summaryrefslogtreecommitdiff
path: root/apps/couch/src/couch_key_tree.erl
blob: 6701da58df987c974da5eb846ddc2deda8d1b931 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
% Licensed under the Apache License, Version 2.0 (the "License"); you may not
% use this file except in compliance with the License. You may obtain a copy of
% the License at
%
%   http://www.apache.org/licenses/LICENSE-2.0
%
% Unless required by applicable law or agreed to in writing, software
% distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
% WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
% License for the specific language governing permissions and limitations under
% the License.

-module(couch_key_tree).

-export([merge/3, find_missing/2, get_key_leafs/2, get_full_key_paths/2, get/2]).
-export([map/2, get_all_leafs/1, count_leafs/1, remove_leafs/2,
    get_all_leafs_full/1,stem/2,map_leafs/2]).

% Tree::term() is really a tree(), but we don't want to require R13B04 yet
-type branch() :: {Key::term(), Value::term(), Tree::term()}.
-type path() :: {Start::pos_integer(), branch()}.
-type tree() :: [branch()]. % sorted by key

% partial trees arranged by how much they are cut off.

-spec merge([path()], path(), pos_integer()) -> {[path()],
    conflicts | no_conflicts}.
merge(Paths, Path, Depth) ->
    {Merged, Conflicts} = merge(Paths, Path),
    {stem(Merged, Depth), Conflicts}.

-spec merge([path()], path()) -> {[path()], conflicts | no_conflicts}.
merge(Paths, Path) ->
    {ok, Merged, HasConflicts} = merge_one(Paths, Path, [], false),
    if HasConflicts ->
        Conflicts = conflicts;
    (length(Merged) =/= length(Paths)) and (length(Merged) =/= 1) ->
        Conflicts = conflicts;
    true ->
        Conflicts = no_conflicts
    end,
    {lists:sort(Merged), Conflicts}.

-spec merge_one(Original::[path()], Inserted::path(), [path()], bool()) ->
    {ok, Merged::[path()], NewConflicts::bool()}.
merge_one([], Insert, OutAcc, ConflictsAcc) ->
    {ok, [Insert | OutAcc], ConflictsAcc};
merge_one([{Start, Tree}|Rest], {StartInsert, TreeInsert}, Acc, HasConflicts) ->
    case merge_at([Tree], StartInsert - Start, [TreeInsert]) of
    {ok, [Merged], Conflicts} ->
        MergedStart = lists:min([Start, StartInsert]),
        {ok, Rest ++ [{MergedStart, Merged} | Acc], Conflicts or HasConflicts};
    no ->
        AccOut = [{Start, Tree} | Acc],
        merge_one(Rest, {StartInsert, TreeInsert}, AccOut, HasConflicts)
    end.

-spec merge_at(tree(), Place::integer(), tree()) ->
    {ok, Merged::tree(), HasConflicts::bool()} | no.
merge_at(_Ours, _Place, []) ->
    no;
merge_at([], _Place, _Insert) ->
    no;
merge_at([{Key, Value, SubTree}|Sibs], Place, InsertTree) when Place > 0 ->
    % inserted starts later than committed, need to drill into committed subtree
    case merge_at(SubTree, Place - 1, InsertTree) of
    {ok, Merged, Conflicts} ->
        {ok, [{Key, Value, Merged} | Sibs], Conflicts};
    no ->
        case merge_at(Sibs, Place, InsertTree) of
        {ok, Merged, Conflicts} ->
            {ok, [{Key, Value, SubTree} | Merged], Conflicts};
        no ->
            no
        end
    end;
merge_at(OurTree, Place, [{Key, Value, SubTree}]) when Place < 0 ->
    % inserted starts earlier than committed, need to drill into insert subtree
    case merge_at(OurTree, Place + 1, SubTree) of
    {ok, Merged, Conflicts} ->
        {ok, [{Key, Value, Merged}], Conflicts};
    no ->
        no
    end;
merge_at([{Key, Value, SubTree}|Sibs], 0, [{Key, _Value, InsertSubTree}]) ->
    {Merged, Conflicts} = merge_simple(SubTree, InsertSubTree),
    {ok, [{Key, Value, Merged} | Sibs], Conflicts};
merge_at([{OurKey, _, _} | _], 0, [{Key, _, _}]) when OurKey > Key ->
    % siblings keys are ordered, no point in continuing
    no;
merge_at([Tree | Sibs], 0, InsertTree) ->
    case merge_at(Sibs, 0, InsertTree) of
    {ok, Merged, Conflicts} ->
        {ok, [Tree | Merged], Conflicts};
    no ->
        no
    end.

