summaryrefslogtreecommitdiff
path: root/app/openssl/crypto/modes/asm/ghash-armv4.pl
blob: e46f8e34da14d7ec062a9bfe4636a9bee44e7726 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# April 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+32 bytes shared table]. There is no
# experimental performance data available yet. The only approximation
# that can be made at this point is based on code size. Inner loop is
# 32 instructions long and on single-issue core should execute in <40
# cycles. Having verified that gcc 3.4 didn't unroll corresponding
# loop, this assembler loop body was found to be ~3x smaller than
# compiler-generated one...
#
# July 2010
#
# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
# Cortex A8 core and ~25 cycles per processed byte (which was observed
# to be ~3 times faster than gcc-generated code:-)
#
# February 2011
#
# Profiler-assisted and platform-specific optimization resulted in 7%
# improvement on Cortex A8 core and ~23.5 cycles per byte.
#
# March 2011
#
# Add NEON implementation featuring polynomial multiplication, i.e. no
# lookup tables involved. On Cortex A8 it was measured to process one
# byte in 15 cycles or 55% faster than integer-only code.

# ====================================================================
# Note about "528B" variant. In ARM case it makes lesser sense to
# implement it for following reasons:
#
# - performance improvement won't be anywhere near 50%, because 128-
#   bit shift operation is neatly fused with 128-bit xor here, and
#   "538B" variant would eliminate only 4-5 instructions out of 32
#   in the inner loop (meaning that estimated improvement is ~15%);
# - ARM-based systems are often embedded ones and extra memory
#   consumption might be unappreciated (for so little improvement);
#
# Byte order [in]dependence. =========================================
#
# Caller is expected to maintain specific *dword* order in Htable,
# namely with *least* significant dword of 128-bit value at *lower*
# address. This differs completely from C code and has everything to
# do with ldm instruction and order in which dwords are "consumed" by
# algorithm. *Byte* order within these dwords in turn is whatever
# *native* byte order on current platform. See gcm128.c for working
# example...

while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";

$Xi="r0";	# argument block
$Htbl="r1";
$inp="r2";
$len="r3";

$Zll="r4";	# variables
$Zlh="r5";
$Zhl="r6";
$Zhh="r7";
$Tll="r8";
$Tlh="r9";
$Thl="r10";
$Thh="r11";
$nlo="r12";
################# r13 is stack pointer
$nhi="r14";
################# r15 is program counter

$rem_4bit=$inp;	# used in gcm_gmult_4bit
$cnt=$len;

sub Zsmash() {
  my $i=12;
  my @args=@_;
  for ($Zll,$Zlh,$Zhl,$Zhh) {
    $code.=<<___;
#if __ARM_ARCH__>=7 && defined(__ARMEL__)
	rev	$_,$_
	str	$_,[$Xi,#$i]
#elif defined(__ARMEB__)
	str	$_,[$Xi,#$i]
#else
	mov	$Tlh,$_,lsr#8
	strb	$_,[$Xi,#$i+3]
	mov	$Thl,$_,lsr#16
	strb	$Tlh,[$Xi,#$i+2]
	mov	$Thh,$_,lsr#24
	strb	$Thl,[$Xi,#$i+1]
	strb	$Thh,[$Xi,#$i]
#endif
___
    $code.="\t".shift(@args)."\n";
    $i-=4;
  }
}

$code=<<___;
#include "arm_arch.h"

.text
.code	32

.type	rem_4bit,%object
.align	5
rem_4bit:
.short	0x0000,0x1C20,0x3840,0x2460
.short	0x7080,0x6CA0,0x48C0,0x54E0
.short	0xE100,0xFD20,0xD940,0xC560
.short	0x9180,0x8DA0,0xA9C0,0xB5E0
.size	rem_4bit,.-rem_4bit

.type	rem_4bit_get,%function
rem_4bit_get:
	sub	$rem_4bit,pc,#8
	sub	$rem_4bit,$rem_4bit,#32	@ &rem_4bit
	b	.Lrem_4bit_got
	nop
.size	rem_4bit_get,.-rem_4bit_get

