diff options
Diffstat (limited to 'openssl/crypto/rc4/asm')
-rw-r--r-- | openssl/crypto/rc4/asm/rc4-586.pl | 270 | ||||
-rw-r--r-- | openssl/crypto/rc4/asm/rc4-ia64.pl | 755 | ||||
-rw-r--r-- | openssl/crypto/rc4/asm/rc4-s390x.pl | 205 | ||||
-rwxr-xr-x | openssl/crypto/rc4/asm/rc4-x86_64.pl | 504 |
4 files changed, 1734 insertions, 0 deletions
diff --git a/openssl/crypto/rc4/asm/rc4-586.pl b/openssl/crypto/rc4/asm/rc4-586.pl new file mode 100644 index 00000000..38a44a70 --- /dev/null +++ b/openssl/crypto/rc4/asm/rc4-586.pl @@ -0,0 +1,270 @@ +#!/usr/bin/env perl + +# ==================================================================== +# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== + +# At some point it became apparent that the original SSLeay RC4 +# assembler implementation performs suboptimally on latest IA-32 +# microarchitectures. After re-tuning performance has changed as +# following: +# +# Pentium -10% +# Pentium III +12% +# AMD +50%(*) +# P4 +250%(**) +# +# (*) This number is actually a trade-off:-) It's possible to +# achieve +72%, but at the cost of -48% off PIII performance. +# In other words code performing further 13% faster on AMD +# would perform almost 2 times slower on Intel PIII... +# For reference! This code delivers ~80% of rc4-amd64.pl +# performance on the same Opteron machine. +# (**) This number requires compressed key schedule set up by +# RC4_set_key [see commentary below for further details]. +# +# <appro@fy.chalmers.se> + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; +push(@INC,"${dir}","${dir}../../perlasm"); +require "x86asm.pl"; + +&asm_init($ARGV[0],"rc4-586.pl"); + +$xx="eax"; +$yy="ebx"; +$tx="ecx"; +$ty="edx"; +$inp="esi"; +$out="ebp"; +$dat="edi"; + +sub RC4_loop { + my $i=shift; + my $func = ($i==0)?*mov:*or; + + &add (&LB($yy),&LB($tx)); + &mov ($ty,&DWP(0,$dat,$yy,4)); + &mov (&DWP(0,$dat,$yy,4),$tx); + &mov (&DWP(0,$dat,$xx,4),$ty); + &add ($ty,$tx); + &inc (&LB($xx)); + &and ($ty,0xff); + &ror ($out,8) if ($i!=0); + if ($i<3) { + &mov ($tx,&DWP(0,$dat,$xx,4)); + } else { + &mov ($tx,&wparam(3)); # reload [re-biased] out + } + &$func ($out,&DWP(0,$dat,$ty,4)); +} + +# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); +&function_begin("RC4"); + &mov ($dat,&wparam(0)); # load key schedule pointer + &mov ($ty, &wparam(1)); # load len + &mov ($inp,&wparam(2)); # load inp + &mov ($out,&wparam(3)); # load out + + &xor ($xx,$xx); # avoid partial register stalls + &xor ($yy,$yy); + + &cmp ($ty,0); # safety net + &je (&label("abort")); + + &mov (&LB($xx),&BP(0,$dat)); # load key->x + &mov (&LB($yy),&BP(4,$dat)); # load key->y + &add ($dat,8); + + &lea ($tx,&DWP(0,$inp,$ty)); + &sub ($out,$inp); # re-bias out + &mov (&wparam(1),$tx); # save input+len + + &inc (&LB($xx)); + + # detect compressed key schedule... + &cmp (&DWP(256,$dat),-1); + &je (&label("RC4_CHAR")); + + &mov ($tx,&DWP(0,$dat,$xx,4)); + + &and ($ty,-4); # how many 4-byte chunks? + &jz (&label("loop1")); + + &lea ($ty,&DWP(-4,$inp,$ty)); + &mov (&wparam(2),$ty); # save input+(len/4)*4-4 + &mov (&wparam(3),$out); # $out as accumulator in this loop + + &set_label("loop4",16); + for ($i=0;$i<4;$i++) { RC4_loop($i); } + &ror ($out,8); + &xor ($out,&DWP(0,$inp)); + &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 + &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here + &lea ($inp,&DWP(4,$inp)); + &mov ($tx,&DWP(0,$dat,$xx,4)); + &jb (&label("loop4")); + + &cmp ($inp,&wparam(1)); # compare to input+len + &je (&label("done")); + &mov ($out,&wparam(3)); # restore $out + + &set_label("loop1",16); + &add (&LB($yy),&LB($tx)); + &mov ($ty,&DWP(0,$dat,$yy,4)); + &mov (&DWP(0,$dat,$yy,4),$tx); + &mov (&DWP(0,$dat,$xx,4),$ty); + &add ($ty,$tx); + &inc (&LB($xx)); + &and ($ty,0xff); + &mov ($ty,&DWP(0,$dat,$ty,4)); + &xor (&LB($ty),&BP(0,$inp)); + &lea ($inp,&DWP(1,$inp)); + &mov ($tx,&DWP(0,$dat,$xx,4)); + &cmp ($inp,&wparam(1)); # compare to input+len + &mov (&BP(-1,$out,$inp),&LB($ty)); + &jb (&label("loop1")); + + &jmp (&label("done")); + +# this is essentially Intel P4 specific codepath... +&set_label("RC4_CHAR",16); + &movz ($tx,&BP(0,$dat,$xx)); + # strangely enough unrolled loop performs over 20% slower... + &set_label("cloop1"); + &add (&LB($yy),&LB($tx)); + &movz ($ty,&BP(0,$dat,$yy)); + &mov (&BP(0,$dat,$yy),&LB($tx)); + &mov (&BP(0,$dat,$xx),&LB($ty)); + &add (&LB($ty),&LB($tx)); + &movz ($ty,&BP(0,$dat,$ty)); + &add (&LB($xx),1); + &xor (&LB($ty),&BP(0,$inp)); + &lea ($inp,&DWP(1,$inp)); + &movz ($tx,&BP(0,$dat,$xx)); + &cmp ($inp,&wparam(1)); + &mov (&BP(-1,$out,$inp),&LB($ty)); + &jb (&label("cloop1")); + +&set_label("done"); + &dec (&LB($xx)); + &mov (&BP(-4,$dat),&LB($yy)); # save key->y + &mov (&BP(-8,$dat),&LB($xx)); # save key->x +&set_label("abort"); +&function_end("RC4"); + +######################################################################## + +$inp="esi"; +$out="edi"; +$idi="ebp"; +$ido="ecx"; +$idx="edx"; + +&external_label("OPENSSL_ia32cap_P"); + +# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); +&function_begin("RC4_set_key"); + &mov ($out,&wparam(0)); # load key + &mov ($idi,&wparam(1)); # load len + &mov ($inp,&wparam(2)); # load data + &picmeup($idx,"OPENSSL_ia32cap_P"); + + &lea ($out,&DWP(2*4,$out)); # &key->data + &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end + &neg ($idi); + &xor ("eax","eax"); + &mov (&DWP(-4,$out),$idi); # borrow key->y + + &bt (&DWP(0,$idx),20); # check for bit#20 + &jc (&label("c1stloop")); + +&set_label("w1stloop",16); + &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; + &add (&LB("eax"),1); # i++; + &jnc (&label("w1stloop")); + + &xor ($ido,$ido); + &xor ($idx,$idx); + +&set_label("w2ndloop",16); + &mov ("eax",&DWP(0,$out,$ido,4)); + &add (&LB($idx),&BP(0,$inp,$idi)); + &add (&LB($idx),&LB("eax")); + &add ($idi,1); + &mov ("ebx",&DWP(0,$out,$idx,4)); + &jnz (&label("wnowrap")); + &mov ($idi,&DWP(-4,$out)); + &set_label("wnowrap"); + &mov (&DWP(0,$out,$idx,4),"eax"); + &mov (&DWP(0,$out,$ido,4),"ebx"); + &add (&LB($ido),1); + &jnc (&label("w2ndloop")); +&jmp (&label("exit")); + +# Unlike all other x86 [and x86_64] implementations, Intel P4 core +# [including EM64T] was found to perform poorly with above "32-bit" key +# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded +# assembler turned out to be 3.5x if re-coded for compressed 8-bit one, +# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit +# schedule for x86[_64], because non-P4 implementations suffer from +# significant performance losses then, e.g. PIII exhibits >2x +# deterioration, and so does Opteron. In order to assure optimal +# all-round performance, we detect P4 at run-time and set up compressed +# key schedule, which is recognized by RC4 procedure. + +&set_label("c1stloop",16); + &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; + &add (&LB("eax"),1); # i++; + &jnc (&label("c1stloop")); + + &xor ($ido,$ido); + &xor ($idx,$idx); + &xor ("ebx","ebx"); + +&set_label("c2ndloop",16); + &mov (&LB("eax"),&BP(0,$out,$ido)); + &add (&LB($idx),&BP(0,$inp,$idi)); + &add (&LB($idx),&LB("eax")); + &add ($idi,1); + &mov (&LB("ebx"),&BP(0,$out,$idx)); + &jnz (&label("cnowrap")); + &mov ($idi,&DWP(-4,$out)); + &set_label("cnowrap"); + &mov (&BP(0,$out,$idx),&LB("eax")); + &mov (&BP(0,$out,$ido),&LB("ebx")); + &add (&LB($ido),1); + &jnc (&label("c2ndloop")); + + &mov (&DWP(256,$out),-1); # mark schedule as compressed + +&set_label("exit"); + &xor ("eax","eax"); + &mov (&DWP(-8,$out),"eax"); # key->x=0; + &mov (&DWP(-4,$out),"eax"); # key->y=0; +&function_end("RC4_set_key"); + +# const char *RC4_options(void); +&function_begin_B("RC4_options"); + &call (&label("pic_point")); +&set_label("pic_point"); + &blindpop("eax"); + &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); + &picmeup("edx","OPENSSL_ia32cap_P"); + &bt (&DWP(0,"edx"),20); + &jnc (&label("skip")); + &add ("eax",12); + &set_label("skip"); + &ret (); +&set_label("opts",64); +&asciz ("rc4(4x,int)"); +&asciz ("rc4(1x,char)"); +&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); +&align (64); +&function_end_B("RC4_options"); + +&asm_finish(); + diff --git a/openssl/crypto/rc4/asm/rc4-ia64.pl b/openssl/crypto/rc4/asm/rc4-ia64.pl new file mode 100644 index 00000000..49cd5b5e --- /dev/null +++ b/openssl/crypto/rc4/asm/rc4-ia64.pl @@ -0,0 +1,755 @@ +#!/usr/bin/env perl +# +# ==================================================================== +# Written by David Mosberger <David.Mosberger@acm.org> based on the +# Itanium optimized Crypto code which was released by HP Labs at +# http://www.hpl.hp.com/research/linux/crypto/. +# +# Copyright (c) 2005 Hewlett-Packard Development Company, L.P. +# +# Permission is hereby granted, free of charge, to any person obtaining +# a copy of this software and associated documentation files (the +# "Software"), to deal in the Software without restriction, including +# without limitation the rights to use, copy, modify, merge, publish, +# distribute, sublicense, and/or sell copies of the Software, and to +# permit persons to whom the Software is furnished to do so, subject to +# the following conditions: +# +# The above copyright notice and this permission notice shall be +# included in all copies or substantial portions of the Software. + +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ + + + +# This is a little helper program which generates a software-pipelined +# for RC4 encryption. The basic algorithm looks like this: +# +# for (counter = 0; counter < len; ++counter) +# { +# in = inp[counter]; +# SI = S[I]; +# J = (SI + J) & 0xff; +# SJ = S[J]; +# T = (SI + SJ) & 0xff; +# S[I] = SJ, S[J] = SI; +# ST = S[T]; +# outp[counter] = in ^ ST; +# I = (I + 1) & 0xff; +# } +# +# Pipelining this loop isn't easy, because the stores to the S[] array +# need to be observed in the right order. The loop generated by the +# code below has the following pipeline diagram: +# +# cycle +# | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 | +# iter +# 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx +# 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx +# 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx +# +# where: +# LDI = load of S[I] +# LDJ = load of S[J] +# SWP = swap of S[I] and S[J] +# LDT = load of S[T] +# +# Note that in the above diagram, the major trouble-spot is that LDI +# of the 2nd iteration is performed BEFORE the SWP of the first +# iteration. Fortunately, this is easy to detect (I of the 1st +# iteration will be equal to J of the 2nd iteration) and when this +# happens, we simply forward the proper value from the 1st iteration +# to the 2nd one. The proper value in this case is simply the value +# of S[I] from the first iteration (thanks to the fact that SWP +# simply swaps the contents of S[I] and S[J]). +# +# Another potential trouble-spot is in cycle 7, where SWP of the 1st +# iteration issues at the same time as the LDI of the 3rd iteration. +# However, thanks