1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
|
#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# sha1_block procedure for ARMv4.
#
# January 2007.
# Size/performance trade-off
# ====================================================================
# impl size in bytes comp cycles[*] measured performance
# ====================================================================
# thumb 304 3212 4420
# armv4-small 392/+29% 1958/+64% 2250/+96%
# armv4-compact 740/+89% 1552/+26% 1840/+22%
# armv4-large 1420/+92% 1307/+19% 1370/+34%[***]
# full unroll ~5100/+260% ~1260/+4% ~1300/+5%
# ====================================================================
# thumb = same as 'small' but in Thumb instructions[**] and
# with recurring code in two private functions;
# small = detached Xload/update, loops are folded;
# compact = detached Xload/update, 5x unroll;
# large = interleaved Xload/update, 5x unroll;
# full unroll = interleaved Xload/update, full unroll, estimated[!];
#
# [*] Manually counted instructions in "grand" loop body. Measured
# performance is affected by prologue and epilogue overhead,
# i-cache availability, branch penalties, etc.
# [**] While each Thumb instruction is twice smaller, they are not as
# diverse as ARM ones: e.g., there are only two arithmetic
# instructions with 3 arguments, no [fixed] rotate, addressing
# modes are limited. As result it takes more instructions to do
# the same job in Thumb, therefore the code is never twice as
# small and always slower.
# [***] which is also ~35% better than compiler generated code. Dual-
# issue Cortex A8 core was measured to process input block in
# ~990 cycles.
# August 2010.
#
# Rescheduling for dual-issue pipeline resulted in 13% improvement on
# Cortex A8 core and in absolute terms ~870 cycles per input block
# [or 13.6 cycles per byte].
# February 2011.
#
# Profiler-assisted and platform-specific optimization resulted in 10%
# improvement on Cortex A8 core and 12.2 cycles per byte.
# September 2013.
#
# Add NEON implementation (see sha1-586.pl for background info). On
# Cortex A8 it was measured to process one byte in 6.7 cycles or >80%
# faster than integer-only code. Because [fully unrolled] NEON code
# is ~2.5x larger and there are some redundant instructions executed
# when processing last block, improvement is not as big for smallest
# blocks, only ~30%. Snapdragon S4 is a tad faster, 6.4 cycles per
# byte, which is also >80% faster than integer-only code.
# May 2014.
#
# Add ARMv8 code path performing at 2.35 cpb on Apple A7.
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
$ctx="r0";
$inp="r1";
$len="r2";
$a="r3";
$b="r4";
$c="r5";
$d="r6";
$e="r7";
$K="r8";
$t0="r9";
$t1="r10";
$t2="r11";
$t3="r12";
$Xi="r14";
@V=($a,$b,$c,$d,$e);
sub Xupdate {
my ($a,$b,$c,$d,$e,$opt1,$opt2)=@_;
$code.=<<___;
ldr $t0,[$Xi,#15*4]
ldr $t1,[$Xi,#13*4]
ldr $t2,[$Xi,#7*4]
add $e,$K,$e,ror#2 @ E+=K_xx_xx
ldr $t3,[$Xi,#2*4]
eor $t0,$t0,$t1
eor $t2,$t2,$t3 @ 1 cycle stall
eor $t1,$c,$d @ F_xx_xx
mov $t0,$t0,ror#31
add $e,$e,$a,ror#27 @ E+=ROR(A,27)
eor $t0,$t0,$t2,ror#31
str $t0,[$Xi,#-4]!