.global	gcm_ghash_4bit
.type	gcm_ghash_4bit,%function
gcm_ghash_4bit:
	sub	r12,pc,#8
	add	$len,$inp,$len		@ $len to point at the end
	stmdb	sp!,{r3-r11,lr}		@ save $len/end too
	sub	r12,r12,#48		@ &rem_4bit

	ldmia	r12,{r4-r11}		@ copy rem_4bit ...
	stmdb	sp!,{r4-r11}		@ ... to stack

	ldrb	$nlo,[$inp,#15]
	ldrb	$nhi,[$Xi,#15]
.Louter:
	eor	$nlo,$nlo,$nhi
	and	$nhi,$nlo,#0xf0
	and	$nlo,$nlo,#0x0f
	mov	$cnt,#14

	add	$Zhh,$Htbl,$nlo,lsl#4
	ldmia	$Zhh,{$Zll-$Zhh}	@ load Htbl[nlo]
	add	$Thh,$Htbl,$nhi
	ldrb	$nlo,[$inp,#14]

	and	$nhi,$Zll,#0xf		@ rem
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
	add	$nhi,$nhi,$nhi
	eor	$Zll,$Tll,$Zll,lsr#4
	ldrh	$Tll,[sp,$nhi]		@ rem_4bit[rem]
	eor	$Zll,$Zll,$Zlh,lsl#28
	ldrb	$nhi,[$Xi,#14]
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	eor	$Zhl,$Thl,$Zhl,lsr#4
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eor	$Zhh,$Thh,$Zhh,lsr#4
	eor	$nlo,$nlo,$nhi
	and	$nhi,$nlo,#0xf0
	and	$nlo,$nlo,#0x0f
	eor	$Zhh,$Zhh,$Tll,lsl#16

.Linner:
	add	$Thh,$Htbl,$nlo,lsl#4
	and	$nlo,$Zll,#0xf		@ rem
	subs	$cnt,$cnt,#1
	add	$nlo,$nlo,$nlo
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nlo]
	eor	$Zll,$Tll,$Zll,lsr#4
	eor	$Zll,$Zll,$Zlh,lsl#28
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	ldrh	$Tll,[sp,$nlo]		@ rem_4bit[rem]
	eor	$Zhl,$Thl,$Zhl,lsr#4
	ldrplb	$nlo,[$inp,$cnt]
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eor	$Zhh,$Thh,$Zhh,lsr#4

	add	$Thh,$Htbl,$nhi
	and	$nhi,$Zll,#0xf		@ rem
	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
	add	$nhi,$nhi,$nhi
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
	eor	$Zll,$Tll,$Zll,lsr#4
	ldrplb	$Tll,[$Xi,$cnt]
	eor	$Zll,$Zll,$Zlh,lsl#28
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	ldrh	$Tlh,[sp,$nhi]
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	eor	$Zhl,$Thl,$Zhl,lsr#4
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eorpl	$nlo,$nlo,$Tll
	eor	$Zhh,$Thh,$Zhh,lsr#4
	andpl	$nhi,$nlo,#0xf0
	andpl	$nlo,$nlo,#0x0f
	eor	$Zhh,$Zhh,$Tlh,lsl#16	@ ^= rem_4bit[rem]
	bpl	.Linner

	ldr	$len,[sp,#32]		@ re-load $len/end
	add	$inp,$inp,#16
	mov	$nhi,$Zll
___
	&Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]");
$code.=<<___;
	bne	.Louter

	add	sp,sp,#36
#if __ARM_ARCH__>=5
	ldmia	sp!,{r4-r11,pc}
#else
	ldmia	sp!,{r4-r11,lr}
	tst	lr,#1
	moveq	pc,lr			@ be binary compatible with V4, yet
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	gcm_ghash_4bit,.-gcm_ghash_4bit

