diff options
author | Arne Schwabe <arne@rfc2549.org> | 2014-04-23 09:56:37 +0200 |
---|---|---|
committer | Arne Schwabe <arne@rfc2549.org> | 2014-04-23 09:56:37 +0200 |
commit | e436c963f0976b885a7db04681344779e26dd3b5 (patch) | |
tree | 240663106f32e02e1c34080656f4ef21a2e1776e /main/openssl/crypto/modes/asm/ghash-s390x.pl | |
parent | 6a99715a9b072fa249e79c98cd9f03991f0f1219 (diff) |
Update OpenSSL to 1.0.1g and statically link OpenVPN with it
Diffstat (limited to 'main/openssl/crypto/modes/asm/ghash-s390x.pl')
-rw-r--r-- | main/openssl/crypto/modes/asm/ghash-s390x.pl | 262 |
1 files changed, 262 insertions, 0 deletions
diff --git a/main/openssl/crypto/modes/asm/ghash-s390x.pl b/main/openssl/crypto/modes/asm/ghash-s390x.pl new file mode 100644 index 00000000..6a40d5d8 --- /dev/null +++ b/main/openssl/crypto/modes/asm/ghash-s390x.pl @@ -0,0 +1,262 @@ +#!/usr/bin/env perl + +# ==================================================================== +# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== + +# September 2010. +# +# The module implements "4-bit" GCM GHASH function and underlying +# single multiplication operation in GF(2^128). "4-bit" means that it +# uses 256 bytes per-key table [+128 bytes shared table]. Performance +# was measured to be ~18 cycles per processed byte on z10, which is +# almost 40% better than gcc-generated code. It should be noted that +# 18 cycles is worse result than expected: loop is scheduled for 12 +# and the result should be close to 12. In the lack of instruction- +# level profiling data it's impossible to tell why... + +# November 2010. +# +# Adapt for -m31 build. If kernel supports what's called "highgprs" +# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit +# instructions and achieve "64-bit" performance even in 31-bit legacy +# application context. The feature is not specific to any particular +# processor, as long as it's "z-CPU". Latter implies that the code +# remains z/Architecture specific. On z990 it was measured to perform +# 2.8x better than 32-bit code generated by gcc 4.3. + +# March 2011. +# +# Support for hardware KIMD-GHASH is verified to produce correct +# result and therefore is engaged. On z196 it was measured to process +# 8KB buffer ~7 faster than software implementation. It's not as +# impressive for smaller buffer sizes and for smallest 16-bytes buffer +# it's actually almost 2 times slower. Which is the reason why +# KIMD-GHASH is not used in gcm_gmult_4bit. + +$flavour = shift; + +if ($flavour =~ /3[12]/) { + $SIZE_T=4; + $g=""; +} else { + $SIZE_T=8; + $g="g"; +} + +while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} +open STDOUT,">$output"; + +$softonly=0; + +$Zhi="%r0"; +$Zlo="%r1"; + +$Xi="%r2"; # argument block +$Htbl="%r3"; +$inp="%r4"; +$len="%r5"; + +$rem0="%r6"; # variables +$rem1="%r7"; +$nlo="%r8"; +$nhi="%r9"; +$xi="%r10"; +$cnt="%r11"; +$tmp="%r12"; +$x78="%r13"; +$rem_4bit="%r14"; + +$sp="%r15"; + +$code.=<<___; +.text + +.globl gcm_gmult_4bit +.align 32 +gcm_gmult_4bit: +___ +$code.=<<___ if(!$softonly && 0); # hardware is slow for single block... + larl %r1,OPENSSL_s390xcap_P + lg %r0,0(%r1) + tmhl %r0,0x4000 # check for message-security-assist + jz .Lsoft_gmult + lghi %r0,0 + la %r1,16($sp) + .long 0xb93e0004 # kimd %r0,%r4 + lg %r1,24($sp) + tmhh %r1,0x4000 # check for function 65 + jz .Lsoft_gmult + stg %r0,16($sp) # arrange 16 bytes of zero input + stg %r0,24($sp) + lghi %r0,65 # function 65 + la %r1,0($Xi) # H lies right after Xi in gcm128_context + la $inp,16($sp) + lghi $len,16 + .long 0xb93e0004 # kimd %r0,$inp + brc 1,.