to IA-64 execution semantics, this can be taken +# care of simply by placing LDI later in the instruction-group than +# SWP. IA-64 CPUs will automatically forward the value if they +# detect that the SWP and LDI are accessing the same memory-location. + +# The core-loop that can be pipelined then looks like this (annotated +# with McKinley/Madison issue port & latency numbers, assuming L1 +# cache hits for the most part): + +# operation: instruction: issue-ports: latency +# ------------------ ----------------------------- ------------- ------- + +# Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0 +# shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc +# I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc +# ;; +# SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1 * after SWAP! +# ;; +# cmp.eq.unc pBypass = I, J * after J is valid! +# J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2 +# (pBypass) br.cond.spnt Bypass +# ;; +# --------------------------------------------------------------------------------------- +# J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3 +# ;; +# shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4 +# ;; +# SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5 +# ;; +# --------------------------------------------------------------------------------------- +# T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6 +# ;; +# T = T & 0xff zxt1 T = T I0, I1 1 cyc +# S[I] = SJ st8 [Iptr] = SJ M2-M3 c7 +# S[J] = SI st8 [Jptr] = SI M2-M3 +# ;; +# shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8 +# ;; +# --------------------------------------------------------------------------------------- +# T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9 +# ;; +# data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c10 +# ;; +# *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c11 +# ;; +# --------------------------------------------------------------------------------------- + +# There are several points worth making here: + +# - Note that due to the bypass/forwarding-path, the first two +# phases of the loop are strangly mingled together. In +# particular, note that the first stage of the pipeline is +# using the value of "J", as calculated by the second stage. +# - Each bundle-pair will have exactly 6 instructions. +# - Pipelined, the loop can execute in 3 cycles/iteration and +# 4 stages. However, McKinley/Madison can issue "st1" to +# the same bank at a rate of at most one per 4 cycles. Thus, +# instead of storing each byte, we accumulate them in a word +# and then write them back at once with a single "st8" (this +# implies that the setup code needs to ensure that the output +# buffer is properly aligned, if need be, by encoding the +# first few bytes separately). +# - There is no space for a "br.ctop" instruction. For this +# reason we can't use module-loop support in IA-64 and have +# to do a traditional, purely software-pipelined loop. +# - We can't replace any of the remaining "add/zxt1" pairs with +# "padd1" because the latency for that instruction is too high +# and would push the loop to the point where more bypasses +# would be needed, which we don't have space for. +# - The above loop runs at around 3.26 cycles/byte, or roughly +# 440 MByte/sec on a 1.5GHz Madison. This is well below the +# system bus bandwidth and hence with judicious use of +# "lfetch" this loop can run at (almost) peak speed even when +# the input and output data reside in memory. The +# max. latency that can be tolerated is (PREFETCH_DISTANCE * +# L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at +# least) 1-ahead prefetching of 128 byte cache-lines. Note +# that we do NOT prefetch into L1, since that would only +# interfere with the S[] table values stored there. This is +# acceptable because there is a 10 cycle latency between +# load and first use of the input data. +# - We use a branch to out-of-line bypass-code of cycle-pressure: +# we calculate the next J, check for the need to activate the +# bypass path, and activate the bypass path ALL IN THE SAME +# CYCLE. If we didn't have these constraints, we could do +# the bypass with a simple conditional move instruction. +# Fortunately, the bypass paths get activated relatively +# infrequently, so the extra branches don't cost all that much +# (about 0.04 cycles/byte, measured on a 16396 byte file with +# random input data). +# + +$phases = 4; # number of stages/phases in the pipelined-loop +$unroll_count = 6; # number of times we unrolled it +$pComI = (1 << 0); +$pComJ = (1 << 1); +$pComT = (1 << 2); +$pOut = (1 << 3); + +$NData = 4; +$NIP = 3; +$NJP = 2; +$NI = 2; +$NSI = 3; +$NSJ = 2; +$NT = 2; +$NOutWord = 2; + +# +# $threshold is the minimum length before we attempt to use the +# big software-pipelined loop. It MUST be greater-or-equal +# to: +# PHASES * (UNROLL_COUNT + 1) + 7 +# +# The "+ 7" comes from the fact we may have to encode up to +# 7 bytes separately before the output pointer is aligned. +# +$threshold = (3 * ($phases * ($unroll_count + 1)) + 7); + +sub I { + local *code = shift; + local $format = shift; + $code .= sprintf ("\t\t".$format."\n", @_); +} + +sub P { + local *code = shift; + local $format = shift; + $code .= sprintf ($format."\n", @_); +} + +sub STOP { + local *code = shift; + $code .