.global	gcm_gmult_4bit
.type	gcm_gmult_4bit,%function
gcm_gmult_4bit:
	stmdb	sp!,{r4-r11,lr}
	ldrb	$nlo,[$Xi,#15]
	b	rem_4bit_get
.Lrem_4bit_got:
	and	$nhi,$nlo,#0xf0
	and	$nlo,$nlo,#0x0f
	mov	$cnt,#14

	add	$Zhh,$Htbl,$nlo,lsl#4
	ldmia	$Zhh,{$Zll-$Zhh}	@ load Htbl[nlo]
	ldrb	$nlo,[$Xi,#14]

	add	$Thh,$Htbl,$nhi
	and	$nhi,$Zll,#0xf		@ rem
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
	add	$nhi,$nhi,$nhi
	eor	$Zll,$Tll,$Zll,lsr#4
	ldrh	$Tll,[$rem_4bit,$nhi]	@ rem_4bit[rem]
	eor	$Zll,$Zll,$Zlh,lsl#28
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	eor	$Zhl,$Thl,$Zhl,lsr#4
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eor	$Zhh,$Thh,$Zhh,lsr#4
	and	$nhi,$nlo,#0xf0
	eor	$Zhh,$Zhh,$Tll,lsl#16
	and	$nlo,$nlo,#0x0f

.Loop:
	add	$Thh,$Htbl,$nlo,lsl#4
	and	$nlo,$Zll,#0xf		@ rem
	subs	$cnt,$cnt,#1
	add	$nlo,$nlo,$nlo
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nlo]
	eor	$Zll,$Tll,$Zll,lsr#4
	eor	$Zll,$Zll,$Zlh,lsl#28
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	ldrh	$Tll,[$rem_4bit,$nlo]	@ rem_4bit[rem]
	eor	$Zhl,$Thl,$Zhl,lsr#4
	ldrplb	$nlo,[$Xi,$cnt]
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eor	$Zhh,$Thh,$Zhh,lsr#4

	add	$Thh,$Htbl,$nhi
	and	$nhi,$Zll,#0xf		@ rem
	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
	add	$nhi,$nhi,$nhi
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
	eor	$Zll,$Tll,$Zll,lsr#4
	eor	$Zll,$Zll,$Zlh,lsl#28
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	ldrh	$Tll,[$rem_4bit,$nhi]	@ rem_4bit[rem]
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	eor	$Zhl,$Thl,$Zhl,lsr#4
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eor	$Zhh,$Thh,$Zhh,lsr#4
	andpl	$nhi,$nlo,#0xf0
	andpl	$nlo,$nlo,#0x0f
	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
	bpl	.Loop
___
	&Zsmash();
$code.=<<___;
#if __ARM_ARCH__>=5
	ldmia	sp!,{r4-r11,pc}
#else
	ldmia	sp!,{r4-r11,lr}
	tst	lr,#1
	moveq	pc,lr			@ be binary compatible with V4, yet
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	gcm_gmult_4bit,.-gcm_gmult_4bit
___
{
my $cnt=$Htbl;	# $Htbl is used once in the very beginning

my ($Hhi, $Hlo, $Zo, $T, $xi, $mod) = map("d$_",(0..7));
my ($Qhi, $Qlo, $Z,  $R, $zero, $Qpost, $IN) = map("q$_",(8..15));

# Z:Zo keeps 128-bit result shifted by 1 to the right, with bottom bit
# in Zo. Or should I say "top bit", because GHASH is specified in
# reverse bit order? Otherwise straightforward 128-bt H by one input
# byte multiplication and modulo-reduction, times 16.

sub Dlo()   { shift=~m|q([1]?[0-9])|?"d".($1*2):"";     }
sub Dhi()   { shift=~m|q([1]?[0-9])|?"d".($1*2+1):"";   }
sub Q()     { shift=~m|d([1-3]?[02468])|?"q".($1/2):""; }

$code.=<<___;
#if __ARM_ARCH__>=7
.fpu	neon

.global	gcm_gmult_neon
.type	gcm_gmult_neon,%function
.align	4
gcm_gmult_neon:
	sub		$Htbl,#16		@ point at H in GCM128_CTX
	vld1.64		`&Dhi("$IN")`,[$Xi,:64]!@ load Xi
	vmov.i32	$mod,#0xe1		@ our irreducible polynomial
	vld1.64		`&Dlo("$IN")`,[$Xi,:64]!
	vshr.u64	$mod,#32
	vldmia		$Htbl,{$Hhi-$Hlo}	@ load H
	veor		$zero,$zero
#ifdef __ARMEL__
	vrev64.8	$IN,$IN
#endif
	veor		$Qpost,$Qpost
	veor		$R,$R
	mov		$cnt,#16
	veor		$Z,$Z
	mov		$len,#16
	veor		$Zo,$Zo
	vdup.8		$xi,`&Dlo("$IN")`[0]	@ broadcast lowest byte
	b		.Linner_neon
.size	gcm_gmult_neon,.-gcm_gmult_neon

