolling loops...

# January 2009.
#
# Reschedule to minimize/avoid Address Generation Interlock hazard,
# make inner loops counter-based.

$mn0="%r0";
$num="%r1";

# int bn_mul_mont(
$rp="%r2";		# BN_ULONG *rp,
$ap="%r3";		# const BN_ULONG *ap,
$bp="%r4";		# const BN_ULONG *bp,
$np="%r5";		# const BN_ULONG *np,
$n0="%r6";		# const BN_ULONG *n0,
#$num="160(%r15)"	# int num);

$bi="%r2";	# zaps rp
$j="%r7";

$ahi="%r8";
$alo="%r9";
$nhi="%r10";
$nlo="%r11";
$AHI="%r12";
$NHI="%r13";
$count="%r14";
$sp="%r15";

$code.=<<___;
.text
.globl	bn_mul_mont
.type	bn_mul_mont,\@function
bn_mul_mont:
	lgf	$num,164($sp)	# pull $num
	sla	$num,3		# $num to enumerate bytes
	la	$bp,0($num,$bp)

	stg	%r2,16($sp)

	cghi	$num,16		#
	lghi	%r2,0		#
	blr	%r14		# if($num<16) return 0;
	cghi	$num,96		#
	bhr	%r14		# if($num>96) return 0;

	stmg	%r3,%r15,24($sp)

	lghi	$rp,-160-8	# leave room for carry bit
	lcgr	$j,$num		# -$num
	lgr	%r0,$sp
	la	$rp,0($rp,$sp)
	la	$sp,0($j,$rp)	# alloca
	stg	%r0,0($sp)	# back chain

	sra	$num,3		# restore $num
	la	$bp,0($j,$bp)	# restore $bp
	ahi	$num,-1		# adjust $num for inner loop
	lg	$n0,0($n0)	# pull n0

	lg	$bi,0($bp)
	lg	$alo,0($ap)
	mlgr	$ahi,$bi	# ap[0]*bp[0]
	lgr	$AHI,$ahi

	lgr	$mn0,$alo	# "tp[0]"*n0
	msgr	$mn0,$n0

	lg	$nlo,0($np)	#
	mlgr	$nhi,$mn0	# np[0]*m1
	algr	$nlo,$alo	# +="tp[0]"
	lghi	$NHI,0
	alcgr	$NHI,$nhi

	la	$j,8(%r0)	# j=1
	lr	$count,$num

.align	16
.L1st:
	lg	$alo,0($j,$ap)
	mlgr	$ahi,$bi	# ap[j]*bp[0]
	algr	$alo,$AHI
	lghi	$AHI,0
	alcgr	$AHI,$ahi

	lg	$nlo,0($j,$np)
	mlgr	$nhi,$mn0	# np[j]*m1
	algr	$nlo,$NHI
	lghi	$NHI,0
	alcgr	$nhi,$NHI	# +="tp[j]"
	algr	$nlo,$alo
	alcgr	$NHI,$nhi

	stg	$nlo,160-8($j,$sp)	# tp[j-1]=
	la	$j,8($j)	# j++
	brct	$count,.L1st

	algr	$NHI,$AHI
	lghi	$AHI,0
	alcgr	$AHI,$AHI	# upmost overflow bit
	stg	$NHI,160-8($j,$sp)
	stg	$AHI,160($j,$sp)
	la	$bp,8($bp)	# bp++

.Louter:
	lg	$bi,0($bp)	# bp[i]
	lg	$alo,0($ap)
	mlgr	$ahi,$bi	# ap[0]*bp[i]
	alg	$alo,160($sp)	# +=tp[0]
	lghi	$AHI,0
	alcgr	$AHI,$ahi

	lgr	$mn0,$alo
	msgr	$mn0,$n0	# tp[0]*n0

	lg	$nlo,0($np)	# np[0]
	mlgr	$nhi,$mn0	# np[0]*m1
	algr	$nlo,$alo	# +="tp[0]"
	lghi	$NHI,0
	alcgr	$NHI,$nhi

	la	$j,8(%r0)	# j=1
	lr	$count,$num

.align	16
.Linner:
	lg	$alo,0($j,$ap)
	mlgr	$ahi,$bi	# ap[j]*bp[i]
	algr	$alo,$AHI
	lghi	$AHI,0
	alcgr	$ahi,$AHI
	alg	$alo,160($j,$sp)# +=tp[j]
	alcgr	$AHI,$ahi

	lg	$nlo,0($j,$np)
	mlgr	$nhi,$mn0	# np[j]*m1
	algr	$nlo,$NHI
	lghi	$NHI,0
	alcgr	$nhi,$NHI
	algr	$nlo,$alo	# +="tp[j]"
	alcgr	$NHI,$nhi

	stg	$nlo,160-8($j,$sp)	# tp[j-1]=
	la	$j,8($j)	# j++
	brct	$count,.Linner

	algr	$NHI,$AHI
	lghi	$AHI,0
	alcgr	$AHI,$AHI
	alg	$NHI,160($j,$sp)# accumulate previous upmost overflow bit
	lghi	$ahi,0
	alcgr	$AHI,$ahi	# new upmost overflow bit
	stg	$NHI,160-8($j,$sp)
	stg	$AHI,160($j,$sp)

	la	$bp,8($bp)	# bp++
	clg	$bp,160+8+32($j,$sp)	# compare to &bp[num]
	jne	.Louter

	lg	$rp,160+8+16($j,$sp)	# reincarnate rp
	la	$ap,160($sp)
	ahi	$num,1		# restore $num, incidentally clears "borrow"

	la	$j,0(%r0)
	lr	$count,$num
.Lsub:	lg	$alo,0($j,$ap)
	slbg	$alo,0($j,$np)
	stg	$alo,0($j,$rp)
	la	$j,8($j)
	brct	$count,.Lsub
	lghi	$ahi,0
	slbgr	$AHI,$ahi	# handle upmost carry

	ngr	$ap,$AHI
	lghi	$np,-1
	xgr	$np,$AHI
	ngr	$np,$rp
	ogr	$ap,$np		# ap=borrow?tp:rp

	la	$j,0(%r0)
	lgr	$count,$num
.Lcopy:	lg	$alo,0($j,$ap)	# copy or in-place refresh
	stg	$j,160($j,$sp)	# zap tp
	stg	$alo,0($j,$rp)
	la	$j,8($j)
	brct	$count,.Lcopy

	la	%r1,160+8+48($j,$sp)
	lmg	%r6,%r15,0(%r1)
	lghi	%r2,1		# signal "processed"
	br	%r14
.size	bn_mul_mont,.-bn_mul_mont
.string	"Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
___

print $code;
close STDOUT;