// Copyright 2011 Google Inc. All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Various stubs for the open-source version of Snappy. #ifndef UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_ #define UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <string> #include <assert.h> #include <stdlib.h> #include <string.h> #ifdef HAVE_SYS_MMAN_H #include <sys/mman.h> #endif #include "snappy-stubs-public.h" #if defined(__x86_64__) // Enable 64-bit optimized versions of some routines. #define ARCH_K8 1 #endif // Needed by OS X, among others. #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif // Pull in std::min, std::ostream, and the likes. This is safe because this // header file is never used from any public header files. using namespace std; // The size of an array, if known at compile-time. // Will give unexpected results if used on a pointer. // We undefine it first, since some compilers already have a definition. #ifdef ARRAYSIZE #undef ARRAYSIZE #endif #define ARRAYSIZE(a) (sizeof(a) / sizeof(*(a))) // Static prediction hints. #ifdef HAVE_BUILTIN_EXPECT #define PREDICT_FALSE(x) (__builtin_expect(x, 0)) #define PREDICT_TRUE(x) (__builtin_expect(!!(x), 1)) #else #define PREDICT_FALSE(x) x #define PREDICT_TRUE(x) x #endif // This is only used for recomputing the tag byte table used during // decompression; for simplicity we just remove it from the open-source // version (anyone who wants to regenerate it can just do the call // themselves within main()). #define DEFINE_bool(flag_name, default_value, description) \ bool FLAGS_ ## flag_name = default_value #define DECLARE_bool(flag_name) \ extern bool FLAGS_ ## flag_name namespace snappy { static const uint32 kuint32max = static_cast<uint32>(0xFFFFFFFF); static const int64 kint64max = static_cast<int64>(0x7FFFFFFFFFFFFFFFLL); // Potentially unaligned loads and stores. // x86 and PowerPC can simply do these loads and stores native. #if defined(__i386__) || defined(__x86_64__) || defined(__powerpc__) #define UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p)) #define UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p)) #define UNALIGNED_LOAD64(_p) (*reinterpret_cast<const uint64 *>(_p)) #define UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val)) #define UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val)) #define UNALIGNED_STORE64(_p, _val) (*reinterpret_cast<uint64 *>(_p) = (_val)) // ARMv7 and newer support native unaligned accesses, but only of 16-bit // and 32-bit values (not 64-bit); older versions either raise a fatal signal, // do an unaligned read and rotate the words around a bit, or do the reads very // slowly (trip through kernel mode). There's no simple #define that says just // “ARMv7 or higher”, so we have to filter away all ARMv5 and ARMv6 // sub-architectures. // // This is a mess, but there's not much we can do about it. #elif defined(__arm__) && \ !defined(__ARM_ARCH_4__) && \ !defined(__ARM_ARCH_4T__) && \ !defined(__ARM_ARCH_5__) && \ !defined(__ARM_ARCH_5T__) && \ !defined(__ARM_ARCH_5TE__) && \ !defined(__ARM_ARCH_5TEJ__) && \ !defined(__ARM_ARCH_6__) && \ !defined(__ARM_ARCH_6J__) && \ !defined(__ARM_ARCH_6K__) && \ !defined(__ARM_ARCH_6Z__) && \ !defined(__ARM_ARCH_6ZK__) && \ !defined(__ARM_ARCH_6T2__) #define UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p)) #define UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p)) #define UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val)) #define UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val)) // TODO(user): NEON supports unaligned 64-bit loads and stores. // See if that would be more efficient on platforms supporting it, // at least for copies. inline uint64 UNALIGNED_LOAD64(const void *p) { uint64 t; memcpy(&t, p, sizeof t); return t; } inline void UNALIGNED_STORE64(void *p, uint64 v) { memcpy(p, &v, sizeof v); } #else // These functions are provided for architectures that don't support // unaligned loads and stores. inline uint16 UNALIGNED_LOAD16(const void *p) { uint16 t; memcpy(&t, p, sizeof t); return t; } inline uint32 UNALIGNED_LOAD32(const void *p) { uint32 t; memcpy(&t, p, sizeof t); return t; } inline uint64 UNALIGNED_LOAD64(const void *p) { uint64 t; memcpy(&t, p, sizeof t); return t; } inline void UNALIGNED_STORE16(void *p, uint16 v) { memcpy(p, &v, sizeof