.global	gcm_ghash_neon
.type	gcm_ghash_neon,%function
.align	4
gcm_ghash_neon:
	vld1.64		`&Dhi("$Z")`,[$Xi,:64]!	@ load Xi
	vmov.i32	$mod,#0xe1		@ our irreducible polynomial
	vld1.64		`&Dlo("$Z")`,[$Xi,:64]!
	vshr.u64	$mod,#32
	vldmia		$Xi,{$Hhi-$Hlo}		@ load H
	veor		$zero,$zero
	nop
#ifdef __ARMEL__
	vrev64.8	$Z,$Z
#endif
.Louter_neon:
	vld1.64		`&Dhi($IN)`,[$inp]!	@ load inp
	veor		$Qpost,$Qpost
	vld1.64		`&Dlo($IN)`,[$inp]!
	veor		$R,$R
	mov		$cnt,#16
#ifdef __ARMEL__
	vrev64.8	$IN,$IN
#endif
	veor		$Zo,$Zo
	veor		$IN,$Z			@ inp^=Xi
	veor		$Z,$Z
	vdup.8		$xi,`&Dlo("$IN")`[0]	@ broadcast lowest byte
.Linner_neon:
	subs		$cnt,$cnt,#1
	vmull.p8	$Qlo,$Hlo,$xi		@ H.lo·Xi[i]
	vmull.p8	$Qhi,$Hhi,$xi		@ H.hi·Xi[i]
	vext.8		$IN,$zero,#1		@ IN>>=8

	veor		$Z,$Qpost		@ modulo-scheduled part
	vshl.i64	`&Dlo("$R")`,#48
	vdup.8		$xi,`&Dlo("$IN")`[0]	@ broadcast lowest byte
	veor		$T,`&Dlo("$Qlo")`,`&Dlo("$Z")`

	veor		`&Dhi("$Z")`,`&Dlo("$R")`
	vuzp.8		$Qlo,$Qhi
	vsli.8		$Zo,$T,#1		@ compose the "carry" byte
	vext.8		$Z,$zero,#1		@ Z>>=8

	vmull.p8	$R,$Zo,$mod		@ "carry"·0xe1
	vshr.u8		$Zo,$T,#7		@ save Z's bottom bit
	vext.8		$Qpost,$Qlo,$zero,#1	@ Qlo>>=8
	veor		$Z,$Qhi
	bne		.Linner_neon

	veor		$Z,$Qpost		@ modulo-scheduled artefact
	vshl.i64	`&Dlo("$R")`,#48
	veor		`&Dhi("$Z")`,`&Dlo("$R")`

	@ finalization, normalize Z:Zo
	vand		$Zo,$mod		@ suffices to mask the bit
	vshr.u64	`&Dhi(&Q("$Zo"))`,`&Dlo("$Z")`,#63
	vshl.i64	$Z,#1
	subs		$len,#16
	vorr		$Z,`&Q("$Zo")`		@ Z=Z:Zo<<1
	bne		.Louter_neon

#ifdef __ARMEL__
	vrev64.8	$Z,$Z
#endif
	sub		$Xi,#16	
	vst1.64		`&Dhi("$Z")`,[$Xi,:64]!	@ write out Xi
	vst1.64		`&Dlo("$Z")`,[$Xi,:64]

	bx	lr
.size	gcm_ghash_neon,.-gcm_ghash_neon
#endif
___
}
$code.=<<___;
.asciz  "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
.align  2
___

$code =~ s/\`([^\`]*)\`/eval $1/gem;
$code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm;	# make it possible to compile with -march=armv4
print $code;
close STDOUT; # enforce flush