$opt1 @ F_xx_xx
$opt2 @ F_xx_xx
add $e,$e,$t0 @ E+=X[i]
___
}
sub BODY_00_15 {
my ($a,$b,$c,$d,$e)=@_;
$code.=<<___;
#if __ARM_ARCH__<7
ldrb $t1,[$inp,#2]
ldrb $t0,[$inp,#3]
ldrb $t2,[$inp,#1]
add $e,$K,$e,ror#2 @ E+=K_00_19
ldrb $t3,[$inp],#4
orr $t0,$t0,$t1,lsl#8
eor $t1,$c,$d @ F_xx_xx
orr $t0,$t0,$t2,lsl#16
add $e,$e,$a,ror#27 @ E+=ROR(A,27)
orr $t0,$t0,$t3,lsl#24
#else
ldr $t0,[$inp],#4 @ handles unaligned
add $e,$K,$e,ror#2 @ E+=K_00_19
eor $t1,$c,$d @ F_xx_xx
add $e,$e,$a,ror#27 @ E+=ROR(A,27)
#ifdef __ARMEL__
rev $t0,$t0 @ byte swap
#endif
#endif
and $t1,$b,$t1,ror#2
add $e,$e,$t0 @ E+=X[i]
eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D)
str $t0,[$Xi,#-4]!
add $e,$e,$t1 @ E+=F_00_19(B,C,D)
___
}
sub BODY_16_19 {
my ($a,$b,$c,$d,$e)=@_;
&Xupdate(@_,"and $t1,$b,$t1,ror#2");
$code.=<<___;
eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D)
add $e,$e,$t1 @ E+=F_00_19(B,C,D)
___
}
sub BODY_20_39 {
my ($a,$b,$c,$d,$e)=@_;
&Xupdate(@_,"eor $t1,$b,$t1,ror#2");
$code.=<<___;
add $e,$e,$t1 @ E+=F_20_39(B,C,D)
___
}
sub BODY_40_59 {
my ($a,$b,$c,$d,$e)=@_;
&Xupdate(@_,"and $t1,$b,$t1,ror#2","and $t2,$c,$d");
$code.=<<___;
add $e,$e,$t1 @ E+=F_40_59(B,C,D)
add $e,$e,$t2,ror#2
___
}
$code=<<___;
#include "arm_arch.h"
.text
.code 32
.global sha1_block_data_order
.type sha1_block_data_order,%function
.align 5
sha1_block_data_order:
#if __ARM_ARCH__>=7
sub r3,pc,#8 @ sha1_block_data_order
ldr r12,.LOPENSSL_armcap
ldr r12,[r3,r12] @ OPENSSL_armcap_P
tst r12,#ARMV8_SHA1
bne .LARMv8
tst r12,#ARMV7_NEON
bne .LNEON
#endif
stmdb sp!,{r4-r12,lr}
add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp
ldmia $ctx,{$a,$b,$c,$d,$e}
.Lloop:
ldr $K,.LK_00_19
mov $Xi,sp
sub sp,sp,#15*4
mov $c,$c,ror#30
mov $d,$d,ror#30
mov $e,$e,ror#30 @ [6]
.L_00_15:
___
for($i=0;$i<5;$i++) {
&BODY_00_15(@V); unshift(@V,pop(@V));
}
$code.=<<___;
teq $Xi,sp
bne .L_00_15 @ [((11+4)*5+2)*3]
sub sp,sp,#25*4
___
&BODY_00_15(@V); unshift(@V,pop(@V));
&BODY_16_19(@V); unshift(@V,pop(@V));
&BODY_16_19(@V); unshift(@V,pop(@V));
&BODY_16_19(@V); unshift(@V,pop(@V));
&BODY_16_19(@V); unshift(@V,pop(@V));
$code.=<<___;
ldr $K,.LK_20_39 @ [+15+16*4]
cmn sp,#0 @ [+3], clear carry to denote 20_39
.L_20_39_or_60_79:
___
for($i=0;$i<5;$i++) {
&BODY_20_39(@V); unshift(@V,pop(@V));
}
$code.=<<___;
teq $Xi,sp @ preserve carry
bne .L_20_39_or_60_79 @ [+((12+3)*5+2)*4]
bcs .L_done @ [+((12+3)*5+2)*4], spare 300 bytes