-4 # pay attention to "partial completion" + br %r14 +.align 32 +.Lsoft_gmult: +___ +$code.=<<___; + stm${g} %r6,%r14,6*$SIZE_T($sp) + + aghi $Xi,-1 + lghi $len,1 + lghi $x78,`0xf<<3` + larl $rem_4bit,rem_4bit + + lg $Zlo,8+1($Xi) # Xi + j .Lgmult_shortcut +.type gcm_gmult_4bit,\@function +.size gcm_gmult_4bit,(.-gcm_gmult_4bit) + +.globl gcm_ghash_4bit +.align 32 +gcm_ghash_4bit: +___ +$code.=<<___ if(!$softonly); + larl %r1,OPENSSL_s390xcap_P + lg %r0,0(%r1) + tmhl %r0,0x4000 # check for message-security-assist + jz .Lsoft_ghash + lghi %r0,0 + la %r1,16($sp) + .long 0xb93e0004 # kimd %r0,%r4 + lg %r1,24($sp) + tmhh %r1,0x4000 # check for function 65 + jz .Lsoft_ghash + lghi %r0,65 # function 65 + la %r1,0($Xi) # H lies right after Xi in gcm128_context + .long 0xb93e0004 # kimd %r0,$inp + brc 1,.-4 # pay attention to "partial completion" + br %r14 +.align 32 +.Lsoft_ghash: +___ +$code.=<<___ if ($flavour =~ /3[12]/); + llgfr $len,$len +___ +$code.=<<___; + stm${g} %r6,%r14,6*$SIZE_T($sp) + + aghi $Xi,-1 + srlg $len,$len,4 + lghi $x78,`0xf<<3` + larl $rem_4bit,rem_4bit + + lg $Zlo,8+1($Xi) # Xi + lg $Zhi,0+1($Xi) + lghi $tmp,0 +.Louter: + xg $Zhi,0($inp) # Xi ^= inp + xg $Zlo,8($inp) + xgr $Zhi,$tmp + stg $Zlo,8+1($Xi) + stg $Zhi,0+1($Xi) + +.Lgmult_shortcut: + lghi $tmp,0xf0 + sllg $nlo,$Zlo,4 + srlg $xi,$Zlo,8 # extract second byte + ngr $nlo,$tmp + lgr $nhi,$Zlo + lghi $cnt,14 + ngr $nhi,$tmp + + lg $Zlo,8($nlo,$Htbl) + lg $Zhi,0($nlo,$Htbl) + + sllg $nlo,$xi,4 + sllg $rem0,$Zlo,3 + ngr $nlo,$tmp + ngr $rem0,$x78 + ngr $xi,$tmp + + sllg $tmp,$Zhi,60 + srlg $Zlo,$Zlo,4 + srlg $Zhi,$Zhi,4 + xg $Zlo,8($nhi,$Htbl) + xg $Zhi,0($nhi,$Htbl) + lgr $nhi,$xi + sllg $rem1,$Zlo,3 + xgr $Zlo,$tmp + ngr $rem1,$x78 + j .Lghash_inner +.align 16 +.Lghash_inner: + srlg $Zlo,$Zlo,4 + sllg $tmp,$Zhi,60 + xg $Zlo,8($nlo,$Htbl) + srlg $Zhi,$Zhi,4 + llgc $xi,0($cnt,$Xi) + xg $Zhi,0($nlo,$Htbl) + sllg $nlo,$xi,4 + xg $Zhi,0($rem0,$rem_4bit) + nill $nlo,0xf0 + sllg $rem0,$Zlo,3 + xgr $Zlo,$tmp + ngr $rem0,$x78 + nill $xi,0xf0 + + sllg $tmp,$Zhi,60 + srlg $Zlo,$Zlo,4 + srlg $Zhi,$Zhi,4 + xg $Zlo,8($nhi,$Htbl) + xg $Zhi,0($nhi,$Htbl) + lgr $nhi,$xi + xg $Zhi,0($rem1,$rem_4bit) + sllg $rem1,$Zlo,3 + xgr $Zlo,$tmp + ngr $rem1,$x78 + brct $cnt,.Lghash_inner + + sllg $tmp,$Zhi,60 + srlg $Zlo,$Zlo,4 + srlg $Zhi,$Zhi,4 + xg $Zlo,8($nlo,$Htbl) + xg $Zhi,0($nlo,$Htbl) + sllg $xi,$Zlo,3 + xg $Zhi,0($rem0,$rem_4bit) + xgr $Zlo,$tmp + ngr $xi,$x78 + + sllg $tmp,$Zhi,60 + srlg $Zlo,$Zlo,4 + srlg $Zhi,$Zhi,4 + xg $Zlo,8($nhi,$Htbl) + xg $Zhi,0($nhi,$Htbl) + xgr $Zlo,$tmp + xg $Zhi,0($rem1,$rem_4bit) + + lg $tmp,0($xi,$rem_4bit) + la $inp,16($inp) + sllg $tmp,$tmp,4 # correct last rem_4bit[rem] + brctg $len,.Louter + + xgr $Zhi,$tmp + stg $Zlo,8+1($Xi) + stg $Zhi,0+1($Xi) + lm${g} %r6,%r14,6*$SIZE_T($sp) + br %r14 +.type gcm_ghash_4bit,\@function +.size gcm_ghash_4bit,(.-gcm_ghash_4bit) + +.align 64 +rem_4bit: + .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0 + .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0 + .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0 + .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0 +.type rem_4bit,\@object +.size rem_4bit,(.-rem_4bit) +.string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>" +___ + +$code =~ s/\`([^\`]*)\`/eval $1/gem; +print $code; +close STDOUT; |