% key tree functions

-spec merge_simple(tree(), tree()) -> {Merged::tree(), NewConflicts::bool()}.
merge_simple([], B) ->
    {B, false};
merge_simple(A, []) ->
    {A, false};
merge_simple([{Key, Value, SubA} | NextA], [{Key, _, SubB} | NextB]) ->
    {MergedSubTree, Conflict1} = merge_simple(SubA, SubB),
    {MergedNextTree, Conflict2} = merge_simple(NextA, NextB),
    {[{Key, Value, MergedSubTree} | MergedNextTree], Conflict1 or Conflict2};
merge_simple([{A, _, _} = Tree | Next], [{B, _, _} | _] = Insert) when A < B ->
    {Merged, _} = merge_simple(Next, Insert),
    {[Tree | Merged], true};
merge_simple(Ours, [Tree | Next]) ->
    {Merged, _} = merge_simple(Ours, Next),
    {[Tree | Merged], true}.

find_missing(_Tree, []) ->
    [];
find_missing([], SeachKeys) ->
    SeachKeys;
find_missing([{Start, {Key, Value, SubTree}} | RestTree], SeachKeys) ->
    PossibleKeys = [{KeyPos, KeyValue} || {KeyPos, KeyValue} <- SeachKeys, KeyPos >= Start],
    ImpossibleKeys = [{KeyPos, KeyValue} || {KeyPos, KeyValue} <- SeachKeys, KeyPos < Start],
    Missing = find_missing_simple(Start, [{Key, Value, SubTree}], PossibleKeys),
    find_missing(RestTree, ImpossibleKeys ++ Missing).

find_missing_simple(_Pos, _Tree, []) ->
    [];
find_missing_simple(_Pos, [], SeachKeys) ->
    SeachKeys;
find_missing_simple(Pos, [{Key, _, SubTree} | RestTree], SeachKeys) ->
    PossibleKeys = [{KeyPos, KeyValue} || {KeyPos, KeyValue} <- SeachKeys, KeyPos >= Pos],
    ImpossibleKeys = [{KeyPos, KeyValue} || {KeyPos, KeyValue} <- SeachKeys, KeyPos < Pos],

    SrcKeys2 = PossibleKeys -- [{Pos, Key}],
    SrcKeys3 = find_missing_simple(Pos + 1, SubTree, SrcKeys2),
    ImpossibleKeys ++ find_missing_simple(Pos, RestTree, SrcKeys3).


filter_leafs([], _Keys, FilteredAcc, RemovedKeysAcc) ->
    {FilteredAcc, RemovedKeysAcc};
filter_leafs([{Pos, [{LeafKey, _}|_]} = Path |Rest], Keys, FilteredAcc, RemovedKeysAcc) ->
    FilteredKeys = lists:delete({Pos, LeafKey}, Keys),
    if FilteredKeys == Keys ->
        % this leaf is not a key we are looking to remove
        filter_leafs(Rest, Keys, [Path | FilteredAcc], RemovedKeysAcc);
    true ->
        % this did match a key, remove both the node and the input key
        filter_leafs(Rest, FilteredKeys, FilteredAcc, [{Pos, LeafKey} | RemovedKeysAcc])
    end.

% Removes any branches from the tree whose leaf node(s) are in the Keys
remove_leafs(Trees, Keys) ->
    % flatten each branch in a tree into a tree path
    Paths = get_all_leafs_full(Trees),

    % filter out any that are in the keys list.
    {FilteredPaths, RemovedKeys} = filter_leafs(Paths, Keys, [], []),

    % convert paths back to trees
    NewTree = lists:foldl(
        fun({PathPos, Path},TreeAcc) ->
            [SingleTree] = lists:foldl(
                fun({K,V},NewTreeAcc) -> [{K,V,NewTreeAcc}] end, [], Path),
            {NewTrees, _} = merge(TreeAcc, {PathPos + 1 - length(Path), SingleTree}),
            NewTrees
        end, [], FilteredPaths),
    {NewTree, RemovedKeys}.


