1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# April 2007.
#
# Performance improvement over vanilla C code varies from 85% to 45%
# depending on key length and benchmark. Unfortunately in this context
# these are not very impressive results [for code that utilizes "wide"
# 64x64=128-bit multiplication, which is not commonly available to C
# programmers], at least hand-coded bn_asm.c replacement is known to
# provide 30-40% better results for longest keys. Well, on a second
# thought it's not very surprising, because z-CPUs are single-issue
# and _strictly_ in-order execution, while bn_mul_mont is more or less
# dependent on CPU ability to pipe-line instructions and have several
# of them "in-flight" at the same time. I mean while other methods,
# for example Karatsuba, aim to minimize amount of multiplications at
# the cost of other operations increase, bn_mul_mont aim to neatly
# "overlap" multiplications and the other operations [and on most
# platforms even minimize the amount of the other operations, in
# particular references to memory]. But it's possible to improve this
# module performance by implementing dedicated squaring code-path and
# possibly by unrolling loops...
# January 2009.
#
# Reschedule to minimize/avoid Address Generation Interlock hazard,
# make inner loops counter-based.
$mn0="%r0";
$num="%r1";
# int bn_mul_mont(
$rp="%r2"; # BN_ULONG *rp,
$ap="%r3"; # const BN_ULONG *ap,
$bp="%r4"; # const BN_ULONG *bp,
$np="%r5"; # const BN_ULONG *np,
$n0="%r6"; # const BN_ULONG *n0,
#$num="160(%r15)" # int num);
$bi="%r2"; # zaps rp
$j="%r7";
$ahi="%r8";
$alo="%r9";
$nhi="%r10";
$nlo="%r11";
$AHI="%r12";
$NHI="%r13";
$count="%r14";
$sp="%r15";
$code.=<<___;
.text
.globl bn_mul_mont
.type bn_mul_mont,\@function
bn_mul_mont:
lgf $num,164($sp) # pull $num
sla $num,3 # $num to enumerate bytes
la $bp,0($num,$bp)
stg %r2,16($sp)
cghi $num,16 #
lghi %r2,0 #
blr %r14 # if($num<16) return 0;
cghi $num,96 #
bhr %r14 # if($num>96) return 0;
stmg %r3,%r15,24($sp)
lghi $rp,-160-8 # leave room for carry bit
lcgr $j,$num # -$num
lgr %r0,$sp
la $rp,0($rp,$sp)
la $sp,0($j,$rp) # alloca
stg %r0,0($sp) # back chain
sra $num,3 # restore $num
la $bp,0($j,$bp) # restore $bp
ahi $num,-1 # adjust $num for inner loop
lg $n0,0($n0) # pull n0
lg $bi,0($bp)
lg $alo,0($ap)
mlgr $ahi,$bi # ap[0]*bp[0]
lgr $AHI,$ahi
lgr $mn0,$alo # "tp[0]"*n0
msgr $mn0,$n0
lg $nlo,0($np) #
mlgr $nhi,$mn0 # np[0]*m1
algr $nlo,$alo # +="tp[0]"
lghi $NHI,0
alcgr $NHI,$nhi
la $j,8(%r0) # j=1
lr $count,$num
.align 16
.L1st:
lg $alo,0($j,$ap)
mlgr $ahi,$bi # ap[j]*bp[0]
algr $alo,$AHI
lghi $AHI,0
alcgr $AHI,$ahi
lg $nlo,0($j,$np)
mlgr $nhi,$mn0 # np[j]*m1
algr $nlo,$NHI
lghi $NHI,0
alcgr $nhi,$NHI # +="tp[j]"
algr $nlo,$alo
alcgr $NHI,$nhi
stg $nlo,160-8($j,$sp) # tp[j-1]=
la $j,8($j) # j++
brct $count,.L1st
algr $NHI,$AHI
lghi $AHI,0
alcgr $AHI,$AHI # upmost overflow bit
stg $NHI,160-8($j,$sp)
stg $AHI,160($j,$sp)
la $bp,8($bp) # bp++
.Louter:
lg $bi,0($bp) # bp[i]
lg $alo,0($ap)
mlgr $ahi,$bi # ap[0]*bp[i]
alg $alo,160($sp) # +=tp[0]
lghi $AHI,0
alcgr $AHI,$ahi
lgr $mn0,$alo
msgr $mn0,$n0 # tp[0]*n0
lg $nlo,0($np) # np[0]
mlgr $nhi,$mn0 # np[0]*m1
algr $nlo,$alo # +="tp[0]"
lghi $NHI,0
alcgr $NHI,$nhi
la $j,8(%r0) # j=1
lr $count,$num
.align 16
.Linner:
lg $alo,0($j,$ap)
mlgr $ahi,$bi # ap[j]*bp[i]
algr $alo,$AHI
lghi $AHI,0
alcgr $ahi,$AHI
alg $alo,160($j,$sp)# +=tp[j]
alcgr $AHI,$ahi
lg $nlo,0($j,$np)
mlgr $nhi,$mn0 # np[j]*m1
algr $nlo,$NHI
lghi $NHI,0
alcgr $nhi,$NHI
algr $nlo,$alo # +="tp[j]"
alcgr $NHI,$nhi
stg $nlo,160-8($j,$sp) # tp[j-1]=
la $j,8($j) # j++
brct $count,.Linner
algr $NHI,$AHI
lghi $AHI,0
alcgr $AHI,$AHI
alg $NHI,160($j,$sp)# accumulate previous upmost overflow bit
lghi $ahi,0
alcgr $AHI,$ahi # new upmost overflow bit
stg $NHI,160-8($j,$sp)
stg $AHI,160($j,$sp)
la $bp,8($bp) # bp++
clg $bp,160+8+32($j,$sp) # compare to &bp[num]
jne .Louter
lg $rp,160+8+16($j,$sp) # reincarnate rp
la $ap,160($sp)
ahi $num,1 # restore $num, incidentally clears "borrow"
la $j,0(%r0)
lr $count,$num
.Lsub: lg $alo,0($j,$ap)
slbg $alo,0($j,$np)
stg $alo,0($j,$rp)
la $j,8($j)
brct $count,.Lsub
lghi $ahi,0
slbgr $AHI,$ahi # handle upmost carry
ngr $ap,$AHI
lghi $np,-1
xgr $np,$AHI
ngr $np,$rp
ogr $ap,$np # ap=borrow?tp:rp
la $j,0(%r0)
lgr $count,$num
.Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh
stg $j,160($j,$sp) # zap tp
stg $alo,0($j,$rp)
la $j,8($j)
brct $count,.Lcopy
la %r1,160+8+48($j,$sp)
lmg %r6,%r15,0(%r1)
lghi %r2,1 # signal "processed"
br %r14
.size bn_mul_mont,.-bn_mul_mont
.string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
___
print $code;
close STDOUT;
|