=<<___; + ;; +___ +} + +sub emit_body { + local *c = shift; + local *bypass = shift; + local ($iteration, $p) = @_; + + local $i0 = $iteration; + local $i1 = $iteration - 1; + local $i2 = $iteration - 2; + local $i3 = $iteration - 3; + local $iw0 = ($iteration - 3) / 8; + local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1; + local $byte_num = ($iteration - 3) % 8; + local $label = $iteration + 1; + local $pAny = ($p & 0xf) == 0xf; + local $pByp = (($p & $pComI) && ($iteration > 0)); + + $c.=<<___; +////////////////////////////////////////////////// +___ + + if (($p & 0xf) == 0) { + $c.="#ifdef HOST_IS_BIG_ENDIAN\n"; + &I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;", + $iw1 % $NOutWord, $iw1 % $NOutWord); + $c.="#endif\n"; + &I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord); + return; + } + + # Cycle 0 + &I(\$c, "{ .mmi") if ($pAny); + &I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI); + &I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI); + &I(\$c, "zxt1 J = J") if ($p & $pComJ); + &I(\$c, "}") if ($pAny); + &I(\$c, "{ .mmi") if ($pAny); + &I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut); + &I(\$c, "add T[%u] = SI[%u], SJ[%u]", + $i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT); + &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI); + &I(\$c, "}") if ($pAny); + &STOP(\$c); + + # Cycle 1 + &I(\$c, "{ .mmi") if ($pAny); + &I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT); + &I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT); + &I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT); + &I(\$c, "}") if ($pAny); + &I(\$c, "{ .mmi") if ($pAny); + &I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI); + &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ); + &I(\$c, "xor Data[%u] = Data[%u], T[%u]", + $i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut); + &I(\$c, "}") if ($pAny); + &STOP(\$c); + + # Cycle 2 + &I(\$c, "{ .mmi") if ($pAny); + &I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ); + &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp); + &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8", + $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut); + &I(\$c, "}") if ($pAny); + &I(\$c, "{ .mmb") if ($pAny); + &I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI); + &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT); + &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp); + &I(\$c, "}") if ($pAny); + &STOP(\$c); + + &P(\$c, ".rc4Resume%u:", $label) if ($pByp); + if ($byte_num == 0 && $iteration >= $phases) { + &I(\$c, "st8 [OutPtr] = OutWord[%u], 8", + $iw1 % $NOutWord) if ($p & $pOut); + if ($iteration == (1 + $unroll_count) * $phases - 1) { + if ($unroll_count == 6) { + &I(\$c, "mov OutWord[%u] = OutWord[%u]", + $iw1 % $NOutWord, $iw0 % $NOutWord); + } + &I(\$c, "lfetch.nt1 [InPrefetch], %u", + $unroll_count * $phases); + &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u", + $unroll_count * $phases); + &I(\$c, "br.cloop.sptk.few .rc4Loop"); + } + } + + if ($pByp) { + &P(\$bypass, ".rc4Bypass%u:", $label); + &I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI); + &I(\$bypass, "nop 0"); + &I(\$bypass, "nop 0"); + &I(\$bypass, ";;"); + &I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI); + &I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI); + &I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label); + &I(\$bypass, ";;"); + } +} + +$code=<<___; +.ident \"rc4-ia64.s, version 3.0\" +.ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\" + +#define LCSave r8 +#define PRSave r9 + +/* Inputs become invalid once rotation begins! */ + +#define StateTable in0 +#define DataLen in1 +#define InputBuffer in2 +#define OutputBuffer in3 + +#define KTable r14 +#define J r15 +#define InPtr r16 +#define OutPtr r17 +#define InPrefetch r18 +#define OutPrefetch r19 +#define One r20 +#define LoopCount r21 +#define Remainder r22 +#define IFinal r23 +#define EndPtr r24 + +#define tmp0 r25 +#define tmp1 r26 + +#define pBypass p6 +#define pDone p7 +#define pSmall p8 +#define pAligned p9 +#define pUnaligned p10 + +#define pComputeI pPhase[0] +#define pComputeJ pPhase[1] +#define pComputeT pPhase[2] +#define pOutput pPhase[3] + +#define RetVal r8 +#define L_OK p7 +#define L_NOK p8 + +#define _NINPUTS 4 +#define _NOUTPUT 0 + +#define _NROTATE 24 +#define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT) + +#ifndef SZ +# define SZ 4 // this must be set to sizeof(RC4_INT) +#endif + +#if SZ == 1 +# define LKEY ld1 +# define SKEY st1 +# define KEYADDR(dst, i) add dst = i, KTable +#elif SZ == 2 +# define LKEY ld2 +# define SKEY st2 +# define KEYADDR(dst, i) shladd dst = i, 1, KTable +#elif SZ == 4 +# define LKEY ld4 +# define SKEY st4 +# define KEYADDR(dst, i) shladd dst = i, 2, KTable +#else +# define LKEY ld8 +# define SKEY st8 +# define KEYADDR(dst, i) shladd dst = i, 3, KTable +#endif + +#if defined(_HPUX_SOURCE) && !defined(_LP64) +# define ADDP addp4 +#else +# define ADDP add +#endif + +/* Define a macro for the bit number of the n-th byte: */ + +#if defined(_HPUX_SOURCE) || defined(B_ENDIAN) +# define HOST_IS_BIG_ENDIAN +# define BYTE_POS(n) (56 - (8 * (n))) +#else +# define BYTE_POS(n) (8 * (n)) +#endif + +/* + We must perform the first phase of the pipeline explicitly since + we will always load from the stable the first time. The br.cexit + will never be taken since regardless of the number of bytes because + the epilogue count is 4. +*/ +/* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX + assembler failed on original macro with syntax error. <appro> */ +#define MODSCHED_RC4_PROLOGUE \\ + { \\ + ld1 Data[0] = [InPtr], 1; \\ + add IFinal = 1, I[1]; \\ + KEYADDR(IPr[0], I[1]); \\ + } ;; \\ + { \\ + LKEY SI[0] = [IPr[0]]; \\ + mov pr.rot = 0x10000; \\ + mov ar.ec = 4; \\ + } ;; \\ + { \\ + add J = J, SI[0]; \\ + zxt1 I[0] = IFinal; \\ + br.cexit.spnt.few .