v); } inline void UNALIGNED_STORE32(void *p, uint32 v) { memcpy(p, &v, sizeof v); } inline void UNALIGNED_STORE64(void *p, uint64 v) { memcpy(p, &v, sizeof v); } #endif // This can be more efficient than UNALIGNED_LOAD64 + UNALIGNED_STORE64 // on some platforms, in particular ARM. inline void UnalignedCopy64(const void *src, void *dst) { if (sizeof(void *) == 8) { UNALIGNED_STORE64(dst, UNALIGNED_LOAD64(src)); } else { const char *src_char = reinterpret_cast<const char *>(src); char *dst_char = reinterpret_cast<char *>(dst); UNALIGNED_STORE32(dst_char, UNALIGNED_LOAD32(src_char)); UNALIGNED_STORE32(dst_char + 4, UNALIGNED_LOAD32(src_char + 4)); } } // The following guarantees declaration of the byte swap functions. #ifdef WORDS_BIGENDIAN #ifdef HAVE_SYS_BYTEORDER_H #include <sys/byteorder.h> #endif #ifdef HAVE_SYS_ENDIAN_H #include <sys/endian.h> #endif #ifdef _MSC_VER #include <stdlib.h> #define bswap_16(x) _byteswap_ushort(x) #define bswap_32(x) _byteswap_ulong(x) #define bswap_64(x) _byteswap_uint64(x) #elif defined(__APPLE__) // Mac OS X / Darwin features #include <libkern/OSByteOrder.h> #define bswap_16(x) OSSwapInt16(x) #define bswap_32(x) OSSwapInt32(x) #define bswap_64(x) OSSwapInt64(x) #elif defined(HAVE_BYTESWAP_H) #include <byteswap.h> #elif defined(bswap32) // FreeBSD defines bswap{16,32,64} in <sys/endian.h> (already #included). #define bswap_16(x) bswap16(x) #define bswap_32(x) bswap32(x) #define bswap_64(x) bswap64(x) #elif defined(BSWAP_64) // Solaris 10 defines BSWAP_{16,32,64} in <sys/byteorder.h> (already #included). #define bswap_16(x) BSWAP_16(x) #define bswap_32(x) BSWAP_32(x) #define bswap_64(x) BSWAP_64(x) #else inline uint16 bswap_16(uint16 x) { return (x << 8) | (x >> 8); } inline uint32 bswap_32(uint32 x) { x = ((x & 0xff00ff00UL) >> 8) | ((x & 0x00ff00ffUL) << 8); return (x >> 16) | (x << 16); } inline uint64 bswap_64(uint64 x) { x = ((x & 0xff00ff00ff00ff00ULL) >> 8) | ((x & 0x00ff00ff00ff00ffULL) << 8); x = ((x & 0xffff0000ffff0000ULL) >> 16) | ((x & 0x0000ffff0000ffffULL) << 16); return (x >> 32) | (x << 32); } #endif #endif // WORDS_BIGENDIAN // Convert to little-endian storage, opposite of network format. // Convert x from host to little endian: x = LittleEndian.FromHost(x); // convert x from little endian to host: x = LittleEndian.ToHost(x); // // Store values into unaligned memory converting to little endian order: // LittleEndian.Store16(p, x); // // Load unaligned values stored in little endian converting to host order: // x = LittleEndian.Load16(p); class LittleEndian { public: // Conversion functions. #ifdef WORDS_BIGENDIAN static uint16 FromHost16(uint16 x) { return bswap_16(x); } static uint16 ToHost16(uint16 x) { return bswap_16(x); } static uint32 FromHost32(uint32 x) { return bswap_32(x); } static uint32 ToHost32(uint32 x) { return bswap_32(x); } static bool IsLittleEndian() { return false; } #else // !defined(WORDS_BIGENDIAN) static uint16 FromHost16(uint16 x) { return x; } static uint16 ToHost16(uint16 x) { return x; } static uint32 FromHost32(uint32 x) { return x; } static uint32 ToHost32(uint32 x) { return x; } static bool IsLittleEndian() { return true; } #endif // !defined(WORDS_BIGENDIAN) // Functions to do unaligned loads and stores in little-endian order. static uint16 Load16(const void *p) { return ToHost16(UNALIGNED_LOAD16(p)); } static void Store16(void *p, uint16 v) { UNALIGNED_STORE16(p, FromHost16(v)); } static uint32 Load32(const void *p) { return ToHost32(UNALIGNED_LOAD32(p)); } static void Store32(void *p, uint32 v) { UNALIGNED_STORE32(p, FromHost32(v)); } }; // Some bit-manipulation functions. class Bits { public: // Return floor(log2(n)) for positive integer n. Returns -1 iff n == 0. static int Log2Floor(uint32 n); // Return the first set least / most significant bit, 0-indexed. Returns an // undefined value if n == 0. FindLSBSetNonZero() is similar to ffs() except // that it's 0-indexed. static int FindLSBSetNonZero(uint32 n); static int FindLSBSetNonZero64(uint64 n); private: DISALLOW_COPY_AND_ASSIGN(Bits); }; #ifdef HAVE_BUILTIN_CTZ inline int Bits::Log2Floor(uint32 n) { return n == 0 ? -1 : 31 ^ __builtin_clz(n); } inline int Bits::FindLSBSetNonZero(uint32 n) { return __builtin_ctz(n); } inline int Bits::FindLSBSetNonZero64(uint64 n) { return __builtin_ctzll(n); } #else // Portable versions. inline int Bits::Log2Floor(uint32 n) { if (n == 0) return -1; int log = 0; uint32 value = n; for (int i = 4; i >= 0; --i) { int shift = (1 << i); uint32 x = value >> shift; if (x != 0) { value = x; log += shift; } } assert(value == 1); return log; } inline int Bits::FindLSBSetNonZero(uint32 n) { int rc = 31; for (int i = 4, shift = 1 << 4; i >= 0; --i) { const uint32 x = n << shift; if (x != 0) { n = x; rc -= shift; } shift >>= 1; } return rc; } // FindLSBSetNonZero64() is defined in terms of FindLSBSetNonZero(). inline int Bits::FindLSBSetNonZero64(uint64 n) { const uint32 bottombits = static_cast<uint32>(n); if (bottombits == 0) { // Bottom bits are zero, so scan in top bits return 32 + FindLSBSetNonZero(static_cast<uint32>(n >> 32)); } else { return FindLSBSetNonZero(bottombits); } } #endif // End portable versions. // Variable-length integer encoding. class Varint { public: // Maximum lengths of varint encoding of uint32. static const int kMax32 = 5; // Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1]. // Never reads a character at or beyond limit. If a valid/terminated varint32 // was found in the range, stores it in *OUTPUT and returns a pointer just // past the last byte of the varint32. Else returns NULL. On success, // "result <= limit". static const char* Parse32WithLimit(const char* ptr, const char* limit, uint32* OUTPUT); // REQUIRES "ptr" points to a buffer of length sufficient to hold "v". // EFFECTS Encodes "v" into "ptr" and returns a pointer to the // byte just past the last encoded byte. static char* Encode32(char* ptr, uint32 v); // EFFECTS Appends the varint representation of "value" to "*s". static void Append32(string* s, uint32 value); }; inline const char* Varint::Parse32WithLimit(const char* p, const char* l, uint32* OUTPUT) { const unsigned char* ptr = reinterpret_cast<const unsigned char*>(p); const unsigned char* limit = reinterpret_cast<const unsigned char*>(l); uint32 b, result; if (ptr >= limit) return NULL; b = *(ptr++); result = b & 127; if (b < 128) goto done; if (ptr >= limit) return NULL; b = *(ptr++); result |= (b & 127) << 7; if (b < 128) goto done; if (ptr >= limit) return NULL; b = *(ptr++); result |= (b & 127) << 14; if (b < 128) goto done; if (ptr >= limit) return NULL; b = *(ptr++); result |= (b & 127) << 21; if (b < 128) goto done; if (ptr >= limit) return NULL; b = *(ptr++); result |= (b & 127) << 28; if (b < 16) goto done; return NULL; // Value is too long to be a varint32 done: *OUTPUT = result; return reinterpret_cast<const char*>(ptr); } inline char* Varint::Encode32(char* sptr, uint32 v) { // Operate on characters as unsigneds unsigned char* ptr = reinterpret_cast<unsigned char*>(sptr); static const int B = 128; if (v < (1<<7)) { *(ptr++) = v; } else if (v < (1<<14)) { *(ptr++) = v | B; *(ptr++) = v>>7; } else if (v < (1<<21)) { *(ptr++) = v | B; *(ptr++) = (v>>7) | B; *(ptr++) = v>>14; } else if (v < (1<<28)) { *(ptr++) = v | B; *(ptr++) = (v>>7) | B; *(ptr++) = (v>>14) | B; *(ptr++) = v>>21; } else { *(ptr++) = v | B; *(ptr++) = (v>>7) | B; *(ptr++) = (v>>14) | B; *(ptr++) = (v>>21) | B; *(ptr++) = v>>28; } return reinterpret_cast<char*>(ptr); } // If you know the internal layout of the std::string in use, you can // replace this function with one that resizes the string without // filling the new space with zeros (if applicable) -- // it will be non-portable but faster. inline void STLStringResizeUninitialized(string* s, size_t new_size) { s->resize(new_size); } // Return a mutable char* pointing to a string's internal buffer, // which may not be null-terminated. Writing through this pointer will // modify the string. // // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the // next call to a string method that invalidates iterators. // // As of 2006-04, there is no standard-blessed way of getting a // mutable reference to a string's internal buffer. However, issue 530 // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-defects.html#530) // proposes this as the method. It will officially be part of the standard // for C++0x. This should already work on all current implementations. inline char* string_as_array(string* str) { return str->empty() ? NULL : &*str->begin(); } } // namespace snappy #endif // UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_