ldr $K,.LK_40_59
sub sp,sp,#20*4 @ [+2]
.L_40_59:
___
for($i=0;$i<5;$i++) {
&BODY_40_59(@V); unshift(@V,pop(@V));
}
$code.=<<___;
teq $Xi,sp
bne .L_40_59 @ [+((12+5)*5+2)*4]
ldr $K,.LK_60_79
sub sp,sp,#20*4
cmp sp,#0 @ set carry to denote 60_79
b .L_20_39_or_60_79 @ [+4], spare 300 bytes
.L_done:
add sp,sp,#80*4 @ "deallocate" stack frame
ldmia $ctx,{$K,$t0,$t1,$t2,$t3}
add $a,$K,$a
add $b,$t0,$b
add $c,$t1,$c,ror#2
add $d,$t2,$d,ror#2
add $e,$t3,$e,ror#2
stmia $ctx,{$a,$b,$c,$d,$e}
teq $inp,$len
bne .Lloop @ [+18], total 1307
#if __ARM_ARCH__>=5
ldmia sp!,{r4-r12,pc}
#else
ldmia sp!,{r4-r12,lr}
tst lr,#1
moveq pc,lr @ be binary compatible with V4, yet
bx lr @ interoperable with Thumb ISA:-)
#endif
.size sha1_block_data_order,.-sha1_block_data_order
.align 5
.LK_00_19: .word 0x5a827999
.LK_20_39: .word 0x6ed9eba1
.LK_40_59: .word 0x8f1bbcdc
.LK_60_79: .word 0xca62c1d6
.LOPENSSL_armcap:
.word OPENSSL_armcap_P-sha1_block_data_order
.asciz "SHA1 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align 5
___
#####################################################################
# NEON stuff
#
{{{
my @V=($a,$b,$c,$d,$e);
my ($K_XX_XX,$Ki,$t0,$t1,$Xfer,$saved_sp)=map("r$_",(8..12,14));
my $Xi=4;
my @X=map("q$_",(8..11,0..3));
my @Tx=("q12","q13");
my ($K,$zero)=("q14","q15");
my $j=0;
sub AUTOLOAD() # thunk [simplified] x86-style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
my $arg = pop;
$arg = "#$arg" if ($arg*1 eq $arg);
$code .= "\t$opcode\t".join(',',@_,$arg)."\n";
}
sub body_00_19 () {
(
'($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'.
'&bic ($t0,$d,$b)',
'&add ($e,$e,$Ki)', # e+=X[i]+K
'&and ($t1,$c,$b)',
'&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))',
'&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27)
'&eor ($t1,$t1,$t0)', # F_00_19
'&mov ($b,$b,"ror#2")', # b=ROR(b,2)
'&add ($e,$e,$t1);'. # e+=F_00_19
'$j++; unshift(@V,pop(@V));'
)
}
sub body_20_39 () {
(
'($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'.
'&eor ($t0,$b,$d)',
'&add ($e,$e,$Ki)', # e+=X[i]+K
'&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15)) if ($j<79)',
'&eor ($t1,$t0,$c)', # F_20_39
'&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27)
'&mov ($b,$b,"ror#2")', # b=ROR(b,2)
'&add ($e,$e,$t1);'. # e+=F_20_39
'$j++; unshift(@V,pop(@V));'
)
}
sub body_40_59 () {
(
'($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'.