% get the leafs in the tree matching the keys. The matching key nodes can be
% leafs or an inner nodes. If an inner node, then the leafs for that node
% are returned.
get_key_leafs(Tree, Keys) ->
    get_key_leafs(Tree, Keys, []).

get_key_leafs(_, [], Acc) ->
    {Acc, []};
get_key_leafs([], Keys, Acc) ->
    {Acc, Keys};
get_key_leafs([{Pos, Tree}|Rest], Keys, Acc) ->
    {Gotten, RemainingKeys} = get_key_leafs_simple(Pos, [Tree], Keys, []),
    get_key_leafs(Rest, RemainingKeys, Gotten ++ Acc).

get_key_leafs_simple(_Pos, _Tree, [], _KeyPathAcc) ->
    {[], []};
get_key_leafs_simple(_Pos, [], KeysToGet, _KeyPathAcc) ->
    {[], KeysToGet};
get_key_leafs_simple(Pos, [{Key, _Value, SubTree}=Tree | RestTree], KeysToGet, KeyPathAcc) ->
    case lists:delete({Pos, Key}, KeysToGet) of
    KeysToGet -> % same list, key not found
        {LeafsFound, KeysToGet2} = get_key_leafs_simple(Pos + 1, SubTree, KeysToGet, [Key | KeyPathAcc]),
        {RestLeafsFound, KeysRemaining} = get_key_leafs_simple(Pos, RestTree, KeysToGet2, KeyPathAcc),
        {LeafsFound ++ RestLeafsFound, KeysRemaining};
    KeysToGet2 ->
        LeafsFound = get_all_leafs_simple(Pos, [Tree], KeyPathAcc),
        LeafKeysFound = [LeafKeyFound || {LeafKeyFound, _} <- LeafsFound],
        KeysToGet2 = KeysToGet2 -- LeafKeysFound,
        {RestLeafsFound, KeysRemaining} = get_key_leafs_simple(Pos, RestTree, KeysToGet2, KeyPathAcc),
        {LeafsFound ++ RestLeafsFound, KeysRemaining}
    end.

get(Tree, KeysToGet) ->
    {KeyPaths, KeysNotFound} = get_full_key_paths(Tree, KeysToGet),
    FixedResults = [ {Value, {Pos, [Key0 || {Key0, _} <- Path]}} || {Pos, [{_Key, Value}|_]=Path} <- KeyPaths],
    {FixedResults, KeysNotFound}.

get_full_key_paths(Tree, Keys) ->
    get_full_key_paths(Tree, Keys, []).

get_full_key_paths(_, [], Acc) ->
    {Acc, []};
get_full_key_paths([], Keys, Acc) ->
    {Acc, Keys};
get_full_key_paths([{Pos, Tree}|Rest], Keys, Acc) ->
    {Gotten, RemainingKeys} = get_full_key_paths(Pos, [Tree], Keys, []),
    get_full_key_paths(Rest, RemainingKeys, Gotten ++ Acc).


get_full_key_paths(_Pos, _Tree, [], _KeyPathAcc) ->
    {[], []};
get_full_key_paths(_Pos, [], KeysToGet, _KeyPathAcc) ->
    {[], KeysToGet};
get_full_key_paths(Pos, [{KeyId, Value, SubTree} | RestTree], KeysToGet, KeyPathAcc) ->
    KeysToGet2 = KeysToGet -- [{Pos, KeyId}],
    CurrentNodeResult =
    case length(KeysToGet2) =:= length(KeysToGet) of
    true -> % not in the key list.
        [];
    false -> % this node is the key list. return it
        [{Pos, [{KeyId, Value} | KeyPathAcc]}]
    end,
    {KeysGotten, KeysRemaining} = get_full_key_paths(Pos + 1, SubTree, KeysToGet2, [{KeyId, Value} | KeyPathAcc]),
    {KeysGotten2, KeysRemaining2} = get_full_key_paths(Pos, RestTree, KeysRemaining, KeyPathAcc),
    {CurrentNodeResult ++ KeysGotten ++ KeysGotten2, KeysRemaining2}.

get_all_leafs_full(Tree) ->
    get_all_leafs_full(Tree, []).

get_all_leafs_full([], Acc) ->
    Acc;
get_all_leafs_full([{Pos, Tree} | Rest], Acc) ->
    get_all_leafs_full(Rest, get_all_leafs_full_simple(Pos, [Tree], []) ++ Acc).