+16; /* never taken */ \\ + } ;; +#define MODSCHED_RC4_LOOP(label) \\ +label: \\ + { .mmi; \\ + (pComputeI) ld1 Data[0] = [InPtr], 1; \\ + (pComputeI) add IFinal = 1, I[1]; \\ + (pComputeJ) zxt1 J = J; \\ + }{ .mmi; \\ + (pOutput) LKEY T[1] = [T[1]]; \\ + (pComputeT) add T[0] = SI[2], SJ[1]; \\ + (pComputeI) KEYADDR(IPr[0], I[1]); \\ + } ;; \\ + { .mmi; \\ + (pComputeT) SKEY [IPr[2]] = SJ[1]; \\ + (pComputeT) SKEY [JP[1]] = SI[2]; \\ + (pComputeT) zxt1 T[0] = T[0]; \\ + }{ .mmi; \\ + (pComputeI) LKEY SI[0] = [IPr[0]]; \\ + (pComputeJ) KEYADDR(JP[0], J); \\ + (pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\ + } ;; \\ + { .mmi; \\ + (pComputeJ) LKEY SJ[0] = [JP[0]]; \\ + (pOutput) xor Data[3] = Data[3], T[1]; \\ + nop 0x0; \\ + }{ .mmi; \\ + (pComputeT) KEYADDR(T[0], T[0]); \\ + (pBypass) mov SI[0] = SI[1]; \\ + (pComputeI) zxt1 I[0] = IFinal; \\ + } ;; \\ + { .mmb; \\ + (pOutput) st1 [OutPtr] = Data[3], 1; \\ + (pComputeI) add J = J, SI[0]; \\ + br.ctop.sptk.few label; \\ + } ;; + + .text + + .align 32 + + .type RC4, \@function + .global RC4 + + .proc RC4 + .prologue + +RC4: + { + .mmi + alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE + + .rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\ + OutWord[2] + .rotp pPhase[4] + + ADDP InPrefetch = 0, InputBuffer + ADDP KTable = 0, StateTable + } + { + .mmi + ADDP InPtr = 0, InputBuffer + ADDP OutPtr = 0, OutputBuffer + mov RetVal = r0 + } + ;; + { + .mmi + lfetch.nt1 [InPrefetch], 0x80 + ADDP OutPrefetch = 0, OutputBuffer + } + { // Return 0 if the input length is nonsensical + .mib + ADDP StateTable = 0, StateTable + cmp.ge.unc L_NOK, L_OK = r0, DataLen + (L_NOK) br.ret.sptk.few rp + } + ;; + { + .mib + cmp.eq.or L_NOK, L_OK = r0, InPtr + cmp.eq.or L_NOK, L_OK = r0, OutPtr + nop 0x0 + } + { + .mib + cmp.eq.or L_NOK, L_OK = r0, StateTable + nop 0x0 + (L_NOK) br.ret.sptk.few rp + } + ;; + LKEY I[1] = [KTable], SZ +/* Prefetch the state-table. It contains 256 elements of size SZ */ + +#if SZ == 1 + ADDP tmp0 = 1*128, StateTable +#elif SZ == 2 + ADDP tmp0 = 3*128, StateTable + ADDP tmp1 = 2*128, StateTable +#elif SZ == 4 + ADDP tmp0 = 7*128, StateTable + ADDP tmp1 = 6*128, StateTable +#elif SZ == 8 + ADDP tmp0 = 15*128, StateTable + ADDP tmp1 = 14*128, StateTable +#endif + ;; +#if SZ >= 8 + lfetch.fault.nt1 [tmp0], -256 // 15 + lfetch.fault.nt1 [tmp1], -256;; + lfetch.fault.nt1 [tmp0], -256 // 13 + lfetch.fault.nt1 [tmp1], -256;; + lfetch.fault.nt1 [tmp0], -256 // 11 + lfetch.fault.nt1 [tmp1], -256;; + lfetch.fault.nt1 [tmp0], -256 // 9 + lfetch.fault.nt1 [tmp1], -256;; +#endif +#if SZ >= 4 + lfetch.fault.nt1 [tmp0], -256 // 7 + lfetch.fault.nt1 [tmp1], -256;; + lfetch.fault.nt1 [tmp0], -256 // 5 + lfetch.fault.nt1 [tmp1], -256;; +#endif +#if SZ >= 2 + lfetch.fault.nt1 [tmp0], -256 // 3 + lfetch.fault.nt1 [tmp1], -256;; +#endif + { + .mii + lfetch.fault.nt1 [tmp0] // 1 + add I[1]=1,I[1];; + zxt1 I[1]=I[1] + } + { + .mmi + lfetch.nt1 [InPrefetch], 0x80 + lfetch.excl.nt1 [OutPrefetch], 0x80 + .save pr, PRSave + mov PRSave = pr + } ;; + { + .mmi + lfetch.excl.nt1 [OutPrefetch], 0x80 + LKEY J = [KTable], SZ + ADDP EndPtr = DataLen, InPtr + } ;; + { + .mmi + ADDP EndPtr = -1, EndPtr // Make it point to + // last data byte. + mov One = 1 + .save ar.lc, LCSave + mov LCSave = ar.lc + .body + } ;; + { + .mmb + sub Remainder = 0, OutPtr + cmp.gtu pSmall, p0 = $threshold, DataLen +(pSmall) br.cond.dpnt .rc4Remainder // Data too small for + // big loop. + } ;; + { + .mmi + and Remainder = 0x7, Remainder + ;; + cmp.eq pAligned, pUnaligned = Remainder, r0 + nop 0x0 + } ;; + { + .mmb +.pred.rel "mutex",pUnaligned,pAligned +(pUnaligned) add Remainder = -1, Remainder +(pAligned) sub Remainder = EndPtr, InPtr +(pAligned) br.cond.dptk.many .rc4Aligned + } ;; + { + .mmi + nop 0x0 + nop 0x0 + mov.i ar.lc = Remainder + } + +/* Do the initial few bytes via the compact, modulo-scheduled loop + until the output pointer is 8-byte-aligned. */ + + MODSCHED_RC4_PROLOGUE + MODSCHED_RC4_LOOP(.RC4AlignLoop) + + { + .mib + sub Remainder = EndPtr, InPtr + zxt1 IFinal = IFinal + clrrrb // Clear CFM.rrb.pr so + ;; // next "mov pr.rot = N" + // does the right thing. + } + { + .mmi + mov I[1] = IFinal + nop 0x0 + nop 0x0 + } ;; + + +.rc4Aligned: + +/* + Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases) + */ + + { + .mlx + add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder + movl Remainder = 0xaaaaaaaaaaaaaaab + } ;; + { + .mmi + setf.sig f6 = LoopCount // M2, M3 6 cyc + setf.sig f7 = Remainder // M2, M3 6 cyc + nop 0x0 + } ;; + { + .mfb + nop 0x0 + xmpy.hu f6 = f6, f7 + nop 0x0 + } ;; + { + .mmi + getf.sig LoopCount = f6;; // M2 5 cyc + nop 0x0 + shr.u LoopCount = LoopCount, 4 + } ;; + { + .mmi + nop 0x0 + nop 0x0 + mov.i ar.lc = LoopCount + } ;; + +/* Now comes the unrolled loop: */ + +.rc4Prologue: +___ + +$iteration = 0; + +# Generate the prologue: +$predicates = 1; +for ($i = 0; $i < $phases; ++$i) { + &emit_body (\$code, \$bypass, $iteration++, $predicates); + $predicates = ($predicates << 1) | 1; +} + +$code.=<<___; +.rc4Loop: +___ + +# Generate the body: +for ($i = 0; $i < $unroll_count*$phases; ++$i) { + &emit_body (\$code, \$bypass, $iteration++, $predicates); +} + +$code.