'&add ($e,$e,$Ki)', # e+=X[i]+K
'&and ($t0,$c,$d)',
'&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))',
'&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27)
'&eor ($t1,$c,$d)',
'&add ($e,$e,$t0)',
'&and ($t1,$t1,$b)',
'&mov ($b,$b,"ror#2")', # b=ROR(b,2)
'&add ($e,$e,$t1);'. # e+=F_40_59
'$j++; unshift(@V,pop(@V));'
)
}
sub Xupdate_16_31 ()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e);
&vext_8 (@X[0],@X[-4&7],@X[-3&7],8); # compose "X[-14]" in "X[0]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@Tx[1],@X[-1&7],$K);
eval(shift(@insns));
&vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!") if ($Xi%5==0);
eval(shift(@insns));
&vext_8 (@Tx[0],@X[-1&7],$zero,4); # "X[-3]", 3 words
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&veor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
eval(shift(@insns));
eval(shift(@insns));
&veor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
&veor (@Tx[0],@Tx[0],@X[0]); # "X[0]"^="X[-3]"^"X[-8]
eval(shift(@insns));
eval(shift(@insns));
&vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); # X[]+K xfer
&sub ($Xfer,$Xfer,64) if ($Xi%4==0);
eval(shift(@insns));
eval(shift(@insns));
&vext_8 (@Tx[1],$zero,@Tx[0],4); # "X[0]"<<96, extract one dword
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@X[0],@Tx[0],@Tx[0]);
eval(shift(@insns));
eval(shift(@insns));
&vsri_32 (@X[0],@Tx[0],31); # "X[0]"<<<=1
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 (@Tx[0],@Tx[1],30);
eval(shift(@insns));
eval(shift(@insns));
&vshl_u32 (@Tx[1],@Tx[1],2);
eval(shift(@insns));
eval(shift(@insns));
&veor (@X[0],@X[0],@Tx[0]);
eval(shift(@insns));
eval(shift(@insns));
&veor (@X[0],@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xupdate_32_79 ()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e);
&vext_8 (@Tx[0],@X[-2&7],@X[-1&7],8); # compose "X[-6]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&veor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
eval(shift(@insns));
eval(shift(@insns));
&veor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@Tx[1],@X[-1&7],$K);
eval(shift(@insns));
&vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!") if ($Xi%5==0);
eval(shift(@insns));
&veor (@Tx[0],@Tx[0],@X[0]); # "X[-6]"^="X[0]"
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 (@X[0],@Tx[0],30);
eval(shift(@insns));
eval(shift(@insns));
&vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); # X[]+K xfer
&sub ($Xfer,$Xfer,64) if ($Xi%4==0);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 (@X[0],@Tx[0],2); # "X[0]"="X[-6]"<<<2
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xuplast_80 ()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e);
&vadd_i32 (@Tx[1],@X[-1&7],$K);
eval(shift(@insns));
eval(shift(@insns));
&vst1_32 ("{@Tx[1]}","[$Xfer,:128]!");
&sub ($Xfer,$Xfer,64);
&teq ($inp,$len);
&sub ($K_XX_XX,$K_XX_XX,16); # rewind $K_XX_XX
&subeq ($inp,$inp,64); # reload last block to avoid SEGV
&vld1_8 ("{@X[-4&7]-@X[-3&7]}","[$inp]!");
eval(shift(@insns));
eval(shift(@insns));
&vld1_8 ("{@X[-2&7]-@X[-1&7]}","[$inp]!");
eval(shift(@insns));
eval(shift(@insns));
&vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!"); # load K_00_19
eval(shift(@insns));
eval(shift(@insns));
&vrev32_8 (@X[-4&7],@X[-4&7]);
foreach (@insns) { eval; } # remaining instructions
$Xi=0;
}
sub Xloop()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e);
&vrev32_8 (@X[($Xi-3)&7],@X[($Xi-3)&7]);
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@X[$Xi&7],@X[($Xi-4)&7],$K);
eval(shift(@insns));
eval(shift(@insns));
&vst1_32 ("{@X[$Xi&7]}","[$Xfer,:128]!");# X[]+K xfer to IALU
foreach (@insns) { eval; }
$Xi++;
}
$code.=<<___;
#if __ARM_ARCH__>=7
.fpu neon
.type sha1_block_data_order_neon,%function
.align 4
sha1_block_data_order_neon:
.LNEON:
stmdb sp!,{r4-r12,lr}
add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp
@ dmb @ errata #451034 on early Cortex A8
@ vstmdb sp!,{d8-d15} @ ABI specification says so
mov $saved_sp,sp
sub sp,sp,#64 @ alloca
adr $K_XX_XX,.LK_00_19
bic sp,sp,#15 @ align for 128-bit stores
ldmia $ctx,{$a,$b,$c,$d,$e} @ load context
mov $Xfer,sp
vld1.8 {@X[-4&7]-@X[-3&7]},[$inp]! @ handles unaligned
veor $zero,$zero,$zero
vld1.8 {@X[-2&7]-@X[-1&7]},[$inp]!