get_all_leafs_full_simple(_Pos, [], _KeyPathAcc) ->
    [];
get_all_leafs_full_simple(Pos, [{KeyId, Value, []} | RestTree], KeyPathAcc) ->
    [{Pos, [{KeyId, Value} | KeyPathAcc]} | get_all_leafs_full_simple(Pos, RestTree, KeyPathAcc)];
get_all_leafs_full_simple(Pos, [{KeyId, Value, SubTree} | RestTree], KeyPathAcc) ->
    get_all_leafs_full_simple(Pos + 1, SubTree, [{KeyId, Value} | KeyPathAcc]) ++ get_all_leafs_full_simple(Pos, RestTree, KeyPathAcc).

get_all_leafs(Trees) ->
    get_all_leafs(Trees, []).

get_all_leafs([], Acc) ->
    Acc;
get_all_leafs([{Pos, Tree}|Rest], Acc) ->
    get_all_leafs(Rest, get_all_leafs_simple(Pos, [Tree], []) ++ Acc).

get_all_leafs_simple(_Pos, [], _KeyPathAcc) ->
    [];
get_all_leafs_simple(Pos, [{KeyId, Value, []} | RestTree], KeyPathAcc) ->
    [{Value, {Pos, [KeyId | KeyPathAcc]}} | get_all_leafs_simple(Pos, RestTree, KeyPathAcc)];
get_all_leafs_simple(Pos, [{KeyId, _Value, SubTree} | RestTree], KeyPathAcc) ->
    get_all_leafs_simple(Pos + 1, SubTree, [KeyId | KeyPathAcc]) ++ get_all_leafs_simple(Pos, RestTree, KeyPathAcc).


count_leafs([]) ->
    0;
count_leafs([{_Pos,Tree}|Rest]) ->
    count_leafs_simple([Tree]) + count_leafs(Rest).

count_leafs_simple([]) ->
    0;
count_leafs_simple([{_Key, _Value, []} | RestTree]) ->
    1 + count_leafs_simple(RestTree);
count_leafs_simple([{_Key, _Value, SubTree} | RestTree]) ->
    count_leafs_simple(SubTree) + count_leafs_simple(RestTree).


map(_Fun, []) ->
    [];
map(Fun, [{Pos, Tree}|Rest]) ->
    case erlang:fun_info(Fun, arity) of
    {arity, 2} ->
        [NewTree] = map_simple(fun(A,B,_C) -> Fun(A,B) end, Pos, [Tree]),
        [{Pos, NewTree} | map(Fun, Rest)];
    {arity, 3} ->
        [NewTree] = map_simple(Fun, Pos, [Tree]),
        [{Pos, NewTree} | map(Fun, Rest)]
    end.

map_simple(_Fun, _Pos, []) ->
    [];
map_simple(Fun, Pos, [{Key, Value, SubTree} | RestTree]) ->
    Value2 = Fun({Pos, Key}, Value,
            if SubTree == [] -> leaf; true -> branch end),
    [{Key, Value2, map_simple(Fun, Pos + 1, SubTree)} | map_simple(Fun, Pos, RestTree)].


map_leafs(_Fun, []) ->
    [];
map_leafs(Fun, [{Pos, Tree}|Rest]) ->
    [NewTree] = map_leafs_simple(Fun, Pos, [Tree]),
    [{Pos, NewTree} | map_leafs(Fun, Rest)].

map_leafs_simple(_Fun, _Pos, []) ->
    [];
map_leafs_simple(Fun, Pos, [{Key, Value, []} | RestTree]) ->
    Value2 = Fun({Pos, Key}, Value),
    [{Key, Value2, []} | map_leafs_simple(Fun, Pos, RestTree)];
map_leafs_simple(Fun, Pos, [{Key, Value, SubTree} | RestTree]) ->
    [{Key, Value, map_leafs_simple(Fun, Pos + 1, SubTree)} | map_leafs_simple(Fun, Pos, RestTree)].


stem(Trees, Limit) ->
    % flatten each branch in a tree into a tree path
    Paths = get_all_leafs_full(Trees),

    Paths2 = [{Pos, lists:sublist(Path, Limit)} || {Pos, Path} <- Paths],

    % convert paths back to trees
    lists:foldl(
        fun({PathPos, Path},TreeAcc) ->
            [SingleTree] = lists:foldl(
                fun({K,V},NewTreeAcc) -> [{K,V,NewTreeAcc}] end, [], Path),
            {NewTrees, _} = merge(TreeAcc, {PathPos + 1 - length(Path), SingleTree}),
            NewTrees
        end, [], Paths2).

% Tests moved to test/etap/06?-*.t