=<<___; +.rc4Epilogue: +___ + +# Generate the epilogue: +for ($i = 0; $i < $phases; ++$i) { + $predicates <<= 1; + &emit_body (\$code, \$bypass, $iteration++, $predicates); +} + +$code.=<<___; + { + .mmi + lfetch.nt1 [EndPtr] // fetch line with last byte + mov IFinal = I[1] + nop 0x0 + } + +.rc4Remainder: + { + .mmi + sub Remainder = EndPtr, InPtr // Calculate + // # of bytes + // left - 1 + nop 0x0 + nop 0x0 + } ;; + { + .mib + cmp.eq pDone, p0 = -1, Remainder // done already? + mov.i ar.lc = Remainder +(pDone) br.cond.dptk.few .rc4Complete + } + +/* Do the remaining bytes via the compact, modulo-scheduled loop */ + + MODSCHED_RC4_PROLOGUE + MODSCHED_RC4_LOOP(.RC4RestLoop) + +.rc4Complete: + { + .mmi + add KTable = -SZ, KTable + add IFinal = -1, IFinal + mov ar.lc = LCSave + } ;; + { + .mii + SKEY [KTable] = J,-SZ + zxt1 IFinal = IFinal + mov pr = PRSave, 0x1FFFF + } ;; + { + .mib + SKEY [KTable] = IFinal + add RetVal = 1, r0 + br.ret.sptk.few rp + } ;; +___ + +# Last but not least, emit the code for the bypass-code of the unrolled loop: + +$code.=$bypass; + +$code.=<<___; + .endp RC4 +___ + +print $code; diff --git a/openssl/crypto/rc4/asm/rc4-s390x.pl b/openssl/crypto/rc4/asm/rc4-s390x.pl new file mode 100644 index 00000000..96681fa0 --- /dev/null +++ b/openssl/crypto/rc4/asm/rc4-s390x.pl @@ -0,0 +1,205 @@ +#!/usr/bin/env perl +# +# ==================================================================== +# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# February 2009 +# +# Performance is 2x of gcc 3.4.6 on z10. Coding "secret" is to +# "cluster" Address Generation Interlocks, so that one pipeline stall +# resolves several dependencies. + +$rp="%r14"; +$sp="%r15"; +$code=<<___; +.text + +___ + +# void RC4(RC4_KEY *key,size_t len,const void *inp,void *out) +{ +$acc="%r0"; +$cnt="%r1"; +$key="%r2"; +$len="%r3"; +$inp="%r4"; +$out="%r5"; + +@XX=("%r6","%r7"); +@TX=("%r8","%r9"); +$YY="%r10"; +$TY="%r11"; + +$code.=<<___; +.globl RC4 +.type RC4,\@function +.align 64 +RC4: + stmg %r6,%r11,48($sp) + llgc $XX[0],0($key) + llgc $YY,1($key) + la $XX[0],1($XX[0]) + nill $XX[0],0xff + srlg $cnt,$len,3 + ltgr $cnt,$cnt + llgc $TX[0],2($XX[0],$key) + jz .Lshort + j .Loop8 + +.align 64 +.Loop8: +___ +for ($i=0;$i<8;$i++) { +$code.=<<___; + la $YY,0($YY,$TX[0]) # $i + nill $YY,255 + la $XX[1],1($XX[0]) + nill $XX[1],255 +___ +$code.=<<___ if ($i==1); + llgc $acc,2($TY,$key) +___ +$code.=<<___ if ($i>1); + sllg $acc,$acc,8 + ic $acc,2($TY,$key) +___ +$code.=<<___; + llgc $TY,2($YY,$key) + stc $TX[0],2($YY,$key) + llgc $TX[1],2($XX[1],$key) + stc $TY,2($XX[0],$key) + cr $XX[1],$YY + jne .Lcmov$i + la $TX[1],0($TX[0]) +.Lcmov$i: + la $TY,0($TY,$TX[0]) + nill $TY,255 +___ +push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers +} + +$code.=<<___; + lg $TX[1],0($inp) + sllg $acc,$acc,8 + la $inp,8($inp) + ic $acc,2($TY,$key) + xgr $acc,$TX[1] + stg $acc,0($out) + la $out,8($out) + brct $cnt,.Loop8 + +.Lshort: + lghi $acc,7 + ngr $len,$acc + jz .Lexit + j .Loop1 + +.align 16 +.Loop1: + la $YY,0($YY,$TX[0]) + nill $YY,255 + llgc $TY,2($YY,$key) + stc $TX[0],2($YY,$key) + stc $TY,2($XX[0],$key) + ar $TY,$TX[0] + ahi $XX[0],1 + nill $TY,255 + nill $XX[0],255 + llgc $acc,0($inp) + la $inp,1($inp) + llgc $TY,2($TY,$key) + llgc $TX[0],2($XX[0],$key) + xr $acc,$TY + stc $acc,0($out) + la $out,1($out) + brct $len,.Loop1 + +.Lexit: + ahi $XX[0],-1 + stc $XX[0],0($key) + stc $YY,1($key) + lmg %r6,%r11,48($sp) + br $rp +.size RC4,.-RC4 +.string "RC4 for s390x, CRYPTOGAMS by <appro\@openssl.org>" + +___ +} + +# void RC4_set_key(RC4_KEY *key,unsigned int len,const void *inp) +{ +$cnt="%r0"; +$idx="%r1"; +$key="%r2"; +$len="%r3"; +$inp="%r4"; +$acc="%r5"; +$dat="%r6"; +$ikey="%r7"; +$iinp="%r8"; + +$code.=<<___; +.globl RC4_set_key +.type RC4_set_key,\@function +.align 64 +RC4_set_key: + stmg %r6,%r8,48($sp) + lhi $cnt,256 + la $idx,0(%r0) + sth $idx,0($key) +.align 4 +.L1stloop: + stc $idx,2($idx,$key) + la $idx,1($idx) + brct $cnt,.L1stloop + + lghi $ikey,-256 + lr $cnt,$len + la $iinp,0(%r0) + la $idx,0(%r0) +.align 16 +.L2ndloop: + llgc $acc,2+256($ikey,$key) + llgc $dat,0($iinp,$inp) + la $idx,0($idx,$acc) + la $ikey,1($ikey) + la $idx,0($idx,$dat) + nill $idx,255 + la $iinp,1($iinp) + tml $ikey,255 + llgc $dat,2($idx,$key) + stc $dat,2+256-1($ikey,$key) + stc $acc,2($idx,$key) + jz .Ldone + brct $cnt,.L2ndloop + lr $cnt,$len + la $iinp,0(%r0) + j .L2ndloop +.Ldone: + lmg %r6,%r8,48($sp) + br $rp +.size RC4_set_key,.-RC4_set_key + +___ +} + +# const char *RC4_options() +$code.=<<___; +.globl RC4_options +.type RC4_options,\@function +.align 16 +RC4_options: + larl %r2,.Loptions + br %r14 +.size RC4_options,.-RC4_options +.section .rodata +.Loptions: +.align 8 +.string "rc4(8x,char)" +___ + +print $code; diff --git a/openssl/crypto/rc4/asm/rc4-x86_64.pl b/openssl/crypto/rc4/asm/rc4-x86_64.pl new file mode 100755 index 00000000..677be5fe --- /dev/null +++ b/openssl/crypto/rc4/asm/rc4-x86_64.pl @@ -0,0 +1,504 @@ +#!