vld1.32 {${K}\[]},[$K_XX_XX,:32]! @ load K_00_19
vrev32.8 @X[-4&7],@X[-4&7] @ yes, even on
vrev32.8 @X[-3&7],@X[-3&7] @ big-endian...
vrev32.8 @X[-2&7],@X[-2&7]
vadd.i32 @X[0],@X[-4&7],$K
vrev32.8 @X[-1&7],@X[-1&7]
vadd.i32 @X[1],@X[-3&7],$K
vst1.32 {@X[0]},[$Xfer,:128]!
vadd.i32 @X[2],@X[-2&7],$K
vst1.32 {@X[1]},[$Xfer,:128]!
vst1.32 {@X[2]},[$Xfer,:128]!
ldr $Ki,[sp] @ big RAW stall
.Loop_neon:
___
&Xupdate_16_31(\&body_00_19);
&Xupdate_16_31(\&body_00_19);
&Xupdate_16_31(\&body_00_19);
&Xupdate_16_31(\&body_00_19);
&Xupdate_32_79(\&body_00_19);
&Xupdate_32_79(\&body_20_39);
&Xupdate_32_79(\&body_20_39);
&Xupdate_32_79(\&body_20_39);
&Xupdate_32_79(\&body_20_39);
&Xupdate_32_79(\&body_20_39);
&Xupdate_32_79(\&body_40_59);
&Xupdate_32_79(\&body_40_59);
&Xupdate_32_79(\&body_40_59);
&Xupdate_32_79(\&body_40_59);
&Xupdate_32_79(\&body_40_59);
&Xupdate_32_79(\&body_20_39);
&Xuplast_80(\&body_20_39);
&Xloop(\&body_20_39);
&Xloop(\&body_20_39);
&Xloop(\&body_20_39);
$code.=<<___;
ldmia $ctx,{$Ki,$t0,$t1,$Xfer} @ accumulate context
add $a,$a,$Ki
ldr $Ki,[$ctx,#16]
add $b,$b,$t0
add $c,$c,$t1
add $d,$d,$Xfer
moveq sp,$saved_sp
add $e,$e,$Ki
ldrne $Ki,[sp]
stmia $ctx,{$a,$b,$c,$d,$e}
addne $Xfer,sp,#3*16
bne .Loop_neon
@ vldmia sp!,{d8-d15}
ldmia sp!,{r4-r12,pc}
.size sha1_block_data_order_neon,.-sha1_block_data_order_neon
#endif
___
}}}
#####################################################################
# ARMv8 stuff
#
{{{
my ($ABCD,$E,$E0,$E1)=map("q$_",(0..3));
my @MSG=map("q$_",(4..7));
my @Kxx=map("q$_",(8..11));
my ($W0,$W1,$ABCD_SAVE)=map("q$_",(12..14));
$code.=<<___;
#if __ARM_ARCH__>=7
.type sha1_block_data_order_armv8,%function
.align 5
sha1_block_data_order_armv8:
.LARMv8:
vstmdb sp!,{d8-d15} @ ABI specification says so
veor $E,$E,$E
adr r3,.LK_00_19
vld1.32 {$ABCD},[$ctx]!
vld1.32 {$E\[0]},[$ctx]
sub $ctx,$ctx,#16
vld1.32 {@Kxx[0]\[]},[r3,:32]!
vld1.32 {@Kxx[1]\[]},[r3,:32]!