/usr/bin/env perl +# +# ==================================================================== +# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in +# "hand-coded assembler"] doesn't stand for the whole improvement +# coefficient. It turned out that eliminating RC4_CHAR from config +# line results in ~40% improvement (yes, even for C implementation). +# Presumably it has everything to do with AMD cache architecture and +# RAW or whatever penalties. Once again! The module *requires* config +# line *without* RC4_CHAR! As for coding "secret," I bet on partial +# register arithmetics. For example instead of 'inc %r8; and $255,%r8' +# I simply 'inc %r8b'. Even though optimization manual discourages +# to operate on partial registers, it turned out to be the best bet. +# At least for AMD... How IA32E would perform remains to be seen... + +# As was shown by Marc Bevand reordering of couple of load operations +# results in even higher performance gain of 3.3x:-) At least on +# Opteron... For reference, 1x in this case is RC4_CHAR C-code +# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. +# Latter means that if you want to *estimate* what to expect from +# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. + +# Intel P4 EM64T core was found to run the AMD64 code really slow... +# The only way to achieve comparable performance on P4 was to keep +# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to +# compose blended code, which would perform even within 30% marginal +# on either AMD and Intel platforms, I implement both cases. See +# rc4_skey.c for further details... + +# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing +# those with add/sub results in 50% performance improvement of folded +# loop... + +# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T +# performance by >30% [unlike P4 32-bit case that is]. But this is +# provided that loads are reordered even more aggressively! Both code +# pathes, AMD64 and EM64T, reorder loads in essentially same manner +# as my IA-64 implementation. On Opteron this resulted in modest 5% +# improvement [I had to test it], while final Intel P4 performance +# achieves respectful 432MBps on 2.8GHz processor now. For reference. +# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than +# RC4_INT code-path. While if executed on Opteron, it's only 25% +# slower than the RC4_INT one [meaning that if CPU µ-arch detection +# is not implemented, then this final RC4_CHAR code-path should be +# preferred, as it provides better *all-round* performance]. + +# Intel Core2 was observed to perform poorly on both code paths:-( It +# apparently suffers from some kind of partial register stall, which +# occurs in 64-bit mode only [as virtually identical 32-bit loop was +# observed to outperform 64-bit one by almost 50%]. Adding two movzb to +# cloop1 boosts its performance by 80%! This loop appears to be optimal +# fit for Core2 and therefore the code was modified to skip cloop8 on +# this CPU. + +$flavour = shift; +$output = shift; +if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } + +$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; +( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or +( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or +die "can't locate x86_64-xlate.pl"; + +open STDOUT,"| $^X $xlate $flavour $output"; + +$dat="%rdi"; # arg1 +$len="%rsi"; # arg2 +$inp="%rdx"; # arg3 +$out="%rcx"; # arg4 + +@XX=("%r8","%r10"); +@TX=("%r9","%r11"); +$YY="%r12"; +$TY="%r13"; + +$code=<<___; +.text + +.globl RC4 +.type RC4,\@function,4 +.align 16 +RC4: or $len,$len + jne .Lentry + ret +.Lentry: + push %rbx + push %r12 + push %r13 +.Lprologue: + + add \$8,$dat + movl -8($dat),$XX[0]#d + movl -4($dat),$YY#d + cmpl \$-1,256($dat) + je .LRC4_CHAR + inc $XX[0]#b + movl ($dat,$XX[0],4),$TX[0]#d + test \$-8,$len + jz .Lloop1 + jmp .Lloop8 +.align 16 +.Lloop8: +___ +for ($i=0;$i<8;$i++) { +$code.=<<___; + add $TX[0]#b,$YY#b + mov $XX[0],$XX[1] + movl ($dat,$YY,4),$TY#d + ror \$8,%rax # ror is redundant when $i=0 + inc $XX[1]#b + movl ($dat,$XX[1],4),$TX[1]#d + cmp $XX[1],$YY + movl $TX[0]#d,($dat,$YY,4) + cmove $TX[0],$TX[1] + movl $TY#d,($dat,$XX[0],4) + add $TX[0]#b,$TY#b + movb ($dat,$TY,4),%al +___ +push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers +} +$code.=<<___; + ror \$8,%rax + sub \$8,$len + + xor ($inp),%rax + add \$8,$inp + mov %rax,($out) + add \$8,$out + + test \$-8,$len + jnz .Lloop8 + cmp \$0,$len + jne .Lloop1 + jmp .Lexit + +.align 16 +.Lloop1: + add $TX[0]#b,$YY#b + movl ($dat,$YY,4),$TY#d + movl $TX[0]#d,($dat,$YY,4) + movl $TY#d,($dat,$XX[0],4) + add $TY#b,$TX[0]#b + inc $XX[0]#b + movl ($dat,$TX[0],4),$TY#d + movl ($dat,$XX[0],4),$TX[0]#d + xorb ($inp),$TY#b + inc $inp + movb $TY#b,($out) + inc $out + dec $len + jnz .Lloop1 + jmp .Lexit + +.align 16 +.LRC4_CHAR: + add \$1,$XX[0]#b + movzb ($dat,$XX[0]),$TX[0]#d + test \$-8,$len + jz .Lcloop1 + cmpl \$0,260($dat) + jnz .Lcloop1 + jmp .Lcloop8 +.align 16 +.Lcloop8: + mov ($inp),%eax + mov 4($inp),%ebx +___ +# unroll 2x4-wise, because 64-bit rotates kill Intel P4... +for ($i=0;$i<4;$i++) { +$code.=<<___; + add $TX[0]#b,$YY#b + lea 1($XX[0]),$XX[1] + movzb ($dat,$YY),$TY#d + movzb $XX[1]#b,$XX[1]#d + movzb ($dat,$XX[1]),$TX[1]#d + movb $TX[0]#b,($dat,$YY) + cmp $XX[1],$YY + movb $TY#b,($dat,$XX[0]) + jne .Lcmov$i # Intel cmov is sloooow... + mov $TX[0],$TX[1] +.Lcmov$i: + add $TX[0]#b,$TY#b + xor ($dat,$TY),%al + ror \$8,%eax +___ +push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers +} +for ($i=4;$i<8;$i++) { +$code.=<<___; + add $TX[0]#b,$YY#b + lea 1($XX[0]),$XX[1] + movzb ($dat,$YY),$TY#d + movzb $XX[1]#b,$XX[1]#d + movzb ($dat,$XX[1]),$TX[1]#d + movb $TX[0]#b,($dat,$YY) + cmp $XX[1],$YY + movb $TY#b,($dat,$XX[0]) + jne .Lcmov$i # Intel cmov is sloooow... + mov $TX[0],$TX[1] +.Lcmov$i: + add $TX[0]#b,$TY#b + xor ($dat,$TY),%bl + ror \$8,%ebx +___ +push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers +} +$code.