vld1.32 {@Kxx[2]\[]},[r3,:32]!
vld1.32 {@Kxx[3]\[]},[r3,:32]
.Loop_v8:
vld1.8 {@MSG[0]-@MSG[1]},[$inp]!
vld1.8 {@MSG[2]-@MSG[3]},[$inp]!
vrev32.8 @MSG[0],@MSG[0]
vrev32.8 @MSG[1],@MSG[1]
vadd.i32 $W0,@Kxx[0],@MSG[0]
vrev32.8 @MSG[2],@MSG[2]
vmov $ABCD_SAVE,$ABCD @ offload
subs $len,$len,#1
vadd.i32 $W1,@Kxx[0],@MSG[1]
vrev32.8 @MSG[3],@MSG[3]
sha1h $E1,$ABCD @ 0
sha1c $ABCD,$E,$W0
vadd.i32 $W0,@Kxx[$j],@MSG[2]
sha1su0 @MSG[0],@MSG[1],@MSG[2]
___
for ($j=0,$i=1;$i<20-3;$i++) {
my $f=("c","p","m","p")[$i/5];
$code.=<<___;
sha1h $E0,$ABCD @ $i
sha1$f $ABCD,$E1,$W1
vadd.i32 $W1,@Kxx[$j],@MSG[3]
sha1su1 @MSG[0],@MSG[3]
___
$code.=<<___ if ($i<20-4);
sha1su0 @MSG[1],@MSG[2],@MSG[3]
___
($E0,$E1)=($E1,$E0); ($W0,$W1)=($W1,$W0);
push(@MSG,shift(@MSG)); $j++ if ((($i+3)%5)==0);
}
$code.=<<___;
sha1h $E0,$ABCD @ $i
sha1p $ABCD,$E1,$W1
vadd.i32 $W1,@Kxx[$j],@MSG[3]
sha1h $E1,$ABCD @ 18
sha1p $ABCD,$E0,$W0
sha1h $E0,$ABCD @ 19
sha1p $ABCD,$E1,$W1
vadd.i32 $E,$E,$E0
vadd.i32 $ABCD,$ABCD,$ABCD_SAVE
bne .Loop_v8
vst1.32 {$ABCD},[$ctx]!
vst1.32 {$E\[0]},[$ctx]
vldmia sp!,{d8-d15}
ret @ bx lr
.size sha1_block_data_order_armv8,.-sha1_block_data_order_armv8
#endif
___
}}}
$code.=<<___;
.comm OPENSSL_armcap_P,4,4
___
{ my %opcode = (
"sha1c" => 0xf2000c40, "sha1p" => 0xf2100c40,
"sha1m" => 0xf2200c40, "sha1su0" => 0xf2300c40,
"sha1h" => 0xf3b902c0, "sha1su1" => 0xf3ba0380 );
sub unsha1 {
my ($mnemonic,$arg)=@_;
if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) {
my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19)
|(($2&7)<<17)|(($2&8)<<4)
|(($3&7)<<1) |(($3&8)<<2);
# since ARMv7 instructions are always encoded little-endian.
# correct solution is to use .inst directive, but older
# assemblers don't implement it:-(
sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
$word&0xff,($word>>8)&0xff,
($word>>16)&0xff,($word>>24)&0xff,
$mnemonic,$arg;
}
}
}
foreach (split($/,$code)) {
s/{q([0-9]+)\[\]}/sprintf "{d%d[],d%d[]}",2*$1,2*$1+1/eo or
s/{q([0-9]+)\[0\]}/sprintf "{d%d[0]}",2*$1/eo;
s/\b(sha1\w+)\s+(q.*)/unsha1($1,$2)/geo;
s/\bret\b/bx lr/o or
s/\bbx\s+lr\b/.word\t0xe12fff1e/o; # make it possible to compile with -march=armv4
print $_,$/;
}
close STDOUT; # enforce flush
|