=<<___; + lea -8($len),$len + mov %eax,($out) + lea 8($inp),$inp + mov %ebx,4($out) + lea 8($out),$out + + test \$-8,$len + jnz .Lcloop8 + cmp \$0,$len + jne .Lcloop1 + jmp .Lexit +___ +$code.=<<___; +.align 16 +.Lcloop1: + add $TX[0]#b,$YY#b + movzb ($dat,$YY),$TY#d + movb $TX[0]#b,($dat,$YY) + movb $TY#b,($dat,$XX[0]) + add $TX[0]#b,$TY#b + add \$1,$XX[0]#b + movzb $TY#b,$TY#d + movzb $XX[0]#b,$XX[0]#d + movzb ($dat,$TY),$TY#d + movzb ($dat,$XX[0]),$TX[0]#d + xorb ($inp),$TY#b + lea 1($inp),$inp + movb $TY#b,($out) + lea 1($out),$out + sub \$1,$len + jnz .Lcloop1 + jmp .Lexit + +.align 16 +.Lexit: + sub \$1,$XX[0]#b + movl $XX[0]#d,-8($dat) + movl $YY#d,-4($dat) + + mov (%rsp),%r13 + mov 8(%rsp),%r12 + mov 16(%rsp),%rbx + add \$24,%rsp +.Lepilogue: + ret +.size RC4,.-RC4 +___ + +$idx="%r8"; +$ido="%r9"; + +$code.=<<___; +.extern OPENSSL_ia32cap_P +.globl RC4_set_key +.type RC4_set_key,\@function,3 +.align 16 +RC4_set_key: + lea 8($dat),$dat + lea ($inp,$len),$inp + neg $len + mov $len,%rcx + xor %eax,%eax + xor $ido,$ido + xor %r10,%r10 + xor %r11,%r11 + + mov OPENSSL_ia32cap_P(%rip),$idx#d + bt \$20,$idx#d + jnc .Lw1stloop + bt \$30,$idx#d + setc $ido#b + mov $ido#d,260($dat) + jmp .Lc1stloop + +.align 16 +.Lw1stloop: + mov %eax,($dat,%rax,4) + add \$1,%al + jnc .Lw1stloop + + xor $ido,$ido + xor $idx,$idx +.align 16 +.Lw2ndloop: + mov ($dat,$ido,4),%r10d + add ($inp,$len,1),$idx#b + add %r10b,$idx#b + add \$1,$len + mov ($dat,$idx,4),%r11d + cmovz %rcx,$len + mov %r10d,($dat,$idx,4) + mov %r11d,($dat,$ido,4) + add \$1,$ido#b + jnc .Lw2ndloop + jmp .Lexit_key + +.align 16 +.Lc1stloop: + mov %al,($dat,%rax) + add \$1,%al + jnc .Lc1stloop + + xor $ido,$ido + xor $idx,$idx +.align 16 +.Lc2ndloop: + mov ($dat,$ido),%r10b + add ($inp,$len),$idx#b + add %r10b,$idx#b + add \$1,$len + mov ($dat,$idx),%r11b + jnz .Lcnowrap + mov %rcx,$len +.Lcnowrap: + mov %r10b,($dat,$idx) + mov %r11b,($dat,$ido) + add \$1,$ido#b + jnc .Lc2ndloop + movl \$-1,256($dat) + +.align 16 +.Lexit_key: + xor %eax,%eax + mov %eax,-8($dat) + mov %eax,-4($dat) + ret +.size RC4_set_key,.-RC4_set_key + +.globl RC4_options +.type RC4_options,\@abi-omnipotent +.align 16 +RC4_options: + lea .Lopts(%rip),%rax + mov OPENSSL_ia32cap_P(%rip),%edx + bt \$20,%edx + jnc .Ldone + add \$12,%rax + bt \$30,%edx + jnc .Ldone + add \$13,%rax +.Ldone: + ret +.align 64 +.Lopts: +.asciz "rc4(8x,int)" +.asciz "rc4(8x,char)" +.asciz "rc4(1x,char)" +.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" +.align 64 +.size RC4_options,.-RC4_options +___ + +# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, +# CONTEXT *context,DISPATCHER_CONTEXT *disp) +if ($win64) { +$rec="%rcx"; +$frame="%rdx"; +$context="%r8"; +$disp="%r9"; + +$code.=<<___; +.extern __imp_RtlVirtualUnwind +.type stream_se_handler,\@abi-omnipotent +.align 16 +stream_se_handler: + push %rsi + push %rdi + push %rbx + push %rbp + push %r12 + push %r13 + push %r14 + push %r15 + pushfq + sub \$64,%rsp + + mov 120($context),%rax # pull context->Rax + mov 248($context),%rbx # pull context->Rip + + lea .Lprologue(%rip),%r10 + cmp %r10,%rbx # context->Rip<prologue label + jb .Lin_prologue + + mov 152($context),%rax # pull context->Rsp + + lea .Lepilogue(%rip),%r10 + cmp %r10,%rbx # context->Rip>=epilogue label + jae .Lin_prologue + + lea 24(%rax),%rax + + mov -8(%rax),%rbx + mov -16(%rax),%r12 + mov -24(%rax),%r13 + mov %rbx,144($context) # restore context->Rbx + mov %r12,216($context) # restore context->R12 + mov %r13,224($context) # restore context->R13 + +.Lin_prologue: + mov 8(%rax),%rdi + mov 16(%rax),%rsi + mov %rax,152($context) # restore context->Rsp + mov %rsi,168($context) # restore context->Rsi + mov %rdi,176($context) # restore context->Rdi + + jmp .Lcommon_seh_exit +.size stream_se_handler,.-stream_se_handler + +.type key_se_handler,\@abi-omnipotent +.align 16 +key_se_handler: + push %rsi + push %rdi + push %rbx + push %rbp + push %r12 + push %r13 + push %r14 + push %r15 + pushfq + sub \$64,%rsp + + mov 152($context),%rax # pull context->Rsp + mov 8(%rax),%rdi + mov 16(%rax),%rsi + mov %rsi,168($context) # restore context->Rsi + mov %rdi,176($context) # restore context->Rdi + +.Lcommon_seh_exit: + + mov 40($disp),%rdi # disp->ContextRecord + mov $context,%rsi # context + mov \$154,%ecx # sizeof(CONTEXT) + .long 0xa548f3fc # cld; rep movsq + + mov $disp,%rsi + xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER + mov 8(%rsi),%rdx # arg2, disp->ImageBase + mov 0(%rsi),%r8 # arg3, disp->ControlPc + mov 16(%rsi),%r9 # arg4, disp->FunctionEntry + mov 40(%rsi),%r10 # disp->ContextRecord + lea 56(%rsi),%r11 # &disp->HandlerData + lea 24(%rsi),%r12 # &disp->EstablisherFrame + mov %r10,32(%rsp) # arg5 + mov %r11,40(%rsp) # arg6 + mov %r12,48(%rsp) # arg7 + mov %rcx,56(%rsp) # arg8, (NULL) + call *__imp_RtlVirtualUnwind(%rip) + + mov \$1,%eax # ExceptionContinueSearch + add \$64,%rsp + popfq + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %rbp + pop %rbx + pop %rdi + pop %rsi + ret +.size key_se_handler,.-key_se_handler + +.section .pdata +.align 4 + .rva .LSEH_begin_RC4 + .rva .LSEH_end_RC4 + .rva .LSEH_info_RC4 + + .rva .LSEH_begin_RC4_set_key + .rva .LSEH_end_RC4_set_key + .rva .LSEH_info_RC4_set_key + +.section .xdata +.align 8 +.LSEH_info_RC4: + .byte 9,0,0,0 + .rva stream_se_handler +.LSEH_info_RC4_set_key: + .byte 9,0,0,0 + .rva key_se_handler +___ +} + +$code =~ s/#([bwd])/$1/gm; + +print $code; + +close STDOUT; |